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A consecutive-k-out-of-n: F system consists of n linearly ordered components and the
system fails if and only if at least k consecutive components fail. This type of system has
attracted considerable attention since 1980. In this paper first a brief survey of the literature
is given. Then the system is studied in the general case when the n components are statistically
independent, but may not have the same reliability. Most of the papers in the literature use

traditional combinatorial or conditional probability approaches to derive the formulae for the

) LR
N {},;h.r.,"

system reliability. Here ’we show that using the elegant and concise algebraic approach and
network diagram representation given in Chapters 1 and 2 of Barlow and Proschan (1975),
one can easily obtain the exact formula for the system reliability. Furthermore, '*,we} are able
to obtain algorithms for finding all the minimal path sets and cut sets of the system, and
hence the upper and lower bounds of the system reliability. A simplified upper bound is also

proposed. (T —

Kontoleon (1980) seems to be one of the first who studied the consecutive-k-out-of-n: F
systems and described a computer algorithm for obtaining the system reliability. Then Chiang
and Niu (1981) gave two practical examples, one about a telecommunication system and one
about an oil pipeline system. Assuming that the component failure times are independently
and identically distributed (i.i.d.), they presented a recursive formula to compute the exact
reliability of the system. Bollinger and Salvia (1982) provided another recursive formula and
also gave a practical example about the design of integrated circuit. Some direct computations
or closed forms of the system reliability can be found in Bollinger (1982, 1984), Lambiris &
Papastavridis (1985) and Chen & Hwang (1985).

Chao and Lin (1984) applied the concept of taboo probability to find a general closed-
form formula for the system rel:ability. They studied the large system and proved that for
1 € k < 4 the system reliability tends to exp{—A*} as n — oo if all components have the same
failure probability An=!/%  where ) is a positive cons.tant. Their conjecture that the above

result also holds for the general case k > 4 is proved by Fu (1985).

Most of the works mentioned above are concerned with the case when all the components
have the same reliability. For more general cases when the reliabilities are not identical, Derman

et al. (1982) gave the upper and lower bounds of the system reliability. Shanthikumar (1982)
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and Hwang (1982) provided recursive formulas for the system reliability. Shanthikumar (1985)

then extended his formula to a system whose components have exchangeable lifetimes.

The optimal sequencing problem is also of interest, i.e., how to arrange the components so
that the system reliability is maximized. Let component #1 be the least reliable, component
#2 the next least reliable and so on. Derman et al. (1982) conjectured that the optimal

sequence for the case k = 2 is
(”1.30,53, U(n = 2)1 v 1"(" - 3):841 ”(ﬂ - l)v”2)

3 which interlaces the more reliable components with the less reliable items. Wei et al. (1983)
gave some partial solutions to this problem, and the complete solution is due to Malon (1984).

As we can see in Malon (1985), the solution for the general case k > 2 is still unknown.

Bollinger and Salvia (1985) considered the dynamic case and developed a time-to-failure

: model when each component is exponentially distributed. Chen and Hwang (1985) also studied
the system failure distribution when the component failure distributions are i.i.d. but may not

be exponential.

The sections of this paper are arranged as follows. Section 1 gives a network diagram and
a structure function representations of the consecutive-k-out-of-n: F systems. We have found i
' that such representations, which were so nicely and concisely introduced in Chapters 1 and 2
;; of Barlow and Proschan (1975), are useful tools for the analyses of the system. Furthermore,
! results in their book can then be directly applied to the system. Perhaps the materials in
their book should be more frequently used in future studies of the system. Section 2 derives a

recursive formula for the system structure function, which is then used to obtain a recursive

- oy xnl

formula of the system reliabi Ity by simply taking the expectation of the structure function.
In Section 3, necessary and sufficient conditions for the n components forming a minimal path

vector are given. Based on these conditions, a simple algorithm for finding all the minimal

path sets is obtained. Upper and lower bounds of the system reliability are given in Section 4.

- e =
- -

A numerical example is also given in Section 4.
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1. Structure Function.

The notations used here are similar to .thoce in Chapters 1 and 2 in Barlow and Proschan
(1975). Using these elegant and concise algbraic and network diagram representations, we
can gain inside into the characteristics of the system structure, and then obtain the system
reliability and other properties.

The consecutive-k-out-of-n: F system can be represented by the following series - parallel
network in which components with the same number s are identical. Such a representation is
useful for visualizing some characteristics of the system (e.g., each column is a minimal cut
set, and a path set can be obtained by selecting at least one functioning component from each

. column) and is helpful in understanding the algebraic proofs of the theorems.

Put Figure 1 here

|
Let the random variable 1
1 if component s functions }

z; =
' 0 if component s fails |

and the structure function i
1 if the system functions }
\

.f #a(2a) = {0 if the system fails ,

where the vector 2, = (2}, -+, Za). Then from Figure 1 we can easily see that each column of
parallel components {5, +1,---,5 + k~1} = K is a minimal cut set. The structure function
of the system can easily be seen to be

n—k+1

¢a(2a)= [ II = (1.1)

) ) J=1 I.GK,'
, where U.-e,‘i z; =1~ (1 = 2z;)(1 = 2j41)--- (1 = Zj44-1). The minimal path sets will be
' studied in Section 3. The following section gives a recursive formula for the structure function.
Hereafter, except for special mention we adopt Boolean algebra when operating the numerical-

value addition and multiplication.
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3. A Recursive Formula for the Exact Relilability.

From the structure function (1.1) we can derive the following interesting recursive formulas
for the structure function (Theorem 1) and for the system reliability (Corollary 1). Note
that in Theorem 1 we do not assume the statistical independence of n components and that
Za-4, "', 2a 8re seperated {rom s,_;4; in the last term.

Theorem 1. ¢,(s,) = Pn-1(8a-1) - ‘n-i-l(’a-l-l){’u—t(‘ - Zu-a41) (1 - 34-)}-
Proof. By Figure 1 we see that
‘u(’-) = ‘n-l(’n—l)“ - (l - ’n-H»l)(l - 30-“-2) ce (l - 30)}
= ‘u-l(’n-l){} = Zpa-i(l = Za-t41) (1 - 24) (2.1)
= (1= 2a-a)(1 = Zap1) -+ (1 - 24)},

where ¢,_; is the structure function of the system consisting of the first n — & columns of Figure
1,and 8ay = (21,23, , Za-1). f $n-1(2a~1) = 1, then atleast one of z,_ 3, Zu_p41,°*, Zn-1

is 1 which implies that

‘l—l(’l-l){(l = 3--‘)(1 - ’u-b*l'l) ve (l - 3-)} =0.

Therefore from (2.1)

‘n('ﬁ) = ‘l—l(’l-l){l - zl-‘(l = zl-l-ﬂ)”'(l - ’l)}' (2'2)

We can express

(1) 1.1

i=1 ‘€K, J=n=2k+14€K;
a—-b
= ‘n-b-l(’n-l-—l) H II z].
J=n~-2k+41 ‘GK,‘
Therefore (2.2) becomes

“'(") = ‘u-l('u-l)
) n-&
= ba-b-1(Sa-a-1){Za-a(1 = 2a-241) -~ (1 = 24)} ( H H z‘) (2.3)

j=n-2k414€K;




It remains to show that

Zach(l = Zachtr) (1= 2a) = Zaca(l = zacsr) - (1=23) [ [l (29
j=n=2k+1i€K;

If the LHS of (2.4) is equal to 1, then z,_; = 1 and it can be easily seen from Figure 1 that

;;:—u + Uiex, z; = 1. Therefore (2.4) holds whatever LHS is 0 or 1. The proof is complete.

Assume that the n components are statistically independent, and let p; = P(z; = !) be

the reliability of component 1,s =1,2,---,n, and ¢; = 1 — p;. Then the system reliability is

ha(pn) = E¢n(’n) = P(¢n(2a) = 1),

where p, = (p1,p2, - ,Pn). It is clear, for example, that hi(ps) =1 - ['[:‘__.l @i, where p;, =
(p1,p2," - ,pa). Taking the expectation on both sides of Theorem 1, we obtain the following
recursive formula for system reliability An(pa) through the h;(p;), where h;(p;) is the system
reliability of the consecutive-k-out-of-5: F system consisting of the first 5 components of the

original system. We set h; =1if y < k.
Corollary 1. ha(pn) = hn-1(Pn-1) = Back1(Pn-t-1)Pn-s [Ti=pn-p41 -
The above formula was also obtained by Hwang (1982) using a different approach.

3. Minimal Path Sets.

A path vector is a vector 2, such that ¢,(=,) = 1. It is called a minimal path vector if
z; < 3, implies that ¢,(2;) = 0, where 2} < 3, means that z} < z;fors=1,2,---,n with at
least one inequality being strict. The set of components corresponding to those z; with value 1
of a minimal path vector is called a minimal path set. Then from the definition of the system

we have the following necessary and sufficient conditions for a minimal path vector.

Theorem 2. For 2 < t < n, 8, is a minimal path vector of the consecutive-k-out-of-n: F

system if and only if
Zi+ zip+ -+ 21, 1=12,---n—-k+1 (3.1)

and

Zi-1 ( Z z,-,z,',) =0, i=1,2,---,n, (3.2)

1€51 <5284k -1




]

where 2o = 1, 7,41 =1, and z,.+.-:-.-:0fori=2,-'--,k- 1.

Proof. Equation (3.1) is the necessary and sufficient condition that 2, is a path vector.

Equation (3.2) is the condition that there are no redundant functioning components.

So one way to search for all the minimal path vectors is to find all the solutions to
(3.1) and (3.2). A more tractable method of finding all the minimal path vectors is given in
Theorems 3 and 4. Given a system of n components, let the polynomial (a Boolean function)
2z; represent that only component s functions while the remaining n — 1 components fail,
and let the polynomial z;z; represent that only the components s and j function. And the
polynomial z; + z; means that it consists of two polynomials z; and z;. The multiplications and
additions of three or more polynomials are similarly defined. So, for example, considering a
consecutivg-?-out-of-& F system, the polynomial z;z2 means that components 1 and 2 function

but component 3 fails (i.e., z; = z2 =1 and zy = 0) and 2323 + 25 consists of z;z2 and zy.

Given a system with n components, let the polynomial ®,(s,) represent the class of all

the minimal path sets of the system, where £, = (23, -, 24). Consider the consecutive-k-out-

‘ of-k: F system with k > 2. Each polynomial z;(s = 1,2,---,n) represents a minimal path set.
In other words, 2, is a minimal path if and only if the number of functioning components is

one. So the polynomial &,(%;) = E;=, z; consists of all the minimal path sets. For n < 2%, it

is easy to find ®,(2,) as shown in the following theorem.

Theorem 8. Fork>22andn=k+m with1 <m <k,
m s k
Balsa) = D) zizeai + I 2z
=1 j=1 s=m+1
where the second summation is zero if m = k.

Proof. If z, is a minimal path vector, then one and only one of its components z;,z2,---, z;

isl. Forl s <m,if z; =1 then one and only one of zp41,2s42, ", Zs4¢ is 1 and the

-;-: other n — 2 components of 2, are 0. All such minimal path vectors can be represented by
.S

: , =1 2oj=1 zizk4j. Form+1< i <k (if m < k), if z; = 1 then other n — 1 components are 0.
&"’ All such minimal path vectors can be represented by Y5 +1 %+ The theorem is then proved.

At For systems with n > 2k > 4, the following Theorem 4 gives an algorithm to generate all

) the minimal path sets of a system of n + 1 componetns from a system of n components with
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the same k. The component n - k +1 plays a major role in this algorithm. Let the polynomial
Ji(z1,-+,2a) represent a minimal path set of the consecutive-k-out-of-n: F system. Define

the mapping ®° on the class of all f; by

®°(f;) = f;, if fj does not contain z4_s4) (3.3a)
n+1
= f; Z z;, if fj contains z,_44; and 2z, for some ¢ in
i=t+h+1
{n-2k+1,--- ,n—k}. (3.3b)

The following figures would be helpful in understanding the proof of the theorem. In
Figure 2a, the first n — k + 1 columns form a consecutive-k-out-of-n: F system and all the
n — k + 2 columns form a consecutive-k-out-of-n + 1: F system. In Figure 2b, the first system

consists of the first n components and the second system consists of all the n + 1 components.

Put Figures 2a and 2b here.

Since f; represents a minimal path set, in (3.3a) it contains exactly one of z4_g42, -, 2a
(see Fig. 2a), while in (3.3b) it does not contain any one of these polynomials (see Fig. 2a) but

it contains exactly one zy, where £ € {n — 2k +1,---,n — k} (see Fig. 2b).

Theorem 4. Let n > 2k > 4, then the class of all minimal path sets of a consecutive-k-out-

of-n + 1: F system can be represented by

o'I'H(zl" ) zn-H) = 4).(,1) + @‘(fz) +---+ q).(f?)s

where fy, f2, -, [, represent all the minimal path sets of the consecutive-k-out-of-n: F sytem

which consists of the first n components.
Proof. Let A,, (resp. An41,) be the class of minimal path vectors of the consecutive-k-out-
of-n (resp. n + 1): F system with z,_34; =3,8=0,1.

First we proceed to show that (3.3a) is a mapping from A, onto An410. Let 2, € Anp.
Then z,_44; = 1 for a unique ¢ € {2,---,k} (see Fig. 2a), i.e., f; contains exactly one of

Zn-k42," "1 2n. If we let 27, be such that z{ = z;, ¢ = 1,2,---,n and 23, = 0. Then
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s}, satisfies (3.1) of Theorem 2 and (3.2) for n + 1 components if we set z3,, = 1 and
Zhys = = 20,, = 0. So 83,, € Ans1,0. Therefore, (3.3a) is 8 mapping from A, into
An41,0- On the other hand, for any 23, € An41,0, Z5_44; = | for a unique + € {2, -, &} and
zh 4y = 0. If we let 84 be such that z; = z} for i = 1,2,---,n, then s, satisfies (3.1) and (3.2)

of Theorem 2 (see Fig. 2a) and hence it belongs to A,0. Furthermore, one can obtain s, .,

from 2, through the mapping (3.3a).

Now we proceed to show that (3.3b) is a mapping from A,; onto As4yy. For any
Zn € An1, Zn-k4+1 = 1 and hence 2,34 =0 for i = 2,---,k (see Fig. 2a). Let ¢ be the last
functioning component before component n — k + 1. Then we haven -2k +1 < ¢ < n -k and
component ¢ is the only functioning component among the components n—2k+1,:--,n—k (see
Fig. 2b). Foreach t =¢+k+1,---,n+1, let 25 ,(t) = (z},---,25,,) be such that 2z}, =z,
fm=12---n-k+1,z0=1and z, =0if m ¢ {1,2,---,n — k+ 1,t}. Then 2} _,(¢)
satisfies (3.1) and (3.2) of Theorem 2 for a system of n+ 1 components (see Fig. 2b) and hence
25,.(t) € Anysy. So 2, ,,(t), t =L+ k+1,---,n+ 1, are the elements in An4y,1 generated
by 2, € An,1, and such a mapping can be represented by (3.3b). Now it remains to be shown
that for each 2., € An41,1, there exists 2, € An1 such that 2, can be obtained from 2,
through the mapping (3.3b). First, note that zj = 1 for a unique L€ {n -2k +1,---,n — k}
and that 2} =1 for a unique t € {{+ k+1,:--,n +1} (see Fig. 2b). So if we let z,, = z}, for
m=12---n—-k+landz,=0form=n-k+2,:--,n, then 2, = (21, -, 2,) satisfies
(3.1) and (3.2) of Theorem 2 and hence 2z, € A, (see Fig. 2b). Furthermore, we note tk..

2; ,, can be obtained from 2, through the mapping represented by (3.3b).

Therefore all minimal path vectors of a system of n+ 1 components can be obtained from

all those of a system of n components through (3.3a) and (3.3b). The theorem is then proved.

Theorem §. For each minimal path set f of the consecutive-k-out-of-n: F system, the number
of functioning components, denoted by order (f), satisfies

2"‘—1, ifnl=nl

15 e i< {1 V-

A ) flERI< By

where [a] denotes the largest ingeter < a

Proof. Partition the system into consecutive blocks of k¥ components, starting from component




1 (see Fig. 3a). The last block contains less than k components if [n/k] < n/k. For any minimal
path set f, each block contains at least one of its functioning components, with the exception
". of the last block which may not contain any if [n/k] < n/k. Hence order (f) 2 [n/k], which
o, is achieved by the minimal path set with only components k,2k,---,[n/k]k functioning. To i
find the upper bound of order (f), we try to put as many functioning components as possible

) : in the system. Consider the case [(n + 1)/(k +1)] = (n + 1)/(k + 1). The minimal path
w
:: set in Fig. 3b has 2[(n + 1)/(k + 1)] = 1 functioning components. If we partition the system
into blocks with the first block having £ components and each of the remaining blocks having
.-, k + 1 components, then for any minimal path set, the first block has exactly one functioning
$'.' component, and each of the remaining blocks cannot have more than two components. Hence
’ r.'
'.- the order of any minimal path set is less than or equal to that of the minimal set given in Fig.
s 3b. The case [(n + 1)/(k +1)] < (n +1)/(k + 1) can be similarly proved except to note that
_"" the last block cannot have more than one functioning component for any minimal path set.
L.
i
ld’.
"
e Put Figures 3a, 3b and 3¢ here
Y
3
,") 4. Bounds of the System Reliability.
;
; .';: Although we can find the exact reliability of the consecutive-k-out-of-n: F system, e.g.,
. ’ . . . . .
‘_.,. by Corollary 1, the recursive computations often lose accuracy. So we study in this section the
o lower and upper bounds of the system reliability, which can be computed directly.
-
N
:3.:: Assume that the components are statistically independent and p, = P(z; = 1), ¢; = 1 - p,,
B
: 3 $=1,2,---,n. Then from Figure 1 we have all the n — k£ + 1 minimal cut sets and hence the
= lower bound of system reliability h,(pa),
3
':j.': n—k+1 j+k-1
IT {1- II &) < haten) (4.1)
f " } j=‘ '=j
::: (Barlow and Proschan (1975), p. 35).
* "
o On the other hand, if we find all the minimal path sets of the system by Theorems 3 or
R
=Y 9
‘e
EN
o
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4, say {Pj};ﬂ. then we can obtain an upper bound of system reliability as follows.

h..(g).SI—I:[(l—Hp.-). 142)

=1 i€P,

Here we propose another simplified upper bound of the system reliability. Let E; be the

event that the system fails and the number of failed components is exactly 5. Then, assuming

n2k+1,
1= ha(pa) =P 0 E;| = i:P(E,) > P(Ex) + P(Exs1).
Therefore, ” H
hn(pa) <1~ [P(Er) + P(Eps1)]. (4.3)

Now we proceed to calculate the probabilities P(Ey) and P(E}4,). It is clear from Figure
1 that E, is the union of n — k + 1 disjoint sub-events, say Ex,, r =1.2,--- ,n -k + 1, where

Ey, means that the components r,r +1,--.,r + k — 1 fail and the rest function. So we have

n—k+1 n—-k+1 |r+k-1
PEN)= Y PEJ=Y (I II »
r=1 r=1 j=r tg¢{r,--.r+k—-1}

Similarly, Ey4; is the union of (n — k + 1)(n — k — 1) + 1 sub-events, say E;4y,, Here
r=1,2,---n—k+1;,8s=12,---,n—-k-1forr=1,2,--- . n-k,and s=1,2,--- ,n—k for
r=n-k+1. Also E44;,, means that the components r,r+1,---,r+k~1 fail, component r+£&
funtions (z,41 = 1 if necessary), component s,s ¢ {r,---,r + k}, fails and all the remaining

components function. So we have

n—k+1 r+k-1
P(Exn) = ), (H g |pees| D s
= A i) t¢ (J}U
{r,---,r +k}

in which payy = 1.

The upper hound (4.3) can be sharpened by including P(Ei42), P(Ex4s),---. But if
the p; values are large, the gain would be too small to compensate the complexity in the

calculation of P(Fi42),--. This is because one may rcason that it is quite unlikely that

10
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too many components will fail at the same time. As an example, consider a consecutive-2-
out-of-6: F system, he¢(ps) = 1 = P(Ez) — - = P(Es). When all p; = 0.9, he = 0.954261
while p(E¢) = 1.215 x 1073, p(Es) = 5.4 x 1072 and p(E,s) = 107%. When all p; = 0.99,
he = 0.999504029601 while p(E,) = 1.47015 x 10~7, p(Es) = 5.94 x 10~1° and p(E¢) = 10~12.

However, when p is small, 1 = P(E;) = P(E4,) is close to 1 and hence is not a good
upper bound. On the other hand, P(Es~;1)+ P(E,) is large and hence has significant effect on
the upper bound. Therefore a better upper bound of A,(ps) for both small and large p values
could be achieved by including

P(Ena)=Y_pi| ITI ;| and P(E)=T]as
i=1 i=1 j=1
J#Y
So we have the following upper bound
hn(pn) £ 1 — P(E;) — P(Ex4;) — P(En-1) — P(E,). (49)

For the lower and upper bounds in the i.i.d. case, see Chiang and Niu (1981), Salvia
(1982) and Fu (1985). We shall compare the upper bounds (4.2) and (4.4) to the following
(4.5) proposed by Derman et al. (1982)

{E(N)}?

hn(Pn) <1- _E(N_z)’

(4.5)

where N is the number of failed minimal cut sets,

n—k+1i4k-1
EN)= Y I
=1 =
and
n-k+1
E(N)=E(N)+ ) II .
y=1 tefi, -, i+k-1}U
t#) {5, 5 +k-1}

Example. Consider a consecutive-2-out-of-6: F system with statistically independent com-

ponents (the special case when all p; = p and ¢; = ¢ =1 — p is also included).
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(a) By Corollary 1, the system reliability
he(pe) = (1 — @1¢2)(1 = P39uas = P4qsqs) — P1203 = P203q4 + P1P49203q506
=1-5¢ +4¢° +3p' - 4¢* +¢*.
(b) By Theorem 5, the orders of the minimal path sets are between [6/2] = 3 and 2[7/3] = 4.

The orders 3 and 4 are achieved by the minimal path sets 222424 and 2y 232426, respectively.
By (4.1), a lower bound for Ag(pe) is

8
Li=Jl00 ~qjgjis) = (1 - )"

j=t
(c) By (4.4), one upper bound for he(ps) is

Uy =1 - [P(Ez) + P(Es) + P(Es) + P(Es)),

where
[}
P(E) =Y |ewgesr [] »e| =5pa,
r=1 t#rrt
s
P(Es) = E {Qv‘Iv+lPr+3 Z (qt n '3) }
r=1 of{r.r41,042) t¢(orr+1,r42)
= lsp‘q’,
s 0
P(Es) =) _pi| [ i ] =¢re*
=1 J = l
I
and .
P(Es) = [ 4 ="
| i.‘
c't (d) By (4.5), another upper bound is
' Uz =1~ (E(N)*/E(N?),
y where : .
E(N) =Y qigis1 = 5¢°
o =1




RSN

‘e

. .
ENY =Y qan+)y, JI @«

=1 #5 telii+1y 41}

= 5¢% + 8¢® + 12¢".

(e) To find all the minimal path sets, first consider the consecutive-k-out-of-2k: F systems
which consists of the first 2k = 4 components of the original system. By Theorem 3, they
are

h=2n2, fa=z22, fi3=22.
By Theorem 4, all the minimal path sets of the consecutive-k-out-of-(2k + 1): F system
can be found through (z3 plays a major role)
®*(f1) = filza + 25) = 212324 + 212528
O(f2) = f2(2s) = 222328
®*(fs) = 2224.
Continuing the application of Theorem 4 to the -consecutive-k-out-of-(% +2): F system

(with z4 playing a major role), we obtain all the required minimal path sets:

21232420, 212328, 222828, 222428, 222428

(f) By (4.2), an upper bound for hs(ps) is
Us = (1 - p1pspape)(1 - p1psps)(1 = p2psps)(1 - pzpaps)
=1-(1-p')1-p*)"
Figures 4a and 4b gives the curves for the values of hq, Ly, Uy, Uz and Us when p; = p; =
ps = ps =ps =pg = p for 0 < p < 1. It is interesting to find that for a large component
reliability, e.g., p > 0.9 (see Figs. 4a, 4b and Table 1 below), the simple upper bound U; is
the best among U,, Uz and Us. In fact, even the upper bound in (4.3) is better than both U,
and Us for p > 0.9. For small component reliability, e.g., p < 0.2, the upper bound Us using

minimal path sts is significantly better than U; and U2 (see Fig. 4a and Table 1 below).

Put Figures 4a and 4b here.
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Table 1

Comparison of the Exact Reliability A, with its Upper Bounds

Uy,U2,Us and Lower Bound L; when the Component Reliability

p is Large or Small for a Consecutive-2-out-of-6: F System

RHeliability
p Uy Uz Us n Ly
0.99| 0.999504 0.999508 1.000000 0.999504 0.999500
0.98] 0.998035 0.998064 0.999999 0.998032 0.998001
0.96| 0.992299 0.992508 0.999973 0.992263 0.992025
0.94] 0.983072 0.983705 0.999819 0.982900 0.982129
0.92]| 0.970678 0.972012 0.999320 0.970158 0.968407
0.90] 0.955476 0.957770 0.998145 0.954261 0.950990
0.20| 0.273984 0.161426 3.316754¢—-2 2.822378 ¢—~2 6.046619 ¢ -3
0.15] 0.188524 0.117611 1393121 e—2 1.234683e¢-2 1.645564 ¢—-3
0.10] 0.102196 0.076186 4.093587 ¢—3 3.781140e¢-3 2.476103 e~ 4
0.05] 0.031031 0.037025 5.0601626e—4 4.869699 ¢—4 8.810969 ¢—6
0.03| 0.012058 0.021966 1.088381e¢—4 1.063943e¢—-4 7.210018¢-7
0.01] 0.001445 0.007240 4.053116e¢—-6 4.053116 e¢—-6 3.120815e¢-9
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