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A consecutive-k-out-of-n: F system consists of n linearly ordered components and the

system fails if and only if at least k consecutive components fail. This type of system has

attracted considerable attention since 1980. In this paper first a brief survey of the literature

is given. Then the system is studied in the general case when the n components are statistically

independent, but may not have the same reliability. Most of the papers in the literature use

traditional combinatorial or conditional probability approaches to derive the formulae for the

system reliability. Here -we show that using the elegant and concise algebraic approach and

network diagram representation given in Chapters 1 and 2 of Barlow and Proschan (1975),

one can easily obtain the exact formula for the system reliability. Furthermore, we are able

to obtain algorithms for finding all the minimal path sets and cut sets of the system, and

hence the upper and lower bounds of the system reliability. A simplified upper bound is also

proposed. ----

Kontoleon (1980) seems to be one of the first who studied the consecutive-k-out-of-n: F

systems and described a computer algorithm for obtaining the system reliability. Then Chiang

and Niu (1981) gave two practical examples, one about a telecommunication system and one

about an oil pipeline system. Assuming that the component failure times are independently

and identically distributed (i.i.d.), they presented a recursive formula to compute the exact

reliability of the system. Bollinger and Salvia (1982) provided another recursive formula and

also gave a practical example about the design of integrated circuit. Some direct computations

or closed forms of the system reliability can be found in Bollinger (1982, 1984), Lambiris &

Papastavridis (1985) and Chen & Hwang (1985). Adoo

Chao and Lin (1984) applied the concept of taboo probability to find a general closed-

form formula for the system reliability. They studied the large system and proved that for

I :5 k 5 4 the system reliability tends to exp{-Ak) as n -. oo if all components have the same
0

failure probability An - lk, where A is a positive constant. Their conjecture that the above

result also holds for the general case k > 4 is proved by Fu (1985).

Most of the works mentioned above are concerned with the case when all the components

have the same reliability. For more general cases when the reliabilities are not identical, Derman 'oies

et al. (1982) gave the upper and lower bounds of the system reliability. Shanthikumar (1982) or
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and Hwang (1982) provided recursive formulas for the system reliability. Shanthikumar (1985)

then extended his formula to a system whose components have exchangeable lifetimes.

The optimal sequencing problem is also of interest, i.e., how to arrange the components so

that the system reliability is maximized. Let component #1 be the least reliable, component

#2 the next least reliable and so on. Derman et al. (1982) conjectured that the optimal

sequence for the case k = 2 is

(11, On, 13, 1(n - 2),... ,i(n - 3),14, 1(n - 1),112)

which interlaces the more reliable components with the less reliable items. Wei et al. (1983)

gave some partial solutions to this problem, and the complete solution is due to Malon (1984).

As we can see in Malon (1985), the solution for the general case k > 2 is still unknown.

Bollinger and Salvia (1985) considered the dynamic case and developed a time-to-failure

model when each component is exponentially distributed. Chen and Hwang (1985) also studied

the system failure distribution when the component failure distributions are i.i.d. but may not

be exponential.

The sections of this paper are arranged as follows. Section 1 gives a network diagram and

a structure function representations of the consecutive-k-out-of-n: F systems. We have found

that such representations, which were so nicely and concisely introduced in Chapters 1 and 2

of Barlow and Proschan (1975), are useful tools for the analyses of the system. Furthermore,

results in their book can then be directly applied to the system. Perhaps the materials in

their book should be more frequently used in future studies of the system. Section 2 derives a

recursive formula for the system structure function, which is then used to obtain a recursive

formula of the system reliabi Ity by simply taking the expectation of the structure function.

In Section 3, necessary and sufficient conditions for the n components forming a minimal path

vector are given. Based on these conditions, a simple algorithm for finding all the minimal

path sets is obtained. Upper and lower bounds of the system reliability are given in Section 4.

A numerical example is also given in Section 4.
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1. Structure Function.

The notations used here are similar to those in Chapters 1 and 2 in Barlow and Proschan

(1975). Using these elegant and concise algbraic and network diagram representations, we

can gain inside into the characteristics of the system structure, and then obtain the system

reliability and other properties.

The consecutive-k-out-of-n: F system can be represented by the following series - parallel

network in which components with the same number i are identical. Such a representation is

useful for visualizing some characteristics of the system (e.g., each column is a minimal cut

set, and a path set can be obtained by selecting at least one functioning component from each

column) and is helpful in understanding the algebraic proofs of the theorems.

I Put Figure I here

Let the random variable

I if component i functions

0 if component i fails

and the structure function

I if the system functions

0 if the system fails,

where the vector s,, = (zi-,- ,z,,). Then from Figure I we can easily see that each column of

parallel components {jj + 1,... ,j + k - 1) - Ki is a minimal cut set. The structure function

of the system can easily be seen to be

a-k+tII U z,(1.1)

where UiEK, zi -(1 - Z)(I - z,+)...(l - z,+k_). The minimal path sets will be

studied in Section 3. The following section gives a recursive formula for the structure function.

Hereafter, except for special mention we adopt Boolean algebra when operating the numerical-

value addition and multiplication.
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2. A Recursive Formula for the Exact Reliability.

From the structure function (1.1) we can derive the following interesting recursive formulas

foe the structure function (Theorem I) and for the system reliability (Corollary 1). Note

that in Theorem I we do not assume the statistical independence of n components and that

2g-&, - *,", are seperated from a.-A+, in the last term.

Theorem 1. .(a.) s- 4,1(26 - - ...+l) ( - So)).

Proof. By Figure I we see that

.~#(so) - '_(A _,t-0 0l - zo_,+,)( - za-b+2) ... 0l-24)}

- = ,,,(,,_,)l -,,,,(l ,,-, )"" - ,,)(2.1)

where #.-I is the structure function of the system consisting of the first n- k columns of Figure

Is and x.-I = (zI,z2,'.. ,z,,-t). if .- j(s,,-1) = 1, then atleast one of z,-, zn-+t,"', ..-

is 1 which implies that

; #%-1(2'-i}{(0 - zn-k)(l - --,-k+t) ... 01 - SO)} 0 .

Therefore from (2.1)

#426,) -. _(,,) -,_(- -+).-0 - ,,,)}. (2.2)

We can express

j=1 iGK, =-2k+l ioKi

Jn2A4liE1
#*-k-1(s,.-k-1) ]a ] II

Therefore (2.2) becomes

* *(2.3' ) 1.

-~~~~~~~~~~~~~~ %.,,,__},,,i-,_ ).( .}t r I,



It remains to show that
s-h

za-k(l - Z.,-+) ... (0 - z,,) = ,._,(1 - _+ (1 - z ) ," (2.4)
j-s-2b+I 'EK,

If the LHS of (2.4) is equal to 1, then z.- - I and it can be easily seen from Figure I that

f=l-+ ULGx zi 1. Therefore (2.4) holds whatever LHS is 0 or 1. The proof is complete.

Assume that the n components are statistically independent, and let pi = P(zi = 1) be

the reliability of component i, i = 1, 2,.-. , n, and qi = 1 - pi. Then the system reliability is

hps)= EO.(sn) = P(O~,(x,) = 1),

where p. = (pl,p2, -,p.). It is clear, for example, that hk(Pk) = - f -['ql, where ph h

(p, p," ,p). Taking the expectation on both sides of Theorem 1, we obtain the following

recursive formula for system reliability h,(ps) through the hj(pj), where hj(pi) is the system

reliability of the consecutive-k-out-of-j: F system consisting of the first j components of the

original system. We set hj S I if j < k.

Corollary 1. h.(p,,) = h,- (p,-I) - h,.-k-((p,,-k-d)Pn-k f,=,-,+ 1 qi"

The above formula was also obtained by Hwang (1982) using a different approach.

3. Minimal Path Sets.

A path vector is a vector s,, such that 0.(s.) = 1. It is called a minimal path vector if

:, < z, implies that 0,,(z.) = 0, where s. < s, means that z: < zi for i = 1,2,- ,n with at

least one inequality being strict. The set of components corresponding to those zi with value 1

of a minimal path vector is called a minimal path set. Then from the definition of the system

we have the following necessary and sufficient conditions for a minimal path vector.

Theorem 2. For 2 < k < n, s. is a minimal path vector of the consecutive-k-out-of-n: F

system if and only if

zi+r,+ +...+z+h-. l, i-1,2,n-k+1 (3.1)

and (i I=i Z2 0, It= ,2- n, (3.2)
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where z0 a- 1, zn+l = 1, and z,.+i - 0 for i = 2,..- k - 1.

Proof. Equation (3.1) is the necessary and sufficient condition that z, is a path vector.

Equation (3.2) is the condition that there are no redundant functioning components.

So one way to search for all the minimal path vectors is to find all the solutions to

(3.1) and (3.2). A more tractable method of finding all the minimal path vectors is given in

Theorems 3 and 4. Given a system of n components, let the polynomial (a Boolean function)

zi represent that only component i functions while the remaining n - I components fail,

and let the polynomial zizj represent that only the components i and j function. And the

polynomial zi + zj means that it consists of two polynomials zi and zj. The multiplications and

additions of three or more polynomials are similarly defined. So, for example, considering a

consecutive-2-out-of-3: F system, the polynomial zIz2 means that components I and 2 function

but component 3 fails (i.e., zi = X2 = 1 and X3 = 0) and Z1Z2 + Z3 consists of zIZ2 and zs.

Given a system with n components, let the polynomial , represent the class of all

the minimal path sets of the system, where x. = (zi,' ", z,). Consider the consecutive-k-out-

of-k: F system with k > 2. Each polynomial zj(j = 1 2, ,n) represents a minimal path set.

In other words, sk is a minimal path if and only if the number of functioning components is

one. So the polynomial $k(Zk) = E zk! zj consists of all the minimal path sets. For n < 2k, it

is easy to find ,,(z) as shown in the following theorem.

Theorem 3. For k> 2 and n = k + m with 1 <m < k,

m , k

i=1 j=1 i-m+1

where the second summation is zero if m = k.

Proof. If x. is a minimal path vector, then one and only one of its components X1, 22,..., X2

is 1. For 1 _< i < m, if 2i = I then one and only one of Zk+l, k+2,- , Z+i is 1 and the

other n - 2 components of x, are 0. All such minimal path vectors can be represented by

E' $=I zizk+i. For m + 1 < i:5 k (if m < k), if zi = I then other n- I components are 0.

All such minimal path vectors can be represented by X~-m+1 zi. The theorem is then proved.

For systems with n > 2k >_ 4, the following Theorem 4 gives an algorithm to generate all

the minimal path sets of a system of n + I componetns from a system of n components with
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the same k. The component n - k + I plays a major role in this algorithm. Let the polynomial

fi(z,., - z.) represent a minimal path set of the consecutive-k-out-of-n: F system. Define

the mapping V on the class of all f, by

=(fj) = f,, if fi does not contain Zn.-k+ (3.3a)
ei+1

= j zi,, if fi contains zn-k+l and zi for some t in
i=f+k+l

(n- 2k + 1,..-,n- kJ. (3.3b)

The following figures would be helpful in understanding the proof of the theorem. In

Figure 2a, the first n - k + I columns form a consecutive-k-out-of-n: F system and all the

n - k + 2 columns form a consecutive-k-out-of-n + 1: F system. In Figure 2b, the first system

consists of the first n components and the second system consists of all the n + 1 components.

Put Figures 2a and 2b here. I

Since f, represents a minimal path set, in (3.3a) it contains exactly one of z.-k+2,", z,

(see Fig. 2a), while in (3.3b) it does not contain any one of these polynomials (see Fig. 2a) but

it contains exactly one zt, where t E (n - 2k + 1,... , n - k) (see Fig. 2b).

Theorem 4. Let n > 2k >_ 4, then the class of all minimal path sets of a consecutive-k-out-

of-n + 1: F system can be represented by

4n+1(Zl,'", Zn+1) = V "1 + V(f2) + + V(fP),

where fl, f2, -" , fp represent all the minimal path sets of the consecutive-k-out-of-n: F sytem

which consists of the first n components.

Proof. Let An,. (resp. An+,,) be the class of minimal path vectors of the consecutive-k-out-

of-n (resp. n + 1): F system with x.-k+ = 1, a = 0, 1.

First we proceed to show that (3.3a) is a mapping from An,O onto An+1 ,o. Let z, E An.o.

Then zn-k,+i = 1 for a unique i E (2,... ,k) (see Fig. 2a), i.e., fi contains exactly one of

Zn-,+2,"Zn- If we let an+ be such that z" = zi, i = 1,2,. .. ,n and z,+ = 0. Then

7



x.+. satisfies (3.1) of.Theorem 2 and (3.2) for n + I components if we set z:, a and

z+ s - 0. So a*+, E A,+,o. Therefore, (3.3a) is a mapping from A.,0 into

A,+,,o. On the other hand, for any x.+, E A.+ao, z,,i = I for a unique i E (2,..- , k) and

zn+1 = 0. If we let x, be such that zi = z! for i - 1,2, ..,n, then x, satisfies (3.1) and (3.2)

of Theorem 2 (see Fig. 2a) and hence it belongs to A,o. Furthermore, one can obtain s',+1

from x, through the mapping (3.3a).

Now we proceed to show that (3.3b) is a mapping from A. onto A.+I.z. For any

x,, E A,, Z-k+l ffi I and hence Z,-k+i = 0 for i = 2,..., k (see Fig. 2a). Let t be the last

functioning component before component n - k + 1. Then we have n - 2k + 1 _< t: n - k and

component t is the only functioning component among the components n - 2k + 1,... , n - k (see

Fig. 2b). For each t = t + k + 1,-.-, n + 1, let z, +,(t) = (z*,..., z,+,) be such that zx, = Zm

if m = 1,2,--.,n - k + 1, zg = 1 and z" = 0 if m f (I,2,...,n - k + ,t). Then s,+,(t)

satisfies.(3.1) and (3.2) of Theorem 2 for a system of n + I components (see Fig. 2b) and hence

z+,(t) E A,+aI. So z,+(t), t = t+ k + 1,... ,n + 1, are the elements in A,+,,1 generated

by z, E A~,,, and such a mapping can be represented by (3.3b). Now it remains to be shown

that for each z:, E A,+1,1, there exists zn E An,1 such that x,*+l can be obtained from X,

through the mapping (3.3b). First, note that z; = 1 for a unique t E (n - 2k + 1, ... , n - k)

and that zx = 1 for a unique t E {t +/k + 1,...,n + 1} (see Fig. 2b). So if we let zm = 4*, for

m = 1,2,-..,n -k+ 1 and zm = 0 for m = n-k+2,..-,n, then z=(zi,",z) satisfies

(3.1) and (3.2) of Theorem 2 and hence x, E A,i (see Fig. 2b). Furthermore, we note tlL..

z:+, can be obtained from z,, through the mapping represented by (3.3b).

Therefore all minimal path vectors of a system of n + 1 components can be obtained from

all those of a system of n components through (3.3a) and (3.3b). The theorem is then proved.

Theorem 5. For each minimal path set f of the consecutive-k-out-of-n: F system, the number

of functioning components, denoted by order (f), satisfies

n, , order (f)< 25 if [n+<

where [a] denotes the largest ingeter !5 a

Proof. Partition the system into consecutive blocks of k components, starting from component

8
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I (see Fig. 3a). The last block contains less than k components if [n/kj < n/k. For any minimal

path set f, each block contains at least one of its functioning components, with the exception

of the last block which may not contain any if [nlk] < n/k. Hence order (f) > [n/k], which

is achieved by the minimal path set with only components k, 2k, . [n/kk functioning. To

find the upper bound of order (f), we try to put as many functioning components as possible

in the system. Consider the case [(n + 1)/(k + 1)] = (n + 1)1(k + 1). The minimal path

set in Fig. 3b has 2[(n + 1)/(k + 1)] - 1 functioning components. If we partition the system

into blocks with the first block having k components and each of the remaining blocks having

k + I components, then for any minimal path set, the first block has exactly one functioning

component, and each of the remaining blocks cannot have more than two components. Hence

the order of any minimal path set is less than or equal to that of the minimal set given in Fig.

3b. The case [(n + 1)/(k + 1)] < (n + 1)/(k + 1) can be similarly proved except to note that

the last block cannot have more than one functioning component for any minimal path set.

I1~FPut Figures 3a, 3b and 3c here

4. Bounds of the System Reliability.
5%

Although we can find the exact reliability of the consecutive- k-out-of-n: F system, e.g.,

by Corollary 1, the recursive computations often lose accuracy. So we study in this section the

lower and upper bounds of the system reliability, which can be computed directly.

Assume that the components are statistically independent and p, = P(zi = I), q, = I -pi,

i . = 1, 2,..., n. Then from Figure I we have all the n - k + I minimal cut sets and hence the

lower bound of system reliability h.(p.),

H - 1I < h.(p.) (4.1)

"=1 i=:'

(Barlow and Proschn (1975), p. 35).

On the other hand, if we find all the minimal path sets of the system by Theorems 3 or

u4 9
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4, say {i', 1i}.,: then we can obtain an upper bound of system reliability as follows.

Here we propose another simplified upper bound of the system reliability. Let E, be the

event that the system fails and the number of failed components is exactly J. Then, assuming

n >! k + 1,

I - h.(p.) = P Ei P(Ei) _ f(E1) + P(Ekl).
(Uk j=k

Therefore,

h,(p.) < 1 - [P(Ek) + P(Ek+l)]. (43)

Now we proceed to calculate the probabilities P(Ek) and P(Eh+l). It is clear from Figure

1 that E, is the union of n - k + 1 disjoint sub-events, say E,,, r = 1. 2,-.., n - k + 1, where

Ek., means that the components r, r .. -, r + k - 1 fail and the rest function. So we have

n-k+l n-k+1 [+k-.
P(Ek)= X P(Ek,) = r p

= 1 j=r .

Similarly, Ek+1 is the union of (n - k + 1)(n - k - 1) + 1 sub-events, say Ek+,,,.,. Here

r = 1,2,..-,n-k+1;s=1,2,-..,n-k-Iforr=1,2,...,n-k, anda= 1,2,***,n-t for

r = n-k+l. Also Ek+i,,,, means that the components r,r+l,. ,r+k-I fail, component r+k

funtions (z,+ - 1 if necessary), component s,s € {,-. , r + k), fails and all the remaining

components function. So we have

-n-kI f1P(Eh+,)= F , E q. fi p '
,:+I{(r y :,¢,.,rk}

r1 [{ t. .. ()U

in which P,+= 1.

The upper bound (4.3) can be sharpened by including P(E+2), P(Ek+s),".. But if

the pi values are large, the gain would be too small to compensate the complexity in the

calculation of P(E+ 2),'" . This is because one may reason that it is quite unlikely that
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too many components will fail at the same time. As an example, consider a consecutive-2-

out-of-6: F system, hG(p,) = I - P(E2) - - - P(EG). When all pi = 0.9, h6 = 0.954261

while p(E 4) = 1.215 x 10-3, p(Es) = 5.4 x 10' and p(E6) = 10. When all pi 0.99,

h6 = 0.999504029601 while p(E 4) = 1.47015 x 10-7, p(E6) = 5.94 x 10-"0 and p(Es) =10-12.

However, when p is small, 1 - P(Eh) - P(Ek+l) is close to 1 and hence is not a good

upper bound. On the other hand, P(E.-I) + P(E3 ) is large and hence has significant effect on

the upper bound. Therefore a better upper bound of h,,(p,,) for both small and large p values

could be achieved by including

P(E.-, = pi qj and P(E)=fq,.
j==1

So we have the following upper bound

h. (p.) :5 1 - P(EA) - P(Ek+l) - P(E,.-1 ) - P(E3 ). (4.4)

For the lower and upper bounds in the i.i.d. case, see Chiang and Nmu (1981), Salvia

(1982) and Fu (1985). We shall compare the upper bounds (4.2) and (4.4) to the following

(4.5) proposed by Derman et al. (1982)

1 { E(N)) 2  (4.5)

E(N2 )

where N is the number of failed minimal cut sets,

n-k+1 i+k-1

E(N = fi 1 qj
i=1 j=i

and
n-k+1

E(N2)= (N + F I Hq
I4= t E (i,...,i+ k-1)JU

(~ j, -- ,j +k -1)

Example. Consider a consecutive-2-out-of-6: F system with statistically independent com-

ponents (the special case when all pi p and qi = 9 = I - p is also included).

Will



(a) By Corollary 1, the system reliability

h.(ps) = (1 - qlq2)(I - psqSqs - p4q59) - pIq9qs - p:qsq4 + PIp4q9qsqaqS

I1 -5e +4q + 3p' - 4e +q.

(b) By Theorem 5, the orders of the minimal path sets are between [6/21 = 3 and 2(7/3 ] - 4.

The orders 3 and 4 are achieved by the minimal path sets z2z4ze and SZ3Z4:., respectively.

By (4.1), a lower bound for hA(ps) is

A]g - (I - qq+,)=(-).

(c) By (4.4), one upper bound for hs(pg) is

U1 I - [P(E2) + P(Es) + P(E.) + P(Es)],

where

P([) [sr9r+I A 5p'q,

{(r-) ql+pv+2 Aq. ql..F++2)

~= 16psq¢,

and

P(E) =f =q.
jul

(d) By (4.5), another upper bound is

U2 a I - {E(N)) 2 /1E(N2 ),

where
S

E(N) 1: jq,q = 2

i=3

12



and

E(N2) = qq,q+ f I qt

=-S 6q+ 8e+ 12q4.

(e) To find all the minimal path sets, first consider the consecutive-k-out-of-2k: F systems

which consists of the first 2k =4 components of the original system. By Theorem 3, they

are

h 21 Z3, f2 = Z2Z3, As = Z2 Z4.

By Theorem 4, all the minimal path sets of the consecutive- k-out-of- (2k + 1): F system

can be found through (:3 plays a major role)

01 )= fi(4 + Z3) = Z1Z3: 4 + Z193Z

*(f2) = 12(4&) = Z2Z3Z5

V(As) = :2:4.

Continuing the application of Theorem 4 to the consecutive-k-out-of.(2k + 2): F system

(with Z4 playing a major role), we obtain all the required minimal path sets:

ZIZS:4z6, ZIZZ, Z2Z3SPZ,:2:4:5, :2:4:6.

(f) By (4.2), an upper bound for he8p) is

US (1 - pPPP6)(l - PIP03')(l - pWpSp)(l - P2P4PG)

I -(1 -p 4)(1 -pV3 )4.

Figures 4a and 4b gives the curves for the values of a, L1, U1, U2 and Us when p, p2=

P3= P4 = ps = p. = p for 0 <5p < 1. It is interesting to find that for a large component

reliability, e.g., p 2! 0.9 (see Figs. 4a, 4b and Table 1 below), the simple upper bound U1 is

the best among U1, U2 and Us. In fact, even the upper bound in (4.3) is better than both U2

and U3 for p ?! 0.9. For small component reliability, e.g., p:5 0.2, the upper bound U3 using

minimal path sts is significantly better than U, and U2 (see Fig. 4a and Table 1 below).

Put Figures 4& and 4b here.I
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Table 1

Comparison of the Exact Reliability h. with its Upper Bounds

U1 , U2, Us and Lower Bound L, when the Component Reliability

p is Large or Small for a Consecutive-2-out-of-6: F System

Reliability
p U1  U2  Us h" Li

0.99 0.999504 0.999508 1.000000 0.999504 0.999500
0.98 0.998035 0.998064 0.999999 0.998032 0.998001
0.96 0.992299 0.992508 0.999973 0.992263 0.992025
0.94 0.983072 0.983705 0.999819 0.982900 0.982129
0.92 0.970678 0.972012 0.999320 0.970158 0.968407
0.90 0.955476 0.957770 0.998145 0.954261 0.950990
0.20 0.273984 0.161426 3.316754 e - 2 2.822378 a - 2 6.046619 e - 3
0.15 0.188524 0.117611 1.393121 e - 2 1.234683 e - 2 1.645564 -3
0.10 0.102196 0.076186 4.093587 a - 3 3.781140 e - 3 2.476103- 4
0.05 0.031031 0.037025 5.061626 e - 4 4.869699 c - 4 8.810969 e - 6
0.03 0.012058 0.021966 1.088381 e - 4 1.063943 e - 4 7.210018 e - 7
0.01 0.001445 0.007240 4.053116 e - 6 4.053116 e - 6 3.120815 e - 9
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