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ABSTRACT

When an orthogonal projection is to be computed

using data acquired by distributed sensors, it is often

necessary to process each sensor's data locally and then

transmit the results to a central facility for final

processing. The most efficient way to do this is to

compute oblique projections locally. This choice makes

the final processing a matter of sunming the oblique

projections. ; this paper 4 deriveAnew formulas, and

iterative algorithms and associated error bounds, for

oblique projections in arbitrary Hilbert spaces.
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INTRODUCTION

The solutions to many signal processing problems can be

characterized in terms of orthogonal projection in an appropriate

Hi lbert space. Linear least-squares filtering, smoothing, and

prediction are notable exmples. Most existing algorithms for

orthogonal projections were developed with the assumption that all

the data would be available for processing at a central location.

In the case of data acquisition by distributed sensors this assump-

tion is not always realistic because constraints on the conmunica-

tion links may prohibit the transmission of the sensors' data to a

central facility for processing. In this case the data subsets

must be processed locally (at the sensor sites) to produce appro-

priate summaries which will then be transmitted to a central loca-

tion and combined to yield the desired orthogonal projection.

- The primary issue, then, is to decide what partial results

should be computed locally so that the overall problem is solved as

efficiently as possible. An obvious choice is to let each partial

result be an orthogonal projection onto the subspace determined by

the relevant data subset. In this way each processor will be sol-

ving a smaller-scale version of the overell" problem. However,

there is a serious difficulty with this choise.

To illustrate, let V be a Hilbert space and let H be

the closed subspace of V spanned by the data. Suppose the data

are partitioned into two subsets. Then these subsets individually
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span two closed subspaces H1  and H2  such that H = H+H .2

Suppose H fH2= 0 and let the orthogonal projection operators

onto H, HI and H2  be denoted by P, P and P2 f respectively.

For a vector zeV, if we decide to find Pz by first computing

P1z and P2z locally, then we must combine these partial results

according to the following formula due to Aronszajn [A2]:

Pz = (I-P2)(i-P P2 )- 1
1 I z + (I-P 1 )(I-PI)-PI )P 2

z .

It is clear that the operations needed to combine P1z and

P"z are more complex than those required to compute either of

these projections, thus producing a computational bottleneck at the

central facility. We note that all two-filter smoothing formulas

are special cases of the above formula. Adamyan and Arov [AA],

Salehi [S2], and Pavon [P] have applied this formula directly to

solve certain stochastic interpolation problems. As an example of

how it specializes in the case of decentralized Kalman filtering,

see Speyer [S41. We note that there is no generalization of

Aronszajn's formula to the case of more than two subspaces.

In fact, the bottleneck inherent in the above approach can

be avoided by computing oblique, rather than orthogonal, projec-

tions at the local sites. This choice makes the combination of the

partial results as simple as possible, namely one of straight addi-

tion. As will be discussed in more generality later, the direct

sum decomposition H = H (H uniquely determines two oblique

projection operators L and L2 such that
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Pz = LIz + L 2 z.

In comparing this formula with Aronszajn's given previously, it

should be noted that the right-hand sides do not correspond term by

term since L z and Lz lie in H and H2, respectively.
1 2 21

It is the purpose of this paper to derive new formulas, and

iterative algorithms and associated error bounds, for oblique

projections in arbitrary Hilbert spaces. Although some results

along these lines exist for decompositions involving only two

subspaces (two data subsets) [Al], [A2], [G], [TYM], [Y], there are

no such results for decompositions involving more than two sub-

spaces. We should note that in certain more specific settings, it

is possible to determine oblique projections using the concept of

superposition [RW], [WC]. Along these lines, Chang [C] was able to

rearrange the computations in Speyer's decentralized Kalman

filtering algorithm so that oblique projections were computed and

then summed. He was, however, unaware of the geometric interpreta-

tions of his algebraic manipulations. Finally, the concept of

oblique projection has been applied in various other contexts [HB],

[KD], [Si], [S3], [TYM], [Y].
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OBLIQUE PROJECTION FORMULAS

Let 11 and H (i=1,2..k) be closed subspaces of a

Hilbert space V such that H has the direct sum decomposition

H = HIeHe ... &H

Let the orthogonal projection operators onto H and H be P and

P, respectively. Let us also introduce the notation R i ) to mean

the direct sum of the k-i subspaces excluding H,, that is,

H i)= HI® ... H1_1Hi+1 a .H. eH k .

Since for any zEV, Pz is an element of H, it can be

decomposed uniquely as

Pz = z1+ z2+ ... + zk

where z i EHi (i=1,2,.., k). The map that takes z to z.

determines a unique linear idempotent operator Li  called the

oblique projection operator onto H along H(i)eH , where H1  is

the orthogonal complement of H. Thus

Pz = LIz + Lz + ... + LkZ.

The range and null space of L are 1I and 11 (1r II± , respect-

ively. Note that

L.L = 0, i*j.

The earliest discussions of oblique projection operators

appear to be those in Murray[M] and Lorch[Ll]. Other useful
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treatments can be found in Afriat[Al], Halmos[H1], Kato[K],

Lyantse[L2], and Takeuchi et al [TYM].

For 2-,. k, let M.= H1rV, and let 11 be the

orthogonal projection operator onto M. It is clear that

1= P-P Let H1 be defined as

- 1 IJ = 9 i 9 i - I " " J"I

for 1j(i,<k, and I. =r whenever i(j. In addition, let

J7kJ12' 11

Zi I I -II Rl' +1 2 i~k,1

Theorem 1: The oblique projection operator L. (i=1,2,..

S.,k) is given by

L Pi -l ltkJil (i-zr i )l IJ(k.
LJ

Proof: Note that this theorem gives a different

representation of the oblique projection operator L for each
I

j=I , .... ,k. We will prove only the representation for j=k. The

other representations follow in a similar manner.

Using 27 = P-P. for 1=1,2,... ,k, we see that
1 1

7k k 1l = k P-Pk )Ik-l, = Ik-i1 - PklJ7 1 1 ,'
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since P11 k-I Ir-II= I Similarly, the first term on the right can

be expanded as

1k-1 II rk-l"k2.l uk21- Pk-lak-2 4l "

Cabining these two relations, we have

17kA * = Irk _3 -  P k -I Ik _2 1- Pk1k l •

Expanding 1k-211 and continuing in the same manner, we get

Ir k H k 1= P - P141 - P271 41 Pkk 141

We can rearrange this equation as follows:

P-Ik k. P(I-7k Ik* = P1041 * P21k1 .k-11

Since by Lemna A5 ( 1 -7k k4 - exists, the result of the theorem

for j=k follows. 0

There is another class of representations? for oblique

projection operators that uses the inverses of selfadjoint

operators. Let us introduce the following additional notation:

17i tj, 1ii1 . .j ,

for J<,ijQk and 17 .= I whenever i)j. Furthermore, let

7 . 1  , 2(i1k-1.
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Theorem 2: 'L.ie oblique projection operator L. (i=1,2,..1

..k) is given by

L= P. ( - H1 . H.H .

Proof: Since H. is a factor of neither H.1t nor H 4i' we

can write, as in the proof of Theorem 1,

1itI i= P - P Tii- r,

where r denotes the sum of the remaining terms, none of which

have P. as a left factor. Now
I

P - 12ittit P(I-H 1itr i) = P iri+ ,

and

I i J.-11i t iri 1) r(r-Zi iZ i I)-.

The necessary inverse exists by Lemma A5. This decomposition

clearly indicates that

L.z Pi 11(1- H7 )1  .

Note that )Z t=71 , where H7m is the adjoint of 17

Therefore 11 i iLi . is selfadjoint. One can also obtain the

result of Theorem 2 directly from Theorem 1 (with j=i) using the

easily established fact that L in 1 = LmI m#n.

-8-
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SERIES EXPANSIONS AND ITERATIVE METHODS

I. The Case of Two Subspaces

For the case of two subspaces the oblique projection

operators given by Theorem 1 (with j=i) are

L*= 1 - L 2 11 - 1 
1

2 J

L2= P21I (I - 21 -9

These expressions can be written in a form more conducive to

iterative implementation. The following lemmas are basic in this

direction.

Lemma 1: Under the stated assumptions on H1 and H2,

11P2P 111 = 11P1P211 = I1117 77 11 = 111111211 < 1'

Proof: Since Hf2nHi={O} and M2 l={O}, we have

cos ?(H2,H1 ) = cos ? (H2H )
2' 1 2'1'

and
cos Cos rc(''

These angles are defined in the Appendix. From Lemma Al we have

the equality

cos rc(H2, H) = cos c (M2'M I).

In addition, it is well-known (see, for example, Youla [Y]) that

II'PPl N IP l : cos ,, ),

-9-
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and
Off 2 I""'IlI cos ?(N P1

Since f-qJ is closed, we have r(C (Hf,H) 0 by Lemma A2. Now

the result follows. 03

Lemma 2: P1 (If211 f%12 = (P P2 )nlpnf2  for n=1,2,....

Proof: For n=i, we have

P 179 2ri 2= PI (P-P2 )(P-P1 )i2 = P P 2P2"

Assume that the lenmma is true for ni=m. Then for n=M+1, we have

P (72 M+1 Phh 1 ) M

2 1 2

= (P1P2)7+I P127.

Therefore the lemma is true for n=m+l, and thus it is true for all

n. 0

Theorem 3: For two subspaces the oblique projection

operators are given by

and L,= (-P I p2)-J PQ2
,

L 2= (I-P2P ) P ,

10

with Q.=I-P
i i

Proof: We start with the oblique projection formula

- 10 -



Liz P1I12(I- H 2 )

Since by Lemma 1 I1lII(1, the above inverse can be expanded in an

absolutely convergent von Neumann series [K] to give

1=0 P C17 ( 1 1 ')  1 =0 (Ir'1 "

Now if we apply Lemma 2 to each term of the series, we get

L1 = o(P1 P )'PIr 2 .
-1

From Lemma A5 and Lemma 2, (I-P P2) exists and

-1

(I-P Pj - P=( )

1 £01 2

Therefore

L, = (I-P1P -P 27
1 12 1 2

Now the result follows from the fact that P 2,= P Q The formula
ft 12 .12

for L2 can be derived similarly. a

Note that we started with the formulas given by Theorem 1

for j=i. In fact, all of the other formulas given in Theorem 1

and Theorem 2 will lead to the same expressions given in Theorem 3.

The formulas just derived were previously obtained by

Aronszajn [A2] in series form, and by Afriat [Al] in operator form

using other methods. The above derivation clearly points out the

special structure that exists in the case of two subspaces. As we

will see later, this state of affairs has no analog in the case of
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three or more subspaces. A similar phenomenon was apparent in our

previous work [KW]. We also note here that Greville [G] has

derived other oblique projection formulas for the special case of

complementary subspaces (V=H).

The formulas in Theorem 3, in conjunction with the series

expansion of (I-P P2 )- , lead to an iterative oblique projection

algorithm suitable for decentralized problems. We will work with

LlI but all the results apply to L2  as well with the obvious

changes of subscripts.

From Theorem 3 we have

L = (P 1 P 2 ) P 1 Q.

Let L (n) be the truncated version

L (n= (P P IP Q1 12 1 2

It is clear that lim L n L1  Therefore the sequencen -Ko L

(ni (n)x =L I  z, n=1 ,2....

converges to z1= 1z, the oblique projection of z onto H1  along

H 2 91I . By breaking off the first term in the formula for L we

get

LJ z = P Q z  P P 2L z.

1 12 12

Thus we have the iteration

- 12 -
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X = PP2Y + PIQ Z' n=1,2 ....
12 1 2

(0)with ZO=0. Clearly, L Iz is the fixed point of the map

F: u . P P u + P Q 2z ,  uEV.

Since liPP 2 11(1, F is strictly contractive. Thus, the approxi-

mating sequence

Fn) (n-I)X =FX€

will converge to L1 z for any starting point in V. Furthermore,

any other fixed point algorithm can be used to generate the oblique

projection.

Figure 1

Figure 1 provides a sketch of how the iteration works. The
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element zeV is first projected orthogonally onto H2  to form

Q z, which is then projected orthogonally onto H1  to obtain

Then, the operator PIP 2  is applied to and the

(11 ( Z)
result is added to x to produce x Next, the operator

PIP2  is applied to x and the result is added to x (1] to
(33

produce x The iterates get progressively closer to the point

I"

It is important to note that our iterative algorithm has

the property that each x n  is an element of H1 . This is

critical for decentralized problems in which, typically, the

processor computing zI  has access only to the data set spanning

H1 . The iterative oblique projection algorithm of Youla[Y], which

is valid only in the complementary subspaces case (V=H), does not

share this property.

As with any iterative procedure, it is useful to have a

good a priori error bound so that the number of iterations needed

to achieve a desired accuracy can be reliably estimated. To this

end we will need the norm of the oblique projection operator. The

result of the next lemma is due to Aronszajn[A2]. It was redis-

covered by Del Pasqua[D], Lyantse[L2], and by Youla[Y], who gives

an accessible proof for complementary subspaces. The extension to

non-complementary subspaces is straightforward.

Lenma 3: The norms of the oblique projection operators are

given by

IL 11 JIL21 = 11s,

- 14 -



where s = sin ?(ll9,ll).

No, the error operator for the iterative algorithm is

given by

E "n L L- L1 = P(P P) IP Q2 = '1P21P1

= (P 1 P 2 P1 ) n  i0(P 1 P2 P1 )P 1 Q2

= (PI P P

The next theorem gives the sharpest known upper bound on the norm

of the error operator.

Theorem 4: I1 "1 = II(P1PP 1)%lII c lIs

where c = cos r(H 2 'H1 ) and s = sin r(H2,H1).

Proof: Since P P2P is selfadjoint

(PIp 2 p 1 ) 11 = P A n.

Therefore

If(P1 P2PI )nL, 11 fpP 2 P In ILl Ii.

The desired result follows from Lemma 3 and the well-known fact

that IIPIP2P1 11=r " a

A looser bound, namely c n-Is, was given by Aronszajn[A2].

15



II. Three or More Subsinaces

In the case of three or more subspaces, the oblique

projection operators can also be expressed in terms of infinite

series. To this end we need the following lemma which is analogous

to Lemmn1a 1.

Zein- 4: If the sum of any number of the subspaces Hi

H 2'. H kis closed, then

for i=1,2, .... k.

Proof. Here we will prove the lemma for the case of isA.

The others will follow similarly.

Let

Mk:j k,,, k-i nmj

for i=1 P 2_.. k. From our earlier work on error bounds for the

method of alternating projections CIW], and CHS], we have

II2'~kfk.&s 2 s~t 2 s7 2zl _2s
11f , 1=17k T~k 11=17k 2 11 <I k:k k:k-1'* k:2

where Sk:j= sin rCM k Pt )- for j=2,3,..k. Using Lemma Al

we get

sk:jz i C (k WIk-i9 .. j-1

Since by our hypothesis Hk 9Hk*- se..BH I.H J- is closed, we have

.j)L for j=2,3,... ,k by Lemm~a A2. This proves the lemma for

t=k. 0

-16-



We can now present the series expansions for the oblique

projection operators.

Theorem 5: Under the hypothesis of Lerma 4, the oblique

projection operator L (i=1,2 ...... k) can be written asI

Proof: From Theorem 1 (with j=i) we get

L1P 1 21 J f i I .

Now Lenna 4 allows us to expand the inverse operator in a von

Neumann series, as follows:

0 0

Li= Z P h i J(27 . I do = Lo Pi ( i Zi 't.

Since, in the case of three or more subspaces, there is no

result analogous to Lenma 2, we cannot derive an iterative oblique

projection algorithm like the one presented earlier for the case of

two subspaces. Instead, we must compute each term in a truncated

version of the infinite series. Again, each term in the series for

L. is an element of Hi., and can therefore be computed using only

the data set which spans H .

In order to decide on how many terms to retain in the

- 17 -



(n i
series, we need an upper bound on the error operator E , where

E'n-L •LnJ = L PiI (9izi )

"0

= (irir. (i ) •n

As before, we need to evaluate the norm of the oblique projection

operator in order to derive an upper bound for the norm of the

error operator.

Lemma 5: The norm of the oblique projection operator L

(i=1,2,... ,k) is given by

I1'--,,1 = Is

where si= sin r(Hi .H i>).

Proof: Since we can write H=H i l( ) for 1=1,2,...

Lemma 3, which dealt with two subspaces, applies with the obvious

identifications. a

A bound on the norm of the error operator will be given

only for i=k to avoid introducing new notation. One can always

rename the subspaces so that the following theorem applies.

- 18 -



Theorem 6: (EA ( N 11= (H k ( fl7 I R k/sk'

where

sk= sin "(Hk, Itk)) ,

2 2 2

k k:kS :k- : 2 '

and for j=2,3 .... k

skij= sin W(HkSHk- %.. H., H. ).

Proof: Since ILk ffkk )]ln 1 <ILk1II1I7,I"kJ11, we need to

derive an upper bound for 1 74'k-411. We know from the proof of

Lemn 4 that

2 2fII# kIr "  -Sk:ksk k-l' s k:2
where

s,,,= sin T(JHksH k*19...%H, H ).
Since

(H kSH ki is... * H i.20

we have

SC (HkSH k-1...SHJ, H.) = P (HkSH k_1...SHH j_).

Now the result follows by an application of Lermma 5. n

An even sharper upper bound can be derived by applying the

furidamental inequalities in Kayalar and Weinert[KW] to ii(2ki7k )nJ.

- 19 -



APPNIX

In this appendix we will f irst state the definitions of

minim=m and complementary angles, and then give some basic results

concerning angles and products of projections.

Let H Iand H., be closed subspaces of a Hilbert space V.

Definition Al: The minimum angle IP(H2 ,H) between the

subspaces 11 2 and H is the angle between 0 and Tr/2 whose

cosine is given by

Cos ?P(H,,1H) sup({I (y'x : yEH9 ,xEH1 ,~t(,~I(}

where (-,-) is the inner product in V.

If we remove the intersection from the twio subspaces, we

get a slightly different definition. Let H 2 :1~ HH,.

Definition A2: The complementary angle r ( H 2'H I) between

H., and H I is

C 2'1 2 2.1' 1 2 1

Note that if H )flHJF} then rj fH) =.,

-20



Le-na Al: Let H1 andi A be closed subspaces of a

Hilbert space V, with

H HISH 9 ... eH k

and
M1. H~w' .1.'H

1:J I 1

Then

IfC M /j J1 I C (Hi i-I % ...- 1

for 2,Q(I(k.

Proof: Since M =H'Lj nH

C .1. Ii1 1 11
?fl'1. .,M.)=i-(Hn 6Df...H)LH, nil)nH

i i

=1o((EIH eS... HJ .)LH'L J- HO
C i i-i J -

The result stated in the next lenmma is due to Lorch[L1],

but has been rediscovered many times.

LeMI~a..A2: Let H I and H 2 be closed subspaces of a

Hi lbert space V. Then

r (H 2 '.11  0

if and only if II 2 .H I is closed.

Now let H and H I (1=1,2,... ,k) be closed subspaces of a

- 21-



Hilbert space V such that

Hf = I#11 H2 --- +fk

where this decomposition is not necessarily a direct sum decomposi-

tion. Let H =Hk ... *fH nH, and let the orthogonal projection
k:Z 21

operators onto H, H.i and H k:I be P, P.i and Pk:'rset

ively. In the lemmas below, let

The following result is due to Halperin [H2 I.

LnaA3: I im (P...P P f p k1

M 2 1

The next result was proved by Afrlat[A1) for the case of

two subspaces.

L~sm A4..: 11- . P P.] H 1 k:1' where Xc(-) denotes

the null space of the indicated operator.

Proof: It is easy to verify that

1k:1 1' 1 I PM_- 2 Pl 1 1

NowletxeKp(1 - P! ..P P.1 Then we have x P. ***P ,P,

which implies

x =(P *P. P. X
M 2 1

- 22-



for all n. Taking the limit as n-.oo and using lemma A3, we see

that X=Pk:I x. This shows that xEHIk:J, and thus

1 P. P.I C :HL* [ 1m 2  1 l i k :! "

Now the result follows. 0:

Now recalI that M= H IlnH, and 7. is the orthogonal1 I

projection operator onto M..

Lemma A5: The operator (I - ! . 7 71. ) s invertible.

Proof: From lemma A4 we have

X If . ]. j k1 i 2il Ik:1*

Since

Hfn..-IH2" = (H+....+H 2H
k "1 k 21'we have

"Mk = Hin-l ... £w~
=l(H +..+H +H1 ]inHMkl k 2 1

= HIflH

This proves the lemma. 0

- 23 -



REEENCES

[Al] Afriat, S. N., "Orthogonal arnd oblique projectors and the char-

acteristics of pairs of vector spaces," Proc. Cambridge Philos.

Suc. 53 (1957), 800-816.

(A21 Aronszajn ,N. ,"Theory of reproducing kernels," Trans. Amer.

Math. Soc.,* 68 (1950), 337-404.

[AA] Adamyan,V.M. and D.Z.Arov, "A general solution of a problem in

linear prediction of stationary processes," Theory Prob. Appi.,

13 (1968), 394-407.

[C] Chang,T.-S., "Coimments on 'Computation and transmission

requirements for a decentralized linear-quadratic-,Gaussian

control problem'," IEEE Trans. Automatic Control, AC-25 (1980),

609-610.

[D] Del Pasqua,D., "On a concept of disjoint linear manifolds in a

Banach space," Rendicont! di Matewnatica. 13 (1955), 406-422.

[G] Greville,T.N.E., "Solutions of the matrix equation XAX=X, and

relations between oblique and orthogonal projectors," STAN J.

App). Math.. 26 (1974), 828-832.

- 24 -



[H1] Halmos,P.R., Finite Dimensional Vector Spaces, Springer, New

York, 1974.

[H2] Halperin,I., "The product of projection operators," Acta Sci.

Math., 23 (1962), 96-99.

[HB] Hyland,D.C. and D.S.Bernstein, "The optimal projection equa-

tions for model reduction and the relationships among the

methods of Wilson, Skelton and Moore," TEEE Trans. Autnmatic

Control, AC-30 (1985), 1201-1211.

[HS] Hamaker,C. and D.C.Solmon, "The angles between the null spaces

of X-rays," J. Math. Anal. AppI., 62 (1978), 1-23.

[K] Kato,T., A Short rntroduction to Perturbation Theory for

Linear Operators, Springer, New York, 1982.

[1D] Klein,J.D. and B.W.Dickinson, "A normalized ladder form of the

residual energy ratio algorithm for PP1RCOR estimation via pro-

jecticns," IEEE Trans. Automatic Control, AC-29 (1983), 943-

952.

[IK4J Kayalar,S. and H.L.Weinert, "Error bounds for the method of

alternating projections," Report JHU/ECE-87/02, The Johns

Hopkins University , 1987, to appear in Mathematic:s of (7,ntr-nI,

Signals, anJ Systems.

- 25-

1 3 11111' 111 1 1 1 1.



[Li] Lorch,E.R., "On a calculus of operators in reflexive vector

spaces," Trans. Amer. Math. Soc., 45 (1939), 217-234.

[L2] Lyantse,V.E., "Some properties of idempotent operators,"

Teoreticheskaya i Prikladnaya Matematika, 1 (1958), 16-22.

[M] Murray,F.J., "On complementary manifolds and projections in

Lp and ip," Trans. Amer. Math. Soc., 41 (1937), 138-152.

[P] Pavon,M., "New results on the interpolation problem for

continuous-time stationary-increments processes," SIAM J.

Control and Optimization, 22 (1984), 133-142.

[IN] Riddle,L.R. and H.L.Weinert, "Fast algorithms for the recon-

struction of images from hyperbolic systems," Proc. 25th

Conference on Decision and Control (1986), 173-178.

[S11 Saad,Y. "The Lanczos blorthogonalization algorithm and other

oblique projection methods for solving large unsymetric

systems," SIAM J. Numer. Anal., 19 (1982), 485-506.

[S2] Salehi,H., "On the alternating projections theorem and

bivariate stationary stochastic processes," Trans. Amer. Math.

Soc., 128 (1967), 121-134.

- 26 -



[S3] Samson,C., "A unified treatment of fast algorithms for identi-

fication," int. J. Control, 35 (1982), 909-934.

[S4] Speyer,J.L., "Computation and transmission requirements for a

decentralized linear-quadratic-Gaussian control problem,"1 IEEE

* - Trans. Automatic Control, AC-24 (1979), 266-269.

ITYM] Takeuchi,K., H.Yanai, and B.N.Mukherjee, The Foundations of

Multivariate Analysis, Wiley, New York, 1982.

[WC] Weinert,H.L. and E.S.Chornoboy, "Smoothing with blackouts,"

pp. 273-278 of Modelling and Application of Stochastic

Processes, U.B.Desai, ed., Kluwer, Boston, 1986.

(Y] Yaula,D.C., "Generalized image restoration by the method of

alternating projections," IEEE Trans. Circuits and Systems,

CAS-25 (1978), 694-702.

-27-



UNCLASSIFIED

SECURT" CLASSIFICATION OF TH.IS PAGE

REPORT DOCUMENTATION PAGE

1. REORT seirIy CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified _______________________

2. SECURITY CLASSIFICATION aUTHORITY 3. DISTRIOUTIONIAVAI LABILITY OF REPORT

Zb ELSSIFICAT)ON/OOWNGRADING SCHEDULE Unlimited

4PE.RFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(SI

JHU/ECE - 87/10

Ga, SAME OF PERFORMING ORGANIZATION 5b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

Johns Hopkins University fi a9,cai Office of Naval Research

6c. ADDRESS ICaty. State and 71P Code) 7b. ADDRESS (City. State and ZIP Code)

3400 N. Charles Street 800 N. Quincy Street

Baltimore, Maryland 21218 Arlington, Virginia 22217-5000

I&. NAPAE OF FUNOING/SPONSORING S.OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGAIZATON Ira~ticadelN00014-85-K-0255

Be. ADDRESS (City. Stage and ZIP CodeP 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

NR661-019
11. TITLE 'Inclu~de Security Classification) Oblique Projections:1
Formulas, Algorithms, and Error Bounds (Urclass Lied)

12. PERSONAL AUTHOR(S)

S. Kayalar and H. L. Weinert
13.. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Yr., Mo.. Day) 15. PAGE COUNT

Interim IFROM__5/1/85 TO 6/2/87 June 2, 1987 27
IS. SUPPLEMENTARY NOTATION

17 COSATI CODES IS. SUBJECT TERMS lCan tinvue an ,vtuerse if necesary- and identify by bitick number)

-FIELD GROUP SUB. GM. Oblique projections," iterative algorithms, error bounds,

decentralized processing

19. ABSTRACT [Continuae on nivitrge it necessay and identify by btocbf number)

When an orthogonal projection is to be computed using data acquired
by distributed sensors, it is often necessary to process each sensor's
data locally and then transmit the results to a central facility for
final processing. The most efficient way to do this is to compute oblique
projections locally. This choice makes the final processing a matter
of summing the oblique projections. in this paper we derive new formulas,

and iterative algorithms and associated error bounds, for oblique
projections in arbitrary Hilbert spaces.

20. DISTRIBUTION/AVAILABILITY OF AB3STRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEDIUNLIMITED ZSAME AS RePT. D TIC USERS 0 Unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPH.ONE NUMBER 22c. OFFICE SYMBOL
(inctude A4'ma Cade)

Dr. Neil Gerr (202) 696-4321

00 FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF rHIs PAGE

611 ~ ~ ~ MI& 2 =6..



am~


