
-AiBI 895 ADA (TRADENNANE) COMPILER VALIDATION SUMMARY REPORT /
HARRIS CORPORATION HA (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER W-P AFS OH ADA VALI 39 APR 87

UNCLASSIFIED C/1/5 AL

IIIIIIIIII.IIIIIIIIIII
EhIIIhhhhIIIIIIIIIIIE

.L .160

111L2

MICROCOPY RESOLUTION TEST CHART

NATIONAL SUftfAU OF STANO MI-"3 -A

UNCLASSIFIED IItLL~i
4SECURITY CLASSIFICATION OF THIS PAGE (When Oata Entered) Big i -L

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETEING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NVMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 30 APR 1986 to 30 APR 1987
Harris Corporation, HARRIS Ada Compiler,
Version 1.0, Harris H1200 and H800 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AVF-WPAFB, Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 3. NUMBEK OF PAGES
Washington, DC 20301-3081 35

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (ofthisreport)
Wright-Patterson UNCLASSIFIED

15a. R FICATION/DOWNGRADING

_0 1 N/A
16. DISTRIBUTION STATEMENT (ofthisReport)

Go" Approved for public release; distribution unlimited.

I.-

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report) D T iC
UNCLASSIFIED

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
ACompiler Validation Capability, ACVC, Validation Testing, Ada

Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD um 1473 EDITION OF I NOV 65 IS OBSOLETE

I JaM 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

EXECUTIVE SUI4ARY

This Validation Summary Report (VSR) sumarizes the results and conclusions
of validation testing performed on the HARRIS Ada Compiler, Version 1.0,
using Version 1.7 of the dae Compiler Validation Capability (ACVC).

The validation process includes submitting a suits of standardized tests
(the ACVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during
execution.

On-site testing was performed 28 APR 1986 through 30 APR 1986 at Harris
Corporation, Ft. Lauderdale FL, under the auspices of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The HARRIS Ada Compiler, Version 1.0, is hosted on a Harris
H1200 operating under VOS 5.1. It is also hosted on a Harris H800
operating under VOS 5.1.

The results of validation are summarized in the following table:

RESULT TEST CLASS TOTAL
A 9 C D 9 L

Passed 68 815 1051 17 9 21 1981

Failed 0 0 0 0 0 0 0

Inapplicable 0 9 269 0 2 2 282

Withdrawn 0 4 12 0 0 0 16

TOTL 68 828 1332 17 11 23 2279

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

Adae Compiler Validation mary Report:

Compiler Name: HARRIS Ada Compiler, Version 1.0 1

Host Computers: Target Computers:
Harris H1200 Harris H1200

under under
VOS 5.1 VOS 5.1

and and

Harris H800 Harris H800
under under

VOS 5.1 VOS 5.1

Testing Completed 30 APR 1986 Using ACVC 1.7

This report has been reviewed and Is approved.

-_ lAda 1aikton aoility

Georgeanne Chitwood
ASD/SIOL
Wright-Patterson AFB OH 145433-6503

N.. _

J alida ti n O t o ::. " ..

k1r. John F. Krmer J- .

Institute for Defense Analyses
Alexandria VA

- Dis ributiton/ -

Availability Cedes
Avail and/or

Dist Special

Ada Mt Program Ofc
Virginia L. Castor
Director
Department of Defense
Washington DC

eAda is a registered trademark of the United States Government

(Ada Joint Program Office).--,-' 11
-- oI

AVF Control Number: AVF-VSR-29.0886

Ada ® COMPILER
VALIDATION SUMMARY REPORT:

Harris Corporation
HARRIS Ada Compiler, Version 1.0

Harris H1200 and H800

Completion of On-Site Validation:

30 APR 1986

Prepared By:
Ada Validation Faoility

ASD/SIOL
Wright-Patterson AnB OH J5i33-6503

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington, D.C.

*Ada Is a registered trademark of the United States Government
(Ada Joint Program Offioe).

+ Plaoe NTIS form here +
+

4

EXECUTIVE SUMMARY

This Validation Sumnary Report (VSR) summarizes the results and conclusions
of validation testing performed on the HARRIS Ada Compiler, Version 1.0,
using Version 1.7 of the Ads' Compiler Validation Capability (ACVC).

The validation process includes submitting a suite of standardized tests
(the ACVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the compiler to ANSI/HIL-STD-1815A Ada
by testing that it properly implements legal language construots and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during
execution.

On-site testing was performed 28 APR 1986 through 30 APR 1986 at Harris
Corporation, Ft. Lauderdale FL, under the auspices of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The HARRIS Ada Compiler, Version 1.0, is hosted on a Harris
H1200 operating under VOS 5.1. It is also hosted on a Harris H800
operating under VOS 5.1.

The results of validation are sumarized in the following table:

RESULT TEST CLASS TOTAL
A B C D 3 L

Passed 68 815 1051 17 9 21 1981

Failed 0 0 0 0 0 0 0

Inapplicable 0 9 269 0 2 2 282

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

eAda is a registered trademark of the United States Government
(Ads Joint Program Office).

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this

validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

. SHORT INTEGER, LONG-INTEGER, SHORT FLOAT, and LONG-FLOAT are not
supported.

" Representation specifications for noncontiguous enumeration
representations are supported.

" Generic unit specifications and bodies can be compiled in separate

compilations.

" Pragma INLINE is not supported for procedures or functions.

" The package SYSTEM is used by package TEXT O.

N Modes IN-FILE and OUT-FILE are supported for sequential I/0.

" Instantiation of the package SEQUENTIAL1 with unconstrained
array types is supported.

" Instantiation of the package SEQUENTIAL1 with unconstrained
record types with discriminants is supported.

" RESET and DELETE are supported for sequential and direct I/0.

" Nodes IN FILE, INOUTFILE, and OUT-FILE are supported for direct
I/0.

" Instantiation of pacage DIRECT 10 with unconstrained array types

and unconstrained types with discriminants is supported.

" Dynamic creation and deletion of files are supported.

. Only one internal file can be associated with the same external
file.

" Illegal file names can exist.

ACVC Version 1.7 was taken on-site via three magnetic tapes to Harris
Corporation, Ft. Lauderdale FL. All tests, except the withdrawn tests and
any executable tests that make use of a floating-point precision greater
than SYSTmN.AXDIGIT3, were compiled on a Harris H1200. Class A, C, D,
and E tests were executed on a Harris H1200.

The compiler on the Harris H800 vas tested using a subset of the ACVC tests
run on the Harris H1200. Five tests were chosen at random from the set of
ACVC tests for each chapter of the Ada Standard and were compiled and
executed on the Harris H800. The 60 test results were printed from the
H800, reviewed by the validation team, and vere determined to have produced
correct results.

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests vere analyzed for correct detection of errors.

The AVF identified 2021 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the HARRIS Ada Compiler,
Version 1.0. 3xoluded were 242 tests requiring a floating-point precision
greater than that supported by the implementation and the 16 withdrawn
tests. After the 2021 tests were pio essed, 40 tests were determined to be
inapplicable. The remaining 1981 tests were passed by the compiler.

The AVT concludes that these esults demonstrate acceptable conformance to
AtSI/MIL-S3T- 1815A.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.*1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1 .3 RELATED DOCUMENTS 1-3
1.11 DEFINITION OF TERMS 1-3
1.5 ACYC TEST CLASSES .* . . o . . . * 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED o o . . o o . . . 2-1
2.2 CERTIFICATE INFORMATION o . . 2-2
2.3 IMPLEMENTATION CHARACTERISTICS o o . . . 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS o 3-1
3.2 SUMMARY OF TEST RESUJLTSBY CLASS 3-1
3.3 SUMMARY OFTEST RESULTS BY CHAPTER . o . . . o . . 3-2
3.4 WITHDRAWN TESTS - - o o 3-2

3.5 INAPPLICABLETS3-2
3.6 SPLIT TESTS . . o * e * - o- - - * - o .-

3.7 ADDITIONAL TESTING INFORMATION.o3-

3.7.1 Prevalidation o o . . . o - 3-4

3.7.2 Test Methodo 3-4

3.7.3 Teat Site 3-5

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER I

INTRODUCTION

This Validation Summary Report. (VSR) describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/HIL-STD-1815A). Any implementation-dependent features must conform
to the requirements of the Ada Standard. The entire Ada Standard must be
implemented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers oonform to ANSI/MIL-STD-1815A, it
must be understood that some differences do exist between Impleentations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRa are written according to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publioation of the report.

1. I PURPOSE OF THIS VALIDATION SUHARY REPORT

This VSR doouments the results of the validation testing performed on an
Ada oompiler. Testing was oarried out for the following pUrpose8:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

I I I I

INTRODUCTION

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 28 APR
1986 through 30 APR 1986 at Harris Corporation, Ft. Lauderdale FL.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ALSI/MIL-STD-1815A other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1-2

INTRODUCTION

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that

demonstrates nonconformance to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

LMC The Language Maintenance Committee whose function is to
resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

1-3

INTRODUCTION

Test A program that evaluates the conformance of a compiler to a
language specification. In the context of this report, the
term is used to designate a single ACVC test. The Pext of a
program may be the text of one or more compilations.

Withdrawn A test found to be inaccurate in checking conformance to the
test Ada language specification. A withdrawn test has an invalid

test objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, 9, and L;. The first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the retsults of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class t, tests are
expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that
res eved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing Is examined to verify that every syntactical
or semantic error. in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

1-4

INTRODUCTION

Each Class 9 test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs contafning some
features addressed by Class 8 tests during compilation. Therefore, a Class
3 test is passed by a compiler if It is compiled successfully and executes
to produce a PASSED message, or If it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
voultiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to e.eoute the main program must generate an error message before any
declaeations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package'REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK FILE in used to check the contents of text files written by some of
the Class C tests for chapter 1i of the Ada Standard.

The operation of these units is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformanoe to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The nonconformant
tests are given in Appendix D.

1-5

1~.~

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The oandidate compilation system for this validation was tested under the
following configurations:

Compilers HARRIS Ada Compiler, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

'lost Computers:

Machine: Harris H1200 Harris H800

Operating System: VOS 5.1 VOS 5.1

Memory Size: 62914156 bytes 6.2914156 bytes

Target Computers:

Machine: Harris H1200 Harris HBOO

Operating System: VOS 5.1 VOS 5.1

Memory Sizes 6291456 bytes 62914156 bytes

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Configurations:

Compiler: HARRIS Ada Compiler, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 16 JUN 1986

gost Computers:

Machine: Harris H1200 Harris H800

Operating System: VOS 5.1 VOS 5.1

Target Computers:

Machine: Harris H1200 Harris H800

Operating System: VOS 5.1 VOS 5.1

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and 9 tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standards

. Nongraphio characters.

Nongraphic characters are defined in the ASCII character set but
are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as illegal in
Ada compilations. The characters are printed in the output
listing. (See test B26005A.)

; Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures nested to 17 levels. It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests D55AO3A through D55AO3H,
D56001B, D640052 through D60050, and D29002K.)

2-2

CONFIGURATION INFORMATION

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.HAX INT. This
implementation does not reject such caloulations and processes
them correctly. (See tests D4AOO2A, D4AOO2B, D4AOO4A, and
D4AOOIB.)

" Predefined types.

This implementation does not support any additional predefined
types in the package STANDARD. (See tests B86001CR, A86001CS,
B86001CP, B86001CQ, and B86001DT.)

" Based literals.

An implementation is illowed to reject a based literal with a
value exceeding SYSTEI.NAlINT during compilation, or it may raise
NUMERIC-ERROR during execution. This implementation raises
NUMERIC-ERROR during execution. (See test E241O1A.)

" Array types.

When an array type is declared with an index range exceeding the
INTEOER'LAST values and with a component that is a null BOOLEAN
array, this compiler raises NUMERIC ERROR when the type is
declared. (See tests E36202A and E36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See test
C521031.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the length of a dimension is
calculated and exceeds INTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEOER'LAST may raise NUMERIC ERROR either when declared or
assigned. Alternately, an implementation may accept the
declaration. However, lengths must match in array slice
assigment8. This implementation raises NUMERIC-ERROR when the
array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

2-3

CONFIGURATION INFORMATION

. Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test 938104A.)

In assining record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

" Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an agregate containing subaggregates, all
choices are evaluated before being chocked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test 9432119.)

. Functions.

The declaration of a paraeterless function with the same profile
as an enumeration literal in the same imediate scope is rejected
by the implementation. (See test 266001D.)

" Representation clauses.

Enumeration representation clauses are supported. (See test
BC 1002A.)

. Praams.

The pragma INLINE is not supported for procedures nor is it

supported for functions. (See tests CA3004E and CA300IF.)
* Input/output.

The package SEQUENTIALIO can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT 10 can be Instantiated with unconstrained array types and
record types with disoriminants without defaults. (See tests
CE2201D, CE2201E, and CE24O1D.)

2-4

CONFIGURATION INFORMATION

Only one internal tile can be associated with each external tile
for sequential, direct, and text I/O. (See tests CE2107A .. D (4
tests), CE2107F, and CE3111A .. 3 (5 tests).)

An existing text tile oan be opened in OUT FILE mode, but it
cannot be created in OUT-FILE mode or in IN FILE mode. (See test
--3102C.)

Temporary sequential and direct tiles are given a nme. Temporary
tiles given names are deleted when they are closed. (See tests
CE2108A and C22108C.)

2-5

IAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The ATF identified 2021 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the HARRIS Ada Compiler,
Version 1.0. Excluded were 2412 tests requiring a floating-point precision
greater than that supported by the implementation and the 16 withdrawn
tests. After they were processed, 40 tests were determined to be
inapplicable. The remaining 1981 tests were passed by the compiler.

The AV7 conoludes that the testing results demonstrate acceptable
conformance to the Ada Standard.

3.2 SU4ARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D 9 L -

Passed 68 815 1051 17 9 21 1981

Failed 0 0 0 0 0 0 0

Inapplicable 0 9 269 0 2 2 282

Withdrawn 0 41 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER
2...6.--1-- 8__._I _ 11 12 14TOTAL

Passed 96 201 272 241 160 97 155 198 99 28 216 218 1981

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 106 122 6 1 0 6 1 6 0 0 l4 282

Withdrawn 0 1 4 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7t

BAO10C C41404A CA1003B
B83A06B C48ooA CA3005A through CA3005D (4 tests)
BA2001E C4AO1lIA CE2107E
SC3204C C92005A
C35904A C940ACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 282 tests were inapplicable for
the reasons indicated:

* C3001D, B52004E, B55B09D, B86001CR, and C55BO7B use SHORT-INTEGER
which is not supported by this compiler.

• C34OOIE, B52004Dg B55B09C, B86001C5, and C55BO7A use LONG-INTEGER
which is not supported by this compiler.

• C3oo1F, C35702A, and B86001CP use SHORT-FLOAT which is not
supported by this compiler.

40 C31010, C35702B, and B86001CQ use LONG FLOAT which is not
supported by this compiler.

3-2

TEST INFORMATION

" C6i4103A follows the interpretation of AI-387 that permits
implementations to raise CONSTRAINT-ERROR instead of
NUMERIC-ERROR.

" 38600 IDT requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation.

" C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATIONS' s base type. This is not the case for
this Implementation.

" CA300JII, ZA3004C, and .LA300'IA use INLINE pragma for procedures
which is not supported'by this compiler.

"CA3004PO ZA300'ID, and LA3004IB use INLINE pragma for functions
which is not supported by this compiler.

"C22107A, CE2107B, CE21O'TD, CR21077, CE21108, CE2111D, CZ2111H,
C23111A .. 3 (5 tests), CE311IID, and CE3115A are inapplicable
because multiple internal files cannot be associated with the same
external file.

" 22 tests were not processed because SYSTEM.MAX-DIGITS was nine.
These tests were:

C241131P through C24113Y (20 tests)
C35705? through C35705Y (20 tests)
C357061P through C35706Y (20 tests)
C3570TIP through C3570T1 (20 tests)
C35708' through C35708T (20 tests)
C35802' through C35802Y (20 tests)
C45241F through C45241T (20 tests)
C45321F through C45321Y (20 tests)
C45421F through C454&21Y (20 tests)
C45424F through C4I54I24 (20 toots)
C45521F through C45521Z (21 tests)
C45621V through C45621Z (21 tests)

3.6 SPLIT TZSTS

If one or more errors do not appear to have been detected in a Class 3 test
becamse of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors.* These splits are then
compiled and examined.* The splitting process continues until all errors
are detected by the compiler or until there Is exactly one error per split.

3-3

i. P

TEST INFORMATION

Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 18 Class B tests.

B24104A B241O4B B24104C
B2AO03A B2A003B B2AO03C
B33004A B37201A B38008A
B41202A B4001A B64001A
B67001A B67001B B67001C
B67001D B910ABA B95001A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
the HARRIS Ada Compiler, Version 1.0, was submitted to the AVF by the
applicant for prevalidation review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests.

3.7.2 Test Method

Testing of the HARRIS Ada Compiler using ACVC Version 1.7 was conducted
on-site by a validation team. The configurations consisted of a Harris
H1200 host. and target computer operating under VOS 5.1 and a Harris H800
host and target computer operating under VOS 5.1.

Three magnetic tapes containing ACVC Version 1.7 were taken on-site by the
validation team. The magnetic tapes contained all tests applicable to this
validation, as well as all tests inapplicable to this validation except for
any Class C tests that require floating-point precision exceeding the
maximum value supported by the implementation. Tests that make use of
values that are specific to an implementation were customized on-site after
the magnetic tapes were loaded. The split for test B41202A was missing
from the validation tapes and was split at the validation site. All other
tests requiring splits during the prevalidation testing were included in
their split form on the magnetic tapes.

The contents of the magnetic tapes were loaded directly onto two Harris
H1200 computers. After the test files were loaded to disk, the full set of
tests was compiled and run in batch mode on the Harris H1200 computers.
Test results were printed and reviewed by the validation team.

3-4

TEST INFORMATION

The ocmpile. on the Harris HO0 was tested using a subset of the ACVC tests
run on the Harris H1200. Five tests were chosen at random from the set of
ACVC tests for each chapter of the Ads Standard and were compiled and
executed on the Harris 1800. The 60 test results were printed, from the
H600, reviewed by the validation teas, and were determined to have produced
correct results.

The compiler was tested using omemand scripts provided by Harris
Corporation. These scripts were reviewed by the validation team. The
following switches were in effect for testing:

All tests were compiled with the options:

-v (verbose)

-el (error listing)

Those which compile and link used:

-M <unit name> (main unit name)
-o <a.out> (output-filename is Oa.out')

For the main library units that execute only:

-o <a.out> (output filename is "a.out")

Under the operating system VOS 5.1, there were two settings used for the
testbed program size. All but five tests used 512 words of memory. Five
tests required 2047 words of memory:

C111203B
C45526A
C52102B
C52102D
C236041A

Test output, compilation listings, and Job logs were captured on magnetic
tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at Harris Corporation, Ft. Lauderdale FL on 28
APR 1986 and departed after testing was completed on 30 APR 1986.

3-5

APPENDIX A

COMPLIANCE STATEMENT

Harris Corporation has submitted the following
compliance statement conoerning the HARRIS Ada
Compiler.

A-1

COMPLIANCE STATEMENT

Compliance Statement

Configurations Tested:

Compiler: HARRIS Ada Compiler, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): Harris H1200 Harris H800

Operating.System: VOS 5.1 VOS 5.1

Target Computer:

Machine(s): Harris H1200 Harris H800

Operating System: VOS 5.1 VOS 5.1

Harris Corporation has made no deliberate extensions to the Ada language

standard.

Harris Corporation agrees to the public disclosure of this report.

Harris Corporation agrees to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office.

~ Date:

Harris Corporation
Wendell Norton
Director of Contracts

A-2

p~ 11"

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain achine-dependent convent!,..s as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the HARRIS Ada Compiler, Version 1.0, are described in the following
sections which discuss topics one through eight as stated in Appendix F of
the Ada Language Reference Manual (ANSI/MIL-STD- 1815A). Two other
sections, package STANDARD and file naming conventions, are also included
in this appendix.

1 Pragmas

1.1 Implementation-Dependent Pragmas

PRAGMlA CONTROLLED is recognized by the implementation but
has no effect in this release.

PRAGMA INLINE is recognized by the implementation but has no
effect in this release.

PRAGMA INTERFACE is recognized by the implementation and
supports calls to C and FORTRAN language functions with an
optional link name for the subprogram. The Ada
specifications can be 4ither functions or procedures. All
parameters must have mode IN.

For C, the types of parameters and the result type for
functions must be scalar, access, or the predefined type
ADDRESS defined in the package SYSTEM. Record and array
objects may be passed by reference using the ADDRESS
attribute.

B-1

APPENDIX F OF THE Ada STANDARD

For FORTRAN, all parameters are passed by reference; the
parameter types must have the type ADDRESS defined in the
package SYSTEM. The result type for a FORTRAN functign must
be a scalar type. Care should be taken when using tasking
and FORTRAN functions. Since FORTRAN is not reentrant we
suggest that an Ada controller task should be used to
access FORTRAN functions.

The optional link name enables calling a function whose name
is defined in another language, allowing characters in the
name that are not allowed in an Ada identifier. Case
sensitivity can then be preserved. Without the optional
link name, the Ada compiler converts all C interface names
to lower case and all FORTRAN interface names to upper case.
For instance, the following example generates a reference
for Varl with no case or other changes: pragma INTERFACE
(language_name, Varl, O$Varlg) I

PRAGMA MEMORY.SIZE Is recognized by the implementation, but
has no effect. The implementation does not allow the
package SYSTEM to be modified by means of praguasi however,
the same effect can be achieved by recompiling SYSTEM with
altered values.

PRAGMA OPTIMIZE is recognized by the implementation but has
no effect in this release.

PRAGMA PACK will cause the compiler to choose a non-aligned
representation for composite types. In the current release,
it will not cause objects to be packed at the bit level.

PRAGMA SHARED Is recognized by the implementation but has no
effect in this release.

PRAGMA STORAGEUNIT Is recognized by the implementation but
has no effect. The implementation does not allow the
package SYSTEM to be modified by means of pragmast however,
the same effect can be achieved by recompiling SYSTEM with
altered values.

PRAGMA SUPPRESS Is recognized by the implemention and
applies from the point of occurrence to the end of the
innermost enclosing block. The double parameter form of the
pragma, with a name of an object, type, or subtype is
recognized, but has no effect.

PRAGMA SYSTEMNAME is recognized by the implementation but
has no effect. The implementation does not allow the
package SYSTEM to be modified by means of pragmasl however,
the same effect can be achieved by recompiling SYSTEM with
altered values.

Z-2

APPENDIX F OF THE Ada STANDARD

1.2 Implementation-Defined Pragmas

PRAGMA SHAREBODY is used to indicate a desire to share or
not share an instantiation. The pragma may referente the
generic unit or the instantiated unit. When it references a
generic unit, it sets sharing on/off for all instantiations
of that generic, unless overridden by specific SHARE_.ODY
pragmas for individual instantiations. When it references
an instantiated unit, sharing is on/off only for that unit.
The default is to share all generics that can be shared,
unless the unit uses PRAGMA IN LINE.

PRAGNA SHAREBODY is only allowed in the following places:
Lediately within a declarative part, immediately within a
package specification, or after a librpry unit in a
compilation, but before any subsequent compilation unit.

The form of this praga is:
pragma SBARE_9ODY (genericname, booleanliteral)
Note that a parent instantiation is independent of any
individual instantiation, therefore recompilation of a
generic with different parameters has no effect on other
compilations that reference it. The unit that caused
compilation of a parent instantiation need not be referenced
in any way by subsequent units that share the parent
instantiation.

Sharing generics causes a slight execution time penalty
because all type attributes must be indirectly referenced
(as if an extra calling argument were added). However, it
substantially reduces compilation time in most circumstances
and reduces program size.

2 Implementation-Dependent Attributes

There are no Implementation-dependent attributes in HAPSE.

3 Specification of the package SYSTEM

package SYSTEM is

type ADDRESS is private F
type NAME is (harris_vue)

UYST3N)A163 s constant NAME to harrisyue i

3-3

APPENDIX F OF THE Ada STANDARD

-- System-Dependent Constraints

STORAGE-UNIT : constant :- 8 p
MEMORY.SIZE : constant : 6_291_46 5

-- System-Dependent Named Numbers

MININT : constant s= - 8_388_608 p
MAXINT : constant :- 8_388_607 p
MAX DIGITS : constant :=98;
MAX MJITISSA : constant 38
FINEDELTA : constant := 2.0**(-30) p
TICK : constant := 0.01 p

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 23 1

AX A CSIZE : integer :- 32._767 * 3 p

private

type ADDRESS is new INTEGER;

end SYSTEM p

4 Restrictions on Representation Clauses

4.1 Pragma PACK

Bit packing is not supported. In the presence of pragma
PACK, components of composite types are packed to the
nearest whole STORAGEUNIT.

4.2 Length Clauses

The specification T'SIZE is not supported. The
specification TISMALL is not supported. The specification
T'STORAGESIZE is supported.

4.3 Record Representation Clauses

Component clauses must specify alignment on multiples of 3
STORAGEUNIT boundaries.

B-4

APPENDIX F OF THE Ada STANDARD

4.4 Address Clauses

Address clauses and interrupts are not supported.

5 Other Representation Implementation-Dependencies

Change of representation is not supported for record types.

The ADDRESS attribute Is not supported for the following
entities: static constants; packagesg tasks; labels; and
entries.

machine code insertions are not supported.

6 Conventions for Implementation-Generated Names

There are no implementation generated names.

7 Interpretation of Expressions in Address Clauses

Address clauses and interrupts are not supported.

8 Restrictions on Unchecked Conversions

The predefined generic function UNCECKEDCONVERSION cannot
be instantiated with a target type that is an unconstrained
array type or an unconstrained record type with
discriminants.

9 Implementation Characteristics of I/O Packages

9.1 Interpretation of Strings as Applied to External Files

Strings that contain names of external files are interpreted
in the following manners for each of the respective external
file environments.

B-5

APPENDIX F OF THE Ada STANDARD

VUE external files: file names may be composed of up to 512
characters of the ASCII character set except for 1/1,
ascii.nul, and non-printable characters. Further, the first
character of a file must be alpha-numeric, 0.0 or " e. If
the 0/0 character Is encountered in a string, it is
interpreted as a separater between file names that specify
VUR directories.

VOS external files: file names are composed of a I to 8
character qualifier plus a I to 8 character areaname. The
first character of the areaname must be alphabetic. The
remaining characters comprising the areaname may be drawn
from the following set of characters: A-I, 0-9, u, #, -, /P

and " =. The qualifier portion of a file name is
optional. If specified, it must be comprised of an account
portion, a name portion and an asterisk. The account
portion may be null, or 1-4 characters from the following
set: 0-9. The name portion may be null, or 1-4 characters
from the following sets A-I, 0-9. The name portion may not
be null if the account portion is not null. If lower came
letters are encountered in the string they are converted to
upper case.

9.2 Interpretation of Strings as Applied to Form Parameters

The OPEN and CREATE I/O procedures accept FORK parameters,
in order to specify Implementation dependent attributes of
files. The HAPSE implementation supports the attributes
described below. These attributes may be specified in any
order. Blanks may be inserted between attributes, however
none are required. No attribute can be specified more than
once. All attributes must be specified in uppercase. These
attributes are only applicable to CREATE calls. A form
string passed to OPEN Is ignored.

File Type Attributes
BL Blocked file
US Unblocked file
RA Random file

These attributes specify the VOS file type of a file to be
created. US Is the default for all files. In general, the
defaults should not be overrideen for direct and sequential
1/O.

B-6

- . , o

APPENDIX F OF THE Ada STANDARD

Double Buffered Blocking
DB Defines a BL type file as permanently double

buffered

This attribute can only be specified if the file type is BL.

Directory Type
CD The VOS directory entry for this file is to be

kept resident
DD The VOS directory entry is kept on disc

Access Parameters
PR PUBLIC READ
PW PUBLIC WRITE
PD PUBLIC DELETE
AR ACCOUNT READ
AN ACCOUNT WRITE
AD ACCOUNT DELETE
OW OWNER WRITE
OD OWNER DELETE

These attributes determine the access permissions associated
with a file. The default access is OW OD. Note that if any
access attributes are specified, then only the specified
accesses will be granted (i.e. OW OD is not assumed).

Pile Definition Attributes

A-n Access level, n - 0-15, VOS access required to access file
Bn Blocking factor, where n is 1-7 sectors
Cun Current size, where n is the number of sectors requested
E-n Eliminate date, where n is the number of days before purging
G-n Granule size, where n is the number of sectors per granule
M-n Maximum size, n a number of sectors to which file may expand
Pon Pack number, n - pack number of pack on which to create file
T-n Type number, n - 0-7, provided for user file classification

No spaces are allowed between the attribute letter, the
equal sign, and the integer value.

B-7

APPENDIX F OF THE Ada STANDARD

9.3 Implementation-Dependent Characteristics of DIRECTJO

Instantiations of DIRECTIO use the value NMXECS!IE as
the record six* (expressed In STORAGE,.UNI~s) when the size
of ELEMEUTTTYPE exceeds that value. for example, for
unconstrained arrays such as string where ELEM4ENT TYPE'SIZE
in very large, NMUPEC_.S!ZE is used Instead. MAXYEC_.PIZE
Is defined In SYSTEM and can be changed by a program before
instantiating DIRECT.JO to provide an upper limit on the
record size. In any case# the maximum size supported is
32_760 3 *STORAGEUNIT bits. DIRECTJO will raise
USE-EROR If MAXAECORDSIZE exceeds this absolute limit.

9.4 Implementation-Dependent Characteristics of SEQUENTIAL-10

Instantiations of SEQUENTIAL 10 use the value IIXRECSIZE
as the record size (expressed -in STORAGE,_UNITs) when the
site of ELEMEUTTYPE exceeds that value. For example, for
unconstrained arrays such as string where ELEMEWT._TYPE'SIZE
is very larger KAX-RECS!ZE is used instead. MAX..REC_.SIZE
Is defined In SYSTEM and can be changed by a program before
instantiating INTEGERJO to provide an upper limit on the
record size. In any case, the maximum size supported is
32_768 * 3 *STORAGE..UNIT bits. SZQUEMTIALXO will raise
USE ERROR if MAX REC SIZE exceeds this absolute limit.

Package STANDARD contains the following declarations:

type INTEGER is range -8388608 .. 8_388_607;

type FLOAT Is digits 9 range

type DURATION is delta 2111111.0E8rag 21E1 .
2#0.11111111111111111111111111111111111111*12 3

File names follow the conventions and restrictions of the target operating

DURATION'SMALL -3.90625E-03 seconds

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,, such
as the maximum length at an inout line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
nme * Actual values to be substituted are identified by names that begin

with a dollar sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given below.

Name and Meaning Value

$BIG IDl (1..498 o> 'A', 499 o> '11)
Identifier of size M4AX IN LEN
with varying last character.-

$BIG ID2 (1..498 o) WA9 499 => '2')
identi~fier of aize MAX -IN -LEN
with varying last character.

$BIG ID3 Ml.2419 o> 'A1, 250 0> '3',
Identifier of size MAX IN LEN 251..4199 0> 'A')
with varying middle character.

$BIG IDI (l..2419 => 'A', 250 0> '419

Identifier of aize MAX IN-LEN 251-.499 o> 'A)
with varying middle character.

$BIG INT LIT (1..4196 a> 10's 49T..499 0> 0298")
An integer literal of value 298
with enough leading zeroes so
that it is MAX-IN LEN characters
long.

C-i

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..493 0> '0', 4194..499 2> "69.OE1")
I real literal that an be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
MAX IN-LEN characters long.

$BLANKS (1..4T79 0> 1
Blanks of length MAX-IN LEN - 20

$COUNT LAST 8_388_607
Value of COUNT'LAST in TEXT 10
package.

$EXTENDED ASCII CHARS Pabcdefghijklmnopqrstuvwxyzt $%?Q(\J ' (1-"
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 8...388 607
Value of FIELDILAST in TEXT-10
package.

$FILE NAME WITH BAD CHARS ff./ BAD-CARACTER"
A illegal- external f ile name
that either contains invalid
characters or is too long.

$FILE NAME WITH WILD CARD CHAR u./CE21O2U & M1.2541 => ICI)
An external ile name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 100 000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$GREATER THAN DURATION BASE LAST 10000000000.0
The universal real value that is
greater than DURATION'BASE'LAMT

$ILLEGAL EXTERNAL FILE IAME1 u./OILLEOAL EXTERNAL FILE NAME 1"
Illejal externial file name.

$ILLEGAL EXTERNAL FILE NA)412 */no/such/directory/ILLEAL EXT FILE NANE2"
Illegal external file names.

C-2

TEST PARAMETERS

Name and Meaning Value

$INTEGER FIRST -8_388_608
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER LAST 8388_607
The universal integer literal
expression whose value is
INTEGER 'LAST.

$LESS THAN DURATION -100000.0
A universal real value that lies
between DURATION' BASE 'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS THAN DURATION BASE FIRST -1 0000000000.0
The universal real value that is
less than DURATIONtBASE'FIRST.

$MAX DIGITS 9
Maxim. digits supported for
floating-point types.

$MAX IN LEN 499 (plus line feed oharacter)
6amn input line length
permitted by the implementation.

$NAME LONG LONG-INTEGER
A name of a predefined nueric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONG INTEGER.

$KEG BASED INT 1 6#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM .14A ME.

$NON ASCII CHAR TYPE (NON-MULL)
An ernuerated type definition
for a character type whos.
literals are the identifier
NON NULL and all non-ASCII
oharacters with printable
graphics.

C-3

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

• B4AO1OC: The object-declaration in line 18 follows a subprogram
body of the same declarative part.

• B83AO6B: The Ada Standard 8.3(17) and AI-00330 ermit the label
LAB ENUMERAL of line 80 to be considered a homograph of the
enueration literal in line 25.

" DA2001E: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers." This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

• BC320C: The file BC3204C4 should contain the body for BC3204C0
as indicated In line 25 of BC320C3M.

• C35901A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUIERIC ERROR (instead of CONSTRAINT ERROR).

" C41O4A: The values of 'LAST and 'LENGTH are incorrect in IF
statements from line 74 to the end of the test.

• C48008As This test requires that the evaluation of default
initial values not occur when an exception is raised by an
allocator. However, the Language Maintenance Committee (LMC) has
ruled that such a requirement is incorrect (AI-00397/01).

D-1

WITHDRAWN TESTS

. CIIAO1A: The number declarations in lines 19-22 are incorrect
because conversions are not static.

" C92005A: At line i0, "/am for type PACK.BIG lIT is not visible
without a USE clause tor package PACK.

" C94I0ACA: This test assumes that allocated task TTI will run prior
to the main program, and thus assign SPYNUN the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is erroneous.

• CA1003B: This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed.
According to AI-00255, such a file may be rejected as a whole.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

CE2107E: This test has a variable, TEMPHAS NAME, that needs to
be given an initial value of TRUE.

D-2

I

~WYr~~ ~W W S V w

