"AD-A181 894 ADA (TRADENNANE) COMPILER VALIDATION SUNMARY REPGRT 11
INTERMETRICS INC 1758 CU> INFORMATION SVSTENS AND
TECHNOLOGY CENTER W-P AFB OW ADA VALI

UNCLASSIFIED

12/5 NL

END
g 97
DTI(

e

o

w
19

3

—
.—
er
ke

(=]
i 4

N
)

FEEFERE
EE

I
A

) MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDANDS 193 - &

s

I s :‘i

N
ol

V
K

; ECRECHCIN IERE R RS A LA "‘0h"|f.|" LAY DA 0 1 .l
3% 4Vt [} [: Lo AN ..:: h‘.'.‘ 'l’.':‘:

9“.)

“ .4 4
bl s

- AT P - WYy .
PN 11‘ d "‘.'! Relne
L ‘..v“ ‘v 5' ‘9’.05011 A ¢ P ¥ .‘ .."‘. . K 'l, ' W .
. 4 N . Wyt
¥ X Pt e v \ L ‘0 |‘| H N ;‘0
3 i -

ﬁi Q’ 3',

-

IR . g L s o o ot -

Alsnuinnd.

R m,_.phj

\

AU-A 181 894

,.4

X s 2 RPN P 2R
AR R R AR RO oo S A A A L SN

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

me HLE COPY

1
|

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETEING FORM

2

N —

1. REPORT NUMBER

|2. GOVT ACCESSION NO.

3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle)]]
Ada Compiler Validation Summary Report:

Intermetrics, Inc. 1750A Ada Real-Time
Compiler, Version 201.16c, VAX-11/785 Host,
ECSPO SIMS50A, Relaease Ro304-4.000 Target

5. TYPE OF REPORT & PERIOD COVEREB
29 OCT 1986 to 29 OCT 1987

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
Wright-Patterson

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS
AVF-WPAFB, Ada Validation Facility
ASD/SIOL

Wright-Patterson AFB OH 45433-6503

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
Ada Joint Program Office
- United States Department of Defense
Washington, DC 20301-3081

12. REPORT DATE
29 OCT 1986

|3~ WUMBER OF PAGES
43

MONITORING AGENCY NAME & ADDRESS(/f different from Controlllng Office)
erght Patterson

15. SECURITY CLASS (of thisreport)
UNCLASSIFIED

15a. gsﬁksaﬂFICATION/DOUNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

s

1' 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

l 18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD FU™A
1 JAN 73

1473 eorvion OF 1 NOV 65 IS OBSOLETE

S/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ve
0'. WLt EE e .i.\ AX o' {asOUTRY “ X IR, "'

9,05, Vs

O 0
o gl ey DODIANN

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of wvalidation testing performed on the 1750A Ada Real-Time Compiler,
Version 201.16c, using Version 1.8 of the Ada® Compiler Validation
Capability (ACVC). The 1750A Ada Real-Time Compiler is hosted on a
VAX-11/785 operating under VMS, Version 4.2. Programs processed by this
compiler may be executed on an ECSPO SIM5S50A, Release R0O304-4.000 having no
operating system. The ECSPO SIMSOA simulates a MIL-STD-1750A Instruction
Set Architecture with console 1/0 and no other optional features.

On-site testing was performed 24 October 1986 through 29 October 1986 at
Cambridge MA, under the direction of the Ada Validation Facility (AVF),
according to Ada Validation Organization (AVO) policies and procedures.
The AVF identified 1945 of the 2399 tests 1in ACVC Version 1.8 to be
processed during on-site testing of the compiler. The 19 tests withdrawn
at the time of validation testing were not processed; the 278 Class C tests
that make use of floating-point precision exceeding that supported by the
implementation were not processed; and 157 Class C tests that require the
creation of external files were not processed. After the 1945 tests were
processed, results for Class A, C, D, or E tests were examined for correct
exscution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and 1link
results of Class L tests were analyzed for correct detection of errors.
There were 33 of the processed tests determined to be inapplicable. The

remaining 1912 tests were passed.
The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL

~2_3_48 _5_6_7_8_9 10 11 2 W
Passed 93 204 280 235 159 97 134 262 128 32 218 70 1912
Failed] 0 4] 0 0 0] 0 0 0 0 0 0

Inapplicable 23 121 140 12 2 0 S5 0 2 O 0 163 468
Withdrawn 0 5 5 0 0 1 1 2] (1] 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

®\da 1s a registered trademark of the United States Government
(Ada Joint Program Office).

OGN
AN,

00
4 5“;‘

LA

ot

bl

Y

-
-

—— . — oy "-————-—‘“,'——1,. —
i
Ada® Compiler Validation Summary Report:
L}
Compiler Name: 1750A Ada Real-Time Compiler, Version 201.16c
Host: Target:
VAX-11/785 under ECSPO SIMSCA,
VMS, Version 4.2 Release R0304-4.000

"
f Testing Completed 29 October 1986 Using ACVC 1.8
:
v This report has been reviewed and is approved.
'
T' 5172 0mrict) C M trrdO
K Ada Validdtion Facility

Georgeanne Chitwood
" ASD/SIOL
? Wright-Patterson AFB OH 45433-6503
.
E)
%
N a“Validation Organization Accession Fom v
i Dr. John F. Kramer NTIS GRAI ?/zfuﬁ
N Institute for Defense Analyses DTIC TAB * E
1 Alexandria VA Unanrounced -
‘ Justification_ _ _
: : By
' Z : _Bistribution/
4 Ada Jéint Program Office { Availability Coies

Virginia L. Castor T Javail andé/or
3 Director Dist Special
ﬂ Department of Defense
A Washington DC >
]

®da is a registered trademark of the United States Government
(Ada Joint Program Office).

RPN

Rt

B OO BRSSO D0, SO RO AESOSCOOTINNN Ol g X
A SR A T B T A e RN SO s N S T S P DTN

AVF Control Number: AVF-VSR-49,1286

o e

Ry

Ada® COMPILER
VALIDATION SUMMARY REPORT: A
Intermetrics, Inc.
1750A Ada Real-Time Compiler, Version 201.16¢
VAX-11/785 Host, ECSPO SIMS50A, Release RO304-4.000 Target

Completion of On-Site Testing:
29 October 1986

Prepared By:
Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45u433-6503

Prepared For: i

Ada Joint Program Office i
United States Department of Defense 5
Washington, D.C. L

o

s s >

®\da is a registered trademark of the United States Government
(Ada Joint Program Office).

> &

e s e s s e e s s s e e e

+ +
+ Place NTIS form here +
+ +

R a e s o e o S o

P ey > e e —— L e o mw e —

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the 1750A Ada Real-Time Compiler,
Version 201.16c, using Version 1.8 of the Ada® Compiler Validation
Capability (ACVC). The 1750A Ada Real-Time Compiler is hosted on a
VAX-11/785 operating under VMS, Version 4.2. Programs processed by this
compiler may be exscuted on an ECSPO SIMS0A, Release RO304-4.000 having no
operating system. The ECSPO SIMSOA simulates a MIL-STD-1750A Instruction
Set Architecture with console 1/0 and no other optional features.

On-site testing was performed 24 October 1986 through 29 October 1986 at

Cambridge MA, under the direction of the Ada Validation Facility (AVF),
o according to Ada Validation Organization (AVO) policies and procedures.
o The AVF identified 1945 of the 2399 tests in ACVC Version 1.8 to be
DL processed during on-site testing of the compiler. The 19 tests withdrawn
-at the time of validation testing were not processed; the 278 Class C tests
that make use of floating-point precision exceeding that supported by the
implementation were not processed; and 157 Class C tests that require the
St creation of external files were not processed. After the 1945 tests were
,'ﬁ prooessed, results for Class A, C, D, or E tests were examined for correct
S exscution. Compilation listings for Class B tests were analyzed for
A correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L. tests were analyzed for correct detection of errors.
There were 33 of the processed tests determined to be inapplicadble. The
remaining 1912 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL

2_3_4_5_6_17_8_9 10 1 12 &%
) Passed 93 204 280 235 159 97 134 262 128 32 218 70 1912
;' Failed 0O 0 0 0 0 0 0 O O O O O O

Inapplicable 23 121 140 12 2 0 5 0 2 O0 0 163 468

R Withdrawn 0 5 5 0 0 1t 1 2 & o0 1 0 19
:;,:; ' TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

£

x:.'# . The AVF concludes that these results demonstrate acceptable conformity ¢to

o ANSI/MIL-STD-1815A Ada.

Mo ®)da is a registered trademark of the United States Government
= (Ada Joint Program Offioce).

:'l.:|

-~ i

‘b'--,"'r '- ‘ Al "L F ANNA - IS 50 34 = AP AR X » ‘
R R ACRICACRE T U R HRN L iy ~".='!95.=.i.n AL R "t."s?l'é.l':'ﬁ'- [(i

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ¢
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1=2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1-3 RBFBRENCES..00000000000.1000.001-3
1.4 DEFINITION OF TERMS . . ¢ ¢ ¢ o ¢ ¢ ¢ o ¢« s ¢ o & 1=3
1.5 ACUC TEST CLASSES ¢ ¢ ¢ o ¢ o o o o« o ¢ o o o o o 1=li

' CHAPTER 2 CONFIGURATION INFORMATION
2.1 CONFIWRATIW TESTED ® @ @& e ¢ o & & o ° & o o o o 2.1
o 2.2 IMPLEMENTATION CHARACTERISTICS « . ¢ ¢ o o o« o o o 2=2
v
. CHAPTER 3 TEST INFORMATION
301 TESTRBSULTS..000100000000000003-1
g 3.2 SUMMARY OF TEST RESULTS BY CLASS . « « ¢ ¢ ¢ ¢ « « 3-1
g 3.3 SUMMARY OF TEST RESULTS BY CHAPTER . « « « + . . « 3-2
30" HITHDRA"NTBTS000000000000000003‘2
305 mAPPLICABLETESTS--..............3—2
306 SPLITTBTSc-oooo.ooooooooo..o3-u
3.7 ADDITIONAL TESTING INFORMATION « « « « « « 3-5
.-‘ 307.1 P!‘GV&lidation L) e o o o o o . o e @ [s o o ¢ o 3"5
; 307.2 T”t"etmdo.oooooooﬁ.o-'00003"5
3.7.3 TQStSitO ..ooc.oooo.o.o.o.no3"6
’
X APPENDIX A COMPLIANCE STATEMENT I
1 APPENDIX B APPENDIX F OF THE Ada STANDARD
APPENDIX C TEST PARAMETERS h
. APPENDIX D WITHDRAWN TESTS

D L) v VR T I .
‘»,;-J3,‘%".’«"2';3‘.,9&,"n.,.’:“‘f et a ARG (L 0 g ﬂ «5 408

<
‘4..~‘

4!.."A;iy.'. .Dm g(L3I MON ':’(* @,

%

iy CHAPTER 1

e INTRODUCTION

‘ ~/ This Validation Summary Report (VSR) describes the extent to which a
N specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
RN This report explains all technical terms used within it and thoroughly
R reports - the results of testing this compiler using the Ada Compiler
o Validation Capabllity (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features

X must conform to the requirements of the Ada Standard. The Ada Standard
?-qb must be implemented in its entirety, and nothing can be implemented that is

NN not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
) must be understood that some differences do exist between implementations.
Y The Ada Standard permits some implementation dependencies--for example, the
g%% maximum length of identifiers or the maximum values of integer types.
SO Other differences between compilers result from characteristics of
e particular operating systems, hardware, or implementation strategies. All

’ of the dependencies observed during the process of testing this compiler
are given in this report.

T The information in this report is derived from the test results produced
e during validation testing. The validation process includes submitting a
Lt suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects

i}% illegal language constructs. —-The testing also identifies behavior that is
ggé implementation dependent but permitted by the Ada Standard. Six classes of
;QQ tests are used. These tests are designed to perform checks at compile

time, at link time, and during execution.

1=-1

S s R ; Ty ‘ .
e R B R AR R

L

"
‘!
[\
K
il
K

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:’

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any unsupported language constructs
required by the Ada Standard

« To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
24 October 1986 through 29 October 1986 at Cambridge MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1-2

MAMIRTUOUCAIO OO WU QOO SOOI J Y] O s NIRRT
RN M OSNGOU LR A A ‘4“‘4'.’;‘3\”:95’30’.'a‘.'n'!.‘,n"‘!‘,, L AR A A, Sy

~ e

AN

Y

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization ¢
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC

Ada Standard

Applicant

AVF

AVO

Compiler

Failed test

Host

The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

ANSI/MIL-STD-1815A, February 1983.
The agency requesting validation.

The Ada Validation Facility. In the context of this report,
the AVF 1is responsible for conducting compiler validations
according to established policies and procedures.

The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

A processor for the Ada language. In the ocontext of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides,.

1-3

P

oo oo s e

-

x>

. et =

¥

ot BT AT ; e A]
Al 5)"';3\\36':1" dl"'s'- Fi l!q, ,‘, WAL, ‘g.“q._ d »!q,l',) :I‘n (N

N T were b ool b o g - T wx”“m‘-—:]'

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way
other than the one expected by the test.

4

Passed test A test for which a compiler generates the expected result.
Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. 1In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity

test to the Ada language specification. A test may be incorrect
because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is complled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it |is
exscuted.

Class D tests check the compilation and execution capacities of a compiler.

Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters-~-for example, the number of identifiers

1-4

N Ry TN 6 L

3,9 W

A A e T et
AN AR LAV SR L Tn LA IN R, ',:'.'SM. LV Phain

-,

e werw ey

A b adiadh i

Yy Kby

g
R

INTRODUCTION

permitted 1in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If d Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it 1is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and exscutes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or 1illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to

.execute. Class L tests are compiled separately and execution is attempted.

A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the 1implementation. Any test that was determined to contain an illegal
language construct or an erronecus language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1=-5

(™ . N ieE anr * ™ -

........ W o

X Mo QRIS N Ty Ny) PRVt TR
,J‘I‘b":‘-,'-h;'ﬂ'l““."n l'-‘i’t‘ﬁ _\“',“Q"‘., F';?ihu?1"9?!'h!l‘q’\‘u’l"'l’_r‘\'q’@"tl'|:l‘l:"O."’g“b&‘""!ﬁg"':‘.h !.'.?.“.p i |’.. $ ~ A !ﬂ RS S ‘.A~.o

-

Al

I

CHAPTER 2

o CONFIGURATION INFORMATION

- 2.1 CONFIGURATION TESTED

e The candidate compilation system for this validation was tested under the
¢ following configuration:

W, Compiler: 1750A Ada Real-Time Compiler, Version 201.16c
)

G

g ACVC Version: 1.8

Certificate Expiration Date: 16 December 1987
ot Host Computer:
o Machine: VAX-11/785
Operating System: VMS, Version 4.2

M Memory Size: 16 megabytes

Target Computer:
Machine: ECSPO SIMSOA, Version R0O304-4.000

o Operating System: None

Memory Size: 65536 words

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implemeéntations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler 1s characterized by the following
interpretations of the Ada Standard:

. Capacities.

The compiler correctly processes tests containing loop statements
nested to 17 levels and recursive procedures separately compiled
as subunits nested to 6 levels. The compiler could not process
. block statements nested to 65 levels. It correctly processes a
) compilation containing 723 variables in the same declarative part.
(See tests D55A03A..H (8 tests), D56001B, D6U4OOSE..G (3 tests),
“and D29002K.)

o .« Universal integer calculations.

W An implementation is allowed to reject universal integer
K calculations having values that exceed SYSTEM.MAX_INT. This
' implementation does not reject such caloulations and processes
. them correctly. (See tests DUAOO2A, DUAOO2B, DAHAOOUA, and
i DUAOOUB,)

3

4 . Predefined types.

. This implementation does not support additional predefined types
: in the package STANDARD. (See tests B86001C and B86001D.)

t . Based literals.

] An implementation is allowed to reject a based 1literal with a
) value exceeding SYSTEM.MAX_ INT during compilation, or it may raise
t NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This
L)

implementation raises NUMERIC ERROR during execution. (See test
E24101A.)

iy « Array types.

i An implementation is allowed to raise NUMERIC ERROR or
N CONSTRAINT_ERROR for an array having & ‘LENGTH that exceeds
STANDARD . INTEGER'LAST and/or SYSTEM.MAX_INT.

i ‘. '? a,l.. ‘t‘(.“ “
BRI

. Oy
W Gief} ~"-'.

3

N CONFIGURATION INFORMATION

S A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
- raises NUMERIC_ERROR when the array type is declared. (See test

iy C52103X.) .
Ve
o A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
éﬁ& components raises NUMERIC_ERROR when the array type is declared.
Sl (See test C52104Y.)

i A null array with one dimension of 1length greater than
) INTEGER'LAST may raise NUMERIC _ERROR or CONSTRAINT ERROR either
e when declared or assigned. Alternatively, an implementation may
{ﬁq accept the declaration. However, lengths must match in array

B slice assignments. This implementation raises NUMERIC_ERROR when
‘ the array type is declared. (See test ES2103Y.)

N In assigning one-dimensional and two-dimensional array types, the

:ﬁg expression does not appear to be evaluated in its entirety before

o CONSTRAINT_ERROR is raised when checking whether the expression's

G subtype is compatible with the target's subtype. (See test
C52013A.)

Lt

‘Wt

%.; . Discriminated types.

:ﬁg During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an

Y access type definition with a compatible discriminant constraint.

;55 This implementation accepts such subtype indications. (See test

Y E381044A.)

e

ﬁﬁ‘ In assigning record types with discriminants, the expression does

. not appear to be evaluated in its entirety before CONSTRAINT ERROR

e is raised when checking whether the expression's subtype 1s

:qf compatible with the target's subtype. (See test C52013A.)

R

RN

,ﬁﬁ . Aggregates.

e In the evaluation of a multi-dimensional aggregate, all choices

g;‘ appear to be evaluated before checking against the index type.

BN (See tests C43207A and C43207B.)

fﬁﬁ In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical

'E; ‘ bounds. (See test E43212B.)

i

)

. All choices are evaluated before CONSTRAINT_ERROR is ralsed if a

el bound in a nonnull range of a nonnull aggregate does not belong to

ey an index subtype. (See test E43211B.) ‘

A':'

[}

B

|

L |
;'- 2-3

i AT)

e A OUEMONIO) L y ; ALUSRERRS, Y Y W S TN WP e e P wr aT
3.k *‘,'F“ 'L!_J,’"_d!;é.t""".’ :’l,q“q"i,::a "",.!.3‘7‘ AN “‘!V‘é"‘»"ﬁ’e_"ﬁ"kﬂ .,‘lvl-”h ML DM Dy 2 by MO #4,‘ K “.Eu U ,5 LS < »;

TR N

bkd el ool - ST RETIET TR TRET T TR ST Ie T TR TR T TR T TR TR T AW TR T T T T Y

CONFIGURATION INFORMATION

. Functions.

An implementation may allow the declaration of a parameterless
funotion and an enumeration literal having the same profiie in the
same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

. Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause 1is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation rejects 'SIZE and 'STORAGE_SIZE for tasks,
'STORAGE_SIZE for collections, 'SMALL clauses, and enumeration
representation clauses. (See tests C55B16A, C87B62A, C87B62B,
C87862C, and BC1002A.)

. Pragnmas.

The pragma INLINE is supported for procedures and for functions.
(See tests CA3004E and CA300UF.)

. Input/output.

This implementation supports only the package TEXT_IO for file
operations on STANDARD INPUT and STANDARD_OUTPUT.

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. The package DIRECT_IO cannot be instantiated
with unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, AE2101H, CE2201D, CE2201E,
and CE2401D.)

. Generics.
Body and subunits of a generic unit must be in the same

compilation as the specification if instantiations precede them.
(See tests CA2009C and CA2009F.)

2-4

*‘A“,,|9 - - - ~'~~ « v" e, , A TART) ‘.' AR LAY -')‘ ‘.' \ - -1.1 L] - W,)
s lo".l"u \’- ’-.I-l,‘- A’.‘x’.{ 9. %0, 'u‘ﬂ':’l- ’-lo » RO Al‘n.! ’ : -'a. ,‘t LA N ‘:I"E.n. ‘- () .‘,...l.'.i .Al "al-.‘al.ol ,"‘I'- I'!I. a J '-‘ﬂ'

Dk |

-y

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
1750A Ada Real-Time Compiler was performed, 19 tests had been withdrawn.
The remaining 2380 tests were potentially applicable to ¢this validation.
The AVF determined that 468 tests were inapplicable to this implementation,
and that the 1912 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 67 862 915 10 12 46 1912

Failed 0 0 0 0 0 4] 0

Inapplicable 2 5 453 7T 1 0 468

Withdrawn 0 7 12 0 0 0 19

. TOTAL 69 874 1380 17 13 46 2399

b ok ol
Cheaa tere

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
_2_3_8_5_6_7_8_9 10 1 12 1

Passed 93 204 280 235 159 97 138 262 128 32 218 70 1912

N Failed 0 0 0 0 0 0 O O O O O0 O 0

Inapplicable 23 121 140 12 2 0 S5 0 2 0 0 163 468
Withdrawn o s 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

-~

C32114a C41404a B74101B

B33203C B45116A C87B50A

C34018a C48008a C92005A
g C3590uA B49006A C940ACA
’, B37401A B4AO10C CA3005A..D (4 tests)
' BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

8 3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn, For this validation attempt, 468 tests were inapplicable for
the reasons indicated:

- o < e e

. C34001D, BS52004E, B55B09D, and C55BO7B use SHORT_INTEGER which is
not supported by this compiler.

. C34001E, B52004D, BSSBO9C, and C55BOTA use LONG_INTEGER which is
not supported by this compiler.

- C34001F and C35702A use SHORT_FLOAT which is not supported by this
compiler.

3-2

B P S TUCAOSIL M Y MMM MO ORI MO LEN I WO) T. X U) -4 X
T I T it e e T R N it e CRDOEON NN 0N

. TEST INFORMATION

i . C34001G and C35702B use LONG_FLOAT which is not supported by this
. compiler.

-jﬁf . C55B16A makes use of an enumeration representation ' clause
g containing noncontiguous values which is not supported by this
) compiler.

. . D55A03E..H (4 tests) contain loops nested to 31 or more levels
o which exceed the supported maximum of 24 nested loops.

o, . D56001B contains blocks nested to 65 levels which exceed the
L compiler's capacity. |

. D6400SF and D6400SG make use of nested procedures as subunits to a
' level of 10. These tests compile and link correctly, but result
B in STORAGE_ERROR being raised during execution.

i . B86001D requires a predefined numeric type other than those
g defined by the Ada language in package STANDARD. There is no such
- type for this implementation.

. CB86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT IO.

i Y
P

N Ny S
Pl

.
Pags- P
L

. C87TB62A..C (3 tests) use length clauses which are not supported by
this compiler. The length clauses are rejected during
compilation.

%Kﬁ . CA2009C and CA2009F compile the body and subunits of a generic

, unit in separate compilation files. Separate compilation of
xy generic specifications and bodies 1is not supported by this
» compiler unless instantiations follow compilation of the
corresponding body.

o . AE2101C, CE2201D, and CE2201E use an instantiation of package |
’ SEQUENTIAL_ IO with unconstrained array types which is not
o supported by this compiler.

) . AE2101H and CE2401D use an instantiation of package DIRECT_IO with
W unconstrained array types which is not supported by this compiler.

. The following 278 tests require a floating-point accuracy that
exceeds the maximum of 6 supported by the implementation:

N

[}

'§§ C24113C..Y (23 tests) C35708C..Y (23 tests) CH45421C..Y (23 tests)
C35705C..Y (23 tests) C35802C..Y (23 tests) CHSU24C..Y (23 tests)
C35706C..Y (23 tests) C45241C..Y (23 tests) CU5521C..Z (24 tests)
C35707C..Y (23 tests) Cu5321C..Y (23 tests) Cu5621C..Z (24 tests)

a— 3-3

KR 0) T A R T T OO0 Yadha
v ‘!H"‘*’u u, :.4 Sodad ey Lf&-“'l. Pty C,t""!"-.f (] !‘hf'%h‘\n'«

Cwee T WER TR T W T R R

TEST INFORMATION

The following 158 tests require the use of external files.

This

implementation supports only the files STANDARD_ INPUT and

STANDARD_OUTPUT: ¢

CEB2104A..D (4§ tests) CE3108A..B (2 tests) CE3413A

CE2105A CE3109A CE3413C

CE2106A CE3110A CE3602A..D (4 tests)

CE2107A..F (6 tests) CE3111A..E (5 tests) CE3603A

CE2108A..D (4 teats) CE3112A..B (2 tests) CE3604A

CE2109A CE3114A..B (2 tests) CE3605A..E (5 tests)

CE2110A..C (3 tests) CRB3115A CE3606A..B (2 tests)

CE2111A..E (5 tests) CE3203A CE3704A..B (2 tests)

CE2111G..H (2 tests) CE3208A CE3704D..F (3 tests)

CE2201A..C (3 tests) CE3301A..C (3 tests) CE370M..0 (3 tests)

CE2201F CE3302A CE3706D

CE2204A..B (2 tests) CE3305A CE3T06F

CE2210A CE3402A..D (4 tests) CE3804A..E (5 tests)
" CE2401A..C (3 tests) CE3403A..C (3 tests) CE3804G

CE2401E..F (2 teats) CE34O03E..F (2 tests) CE38041

CE2404A..B (2 tests) CE3404A..C (3 tests) CE3804K

CE2406A CE3405A..D (i tests) CE3804M

CE2407A CE3406A..D (4 tests) CE3805A..B (2 tests)

CE2408A CE3407A..C (3 tests) CE3806A

CE2409A CE3408A..C (3 tests) CE3806D..E (2 tests)

CE2410A CE3409A CE3905A..C (3 tests)

CE3102B CE3409C..F (4 testa) CE3905L

EE3102C CE3410A CE3906A..C (3 tests)

CE3103A CE3410C..F (4 tests) CE3906E..F (2 tests)

CE3104A CE3411A

CE3107A CE3412A

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for two Class B tests, BA1101C and BC3205D.

3-4

R i 4
’ ~a Y 'r"-r.,f €t 0‘3‘0.'

L) - A o i 2 0 &~ '.‘
O O] n'"q,"t‘"o.) !1:5,. iSOt el W G IS

h‘l!“

. TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation .

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the 1750A Ada Real-Time Compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the 1750A Ada Real-Time Compiler using ACVC Version 1.8 was
e conducted on-site by a validation team from the AVF. The configuration
consisted of a VAX-11/785 host operating under VMS, Version 4.2, and an
ECSPO SIMSOA, Release RO304-4.000 target having no operating system and
exscuting on the VAX. The ECSPO SIMS0A simulates a MIL-STD-1750A
Instruction Set Architecture with coconsole 1I/0 and no other optional
features., Two identical VAX configurations were used for testing.

A magnetic tape containing all tests except for the 19 withdrawn tests, 278

tests requiring unsupported floating-point precisions, and 157 tests
requiring the creation or opening of external files was taken on-site by
the validation team for processing. Tests that make use of
N implementation-specific values were customized before being written to the
Tt magnetic tape. Tests requiring splits during the prevalidation testing
S were included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled using the two identical host configurations in a single batch
stream on each, and all exscutadle tests were linked and run on the ECSPO
SIMS50A. Results were printed from the VAX.

The compiler was tested using command scripts provided by Intermetrics,
Inc. and reviewed by the validation team. Each test was run using a
progran library that contained only library units defined by the Ada
Standard, the package REPORT, and the procedure CHECK FILE. All tests were
processed with the compiler's default options in effect except the Class B
teasts for which processing was terminated following the semantics phase
(Stopafter => SEM). All tests were 1linked with the 1linker's default
_ options in effect. All applicable executable tests were run using a
:f“_ default exscution stack size of 1000 (hexadecimal) words, except for test
o4 D6400SG for which a stack size of 3000 (hexadecimal) was used.

! Test output, compilation listings, and job logs were captured on magnetic

) tapse and archived at the AVF., The 1listings examined on-site by the
validation team were also archived.

- 3-5

LI HEN PR DN P Pt AN NSNS \ AN AARARAIIN ’
O AR UG E O A NIRS RSO f;f“v‘t’,'sfa’a-“x' ‘s‘.‘z'xfr.‘1-"‘”«'\‘,,'«'{‘;’; i'\:l

0.‘

TEST INFORMATION

3.7.3 Test Site
The validation team arrived at Cambridge MA on 24 October 1986, and

departed after testing was completed on 29 October 1986. The computers
used for testing were not dedicated to the testing effort.

3-6

PRI R R RELYE, .‘T':.“vr.";f’.l RGO
A JUN R RN P IO -

b el

APPENDIX A

COMPLIANCE STATEMENT

Intermetrics, Inc. has submitted the following
+ compliance statement concerning the 1750A Ada Real-Time
" Compiler.

Aty .

R e

A-1

ARG

[3 V’\'l‘: ,i l" .‘ * “ » o o . '.,.. = |- 4 ‘. |' 1 y .' bt '-. '_l' * ’ »
ORI TN IRRG R REARET TR R, k’_af ':Vﬁ‘:gei"‘q; e Lok ,'@L_, AN 0 0 . Al ; AMD _ AN

= 4, ¢ S e N T Ny TN NG Ny W I Wy s WA WS WSy WSwN Sy i mmm EmIt L ms o R T TEm T T TEm i TER T v o T

» z' - b TP RO

COMPLIANCE STATEMENT

Compliance Statement

" Configuration:

Compiler: 1750A Ada Real-Time Compiler, Version 201.16c

;ﬁpz Test Suite: ldi'Canpiler Validation Capability, Version 1.8

i Host Computer:

Machine: VAX-11/785

oy Operating System: VMS, Version 4.2

ﬁ?. ; Target Computer:

Machine: ECSPO SIMSOA, Release RO304-4,000

Wy Operating System: None

i}; Intermetrics, Inc. has made no deliberate extensions to the Ada language
e standard.

Intermetrics, Inc. agrees to the public disclosure of this report.

B Intermetrics, Inc. agrees to comply with the Ada trademark policy, as
ety defined by the Ada Joint Program Office.

i L2 D AP vmeslt17/se

Intermetrics, Inc.
Dennis D. Struble
o Ada Compilers Manager

®Ada 13 a registered trademark of the United States Government
" (Ada Joint Program Office).

i A-2 |

B0 WAL LE AR WP ARy AT O e T T wh Wea\y
) 'A“.l”- i‘-ﬁl -@l AN gt'QL, - .’.l Cb"..a?l‘- %% L"t. TR O L% »Q's W\ 0 M 1'% ,15';‘2 N R LA, 'o,.\.v‘l.- { R ’,L‘l'.“; ety Q,“I'

APPENDIX B

. APPENDIX F OF THE Ada STANDARD

‘?2? The only allowed implementation dependencies correspond to implementation-
o dependent pragmas, to certain machine-dependent conventions as mentioned in
L" chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on

representation classes. The implementation-dependent characteristics of
the 1750A Ada Real-Time Compiler, Version 201.16c, are described in the

;ﬁﬁ following sections which discuss topics in Appendix F of the Ada Language
iié‘ Reference Manual (ANSI/MIL-STD-1815A). The specification of the package
ity STANDARD 1s also included in this appendix.

package STANDARD is
ﬂqﬁ type INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range -2#1.0#e127 ..
200 1TT1TTTITTTIINMIIIIN1I1111140127 3

”%Q type DURATION is delta 2.0 ** (-14) range -86400.0 .. 86400.0;
i -- DURATION'SMALL = 2.0 ** (-14)

end STANDARD;

'.vr!* L

— B-1

a DX G 0 W WY . o)
g 1’__&‘01';“0'!‘ R .-s;(.."i‘.!l‘gsihy.rlv,?f‘gfl‘gf:""I.y?'iﬂf\’g_,lx.h‘"..5"!“hVJ?I‘JO ,"."\;f.l“,,"“,h ,‘H?; :1‘“5"‘&“

-, ot - e
]

Y

»

S Appendix F. IMPLEMENTATION DEPENDENCI S

; This section constitutes Appendix F of the Ada LRM ,for this
f implementation. Appendix F from the LRM states:

The Ada language allows for certain machine-dependencies sn a controllcd
! manner. No machine-dependent syntaz or semanlic eztensions or restriclions
, are allowed. The only allowed implementation-dependencies correspond fo
o implementation-dependent pragmas and attributes, certasn machine-dependent
Y convenlions as mentioned in Chapter 13, and certain allowed resiriclions on

representation clauses.

The reference manual of each Ada implementation must include an appenddir
. (called Appendiz F) that describes all implementation-dependent
:‘ characteristics. The Appendiz F for a given smplementation must list
’;:: particular:

¢ 1. The form, allowed places, and effect of every smplementation-dependent
pragma.

The name and the type of every implementation-dependent attribute.

The specification of the package SYSTEM (see 13.7).

The list of all restrictions on representation clauses (see 13.1).

R

o o

o The conventions used for any smplementation-generated name denoling
) implementation-dependent components (see 139.4).

I J
<>

: The interpretation of ezpressions that appear in address clauses.
> including those for interrupts (see 13.5).

. 7. Any restriction on unchecked conversions (see 19.10.2).
8. Any implementation-dependent characteristics of the input-oulpul
packages (see 14).
In addition, the present section will describe the following topics:

9. Any implementation-dependent rules for termination of tasks

' dependent on library packages (see 9.4:13).
3 10. Other implementation dependencies.
11. Compiler capacity limitations.
)
R
b

L, > u“r

’f-'-l‘r-("“-r ._.r-rr(.r <

P L AN NN, 1R O e W e .IOA~I.

F.1 Pragmas

This section describes the form, allowed places, and effect’ of every
implementation-dependent pragma.

F.1.1 Pragmas LIST, OPTIMIZE, PAGE, PRIORITY

Pragmas LIST, OPTIMIZE, and PAGE are ignored. Pragma PRIORITY is
supported exactly in the form, in the allowed places, and with the effect ns
described in the LRM.

F.1.2 Pragma SUPPRESS

Form: As specified in LRM B(14) : SUPPRESS
Allowed Place: As specified in LRM B(14) : SUPPRESS
Effect: Pragma SUPPRESS is ignored.

F.1.8 Pragma INLINE
Form: Pragma INLINE (SubprogramNameCommaList)

Allowed Places: As specified in LRM B(4) : INLINE

Effect: If the subprogram body is available, and the subprogram is not
recursive, the code is expanded in-line at every call site and is subject
to all optimizations.

The stack-frame needed for the elaboration of the inline subprogram
will be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference, as for
non-inline subprograms. Register-saving and the like will Ue
suppressed. Parameters may be stored in the local stack-frame or held
in registers, as global code generation allows.

Exception-handlers for the INLINE subprogram will be handled as lor
block-statements.

Use: This pragma is used either when it is believed that the time reguired
for a call to the specified routine will in general be excessive (this for
frequently called subprograms) or when the average expected size of
expanded code is thought to be comparable to that of a call.

F.1.4 Pragma INTERFACE

Form: Pragma INTERFACE (language_name, subprogram_name)
where the language_name must be an enumeration value of the type

v, e e ne

SYSTEM.Supported_Language_Name (see Package SYSTEM bLelow).
Allowed Place: As specified in LRM B(5) : INTERFACE.

t

: Effect: Specifies that a subprogram will be provided outside the Ada progrim
y library and will be callable with a specified calling interface. Neither an
v Ada body nor an Ada body_stub may be provided for a subprogrun
for which INTERFACE has been specified.
o
e Use: Use with a subprogram being provided via another programming
R language and for which no body will be given in any Ada prograr.
- See also the LINK_NAME pragma.
e
's,:f.“‘h The calling conventions for an Ada program calling a non-Ada
:;:_::: subprogram are described in the Run-Time Model B-5.
.’.,.S F.1.5 Pragma LINK_NAME
N
EE:;:' Form: Pragma LINK_NAME (subprogram_name, link_name)
N Allowed Places: As specified in LRM B(5) for pragma INTERFACE.
sy
Effect: Associates with subprogram subprogram_name the name link_nawme s
:E:E:: its entry point name.
AN}
:::::0 Syntax: The value of link_name must be a character string literal.
Y
-»j?f?t? Use: To allow Ada programs, with help from INTERFACE pragma. ‘o

reference non-Ada subprograms. Also allows non-Ada programs to
call specified Ada subprograms.

- F.1.6 Pragma CONTROLLED

i Form: Pragma CONTROLLED (AccessTypeName)
gv; A Allowed Places: As specified in LRM B(2) : CONTROLLED.
5 Effect: Ensures that heap objects are not automatically reclaimed. Sinece no
E d automatic garbage collection is provided, this pragma currently has no
1

effect.
i F.1.7 Pragma PACK

Ot
;ff::: Form: Pragma PACK (type_simple_name)

. Allowed Place: As specified in LRM 13.1(12)
:' . Effect: Components are allowed their minimal number of storage unils ns
) provided for by their own representation and/or packing.

i
B-4

N XN 26 Ty i 200 3 OO T D D T AR T Tl TR St S
UL RS S 40y ..l.'_n:f]!'.‘sc““!& ; I"‘,ﬂf»,j;ﬁ"‘b !1 5‘-&‘.,,. 29{ ,fg‘?ﬁ‘g Q‘. e) .?!: o A M .‘,,‘\ 3 24 y ‘F A r,

e

Use: Pragma PACK is used to reduce storage size. This can allow records

and arrays, in some cases, to be passed by value instead of by
reference. .
Size reduction usually implies an increased cost of accessing
components. The decrease in storage size may be offset by incrense in
size of accessing code and by slowing of accessing operations.

F.1.8 Pragmas SYSTEM_NAME, STORAGE_UNIT,

3 -
. PRI\ B A 0
v Y,

MEMORY_SIZE

These pragmas are not supported and are ignored.

C - . UK 3 PRI o oy A . : W RS
ROQOHCHACISDOCRA: MRS o SR LA R L DA K O KA A Tl Bk Nttt

F.2 Implementation-dependent Attributes
This section describes the name and the type of every implementation-
R dependent attribute.
o, There are no implementation defined attributes. These are the values for
‘ certain language-defined, implementation-dependent attributes:
:tz;:i
K]
o
i Type INTEGER.
Ve INTEGER’ S1ZE =16 -- bits.
INTEGER'FIRST = . (2%*15) -- . 32,788
‘.;'::‘,i INTEGER'LAST = (2°*°*°15.1) .. 32,767
\..J.l
;f’&'t
K .
L4 Type FLOAT.
FLOAT'SIZE = 32 -- bits.
i FLOAT'DIGITS = 8
o FLOAT'MANTISSA =21
::i,-.: ‘ FLOAT’ EMAX = 84
ikt FLOAT'EPSILON =2.0%*(-20)
FLOAT® SMALL = 2.0%*(-85)
s FLOAT’LARGE = (2.0°°84)*(1.0-2.0°*(-21))
;_;:;a FLOAT'MACHINE _ROUNDS = false
n FLOAT'MACHINE _RAD IX - 2
N FLOAT’MACHINE_MANTISSA = 24
‘ FLOAT'MACHINE _EMAX - 127
FLOAT'MACHINE _EMIN = .128
-
;;;.:: FLOAT'MACHINE_OVERFLOWS = true
s FLOAT' SAFE_EMAX = 127
O FLOAT’ SAFE_SMALL == 24#0.1000000000000000000000075 1~
t FLOAT’ SAFE_LARGE = 240 . 112000 LR RR Rttt nn ik,
‘\.‘
A Type DURATION.
Bl DURATION'DELTA = 2.0°*(-14) seconds
By DURATION’ FIRST = -86,400.0 seconds
uth DURATION’'LAST = 86,400.0 seconds !
- I DURATION’ SMALL = 2.,0°%(-14) !
J‘l"|', .
%)y
:. Type PRIORITY.
ol PRIORITY'FIRST = .127
o PRIORITY’'LAST - 127
e
"
L ‘ B-6

BN SN I MM MG OO LM MO OO RSOSOUIUN) NN CAR R e P
DO I O l‘,ﬁa,’.{l_ !‘-A‘-,!.),'. ¥ .'q:‘3";2.’1';?).',‘|!?'|9!‘|’a}13,‘|5:-t5' .'4"_‘a‘,";'g&!?’?ﬂﬁo’..ﬁ.!‘l !O.L ‘b:) 'l'-’ﬁ’"‘ ,"'!h‘: 6’5.‘;:‘,0'.;’0.0 o \’ ¢

A, L2k N

o b]

F.3 Package SYSTEM

package SYSTEM i

type ADDRESS is private; es "=*, "/=" defined implicitiy:
type NAME is (UTS, MVS, OMS, Prime80, Sperryl100,
MIL_STD_1750A);

SYSTEM_NAME : constant NAME := MIL_STD_1750A; |

" STORAGE_UNIT : constant := 18; l
MEMORY_SIZE : constant :m= 2°°16;
-« In storage units

-« System-Dependent Named Numbers:

MIN_INT : constant :m= INTEGER'POS(INTEGER'FIRST);
MAX_INT : constant := INTEGER'POS(INTEGER'LAST);
MAX_DIGITS : coastant := 6;

MAX _MANTISSA : constant := 31;
FINE_DELTA : constant :== 2.0%*(-.31);
TICK : constant := 0.0001;

-« Other Systeni-Dependent Declarations

subtype PRIORITY is INTEGER range -127..127;

-~ Ilmplementation-dependent additions to package SYSITEM -.

NULL _ADDRESS : constant ADDRESS;
-- Same bit pattern as "null” access value
«- This ie the value of 'ADDRESS for named numbers
<« The 'ADDRESS of any object which occupies storaun
-» is NOT equal to this value.

ADDRESS_SIZE : constant :m= 16;

<« Number of bits in ADDRESS objects, = ADDRESS'SI/}
<- but static.

type ADDRESS_OFFSET is new INTEGER;
e Used for address arithmetic

type ADDRESS_SEGMENT is new INTEGER;

by et
Lol

L3}
T

C -« Always sero on targets with

... unsegmented address space.
N L}
+ £
jé subtype NORMALIZED_ADDRESS _OFFSET is
:g}:: ADDRESS_OFFSET;
NN -- Range of address offsets returned by OFFSET_OI
;i;;; function "+°(addr : ADDRESS; offset : ADDRESS_OFFSET)
ﬁf return ADDRESS;
2 function "+"(offset : ADDRESS_OFFSET; addr : ADDRESS)
XQ return ADDRESS;
-- Provide addition between addresses and
b ‘ <« offsets. May cross segment boundaries on targe i«
Eg -~ where objects may span segments.
Wi -- On other targets, CONSTRAINT_ERROR will bhe raised
Q& o -« when OFFSET_OF(addr) + offset not in
i -- NORMALIZED_ADDRESS_OFFSET.
if‘ function "-"(left, right : ADDRESS) return ADDRESS _OFFSET:
:ﬁ -« May exceed SEGMENT_SIZE on targets where objectis
f&‘ <- may span segments.
-- On other targets, CONSTRAINT_ERROR
. -« will be raised if
1;::}., -- SEGMENT_OF (left) /= SEGMENT_OF(right).
KX
5% function "-"(addr : ADDRESS; offset : ADDRESS_OFFSET) returu
i ADDRESS;
-« Provide subtraction of addresses and offselts.
ﬂﬂ -- May cross segment boundaries on targets where
Sﬁ -+ objects may span segments.
B -- On other targets, CONSTRAINT_ERROR will be raiswd
ot -- when (OFFSET_OF(adde) - offset) not in
" -+ NORMALIZED _ADDRESS_OFFSET.
4
e function OFFSET_OF (addr : ADDRESS)
; return NORMAL IZED_ADDRESS _OFFSET;
o) -« Extract offeet part of ADDRESS
I -« Always in range O0..seg_sise - 1
%
,;:52‘ function SEGMENT_OF (addr : ADDRESS)
;ﬂ return ADDRESS_SEGMENT;
Y -- Extract segment part ol ADDRESS
-« (sero on targets with unsegmented address space)
o function MAKE_ADDRESS (offset : ADDRESS_OFFSET:
o segment : ADDRESS_SEGMENT := 0)
°
- B-8

M O AT R T A T A e T T e
AR AN RN N OO0 R ‘.. . A%,

return ADDRESS;
<< build address given offset and segment .
. «» Offset may be > seg_sise on targets where
" -« objects may span segments, in which case it i«
-« equivalent to "MAKE_ADDRESS(0,segment) + offen:”
<« On other targets, CONSTRAINT_ERROR will be raiuweu
<+« when offset not in NORMALIZED _ADDRESS _OFFSET.

o type Supported_Languasge Name is (-- Target depeudent
ﬁh -« The following are "foreign” languages:

AIE_ASSEMBLER, -- NOT a "foreign” language - uses AIE it
gt UNSPECIFIED _LANGUAGE

" -- Most/least accurate built-in
-- integer and float types

B subtype LONGEST_INTEGER is STANDARD.INTEGER;
) subtype SHORTEST_INTEGER is STANDARD.INTEGER;

subtype LONGEST_FLOAT is STANDARD.FLOAT;
o subtype SHORTEST_FLOAT is STANDARD.FLOAT;

A private

type ADDRESS is asccess INTEGER;
- «+ Note: The desiganated type here (INTEGER) is
i - irrelevant. ADDRESS is made an access (Lyp-
s, 0) . simply to gusrantee it has the same size
O, - as access values, which are single addrracas
: Tew Allocators of type ADDRESS ate NOT meaniuwl l

i NULL _ADDRESS : constant ADDRESS :m= null;

ug : end SYSTEM ;

B-9

;;j‘. {-‘ R

n " D) g oy ; B L% A %) RO Ji 380, Vb OO (3
B R O D X T RO Gt O TP RREIOASGEOERN R IOt O TN DO

JER N LX)

. v o ras = oo

F.4 Representation Clauses
This section describes the list of all restrictions on representation clauses.

‘ "NOTE: An implementation may limit s acceptance of representalion clauses lo
0 those that can be handled ssmply by the underlying hardware.... If a program
: contains a representation clause that is not accepted [by the compiler/, then (he
program is dlegal.” (LRM 13.1(10)).

There are no restrictions except as follows:
a. Length clauses are not allowed.
b. Representation clauses for enumeration types are not allowed.
c. Address clauses are not allowed.
N d. Record-representation-clause:

Within a record-representation-clause, the object being represented must
be no larger than one 16-bit word.

e The range of bits specified must be in the range of 0..15.

Record components, including those generated implicitly by the compiler,

whose locations are not given by the representation-clause, are layed out.
N by the compiler following all the components whose locations are given by
the representation-clause. Such components of the invariant part of the
record are allocated to follow the user-specified components of the
invariant part, and such components in any given variant part are
allocated to follow the user-specified components of that variant part.

B-10

DR AT AR AR A AN AOAD
. . T P

5 K LR, A A UG A AR
"“\"(.r.‘ DR IS A FEIRERE Lk, "\.""0“‘:":‘:"“}’ UUEKIE h U

7,

F.5 Implementation-dependent Components

This section describes the conventions used for any implegientation-
generated name denoting implementation-dependent components.

There are no implementation-generated names denoting implementation-
dependent (record) components, although there are, indeed, such componenis.
Hence, there is no convention (or possibility) of naming them and, therefore,
no way to offer a representation clause for such components.

NOTE: Records containing dynamic-sised components will contain (generally)

’ unnamed offset components which will "point” to the dynamic-sized
components stored later in the record. AIMS/1750 offers no means lo specily
the representation of such components.

~. B-11

e Sy bl‘“t!',fa';f.*“o-,"o'.'s‘ ‘0’.:!"‘)‘ OO

F.68 Address Clauses

This section describes the interpretation of expressions that appear in
address clauses, including those for interrupts.

-
».

> e e

Address clauses are not allowed.

ARANIENAAC MRS
: ‘sfihtt_‘g "!l»'i"_l‘; e,

T ev e rywey it el ol B B Bl

F.7 Unchecked Conversions

This section describes any restrictions on unchecked conversions.

t
The source and target values must both be of an integer, enumeration, or

access type.

F.8 Input-Output

This section describes implementation-dependent characteristics of (L«
input-output packages.

The 1750A is assumed to operate without an operating system and withou!
other external [/O devices than the console device which supports text_io for
STANDARD_INPUT and STANDARD_OUTPUT. The predefined exception
USE_ERROR will be raised if an attempt is made to open any external file or
use the console for other than text_io.

(a) Where are I/O exceptions raised beyond what is described in Chapter 11*
[14.1(11)] None.

(b) What are the standard input and standard output files? [14.3(5)]
These files both map onto the 1750A console device.

(¢) What are the forms of line terminators and page terminators? {14.3(7)]
Line terminator is ASCILLF (line feed);
Page terminator is ASCILFF (form feed)

(d) Effect of instantiating ENUMERATION_IO for an integer type?
(14.3.9(15)]
The instantiated Put will work properly, but the instantiated Ciet
will raise Data_Error

(e) Specification of package Low_Level JO? [14.8]
Low_Level_]O is not provided.

F.9 Tasking
This section” describes implementation-dependent cha:acteristics of the
' tasking run-time packages. ‘

v, Even though a main program completes and terminates (its dependent
tasks, if any, having terminated), the elaboration of the program as a whole
continues until each task dependent upon a library unit package has either
terminated or reached an open terminate alternative. See LRM 9.4(13).

- B-15

R NAA i - ¥ Ry . LR L LN 1 M) '., 3!
A R O Tt e RNt e e

hard SEETCE T ME T BRI TR T mE Ly T, —n“““m'—vwww““—}

F.10 Other Matters

This section describes other implementation-dependent chara‘cbcristics of
the system.

a. Restrictions on SHARED variables (LRM 9.11):
Must be of a scalar or access type.

b. Package Machine_Code
Will not be provided.

c. Order of compilation of generic bodies and subunits (LRM 10.3:9):
Body and subunits of generic must be in the same compilation ns
the specification if instantiations precede them (see Al-
00257/02).

F.11 Compiler Limitations

(a) Maximum length of source line?
255 characters. ¢

(b) Maximum number of "use” scopes?

Limit is 50, set arbitrarily by SEMANTICS as maximum aumber
of distinct packages actively "used.”

(¢) Maximum length of identifier?
255 characters.

(d) Maximum number of nested loops?
24 nested loopes.

>, = A

-

|

B-17

RS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
~makes use of such values is identified by the extension .TST 1in its file
name. Actual values to be substituted are represented dy names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given

below.
Name and Meaning Value
$BIG_ID1 (1..258 = >'A', 255 => '1')

E Tdentifier the size of the
. maximum 4nput line length with
’ varying last character.

$BIG_ID2 (1..254 2> *A', 255 2> '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 (1..1548 => *A', 155 > '3*,
Identifier the size of the 156..255 => 'A')
maximm 4input line length with
varying middle character.

$B1G_ID4 (1..158 => *A', 155 => 'A*,
Identifier the size of the 156..255 => ‘'A')
maximum input line length with
varying middle character.

$BIG_INT_LIT (1..252 => '0', 253..255 => "298")
An integer 1literal of value 298
with enough leading 2zeroes so
that it is the size of the
maximua line length.

TEST PARAMETERS

Name and Meaning

Value

$BIG_REAL_LIT
A real 1literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough 1leading zeroes to be
the size of the maximum line
length.

$BLANKS
A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNT_LAST

A universal integer 1literal

whose value is TEXT_IO.COUNT'LAST.

$EXTENDED_ASCII_CHARS
A string 1literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_LAST

A universal integer 1literal

(1..249 => '0*, ¢
250..255 => "69.0E1")

(1-.235 => ' ')

32767

"abcdef ghi jklmnopqrstuvwxyz" &
nigg2e(\1"* {}~"

32767

whose value 1is TEXT_IO. FIELD'LAST.

$FILE_NAME_WITH BAD_CHARS
An 1illegal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE_NAME WITH WILD_CARD_CHAR
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER_THAN_DURATION
A universal real value that lies
between DURATION'BASE'LAST and

DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER_THAN_DURATION_BASE_LAST
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

NO_PILES

NO_FILES

90_000.0

10_000_000.0

TEST PARAMETERS

Name and Meaning - Value

$ILLEGAL_EXTERNAL FILE_NAME1 NO_FILES
An illegal external file name.

ot $ILLEGAL_EXTERNAL_FILE NAME2 NO_FILES
An illegal external file name

that is different from
o $ILLEGAL_EXTERNAL_FILE_NAME1.

;Z‘f:-. $INTEGER_FIRST -32768
The universal integer literal
RNy expression whose value is

INTEGER'FIRST.
i $INTEGER_LAST 32767
e The universal integer literal
R expression whose value is
R INTEGER'LAST.
R $LESS_THAN_DURATION -90_000.0
£t A universal real value that lies
o between DURATION'BASE'FIRST and
N DURATION'FIRST if any, otherwise
N any value in the range of
DURATION.
e $LESS_THAN_DURATION_BASE_FIRST -10_000_000.0
is‘;;: The universal real value that is
oy less than DURATION'BASE'FIRST,
it if such a value exists.
. $MAX_DIGITS 6
ok The universal integer 1literal
whose value is the maximum
et digits supported for
floating-point types.
- $MAX_IN_LEN 255
et The universal integer 1literal
B, whose value is the maximum
x| input 1line 1length permitted by
i the implementation.
$MAX_INT 32767
ot The universal integer literal
whose value 1s SYSTEM.MAX_INT.

c-3

'-q ul.\qi,‘6-5' . ‘l\"!ﬁlﬂ l ,l;x ‘!g",‘:‘,’:‘""‘_!“h.!“‘;

LACRE M

— — e

TEST PARAMETERS

Name and Meaning Value

$NAME NO_OTHER PREDEF_NUM TYPE «
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER
if one exists, otherwise any
undefined name.

$NEG_BASED_INT 8#177776¢4
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_ INT.

$NON_ASCII_CHAR_TYPE (NON_NULL)
An enumerated type definition
for a character type whose
literals are the 1identifier
NON_NULL and all non-ASCII
characters with printable

graphics.

APPENDIX D

- .

WITHDRAWN TESTS

- s“;

b Some tests are withdrawn from the ACVC because they do not conform to the
o Ada Standard. The following 19 tests had been withdrawn at the time of
S validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

e . C32114A: An unterminated string literal occurs at line 62.
51 « B33203C: The reserved word "IS"” is misspelled at line 45,

. C348018A: The call of function G at line 114 {s ambiguous in the
presence of implicit conversions.

X . C35908A: The elaboration of subtype declarations SFX3 and SFX4
o may raise NUMERIC_ERROR instead of CONSTRAINT_ERROR as expected in
" th. t”to

. B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part,

o« CU41408A: The values of 'LAST and 'LENGTH are incorrect in the 1if
statements from line 74 to the end of the test.

g . BH5116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
N the wrong type--PRIBOOL_TYPE instead of ARRPRIBOOL _TYPE--at line
mn.

4 . CHB0OBA: The assumption that evaluation of default initial values
ococurs when an exception is raised by an allocator is incorrect
. according to AI-00397.

. BHQ006A: Object declarations at lines 41 and S0 are terminated
incorreoctly with colons, and end case; is missing from line 42.

. BHAO10OC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

i

)
-]
[]
-

F ‘3{!“'“-.153*.3‘_‘: ﬁf;ﬁ_ !‘ .

WITHDRAWN TESTS

« BTH101B: The begin at line 9 causes a declarative part to be

treated as a sequence of statements.)

¢
The call of "/z" at line 31 requires a use oclause for

. CB8TB50A:
pacikage A.
« C92005A: The */=" for type PACK.BIG_INT at line X0 is not visible

without a use clause for the package PACK.

. C9HOACA: The assumption that allocated task TT1 will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

« CA3005A..D (& tests): No valid elaboration order exists for these

tests.

. BC3204C: The body of BC3204CO is missing.

St R e Ry
i "‘a‘-"'e':’a‘m.bn‘«‘a

O LCOORIROOOOOMS
AN b‘.}i‘ RN

£
*

%

«

P

_!" |“.i

‘J»:\ ?

*!
:“a

|‘ o“"

‘. ‘.l

\..

