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1. INTRODUCTION

Several different kinds of stationary and nonstationary time series modeling problems are

considered here from a Bayesian-smoothness priors approach. The smoothness priors specify the

prior distribution of the time series model parameters.

The term "smoothness priors" is very likely due to Shiller (1973). Shiller modeled the distri-

buted lag (impulse response) relationship between the input and output of economic time series

under difference equation "smoothness" constraints on the distributed lags. A tradeoff of the

goodness-of-flit of the solution to the data and the goodness-of-fit of the solution to a smoothness

constraint was determined by a single smoothness tradeoff parameter. Shiller did not offer an

objective method of choosing the smoothness tradeoff parameter. Akaike, (1980), completed the

analysis initiated by Shiller. Akaike developed and exploited the concept of the likelihood of the

Bayesian model and used a maximization of the likelihood procedure for determining the smooth-

ness tradeoff parameter. (In Bayesian terminology, the smoothness tradeoff parameter is referred

to as the "hyperparameter", Lindley and Smith, 1972.) The origin of Shiller-Akaike smoothness

priors can be seen in a smoothing problem posed by Whittaker (1923). The smoothing problem

context is now understood to be common to a variety of other statistical data analysis problems

including density estimation and image analysis (Titterington 1985).

In the problem treated by Whittaker, the observations y,n=l,...,N are given. They are

assumed to consist of the sum of a "smooth" function and observation noise,

Yn =1 f + 6n, (1.1)

The problem is to estimate the unknown fn,n=1,...,N. In a time series interpretation of this

problem, fn,n=1,...,N is the trend of a nonstationary mean time series. A typical approach to

this problem is to use a class of parametric models. The quality of the analysis is completely

dependent upon the appropriateness of the assumed model class. A flexible model is desirable. In

this context, Whittaker suggested that the solution balance a tradeoff of goodness of fit to the data

and goodness of fit to a smoothness criterion. This idea was realised by minimizing

. . . .. I I .. ... .. I
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1E (y, - fa), + AE (Vkf)(1

for some appropriately chosen smoothness tradeoff parameter JA2 . In (1.2) Vkfa expresses a kth-

order difference constraint on the solution f, with Vf, = f,, - f,-1, Vf, = V(Vf), etc.

(Whittaker's original solution was not expressed in a Bayesian context. Whittaker and Robinson

(1924) does invoke a Bayesian interpretation of this problem.)

22

LThe properties of the solution to the problem in (1.1)-(1.2) are clear. If jA _fai0 n =Yn

and the solution is a replica of the observations. As IA becomes increasingly large, the smoothness

constraint dominates the solution and the solution satisifies a kth order constraint. For large p2

and k= 1, the solution is a constant, for kf=i2, it is a straight line etc.. Whittaker left the choice

of /A to the investigator.

Kohn and Ansley (1987) demonstrate that the signal extraction problem of (1.1) and the

smoothing problem of (1.2) are equivalent problem statements. The equivalence also holds for

broad variations of signal extraction and smoothing problems. AU of the time series analysis prob-

lems that we treat here are variations of the signal extraction/smoothing problem in (1.1) and

(1.2).

An implication of Akaike (1980) is that a Bayesian interpretation of the smoothing problem

in (1.2) implies that the difference equation constraint is a stochastically perturbed sero-mean unk-

nown variance difference equation. The stochastically perturbed difference equation constraint in

the trend estimation problem is a smoothness priars constraint in the time domain. Akaike (1980),

considered other time domain smoothness priors constraint problems including the Shiller distri-

buted lag problem and the seasonal adjustment of time series. Ishiguro et al. (1981) used time

domain smoothness priors constraints and fixed effects regression in an analysis of tidal effects.

Akaike (1979) employed a frequency domain smoothness priors constraint on the distributed lag

parameters in the Shiller problem. Gersch and Kitagawa (1984) and Kitagawa and Gersch (1985a)

are other frequency domain smoothness priors time series problem analyses.

2I
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Shiller (1973), Akaike (1980), and all of the aforementioned smoothness priors analyses, are

Bayesian analyses of the linear model with Gaussian stochastic constraints and Gaussian distur-

bances. The critical ideas in smoothness priors are the likelihood of the Bayesian model and the

use of likelihood as a measure of the goodness of fit of the model. In our analysis, hyperparameters

have interpretations as noise to signal ratios and they have a remarkable role in the analysis. The

maximisation of the likelihood of a small number of hyperparameters permits the robust modeling

of a time series with relatively complex structure and a very large number of implicitly inferred

parameters. When we consider alterntative smoothness priors models, with different distributional

assumptions or different numbers of parameters to model the same data, we use the Akaike AIC

statistic (Akaike 1973), to choose between candidate models. Kitagawa (1987) is a smoothness pri-

ors state space modeling of nonstationary time series in which neither the system noise or the

observation noise are necessarily Gaussian distributed.

The original Whittaker problem has also given rise to work on splines in numerical analysis

and to related smoothing problem analysis, particularly by Wahba (1977),(1982). Smoothness pri-

ors relates to the ill-posed problems and problems of statistical regularisation that have been con-

sidered extensively in the Soviet Union by Tikhonov (1965) and his associates. Also related are

the "bump hunting"-penalised likelihood methods, Good and Gaskins (1980) and Wecker and Ans-

ley (1983) and O'Sullivan et al. (1988). Vigorous work, primarily at the Institute of Statistical

Mathematics, Tokyo, has resulted in the application of smoothness priors methods to a variety of

applications, other than the ones we discuss here. These applications include the seasonal adjust-

ment of time series, (Akaike 1980b), tidal analysis (Ishiguro et l. 1961), binary regression (Ishi-

guro and Sakamoto 1983), cohort analysis (Nakamura 1986), and density estimation (Tanabe and

Sagae 1987).

Smoothness priors problems that are amenable to analysis by least squares algorithms are

treated in Section 2. The likelihood of the Bayesian model, as done by Akaike, is in Section 2.1.

The Bayesian solution to the smoothing problem originally posed by Whittaker is also shown

3



there. In that problem, the smoothness priors constraints are time domain constraints. The priors

are expressed as zero-mean unknown variance stochastically perturbed kth-order random walk

difference equations. In Section 2.2, the estimation of the power spectral density from short dura-

tion stationary time series illustrates the use of frequency domain smoothness priors constraints.

In Section 3 several smoothness priors nonstationary time series problems, which are amenable to a

Kalman filter state space method of analysis, including examples of the modeling of nonstationary

mean and nonstationary covariance time series, are shown. All of the aforementioned treat a

linear model, Gaussians distributions situation. That method is generalized in Section 4. There

we show a smoothness priors state space not necessarily Gaussian nonstationary time series

analysis method. Finally, Section 5 is a summary.
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2 SMOOTHNESS PRIORS MODELING: LEAST SQUARES ANALYSIS

In Section(2. 1) we review the concept of smoothness priors Bayesian modeling as introduced

in Akaike (1980). That method is applied to the problem addressed by Whittaker (1923), the esti-

mation of a trend in white noise. The smoothness priors constraint is expressed as a kth order ran-

dom walk with a sero-mean, unknown variance perturbation. The variance is a hyperparameter of

the prior distribution. The constraint is a time domain constraint on the priors. In Section 2.2 we

introduce the notion of frequency domain constraint on the priors. That method is used in the

estimation of the power spectral density of a stationary time series. Section 2.3 is a discussion.

The frequency domain smoothness priors method is particularly suited for the situation in

which only a short span of data is available for analysis. In that case, the results of conventional

parametric model analysis methods are particularly sensitive to the choice of model order. We cir-

cumvent that problem, using the frequency domain smoothness priors, by tending to fit models

that are "too long". Those priors reflect the integrated squared kth derivative with respect to fre-

quency of the departure from model smoothness. The estimation of the model parameters and an

additional small number of hyperparameters is required. The maximization of the likelihood of

the hyperparameters is the critical computation.

2.1 SMOOTHNESS PRIORS BAYESIAN MODELING

Consider the linear regression model subject to Bayesian-stochastic constraints

0 10 o A2D-(D - r  
)

The dimensions of the matrices in (2.1.1) are y: nxl; X: nxp; 0: pxl. a' and A' are unknown. V is

the vector of observed data, X and D are assumed known. 0 is the normally distributed prior

parameter vector. The observation noise variance is o. In this conjugate family Bayesian situa-

tion (Berger 1985), the mean of the posterior normal distribution of the parameter vector 8 minim-

ises

i5

6 -1
.JL! 12



y-XP~ + A'D '(2.1.2)

If A2 were known, the cow'nutational problem in (2.1.2) could be solved by an ordinary least

squares computation. The solution for 1, the posterior mean, is the minimizer of

Iy) - (AD) (2.1.3)

That solution is

*-[rX?' + X2Dl'DJ-X~y (2.1.4)

with the residual sum of squares,

SSE(iDA3)=Vrv - OTIXTX + A2DTD]80. (2.1.5)

For a smoothness priors interpretation of the problem in (2.1.1) and (2.1.2), multiply (2.1.2)

by -1/2,72 and exponentiate. Then the 9 that minimnizes (2.1.2) also maximizes

1x I 0 x 1r . 1 A O LI[
I--X US IF9 1 (2.1.2

In (2.1.6), the posterior distribution interpretation of the parameter vector 9 is that it is propor-

tional to the product of the conditional data distribution (likelihood), p(yI X,O,v2), and a prior

distribution, z(Pj A',.') on 9,

W(DIg,',' a p(vI X,9,a')(I A2',. 2) .(2.1.7)

The integration of (2.1.7) yields L(A2,o"2), the likelihood for the unknown parameters A' and C2'

L(Au) f w(~ ,Au)d. 2..8

U.. Good (1985) referred to the maximisation of (2.1.8) as a Type 11 maximum likelihood method.

Since s(Oj y,A',*2) is normally distributed, (2.1.8) can be expressed in the closed form, (Akaike

1980),

6



L(A,o)- (2 rv2)-N/ 1 A2D7DI i1 X7X + A2 DTDI -1/exp{.'$SSE(,A 2) "  (2.1.9)

The maximum likelihood estimator of v2 is

a' - SSE(1,Aj)IN. (2.1.10)

It is convenient to work with -2 log likelihood. Using (2.1.10) in (2.1.9) yields

(2.1.11)

-2ogL(A1,!81 ) = Nlog2r + NIogSSE((P,A)/N) + log XTX + A2DrDI - logj ADTDI + N.

A practical way to determine the value of A' for which the -2log-likelihood is minimized, is to com-

pute the likelihood for discrete values of A' and search the discrete -2log likelihood-hyperparameter

space for the minimum. Akaike (1980) is very likely the first practical use of the likelihood of the

Bayesian model and the use of the likelihood of the hyperparameters, as a measure of the goodness

of fit of a model to data.

Estimating a Trend

Here we return to the original problem posed in the Introduction. We use the notation f.-t.

where t, is the trend at time a to emphasize the fact that we are estimating the mean of a

nonstationary mean time series. A critically important observation is that from the stochastic

regression or Bayesian point of view, the difference equation constraints in the Whittaker problem

are stochastic. That is, V"t. - w., with w. assumed to be a normally distributed sero-mean

sequence with unknown variance r2 . For example for k- I and k-2 those constraints are:

'.= tI. + W.; (2.1.12)

t. - 2t,_1. - t,2- w,.

A parameterization which relates the trend estimation problem to the earlier development in this

section is Y2 = a/A. Corresponding to the matrix D in (2.1.2), for k-1 and k-2, the smoothness

constraints can be expressed in terms of the following NxN constraint matrices:

7.
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' a a

-1 -2 1

,= - 1 -2 1 0

-1 1

1 -2 1

In (2.1.13) a and w are small numbers that are chosen to satisfy initial conditions.

For fixed k and fixed A' the least squares solution can be simply expressed in the form of

(2.1.13). For example with k = 2, the solution {t,,n - 1,...,N) satisfies1 01 -~ o I Ajt(.-4
Note that the problem in (2.1.14) is a version of the Bayesian linear stochastaic regression problem

in (2.1.3) with e - t X(t1,...,tN)T , X - I, the NxN identity matrix, and D. - or D2 . From

(2.1.3),the solution'to (2.1.14), with D-D3, is

( - 1 4- A2'D,Iu-1 (2.1.15)

and the value of SSE(LA') is given by (2.1.5) with 0-i,X-I,D-D. The smoothing problem

expression of (2.2.15) is that the solution vector is: r-(tgs, t....Y1 , ) T . The least squares problem in

(2.1.14), with D-D, is solved for discrete values of A'D and the -2 log likelihood-hyperparameter

space is searched for a minimum. From (2.1.11), the minimized value of -2log likelihood for this

problem is:

(2.1.16)

-21ogL(2, 2) - Nlog2x + NlogSSE((e,!3)/N)) + Iogl 12DfD2 + II - logi .'DiD2I + N.

The numerical values of SSE( f',A ) and of the determinants in (2.1.16) are transparent in a least

squares algorithm analysis of (2.1.14). Since A -a /r, A' has a noise-to-signal ratio interpretation.

Smaller A corresponds to smoother trends.

JS



An Example of Trend Estimation

We consider the example of an asymetrically truncated normal density-like function in the

presence of additive noise, N(O,a2 ) . Figure la shows the smooth function t.,n = 1,...,N and the

superposition of t, and the additive noise. The problem is: Given the noisy observations I,, esti-

mate the unknown smooth function that is in the noise, i.e. specify ., A,n= ... ,N. We solved the

least squares computational problem in (2.1.14) using the Householder transformation method. -2

log likelihood of the hyperparameter model is computed from (2.1 16)

The critical role of the hyperparameter is transparent in this example Figures Ib.c.d show

the estimated trend for values of the hyperparameters that are too small, (A2 - 0.00001) and too

large (A = 0.1) as well as the hyperprmeter for which -2log likelihood is minimised

(A = 0.00138). As anticipated, with the hyperparameter defined as indicated above, the estimated

trend for a too large value of the hyperparameter is too bumpy and the estunated trend for a too

small value of the hyperparameter is too smooth.

It is important to note that in this example, although the truncated Gaussian satisfies

'Vlogt. - 0, we estimate the trend with the "incorrect" model t*-w*, the stochastically per.

turbed second order difference equation. The point is that a priori we do not know a correct

expression for the underlying smooth function in (1.1). Different hyperparameter values result m

solutions of the stochastically perturbed second order difference equation with very different

smoothness properties. The best of those solutions yields a very good approximation to the ong)-

nal unknown smooth function. This key observation was referred to by Shiller, (1973), as the

"flexible ruler approach".

2.2 SMOOTHNESS PRIORS IN THE FREQUENCY DOMAIN

The smoothness priors in the estimation of the mean value of a nonstationary time series was

expressed as a time domain, stochastically perturbed difference equation constraint on the evolu-

tion of the trend. Smoothness priors contraints can also be expressed in the frequency domain In

9



this section, we illustrate the use of frequency domain priors for the estimation of the power spec-

tral density of a stationary time series.

A Long AR Model For Spectral Estimation

A smoothness priors-long autoregressive (AR) model approach is used here for spectral den-

sity estimation.

The classical windowed periodogram method of spectral estimation is satisfactory for spectral

analysis when the data set is "long". The alternative of spectral estimation via the fitting of

parametric models to moderate length data spans became popular in the last decade, Kesler(1986).

When the data span is relatively short, three facts render parametric modeling methods of spectral

estimation statistically unreliable. One is the instability or small sample variability of whatever

statistic is used for determining the best order of parameteric model fitted to the data. The second

is that usually the "parsimonious" parametric model is not a very good replica of the system that

generated the data. The third is that the spectral density of the fitted parametric model can not

possibly be correct. Independent of which parametric model order is selected, there is information

in the data to select models of different orders. A Bayesian estimate of power spectral density

requires that the spectral density of parametric models of different model orders be weighted in

accordance with the likelihood and the prior of the model order of different models.

The smoothness priors AR model of spectral estimation alleviates this problem. A particular

class of frequency domain smoothness priors is assumed for the coefficients of AR model order M,

with M relatively large. The likelihood of the hyperparameters that characterize the class of

smoothness priors is maximized to yield the best AR model of order M with the best data depen-

dent priors. (A more complete treatment of the modeling discussed here is in Kitagawa and

Gersch, 1985a.)

10



The Smoothness Priors Long AR Model

Consider the autoregressive model of order M,

U

Y. - E *...- + IN (2..1)

In (2.2.1) fe, is a Gaussian white noise with mean sero and variance &2. A least squares ft of the

AR model to the data, VI,--,NI with the first M observations &mal -M,.-,o tred as given

constants, leads to the minimization of

Ely. - E oN.-., (2.2.2)

If M is comparable to N, the result of the least squares computation can be meaningless. The

smoothness priors solution mitigates this difficulty by considering the solution of the constrained

least squares problem. We consider a frequency domain smoothness priors constraint on the distri-

bution of the AR model parameters. The frequency response function of the whitening fBlter of the

AR process given by

N

A (f) - E ,.xp I-2.iml. (2.2.3)
rn-1

Let a measure of the smoothness of the frequency response function be

Rd - f'13 dIA(f)ISdf - (2r)" M2&! (2.2.4)

From the definition in (2.2.4), a large value of R1 means an unsmooth (in the sense of diferential)

frequency response function. We also use the sero derivative smoothness constraint,

Ro- J_,/,I A(f)I'd. , + . (2.2.5)
mr1

as a penalty to the whitening filter.

With these constraints, and with A2 and &- fixed, the AR model coefficients 4a,,m-I ... ,M),

minimise

11



~(i -~ .v-.J'+ A' r m" a.2 + &I~ a,. (2.2.6)
Sol =-II Mn-

In (2.2.6), A2 and Y3 are the hyperparameters. By a proper choice of these parameters, our esti-

mates of the AR model coefficients balance the tradeoff between the infidelity of the model to the

data and the infidelity of the model to the frequency domain smoothness constraints. For corn-

pletenesa, to within a constant, the Gaussian prior. on the AR model coefficients corresponding to

the Re and R& constraints are

expex' E mE a!. (2.2.7)
2 rn-i 2 rn-

Following our earlier discussion, define the matrices D and a and the matrices X and y by

2w+ j 3 s11"

32 * A ) (P2M U i 2 4 - 1-2 13 (2 .2 .8 )

(j,+M"2) 21 ONI. ... INN IV]

Then the AR model coefficients satisfy

III (XTX + DT D)'IXTV, (2.2.9)

and the residual sum of squares is

S(A',&v') - v~g - i 7(X T X + DrD)if. (2.2.10)

The likelihood of the hyperparmnter model is

L(Ave' -(.....)I/2 DDI 1/21 X T X + DTDI -1/2exp(.Z.LS(A2&24 2..1

Given A' and sox, the maximum likelihood estimate of &2 is, &_ S(A',YI)N The M1 estimates of

A' and Y' are obtained by minimizing

-2logL(uI As,&A,e') -Pllog2iro' + logj DrDI - 1o91 XrX + DTDI +N. (2.2.12)

with respect to A' and .A Computation of the likelihood over a discrete k,A3,&-2 parameter grid

12



and searching over the resulting discrete likelihood-hyperparameter space for the minimum of -2

log likelihood yields the desired smoothness priors long AR model.

The frequency domain smoothness priors constraint used here has an interpretation as a con-

straint on the smoothness of the whitening filter of the AR model. (The 0th derivative has an

energy constraint interpretation.) An important facet of our computations is that they are compu-

tationally tractable. That allows us to remain within the framework of the general linear model.

An Example, Analysis of Canadian Lynx Data

The data example discussed here is the analysis of the Canadian Lynx data (n=114). Other

examples are shown in Kitagawa and Gersch (1985a).

The AR model order was set to 20 and up to the fourth order smoothness prior constraint

was tried. The hyperparameters A and P were searched over the discrete values

A 2'-35 u0,j=l,....10 where ou2 is the sample variance of the data and P = i2
0o, i=0,1,...,4, for

each value of the order of the smoothness prior constraint.

The overall best model was k=l,v = 0,A = 0.173. The Bayesian estimate of the spectrum is

shown in Figure 2a. For comparison, AR models of order up to 20 were fitted by the least squares

method. The AIC best order was 11. The AIC criterion-AR modeled spectrum is shown in Figure

2b. In the Bayesian model spectral estimate, the peaks at the high frequencies are significantly

reduced compared to the AR model model spectrum estimate, while the ones in the lower frequen-

cies remain unchanged. Figure 2c shows the superimposed estimated spectra obtained from AR

models with different model orders. From Figures 2b,2c we see that the shape of the two right-

most peaks of Figure 2.1B vary considerably with model order. Thus they are not estimated reli-

ably by fixed order models. That is typical of the problem of estimating spectral density by fixed

order parametric models. If the model fitted to the data is not in the class of models which gen-

erated the data, the model fitting is only approximate. The selection of the best non Bayesian

parametric model ignores the evidence, in the Bayesian sense, for other parametric models when in

13



fact it should be taken into account. The suppression of those peaks by the smoothness priors-long

AR model method, shown in Figure 2a, therefore seems quite reasonable.

2.3 DISCUSSION

The variation of the behavior of the solution, from very rough to very smooth, in the trend

estimation problem under the smoothness priors constraints for different values of the hyperparam-

eters, is characteristic of the profound effect of the hyperparameter. The log likelihood of the

hyperparameter versus the hyperparameter changes gradually in the vicinity of the maximum log

likelihood. That fact permits a discrete likelihood-hyperparameter search procedure to be used in

conjunction with a Householder transformation algorithm to realize a reasonable computational

procedure.

The stochastically perturbed difference equation constraint in the trend estimation problem

is a time domain smoothness priors constraint. Akaike (1980), considered other time domain

smoothness constraint problems including the Shiller distributed lag problem and the seasonal

adjustment of time series. Ishiguro et al. (1981), used time domain smoothness constraints and

fixed effects regression in the analysis of earth tide data. The Householder transformation least

squares algorithm FORTRAN programs BAYSEA and BAYTAP-G in TIMSAC-84 (Akaike et al.

1985), are suitable for seasonal adjustment and tidal analyses respectively.

Akaike (1979) illustrated a frequency domain smoothness prior for the solution of the Shiler

(1973) impulse response estimation problem. We used frequency domain smoothness priors here

for spectral density estimation. Gersch and Kitagawa (1984) is an application of the frequency

domain-smooothness priors method to transfer function estimation. Our smoothness priors

method is particularly suited for the situation in which only a short span of data is available for

analysis. In that situation, the results of conventional parametric model analysis methods are par-

ticularly sensitive to the choice of model order. We circumvent that problem, with the Bayesian

smoothness priors method, by tending to fit models that are "too long". The model parameters

14



are specified as the solution to a constrained least squares problem in which the constraints are

expressed in the frequency domain. The likelihood of the hyperparameters is readily computable

in a least squares framework with the frequency domain priors.

The goodness of the choice of the fequency domain smoothness priors can be appraised by

evaluating its performance in various conceivable situations. The smoothness priors-long AR

model gives reasonable results in the analysis of the real Lynx data in comparison with the

minimum AIC-AR model method. Kitagawa and Gersch (1985a) show smoothness priors- long

AR model results that were superior to the minimum AIC-AR model method in a simulated-two

sine waves in noise case, when the data actually corresponds to an ARMA model. This flexibility

of performance is what is desired from a Bayesian model.

Also in Kitagawa and Gersch (1985a), a Monte Carlo study of the expected entropy experi-

ment was done to appraise the performance of the smoothness priors-long AR model for spectral

estimation against performance of parametric AR models whose order was determined by Akaike's

AIC criterion. The smoothness priors-long AR model method was superior to the minimum AIC-

AR model method in the two simulation model cases studied. In one case, the simulation model

was in the AR model clas. In the other case, the simulation model was not in the AR model

class. Thus, the example shown here and the Monte Carlo study reported in Kitagwa and Gerach

(1985a) are evidence to support the soundness of our empirical frequency domain smoothness pri-

ors approach.
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S STATE SPACE GAUSSIAN SMOOTHNESS PRIORS MODELING

A state space modeling approach for the linear model with Gaussian system and observation

noise that is the equivalent of the least squares computational approach to smoothness priors

modeling, was shown in Brotherton and Gersch (1981) and Kitagawa (1981). The state space

smoothness priors modeling method was applied to the modeling of nonstationary mean and nons-

tationary covariance time series, Gersch and Kitagawa (1983a,1985) and Kitagawa and Gersch

(1984,1985b).

In the modeling of nonstationary time series discussed below, there tends to be more parame-

ters than data. In that case, attempts to fit the parameters by least squares or any other ordinary

means will yield poor parameter estimates. The smoothness priors permit the model parameters to

be expressed implicitly as the solution of zero-mean unknown variance stochastically perturbed

difference equations. The variances are hyperparameters of the prior distribution of the parameters.

One interpretation of the role of the smoothness priors is that they permit a realization of a com-

putational procedure to estimate the model parameters.

In this section, computational procedures for the modeling of nonstationary mean and nons-

tationary covariance time series are discussed that are variations of the procedures discussed in our

previous papers. Examples are shown in Section 3.4. A discussion of other problems treated by

the smoothness priors-state space-linear-Gaussian model and comments appear in Section 3.S.

Kalman filter, prediction and smoothing formulas and computation of the likelihood of the linear

Gaussian model are shown in Section 3.2.

3.1 NONSTATIONARY MEAN SMOOTHNESS PRIORS STATE SPACE MODEL-

ING

Time series with trend and seasonal components occur for example in meteorological, oceano-

graphic and econometric studies. Here we consider a complex nonstationary mean time series

problem motivated by economic time series considerations. The economic time series nonstation-
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try mean can be decomposed into a trend I., a globally stationary component ., a seasonal com-

ponent s., a trading day factor d. and an observation noise component C,,

" - t,, + 0,, + U, + d, + e,. (3.1.1)

Each of the aforementioned components can be modeled as a stochastically perturbed difference

equation. The generic state space model for this decomposition can be expressed by

z,- F , + Gw. (3.1.2)

, H,z, + e,

where F,G and H. are MxM, MxL and lxM matrices respectively. U and e. are each assumed

to be sero mean independent normally distributed random variables. z. is the state vector at time

n and y. is the observation at time n. For any particular model of the time series, the matrices

F,G and H. are known and the observations are generated recursively starting from an initial

state that is assumed to be normally distributed with mean z0 and covariance matrix V0.

The state space model that includes the local polynomial trend, stationary AR coefficient,

trading day effects and observation error components can be written in the orthogonal decomposi-

tion form

F, 0 00 01 0 0 0

0 F O 0 0 0 CO 0 U (3.1.3)z, -" 0 0 Fs 0 1,,-, +  0 0 G, 0 w-(sz)

000 F4  0 0 0 G4

v H . = I,2 H, H,,.Iz. + ,.

The component models (Fj,Gj,H) in order, (j-l,...,4) represent the trend, stationary AR, sea-

sonal and trading day effects components respectively. Some of the particular trend, AR, seasonal

and trading day difference equation constraints that we have employed and that have representa-

tions in the (Fi,G,H) matrices in (3.1.3) are shown below.
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The trend component t. satisfies a kth order stochastically perturbed difference equation

Vht. - ,,, (3.1.4)

where wl,0 is an i.i.d. sequence with wj,,,N(O,rj). (See (2.1.12).)

The stationary AR component v. is assumed to satisfy an AR model of order p. That is

given by

=- 6jw,_, + + a%.,- + , . (3.1.5)

In (3.1.5) w2,. is and i.i.d. sequence with w2,.-N(O,r2). The seasonal component of the period L

difference equation is

so - -M.-1 - 0.-2 . .. _+l + Was . (3.I.6)

In (3.1.6), ws,. is an i.i.d sequence with ws,.-N(O,r2).

The trading day effect model is

d. - P8,.3d,. + + P,.d,. (3.1.7)

where P,.. denotes the trading-day effect factor and di,. corresponds to the number of the ith day

of the week at time n. Implicit in (3.1.7) is the constraint = 0. There is no stochastic com-
i-1

ponent in (3.1.7).

For a general model including local polynomial trend, AR component trend, local seasonal

component and trading day effect components, the state or system noise vector and observation

nosie e. are assumed to i.i.d. with sero mean and diagonal covariance matrix

0 f 000

0 0?0 0

An example of a state space model that incorporates each of the components with trend order 2,

IS



AR model order 2 and seasonal component with period L is,

to 2 -1 0 0 1 0 ." 0 0 0 1 0 0
to 1 0 0 0 0 . 0 0 0 1 0 0

0 0 as 0 1 ... 0 0.0 0 1 0

0 0 ! 0 0. 0 0 .0 0 0 0

0 0 0 .0 0 .0 0 0 1

000
•0 1

• (3.1.9)
. 0 0 0 0 0o 0 0 0 0 0 0

Ps. 0 0 0 0 0 0 0 0 0 1 0 0 0 0•. . . . . . . . .~ 1
0 0 0 0 0 0 0 0 010 0 0 0

" 1 0 1 0 I 1 . . .0 ,. . . .do. So -,to,

The smoothness priors problem that includes all of the components in the decomposition

identified above correponds to the maximization of

(3.1.10)

IiffL.j s ~ N. I - V_121 J Kf 1"S',1
Sx~ --LV-~ WXP 0 - i~-.I fP 2, .1 i

I- I I-+,

The first term in (3.1.10) corresponds to the conditional data distribution. The remaining terms in

(3.1.10), in order, corresspond to the priors on the trend, the globally stochastic component and

the seasonal component.

The role of the hyperparameters if and sf as a measure of the uncertainty in the belief of the

priors is clear from (3.1.10). Relatively small if (if) imply relatively wiggly trend (seasonal) com-

ponents. Relatively large if (if) imply relatively smooth trend (seasonal) components.

Correspondingly, the ratio of if/o, j-1 or 3, can be interpreted as signal-to-noise ratios. (The
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value of 02 in (3.1.10) is essentially estimated free of computational cost in the Kalman filter algo-

rithm.)

3.2 RECURSIVE ESTIMATION OF STATE AND LIKELIHOOD COMPUTA-

TION

Let a state space model be given by

z. - F.z.._ + C.w. (3.2.1)

in f Ha. + in,

where w.,- N(O,Q.,) and e.- N(O,R.). Given the observations Mi.MN and the initial conditions

z010, V010, the one-step-ahead predictor and the filter are obtained from the Kalman filter algo-

rithm:

Time Update (Prediction)

(3.2.2)

V.,._, - F. V._I.IF.r + G..QG.I.

Observation Update (Filtering)

K. - V.._ 1H.JH., V.._,H.' + R.J-

-z.,. - .,. 1 + K.IM. - Hmz,...l (3.2.3)

V.I. - I I - K.H.] V. I ._1.

Using these estimatates, the smoothed value of the state z, given the entire observation set,

* .. a, is obtained by the fixed interval smoothing algorithm, (Anderson and Moore 1979),

An- VnIBFn v*-.,,.

z.1N - ze, + A.nI.+1IN - z.,+,.i (3.2.4)

V.I. - V.I. + A.[ V.+,v r, - V.+,, .]Ar.

The state space representation and the Kalman filter yield an efficient algorithm for the likelihood

of a time series model. The joint distribution of MI,...,MN is,
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N

fllU ) H fl.I -, 3 .- , , (3.2.5)
6. I

with

(.I .... . - (2rv.)-'/'expi 1(y. - H*z.I.-,)3}. (3.2.6)

v. - H. V.i ._,H + R..

Then, the log likelihood, 1, of the model is obtained by

NI Nlog2 + Elog. + E -- (y. - H.z. , (3.2.7)
2 *1 1v1

The maximum likelihood estimate of the model parameters are obtained by maximizing (3.2.7)

with respect to those parameters. The AIC is defined by

AIC - -2(mazimum log-likelihood) + 2(number of parameters) (3.2.8)

Alternative models for time series might be models with and without trading day effects or models

with and without AR component effects. In each case, when we consider alternative models, the

model with the smallest value of the AIC statistic is selected as the AIC best model.

In fitting a stationary model, we can utilie the theoretical mean and the theoretical covari-

ance of the state vector as the initial values z0o and V010. In the nonstationary case we consider

the initial vector, z010, as an unknown parameter and estimate it by using the entire set of data.

The log likelihood obtained by estimating the initial state vector is a natural estimate of the

expected log likelihood of the predictive distribution (Akaike 1980b, and Gersch and Kitagawa

1983a).

3.3 NONSTATIONARY COVARIANCE MODELING

Here,time series with nonstationary covariances are modeled by a time varying autoregres-

sive (AR) model with smoothness constraints on the AR parameters. Time varying AR coefficient

models have been a topic of research for some time. For example, see Whittle (1965), Kozin
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(1977) and Nicholls and Quinn (1985) and the extensive references therein, particularly to the use

of random coefficients in econometric modeling. Earlier, in engineering applications, the modeling

of nonstationary covariance time series was done by fitting locally stationary models, and by

orthogonal polynomial expansions of AR coefficient models. Astrom and Wittenmark (1973,

Theorem 5) express a time varying AR coefficient model that includes the possibility of random

AR coefficients. Bohlin (1976) is an early application of the analysis of time series models with

time-dependent coefficients. The concept of the likelihood of the Bayesian model or of hyper-

parameters or anything related to a smoothness prior do not appear in the earlier papers. Those

are key concepts here. Kitagawa (1983) is a precedent to the material discussed in this section.

The problem in modeling nonstationary covariance time series is to achieve an efficient

parameterization to capture the local and global statistical relationships in the time series. That

objective is achieved here by imposing smoothness priors constraints in the form of stochastically

perturbed difference equations on the evolution of the AR coefficients. The variances of the white

noise stcchastic perturbations are the hyperparameters of the the AR coefficient distribution. The

difference equations are imbedded into a state-space representation. A relatively large AR model

order is chosen, the AR coefficients at each time instant are also smoothed using the frequency

domain differential contraints on AR coefficients, as in the smoothness priors-long AR model for

spectral estimation, Section 2.2. For each order of the differential constraint, 'he Kalman filter

yields the likelihood of the hyperparameters. The smoothed estimate of the nonstationary innova-

tions series variance is also computed. That is used in the computation of an instantaneous spec-

tral density which is defined in terms of the instantaneous AR model coefficients and the innova-

tions series variance.

The Time Varying AR Coefficient Model

A time varying AR coeficient model is given by

22

* ~' M*



y. - ja..ovo-, + to. (3.3.1)

In (3.3.1), the coefficients a,.. are assumed to change "gradually" with time and to is assumed to

be a normally distributed white noise sequence with variance oa. Since there are mxN AR

coefficients in the model in (3.3.1), an attempt to fit the parameters by least squares or any other

ordinary means to the N observations Yl, . . ,VN, will yield poor parameter estimates. We con-

sider the unknown AR coefficients to be random variables and impose stochastic constraints on

those coefficients. Those constraints define a Gaussian smoothness prior distribution on the time

history of the AR coefficients and on the spectrum at each time instant. A simple and useful

model for a time varying AR coefficient model is obtained by the stochastically perturbed

difference equation constraint model

VAIl,,,, 6.,,, i=1,..,m . (3.3.2)

For convenience, in (3.3.2) 6j.. is assumed to be a zero-mean Gaussian white noise sequence with

variance r' independent of i and n. That is, r? = r2, i= ,...,m.

The smoothness priors constraints on the AR coefficients mitigate the problem of overpara-

merisation by permitting the AR coefficients to be expressed as the solution of the constrained

least squares problem

N I Nm N Nm

[Li.. - ~i.,.in-,II + aj,.1 + A 2  ,?,. + v? .,2 .. (a.3.3)
rn-I l r-li- rn-li-l (.-li-3

In (3.3.3) m and kI,k 2 are assumed known and 92,Aj,2 are the tradeoff parameters which balance

the infidelity of the model to the data and the infidelity of the model to the smoothness con-

straints.

Similar to the analysis in Section (2.1), (3.3.3) yields a Bayesian interpretation of the least

squares problem. Multiply (3.3.3) by -1/2 o2 and exponentiate. Then , to within a constant term,

N I 2  2 (3.3.4)

21 ,., 1 1 2a 2
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expresses the product of the prior distribution on the smoothness of the spectrum and the prior dis-

tribution on the smoothenss of the AR parameters. The tradeoff parameters r2,A2,v2 are the hyper-

parameters of the prior distribution. As in the development in Section (2.1), the product of the

conditional data distribution, (proportional to the leftmost term in (3.3.3)), and the prior distrti-

bution in (3.3.4) yields the posterior distribution for the AR parameters. As in (2.1.8), integration

of the posterior distribution for the AR parameters yields the likelihood for the smoothness tra-

deolf parameters.

State Space Time Varying AR Coefficient Model

Define the kmxl state vector at time n to be ze = (at.,...,, ,..a.,,_+)

The state space time varying AR coefficient model is

z. = Fz.-, + Gw, (3.3.5)

YN - Haz. + '.

In (3.3.5), He, is a (m+1)xkm observation matrix, we is the m vector, we = (61., . . . ,6 , r and

the m+1 vector v*,ff(E., .) T , is defined in (3.3.7). For the difference equation orders k= and

k2 =2, the matrices F,G,and H are

k=l: F = (I.), C - (I.), H. - H1,0 - Iy.- ... y.-. (3.3.6)

k=2: F =  , G [] , He -"2. [H . , o.. i.0.

The input process noise w., the observation noise e. and the spectrum smoothness priors noise

form the 2km+l vector (we,,,.)T that is assumed to be normally distributed and independent

with time with the mean and covariance matrix,We o: IQ o o
e. - N , 2 1 (3.3.7)

In (3.3.7), the mxm diagonal matrix Q has the the element I/r on the diagonal and for k2 =2,(in
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(3.3.3)), the mxm diagonal matrix S has diagonal elements 1/(A'+aA....m'A2 +a), (see (2.2.6)).

For a fixed difference order kj, the best fit of the state space smoothness priors constraints-

time varying AR coefficient model to the data I,, • • • , IN, is the one for which the likelihood of

the hyperparameters r2,A2 s,a, are maximized. The likelihood is computed using the recursive for-

mulas indicated in Section 3.2.

The Instantaneous Variance And The Instantaneous Spectrum

In many practical data analysis situations, the relatively fast wiggles of a nonstationary

covariance time series appears to be modulated by a relatively slowly changing envelope function.

The envelope function has an interpretation as a change of scale of the time varying AR coefficient

model or equivalently as the smoothed (trend) value of the instantaneous variance, (Section 3.1).

A key idea in that modeling is to find a variance stabilizing transformation of the innovations that

yields the instantaneous trend in an additive sero-mean constant variance observation noise,

Wahba (1980). Let s.,n=l,...,N be a realization of a zero-mean normally distributed white noise

with unknown variance o,' . Then, if au?.=4.-1, X.=Is2._a +js1/2, is an independent sequence of

chi-square random variables with two degrees of freedom. From Wahba (1980), the transforma-

tion t. logx2 )+-1, where -y-0.57721 is the Euler constant, leaves the independent random vari-

able t. with a distribution that is almost normal with the moments Et.]=logeu, Verit,= r'/6.

That idea is exploited here.

Consider a second order difference equation constraint on the log variance defined by

V, - W. (3.3.8)

In (3.3.8) {w.) is an independent zero-mean normally distributed sequence with unknown variance

r2. Define a state vector by z,=- It. t..]r. Then in state space form the constraint model in

(3.3.8) and the observation model are given by
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1 0 W (3.3.9)
- 'I OZ- + m

If. -11 o1= +'E.

Application of the Kalman filter,prediction and smoothing algorithms described earlier yield the

smooth value t., N, the logarithm of the smoothed estimate of the changing variance. Our estimate

of the changing variance is ojmjI = a2.ai1N-exp(ta(N + 7).

Motivated by earlier work on spectrum estimation, we define the instantaneous spectrum of a

time varying coefficient AR process by

S.f) = F -1/2<f1/2. (3.3.10)

1 _ .A ,.exp(-2 )okf)
I -I

The value of the instantaneous spectrum is obtained by substituting the smoothed estimates of the

time varying AR coefficients and the smoothed estimate of the innovations variance v. into

(3.3.10).

3.4 EXAMPLES

A Nonstationary Mean Time Series Example

The RSWOMEN series of the Bureau of the Census data, (Zellner 1983), is analysed here.

The series consists of the retail sales of women's apparel, reported in millions of dollars. The sales

for each month are affected by the number of times each day of the week occurs, the trading-day

effect, because buying behavior differs for each day of the week. (The sales are also affected by

holidays.) We are interested in determining whether or not it is appropriate to include a trading

day elect in the model and whether or not the globally stochastic AR component should be

included in the model. The AIC statistic is used to determine the best of the alternative models.

The computations were done using the DECOMP.FORT program in TIMSAC-84 (Akaike et

al. 195). The model was fitted to the data jj,...,Ijs, 24 data points were witheld. The AIC's for
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AR model orders p=0,1,2,3, (as in (3.1.5)), respectively for the non trading day effect and trading

day effect models are (11I.51,96.96,98.80,98.65) and (88.07,68.34,67.23,68.91). An interpretation

of those results is that models with an AR component, p*O, are superior to models without AR

components both with and without trading day effects and that the AIC best model,(AIC=67.23),

is the trading day effect model with AR model order p=2. Figures Sa-e show selected cornputa-

tional responses for the non-AR component-trading day effect model. Figures 3f-j show selected

computational results for the AR component-trading day effects model. The seasonal components,

residual noise and trading day effects and seasonal plus trading effects are quite similar in appear-

ance for both models.

Several aspects of the modeling results are noteworthy. The trend of the trend plus AR com-

ponent model is smoother than the trend-non AR component model and the trend plus AR com-

ponent is almost indistinguishable from the trend in the non AR component model. Also, the sea-

sonal component is very regular whereas the seasonal plus trading day component reveals the

expected, slight irregularities.

A important property of the AIC best trend plus seasonal plus AR component model, instead

of the trend plus seasonal model, can be seen in the (out-of-sample) forecasts for these models as

shown in Figures 3e and 3j. In those illustrations we show the true series, the forecasted series and

plus and minus one sigma of the forecast random variable. The plus or minus one sigma predic-

tion intervals of the trend plus AR plus seasonal plus trading day components model is much

tighter than the same quantity for the non AR component model. The increase in prediction vari-

ance per step in increasing horison forecast, grows in accordance with the variance component

terms in the matrix, in (3.1.8). The variance of the (wiggly) trend term in the non AR component

model, is larger than the sum of variance terms of the (smooth) trend and AR component in the

AR component model. That larger variance is reflected into the larger one sigma prediction inter-

val of the non AR component model.

27



These results illustrate the flexibility of the decomposition of the nonstationary mean concept

via smoothness priors modeling and the importance of the role of the AIC in selecting the best of

alternative models.

Time Varying AR Coefficient Modeling, Nonstationary Covariance Time Series

The computations were realized using the TVCAR.FORT program in TIMSAC-84 (Akaike

et al 1985). Figure 4& shows a seismic data event, yl,...,yN. The stochastic "background noise", P

wave (the first abrupt change in the signal) and the S wave (the second abrupt change in the sig-

nal), are clearly discernable. Figures 4bd,f are graphs of computational results from the time vary-

ing AR coefficient model described in Section 3.3. Respectively they show the

log((y, + y2'..-), m=1,...,N/2 "unsmoothed envelope" data and the superimposed estimate of

the envelope (changing variance), the evolution of the instantaneous power spectral density and

the evolution of the partial correlation coefficients (parcors) of the fitted, AR order m = 8 time

varying AR coefficient model. Figures 4c,e,g show the corresponding computational results from

an "intervention analysis" model that is part of TVCAR.FORT.

The smoothed envelope for the non-intervention model is in fact quite smooth. Similarly the

instantaneous spectrum and partial correlation coefficients (parcors) reflect the smooth transition

in the time varying AR coeficients model, (3.3.2). Two visual inspection determined "outlier"

events occur at n=835 and n=1030. They correspond to the arrival times of the P and S waves

and are identified to the program, by human intervention, as large observation variance events.

The large observation variance relaxes the priors constraint and permits the AR coefficients and

subsequently derived quantities to change abruptly at those instants. The "validity" of this inter-

vention type analysis is suggested by comparison of the results of the intervention type and non-

intervention type analysis. The properties of the latter "drift" toward the former. The abrupt

changes in the appearance of the envelope function and in the instantaneous spectra and parcors

correspond to the physical interpretation that the P waves and S waves are different sources of
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energy at the observing seismometer.

3.5 COMMENTS, DISCUSSION

The paper by Akaike (1980) motivated our work in smoothness priors. In Akaike (1980),

computations were done by a Householder transformation least squares algorithm of computa-

tional complexity O(NS). Brotherton and Gersch (1981) and Kitagwa (1981) demonstrated an

equivalent state space modeling approach for the linear model with Gaussian system and observa-

tion noise. In the vicinity of the maximized likelihood, the likelihood is a rather flat function of

the hyperparameters. This fact permits a relatively coarse grid discrete hyperparmeter-likelihood

search procedure to determine the values of the hyperparameters that tend to maximize the likeli-

hood. Such a procedure preserves the O(N) computational complexity inherent in the Kalman

filter computations. A computational complexity of O(N) version of that method was subse-

quently applied to a variety of nonstationary mean and nonstationary covariance time series

modeling problems, (Gerch and Kitagawa 1983,1985, Kitagawa and Gersch 1984, 1985b). Varia-

tions of the procedures in those papers expressed in computer programs DECOMP.FORT and

TVCAR.FORT (TIMSAC-84, Akaike et al. 1985), yielded the computational results shown here.

Potentially many more combinations and extensions of the models shown here for the

modeling of nonstationary mean and nonstationary covariance time series by smoothness priors

methods, are possible. For example, a generalization of the regression on trading days com-

ponents, in the nonstationary mean-decomposition of time series modeling, could take into account

constant coefficient and/or time varying coefficient regressssion on other time series. A time vary-

ing partial AR coefficients variation of the present time varying AR coefficient model for the

modeling of nonstationary covariance time series, has already been implemented. Another poten-

tial variation on the time varying AR coefficient model would be to estimate the full nondiagonal

mxm system noise covariance matrix (the matrix of hyperparameters). Gersch and Kitagawa

(1985), an application of the time varying AR coefficient model, includes computation of the time
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varying covariance function. That computation is useful to permit computation of the mean

square response to nonstationary excitation of building structures to single realizations of seismic

event data.

Some other linear model-Gaussian distrurbances- state space smoothness priors models have

been implemented. Kitagawa and Takanami (1985) show a smoothness priors modeling method

for the extraction of seismic signals from correlated background noise. The smoothness priors

innovation in that work is the implementation of a non constant or time varying hyperparameter.

That hyperparameter achieves a time varying balance of the tradeoff between the variances of the

seismic signal and the background noise. The modeling of continuous model time series with

discrete time observations is another domain where smoothness priors state space modeling has

been exhibited. Kitagawa (1984) includes a smoothness priors variation of the Jones (1980) con-

tinuous time AR process-discrete time observations modeling. The application in Kitagawa (1984)

is to irregularly spaced or missing data time series modeling.
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4. STATE SPACE NON GAUSSIAN MODELING OF NONSTATIONARY MEAN

TIME SERIES

A non-Gaussian state space approach to the modeling of nonstationary time series is shown.

Neither the system noise nor the observation noise need be Gaussian. Recursive formulas for the

prediction, filtering and smoothing of the state are given. A numerical method, based on a piece-

wise linear approximation to the density functions for realising these formulas, is also given. The

merits and potential wide applicability of this approach to non-Gaussian modeling are illustrated

by some numerical examples. Extension of this method to the state space modeling of nonlinear

systems is straightforward.

Earlier in this chapter we demonstrated the wide range of applicability of the linear model

with Gaussian system and observation noise. There are numerous problems for which Gaussian

modeling is inadequate. For example, the problem of trend estimation becomes difficult when the

trend has discontinuities as well as smooth changes and when there are observation outliers. A

simple linear Gaussian model with small process noise variance does not track jumps or discon-

tinuities very well. A model with large process noise variance will respond to sudden changes in

the trend but it will also be inappropriately wiggley where the trend is quite smooth. The treat-

meant of such trend discontinuities with the included possibility of observation outliers in the

linear Gaussian model framework requires a complicated model. Heavy tailed distributions for

process and observation noise can cope with these problems with a simple model. Also, smoothing

problems in which there is a time varying variance and/or a nonhomogenous binomial or Poisson

mean require a non Gaussian system noise model formulation. Similarly nonlinear models such as

storage models for riverflow and a ship's nonlinear manueverability require non Gaussian distribu-

tion models.

Thus, the development of methods for treating systems with non Gaussian distributions is/

well motivated. In earlier attempts, systems with non Gaussian distributions were approximated

by the use of extended Kalman filters, sums of Gaussian distributions , by Edgeworth or Gram-
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Charlier expansions etc.. (See Aspach and Sorenson 1972, for example.) Here, we approximate

the probability density functions directly by a piecewise linear function. The recursive prediction,

filtering and smoothing computation required by the state space modeling are realized by numeri-

cal integration. A similar approach was considered by Bucy and Senne (1971) and de Figueiredo

and Jan (1971) in the context of nonlinear filtering problems. Such an approach is more feasible

now than it was several years ago because of the development and proliferation of fast computa-

tional facilities. In Section 4.1 the state space prediction , filtering and smoothing formula aspects

of the numerical computations are derived and the computation of the likelihood for the not neces-

sarily Gaussian distribution model are shown. Numerical examples are shown in Section 4.2 and a

discussion and comments are in Section 4.3.

4.1 THE NON GAUSSIAN STATE SPACE MODEL

Consider the stationary state space system described by

Z. Fr% ,1 + Gw._ 1  (4.1.1)

-. = Hz. + e.

where as before F, G, and H are linear transformations. The independent and independent of each

other, but not necessarily Gaussian process and observation noises are w. and e. respectively.

The initial state vector z0 is distributed in accordance with p(zo) and the conditional density of

the state at time m, given the obervations (-Y,...,-) = Y. is denoted by p(z.I Y.). Then, the

recursive formulas for the one step ahead prediction,filtering and smoothing densities are derived

as follows:

One step ahead prediction (time update)

p(z.m Y.-, = fp.,zz.-I Y._)dz._ (4.1.2)

= f;p(z.I z,.-,)p(z.-,I Y.-.)dz..1
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Filtering (observation update)

P(z j Y.) - P(z.I I.,.-,) - P(.,u.I Y.-,)/P(Y.I Y.-) (4.1.3)

- P(.I .)P(Z.I Y.-)/p(u.I Y.-)

where p(z.1 z.-) is the density of z. given the previous state vector z.-,, p(v.I z.) is the density of

v. given z. and p(1.I Y.-) is obtained by fp(vo. z.)p(zl Y..)d-..

Similarly, consider the expression for the joint density of z. and z.+,, given the entire obser-

vation sequence YN,

P(Z.,z.+,I 1N) P(Z.+,Il Y)P(Z.,,I ,Y (4.1.4)

" p(z.+J, Y)p(Z.,z.+,Il Y.)/p(.,I Y)

-p(z,+Il Y)P(Z.+,I z.)p(z.I Y.)/p(z,.+l Y)

From (4.1.4) we obtain the formula for smoothing:

P(Z. YN) I fC. p(z.,z.+Il YN)dz.+, (4.1.5)

=P (z.I Y')f-:(x"'+I YN)p(z.+l z.)/p(z.+I Yj)dt,,.

In the linear Gaussian case, the conditional densities p(z.I Y.-), p(z.I YN) and p(z,.j YN)

are characterized by mean vectors and covariance matrices. Correspondingly, (4.1.2),(4.1.3) and

(4.1.5) lead to the Kalman filter and the fixed interval smoothing algorithm. In the non Gaussian

or nonlinear case however, it is necessary to evaluate the non Gaussian densities explicitly at each

step. The algorithms above, (4.1.3)-(4.1.5) can be realised numerically by piecewise linear approx-

imations to the density functions, transformation of densities, convolution of densities and Bayes

theorem (product of two densities and normalization). Details of the numerical computations are

in Kitagawa (1987).

In generalthe non Gaussian model has some unknown parameters. The best choice of the

parameters can be found by maximizing the log likelihood defined by
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1(f) - log PAl,***,UN) A log P(1.1 a**Vmi log P (I. I Y... 1). 4

The term p(y.I Y._,.) appears in (4.1.3) and can be evaluated numerically. If we have several can-

didate models, including models with different types of system noise or observation noise density

functions, we choose the model for which the AIC is minimum.

4.2 NUMERICAL EXAMPLES

Estimation of a Shifting Mean Value

Consider the data simulated from the following model,

Y.- N(p.j,)

0 n=- 1,...,100
-I n-101,...,200 (4.2.1)
-1 n-201,...,300

2 n-301,...,400

The data is shown in Figure 5a. The problem is to estimate the abruptly changing mean value

function P..

For this type of data we used the model

v5 t. - W (4.2.2)

Y. = to + Ca.

As before, V is the difference operator defined by Vt.-9.t._t, and w. and c. are white noise

sequences that are not necessarily normally distributed. For simplicity we assume that the

difference order k is one. Equation (4.2.2) is a special form of the state space model, Section (3.1.),

with z,,-t.,F=G-H=1. We considered the following model classes:

Model(a): w. - aN(0,i')i(1 - a)N(0,r!), e. - N(0,1) (4.2.3)

Model(b): w. - Q(b,v2), e. - N(O,1)

Model(a) denotes a mixture of Gaussian system noises. In (4.2.3), for Modcl(a) and Model(b),
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N(O,r) denotes the Gaussian distribution with mean 0 and variance r. In Model(b), Q(b,r2)

denotes the distribution of the Pearson system with density q(z;b,r 2)=C(r2 + z2)-' with -L<b<oo
2

and cfr b-lr(b)/r(2). This family links the Cauchy distribution (b-1) and the Gaussian distri-
-s 2

bution (b-oo). In Model(a), 4 was arbitrarily set to 4.0, approximately the sample variance of

the simulated data. The maximum likelihood estimate of r1 for the Gaussian model, Model(a),

with a - 1.0 or equivalently Model(b) with b - oo, was f=0.0429. The AIC of the model was

1240.33. For the mixture of Gaussian system noises model, i=0.989, fo=0.0000014 and

AIC=1212.48. We tried four Pearson family models: b=0.6,0.8,1.0 and oo. b=0.80 is the AIC

best Pearson family model with r4=0.000002 and AIC=1215.20. The AIC best model is the mix-

ture of Gaussian system noises model.

Figure 5b-5d shows the marginal posterior density p(z~. YN) versus time n for the Gaussian

model, the best Pearson system model and the mixture of Gaussians model respectively. For the

Gaussian model, Figure 5b, the densities obtained have identical shape except for the ends of the

time interval where the densities become slightly broader. In Figure 5c, the shape of the posterior

density varies with time. When the mean value shifts, the density becomes heavy tailed on one

side. The Gaussian mixtures model also exhibits the latter behavior.

Figures 5e-5g shows the mean (bold) and ± 1,2,3 sigma intervals of the p(z.I Yv) versus n

for the Gaussian model and the median (bold) and corresponding 0.13,2.27,15.87,84.13,97.73 and

99.87 percentage points of the Pearson system model and the Gaussian mixtures model respec-

tively. For the Gaussian model, the estimated mean value function becomes a wiggly curve and

does not reflect the sudden change of the mean value. The estimated median of the Pearson sys-

tem and the Gaussian mixtures models do capture the sudden change of the signal mean value.

The multimodal or skewed distribution and jumps of the mean value are typical of the

phenomenon that are seen in non Gaussian modeling.
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Estimation Of Changing Variance

The estimation of changing variance waa discussed in Section 3.3.3 in the context of fitting a

time varying AR coefficient model to a seismic signal. The same idea is exploited here to estimate

the changing variance of the same seismic signal with the state space non Gaussian modeling

method. A first order difference model for the trend of the log of the sum of the squares of succes-

sive observationns was used, 12=t*-f._1-- q(b,2 ), y.,-t m + c. with m=l,..,N/2. Two models

were considered, the Gaussian system noise-Gaussian observation noise and the Cauchy system

noise with an r(z)=ezp(z-ezp') observation noise model. The corresponding AIC's were 4778.94

and 4222.84. The latter model was the AIC best model. The original seismic wave Y.,n=1,....N

and the Iog((y, + y' ,)/2), m=l,...,N/12 signals are shown in Figures 6a and 6b respectively.

The Gaussian model smoothed mean and *1,2,3v and non Gaussian model smoothed median and

corresponding probability point curves are shown in Figures 6c,6d respectively. Those illustrations

indicate that the Cauchy system noise model yields better estimates of the smooth mean and

abrupt hanges of the mean innovations variance than the simple Gaussian system noise model.

Modeling the real data changing variance seismic signal with the state space non Gaussian system

noise method automatically yields the location of abrupt changes in the mean of the siganal.

4.3 COMMENTS, DISCUSSION

The results shown here were obtained using a simple one dimensional state vector. In princi-

ple, it is straightforward to extend the computational formulas to higher dimensional state sys-

tems. The resulting increase in the computational burden required to compute the convolution of

density functions becomes quite severe. A variety of numerical techniques have been investigated

to cope with this problem. Very likely the use of more powerful computers rather than the

increase of effort in numerical analysis methods will be more expeditious in the development of the

non Gaussian state space smoothness priors method.
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Several other problems lend themselves to the application of the one dimensional non Gaus-

sian modeling shown here. Kitagawa (1987) shows an application to the handling of discrete dis-

tributions. The time varying mean of a real, nonstationary (nonhomogeneous) binary process, is

estimated. Also, smoothing of the log periodogram using a state space model with w,-logx 2 and

c.-Cauchy or e.- Gaussian is an alternative to the Gaussian distributions approach in Wahba

(1980).

Our procedure also extends quite naturally to the analysis of nonlinear systems. The one-

step-ahead prediction formula (4.1.2) and the filtering formula (4.1.3) are applicable even for non-

linear systems.

Time series with nonstationarities, nonlinearities and outliers that have been difficult to

analyze by conventional linear Gaussian models can be quite simply analyzed with the non Gaus-

sian model. The computational burden using the non Gaussian filter and smoother is substantial.

The develpment of faster algorith.ms and the use of faster computers will alleviate this burden.
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5. SUMMARY

The ingredients for the smoothness priors analysis of time series are the model, the prescrip-

tion of the priors, the criterion for goodness of model fit and the computational method.

Initially, smoothness priors modeling of stationary, nonstationary mean, and nonstationary

covariance time series was demonstrated in the context of the linear model with Gaussian distri-

buted system noise and with Gaussian distributed observation noise. Both time domain and fre-

quency domain specifications of the prior distribution of the model parameters were considered. A

hyperparameter specifies the degree of belief in the prior distribution. The smoothness priors

method of analysis derives its unity from the fact that the likelihood of the Bayesian model (the

likelihood of the hyperparameter(s)) is the single criterion by which the goodness of fit of the

model is determined. The maximization of the likelihood of a small number of hyperparameters

permits the modeling of time series with complex structure and a large number of implicitly

inferrred parameters. When there are alternative candidate smoothness priors models, we use

Akaike's AIC to determine the best of alternative models, (the likelihood of the model has a cen-

tral role in the AIC). Householder transformation least squares and Kalman filter algorithms, were

the means for the realization of the smoothness priors time series modeling.

Finally, we demonstrated a state space representation not necessarily Gaussian not neces-

sarily linear model method of smoothness priors modeling. In that method, piecewise-linear

approximation to densities and numerical integration computations were employed. Conceptually

all of the possible combinations of models and smoothness priors computations could be realised

with this method.

The extensive applicability of smoothness priors modeling methods in time series modeling

was demonstiated. A large number of other problems that have not been well solved by more

traditional time series methods remain to be solved by that method.
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LEGENDS

FIGURE 1. Trend Estimation

a: Truncated Gaussian signal and signal plus noise, b: Signal plus noise plus smoothed trend with

a too large hyperparameter, c: Signal plus noise plus smoothed trend with a too small hyperparam-

eter, d: Signal plus noise plus smoothed trend with optimum hyperparameter,

Figure 2. (2.1)Spectral Densities From Canadian Lynx Data Example

a: Spectral density versus frequency, smoothness priors model, b: Spectral density versus frequency,

AIC-AR model, c: Superposition of spectral densities versus frequency, AR models.

FIGURE 3. (.1)Nonstationary Mean, RSWOMEN Data.

Trend plus seasonal plus trading component model, ab,c,d,e.

a: Original data and trend, b: Seasonal component, c: Trading day elect, d: Seasonal plus trading

day effect, e: True, predicited and plus and minus one sigma plus predicted.

Trend plus seasonal plus AR plus trading component model, fg,h,ij. f: Original data and trend,

g: AR component, h: Original plus trend plus AR component, i: Residual noise, j: True, predicited

and plus and minus one sigma plus predicted.

FIGURE 4. Nonstationary Covariance, Seismic Data.

a. Seismic data,WI,...,yN. "ordinary model" b,d,f; "intervention model" c,e,g.

b,c: Iog((ys, + V m _J/2), m=1,...,N/2 data and smoothed envelope, d,e: instantaneous power

spectral density, fg: parcors.

FIGURE 5. State Space Model Non Gaussian Discontinuous Trend Example.

a: Abruptly changing trend data, b: Smoothed state estimate, Gaussian system noise model, c:

Smoothed state estimate, Pearson system-system noise model, d: Smoothed state estimate, Gaus-

sian mixture system noise smodel, e: Posterior mean, *1,2,3*, Gaussian system noise model, f:

Posterior median and (0.13,2.27,15.87,84.13,97.73) percentage points, Pearson system-system noise



model. g: Posterior median and (0.13,2.27,15.87,84.13,97.73) percentage points, Gaussian system

noise model.

FIGURE 6. State Space Model Non Gaussian Envelope of Seismic Signal Example.

a:Seismic data,yI,...,yN. b: 1o((i?2. + y3 -,)/2), m-1,...,N/2 "envelope" data, c: Posterior

mean, ±1,2,3e, Gaussian disturbances model, d: Posterior moide, (0-13,2.27,15.87,84.13,97.73) per-

centage points, non-Gaussian disturbances model.
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A variety of time series signal extraction/smoothing problems are con-

sidered from a Bayesian "'smoothness priors" point of view. The origin of the

subject is a smoothing problem posed by Whittaker (1923). Using a stochastic

regression-linear model-Gaussian disturbances framework, we model stationary

time series and nonstationary mean and nonstationary covariance time series.

Smoothness priors distributions on the model parameters are expressed either

in terms of time domain stochastic difference equation or frequency domain

constaints. A small number of (hyper)parameters specify very complex time

series behavior. The critical computation is the likelihood of the Bayesian

model. Finally we show a smoothness priors state space - not necessarily

Gaussian - not necessarily linear model of nonstationary time series.

lA

UNCLASSIFIED
SE $CURITY CLASkPICATIOU OP TNI$ PAOEtm Data B te

.. .. . ... **' ' llglli l'i l lllI53il l



w ~* -~ w- '-

A'


