
4-Aio 896 ADA (TRADEMNRE) COMPILER VALIDATION SUMMARY REPORT - 1/1
HONEYWELL INNORMATION (U) NATIONAL BUREAU OF STANDARDS
GAITHERSBURG MD SOFTWARE STANDAR 83 APR 87

UNCLASSIFIED 878483S1 88837 F/G 12/5 NLEIIEEEIIIIIEI
EIIhllhElllllE
EIIhhlllEE~hlE
EllEEEElllElhE
iEE

VA L

124W

pAICROCOP' RESOLUTIKt4 TEST CHART

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ IMMuc'IoNs
BEFORE COMPLETEING FOl

-'

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 3 Apr 1987 to 3 Apr 1988

Honeywell Information Systems, GCOS-8, V2.0 &
6. PERFORMING ORG. REPORT NUMBER
80403SI.08037

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Software Standards Validation Group
Institute for Computer Sciences an Technology
National Bureau of Standards

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Software Standards Validation Group, National AREA & WORK UNIT NUMBERS

Bureau of Standards, Bldg.225, Rm A266
Gaithersburg, MD 20899

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 3 Apr 1987
United States Department of Defense 1. NUMdEK UI PAULS

Washington, DC 2D301-3081ASD/SIOL 53

14. MONITORING AGENCY NAME & ADDRE SS(If different from Controlling Office) 15. SECURITY CLASS (ofthisreport)

National Bureau of Standards UNCLASSIFIED
15a. bfFICATION/DOWNGRADING

I_ N/A
16. DISTRIBUTION STATEMENT (of this Report)

,, Approved for public release; distribution unlimited.
C

0I
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)00
UNCLASSIFIED

I
18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada

Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

RIP See Attached. L E

JUL 0 6 1987

DO u.x 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

EXECUTIVE SUMMARY

This Validation Summary Report summarizes the results and
conclusions of validation testing performed on the GCOS-8
V2.0 using Version 1.8 of the *Ada Compiler Validation
Capability (ACVC).

The validation process includes submitting a suite of
standardized tests (the ACVC) as inputs to an Ada compiler and
evaluating the results. The purpose is to ensure conformance
of the computer to ANSI/MIL-STD-1815A FIPS PUB 119 Ada by
testing that it properly implements legal language constructs
and that it identifies and rejects illegal language
constructs. The testing also identifies behavior that is
implementation dependent but permitted by ANSI/MIL-STD-1815A
FIPS PUB 119. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or
during execution.

On-site testing was performed 30 March 1987 through 3 April
1987 in Phoenix, AZ under the auspices of the Software
Standards Validation Group, according to Ada Validation
Organization policies and procedures. The GCOS-8 V2.0 was
hosted on DPS-90 operating under SR3000 V.30002 and SR2500
V.25003

The results of validation are summarized in the following
table:

RESULT TEST CLASS TOTAL

__ _ &_C _ _ __ _

Passed 69 867 1190 17 13 46 2202

Failed 0 0 0 0 0 0 0

Inapplicable 0 0 178 0 0 0 178

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

• 70ofo3S /

FSV87VSRHIS518A

Ada* COMPILER
VALIDATION SUMMARY REPORT:
Honeywell Information Systems

GCOS-8 V2.0

Completion of On-Site Validation:
3 April 1987

Prepared By:
Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards-

Building 225, Room A266
Gaithersburg, MD 20899

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

, 2

' i ' T t jr -, !q, l~r' ,t" "':I er

Ada Compiler Validation Summary Report:

Compiler Name: GCOS-8 V2.0

Host Com~uter: Target Computer:

DPS 90 DPS 90

under under

SR2500 V.25003 SR2500 V.25003

and and

SR3000 V.30002 SR3000 V.30002

Testing Completed on 3 April 1987 Using ACVC -1.8.

U .. ,.,. °

EXECUTIVE SUIARY

This Validation Smmary Report summarizes the results and
conclusions of validation testing performed on the GCOS-8
V2.0 using Version 1.8 of the *Ada Compiler Validation
Capability (ACVC).

The validation process includes submitting a suite of
standardized tests (the ACVC) as inputs to an Ada compiler and
evaluating the results. The purpose is to ensure conformance
of the computer to ANSI/MIL-STD-1815A PIPS PUB 119 Ada by
testing that it properly implement. legal language constructs
and that it identifies and rejects illegal language
constructs. The testing also identifies behavior that is
implementation dependent but permitted by ANSI/XIL-STD-1815A
PIPS PUB 119. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or
during execution.

On-site testing was performed 30 March 1987 through 3 April
1987 in Phoenix, AZ under the auspices of the Software
Standards Validation Group, according to Ada Validation
Organization policies and procedures. The GCOS-8 V2.0 was
hosted on DPS-90 operating under 8R3000 V.30002 and SR2S00
V.25003

The results of validation are summarized in the following
table:

RESULT TEST CLhSS TOTAL

-A. L L _L _L_

Passed 69 867 1190 17 13 46 2202

Failed 0 0 0 0 10 0 0

Inapplicable 0 0 178 0 0 0 178

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

(

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

There were 19 withdrawn tests in ACVC Version 1.8 at the
time of this validation attempt. A list of these test appears
in Appendix D.

Soae tests demonstrate that some language features are or are
not supported by an implementation. For this implementation,
the test determined the following.

" SHORTINTEGER is not supported.

* LONGINTEGER is supported.

. SHORTFLOAT is not supported.

* LONGQ.FLAT is supported.

" The additional predefined types LONGFLOAT, LONG_
INTEGER, INTEGER, and FLOAT are supported.

. Representation specifications for noncontiguous
enumeration representations are supported.

" The 'SIZE clause is supported.

" The 'STORAGESIZE clause is supported.

" The 'SMALL clause is supported.

- Generic unit specifications and bodies can be compiled
in separate compilations.

- Pragma INLINE is supported for procedures.
Pragma INLINE is supported for functions.

" The package SYSTEM is used by package TEXT_10.

" Mode IN-FILE is supported for SEQUENTIAL_10.

• Mode OUT_FILE is supported for SEQUENTIALI.

• Instantiation of the package SEQUENTIAL_10 with
unconstrained array types is supported.

" Instantiation of the package SEQUENTIALIO with
unconstrained record types with discriminants is
supported.

" Dynamic creation and resetting of files is supported
for SEQUENTIAL_10.

" RESET and DELETE are supported for SEQUENTIAL' and
DIRECT_1O.

• Modes IN_FILE, INOUT_FILE, and OUT_FILE are
supported for DIRECT_IO.

" Dynamic creation and resetting of files is supported
for DIRECT_IO.

_ Instantiation of package DIRECT_IO with unconstrained
array types and unconstrained types with discriminants
is supported.

. Dynamic creation and deletion of files are supported.

. More than one internal file can be associated with the
same external file only for reading.

An external file associated with more than one internal
file can be reset.

Illegal file names cannot exist.

ACVC Version 1.8 was taken on-site via magnetic tape to
Phoenix, AZ. All tests, except the withdrawn tests and any
executable tests that make use of a floating point precision
greater than SYSTEM.MAXDIGITS, were compiled on a DPS 90.
Class A, C, D, and E tests were executed on a DPS 90.

On completion of testing, execution results for Class A, C, D,
or E tests were examined. Compilation results for Class B were
analyzed for correct diagnosis of syntax and semantic errors.
Compilation and link editing results of Class L tests were
analyzed for correct detection or errors.

The Software Standards Validation Group identified 2229 of the
2399 tests in Version 1.8 of the ACVC as potentially
applicable to the validation of GCOS-8 V2.0. Excluded were
5 tests with source lines that were too long; 146 tests
requiring floating point precision greater than that supported
by the implementation; and the 19 withdrawn tests. After the
2229 tests were processed, 27 tests were determined to be
inapplicable. The remaining 2202 tests were passed by the
compiler.

The Software Standards Validation Group concludes that these
results demonstrate acceptable conformance to
ANSI/MIL-STD-1815A FIPS PUB 119.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT...1-
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.*2 CERTIFICATE 2-2
2.3 IMPLEMENTATION CHARACTERISTICS 2-3

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-3
3.6 SPLIT TESTS 3-5
3.7 ADDITIONAL TESTING INFORMATION 0 0 0 . 0 0 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method3-6
3.7.3 Test Site 3-7

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAEERSB

APPENDIX D W!ITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A FIPS PUB
119. This report explains all technical terms used within it
and thoroughly reports the results of testing this compiler
using the Ada Compiler Validation Capability (ACVC). An Ada
compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A FIPS PUB 119). >Any
implementation-dependent features must conform to the
requirements of the Ada Standard. The entire Ada Standard must
be implemented, and nothing can be implemented that is not in
the Standard.

Even though all validated Ada compilers conform to
ANSI/MIL-STD-1815A, it must be understood that some differences
do exist between implementations. The Ada Standard permits
some implementation dependencies--for example, the maximum
length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations
imposed on a compiler by the operating systems and by the
hardware. All of the dependencies demonstrated during the
process of testing this compiler are given in the report.

Validation Summary Reports are written according to a
standardized format. The report for several different
compilers may, therefore, be easily compared.KThe information
in this report is derived from the test results\produced during
validation testipg. Additional testing information is given in
section 3.7 and states problems and details which are unique
for a specific compiler. The format Of a validation report
limits variance between reports, enhances readability of the
report, and minimizes the delay between the completion of
validation testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

The Validation Summary Report documents the results of the
validation testing performed on an Ada compiler. Testing was
carried out for the following purposes:

1-1

INTRODUCTION

" To attempt to identify any language constructs
supported by the compiler that do not conform to the
Ada Standard

" To attempt to identify any unsupported language
constructs required by the Ada Standard

" To determine that the implementation-dependent behavior
is allowed by the Ada Standard

Testing of this compiler was conducted under the supervision of
the Software Standards Validation Group according to policies
and procedures established by the Ada Validation Organization
(AVO). Testing was conducted from 30 March 1987 through 3
April 1987 at Phoenix, AZ.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country,
the Ada Validation organization may make full and free public
disclosure of this report. In the United States, this is
provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this
report do not represent or warrant that all statements set
forth in this report are accurate and complete, or that the
subject compiler has no nonconformances to ANSI/MIL-STD-1815A
FIPS PUB 119 other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington, DC 20301-3081

or from the Ada Validation Facility (AVF) listed below.

Questions regarding this report or the validation tests should
be directed to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1-2

&

or to:

Ada Validation Facility
Software Standards Validation Group
Institute for Computer Sciences and Technology
National Bureau of Standards
Building 225, Room A266
Gaithersburg, MD 20899

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and
Procedures, MITRE Corporation, JUN 1982, PB
83-110601.

3. Ada Compiler Validation Capability
Implementers' Guide, SofTech, Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set
of programs that evaluates the conformance of a
compiler to the Ada language specification,
ANSI/MIL-STD-1815A FIPS PUB 119.

Ada Standard ANSI/MIL-STD-1815A FIPS PUB 119, February 1983.

Applicant The agency requesting validation.

AVF Ada Validation Facility. The Federal Software
Management Support Center. In the context of
this report, the AVF is responsible for
conducting compiler validations according to
established policies and procedures.

AVO The Ada Validation Organization. In the
content of this report, the AVO is responsible
for setting policies and procedures for
compiler validations.

Compiler A processor for the Ada language. In the
context of this report, a compiler is any
language processor, including cross-compilers,
translators, and interpreters.

Failed test A test for which the compiler generates a
result that demonstrates nonconformance to the
Ada Standard.

Host The computer on which the compiler resides.

1-3

V.dmp

Inapplicable A test that uses features of the language that
a test compiler is not required to support or
may legitimately support in a way other than
the one expected by the test.

Passed test A test for which a compiler generates the
expected result.

Target The computer for which a compiler generates
code.

Test A program that evaluates the conformance of a
compiler to a language specification. In the
context of this report, the term is used to
designate a single ACVC test. The text of a
program may be the text of one or more
compilations

Withdrawn A test which has been found to be inaccurate in
test checking conformance to the Ada language

specification. A withdrawn test has an invalid
test objective, fails to meet its test
objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A FIPS PUB 119 is measured
using the Ada Compiler Validation Capability (ACVC). The ACVC
contains both legal and illegal Ada program structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Legal programs
are compiled, linked, and executed while illegal programs are
only compiled. Special program units are used to report the
results of the legal programs.

Class A tests check that legal Ada programs can be successfully
compiled and executed. (However, no checks are performed
during execution to see if the test objective has been met.)
For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada
compiler. A Class A test is passed if no errors are detected
at compile time and the program executes to produce a message
indicating that it has passed.

1-4

- -- . *% V %

Class B tests check that a compiler detects illegal language
usage. Class B tests are not executable. Each test in this
class is compiled and the resulting compilation listing is
examined to verify that every syntactical or semantic error in
the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and
produces a PASSED, FAILED, or NON-APPLICABLE message indicating
the result when it is executed.

Class D tests check the compilation and execution capacities of
a compiler. Since there are no requirements placed on a
compiler by the Ada Standard for some parameters (e.g., the
number of identifiers permitted in a compilation, the number of
units in a library, and the number of nested loops in a
subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class
D test fails to compile because the capacity of the compiler is
exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a
PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a
NOT-APPLICABLE, PASSED or FAILED message when it is compiled
and executed. However, the Ada standard permits an
implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a
Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs
involving multiple, separately compiled units are detected and
not allowed to execute. Class L tests are compiled separately
and execution is attempted. A Class L test passes if it is
rejected at link time--that is, an attempt to execute the main
program must generate an error message before any declarations
in the main program or any units referenced by the main program
are elaborated.

Two library units, the package REPORT and the procedure CHECK-
FILE, support the self-checking features of the executable
tests. The package REPORT provides the mechanism by which
executable tests report results. It also provides a set of
identity functions used to detect some compiler optimization
strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The
procedure CHECK_FILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of
the Ada Standard.

1-5

The operation of these units is checked by a met of executable
test. These tests produce messages that are examined to verify
that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

Some of the conventions followed in the ACVC are intended to
ensure that the tests are reasonably portable without
modification. For example, the tests make use of only the
basic set of 55 characters, contain lines with a maximum length
of 72 characters, use small numeric values, and place features
that may not be supported by all implementations in separate
tests. However, some tests contain values that require the
test to be customized according to implementation-specific
values. The values used for this validation are listed in
Appendix C.

A compiler must correctly process each of the tests in the
suite and demonstrate conformance to the Ada Standard by either
meeting the pass criteria given for the test or by showing that
the test is inapplicable to the implementation. Any test that
was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and
therefore, is not used in testing a compiler. The
nonconformant tests are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was
tested under the following configuration:

Compiler: GCOS-8 V2.0

Test Suite: Ada Compiler Validation Capability, Version
1.8

Host Computer:

Machine(s): DPS 90

Operating Systems: SR2500 V.25003

SR3000 V.30002

Memory Size: 32 mega-words

Target Computer:

Machine(s): DPS 90

Operating System SR2500 V.25003
SR3000 V.30002

Memory Size: 32 mega-words

Communications Network:

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Base Configuration:

Compiler: GCOS-8 V2.0

Test Suite: Ada Compiler Validation Capability, Version
1.8

Completion Date: 3 April 1987

Host Computer:

Machine(s): DPS 90

Operating System: SR2500 V.25003
SR3000 V.30002

Target Computer:

Machine(s): DPS 90

Operating System: SR2500 V.25003
SR3000 V.30002

2-2

iI

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
permit implementation to differ. Class D and E tests
specifically check for such implementation differences.
However, tests in other classes also characterize an
implementation. This compiler is characterized by the
following interpretations of the Ada Standard:

• Nongraphic characters.

Nongraphic characters are defined in the ASCII
character set but are not permitted in Ada programs,
even within character strings. The compiler
correctly recognizes these characters as illegal in
Ada compilations. The characters are not printed in
the output listing. (See test B26005A.)

Capacities.

The compiler correctly processes compilations
containing loop statements nested to 65 levels,
block statements nested to 65 levels, procedures
nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same
declarative part. (See tests D55A03A..H, D56001B,
D64005E..G, D29002K)

CONFIGURATION INFORMATION

Universal integer calculations.

An implementation is allowed to reject universal
integer calculations having values that exceed
SYSTEM.MAX INT. This implementation does not reject
such calculations and processes them correctly.
(See tests D4AO02A, D4A002B, D4AO04A, and D4AO04B.)

Universal real calculations.

When rounding to interger is used in a static
universal real expression, the value appears to be
rounded away from zero. (See test C4AO14A.)

2-3

* Predefined types.

This implementation supports the additional
predefined types LONGINTEGER, LONGFLAT in the
package STANDARD. (See test C34001D, C34001G.)

*-'Based literals.

An implementation is allowed to reject a based
literal with a value exceeding SYSTEM.MAXINT during
compilation, or it may raise NUMERIC_ERROR during
execution. This implementation raises NUMERIC_
ERROR during execution. (See test E24101A.)

* -Array types.

An implementation is allowed to raise NUMERIC_ERROR
for an array having a 'LENGTH that exceeds
STANDARD. INTEGER' LAST and/or SYSTEM. MAX.INT.

A packed BOOLEAN array having a 'LENGTH exceeding
INTEGERILAST raises NUMERIC_ERROR when the array
objects are declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more
than INTEGER'LAST components raises NUMERICERROR
when the array type is declared. (See test
C52104Y.)

2-4

A null array with one dimension of length greater
than INTEGERILAST may raise NUMERIC_ERROR either
when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERIC_ERROR when the array
type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire
expression appears to be evaluated before CONSTRAINT_
ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. In assigning two-dimensional array types,
the entire expression does not appear to be
evaluated before CONSTRAINT_ERROR is raised when
checking whether the expression's subtype is
compatible with the target's subtype. (See test
C52013A.)

Discriminated types.

During compilation, an implementation is allowed to
either accept or reject an incomplete type with
discriminants that is used in an access type
definition with a compatible discriminate
constraint. This implementation accepts such
subtype indications during compilation. (See test
E38104A.)

In assigning record types with discriminants, the
entire expression appears to be evaluated before
CONSTRAINT_ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate,
all choices appear to be evaluated before checking
against the index subtype. (See tests C43207A and
C43207B.)

2-5

In the evaluation of an aggregate containing
subaggregates, all choices are evaluated before
being checked for identical bounds. (See test
E43212B.)

All choices are evaluated before CONSTRAINT_ERROR is
raised if a bound in a nonnull range of a nonnull
aggregate does not belong to an index subtype. (See
test E43211B.)

CONFIGURATION INFORMATION

Functions.

The declaration of a parameterless function with the
same profile as an enumeration literal in the same
immediate scope is rejected by the implementation.
(See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation
to support representation clauses. If a
representation clause is not supported, then the
implementation must reject it. While the operation
of representation clauses in not checked by Version
1.8 of the ACVC, they are used in testing other
language features. Testing indicates that size
specifications are supported, that specification of
storage for a task activation is supported, and that
specification of SMALL for a fixed point type is
supported. Enumeration representation clauses
including those that specify noncontiguous values
appear to be supported. (See tests C55B16A,
C87B62A, C87B62B, C87B62C, and BCI002A.)

Generics.

When given a separately compiled generic unit
specification, some illegal instantiations, and a
body, the compiler rejects the body because of the
instantiations. (See tests BC3204C and BC3204D.)

Pragmas.

The pragma INLINE is supported for procedures.
The pragma INLINE is supported for functions.
(See tests CA3004E and CA3004F.)

2-6

Input/output.

The package SEQUENTIAL_1O can be instantiated with
unconstrained array types and record types with
discriminants.
The package DIRECT_10 can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests CE2201D,
CE2201E, and CE2401D.)

More than one internal file can be associated with
each external file for SEQUENTIAL_1O for reading
only. (See tests CE2107A..F.)

More than one internal file can be associated with
each external file for DIRECT_IO for reading only.
(See tests CE2107A..F.)

An external file associated with more than one
internal file can be deleted. (See test CE2110B.)

More than one internal file can be associated with
each external file for text I/O for reading only.
(See tests CE3111A..E.)

Dynamic creation and resetting of a sequential file
is allowed. (See test CE2210A.)

Temporary sequential files are given a name.
Temporary direct files are given a name.
Temporary files given names are not deleted when
they are closed, but are not accessible after the
completion of the main program. (See test CE2108A.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The Software Standards Validation Group identified 2229 of the
2399 tests in Version 1.8 of the Ada Compiler Validation
Capability as potentially applicable to the validation of
GCOS-8 V2.0. Excluded were 5 tests with source lines that
were too long; 146 tests requiring floating point precision
greater than that supported by the implementation; and the 19
withdrawn tests. After they were processed 27 tests were
determined to be inapplicable. The remaining 2202 tests were
passed by the compiler.

The Software Standards Validation Group concludes that the
testing results demonstrate acceptable conformance to the Ada
Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

a I C D z

Passed 69 867 1190 17 13 46 2202

Failed 0 0 0 0 0 0 0

N/A 0 0 178 0 0 0 178

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

.3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT

2 3 4 5 6 7 8 9 10 11 12 14 Total

Passed 99 262 346 246 161 97 139 261 128 32 218 213 2202

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

N/A 17 63 74 1 0 0 0 1 2 0 0 20 178

W/D 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version
1.8:

C32114A B37401A B49006A C92005A
B33203C C41404A B4A010C C940ACA
C34018A B45116A B74101B CA3005A..D
C35904A C48008A C87B50A BC3204C

See Appendix D for the rationale for withdrawing these tests.

3-2

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use
of features that a compiler is not required by the Ada Standard
to support. Others may depend on the result of another test
that is either inapplicable or withdrawn. For this validation
attempt, 178 tests were inapplicable for the reasons
indicated:

" C96005B - there are no out-of-range values for
type DURATION

• CE2401D - Rejected because record sizes greater
than (2**18)-l is not supported.

- The following are inapplicable because multiple
internal files may not access the same external
or temporary file.

CE2107A, CE2107B, CE2107C, CE2107D, CE2107E,
CE2110B, CE2111D, CE2111H, CE3111A..CE3111E,
CE2114B, CE3115A

CE2107F - two internal files may not be associated
with the same external file for reading.

CE2108A, CE2108C, CE3112A - temporary files have
no names.

C24113I..C24113M - literals exceeded the
limit of 126 characters

C34001F, C35702A -
SHORT_FLOAT is not supported

C34001D, C55B07B - compiled but not executed
because SHORT_INTEGER is not
supported.

CA2009C, CA2009F - these tests have generic bodies
that are not in the same
compliation as the generic
specification.

3-3

*These tests are inapplicable because SYSTEM.MAX_
DIGITS - 17; these tests require a greater
(floating point) precision:

*C24113N..C24113Y - (12 tests)
*C35705N..C35705Y - (12 tests)
" C35706N..C35706Y - (12 tests)
" C35707N..C35707Y - (12 tests)
" C35708N..C35708Y - (12 tests)
" C35802N..C35802Y - (12 tests)
" C45241N..C45241Y - (12 tests)
" C45321N..C45321Y - (12 tests)
" C45421N..C45421Y - (12 tests)
" C45424N..C45424Y - (12 tests)
" C45521N..C45521Z - (13 tests)
* C45621N..C45621Z - (13 tests)

3-4

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a
Class B test because of compiler error recovery, then the test
is split into a set of smaller tests that contain the
undetected errors. There were 54 split tests required for this
implementation. They are has follows:

B22003A B29001A B2AO03A B33301A B35101A B37301B

B37302A B51001A B53009A B54AOlC B55A01A B61001C
B61001D B61001F B61001H B610011 B61001M B61001S
B61001W B67001A B67001C B67001D B91001A B91002A
B91002B B91002C B91002D B91002E B91002F B91002G
B91002H B91002I B91002J B91002K B91002L B95030A
B95061A B95061F B95061G B95077A B97102A B97103E
B97104G BA1101BOM BAII01BI BA1101B2 BA1101B3
BAll01B4 BC1014A BC10AEB BC1202A BC1202B BC1202E
BC1202F

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, sets of test results for ACVC Version 1.8
produced by GCOS-8 V2.0 were submitted to the Software
Standards Validation Group by the applicant for pre-validation
review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests.

The specific configurations submitted for the pre-validation
review were as follows:

-,,..HostTarget

DPS 90 SR2500 V.25003 DPS 90 SR2500 V.25003

The DPS 90 results were analyzed and found to be in accordance
with the Ada standard.

3-5

3.7.2 Test Method

A test magnetic tape containing ACVC Version 1.8 was taken
on-site by the validation team. This magnetic tape contained
all tests applicable to this validation as well as all tests
inapplicable to this validation except for any Class C tests
that require floating-point precision exceeding the maximum
value supported by the implementation. Tests that were
withdrawn from ACVC Version 1.8 were not run. Tests that make
use of values that are specific to an implementation were
customized before being written to the magnetic tape.

The test tape was written in ANSI standard format and was
loaded to disk using Honeywell Corp. utility routines.

Once all tests had been loaded to disk, processing was begun
using command scripts provided by Honeywell Information
Systems

The validation was executed in batch control mode with the
files organized by chapter and class to allow the tests to be
run independently and in parallel.

The prevalidation results were verified on-site. The various
tests results from the prevalidation execution were captured on
disk and used to compare against the on-site results using a
utility comparing routine.

The following configurations were tested on-site:

Host On.S1_ vs.J_ Target Op_ Sys.

DPS 90 SR2500 V.25003 DPS 90 SR2500 V.25003
SR3000 V.30002 SR3000 V.30002

3-6

111Jl 1 1i

3.7.3 Test Site

The validation team arrived at Phoenix, M on 30 March 1987
and departed after testing vasn completed on 3 April 1987.

3-7

APPENDIX A

COMPLIANCE STATENM

Honeywell Information Systems
has submitted the following

compliance statement concerning the
GCOS-8.

A-1

Compliance Statement

Base Configuration:

- Compiler: GCOS 8 Ada Compiler Version 2.0

Test Suite: Ada Compiler Validation Capability# Version 1.8

Host Computer:

Machine: DPS 90

Operating System: GODS 8
Version SR2500
Version SR3000

Target Computer:

Machine: DPS 90

Operating System: GCOS 8
Version SR2500
Version SR3000

Honeywell Information Systems, Large Computer Products Division has
made no deliberate extensions to the Ada language Standard.

Honeywell Information Systems, Large Computer Products Division
agrees to the public disclosure of this report.

Honeywell Information Systems, Large Computer Products Division
agrees to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office.

4C~~d -. Date: i-'2 -7

Honeywell Information Systems, Large Computer Products Division
J. R. Wilson
Manager, Advanced Compiler Development

.

APPENDIX B

III. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX *F

T~ABLE Or COM1ETS

1. -IMPLEMENTATION-DEPENDENT PRAGMAB

2. IMPLEMENTATION-DEPENDENT ATTRIBUTES

3. PACKAGE SYSTEM

4. REPRESENTATION CLAUSES

5. IMPLEMENTATION-DEPENDENT NAMES

6. ADDRESS CLAUSES

7. UNCHECKED CONVERSIONS

8. INPUT-OUTPUT

8.1 introduction

8.1.1 Declaration of Sequential...I

8.2.2 Declaration of Direct_.IO

8.1.3 Declaration of Text..IO

8.1.4 Declaration of Lov.LevelIO

8.2 Clarifications of Ada Input-Output Requirements

8.3 Basic File Mapping

8.3.1 Sequential-1O

8.3.2 Direct-.IO

8.3.3 Tet...I

8.4 FORM Parameter

9. PACKAGE STANDARD

10. FILE NAMES

III. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX OF0

1. IMPLEMENTATION-DEPENDENT PRAGMAS

No Implementation dependent pragmas are supported by the GCOS-8 Ada
Compiler.

2. IMPLEMENTATION-DEPENDENT ATTRIBUTES

No implementation dependent attributes 'are supported by the GCOS-8 Ada
Compiler.

3. PACKAGE SYSTEM

The specification for package SYSTEM:

Package SYSTEM is

Type ADDRESS is access INTEGER;
Type NAME is (DPS8, DPS88, DPS90);
SYSTEM-NAME : Constant NAME :- DPS8;

STORAGE-UNIT : Constant :- 36;
MEMORY-SIZE : Constant :a 256*1024;

MINLINT a--2-361-183-241-434-822-606-848;
MAXINT a- 2-361-183_241_434-822_606_847;
MAX-DIGITS := 17;
MAXMANTISSA :- 71;

* FINEDELTA a- 2.0 ** (-70);
TICK :- 0.000016;

Subtype PRIORITY is INTEGER range l..15;

end SYSTEM;

4. REPRESENTATION CLAUSES

No representation clauses may be given for a derived type. Representation
clauses for non-derived types are accepted ds follows:

LEn CLAUSB

The compiler accepts only a length clause that specifies the number of
storage units to be reserved for a collection.

ZNIMEBTION RE SENTATZON CLUM

Enumeration representation clauses may specify representations only in the
range of the predefined type INTEGER.

REQD B.EBZBThCIQN CLAM

A component clause is allowed if and only if:

III. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX uFe

- The component type is a discrete type different from LONG INTEGER.

- The component type is an array type with a discrete element typ
different from LONG_.INTEGER.

No component clause is allowed if the component type is not covered by th
above two inclusions. If the record type contains components not covereby a component clause, they are allocated consecutively after the comp
nent with the highest *AT" value. Allocation of a record component withou
a component clause is always aligned on a word storage unit boundary
Holes created by component clauses are not otherwise used by the compiler

5. IMPLEMENTATION-DEPENDENT
NAMES

No implementation dependent names denoting implementation dependent comp
nents are supported.

6. ADDRESS CLAUSES

Address Clauses are not supported.

7. UNCHECKED CONVERSION

Unchecked conversion is only allowed between values of the same Osize". I1
this context, the "size" of an array is equal to that of two access valuel
and the usize" of a packed array is equal to that of two access values ani
one integer value. This is the only restriction imposed on uncheckei
conversion.

8. INPUT-OUTPUT

8.1 Introduction

This chapter describes the implementation of Ada Input-Output for
the Honeywell Ada Compiler for GCOS 8. The implementation supports
all requirements of the Ada language and is an effective interface
to the GCOS 8 file system.

This chapter covers three topics. Section 8.2 discusses the require-
ments of Ada Input-Output systems given in the language definition
and provides answers to issues not precisely described in the
language definition.

Section 8.3 describes the relation between Ada files and GCOS 8
external files.

Section 8.4 details the implementation dependent FORM parameter of

the OPEN and CREATE procedures.

The reader should be familiar with the following documents:

IMIL-STD-2815A-1983] Reference Manual for the Ada programming

*' :;cnt

III. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX "F

Lang uage

IDH101 DPS8 GCOS8 File Management Supervisor

IDH231 GCOS8 I/O Programming

III. IMPLEMENTATION DEPENDENCIES
-IBM APPENDIX IF"

8.1.1 Declaration of Sequentia....I

generic

type ELEMENT-..TYPE is private;

package SEQUENTIAL.IO is

type FILE-.TYPE is limited private;
type FILE-MODE is(INLFILE, OUT..FILE);

procedure CREATE(FILE 2in out FILE..TYPE;
MODE 2in FILEMODE :OUT-P.ILE;
NAME 2in STRING as
FORM 2in STRING :

procedure OPEN (FILE :in out FILE_.TYPE;
MODE 2in FILE-MODE;
NAME 2In STRING;
FORM 2 in STRING -U)

procedure CLOSE(FILE : in out FILE-.TYPE);

procedure DELETE(FILE s in out FILL.TYPE);

procedure RESET(FILE 2 in out FILE-TYPE; MODE :in FILE-MODE);-

procedure RESET(FILE : in out FILTYPE);

function MODE (FILE : in FILE..TYPE) return FILE-..MODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORK (FILE 2 in FILE_.TYPE) return STRING;

function IS-OPEN(FILE in FILZ..TYPE) return BOOLEAN;

procedure READ (FILE 2 in FILE_.TYPE; ITEM : out ELEMENT..TYPE);

procedure WRITE(FILE 2 in FILE_.TYPE; ITEM : in ELEMENTTYPE);

function END-.OF...ILE(FILE t in FILE-.TYPE) return BOOLEAN;

private
type FILE..TYPZ is new basic-io.fie..type; end SEQUENTIAIIO;

III. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX "F"

8.1.2 Declaration of Direct-O

geneiic

type ELEMENTTYPE is private;

package DIRECT-IO is

type FILE-TYPE is limited private;
type FILEMODE is(INFILE, INOUTFILE, OUTFILE);
type COUNT is range O..INTEGERILAST;
subtype POSITIVE-COUNT is COUNT range I..COUNT'LAST;

procedure CREATE(FILE : in out FILETYPEI
MODE : in FILE-MODE :- INOUTFILE;
NAME s in STRING an mu
FORM : in STRING :-

procedure OPEN (FILE : in out FILETYPE;
MODE : in FILE-MODE;
NAME : in STRING;
FORM : in STRING :- "):

procedure CLOSE(FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILE_TYPE):

procedure RESET(FILE : in out FILETYPE; MODE : in FILEMODE);

procedure RESET (FILE : in out FILE-TYPE) I

function MODE (FILE : in FILE-TYPE) return FILE-MODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

procedure READ (FILE : in FILETYPE; ITEM : out ELEMENTTYPE;
FROM s in POSITIVECOUNT);

procedure READ (FILE : in FILETYPE; ITEM t out ELEMENTTYPE):

procedure WRITE(FILE : in FILE-TYPE; ITEM : in ELEMENTTYPE;
TO i in POSITIVEOUNT)i

procedure WRITE(FILE : in FILE_TYPE; ITEM : in ELEMENTTYPE):

procedure SETINDEX(FILE s in FILE-TYPE; TO : in POSITIVELCOUNT);

function INDEX(FILE : in FILETYPE) return POSITIVE_COUNT;

function SIZE(FILE t in FILILTYPE) return COUNT;

Ill. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX "P

function END-.OF..ILE(FILE : in FILE..TYPE) return BOOL4EAN;

private
type FILE-..TYPE is new basic-.io.file-.type; end DIRECT-I.10

III. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX *F

8.2.3 Declaration of Tezt..IO

package TEXT...IO is

type FILE-.TYPE is limited private;
type FILE-MODE is (IN-FILEv OUT-.FXLE);
type £DUNT is range 0 .. integer'last;
subtype POSITIVE_.COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:- 01 -- line and page length
subtype FIELD is INTEGER range 0 .. 75;

-max. size of an integer output field

subtype NUMBER,.BASE is INTEGER range 2 .. 16;
type TYPE-SET is (LOERCASEr UPPERLCASE);

-- File Management

procedure CREATE(FILE :in out FILE..TYPE;
MODE :in FILE-.MODE :-OUTFILE;
NAME :in STRING go ;
FORM :in STRING :

procedure OPEN(FILE 2in out FILE-..TYPE;
MODE : in FILE-.MODE;
NAME : in STRING;
FORM : in STRING :

procedure CLOSECFILE : in out FILE-.TYPE);
procedure DELETB(FILE i in out FILL-TYPE);
procedure RESET(FILE : in out FILE-.TYPE; MODE ain FILEMODE);
procedure RESET(FILE s in out FILLTYPE);

function MODE (FILE s in FILETYPE) return FILE..MODE;
function NAME(FILE a in FILE-TYPE) return STRING;
function FORM (FILE % In FILE-.TYPE) return STRING;

function IS...OPEN(FILE ain FILE-.TYPE) return BOOLEAN;

-- Control of default input and output files

procedure SETINPUT (VILE i In FILE-.TYPE)i
procedure SET_.OUTPUT(FILE a In FILE-TYPE)i

function STANDARD-.INPUT return FILEL.TYME
function STANDAflD_.OUTPUT return FILL-TYPE;

funct ion CURRENT_.INPUT return FILE.-TYPE;
function CURRBNT_.OUTPUT return FILL-TTPE;

-specification of line and page lengths

III. IMPLEMENTATION DEPENDENCIES
-LR APPENDIX *F8

procedure SETLINELENGTH(FILE : in FILE-TYPE; TO : in COUNT);
procedure SETLINELENGTH(TO : in COUNT);

procedure SET_PAGELENGTH(FILE : in FILE_TYPE; TO 2 in COUNT);
procedure SET_PAGELENGTH(TO : in COUNT);

function LINELENGTH(FILE s in FILE-TYPE) return COUNT;
function LINELENGTH return COUNT;

function PAGELENGTH(FILE s in FILETYPE) return COUNT;
function PAGELENGTH return COUNT;

aj. -- Column, Line, and Page Control

procedure NEWLINE(FILE : in FILETYPE; SPACING : in
POSITIVE-COUNT :- 1);

procedure NEWLINE(SPACING : in
POSITIVE-COUNT - 1);

procedure SKIPLINE(FILE : in FILE-TYPE; SPACING : in
POSITIVECOUNT :- 1);

procedure SKIPLINE(SPACING : in
POSITIVECOUNT :- 1);

function ENDOFLINE(FILE : in FILE-TYPE) return BOOLEAN;
function ENDOFLINE return BOOLEAN;

procedure NEW_PAGE(FILE : in FILETYPE);
procedure NEW-PAGE

procedure SKIPPAGE(FILE : in FILETYPE);
procedure SKIP-PAGE

function ENDOF_ PAGE(FILE : in FILE-TYPE) return BOOLEAN;
function ENDOFPAGE return BOOLEAN;

function ENDOFFILE(FILE : in FILETYPE) return BOOLEAN;
function ENDOF_FILE return BOOLEAN;

procedure SETCOL(FILE 2 in FILETYPE; TO : in POSITIVECOUNT);
procedure SETCOL(TO : in POSITIVECOUNT);

.,

-i procedure SETLINE(FILE : in FILE-TYPE; TO : in POSITIVECOUNT)l
procedure SET-LINE(TO 2 in POSITIVECOUNT);

function COL(FILE s in FILETYPE) return POSITIVECOUNT;
function COL return POSITIVE-COUNT;

function LINE(FILE t in FILETYPE) return POSITIVECOUNT;
function LINE return POSITIVECOUNT;

function PAGE(FILE : in FILETYPE) return POSITIVECOUNT;

III. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX OFN

function PAGE return POSITIVECOUNT;

-- Character Input-Output

procedure GET(FILE.: in FILE-TYPE; ITEM : out CHARACTER)
procedure GET(ITEM : out CHARACTER);
procedure PUT(FILE : in FILE-TYPE; ITEM : in CHARACTER);
procedure PUT(ITEM : in CHARACTER);

-- String Input-Output

procedure GET(FILE : in FILE-TYPE; ITEM : out STRING);
procedure GET(ITEM : out STRING):
procedure PUT(FILE : in FILE-TYPE; ITEM : in STRING);
procedure PUT(ITEM : in STRING):

procedure GETLINE(FILE 2 in FILETYPE: ITEM z out STRING:
LAST : out NATURAL):

procedure GETLINE(ITEM : out STRING;
LAST : out NATURAL):

procedure PUTLINE(FILE : in FILE-TYPE; ITEM : in STRING);
procedure PUTLINE(ITEM 2 in STRING):

-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGER-IO is

procedure GET(FILE : in FILETYPE; ITEM : out NUM;
WIDTH 2 in FIELD :- 0)

procedure GET(ITEM s out NUM;
WIDTH 2 in FIELD :- 0):

procedure PUT(FILE 2 in FILE-TYPE;
ITEM 2 in NUMi
WIDTH 2 in FIELD :- 10i
BASE 2 in NUMBER-BASE :- 10):

DEFAULT-WIDTH 2 FIELD :m NUM'WIDTH:
DEFAULTBASE : NUMBER-BASE 1- 10:

procedure PUT(ITEM in NUM
WIDTH 2 in FIELD t- DEFAULTWIDTH;
BASE s in NUMBERBASE :- DEFAULTBASE):

procedure GET(FROK t in STRING: ITEM 2 out NUM: LAST : out POSITIVE)
procedure PUT(TO t out STRING:

ITEM s In NUM:
BASE t in NUMBERBASE s- DEFAULTBASE)

III* IMPLEMENTATION DEPENDENCIES
-LRN APPENDIX OV

end INTEGER....I;

-- Generic Packages for Input-Output of Real Types

generic

type NUN Is digits <>; package FLOATIO is

procedure GET(FILE s in FILE-.TYPEI ITEM : out NUNJ WIDTH
: in FIELD :-0)

procedure GET(ITEM 3 out NUN;I WIDTH
: in FIELD so 0);

DEFAULTFORE : FIELD to 2
DEFAULT-.AFT : FIELD :- NUM'DIGITS - li
DEFAULT-.EXP : FIELD so3

procedure PUTCFILE : in FILE..TYPE;
ITEM : i n NUN;
FORE a in FIELD a-DEFAULT-PORE;
AFT s in FIELD a-DEFAULT_.AFTJ
EXP : in FIELD t- DEFAULTEXP)l

procedure PUT(ITEN s in NUN:
FORE : in FIELD so DEFAULT-..OREi
AFT : in FIELD t- DEFAULT-AFT;
EXP : in FIELD := DEFAULT..EP)g

procedure GET(FROK : in STRING; 172H 3 Out NUN; LAST :out POSITIVE):
procedure PUT(TO s out STRING;

122H I in NUN;
AFT s in FIELD :- DEFAULT-.AFT;
EXP iin FIELD so DEFAULTEIXP):

end FLOAT-.IO;

ge neric

type NUN is delta 0Ig package FIXED_..I is

procedure GET(FILE i in FILETYPE, ITEM 3 out NUM; WIDTH
aIn FIELD s- 0);
procedure GETC ITEM I Out NUN; WIDTH

a In FIELD so 0)1

DEFAULT..FORE a FIELD so NrM FORE:
DEFAULT-^.FT i FIELD so MNAFT:o
DEFAULT...UP 3 FIELD is 0;

procedure PUT(FILU a In FILILTYPR:
ITEM I In NMI:
FORE i In FIILD is DEFAULT-.FORti

III. IMPLEMENTATION DEPENDENCIES
-LRK APPENDIX FT

AFf S In FIELD :mDEFALT..AFT;
EXP s in FIELD 2DEFAULT-.EXP);

procedure PUT(ITEN I in NUN;
FORE : in FIELD a-DEFAULT..FOREi
AFT : in FIELD a-DEFAULT_.AFT;
EXP : In FIELD a-DEFAULT-EXP) i

procedure GET(FIVM : in STRING1 ITEM : out NUM; LAST aOut POSITIVE)l
procedure PUT(TO 2 out STRING;

ITEM : in NUM;
AFT : in FIELD aDEFAULT..AFT;
SIP : in FIELD a-DEFAULT..EXP);

and FIXED-IO;

-Generic Package for Input-Output of Enumeration Types

generic
type SWUM is(<>); package ENUMERATION-10O is

DEFAULT-..WIDTH 2 FIELD :a 0;
DEFAULT-.SETTING : TYPE-.SET :a UPPERSCASE;

procedure GETCFILS in FILE-,TYPE; ITEM : Out ENUM)
procedure GET(ITEM : out EWUM);

procedure PUT (FILE Uin FILE-.TYPE;
ITEM iin SWUM;
WIDTH ain FIELD UnDEFAULT-.WIDTH;

SET iin TYPL.SET 2*DEFAULT..SETTING)i

procedure PUT(ITSM ain ENUMI
WIDTH ain FIELD a-DEFAULT-.WIDTH;
SET ain TYPLSET a-DEFAULT..SETTING);

procedure GET(FRCM a In STRING; ITEM i out ENUM; LAST : out POSITIVE)l
procedure PUT (TO i out STRINGi

ITEM : In ENMjl
SIT : in TYPESET :- DEFAULT-.SETTING);

end VMERATIONIO;1

private

type eofstate-.type is (*of..not-seenv *ofahead)y

type file-block Is record
commnaa basic..io.file..tYPel

mode 2 file-mode;
maz.linejlengtb t natural;
aazpage..lengtb a natural;

gm. ;2k" le

III. IMPLEMENTATION DEPENDENCIES
-LEG! APPENDIX FV

currli@ : natur4lg
cur r..page z naturall
curr~line..is-end_page : boolean;
lineterminator..jndilg : boolean;
line..size..pending : integerl
page..terminator..pending : boolean;
eof...tate : eof-state.type;

end record;

type file-type in access file-block;

end TEXTIjO

M 1111,11 rill

III. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX F'

8.1.4 Declaration of Lov...LeveIO

Low Level input-.output is not provided.

II. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX "Fe

8.2 Clarifications of Ada Input-Output Requirements

The - Ada Input-Output specification# chapter 14 of
(MIL-STD-1815A-1983], provides a number of implementation dependent
choices to develop a complete functional specification of the Input-
Output packages. These implementation choices are presented below
following reference to the appropriate paragraph in the language
reference manual [MIL-STD-1815A-1983J.

Paragraph Clarification

14.1(1) An external file is
a GFRC system standard file with media code 6 records
(can be terminal directed).

14.1(7) Named external files will continue to exist at the
completion of the main program. Files which have not been
closed in an Ada program will be closed by the
implementation.

14.1(13) Two internal Ada files may not be connected to the same
GCOS external file.

14.2.1(3) The name parameter, when non-null, must be a valid GCOS
pathname. A permanent file will be created as specified
by the pathname. When the name parameter is null,
temporary file space will be allocated for the Ada file.

14.2.1(13) Deletion of a file can occur only when the USERID of the
Ada job is either the originator of the file or has
MODIFY permissions to that file.

14.2.1(15) For a sequential or text file, a RESET operation to

OUTFILE mode empties the file of elements.

14.6 The package LOW-LEVEL-1O is empty.

8.3 Basic File Mapping

The relation between Ada files and GCOS 8 files is discussed in
this section. The default external characteristics can be modified
by the FORM parameter of the OPEN and CREATE operations as
discussed in Section 8.4.

8.3.1 Sequentia-lO

An Ada sequential file is mapped to a GFRC System Standard
sequential file. An element, which cannot be greater than
2*el8- bytes, Is mapped to a control interval on the
external file.

8.3.2 Direct.O

111. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX IF"

An Ada direct file is mapped to a GFRC System Standard file.

8.3.3 Text_IO

Lines of text are mapped into records on an external file.

For output, the following rule. apply.

The Ada line terminators and file terminators are never
explicitly stored. Page terminators, except the last, are
mapped into a Oformfeed" character trailing the last line of
the page. (In particular, an empty page (except the last) is
mapped into a single record containing only a Oformfeed"
character). The last page terminator in a file is never
represented in the external file. It is not possible to write
records containing more than 512 characters. That is, the
maximum line length is 511 or 512, depending on whether a
page terminator (Oformfeed* character) must be written or
not. Input of more than 512 characters in a record will raise
a USE-ERROR exception.

On input, a "formfeed' trailing a record indicates that the
record contains the last line of a page and that at least one
more page exists. The physical end of file indicates the end
of the last page.

Text-IO files are represented externally as GFRC files in
system standard format containing variable length ASCII
records (media code 6).

Text_1, standard-input is named SYSINO and is read from file
code 61*8. STANDARD-OUTPUT is named OSYSPRINTO and is written
to file code P*8. Both are directed to a terminal when the
Ada program is run with program switch word bit 19 set to
indicate an interactive program. The Oconnect to slave" name
is the SNUMB of the Ada program.

8.4 FORK Parameter

The FORM string parameter supplied with an OPEN or CREATE procedure
enables control over external file properties. The current implementa-
tion makes no semantic checks on the content of the FORM string and 20
does not prohibit Illogical settings of external properties of files.

The syntax of the FORM parameter is as follovas

formparameter s-s (space) [paran(spce param)]
param g- - keyword space value
keyvord $in letter (letter)
letter t-in AIDI...Ia Ibi... Ix
value it- numberilltter(letter)
numbr 0111 0Jl...It

III. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX NFo

Notes:

o Letters may be in upper or lower case
o Numbers must be positive decimal integers
o Keywords and values are derived directly from the $ FFILE" parameters
listed in the General Loader Manual (DD10)

9. PACKAGE STANDARD

The implementation dependent predefined types defined
in package STANDARD are described in the GCOS 8 Ada
User Manual (order number DY76) qn pages 4-2 thru 4-4.
Copies of this information are inserted here.

10. FILE NAMES

File names follow the conventions and restrictions of
the GCOS 8 operating system with the following
qualifications. A file name and its superordinate
catalog names are separated by slashes (0/0). Names
consist of 1 to 12 characters composed of letters,
digits, periods, underscores and hyphens. A maximum
limit of 10 levels of qualification is allowed. A file
name alone signifies that the file is directly below
the current user master catalog. Use of passwords is
not supported.

PREDWINIM TTPIS

This Subsection discusses the W plaewtaton-d*pendent predefined types
declared In the predefined package 3TAIOA (Ada Reference Manual, Appendix C)
and tte relevant attributes ot these types.

o DOOLEAN types are Imlemented as described In the Ada Reference Manual.

o Type CUARACTER Is rpresented In me word.

e Type STRINO Is represented as ene charanter pe byte. ay string
comparisons use unsigned eope.re Instutions.

lnteser Types

Two predetined Integer types am lleUted: WWUiNT , sad LONG INTEGER, in

addition to the anonyous predefined type UUV 1rXSLIlZn .

They have the following attributest

InMRIFI 7 -34 3S9 T3 366
I"T 'LAS a 34159"113>

10ING ZR'VIUT IT 4 5 6 e aas 0
WNo INT&UtoIzIa -2 361 13 f21 i34 822 606 $8

-- LONG-ITU N 6-1-183-

suIn$i Ow w CUM.4 M6-4 0

Va

Variables of type INTEGER are represented by a single word. Operatiops onCINTEGER variables use 36-bit two'a complement arithmetic.

Type LONG INTEGER Is represented by a double word value. Operations on LONG
INTEGER ue 72-bit two's complement arithmetic.

Floating-Point Types

Two predefined floating-point types are implementod, FLOAT and LONG FLOAT, in
addition to the anonymous predefined type UNIVERSAL REAL.

" Type FLOAT Is represented by the 36-bit hardwre hexadecimal
floating-point format.

o Type LONG FLOAT uses the 72-bit hardware, hexadecimal floating-point
format. Trhis Is similar to the 36-bit format, except that It has a
63-bit mantissa.

The floating-point types have the following attributes:

FLOAT'DIGITS a 6
FLOAT'FIRST z -1610.11128
FLOATILAST a 16E0.FFFFFFEOZE27
FLOAT'IACHINE IAX a 127

FLOAT'MACKINE D4IN a -128
FLOAT'KACHINE-kANTISSA a 6
FLOATIMACUNEOVE RFLOWS a THUE
FLOAT I4ACILIN7RADI a 16
FLOAT'MAClINE-IONDS a TRUE
FLOAT'SAFE DO a 508
FLOAT'SAFE'LAROE a 1650.FlFFFFSEE127
FLOAT'SAFE--ALL a 1610.1#E-128
FLOAT'SIZ2 - a 36

LONG FLOAT'DIGITS a 1?
LONG-FLOATFIiST a -1600.1#1128
LONG-FPLOAT'LAST a 1610.7777 FFFF FFFF FEFE127
LONG-'LOATIMACINE DZ a 127
LONG"fLOATNAcjIKNE--DII a -128
LONG-LOAT 'MACHINEIN TISA a 15
LONG-FLOATIMACRINE0-VEWLOVS a TRUE
LONG LOAT 'MACHNEAI U a 16
LONG LOAT ACHIICE--OUi)S a TRU.
LONObFLOAT 'SAFE D a 508
LON G-FLOAT'SMLF -U OR a 1600.1FF FF? FF IFIT112
LONd"LOAT'Shih7.-=L a 160.1,-TmA -

LONG-FlLOAT'SZ2- a 72

DamsT MI! W CEAOm 4-T76-O

.. D~l sJ ~t 1 CBII l- DlrR-O

Fixed Point Types

Two kinds of anonymous predefined fixed-point types are implemented: FIXED and (
LONG FIXED In addition to the anonymous predefined type UNIVERSAL FIXED or
UWIVRSAL REAL. Note tbat FIXE and LONG FIXE are not defined Z'package
STANDARD.-but only used here, for referenol.

For objects of FIXD types,, 36 bits are used for the representation; for LONG
FIXED# 12 bits are used.

for each of FIXED and LONG FIXED there exists a virtual predefined type for
each possible value of SKADE. (refer to the Ada Reference Manual, subsection
3.5.9). The possible values of SHALL1 are tEhe powers of two that are
representable by a LONG FLOAT value.

The lover and upper bounds of these types are:

Lover hound of FIXED types
a -341 359 738 368 * SMALL

Upper Founr of-FIXD types
a 34' 359 738 367 0 SMALL.

Lover Foual of-LONG FIXED types

U;P-2 361 183 2411 11T34 822 606 8418 * SMALL
Uppebou~d of LONG IYXEb-types
a2361183 21 1J822 606 847 0 XHAL

A user-defined fixed point type Is represented as that predefined FIXED or LONG
FIXED type that has. the largest value of SMALL not greater than the
user-specified DELTA, and which has the smallest range that includes the (
user-specified range.

Any fixed point type T has the following attributes:

T'KACNINE OVEMWLOWS a TRUE

T 'MACHINE-ROU NDS a FALSE

The Type DURATION

Type DURATION Is represented as a 72-bit LONGIXED representation.

The predefined fixed point type DURATION has the following attributes:

DURATION'DELTA a 0.0000015625
DURATION'FIRST a -2 251 799 813 685 2118.0
IDURATION'LLST a 2, F51 '99 T13 'CBS T7.99999041632568359375
DURATIONtSIZ3 a TI
BURATION'SKALL a 2#1.009-20

Type COUNT

The range of the type COUNT defined In package DIRECT 10 and in package TEXT10
Ise 0..munTEGR'A.

DRiFT:'N W1 cup C33 4 DT76-0O

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC uake use of implementation-dependent
values, such as the maximum length of an input line and invalid
file names. A test that makes use of such values is identified
by the extension. TST in its file name. Actual values to be
substituted are identified by names that begin with a dollar
sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given
below.

Name and Meanina Value

$BIGID1 BI<120x"G">_ID1
Identifier of size MAX_INLEN
with varying last character.

$BIG__ID2 BI<120x"G">_ID2
Identifier of size MAX_INLEN
with varying last character.

' $BIQ_ID3
BI<l00x"G">3<20x"G">_ID

Identifier of size MAX_INLEN
with varying last character.

$BIG_ID4
BI<00x"Goo>4<20x"G">_ID

Identifier of size MAX_IN_LEN
with varying last character.

$BIGINT_LIN <123x"0">298
An integer literal of value 298
with enough leading zeroes so
that it is MAX_IN_LEN characters
long.

C-1

Name and Meaning au

$BIG...RAL_LIT <l20x"0'1>69 . El
A real literal that can be
either of floating or fixed
point type, has value 690.0, and
has enough leading zeroes to be
MAX_IN _LEN characters long.

$BLANKS <106x" ">
Blanks of length MAXIN _LEN -20

$CN....LAST 34_359_738_367
Value of CNT'LAST in TEXT_10.I
package.

$EXTENDEDL_ASCII_CHARS

abcdefghijklmnopqrstuvwxyzi $%?O(\JA* {)..Il

A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_-LAST 75
Value of Field'LAST in TEXT_10
package.

$FILE_NAME_WITH_BAD._CHARB F(*FILE
An illegal external file name
that either contains invalid
characters or is too long.

$FILE _NAME_WITHWILDSARDCHAR N234567890123
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION 2_600_000_000_000_000.0
A universal real value that lies
between DTRATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION

$GmETERTHANDURATIONBASE..LAST 2_600_000_000_..000_000.0
The universal real value that is
greater than DURATIONIBASE'LAST.

$1 ILLE GAL_EXTERNALJILENAME FOLENAME
illegal external file name.

C-2

- ,, 79*1,

Name and Meaning Va

$ILLEGAL_EXTERNAL_FILE_NAME2

MUCHTOOLONGFORFILENAME

Illegal external file names.

$INTEGER_FIRST -34_359_738_368
The universal integer literal
expression whose value is
INTEGER FIRST.

$INTEGER_LAST 34_359_738_367
The universal integer literal
expression whose value is
INTEGER LAST.

$LESSTHAN_DURATION -2_600_000_000_000_000.0
A universal real value that lies
between DURATION'BASE0FIRST and
DURATION°FIRST or any value in
the range of DURATION.

$LESS_THAN_DURATIONBASE_FIRST -2_600_000_000_000_000.0
The universal real value that is
less then DURATION'BASE0FIRST.

$MAXDIGITS 17
Maximum digits supported for
floating-point types.

$MAXIN_LEN 126
Maximum input line length
permitted by the implementation.

$NAME
A name of predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORTINTEGER,
LONG_FLOAT, or LONG_INTEGER,

$NEG_BASED._INT
16 #FFFFFFFFFFFFFFFFFF#

A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

$NON_ASCII_CHARTYPE (NON_NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NONJNULL and all non-ASCII
characters with printable
graphics.

C-3

S I 0

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not
conform to the Ada Standard. When testing was performed, the
following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated:

0 B4AO10C: The objectdeclaration in line 18 follows
a subprogram body of the same declarative part.

* BC3204C: The file BC3204C4 should contain the body
for BC3204CO as indicated in line 25 of BC3204C3M.

0 C35904A: The elaboration of subtype declarations
SFX3 and SFX4 may raise NUMERICERROR (instead of
CONSTRAINTERROR).

. C41404A: The values of 'LAST and 'LENGTH are
incorrect in IF statements from line 74 to the end
of the test.

0 C4800SA: This test requires that the evaluation of
default initial values not occur when an exception
is raised by an allocator. However, the Language
Maintenance Committee (LMC) has ruled that such a
requirement is incorrect (AI-00397/01).

C32114A: An unterminated string literal occurs at
line 62.

B33203C: The reserved word "IS" is misspelled at
line 45.

C34018A: The call of function G at line 114 is
ambiguous in the presence of implicit conversions
and inconsistent without.

B37401A: The object declarations at lines 126-135
follow subprogram bodies declared in the same
declarative part.

B45116A: ARRPRIBLl and ARRPRIBL2 are initialized
with a value of the wrong type (PRIBOOL_TYPE instead
of ARRPRIBOOL_TYPE) at line 41.

B49006A: Object declaratives at lines 41 and 50 are
terminated incorrectly with colons; "END CASE;" is
missing from line 42.

D-1

* B74101B: The "BEGIN" at line 9 is mistaken; it
causes the declarative part to be treated as a
sequence of statements.

C87B50A: The call of "/-" at line 31 requires a
"USE" clause for package A.

C92005A: At line 40, "/-" for type PACK.BIG.INT is
not visible without a "USE" clause for package PACK.

C940ACA: This test assumes that allocated task TT
will run prior to the main program, and thus assign
SPYNUMB the value checked for by the main program;
however, such an execution order is not required by
the Ada Standard, so the test is erroneous.

CA3005A..D (4 tests): No valid elaboration order
exists for these tests.

END OF LIST

D-2

" y7ofo3S 3

FSV87VSRHIS518A

Ada* COMPILER
VALIDATION SUMMARY REPORT:

Honeywell Information Systems
GCOS-8 V2.0

Completion of On-Site Validation:
3 April 1987

Prepared By:
Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

Building 225, Room A266
Gaithersburg, MD 20899

Prepared For:
Ada Joint Program Office

United States Department of Deftnse
Washington, D.C.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

