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OBLIQUE PROJECTIONS:

. FORMULAS, ALGORITHMS, AND ERROR BOUNDS1
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ABSTRACT

7/
N

When an orthogonal projection is to be computed
using data acquired by distributed sensors, it is often
necessary to process each sensor's data locally and then

| transmit the results to a central facility for final
processing. The most efficient way to do this is to

- compute oblique projections locally. This choice makes

the final processing a matter of suming the oblique

) projections. i:;;jthls paperawe derlve(new formulas, and
iterative algorithms and associated error bounds, for

oblique projections in arbitrary Hilbert spaces.
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INTRODUCTION

:‘:a:, The solutions to many signal processing problems can be
i characterized in terms of orthogonal projection in an appropriate
Hilbert space. Linear least-squares filtering, smoothing, and
prediction are notable examples. Most existing algoritims for
‘;‘ orthogonal projections were developed with the assumption that all
.8 the data would be available for processing at a central location.
iy In the case of data acquisition by distributed sensors this assump—

i tion is not always realistic because constraints on the communica-

,;." tion links may prohibit the transmission of the sensors' data to a
:!:::':.' central facility for processing. In this case the data subsets
"::i must be processed locally (at the sensor sites) to produce appro-
;;.':; priate summaries which will then be transmitted to a central loca-
Egi: tion and combined to yield the desired orthogonal projection.

i | " The primary issue, then, is to decide what partial results

" should be computed locally so that the overall problem is solved as
efficiently as possible. An obvious choice is to let each partial
e result be an orthogonal projection onto the subspace determined by
£ the relevant data subset. In this way each processor will be sol-
ity ving a smaller-scale version of the overall probiem. However,
;" there is a serious difficulty with this choise.

To illustrate, let V be a Hilbert space and let H be
W the closed subspace of V spanned by the data. Suppose the data

i are partitioned into two subsets. Then these subsets individually

OOOGOTO000 e (o0Wd ! s O .
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span two closed subspaces Hl and 112 such that #H = H1+H

2
Suppose H JnH:.’:{O} and let the orthogonal projection operators
onto H, Hz and H2 be denoted by P, P1 and Pz, respectively.
For a vector zeV, if we decide to find Pz by first computing
P,z and P,z locally, then we must combine these partial results

according to the following formula due to Aronszajn [A2]:
~1 -1
Pz = (I-P2)_(I—P1P2) P,z + (I-P,)(I-P,P,) "P,z.

It is clear that the operations needed to combine P 12 and
P‘,_,z are more complex than those required to compute either of
these projections, thus producing a computational bottleneck at the
central facility. We note that all two-filter smoothing formulas
are special cases of the above formula. Adamyan and Arov [AA],
Salehi [S2], and Pavon {P] have applied this formula directly to
solve certain stochastic interpolation problems. As an example of
how it specializes in the case of decentralized Kalman filtering,
see Speyer [S4]. We note that there is no generalization of
Aronszajn's formula to the case of more than two subspaces.

In fact, the bottleneck inherent in the above approach can
be avoided by computing oblique, rather than orthogonal, projec-
tions at the local sites. This choice makes the combination of the
partial results as simple as possible, namely one of straight addi-

tion. As will be discussed in more generality later, the direct

sum decomposition #H = H 1@{-1.2 uniquely determines two oblique

projection operators LI and L2 such that




In camparing this formula with Aronszajn's given previously, it
should be noted that the right-hand sides do not correspond term by
term since le and L22 lie in Hl and H2, respectively.

It is the purpose of this paper to derive new formulas, and
iterative algorithms and associated error bounds, for oblique
projections in arbitrary Hilbert spaces. Although some results
along these lines exist for decompositions invelving only two
subspaces (two data subsets) [Al], [A2], [G], [TYM], [Y], there are
no such results for decompositions involving more than two sub-
spaces. We should note that in certain more specific settings, it
is possible to determine oblique projections using the concept of
superposition [RW], [WC]. Along these lines, Chang [C] was able to
rearrange the computations in Speyer's decentralized Kalman
filtering algorithm so that oblique projections were computed and
then sumed. He was, however, unaware of the geametric interpreta-
tions of his algebraic manipulations. Finally, the concept of
oblique projection has been applied in various other contexts [HB],

[KD], [s1], [s3], [TYM], [Y].
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OBLIQUE PROJECTION FORMULAS

Let H and Hl (i=1,2,...,k) be closed subspaces of a

Hilbert space V such that H has the direct sum decomposition

H = HIQHZQ .. aHk.

Let the orthogonal projection operators onto H and Hi be P and
PI. , respectively. Let us also introduce the notation #H > to mean
the direct sum of the &~/ subspaces excluding Hl., that is,

Ho y=H@ - @, @i & --- eH .

Since for any z€V, Pz is an element of H, it can be

decomposed uniquely as

where zl,eHj (i=21,2,...,k). The map that takes z to z,
determines a unique linear idempotent operator Lz’ called the
oblique projection operator onto Hj along H “)eﬂl, where Hl is

the orthogonal complement of H. Thus

Pz=L12+L,,z+---+Lz.

The range and null space of Li are Hx‘ and H(”@Ill, respect-

ively. Note that

The earliest discussions of oblique projection operators

appear to be those in Murray[M] and Lorch[L1]. Other useful




treatments can be found in Afriat[Al], Halmos(H1]., Kato[K],
Lyantse[L2], and Takeuchi et al [TYM].

] For i=1,2,....k, let M= HMH, and let 1, be the
orthogonal projection operator onto ”1" It is clear that

‘ ”f P—PI. . Let ”1‘ N be defined as

for 1¢jgigk, and m,, =l whenever i<j. In addition, let

Jj
LN
L [ =
e Tyaz’ =t
b Ti3® ) Tk-142 1=k,
B 13i®ksipgr 2€ICK-1L
N
=
ey
0
":'?, Theorem 1: The oblique projection operator Li (i=2,2,..
A;,c's ..,k) 1is given by
‘.‘q‘l
"':?":“ -1
| Pini_“j”(z—njnﬂ) , 1§ jgi-1, -
L =
i -1 L

o Pz‘”z‘—uz”kgu”'”fﬂ) ' AVALE
AR
n
‘:

* Proof: Note that this theorem gives a different
_l representation of the obligque projection operator Ll for each
W
s 8
s J=1.,2,...,k. We will prove only the representation for j=4. The

other representations follow in a similar manner.

:‘.:': Using 7 = P-P, for 1=1,2,...,k, we see that
*e
s
" n.a

. Kks™ Trar™ (PP gy = Mpgar™ i
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since P”k-j 'u° ”k-l e Similarly, the first term on the right can

be expanded as

b 4 - fn_p 1 = - ” .
By gug™ PP 0B oy T B2y P 1% k-241

Cambining these two relations, we have

IIII¢=II

Kk k=241~ PretTr-201" Pifk-141"

Expanding ”k-’*u and continuing in the same manner, we get

o.n

. P-PR  ~PR, = -+ =P

ki %041 2141 Fk-111"

We can rearrange this equation as follows:

P-n. N P(I—IIkII

Kk ki) = F

Tou * P

+

14 C ot P 1

Since by Lemma A5 (I-Ilknk‘)-l exists, the result of the theorem

for j=k follows. O

There is another class of representations for oblique
projection operators that uses the inverses of selfadjoint

operators. Let us introduce the following additional notation:

oo

. . - .
”17J= B ea J

for I¢i¢jsk and II“.= [ whenever i)y. Furthermore, let

J
”ka' 1=1,
Tiv® ) Trvk-1° 1=k,
BiotthBreogr 2618k=1.
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eorem 2: 1.e oblique projection operator Ll_ (i=1,2,

,k) is given by

n
¥ P, (-1
i L ” ( 11’ i 11)

- Proof: Since ”1 is a factor of neither II“ nor II“, we

' can write, as in the proof of Theorem 1,
LI - -
A z?”zﬂz L P P H
.‘}
:7 where I denotes the sum of the remaining terms, none of which
- have Pl. as a left factor. Now
R
)
¥
'v‘ - = - =
B P-m, A8, =P(I-N, A, )=PH +T,
0 and
i)
- P = Pz‘” (1-a, 1‘”1”11) + r(1- Hn I u)
o
N The necessary inverse exists by Lemma A5. This decomposition
"
N . clearly indicates that ®
o
N . Ly= Py, (1 - 1,7, u)
i
x = 3 I 3
::i Note that z-u; , where T, is the adjoint of z, .,
i r,‘
e Therefore 7 7m.m ~  is selfadjoint. One can also obtain the
."et
e result of Theorem 2 directly from Theorem 1 (with j=i) using the
!

e easily established fact that L 7 = L , m#n. {
e mn m ‘
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SERIES EXPANSIONS AND ITERATIVE METHODS

A I. The Case of Two Subspaces
: For the case of two subspaces the oblique projection

operators given by Theorem 1 (with j=i) are

el These expressions can be written in a form more conducive to
B iterative implementation. The following lemmas are basic in this

RN i ion.
,':.;' directi
)

AD Lemma 1: Under the stated assumptions on Hz and Hz'

Frs
-

-

N PPN = WP Pl = 2,0l =l m )l < 2.

- o

03

X

Proof: Since H20H1={0} and Hsz{o}' we have !
St T cos P(HZ'HJJ = cos PC(Hz,HJ), \
. cos ‘P(Mz,l‘lj) = cos PC(HZ,HIJ.

These angles are defined in the Appendix. From Lemma Al we have
! the equality
s oS PC(HZ,HI) = cos ?C(HZ,MI).
" In addition, it is well-known (see, for example, Youla [Y]) that

o |]P2P I = ]|P1P2|| = cos P(HZ,H‘,),

. . . ” - . . € o ..t '$- ‘\‘I.'l'
‘ ) () '3 ’ { ! 5% Wy g
oy ¢ .':‘"’.5,""!!’!!‘4"'%‘?’ ‘."' S "’l‘!’; »’l‘:’l i .a" 4 o‘z’ba‘l”'t“g 3.1,"!1' L0000k .‘.,‘. i f. " A & W10 s 1. X



i
12

”HZHIH = m,a,l| = cos ?(MZ,MI).

Since HI@H,7 is closed, we have PF(H°'HI) > ¢ by Lemma A2.

the result follows. O

n n .
Lemma 2: Pl(nzn ) ”z = (P1P2) P1”2 for n=1,2,...

Proof: For n=1, we have

PI”Z”J 2° PJ(P—PZ)[P-P1)H2= PIPZPIITZ.

Now

Assume that the lemma is true for n=m. Then for n=m+i, we have

m+1 m
= P,(”3”1) nzn z,

Pya,m,) I

m
(Pl P2} P1”2H1”2

m+1
(PZP.?) P]TIZ.

Therefore the lemma is true foQ. n=m+!, and thus it is true for all

n. 0
Theorem 3: For two subspaces the oblique projection
. operators are given by
L= (1-2.r. )7 P q
1~ 12 172’
and

-1
L2= ”—PZ’PI) PZQI'
with OI=I—P1.

Proof: We start with the oblique projection formula

- 10 -




: -1
b Ly= PylptI-,m,) =

qVe Since by Lemma 1 "IIIIIZ”(} , the above inverse can be expanded in an

"l'r absolutely convergent von Neumann series [K] to give

®© o

.‘Q‘;': X L1=§ Pznq(njn,,)‘ =§ Pl(ndnljlnﬁ.
Yo i=0 © ¢ “ i=0 “ “

ft:}, ) Now if we apply Lemma 2 to each term of the series, we get

o * i
kY L = 2 (PP )P u..
A I, 12 T

From Lemma A5 and Lemma 2, (I—PIP,))_I exists and

o0

y -1 i
2 (1-p P, )™ =S (pp,)t
PR 1=0

¢ Therefore

-1
Aty LI = [I-PJP;,) PJHZ'

,5 Now the result follows from the fact that p,= P,Q,. The formila
Y -

) for L2 can be derived similarly. o

“ i

o

:;i:; Note that we started with the formulas given by Theorem 1
o > for j=i. 1In fact, all of the other formulas given in Theorem 1
& 2\ i and Theorem 2 will lead to the same evpressions given in Theorem 3.
) . The formulas just derived were previously obtained by
Aronszajn [A2] in series form, and by Afriat [Al] in operator form
:‘:&: using other methods. The above derivation clearly points out the
;E:... special structure that exists in the case of two subspaces. As we
o

will see later, this state of affairs has no analog in the case of

- 11 -
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A three or more subspaces. A similar phenomenon was apparent in our
':‘::: previous work [KW]. We also note here that Greville [G] has
ist‘:'% derived other cblique projection formulas for the special case of
‘:::: complementary subspaces (V=H).

z;i;:; - ) The formulas in Theorem 3, in conjunction with the series
:j?:{ . expansion of { I-PIP:.’ )-1, lead to an iterative oblique projection
‘:::: ’ algorithm suitable for decentralized problems. We will work with

v Ll, but all the results apply to L2 as well with the obvious
o

’«'5{“ changes of subscripts.

From Theorem 3 we have

o .
A ;
d’: L= z (P,P,)°PQ,.
§ '1=0

tn)

let L ! be the truncated version

-1
W) tn) S' i

) ] =

.I;,':‘ Lz (PJ P2) PJQZ '
[} =0

e It is clear that Iim L= L . Therefore the sequence
T"‘i‘ . N—oo 1 1

\ ) n} (n)
‘:9:“ b = L

Al converges to 21=sz, the oblique projection of z onto HI along

)

dug H 2@[11. By breaking off the first term in the formula for L ;)

o get

—_ (n)_ (n-1)
.; L, 'z =PQz2+PPL
4

- Thus we have the iteration
¢/

g - 12 -
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) (n-1)
X = 3 P ) =1,2,...
X PIPZY + 1022 n=!,2

with x(0)=0. Clearly, le is the fixed point of the map

. — €
F: u P1P2u + Plez, uev,

- Since ||P1P2||<1, F is strictly contractive. Thus, the approxi-

mating sequence

(n} (n-1
X = Fx !

will converge to L 12 for any starting point in V. Furthermore,

any other fixed point algorithm can be used to generate the oblique

projection.

Figure 1

Figure 1 provides a sketch of how the iteration works. The




R element ze€V is first projected orthogonally onto H'; to form
i Q,_,z, which is then projected orthogonally onto H I to obtain
3‘::3 47 Then, the operator PP, is applied to ) and the
‘:‘3 result is added to 7 o produce xtg). Next, the operator
. ) _ PP, is applied to x'*’ and the result is added to PRI
:::EE - produce x) . The iterates get progressively closer to the point
- 2.

Y It is important to note that our iterative algorithm has
:‘:f:‘: the property that each x™ is an element of & Iz This is
'y

:«'. critical for decentralized problems in which, typically, the
. ‘: . processor computing =z 1 has access only to the data set spanning
':f: H,. The iterative cblique projection algorithm of Youla[¥], which
:'*:: is valid only in the complementary subspaces case (VzH), does not
share this property.

‘: As with any iterative procedure, it is useful to have a
g . s good a priori error bound so that the number of iterations needed
to achieve a desired accuracy can be reliably estimated. To this
5:"‘ T end we will need the norm of the oblique projection operator. The
‘.": result of the next lemma is due to Aronszajn{A2]. It was redis-
’?‘ . covered by Del Pasqua[D], Lyantse[L2], and by Youla[Y], who gives
;:‘;:,E; an accessible proof for ccmplementary subspaces. The extension to
:5:3 non-complementary subspaces is straightforward.

o
o . .

:::::: Lemma 3: The norms of the oblique projection operators are
‘ ' given by

I 0= DLl = 27s.

Y

:}rn:b - 14 -

"

; - oy g % T O XTI NN ity gy,
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where s = sin P{IIZ,HI).

Now, the error operator for the iterative algorithm is
given by

- ©o . L]

(ny o, ) _ i _ i
M 2L -1 Z-n(P’PZJ Pa, Z_H(PIPZP )'Pa,

121)} (PPP

(P,PP,J L

1 .

The next theorem gives the sharpest known upper bound on the norm

of the error operator.

eorem 4: ||E;m|

2
| = ||(p1p2p1)”1.1|| < s
where ¢ = cos 'P(HZ.HIJ and s = sin ?(HZ,HJJ.
Proof: Since P1P2P1 is selfadjoint
n, _ n
"(Plpzpl) " - "p1P2p1" )

Therefore

PP "L < P22, I I -

The desired result follows from Lemma 3 and the well-known fact

2
that ”P1P2P1”=C . g

A looser bound, namely c" */s, was given by Aronszajn[A2].

_15_
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IT. ee or Subspaces

In the case of three or more subspaces, the oblique
projection operators can also be expressed in terms of infinite
series. To this end we need the following lemma which is analogous

to Lemma 1.

Lema 4: If the sum of any number of the subspaces H,,

H ""Hk is closed, then

sz, M= gl <

for i=1,2,....%k.

Proof: Here we will prove the lemma for the case of i=%.
The others will follow similarly.

Let

Hy, = M0 e 0

for j=1,2,...,k. From our earlier work on error bounds for the

method of alternating projections [KW], and [HS], we have

2 2 2
7ol = W Tl = M- 21, || < J’ T SkikSkik-1"" k2
where Sk.-f sin Pc(ﬂk:J,MJ_IJ for j=2,3,...,k. Using Lemma Al
we get
Sk:j= sin PC{HkGHk_Ie---GHJ, HJ,_I).

Since by our hypothesis erHk_jo---eHJ.eH}._l is closed, we have
Sk~j)0 for j=2,3,...,k# by Lemma A2. This proves the lemma for
i=k. 0O

- 16 -




We can now present the series expansions for the oblique

projection operators.

Theorem 5: Under the hypothesis of Lemma 4, the oblique

projection operator Li (i=1,2,.. ..,k) can be written as

-4

m
Ly= }m_opi(”u”i) Z;,-

Proof: From Theorem 1 (with j=i) we get

-1
LI,- PI.II“(I-III.II“) .

Nov} Lemma 4 allows us to expand the inverse operator in a wvon

Neumann series, as follows:

oo oo
L= }mopz'”u(”i”u)m = anpi(”u”i)m”u‘ g

Since, in the case of three or more subspaces, there is no
result analogous to Lemma 2, we cannot derive an iterative oblique
projection algorithm like the one presented earlier for the case of
two subspaces. Instead, we must compute each term in a truncated
version of the infinite series. Again, each term in the series for
Li is an element of Hz' and can therefore be computed using only
the data set which spans Hi'

In order to decide on how many terms to retain in the

- 17 -




(n)

series, we need an upper bound on the error operator E . where

o0

tn tn) _ m
Ey gLy - Ly = Zﬂ_npiau(”i”u)

m n
}m_opi”u(”x”u) (2,
n
= LI.(III.III. l) .
As before, we need to evaluate the norm of the oblique projection
operator in order to derive an upper bound for the norm of the

error operator.

Lemma 5: The norm of the oblique projection operator Li

(i=1,2,...,k) is given by
"Lx'" = 1/51
where 5= sin P{HI. ,H“.)).
Proof: Since we can write H=H eH for i=1,2,....,k,

R @
Lemma 3, which dealt with two subspaces, applies with the obvious

identifications. O

A bound on the norm of the error operator will be given

only for i=k to avoid introducing new notation. One can always

rename the subspaces so that the following theorem applies.




Theorem 6: [£,"" = I, (z,z, )"l ki /s

where

S,s sin ?(Hk, H

k (k))'

2 2 2 2
kT T Sk kok-1 Sks 20
and for _j=2,3,...,k
Sk:J= sin ?(HksHk_le---eHJ, Hj-l)'

I
Proof: Since |L (7.1 “) < Nz 2, )7, we need to

derive an upper bound for 2, - We know from the proof of

Lemma 4 that
2 2 2 2
W ™ € 2 = shusihr Sk
where
Sk:f sin ¥ (H k --QHJ., H_}-lj'
Since
(ernk_le- . -oHJ.)nHJ._f{o}
we have
?C(ernk_lo...o}ij, Hj—z) P(Hk x-1® QHJ.. Hj-z)'

Now the result follows by an application of Lemma 5. O

An even sharper upper bound can be derived by applying the

furdamental inequalities in Kayalar and Weinert[KW] to “{Ilkﬂ“)n“.




APPENDIX

In this appendix we will first state the definitions of
minimm and complementary angles, and then give scme basic results
concerning angles and products of projections.

Let H, and H, be closed subspaces of a Hilbert space V.

Refinition Al: The ainimum angle P(HQ'H,) between the
subspaces H2 and HI is the angle between 0 and n/2 whose

cosine is given by
cos P(H, H ) = sup{|(y.x)|: yeH . xed . |yl<1.||x|<2},

where (:,-) 1is the inner product in V.

If we remove the intersection from the two subspaces, we

get a slightly different definition. Let Hz_lé HanI.

Definition A2: The compl/ementary angle PC(HZ,HI) between
H A and HI is
1

PR, H, ) = ?(Hznﬁé;j' q,0H, ).

Note that if H,OH = {n}, then Pc(nz'ﬁz)

?(H2.H1).
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Lemma Al: Let H and {Hi}ifl be closed subspaces of a

Hilbert space V, with

H = HleHze er
and
M. = et ne-enatrd
i i-1 J
Then
PC(MI,:J,.MJ._I} = PC{HI.GHI._IG OHJ., HJ’-JJ'

for 2¢Jgigk.

Proof: Since 1‘11.=th11,

NP rc(anHj_ln...nHjnH, Hj_lnH_}
=y ((HBH,_ @ - GHJ.)‘LnH, Hj_lnH).
=¥ ((HGH, o - eHJ.)'Lr\HeHl, Hj_lnHeH‘L]
=e ((HoH,_ @ - o )\ H;_IJ
=¥ (HeHd, & - GHJ., HJ‘-J)' o

The result stated in the next lemma is due to Lorch(L1],

but has been rediscovered many times.

Lemma A2: Let Hz and H2 be closed subspaces of a

Hilbert space V. Then

PC(HZ,HI) > o

if and only if 112+H1 is closed.

Now let H and Hl (i=1,2,...,k) be closed subspaces of a
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Hilbert space V such that

H = HI+H2+- . -+11k,

where this decomposition is not necessarily a direct sum decomposi-

tion. Let Hk.-f Hkn'--nliznlil, and let the orthogonal projection
. operators onto #H, Hi and Hk:l be P, Pi and Pk.-z' respect-
ively. 1In the lemmas below, let

{i0i nni } = {1.2,... &},

The following result is due to Halperin [H2].

nN—wo 1

Lemma A3: lim  (P.,---P, P, )" =P
m 2 1

k:1°

The next result was proved by Afriat[Al1] for the case of
two subspaces. :

Lemma A4: N[I - PI ««:P. P. ] = H where X(:) denotes
2

’
a 12 i k:1

the null space of the indicated operator.

Proof: It is easy to verify that
H, cx[l -P --:P P ]
k:1 i i, 1,

Now let xen[l - PI. "'Pi Pz‘ ] Then we have x = P '“P1 P x,
m 2 1

which implies

- 22 -




for all n. Taking the limit as n+w and using lemma A3, we see

that x=P ,x. This shows that xe#  , and thus
x1-p -P.P.]CH.'I
a Ly 4] k:
. Now the result follows. 0O

Now recall that Mi: H‘;nH, and ”1 is the orthogonal

projection operator onto Hi .

Lemma AS5: The operator (I - r, ---m W, ) is invertible.
m 2 1

Proof: From lemma A4 we have

N[I-II. --II.II.]:I‘I .
lm 12 11 k:1
Since
- 1 L .1 L
Hkr'\-o-nllznfll = (Hk+---+H2+H1) .
we have
-, .t 11
Mk.-l- Hkﬂ nHanII‘lH

1
(Hy oo+l H )0

atnu

{o}.

This proves the lemma. O
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