-A181 896 ADA (TRADENAME) COMPILER VALIDATION SUMMARY REPORT 11
HONEYHELL INNORMATION <U) NATIOGNAL BURERU OF STANDARDS
GRITHERSBURG MD SOFTMARE STANDAR 83 A

87040351 88037 F/G 12/5

UNCLASSIFIED

h
&
d:

.»‘u
l 9,0
l,l‘||

MICROCOPY RESOLUTION TEST CHART

*'FEEEE
EEEE

EFE,

(44
[4
.
”

) . -

N .‘l 0. 0 \ ’:‘.. ” v t"ﬁ‘.
Q.!

. b

l
< . N ’c l';.l' ..\‘;'G“" .

T Lol o badd 4 L aA oo s b ans atd ahe a2l g LA ain adh abh ade abd’old o4 |

. UNCLASSIFIED DTIC FILE 9@
¥ SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) oo™
- READ INSTRUCTIONS\
_ REPORT DOCUMENTATION PAGE __Roan peeTRucTios\ ™/
' 1. REPORT NUMBER |2. GOVT ACCESSION NO. |3. RECIPIENT’S CATALOG NUMBER
. 4. TITLE (and subtitie) 5. TYPE OF REPORT & PERIOD COVERED
o Ada Compiler Validation Summary Report: 3 Apr 1987 to 3 Apr 1988
Honeywell Information Systems, GCOsS-8, V2.0 .
- 6. PERFORMING ORG. REPORT NUMBER
S'\: 820403S1.08037
X 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)
Y Software Standards Validation Grou ’ v
W Institute for Comguter Sciences and, Technology
National Bureau of Standards =
e 9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
! Software Standards Validation Group, National AREA & WORK UNIT NUMBERS
;:: Bureau of Standards, Bldg.225, Rm A266
1) Gaithersburg, MD 20899
|}
" 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada nggt IZrogBam Offlci £ Def 3 Apr 1987
w Unite tates Department o efense 3 NUMBER OF PAGES
L Washington, DC 25301 -3081ASD/SIOL 53
:: 14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS (ofthisreport)
! National Bureau of Standards _ UNCLASSIFIED
N 15a. QEC|ASS]FICATION/DOWNGRADING
- 16. DISTRIBUTION STATEMENT (of this Report)
,
W (o) Approved for public release; distribution unlimited.
L 2
: ; 17. DISTRIBUTION STATEMENT (of the abs;raaenteredinBlockZO. if different from Report)
1
% « UNCLASSIFIED
<
i
¥ 18. SUPPLEMENTARY NOTES
0
K
LS §
!
19. KEYWORDS (Continue on reverse side if necessary and identify by block number)
¢ Ada Programming language, Ada Compiler Validation Summary Report, Ada
v Compiler Validation Capability, ACVC, Validation Testing, Ada
> Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
- 1815A, Ada Joint Program Office, AJPO
1 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
"f .
b, See Attached.
R
R
[/
v ¥
A
D'
.:-\ DD 1473 €0ITION OF 1 NOV 65 IS OBSOLETE
X 1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
1 SECURTTY CLASSIFICATION OF THIS PAGE (When Data Entered)
2 |
)

%) e, 0p 0%y

D Cll 5§ \ ; TAYE oy ; 0 (()
HRONARIAGRGGN, Al Ve N RAARANTS). £ SEEOROAR IR G ‘,H dt

(’h r'l |'l g'l‘ "15 lag ‘g'l |'l ’Q %!

EXECUTIVE SUMMARY

This Validation Summary Report summarizes the results and
conclusions of validation testing performed on the GCOS-8
V2.0 using Version 1.8 of the *Ada Compiler Validation
Capability (AcvC).

The validation process includes submitting a suite of
standardized tests (the ACVC) as inputs to an Ada compiler and
evaluating the results. The purpose is to ensure conformance
of the computer to ANSI/MIL-STD-1815A FIPS PUB 119 Ada by
testing that it properly implements legal language constructs
and that it identifies and rejects illegal language
constructs. The testing also identifies behavior that is
implementation dependent but permitted by ANSI/MIL-STD~1815A
FIPS PUB 119. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or
during execution.

On-site testing was performed 30 March 1987 through 3 April
1987 in Phoenix, AZ under the auspices of the Software
Standards Validation Group, according to Ada Validation
Organization policies and procedures. The GCOS-8 V2.0 was
hosted on DPS-90 operating under SR3000 V.30002 and SR2500
V.25003

The results of validation are summarized in the following
table:

RESULT TEST CLASS TOTAL

A . B € D _E. L ______
Passed 69 867 1190 17 13 46 2202
Failed 0 0 0 o (1] 0 0
Inapplicable 0 0 178 0 0 0 178
‘Withdrawn 0 7 12 0 0 0 19
TOTAL 69 874 1380 17 13 46 2399

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

———————. -

[R

O XA AN NV AR S

B e e —

37040351 102

FSV87VSRHISS518A

Ada* COMPILER
VALIDATION SUMMARY REPORT:
Honeywell Information Systems

GCOsS-8 V2.0 .

Completion of On-Site Validation:
" 3 April 1987
-]

Software Standards Validation Group
Institute for Computer Sciences and Technology
National Bureau of Standards -

‘ Building 225, Room A266
e Gaithersburg, MD 20899

1
¢
B _ Prepared By:
x""‘

Prepared For:

Ada Joint Program Office
", ' United sStates Department of Defense
X Washington, D.C.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

Ada Compiler validation Summary Report:

Compiler Name:
Host Computer:
DPS 90
under
SR2500 V.25003
and

SR3000 V.30002

Testing Completed on

GCOS-8 V2.0

Target Computer:
DPS 90
under

SR2500 V.25003
and

SR3000 V.30002

3 April 1987 Using AcvC

NY!

EXECUTIVE SUMMARY

er

This Validation Summary Report summarizes the results and
conclusions of validation testing performed on the GCOS-8
V2.0 using Version 1.8 of the *Ada Compiler Validation
Capability (acvce).

The validation process includes submitting a suite of
standardized tests (the ACVC) as inputs to an Ada compiler and
evaluating the results. The purpose is to ensure conformance
of the computer to ANSI/MIL~STD-1815A FIPS PUB 119 Ada by
testing that it properly implements legal language constructs
and that it identifies and rejects illegal language
constructs. The testing also identifies behavior that is
implementation dependent but permitted by ANSI/MIL~-STD-1815A
FIPS PUB 119. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or
during execution.

On-site testing was performed 30 March 1987 through 3 April
1987 in Phoenix, AZ under the auspices of the Software
Standards Validation Group, according to Ada Validation
Organization policies and procedures. The GCOS~-8 V2.0 was
hosted on DPS-90 operating under SR3000 V.30002 and SR2500
V.25003

TE; results of validation are summarized in the following
table:

RESULT TEST CLASS _TOTAL
A..B € D E L

Passed 69 867 1150 17 13 46 2202

Failed ©o 0o o o0 .0 o 0

Inapplicable 0 0 178 0 0 o 178

Withdrawn © 7 12 o0 o0 0 19

TOTAL 69 874 1380 17 13 46 2399

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

There were 19 withdrawn tests in ACVC Version 1.8 at the
time of this validation attempt. A list of these test appears
in Appendix D.

Some tests demonstrate that some language features are or are
not supported by an implementation. For this implementation,
the test determined the following.

Pt .
P T s

. SHORT_INTEGER is not supported.
. LONG_INTEGER is supported.

. SHORT_FLOAT is not supported.

e

. LONG_FLOAT is supported.

¥ . The additional predefined types LONG_FLOAT, LONG_
o INTEGER, INTEGER, and FLOAT are supported.

R . . Representation specifications for noncontiguous
enumeration representations are supported.

. The 'SIZE clause is supported.
W . The 'STORAGE_SIZE clause is supported.
it . The 'SMALL clause is supported.

K . Generic unit specifications and bodies can be compiled
! in separate compilations.

. Pragma INLINE is supported for procedures.
Pragma INLINE is supported for functions.

. . The package SYSTEM is used by package TEXT_IO.
Y . Mode IN_FILE is supported for SEQUENTIAL_10.
N . Mode OUT_FILE is supported for SEQUENTIAL_IO.

. Instantiation of the package SEQUENTIAL_IO with
unconstrained array types is supported.

B . Instantiation of the package SEQUENTIAL_IO with
: unconstrained record types with discriminants is
supported.

O 30 SR N0 S ST TN
:‘ﬂé'".',s.,'g‘ﬁ 1! N '.,7|§l.18‘|_t q’llq'i .faf.?n,.

- OO) , AR A X h RN Y
e e W R L Rt Ry e

L e e W

. Dynamic creation and resetting of files is supported
for SEQUENTIAL_IO.

. RESET and DELETE are supported for SEQUENTIAL_ and
DIRECT_IO.

. Modes IN_FILE, INOUT_FILE, and OUT_FILE are
supported for DIRECT_IO.

. Dynamic creation and resetting of files is supported
for DIRECT_IO.

. Instantiation of package DIRECT_IO with unconstrained
array types and unconstrained types with discriminants
is supported.

. Dynamic creation and deletion of files are supported.

. More than one internal file can be associated with the
same external file only for reading.

. An external file associated with more than one internal
file can be reset.

. Illegal file names cannot exist.

ACVC Version 1.8 was taken on-site via magnetic tape to
Phoenix, AZ. All tests, except the withdrawn tests and any
executable tests that make use of a floating point precision
greater than SYSTEM.MAX_DIGITS, were compiled on a DPS 90.
Class A, C, D, and E tests were executed on a DPS 90.

On completion of testing, execution results for Class A, C, D,
or E tests were examined. Compilation results for Class B were
analyzed for correct diagnosis of syntax and semantic errors.
Compilation and link editing results of Class L tests were
analyzed for correct detection or errors.

The Software Standards Validation Group identified 2229 of the
2399 tests in Version 1.8 of the ACVC as potentially
applicable to the validation of GCOS-8 V2.0. Excluded were

5 tests with source lines that were too long; 146 tests
requiring floating point precision greater than that supported
by the implementation; and the 19 withdrawn tests. After the
2229 tests were processed, 27 tests were determined to be
inapplicable. The remaining 2202 tests were passed by the
compiler.

The Software Standards Validation Group concludes that these
results demonstrate acceptable conformance to
ANSI/MIL-STD-1815A FIPS PUB 119.

, Lrw - P - ¥ AN .‘(‘ R
3 ERY A IO RGN AL NI

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT .
1.2 USE OF THIS VALIDATION SUMMARY REPORT . . .
1 * 3 REIATED DOCUMENTS * [] L] L] L] * L] ® [] L] [] [] []
1.4 DEFINITION OF TERMS .« « « « o o ¢ o o o o o
g 1.5 ACVC TEST CLASSES =« « « o o « o o « o o o o
1
‘e"
¥ CHAPTER 2 CONFIGURATION INFORMATION
2.1 CONFIGURATION TESTED . « o o o o o o o + o &«
. 2.2 CERTIFICATE . . .« o s o s s o
o) 2.3 IMPLEMENTATION CHARACTERISTICS . . » . .+ .
.$
fakd
o CHAPTER 3 TEST INFORMATION
. 3.1 TEST RESULTS e o s e e »
e 3.2 SUMMARY OF TEST RESULTS BY CLASS
'~ 3.3 SUMMARY OF TEST RESULTS BY CHAPTER
[\ 3 * 4 WITHDRAWN TESTS [] * [] L] [] L] * - * L] [] [] [] []
o 3.5 INAPPLICABLE TESTS « « + « « o o o o o o o
M 3.6 SPLIT TESTS . . c e e o o o o
" 3.7 ADDITIONAL TESTING INFORMATION . » .+ » . .
;:. 3 L] 7 L] 1 Preval idation * L] o * ® L] [] [] L] [] L] [] L] o
;' ‘ 3 * 7 ® 2 Test Method L] L 2 L] L] L] L] [] [] [] [] [] [] [] [] []
‘ 3.7.3 Test Site [] * [] [] L] * * L] [] L) [] [] [] * [] []
1:: 4
, APPENDIX A COMPLIANCE STATEMENT
t;Q
:; APPENDIX B APPENDIX F OF THE Ada STANDARD
K]
o) APPENDIX C TEST PARAMETERS
. APPENDIX D WITHDRAWN TESTS
[}
:“
Yt
i
"
it
~:§:
2
::)
9
X
.:’e
[

“si.'.“’;“"‘ e R OO

* L] L] L] L]
-
!
[]

.
.
[V V)
S

WWWWwWwwWwwww
11
NOOTOOIWND N

e & & e & o o s o o

AOSICH ! I
ratigte, $i‘?"‘,t]‘.'~,§ L3 Li""' ‘

CHAPTER 1

INTRODUCTION

~/

This validation Summary Report describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A FIPS PUB
119. This report explains all technical terms used within it
and thoroughly reports the results of testing this compiler
using the Ada Compiler vValidation Capability (ACVC).” An Ada
campgler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A FIPS PUB 119). >Any
implementation-dependent features must conform to the
requirements of the Ada Standard. The entire Ada Standard must
be implemented, and nothing can be implemented that is not in
the Standard.

Even though all validated Ada compilers conform to
ANSI/MIL-STD-1815A, it must be understood that some differences
do exist between implementations. The Ada Standard permits
some implementation dependencies--for example, the maximum
length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations
imposed on a compiler by the operating systems and by the
hardware. All of the dependencies demonstrated during the
process of testing this compiler are given in the report.

validation Summary Reports are written according to a
standardized format. The report for several different
compilers may, therefore, be easily compared.X The information
in this report is derived from the test results\produced during
validation testipg. Additional testing information is given in
section 3.7 and states problems and details which are unique
for a specific compiler. The format of a validation report
limits variance between reports, enhances readability of the
report, and minimizes the delay between the completion of
validation testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT
The Validation Summary Report documents the results of the

validation testing performed on an Ada compiler. Testing was
carried out for the following purposes:

1-1

% QU
§.| ,.{fl»vﬂ?u <

INTRODUCTION

. To attempt to identify any language constructs
supported by the compiler that do not conform to the
Ada Standard

. To attempt to identify any unsupported language
constructs required by the Ada Standard

. To determine that the implementation~dependent behavior
is allowed by the Ada Standard

Testing of this compiler was conducted under the supervision of
the Software Standards Validation Group according to policies
and procedures established by the Ada Validation Organization
(AVO). Testing was conducted from 30 March 1987 through 3
April 1987 at Phoenix, AZ.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country,
the Ada Validation organization may make full and free public
disclosure of this report. In the United States, this is
provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this
report do not represent or warrant that all statements set
forth in this report are accurate and complete, or that the
subject compiler has no nonconformances to ANSI/MIL-STD-1815A
FIPS PUB 119 other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE

The Pentagon, Rm 3D-139

1211 §. Fern, C=107
Washington, DC 20301-3081

or from the Ada Validation Facility (AVF) listed below.

Questions regarding this report or the validation tests should
be directed to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1-2

LX) %) 18 e ST
p,l‘q ,t tp "v"’u“' l.q ‘.t‘:.'q A ".‘.‘. .l .02 AN

or to:

1.3

1.4
ACVC

Ada Vvalidation Facility

Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

Building 225, Room A266

Gaithersburg, MD 20899

RELATED DOCUMENTS

1. Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and
Procedures, MITRE Corporation, JUN 1982, PB

83-110601.

3. Ada gomgiler Validation Capability
Implementers'! Guide, SofTech, Inc., DEC 1984.

DEFINITION OF TERMS

The Ada Compiler Validation Capability. A set
of programs that evaluates the conformance of a
compiler to the Ada language specification,
ANSI/MIL-STD-1815A FIPS PUB 119.

Ada standard ANSI/MIL-STD-1815A FIPS PUB 119, February 1983.

Applicant
AVF

AVO

Compiler

The agency requesting validation.

Ada Validation Facility. The Federal Software
Management Support Center. 1In the context of
this report, the AVF is responsible for
conducting compiler validations according to
established policies and procedures.

The Ada Validation Organization. 1In the
content of this report, the AVO is responsible
for setting policies and procedures for
compiler validations.

A processor for the Ada language. In the
context of this report, a compiler is any
language processor, including cross-compilers,
translators, and interpreters.

Failed test A test for which the compiler generates a

Host

result that demonstrates nonconformance to the
Ada Standard.

The computer on which the compiler resides.

1-3

W TN T W T N N AW R W™ Wwrw

e Inapplicable A test that uses features of the language that
S a test compiler is not required to support or
may legitimately support in a way other than

%?_ the one expected by the test.

v

?3 Passed test A test for which a compiler generates the

ﬁ%’ expected result.

[A

e Target The computer for which a compiler generates

A

S, code.

15:'(

Wé. Test A program that evaluates the conformance of a
el compiler to a language specification. 1In the

a context of this report, the term is used to
, designate a single ACVC test. The text of a
Lo program may be the text of one or more
compilations

-~ Withdrawn A test which has been found to be inaccurate in
test checking conformance to the Ada language

.) specification. A withdrawn test has an invalid

any test objective, fails to meet its test

e.% objective, or contains illegal or erroneous use

95: of the language.

1.5 ACVC TEST CLASSES

et Conformance to ANSI/MIL-STD-1815A FIPS PUB 119 is measured
using the Ada Compiler Validation Capability (ACVC). The ACVC
w@g contains both legal and illegal Ada program structured into six
y test classes: A, B, C, D, E, and L. The first letter of a test
R name identifies the class to which it belongs. Legal programs
. are compiled, linked, and executed while illegal programs are
KR only compiled. Special program units are used to report the
0l results of the legal programs.

) Class A tests check that legal Ada programs can be successfully
compiled and executed. (However, no checks are performed
during execution to see if the test objective has been met.)
For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada

compiler. A Class A test is passed if no errors are detected
at compile time and the program executes to produce a message
indicating that it has passed.

-

4 Jf"ﬁi‘r'"

p MU NPT b Y

O : . 1-4

0
-t,l.nlnn 0y -l"l"“l 'l‘hl‘ 'y’l ‘: o0 Yy, "'\'1‘ ."“---‘ ‘!“-‘-
LA SN n"’ nRey '? h ..‘3'3 4“&"‘4‘- l"‘l‘. W1 ‘l“ -’l‘v ol"s;" ' v , e " ‘

Class B tests check that a compiler detects illegal language
usage. Class B tests are not executable. Each test in this
class is compiled and the resulting compilation listing is
exanmined to verify that every syntactical or semantic error in
the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and
produces a PASSED, FAILED, or NON-APPLICABLE message indicating
the result when it is executed.

Class D tests check the compilation and execution capacities of
a compiler. Since there are no requirements placed on a
compiler by the Ada Standard for some parameters (e.g., the
number of identifiers permitted in a compilation, the number of
units in a library, and the number of nested loops in a
subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class
D test fails to compile because the capacity of the compiler is
exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a
PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a
NOT-APPLICABLE, PASSED or FAILED message when it is compiled
and executed. However, the Ada standard permits an
implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a
Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs
involving multiple, separately compiled units are detected and
not allowed to execute. Class L tests are compiled separately
and execution is attempted. A Class L test passes if it is
rejected at link time--that is, an attempt to execute the main
program must generate an error message before any declarations
in the main program or any units referenced by the main program
are elaborated.

Two library units, the package REPORT and the procedure CHECK_
FILE, support the self-checking features of the executable
tests. The package REPORT provides the mechanism by which
executable tests report results. It also provides a set of
identity functions used to detect some compiler optimization
strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The
procedure CHECK_FILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of
the Ada Standard.

hiaai it bk canstessbale shfilesih . el A

The operation of these units is checked by a set of executable

test. These tests produce messages that are examined to verify
that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

Some of the conventions followed in the ACVC are intended to
ensure that the tests are reasonably portable without
modification. For example, the tests make use of only the
basic set of 55 characters, contain lines with a maximum length
of 72 characters,. use small numeric values, and place features
that may not be supported by all implementations in separate

ey . tests. However, some tests contain values that require the

i test to be customized according to implementation-specific

‘ values. The values used for this validation are listed in
Appendix C.

o A compiler must correctly process each of the tests in the

S suite and demonstrate conformance to the Ada Standard by either
O meeting the pass criteria given for the test or by showing that
e the test is inapplicable to the implementation. Any test that

was determined to contain an illegal language construct or an

. erroneous language construct is withdrawn from the ACVC and

:W‘ therefore, is not used in testing a compiler. The

K2 nonconformant tests are given in Appendix D.

:;lfl 1-‘

ey i T

e CHAPTER 2
CONFIGURATION INFORMATION
ﬂﬂ 2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was
tested under the following configuration:

ﬁﬁ Compiler: GCOS-8 V2.0

&L Test Suite: Ada Compiler Validation Capability, Version
“reY 1.8

Host Computer:
X Machine(s): DPS 90
Operating Systems: SR2500 V.25003
SR3000 V.30002
Vot Memory Size: 32 mega-words
N Target Computer:
Machine(s): DPS 90
] Operating System SR2500 V.25003
g SR3000 V.30002

Memory Size: 32 mega-words

i Communications Network:

Ant . RARF "2 T 2™ (]) =) s, . .)] (]
R O O R R e D O i e SNSRI KNt S AL DO SOOI RIS A M SO

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION
: Base Configuration:
Compiler: GCOS-8 V2.0

Test Suite: Ada Compiler Validation Capability, Version
1.8

o Completion Date: 3 April 1987
Yy R Host Computer:
Machine(s): DPS 90
2 Operating System: SR2500 V.25003
Sk SR3000 V.30002
Target Computer:
) ~ Machine(s): DPS 90

v Operating System: SR2500 V.25003
SR3000 V.30002

17"‘0 O LN lu" gV e O | ¥
R ORG RIOU "t W "' l." e ":' R iy

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
permit implementation to differ. Class D and E tests °
specifically check for such implementation differences.
Hovever, tests in other classes also characterize an
implementation. This compiler is characterized by the
following interpretations of the Ada Standard:

. Nongraphic characters.

Nongraphic characters are defined in the ASCII
character set but are not permitted in Ada programs,
even within character strings. The compiler
correctly recognizes these characters as illegal in
Ada compilations. The characters are not printed in
the output listing. (See test B26005A.)

. Capacities.

The compiler correctly processes compilations
containing loop statements nested to 65 levels,
block statements nested to 65 levels, procedures
nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same
declarative part. (See tests D55A03A..H, DS56001B,
D6400SE. .G, D29002K)

CONFIGURATION INFORMATION
. Universal integer calculations.

An implementation is allowed to reject universal
integer calculations having values that exceed
SYSTEM.MAX INT. This implementation does not reject
such calculations and processes them correctly.

(See tests D4AOO2A, D4AO02B, D4AOO4A, and D4AO004B.)

. Universal real calculations.

When rounding to interger is used in a static
universal real expression, the value appears to be
rounded away from zero. (See test C4AOldA.)

e . Predefined types. |

This implementation supports the additional
predefined types LONG_INTEGER, LONG_FLOAT in the |
package STANDARD. (See test C34001D, C34OQIG.)

. Pased literals.

An implementation is allowed to reject a based
literal with a value exceeding SYSTEM.MAX_INT during
. compilation, or it may raise NUMERIC_ERROR during

Y execution. This implementation raises NUMERIC_

et ERROR during execution. (See test E24101A.)

T . Array types.

An implementation is allowed to raise NUMERIC_ERROR
KX, for an array having a 'LENGTH that exceeds
e STANDARD. INTEGER'LAST and/or SYSTEM.MAX_INT.

BN) A packed BOOLEAN array having a 'LENGTH exceeding
‘ INTEGER'LAST raises NUMERIC_ERROR when the array
objects are declared. (See test C52103X.)

W A packed two-dimensional BOOLEAN array with more
§¢: than INTEGER'LAST components raises NUMERIC_ERROR
o when the array type is declared. (See test

o C52104Y.)

! X 1 Py g
X OROGIOA0E

s i
i G RN ."'i""31";‘*":‘*‘":‘s'a"‘l‘.&"

3.

A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERIC_ERROR either
when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERIC_ERROR when the array
type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire
expression appears to be evaluated before CONSTRAINT_
ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. In assigning two-dimensional array types,
the entire expression does not appear to be

evaluated before CONSTRAINT_ERROR is raised when
checking whether the expression's subtype is
compatible with the target's subtype. (See test
C52013A.)

b e

. Discriminated types.

During compilation, an implementation is allowed to
' either accept or reject an incomplete type with
discriminants that is used in an access type
definition with a compatible discriminate
constraint. This implementation accepts such
subtype indications during compilation. (See test
E38104A.)

e i

In assigning record types with discriminants, the
entire expression appears to be evaluated before
CONSTRAINT_ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

e am v o w w

X . Aggregates.

In the evaluation of a multi-dimensional aggregate,
all choices appear to be evaluated before checking
. against the index subtype. (See tests C43207A and
5 C43207B.)

5
i
2

A
Y

s

L ean . . "
OO M IO 0 P OO0
Fa b 4% 0 Vel Vg VUt e b 0o

Gante '.’fﬁ’,)l'n,l'-‘d o e

- In the evaluation of an aggregate containing

o subaggregates, all choices are evaluated before
being checked for identical bounds. (See test
E43212B.)

o All choices are evaluated before CONSTRAINT_ERROR is
et raised if a bound in a nonnull range of a nonnull

o aggregate does not belong to an index subtype. (See
test E43211B.)

:ﬁ CONFIGURATION INFORMATION

i . Functions.
The declaration of a parameterless function with the
same profile as an enumeration literal in the same

e immediate scope is rejected by the implementation.
tol (See test E66001D.)

o . Representation clauses.

- The Ada Standard does not require an implementation
. to support representation clauses. 1If a

e representation clause is not supported, then the

Y implementation must reject it. While the operation
2 of representation clauses in not checked by Version

1.8 of the ACVC, they are used in testing other

o language features. Testing indicates that size

P specifications are supported, that specification of
) storage for a task activation is supported, and that
i specification of SMALL for a fixed point type is

o supported. Enumeration representation clauses
including those that specify noncontiguous values
appear to be supported. (See tests C55B1l6A,
C87B62A, C87B62B, C87B62C, and BCl002A.)

e . Generics.

When given a separately compiled generic unit
specification, some illegal instantiations, and a

o body, the compiler rejects the body because of the
L instantiations. (See tests BC3204C and BC3204D.)
R)

e . Pragmas.

-, The pragma INLINE is supported for procedures.

N The pragma INLINE is supported for functions.

W (See tests CA3004E and CA3004F.)

ST "»."'1,""."""'1'7‘;l"a"{“'v’ﬁ:‘.!"’;‘;h" AN
: Syt S

B N B T L DL - S LA AN N O (0 LA IR W OO
g ‘..l ‘--L‘g,ﬁ."b.\ 1. .q'a.s*'#‘.) ﬂaﬁ’i’k&#’ﬁ'é\'ﬁ‘a 0!\'0‘!'0’.2'!‘. YN ;‘8~ Y --I’. () s-s‘ 0. ;’ti‘

o
Ed ‘
'e‘é‘x
\‘ (
|blﬁr

CaE
-

Ve
B o
LA A

5

TN

Y R O
LI IIA’."‘

» §¥
LRSS 3
[N

U el
EXOKNT

Input/output.

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with
discriminants.

The package DIRECT IO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests CE2201D,
CE2201E, and CE2401D.)

More than one internal file can be associated with
each external file for SEQUENTIAL_IO for reading
only. (See tests CE2107A..F.)

More than one internal file can be associated with
each external file for DIRECT_IO for reading only.
(See tests CE2107A..F.)

An external file associated with more than one
internal file can be deleted. (See test CE2110B.)

More than one internal file can be associated with
each external file for text I/0 for reading only.
(See tests CE3111A..E.)

Dynamic creation and resetting of a sequential file
is allowed. (See test CE2210A.)

Temporary sequential files are given a name.
Temporary direct files are given a name.

Temporary files given names are not deleted when
they are closed, but are not accessible after the
completion of the main program. (See test CE2108A.)

A OO0
)

v RN w1 3 . \) '
D BN IS SRSUACK T PR X SRR D) i.n m‘o un"‘ '«'.!a dhadadnt 'a“l‘:'i' kN

= U ettty

o CHAPTER 3
TEST INFORMATION
! 3.1 TEST RESULTS

Ty The Software Standards Validation Group identified 2229 of the

o 2399 tests in Version 1.8 of the Ada Compiler Validation
Capability as potentially applicable to the validation of
GCOS-8 V2.0. Excluded were 5 tests with source lines that

. were too long:; 146 tests requiring floating point precision

! greater than that supported by the implementation; and the 19

e withdrawn tests. After they were processed 27 tests were

e . determined to be inapplicable. The remaining 2202 tests were

‘ passed by the compiler.

Y The Software Standards Validation Group concludes that the

i testing results demonstrate acceptable conformance to the Ada

ol Standard.

N

B 3.2 SUMMARY OF TEST RESULTS BY CLASS

(3

ﬁ%; RESULT TEST CLASS TOTAL
e _

xi W

e A B ¢ 2 E L

Passed 69 867 1190 17 13 46 2202

&;»,‘

e Failed 0 o o 0 0 0 0
:;g:&!

i N/A 0 0o 178 0 0 0 178
~ Withdrawn 0 7 12 0 o 0 19
;i TOTAL 69 874 1380 17 13 46 2399
;‘:(,:;-

"

o

".’;" Y

)

l;’,:')

B

¥

4%

:..

§ "

;.‘.o
oy

Ao

I

X 0) 1 Ty <) 1
RAE OIS AR LG R A

TEST INFORMATION
3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT

2 3 4 5 6 7 8 9 10 11 12 14 Total

Passed 99 262 346 246 161 97 139 261 128 32 218 213 2202

Failea 0 0 0 0 0 0 0 0 0 0 0 0 0
N/A 17 63 74 b 0 0 0 b 2 0 0 20 178
W/D 0 5 5 0 0 1l 1 2 4 0 b | 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

R 3.4 WITHDRAWN TESTS

0 The following tests have been withdrawn from the ACVC Version
! 1.8:

R C32114A B37401A B49006A C92005A
4 B33203C C41404A B4Aa0Ol0C C940ACA
J C34018A B45116A B74101B CA3005A..D
: C35904A C48008A C87B50A BC3204C

See Appendix D for the rationale for withdrawing these tests.

B
¥
e ,o -

B MOC MO MO e 00 WA AR AN A Pl LA AL IS N LA U U A MO N A n X
L R ni‘\‘ B LN .‘S'l.x"'t.w)’!iﬁb ‘,"?\‘"!’ilqi"'l\kt?'ﬁ‘l’ i

= I -
] ; ‘ <oy ‘ AVAY To¥
Yy »

LA d) y\g'itegl“ UL IO M0 WL oL i T !‘. LY vs'l.‘l.q ‘v. .

Y —_——— T L T T e S T T e T L LT
,!‘:t.‘:
i
s tat
o 3.5 INAPPLICABLE TESTS
:.’-"’.4

s Some tests do not apply to all compilers because they make use
e of features that a compiler is not required by the Ada Standard
‘ﬁn to support. Others may depend on the result of another test
2 that is either inapplicable or withdrawn. For this validation
@i; attempt, 178 tests were inapplicable for the reasons
Qx. indicated:
1.0

» . C96005B - there are no out-of-range values for
e type DURATION

"'i’-‘:

ﬁﬁ_ . CE2401D - Rejected because record sizes greater
) _ than (2#*18)-1 is not supported.
;‘f . = The following are inapplicable because multiple
» 3 internal files may not access the same external
{@« or temporary file.
)

e . CE2107A, CE2107B, CE2107C, CE2107D, CE2107E,

‘ CE2110B, CE2111D, CE2111H, CE3111A..CE311l1E,
ﬁ}. CE2114B, CE311l5A
R
T . CE2107F - two internal files may not be associated
an with the same external file for reading.
LK X

. CE2108A, CE2108C, CE3112A -~ temporary files have

righe no names.
1
q%* . C24113I..C24113M - literals exceeded the
j%g 1limit of 126 characters

. C34001F, C35702A -

jx; SHORT_FLOAT is not supported
R '.‘i
,,;',gfo . C34001D, C55B07B - compiled but not executed
Ll because SHORT_INTEGER is not
N supported.
gt . CA2009C, CA2009F - these tests have generic bodies
Mo that are not in the same
thel compliation as the generic
PO specification.

l",.

o

ty
o
e
:c:.‘l

el

1
43 3-3

I

«::"

oy
H
l;“‘;
el

O 3 d " 3 f ¥ Y J i e ™ U N I W oy T 3
300 2,000,000 Od ' ¥) O J0n QOO " % * > AR ' 4% ’
RO O N BAOAMIRAGOOON AL A AR R R R R A R AL HG R ;,\‘;,'.Fif»_;f-a‘;

» =

Patas

. . These tests are inapplicable because SYSTEM.MAX_
X DIGITS = 17; these tests require a greater
‘ (floating point) precision:

i . C24113N..C24113Y - (12 tests)

N . C35705N..C35705Y - (12 tests) '

o . C35706N..C35706Y - (12 tests)

e . C35707N..C35707Y - (12 tests)

- . C35708N..C35708Y - (12 tests)
. C35802N..C35802Y - (12 tests)

! . C45241N..C45241Y - (12 tests)

By . C45321N..C45321Y - (12 tests)

3 . C45421N..C45421Y - (12 tests)

‘“a . C45521N..C455212 - (13 tests)
. C45621N..C45621Z ~ (13 tests)

N

e

Y

4

N

o

)

¥

N

I;p

v

w

K

";

p

N

X

i:\

b

' 3-4

' , v N « ~
AT e a 0t ,‘,’,lom QOO ARIRNY ‘a"i‘:ﬂ.tb"‘ﬁ‘. s \ e :.c he ’.i '.9 l.n ‘.. l.- ‘.',‘u' '.n. .nl ,ct. ...l,..c, "

ol o/

s

;S

s 80 0

CC V%S Y

3.6

If one or more errors do not appear to have been detected in a
Class B test because of compiler error recovery, then the test

SPLIT TESTS

is split into a set of smaller tests that contain the

undetected errors.
implementation.

B22003A
B37302A
B61001D
B61001W
B91002B
B91002H
B95061A

They are has follows:

B29001A
B51001A
B61001F
B67001A
B91002C
BS91002I
B95061F

B2A0O03A
B53009A
B61001H
B67001C
B91002D
B91002J
B95061G

B33301A
B54A01C
B610011
B67001D
B91002E
B91002K
B95077A

B35101A
B55A01A
B61001M
B91001A
B91002F
B91002L

There were 54 split tests required for this

B37301B
B61001C
B61001S
B91002A
B91002G
B95030A

B97102A B97103E
B97104G BAll0l1BOM BAll01Bl1 BAl101B2 BAl101B3
BAl1101B4 BCl10l14A BClOAEB BCl1l202A BCl1l202B BC1202E
BCl202F

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, sets of test results for ACVC Version 1.8
produced by GCOS-8 V2.0 were submitted to the Software
Standards Validation Group by the applicant for pre-validation
review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests.

The specific configurations submitted for the pre-validation
review were as follows:

Host Target
Processor 0Op. Sys. Processor Op. Sys.
DPS 90 SR2500 V.25003 DPS 90 SR2500 V.25003

The DPS 90 results were analyzed and found to be in accordance
with the Ada standard.

3.7.2 Test Method

A test magnetic tape containing ACVC Version 1.8 was taken
on-site by the validation team. This magnetic tape contained
all tests applicable to this validation as well as all tests
inapplicable to this validation except for any Class C tests
that require floating-point precision exceeding the maximum
value supported by the implementation. Tests that were
withdrawn from ACVC Version 1.8 were not run. Tests that make
use of values that are specific to an implementation were
customized before being written to the magnetic tape.

The test tape was written in ANSI standard format and was
loaded to disk using Honeywell Corp. utility routines.

Once all tests had been loaded to disk, processing was begun
using command scripts provided by Honeywell Information
Systens

The validation was executed in batch control mode with the
files organized by chapter and class to allow the tests to be
run independently and in parallel.

The prevalidation results were verified on-site. The various
tests results from the prevalidation execution were captured on
disk and used to compare against the on-site results using a
utility comparing routine.

The following configurations were tested on-site:

Host Op. Sys. Target Op. Sys.
DPS 90 SR2500 V.25003 DPS 90 SR2500 V.25003
SR3000 V.30002 SR3000 V.30002
3-6

AT T RTINS, SO T TR A% AR AL LRSI T RN, .
: _',"~‘4'4\'i‘.°;“1‘1.",‘.“.,“‘;‘#)."»’Q’ih‘ i!:!_i",?", ,gfa& QOB SO ALY LMD) -:.‘”:ii."‘.')

(38 S L

3.7.3 Test Site

The validation team arrived at Phoenix, AZ on 30 March 1987
and departed after testing was completed on 3 April 1987.

‘

APPENDIX A
COMPLIANCE STATEMENT

Honeywell Information Systems
has submitted the following
compliance statement concerning the
GCOsS-8.

Compliance Statement

Base Configuration:
- Compiler: GCOS 8 Ada Compiler Version 2.0
Test Suite; Ada Compiler Validation Capability, Version 1.8
Host Computer: '
Machine: DPS 90
Operating System: GOOS 8
Version SR2500
Version SR3000
Target Computer:
Machine: DPS 90
Operating System: GCOS 8

Version SR2500
Version SR3000

Honeywell Information Systems, Large Computer Products Division has
made no deliberate extensions to the Ada language Standard.

Honeywell Information Systems, Large Computer Products Division
agrees to the public disclosure of this report.

Honeywell Information Systems, Large Computer Products Division
agrees to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office.

-~y ¢ -7
r,.? £, ézﬁ,z.m Dates /-R2-¥7
2

Honeywell Information Systems, lLarge Computer Products Division

J. R. Wilson
Manager, Advanced Compiler Development

"o

"r‘f : N’PENDIX B '

i MERMETUCTA N F) AN 1 A, B \ 3 v - N
G \‘-'\'»j'u & ‘A’q,‘i"-'o ‘,l"g‘ﬁig_i.-,?‘.‘;'_"t"ua KA v:')"'-,\l‘@i’g:‘b"’g:ﬁ.‘g’ e:.?.fl' i ‘l“ 3&'\:".:-”:’-"“-%. 01.:6'.

III. IMPLEMENTATION DEPENDENCIES
-=LRM APPENDIX "F"

- IABLE OF CONTENTS
1. -IMPLEMENTATION-DEPENDENT PRAGMAS
2. IMPLEMENTATION-DEPENDENT ATTRIBUTES
3. PACKAGE SYSTEM
4. REPRESENTATION CLAUSES
" 5. IMPLEMENTATION-DEPENDENT NAMES
6. ADDRESS CLAUSES
7. UNCHECKED CONVERSIONS
8. INPUT-OUTPUT
8.1 Introduction
8.1.1 Declaration of Sequential_1IO
8.1.2 Declaration of Direct_IO
8.1.3 Declaration of Text_IO
8.1.4 Declaration of Low_Level_IO
8.2 Clarifications of Ada Input-Output Requirements
8.3 Basic File Mapping
8.3.1 Sequential_IO
8.3.2 Direct_I0
8.3.3 Text_I0
8.4 FORM Parameter

9. PACKAGE STANDARD
10. FPILE NAMES

III. IMPLEMENTATION DEPENDENCIES
=LRM APPENDIX “"F"

1. IMPLEMENTATION-DEPENDENT PRAGMAS

No 1mplementation dependent pragmas are supported by the GCOS-8 Ada
Compiler.

2. IMPLEMENTATION-DEPENDENT ATTRIBUTES

No implementation dependent attributes 'are supported by the GCOS-8 Ada
Compiler.

3. PACKAGE SYSTEM
The specification for package SYSTEM:
Package SYSTEM is

Type ADDRESS is access INTEGER;
Type NAME is (DPS8, DPS88, DPS90);
SYSTEM_NAME : Constant NAME := DPS8;

STORAGE_UNIT : Constant := 36;
MEMORY_SIZE : Constant := 256*1024;

MIN_INT = -2_361_183_241_434_822_606_848;
MAX_INT := 2_361_183_241_434_822_606_847;
MAX_DIGITS := 17;

MAX_MANTISSA := 71;

FINE_DELTA := 2.0 ** (-70);

TICK := 0.000016;

Subtype PRIORITY is INTEGER range l..15;
end SYSTEM;
4. REPRESENTATION CLAUSES

No representation clauses may be given for a derived type. Representation
clauses for non-derived types are accepted ds follows:

LENGTH CLAUSE

The compiler accepts only a length clause that specifies the number of
storage units to be reserved for a collection.

ENUMERATION REPRESENTATION CLAUSE

Enumeration representation clauses may specify representations only in the
range of the predefined type INTEGER.

RBRECORD 3zznssznxaxxnn CLAUSE
A comporient clause is allowed if and only if:

N “x "“;"""':‘N'T"‘fr*""‘T"‘—'“’:’5:%;‘:1;‘:!,‘,:l“,,t'l.»3' AR 5."‘.' YL - TR CACRTE
)) o (LR LA e X ‘o.l‘\‘v.lu_ alhting, L3

000 AR OGRS N,
Al ‘i' R l‘l‘t‘i’l‘i‘n‘s‘l“i,w‘ﬁb\‘t'** ., ‘Q -

o
'.l
S

o -(,‘
o
R ...
o
e
Y3ty
L")
O

BT Ot e
* l,'s%ﬁt‘..‘u‘_.'s B t‘l‘

O ML M WA X 1Y ‘.r'!.o'lv ,cﬁm LA

I1I. IMPLEMENTATION DEPENDENCIES
=LRM APPENDIX “P*

- The component type is a discrete type different from L6NG INTEGER.

- The component type is an array type with a discrete element typdq
different from LONG_INTEGER.

above two inclusions. If the record type contains components not covere
by a component clause, they are allocated consecutively after the comp

nent with the highest "AT" value. Allocation of a record component withou
a component clause is always aligned on a word storage unit boundary|
Holes created by component clauses are not otherwise used by the compilerd

No component clause is allowed if the component type is not covered by t:a

5. IMPLEMENTATION-DEPENDENT NAMES

No implementation dependent names denoting implementation dependent compo-
nents are supported.

6. ADDRESS CLAUSES
Address Clauses are not supported.

7. UNCHECKED CONVERSION

Unchecked conversion is only allowed between values of the same “"size". I
this context, the “"size®™ of an array is equal to that of two access value
and the "size" of a packed array is equal to that of two access values ang
one integer value. This is the only restriction imposed on unchecke{

conversion.
8. INPUT-OUTPUT
8.1 Introduction

This chapter describes the implementation of Ada Input-Output for
the Honeywell Ada Compiler for GOOS 8. The implementation supports
all requirements of the Ada language and is an effective interface

to the GOOS 8 file system.

This chapter covers three topics. Section 8.2 discusses the require-
ments of Ada Input-Output systems given in the language definition
and provides answers to issues not precisely described in the
language definition.

Section 8.3 describes the relation between Ada files and GCOS 8
external files.

Section 8.4 details the implementation dependent FORM parameier of
the OPEN and CREATE procedures.

The reader should be familiar with the following documents:
[MIL-STD-1815A-1983] Reference Manual for the Ada Programming

PR O P Ts PO T T 2 T I D R T U TP AT

IIX. IMPLEMENTATION DEPENDENCIES
=LRM APPENDIX "PF"

Language
(DH1Y] DPS8 GCOS8 File Management Supervisor

[DH23] GCOS8 I/0 Programming

Pagi
T

: III. IMPLEMENTATION DEPENDENCIES
N ~LRM APPENDIX “F"
i 8.1.1 Declaration of Sequential_I0
i generic
.type ELEMENT_TYPE is private;
package SEQUENTIAL_IO is

ﬁ type FILE_TYPE is limited private;
N type FILE_MODE is(IN_FILE, OUT_FILE);

procedure CREATE(FILE : in out FILE_TYPE;

‘ ' MODE : in FILE_MODE := OUT_FILE;
vy NAME : in STRING = %,
' FORM : in STRING 1= "%);
procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE(FILE : in out FILE_TYPE):

- L wla -
L e e o ce

procedure DELETE(FILE : in out FILE_TYPE);
E: procedure RESET(FILE : in out FILE_TYPE; MODE : in FILE_MODE);
¥ procedure RESET(FILE : in out FILE_TYPE);
function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;
function IS_OPEN(FILE : in FILB_TQPE) return BOOLEAN;
procedure READ (FILE : in PILE_TYPE; ITEM : out ELEMENT_TYPE);
procedure WRITE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE);

- function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

type FILE_TYPE is new basic_io.file_type; end SEQUENTIAL_I0;

R private
*

T WY O O 7 O T O T T T

N . X R S . . e - ams e n e e s s vaaae e s .

I1XI. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX "PF"

8.1.2 Declaration of Direct_10
generic
.fype ELEMENT_TYPE is private;
package DIRECT_IO is
S type FILE_TYPE is limited private;
v type FILE_MODE is(IN_FILE, INOUT_FILE, OUT_FILE);

type COUNT is range 0..INTEGER'LAST;
subtype POSITIVE_COUNT is COUNT range 1..COUNT'LAST;

N procedure CREATE(FILE : in out FILE_TYPE;

e : MODE : in FILE_MODE := INOUT_FILE;
s NAME : in STRING = ",

| FORM : in STRING 3= *%);

ah procedure OPEN (FILE : in out FILE_TYPE;

i MODE : in FILE_MODE;

e NAME : in STRING;

Ry FORM : in STRING 1= "");

’ procedure CLOSE(FILE : in out FILE_TYPE);

33 procedure DELETE(FILE : in out FILE_TYPE);

ol procedure RESET(FILE : in out FILE_TYPE; MODE : in FILE_MODE);
procedure RESET(FILE : in out FILE_TYPE);

wy function MODE (FILE : in FILE_TYPE) return FILE_MODE;
'ﬁi function NAME (FILE : in FILE_TYPE) return STRING;

function FORM (FILE : in FILE_TYPE) return STRING;
¥3 function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;
HE: procedure READ (FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE;
’ FROM 3 in POSITIVE_COUNT);
- procedure READ (FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE):;
o procedure WRITE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE;
o TO s+ in POSITIVE_COUNT);
oo procedure WRITE(FILE : in FILE_TYPE; ITEM ¢ in ELEMENT_TYPE):
procedure SET_INDEX(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT) ;
i L]
Zﬁ function INDEX(PILE : in FILE_TYPE) return POSITIVE_COUNT;

& function SIZE(PILE : in PILE_TYPE) return COUNT;

OGO AOACAONOSO0 P MELTIEY,
¢ bR M I"! [‘.;!‘.{jl‘* A,:.Jt“'-“‘(?

. 4
N AR

| OtE Yy

o - IX1XI. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX "F"

¢ function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

" private
R type FILE_TYPE is new basic_io.file_type; end DIRECT_I0;

MU WA ARG ONENHMODOLIOLIOWICA) O YGA080 WAL Ny, - ABERERAA] 9.1,
L v PR AN R »3:’.4”9,,“‘,-4‘,, AR _i,ﬂi’)ﬁf-‘,l‘?;‘!“t’ 1XR- A A:A»:? Ve ib!f.t,ﬂ‘s,. LAT e B “\?¢‘|’,."',6\' 3

‘f: II1I. IMPLEMENTATION DEPENDENCIES
=LRM APPENDIX °"F"

<;§ 8.1.3 Declaration of Text_IO
o+ package TEXT_IO is

type FILE_TYPE is limited private;
. type FILE_MODE is(IN_PILE, OUT_FILE);
i type OCOUNT is range 0 .. integer'last;
o subtype POSITIVE_COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; ~- line and page length

subtype FIELD is INTEGER range 0 .. 75;
-- max, size of an integer output field
- 2'0...'

f?. subtype NUMBER_BASE is INTEGER range 2 .. 16;
type TYPE_SET is(LOWER_CASE, UPPER_CASE);

-= File Management

s procedure CREATE(FILE : in out FILE_TYPE;

gj MODE : in FILE_MODE := OUT_FILE;
s NAME : in STRING = "7,

o FORM : in STRING = *"

o)3

R procedure OPEN(FILE : in out FILE_TYPE;

B MODE : in FILE_MODE;

et NAME : in STRING;

RA)ronu : in STRING tm "

L]

; procedure CLOSE(FILE : in out FILE_TYPE);
= procedure DELETE(FILE 3 in out FILE_TYPE);

T procedure RESET(FILE : in out FILE_TYPE; MODE : in FILE_MODE);
a ' procedure RESET(FILE : in out FILE_TYPE);

function MODE(FILE : in FILE_TYPE) return FILE_MODE;
s function NAME(FILE : in FILE_TYPE) return STRING;
e function FORM(FILE : in FILE_TYPE) return STRING;

i function IS_OPEN(FILE : in PILE_TYPE) return BOOLEAN;

== Control of default input and output files

procedure SET_INPUT(PILE 3 in FILE_TYPE);
procedure SET_OUTPUT(FILE : in FILE_TYPE);

function STANDARD_INPUT return PILE_TYPE;
function STANDARD_OUTPUT return FILE_TYPE;

function CURRENT_INPUT return FILE_TYPE;
function CURRENT_OUTPUT return FILE_TYPE)

-~= gpecification of line and page lengths

B SRS ER ED ARR RTNIAN
EAE D A LN N

ISR CXIPACIUIOE NI > e YA S bW ol 3 N . B q I .
AR '.;.9.*;t.'q?',?ﬁv‘gf.’."--;i WO "0‘:?"!3!’)?5-‘.«!’f's‘f!" 0”?*'”':5".‘” i):'v’i’f.ﬁ:.” (0

VT e

b : . -
"
Iy
e
WS III. IMPLEMENTATION DEPENDENCIES
RS , -LRM APPENDIX °"F"
#;.'S
:l:. procedure SET_LINE_LENGTH(FILE : in FILE_TYPE; TO : in COUNT);
o procedure SET_LINE_LENGTH(TO : in COUNT);
|] -
:ﬁf procedure SET_PAGE_LENGTH(FILE : in FILE_TYPE; TO : in COUNT);
. procedure SET_PAGE_LENGTH (TO : in COUNT);
Hh function LINE_LENGTH(FILE : in FILE _TYPE) return COUNT;
Kins function LINE_LENGTH return COUNT;
o function PAGE_LENGTH(FILE : in FILE_TYPE) return COUNT;
function PAGE_LENGTH return COUNT;
AR
N -- Column, Line, and Page Control
f;* procedure NEW_LINE(FILE : in FILE_TYPE; SPACING : in
% POSITIVE_COUNT := 1);
iy procedure NEW_LINE(SPACING : in
5% POSITIVE_COUNT := 1);
L,
}-‘: procedure SKIP_LINE(FILE : in FILE_TYPE; SPACING : in
b POSITIVE_COUNT := 1);
%< procedure SKIP_LINE(. SPACING : in
POSITIVE_COUNT := 1);
202 function END_OF_LINE(FILE : in FILE_TYPE) return BOOLEAN;
o function END_OF_LINE return BOOLEAN;
NN
e procedure NEW_PAGE(FILE : in FILE_TYPE);
J procedure NEW_PAGE H
'3ed procedure SKIP_PAGE(FILE : in FILE_TYPE);
N procedure SKIP_PAGE :
%” function END_OF_PAGE(FILE : in FILE_TYPE) return BOOLEAN;
' function END_OF_PAGE return BOOLEAN;
Ly
R function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;
}rj function END_OF_FILE return BOOLEAN;
)
!‘f procedure SET_COL(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT);
procedure SET_COL(TO : in POSITIVE_COUNT);
o
{ﬁ procedure SET_LINE(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT);
:ﬁ procedure SET_LINE(TO : in POSITIVE_COUNT);
A
.;' function COL(FILE : in FILE_TYPE) return POSITIVE_COUNT;
- function COL return POSITIVE_COUNT;
a. !0
e function LINE(FILE : in FILE_TYPE) return POSITIVE_COUNT;
T- function LINE return POSITIVE_COUNT;
“ﬁv function PAGE(FILE : in FILE_TYPE) return POSITIVE_COUNT;
A
4.:0

st
.I,v.
o

0P i Sl f ”, vy P PV W AT T AT 3 Pt MOV
‘ RGO NP o) NS, o 008
: R R R Sedoa (A 0 A L A Pt e et .!.l..h.!':‘. N .'-'.?""0.""‘&.“‘0 by, ‘a."?‘"

aaaaaa

I1XI. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX °*F"
function PAGE return POSITIVE_COUNT;
: -= Character Input-Output

! procedure GET(FILE. : in FILE_TYPE; ITEM : out CHARACTER);

:
y procedure GET(ITEM : out CHARACTER);
& procedure PUT(FILE : in FILE_TYPE; ITEM : in CHARACTER);
" procedure PUT(ITEM : 4in CHARACTER);
N
i -- String Input-Output
' procedure GET(FILE : in FILE_TYPE; ITEM : out STRING);
B procedure GET(I1TEM : out STRING):
@ procedure PUT(FILE : in FILE_TYPE; ITEM : in STRING):
: procedure PUT(ITEM ¢+ in STRING):
¢
“ procedure GET_LINE(FILE : in FILE_TYPE; ITEM : out STRING;
- LAST : out NATURAL):;
" procedure GET_LINE(ITEM : out STRING;
;;‘. LAST : out NATURAL);
e procedure PUT_LINE(FILE : in FILE_TYPE; ITEM : in STRING);
@ rocedure PUT_LINE(ITEM : in STRING);
! P
;ﬂ -- Generic Package for Input-Output of Integer Types
&
M generic
“y type NUM is range <>;
. package INTEGER_IO is
N
o procedure GET(FILE : in FILE_TYPE; ITEM : out NUM;
& WIDTH : in FIELD := 0);
th procedure GET(.ITEM : out NUM;
' WIDTH : in FIELD := 0);
$ procedure PUT(FILE : in FILE_TYPE;
A ITEM : in NUM;
) WIDTH : 4in FIELD := 10;
j' BASE : in NUMBER _BASE := 10);
- DEFAULT_WIDTH : FIELD s= NUM'WIDTH;
22 DEFAULT_BASE : NUMBER_BASE = 10;
b procedure PUT(ITEM : 4in NUM;
o ' WIDTH ¢ 4in FIELD := DEFAULT WIDTH;
B BASE 3 4in NUMBER_BASE := DEFAULT_BASE):
| procedure GET(FROM : in STRING; ITEM : out NUM; LAST : out POSITIVE) ¢
“ procedure PUT(TO ¢ out STRING;
K ' ITEM s 4in NUM;
' . BASE : 4n NUMBER_BASE := DEFAULT_BASE):

. . » -’ r Y -, - .
!n.l_g,t‘\e:\ﬁtl":fnf,w. O ,!:..I.‘.'é: oo :,;, OO TN

R LT A
" ._;;‘,':‘gfa'., s

' La® " L] v
R B ol

b’e

(] ' Jul N
=,i'§,"n»i'3'i_.. ?g.b’q_‘i

I1X. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX °*"P°®

end INTEGER_IO;

.f; Generic Packages for Input-Output of Real Types

generic

type NUM is digits <>; package PLOAT_IO is

procedure GET(FILE s in FILE TYPE; ITEM : out NUM; WIDTH

s in PIELD 3= 0);
procedure GET(
s in FPIELD 3= 0);

DEFAULT_FORE : FIELD
DEFAULT_APT : FIELD
DEFAULT_EXP : FIELD

procedure PUT(FILE 3
ITEM
FORE
AFT
EXP

procedure PUT(ITEM :
FORE
AFT
EXP

procedure GET(FROM 3

procedure PUT(TO 3
ITEM
APT
EXP

end FLOAT_IO;

generic

ITEM : out NUM;

t= 23
t= NUM'DIGITS - 1;
t= 3;
in PILE_TYPE;

s in NUM;

s in PIELD := DEFAULT_PORE;
s in FPIELD := DEFAULT_AFPT;
t in FIELD := DEFAULT_EXP);

in NUM;

s in PIELD := DEFAULT_PFORE;
s in PIELD := DEFAULT_AFT;
s in PIELD := DEFAULT_EXP);

in STRING; ITEM : out NUM; LAST : out POSITIVE);
out STRIRG;

t in NUNM;
¢t in PIELD := DEFAULT_APT;
s 4in PIELD := DEFAULT_EXP);

type NUM is delta <>; package PIXED_IO is

procedure GET(FILE : in FILE_TYPE; ITEM : out NUM; WIDTH
ITER : out NUM; WIDTH

s in PIELD := 0);
procedure GET(
s in PIELD 3= 0);

DEFAULT_PFORE : FIELD
DEFAULT_AFT : FIELD
DEFAULT_EXP : PIELD

procedure PUT(FPILE 3
_ ITEN
FORE 3

t= NUM'PFORE;
t= RUM'APT;
s= 03

in PILR_TYPE)
in nom;
in PIELD := DEFAULT_FORE;

L e e aa s]

I1I. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX “P*

AFT 3 in FIELD := DEFAULT_AFT;
EXP : in FPIELD := DEFAULT_EXP);

-procedure PUT(ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in PIELD ;= DEFAULT_EXP):

procedure GET(FROM 3 in STRING; ITEM : out NUM; LAST : out POSITIVE);
procedure PUT(TO : out STRING;
ITEM : in NUM;
APT : in FIELD := DEFAULT_AFT;
EXP : 4in FIELD := DEFAULT_EXP);
end FIXED_I10;

-- Generic Package for Input~Output of Enumeration Types

generic
type ENUM is(<>); package ENUMERATION_IO is

DEFAULT_WIDTH ¢ FIELD 1= 03
DEFAULT_SETTING : TYPE_SET := UPPER_CASE;

procedure GET(FILE : in FILE_TYPE; ITEM : out ENUM);

procedure GET(ITEM : out ENUM);
procedure PUT(FILE : in FILE_TYPE;

ITEM : in ENUM;

WIDTH : in FIELD t= DEFAULT_WIDTH;

SET s in TYPE_SET s= DEFAULT_SETTING) ;
procedure PUT(ITEM 3 in ENUM;

WIDTH : in FIELD s= DEFAULT_WIDTH;

SET s in TYPE_SET 3= DEFAULT_SETTING) ;
procedure GET(FROM 3 in STRING; ITEM : out ENUM; LAST : out POSITIVE){
procedure PUT(TO : out STRING;

ITEM : in ENUM;

SET : in TYPE_SET := DEFAULT_SETTING);

end ENUMERATION_I0;
private
type eof_state_type is(eof_not_seen, eof_ahead);

type file_block is record

COREON s basic_io.file_type’
mode s £file_mode;
sax_line_length $ natural;
max_page_length : natural;

IIXI. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX “"F"

natural;
naturals;
boolean;
boolean;
integer;
boolean;
eof_state_type;

curr_line
N curr_page
o - curr_line_is_end_page
RN - . line_terminator_pending
line_size_pending

. page_terminator_pending
i eof_state

. end record;

type file_type is access file_block;

end TEXT_I10;

RSO LI R A AU AR A ; .)
S et et ' AGOOOAGOURIGUOOOORIALITOS \j A A y

Vvt

I1I. IMPLEMENTATION DEPENDENCIES
=LRM APPENDIX “"PF"

8.1.4 Declaration of Low_Level_1I10
Low Level input_output is not provided.

I1I. IMPLEMENTATION DEPENDENCIES
-=LRM APPENDIX °"F"

8.2 Clarifications of Ada Input-Output Requirements

The =~ Ada Input-Output specification, chapter 14 of
(MIL~STD-1815A-1983), provides a number of implementation dependent
choices to develop a complete functional specification of the Input-
Output packages. These implementation choices are presented below
following reference to the appropriate paragraph in the language
reference manual [MIL-STD-1815A-1983].

Paragraph Clarification

14.1(1) An external file is
a GFRC system standard file with media code 6 records

(can be terminal directed).

14.1(7) Named external files will continue to exist at the
conpletion of the main program. Files which have not been
closed in an Ada program will be closed by the
implementation.

14.1(13) Two internal Ada files may not be connected to the same
GCOS external file.

14.2.1(3) The name parameter, when non-null, must be a valid GCOS
pathname. A permanent file will be created as specified
by the pathname. When the name parameter is null,
temporary file space will be allocated for the Ada file.

14.2.1(13) Deletion of a file can occur only when the USERID of the
Ada job is either the originator of the file or has
MODIFY permissions to that file.

14.2.1(15) For a seguential or text f£ile, a RESET operation to
OUT_FILE mode empties the file of elements.

14.6 The package LOW_LEVEL_IO is empty.

8.3 Basic File Mapping

The relation between Ada files and GCOS 8 £files is discussed in
this section. The default external characteristics can be modified
by the FORM parameter of the OPEN and CREATE operations as

discussed in Section 8.4.
8.3.1 Sequential_IO
An Ada sequential file is mapped to a GFRC System Standard

seguential file. An element, which cannot be greater than
2*+18-1 bytes, 4is mapped to a control interval on the

c:tcrngl file.
. 03 02 Dt't.ct_zo

2 e :
badntataty .‘h'.?s‘.:‘\,_.

II1X. IMPLEMENTATION DEPENDENCIES
~LRM APPENDIX “"F*

s% An Ada direct file is mapped to a GFRC System Standard file.
" 8.3.3 Text_IO0

Linel of text are mapped into records on an external file.
For output, the following rules apply.

B The Ada 1line terminators and file terminators are never
explicitly stored. Page terminators, except the last, are
mapped into a "formfeed" character trailing the last line of

. the page. (In particular, an empty page (except the last) is

< 8 mapped into a single record containing only a "formfeed"

‘ character). The last page terminator in a file is never
represented in the external file. It is not possible to write
records containing more than 512 characters. That is, the

maximum line 1length is 511 or 512, depending on whether a

page terminator ("formfeed” character) must be written or

not. Input of more than 512 characters in a record will raise

a USE_ERROR exception.

On input, a "formfeed"™ trailing a record indicates that the
record contains the last line of a page and that at least one
b more page exists. The physical end of file indicates the end
> of the last page.

Ll

i Text-I0 files are represented externally as GFRC files in
o system standard format containing variable 1length ASCII
records (media code 6).

Text_IO standard-input is named "SYSIN" and is read from file

code "I*", STANDARD_OUTPUT is named “"SYSPRINT" and is written

to file code "P*", Both are directed to a terminal when the

Ada program is run with program switch word bit 19 set to

indicate an interactive program. The "connect to slave" name
- is the SNUMB of the Ada program.

8.4 FORM Paranmeter

The FORM string parameter supplied with an OPEN or CREATE procedure

enables control over external file properties. The current implementa-

tion makes no semantic checks on the content of the FORM string and 80
: does not prohibit illogical settings of external properties of files.

-
-2

-

s The syntax of the FORM parameter is as follows:
form_parameter s:= (srce] lsaua(.paeo paran}]}
¢

pacam s1= - keyword space value
keyword ss= letter {letter)
letter ss= AlBl...|2lalbl...Is
value - ss= number |letter{letter)
number . s 1= °l1.ooo|’

III. IMPLEMENTATION DEPENDENCIES
-LRM APPENDIX "P"

Notes:

o Letters may be in upper or lower case

o Numbers must be positive decimal integers

o0 Keywords and values are derived directly from the "$ FFILE" parameters
listed in the General Loader Manual (DD10)

9. PACKAGE STANDARD

The implementation dependent predefined types defined
in package STANDARD are described in the GCOS 8 Ada
User Manual (order number DY76) on pages 4-2 thru 4-4.
Copies of this information are inserted here.

10. FILE NAMES

File names follow the conventions and restrictions of
the GCOS 8 operating system with the following
qualifications. A file name and its superordinate
catalog names are separated by slashes (*/"). Names
consist of 1 to 12 characters composed of letters,
digits, periods, underscores and hyphens. A maximum
limit of 10 levels of qualification is allowed. A file
name alone signifies that the file is directly below
the current user master catalog. Use of passwords is

not supported.

R L B il i AT At A e oviia
iR ananas o

PREDEFINED TIPES

This sudbsection discusses the ixplementatico-dependent predefined types
declared 4n the predefined package STANKOLAD (4da RCfCl‘CncO Manual, Appendix C)
and the relevant attridbutes of these types.

-]
©

BOOLEAN types are implemented as descridbed in the Ada Referecce Manual.

Type CEARACTER 43 represented in cne word.

Type STRING s represented as one charscter per byte. Any string
comparisons use unsigned compere instructions.

Integer tn-

Tvo predefined integer types are implesected: INTEGER, and LONG INTEGER, in
addition to the anonymous predefined type UNIVERSAL INTEGER.

They have the following attridbutes:

INTEGER'PIRST = =34 359 738 368
INTEGER'LAST . 3!“359"!3&‘367
INTRGER'SIZE .

LONG_INTEGER'FINST s -2 361 183 201 434 822 606 848
LONG INTEGER'LAST = 2 'm T183_20170327822606_ 847
LONG_INTEGER'SIZE

VLN T

VYariables of type INTEGER are represented by a single word. Operatiops on
INTEGER variables use 36-bit two's complement arithmetic. :

Type LONG _IKTEGER is represented by a doudble word value. Operations i:n LONG
INTEGER use T2-bit two's complement arithmetic, .

Ploating-Point Types

Two predefined floating-point types are ixplemented, FLOAT and LONG FLOAT, in
addition to the anonymous predefined type UNIVERSAL REAL.

© Type FLOAT is represented by the 36-bit bardware hexadecimal
floating-point format.

© Type LONG FLOAT uses the T2-bit bardware, bexadecimal floating-point
format. This is similar to the 36-bit format, except that it bas a
63-bit mantissa.

The floating-point types bave the following attributes:

FLOAT'DIGITS s 6

FLOAT'FIRST = =1640.1#E128

FLOAT'LAST = 1640 .FFFFFFE4E127

FLOAT 'MACHINE BMAX = 127

FLOAT'MACEINE_EMIN = =128

FLOAT 'MACHINE MANTISSA s6

FLOAT 'MACHINE_OVERFLOWS = TRUE

FLOAT 'MACHINE RADIX s 16 -
PLOAT *MACHINE_ROUNDS = TRUE

PLOAT*SAFE_EMIX = 508

PLOAT'SAFE_LARGE = 1640 .FFFFFFRAE127
PLOAT'SAFE_SMALL = 1640.14E-128

FLOAT'SIZE = 36

LONG_PLOAT'DIGITS s 17

LONG_PLOAT'FIRST = =16#0.14E128
LONG_FLOAT'LAST = 1640 .FFFF_FFFF_FFFF_FFFE#E127
LONG_FLOAT "MACEINE DMAX s 127

LONG_FLOAT *MACEINE_ EMIN s =128

LONG PLOAT 'MACHINE MANTISSA = 15

LONG_FLOAT 'MACHINE OVERPLOWS = TRUE

LONG_FLOAT 'MACHINE RADIX s 16
LONG PLOAT 'MACEINE ROUNDS s TRUE.

LONG FLOAT *SAFE_BMIX = 508

el LONG_YLOAT'SAFE_LARGE = 1600.FFFF_FYFP_FITT_FFTEIE12?
) LONG_PLOAT 'SAFL_SMALL = 1600.145-T20

i LONG_FLOAT'SIZE s 72

€7 puarrs way s cmanam a3 DY76-00

}
-
Pixed Point Types
Two kinds of anonymous predefined fixed-point types are implemented: FIXED and (

LONG FIXED in addition to the anonymous predefined type UNIVERSAL FIXED or
UNIVERSAL REAL. Note tbat FIXED and LONG FIXED are pot defined in package
STANDARD, but only used here for reference.

For objects of FIXED types, 36 bita are used for the representation; for LONG
FIXED, 72 bits ars used.

For each of FIXED and LONG FIXED there exists a virtual predefined type for
each possible value of SMALL (refer to tbe Ada Reference Manual, subsection
3.5.9). The possidle values of SMALL are the powers of two that are
representable by a LONG FLOAT value.

The lower and upper bounds of these types are:

Lover bound of FIXED types
s =34 359 738 368 ®# SMALL
Upper bound of FIXED types
s 34 359 738 367 ® SMALL
Lower Bound of LONG FIXED types
= -2 361_183_241 A34 822 606_848 ® SUALL
Upper bound of LONG PIXED types
= 2_361_183_241_A3N 822 606_8a7 ¢ SMALL

A user-defined fixed point type is represented as that predefined FIXED or LONG
FIXED type that bas the largest value of SMALL mot greater than the (
user-specified DELTA, and which bhas the szallest range that includes the

user-specified range.

Any fixed point type T bas the following attridbutes:

T'MACHINE OVERPLOWS = TRUE
T'MACHINE ROUNDS = FALSE

The Type DURATION
Type DURATION is represented as a 72-bit LONG-FIXED representation.

The predefined fixed point type DURATION bas the following attributes:

DURATION'DELTA = 0.0000015625 ,

DURATION'FIRST = -2 251 799 813 685 248.0

DURATION'LAST = 2 251_T99_U13_885_217.99999904632568359375
DURATION'SIZE = 712

DURATION'SMALL s 201.0¢5-20

Type COUNT

The range of the type COUNT defined in package DIRECT IO and in package TEXT_I0
4s 0..INTEGER'LAST,

DRAFT: MAY BE CEANGED A=A DYT6=00 .

— laddad Aol gl

APPENDIX C
TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent
values, such as the maximum length of an input line and invalid
file names. A test that makes use of such values is identified
by the extension. TST in its file name. Actual values to be
substituted are identified by names that begin with a dollar
sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given
below.

Name and Meaning Value
$BIG_ID1 BI<l20x%"G">_1ID1

Identifier of size MAX_IN_LEN
with varying last character.

$BIG_ID2 BI<120x"G">_1ID2
Identifier of size MAX_IN_ LEN
with varying last character.

$BIG_ID3
BI<100x"G">3<20x"G">_ID
Identifier of size MAX_IN_LEN
with varying last character.

$BIG_ID4
BI<100xX"G">4<20x"G">_1ID
Identifier of size MAX_IN_LEN
with varying last character.

$BIG_INT_LIN <123x"0">298
An integer literal of value 298
with enough leading zeroes so
that it is MAX_IN_LEN characters
long.

C-1

o,.._-- TR S AT A AT S <
NS XSO .“'\3. X '~5‘»‘| .U.“ A IATATN 'l' LA 30 MM

Name and Meaning

$BIG_REAL_LIT
A real literal that can be
either of floating or fixed
point type, has value 690.0, and
has enough leading zeroes to be
MAX_IN_LEN characters long.

$BLANKS
Blanks of length MAX IN LEN - 20

$CNT_LAST
Value of CNT'LAST in TEXT_ IO
package.

SEXTENDED_ASCII_CHARS

Vvalue
<120x"0">69.0E1

<106x" ">

34_359_738_367

abcdefghijklmnopgrstuvwxyz!$$?2@[\]~'()~"

A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_LAST
Value of Field'LAST in TEXT_IO
package.

S$FILE_NAME_WITH_BAD_CHARS
An illegal external file name
that either contains invalid
characters or is too long.

$FILE_NAME_WITH_WILD_CARD_CHAR
An external file name that
either contains a wild card
character or is too long.

SGREATER_THAN_DURATION
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION

$GREATER_THAN_DURATION_BASE_LAST
The universal real value that is
greater than DURATION'BASE'LAST.

S$ILLEGAL_EXTERNAL_FILE_NAME
Illegal external file name.

C-2

— S
ROV AR A

75

F{(*FILE

N234567890123

2_600_000_000_000_000.0

2_600_000_000_000_000.0

F@LENAME

,.u”
i o YA
DN AL T A

o
»

-

ame an

SILLEGAL_EXTERNAL_FILE_NAME2

Illegal external file names.

SINTEGER_FIRST
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER_LAST
The universal integer literal
expression whose value is
INTEGER'LAST.

SLESS_THAN_DURATION
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS_THAN_DURATION_BASE_FIRST
The universal real value that is
less then DURATION'BASE'FIRST.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

SMAX_IN_LEN
Maximum input line length
permitted by the implementation.

$NAME
A name of predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER,

$NEG_BASED_INT

A based integer literal whose
highest order nonzero bit =
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

$NON_ASCII_CHAR_TYPE
An enumerated type definition
for a character type whose
literals are the identifier
NON_NULL and all non-ASCII
characters with printable
graphics.

C=3

‘ 'h‘q'% K

WP

Value

MUCHTOOLONGFORFILENAME

-34_359_738_368

34_359_738_367

-2_600_000_000_000_000.0

=-2_600_000_000_000_000.0

17

126

164FFFFFFFFFFFFFFFFFF#

(NON_NULL)

llli AEHES
l uv'Il I ‘ningl h;‘p AN

K Al
L)

APPENDIX D
WITHDRAWN TESTS

iy Some tests are withdrawn from the ACVC because they do not
) conform to the Ada Standard. When testing was performed, the
;&“ following 19 tests had been withdrawn at the time of

i validation testing for the reasons indicated:

. B4A0O10C: The object_declaration in line 18 follows
ytd a subprogram body of the same declarative part.

BN . BC3204C: The file BC3204C4 should contain the body
iy for BC3204CO as indicated in line 25 of BC3204C3M.

. C35904A: The elaboration of subtype declarations
e SFX3 and SFX4 may raise NUMERIC_ERROR (instead of
CONSTRAINT_ERROR) .

W . C41404A: The values of 'LAST and 'LENGTH are
o incorrect in IF statements from line 74 to the end
of the test.

l:ﬁ . C48008A: This test requires that the evaluation of
:-ﬁ default initial values not occur when an exception
! is raised by an allocator. However, the Language
Ny Maintenance Committee (IMC) has ruled that such a

requirement is incorrect (AI-00397/01).

- -
-

. C32114A: An unterminated string literal occurs at
line 62.

L8

ol

LT et D
A

2 . B33203C: The reserved word "IS" is misspelled at
line 45.

“h . C34018A: The call of function G at line 114 is
e ambiguous in the presence of implicit conversions
) and inconsistent without.

. B37401A: The object declarations at lines 126-135
o follow subprogram bodies declared in the same
W declarative part.

" . B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized
R with a value of the wrong type (PRIBOOL_TYPE instead
of ARRPRIBOOL_TYPE) at line 41.

$‘ . B49006A: Object declaratives at lines 41 and 50 are
o terminated incorrectly with colons; "END CASE;:" is
missing from line 42.

BUROUACR N W ’ ()
2 5‘"‘\“,.‘ .;'*(‘5.:‘*‘% AT

RUOUOORO W) ¥ OO JOARERAD SALOOR Y 300 Ty Py
S ..) ﬁ‘; e Qe .w"‘i‘ 3;{“..“.; .;4':‘“:!‘: R 71',““".!" i"-\lutit" ._ he _“‘;6“‘“",".!&'&'s‘i..“ ‘Q-..."*

. B74101B: The "BEGIN" at line 9 is mistaken; it
causes the declarative part to be treated as a
sequence of statements.

. C87B50A: The call of "/=" at line 31 requires a
"USE" clause for package A.

. C92005A: At line 40, "/=" for type PACK.BIG_INT is
not visible without a "USE" clause for package PACK.

. C940ACA: This test assumes that allocated task TT1
will run prior to the main program, and thus assign
SPYNUMB the value checked for by the main program;
however, such an execution order is not required by
the Ada Standard, so the test is erroneous.

. CA3005A..D (4 tests): No valid elaboration order
exists for these tests.

END OF LIST

. LT
F70403S | 1037

FSV87VSRHIS518A

Ada* COMPILER
VALIDATION SUMMARY REPORT:
Honeywell Information Systems
GCOS-8 V2.0

Completion of On-Site Validation:
: 3 April 1987

Prepared By:

Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

) Building 225, Room A266

© Gaithersburg, MD 20899

S w
" e .

Prepared rFor:
Ada Joint Program Office
United States Department of Defunse
Washington, D.C.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

