
-Aisi 991 ADA (TRADE WME) COMPILER VALIDATION SUMMARY REPORT i/1
INTERMETRICS INC INTE (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER id-P AFS ON ADA VALI 29 OCT 86

UNCLASSIFIED F/G 2/5 M

EhmhollsohmiE
EhhmhhEEshhhhE
EhEohmhEmhhhhE

U l e

MICROCOPY RESOLUTION TEST CHART

%&T,'0,AL WN[AU Of SYAWo"1 3 A4

-71W Fq 9w Wwly

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) _ ___________

REPORT DOCUMENTATION PAGE sRE oNSTRIN
BEFORE COMPLETEING FORM

1. REPORT NUMBER 12. GOVT ACCESION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 29 OCT 1986 to 29 OCT 1987
Intermetrics, Inc., Intermetrics 370/CMS Ada
Compiler, Version 201.16c IBM 3083 6. PERFORMING ORG. REPORT NUMBER
(System/370)

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AVF-WPAFB, Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 29 OCT 1986
United States Department of Defense 3. NUMULK UF PAG'S
Washington, DC 20301-3081 45

14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED

15a. R A FICATION/DOWNGRADING

N/A
16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

0_ L7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

00 UNCLASSIFIED ELECT n

.8. SUPPLEMENTARY NOTES

- A

9. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DO 1uM 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Intermetrics 370/CMS Ada Compiler,
Version 201.16c, using Version 1.8 of the Ada® Compiler Validation
Capability (ACYC). The Intermetrics 370/CMS Ada Compiler is hosted on an
IBM 3083 operating under CMS, Release 3. Programs processed by this
compiler may be executed on an IBM 3083 operating under CMS, Release 3.

On-site testing was performed 24 October 1986 through 29 October 1986 at
Intermetrics, Inc., Cambridge MA, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 2210 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 170 executable
tests that make use of floating-point precision exceeding that supported by
the implementation, were not processed. After the 2210 tests were
processed,. results for Class A, C, D, or E tests were examined for correct
execution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 40 of the processed tests determined to be inapplicable. The
remaining 2169 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 4 5 6 7 8 10 11 12 14

Passed 102 251 334 235 161 97 134 262 128 32 218 215 2169

Failed 0 0 0 00 0 0 0 0 0 0 0

Inapplicable 14 74 86 12 0 0 5 0 2 0 0 18 211

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to

AMSI/MIL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

i

I

Ada® Compiler Validation Summary Report:

Compiler Name: Intermetrics 370/CMS Ada Compiler, Version 201.16c

Host: Target:
IBM 3083 under IBM 3083 under
CMS, Release 3 CHS, Release 3

Testing Completed 29 October 1986 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Vali tion Facility
Georgeanne Chitwood
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

t-At

Ada Jbint Program Office
Virginia L. Castor ____-_

Director
Department of Defense

Washington DC on/

4 A.,

'*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

95 0

AVF Control Number: AVF-VSR-46.1286

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Intermetrics, Inc.
Intermetrics 370/CMS Ada Compiler, Version 201.16c

IBM 3083 (System/370)

Completion of On-Site Testing:
29 October 1986

Prepared By:

Ada Validation Facility
ASD/SIOL

Wright-Patterson AFB OH 45433-6503

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington, D.C.

%da is a registered trademark of the United States Government

(Ada Joint Program Office).

+ Plaoe NTIS form here +e

EXECUTIVE SUMMARY

This Validation Sumary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Intermetrics 370/CMS Ada Compiler,
Version 201.16o, using Version 1.8 of the Ada® Compiler Validation
Capability (ACVC). The Intermetrios 370/CH3 Ada Compiler is hosted on an
IBM 3083 operating under CMS, Release 3. Programs processed by this
compiler my be executed on an IBM 3083 operating under C43, Release 3.

On-site testing was performed 24 October 1986 through 29 October 1986 at
Intermetrios, Inc., Cambridge MA, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF Identified 2210 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 170 executable
tests that make use of floating-point precision exceeding that supported by
the implementation, were not processed. After the 2210 tests were
processed, results for Class A, C, D, or E tests were examined for correct
execution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.

There were 40 of the processed tests determined to be inapplicable. The
remaining 2169 tests were passed.

The results of validation are sumarized in the following table:

RESULT CHAPTER TOTAL
4 56~ 8 10 11 12 114 _

Passed 102 251 334 235 161 97 134 262 128 32 218 215 2169

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 74 86 12 0 0 5 0 2 0 0 18 211

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/HIL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

iNi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.14 DEFINITION OF TERMS 1-3
1.5 ACYC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.14 WITHDRAWN TESTS3.-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-4

3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method 3-4

3.7.3 Test Site 3-5

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

)This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
acoording to the Ada Standard, and any implementatiok-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language oonstructs..-. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

111-

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATTON SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any unsupported language constructs
required by the Ada Standard

• To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
24 October 1986 through 29 October 1986 at Intermetrics, Inc., Cambridge
MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organizati n: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/HIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cro3ss-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

a1-4

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-5

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Intermetrics 370/CMS Ada Compiler, Version 201.16c

ACVC Version: 1.8

Certificate Expiration Date: 16 December 1987

Host Computer:

Machine: IBM 3083

Operating System: CMS, Release 3

Memory Size: 24 megabytes

Target Computer:

Machine: IBM 3083

Operating System: CMS, Release 3

Memory Size: 24 megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

. Capacities.

The compiler correctly processes tests containing loop statements

nested to 17 levels and recursive procedures separately compiled
as subunits nested to 17 levels. The compiler could not process
block statements nested to 65 levels. It correctly processes a
compilation containing 723 variables in the same declarative part.
(See tests D55AO3A..H (8 tests), D56001B, D61OO5E..G (3 tests),
and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO2A, D4AOO2B, D4AOO4A, and
DIIAO4B.)

Predefined types.

This implementation supports the additional predefined type
SHORT FLOAT in the package STANDARD. (See tests B86001C and
B86001D.)

" Based litorals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implemntation raises NUMERICERROR during execution. (See test
E2101A.)

. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTh that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

2-2

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC-ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER' LAST
components raises NUMERIC-ERROR when the array type is delared.
(See test C5210Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression does not
appear to be evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to be
evaluated in its entirety before CONSTRAINT-ERROR is raised when
checking whether the expression's subtype 1s compatible with the
target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression does
not appear to be evaluated in its entirety before CONSTRAINT ERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E3212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3

CONFIGURATION INFORMATION

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declavation.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation rejects 'SIZE and 'STORAGE SIZE for tasks,
'STORAGE SIZE for collections, and 'SMALL clauses. Enumeration
representation clauses, including those that specify noncontiguous
values, appear not to be supported. (See tests C55B16A, C87B62A,
C87B62B, C87B62C, and BC1002A.)

" Pragmas.

The pragma INLINE is supported for procedures and functions. (See
tests CA3004E and CA300F.)

• Input/output.

The package SEQUENTIAL IO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. The package DIRECT 10 cannot be instantiated
with unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, AE21011, CE2201D, CE2201E,
and CE24O1D.)

An existing text file can be opened in OUT FILE mode, cannot be
created in OUT FILE mode, and cannot be created in INPILE mode.
(See test EE3102.)

Only one internal file can be associated with each external file
for text I/O for both reading and writing. (See tests CE3111A..E
(5 tests).)

Only one internal file can be associated with each external file
for sequential I/O for both reading and writing. (See tests
CE210TA..F (6 tests).)

2- '

CONFIGURATION INFORMATION

More than one internal file can be associated with each external
file for direct I/0 for both reading and writing. (See tests
CE2107A..F (6 tests).)

Temporary sequential files are given a name. Temporary, direct
files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

Generics.

Body and subunits of a generic unit must be in the same
compilation as the specification if instantiations precede them.
(See tests CA2009C and CA2009F.)

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC oontains 2399 tests. When validation testing of
Intermetrios 370/CMS Ada Compiler was performed, 19 tests had been
withdrawn. The remaining 2380 tests were potentially applicable to this
validation. The AVF determined that 211 tests were inapplicable to this
implementation, and that the 2169 applicable tests were passed by the
implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
-_A B C D E L

Passed 67 862 1169 12 13 46 2169

Failed 0 0 0 0 0 0 0

Inapplicable 2 5 199 5 0 0 211

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2_4 5 6 7 10 1 12 14

Passed 102 251 334 235 161 97 134 262 128 32 218 215 2169

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 741 86 12 0 0 5 0 2 0 0 18 211

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B149006A C940ACA
B37401A B4A01C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make us* of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 211 tests were inapplicable for
the reasons indicated:

C34001D, B52004E, B55B09D, and C55BO7B use SHORT-INTEGER which is
not supported by this compiler.

* C34001E, B52004D, B55B09C, and C55BO7A use LONG INTEGER which is
not supported by this compiler.

. C340010 and C35702B use LONG FLOAT which is not supported by this
compiler.

3-2

TEST INFORMATION

. D55AO3E..H (4 tests) require 31 to 65 levels of loop nesting which
is greater than this implementation supports.

" D56001B requires 65 levels of block nesting which is greater than
this implementation supports.

" C55B16A makes use of an enumeration representation clause
containing noncontiguous values which is not supported by this
compiler.

" B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT 10.

" C87B62A..C (3 tests) use length clauses which are not supported by
this compiler. The length clauses are rejected during
compilation.

" CA2009C and CA2009F compile generic subunits in separate
compilation files. For this implementation, the body and subunits
of a generic unit must be in the same compilation as the
specification if instantiations precede them.

" AE2101C, C92201D, and CE2201E use an instantiation of package
SEQUENTIAL 1O with unconstrained array types which is not
supported by this compiler.

" AE2101H and CE24O1D use an instantiation of package DIRECTIO with
unconstrained array types which is not supported by this compiler.

• CE2107A..D (4 tests), C2110B, CE2111D, C33111A..Z (5 tests),
CE3114B, and CE3115A are inapplicable because multiple internal
files cannot be associated with the same external file for
sequential 1/O or text I/O. The proper exception is raised when
multiple access is attempted.

" The following 170 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by the implementation:

C24113L..Y (14 tests)
C35705L..Y (14 tests)
C35706L..Y (14 tests)
C35707L..Y (14 tests)
C35708L..Y (14 tests)
C35802L..Y (14 tests)
C45241L..Y (14 tests)
C45321L..Y (14 tests)

3-3

TEST INFORMATION

C45421L..Y (14 tests)
C45424L..Y (14 tests)
C45521L..Z (15 tests)
C45621L..Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class B test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for two Class B tests:

BA1101C BC3205D

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the Intermetrics 370/CHS Ada Compiler was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Intermetrics 370/CHS Ada Compiler using ACVC Version 1.8 was
conducted on-site by a validation team from the AVF. The configuration
consisted of an IBM 3083 operating under CHS, Release 3.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

3-4

TEST INFORMATION

The contents of the magnetic tape were loaded directly onto the host
computer using a special program developed by Intermetris for that
purpose. This program read each test file and converted it to EBCDIC
format. It also converted each empty line in the tape file to a line
containing one space character because the host file system clnnot
represent an empty line. The full set of tests was compiled on the IBM
3083, and the executable tests were linked and run. Test results were
transferred to another operating system, UTS, from which they were printed.
Error messages were merged into source files using a listing tool that
operates under UTS; this tool was not available under CMS at the time of
testing.

The compiler was tested using command scripts provided by Intermetrics,
Inc. and reviewed by the validation team. Each test was run using a
program library that contained only the library units defined by the Ada
Standard, the package REPORT used by the executable tests, and the
procedure CHECK FILE. All tests were processed using the compiler's
default option settings, except the Class B tests for which processing was
terminated following the semantics phase (option Stopafter => SEN). All
tests were linked with the linker's default options in effect.

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and job loss
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also arohived.

3.7.3 Test Site

The validation team arrived at Intermetrios, Inc., Cambridge MA on 24
October 1986, and departed after testing was completed on 29 Ootober 1986.
The computer used for testing was not dedicated to the testing effort.

3-5

APPENDIX A

COMPLIANCE STATEMENT

Interinetr'ics, Inc. has submitted the following
compliance statement concerning the Intermetrics
370/CMS Ada Compiler.

A-I

COMPLIANCE STATEMNT

Compliance Statement

Configuration:

Compiler: Intermtrics 370/043 Ad& Compiler, Version 201.16o

Test Suite: AdeCampiler Validation Capability, Version 1.8

Host Computer:

Machine: IBM4 3083

Operating System: CMS, Release 3

Target Computr:

Machine: IBM 3083

Operating System: CMS, Release 3

InteruetriCs, Inc. has made no deliberate extensions to the Ada language
standard.

Intermetrics, Inc. agrees to the public disclosure of this report.

Intersetrios, Inc. agrees to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office.

"9 Date:____
Intermetrics, Inc.
Dennis D. Struble
Manager, Ada Compilers

esAda Is a registered trademark of the United States Govermuent
(Ada Joint Program Office).

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragma, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
.representation classes. The implementation-dependent characteristics of
the Intermetrics 370/CMS Ada Compiler, Version 201.16c, are described in
the following sections which discuss topics in Appendix F of the Ada
Language Reference Manual (ANSI/MIL-STD-1815A). The specification of the
package STANDARD is also included in this appendix.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type SHORT FLOAT is digits 6 range -16#0.ffffff#e63 .. 16#0.ffffff#e63;
type FLOATis digits 15 range -16#0.ffffffffffffff#e63

16#O.ffffffffffffff#e63;

type DURATION is delta 2.0 ee (-14) range -86400.0 . 86400.0;
-- DURATION'SMALL = 2.0 * (-14)

end STANDARD;

B-1

Appendix F. IMPLEMENTATION DEPENDENCIES
This section constitutes Appendix F of the Ada LRM for this

implementation. Appendix F from the LRM states:

The Ada language allows for certain machine-dependencies in a controlled

manner. No machine-dependent syntax or semantic extensions or restrictions
are allowed. The only allowed implementation-dependencies correspond to
implementation-dependent pragmas and attributes, certain machine-dependent
conventions as mentioned in Chapter 19, and certain allowed restrictions on
representation clauses.

The reference manual of each Ada implementation must include an appendix
(called Appendix F) that describes all implementation-dependent
characteristics. The Appendix F for a given implementation must list in
particular:

1. The form, allowed places, and effect of every implementation-dependent
pragma.

2. The name and the type of every implementation-dependent attribute.

9. The specification of the package SYSTEM (see 19. 7).

4. The list of all restrictions on representation clauses (see 19.1).

5. The conventions used for any implementation-generated name denoting
implementation-dependent components (see 13.4).

6. The interpretation of expressions that appear in address clauses,
including those for interrupts (see 19.5).

7. Any restriction on unchecked conversions (see 13.10.2).

8. Any implementa tion- dependent characteristics of the input-output
packages (see 14).

In addition, the present section will describe the following topics:

9. Any implementation-dependent rules for termination of tasks
dependent on library packages (see 9.4:13).

10. Other implementation dependencies.

11. Compiler capacity limitations.

B-2

Io

F.1 Pragmas
This section describes the form, allowed places, and effect of every

implementation-dependent pragma.

F.1.1 Pragmas LIST, OPTIMIZE, PAGE, PRIORITY

Pragmas LIST, OPTIMIZE, and PAGE are ignored. Pragma PRIORITY is
supported exactly in the form, in the allowed places, and with the effect as
described in the LRM.

F.1.2 Pragma SUPPRESS

Form: As specified in LRM B(14) : SUPPRESS

Allowed Place: As specified in LRM B(14) : SUPPRESS

Effect: Pragma SUPPRESS is ignored.

F.1.3 Pragma INLINE

Form: Pragma INLINE (SubprogramNameCommaList)

Allowed Places: As specified in LRM B(4) : INLINE

Effect: If the subprogram body is available, and the subprogram is not
recursive, the code is expanded in-line at every call site and is subject
to all optimizations.

The stack-frame needed for the elaboration of the inline subprogram
will be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference, as for
non-inline subprograms. Register-saving and the like will be
suppressed. Parameters may be stored in the local stack-frame or held
in registers, as global code generation allows.

Exception-handlers for the INLINE subprogram will be handled as for
block-statementa.

Use: This pragma is used either when it is believed that the time required
for a call to the specified routine will in general be excessive (this for
frequently called subprograms) or when the average expected size of
expanded code is thought to be comparable to that of a call.

F.1.4 Pragma INTERFACE

Form: Pragma INTERFACE (languagejname, subprogram.name)
where the language-name must be an enumeration value of the type

B-3

SYSTEM.SupportedLanguageName (see Package SYSTEM below).

Allowed Place: As specified in LRM B(5) : INTERFACE.

Effect: Specilies that a subprogram will be provided outside the Ada program
library and will be callable with a specified calling interface. Neither an
Ada body nor an Ada body-.stub may be provided for a subprogram
for which INTERFACE has been specified.

Use: Use with a subprogram being provided via another programming
language and for which no body will be given in any Ada program.
See also the LINK-NAME pragma.

The calling conventions for an Ada program calling a non-Ada
subprogram are described in the Run-Time Model B-5.

F.1.5 Pragma LINK_NAME

Form: Pragma LINK.NAME (subprogram__name, link-name)

Allowed Places: As specified in LRM B(5) for pragma INTERFACE.

Effect Associates with subprogram subprogram__name the name linknaiame as
its entry point name.

Syntax: The value of link-name must be a character string literal.

Use: To allow Ada programs, with help from INTERFACE pragma, to
reference non-Ada subprograms. Also allows non-Ada programs to
call specified Ada subprograms.

F.1.6 Pragma CONTROLLED

Form: Pragma CONTROLLED (AccessTypeName)

Allowed Places: As specified in LRM B(2) : CONTROLLED.

*Effect: Ensures that heap objects are not automatically reclaimed. Since no
automatic garbage collection is provided, this pragma currently has no
effect.

F.1.7 Pragma PACK

Form: Pragma PACK (type-simple..name)

Allowed Place: As specified in LRM 13.1(12)

Effect Components are allowed their minimal number of storage units as
provided for by their own representation and/or packing.

B-4

Floating-point components are aligned on storage-unit boundaries,
either 4 bytes or 8 bytes, depending on digits.

Use: Pragma PACK is used to reduce storage size. This can allow records
and arrays, in some cases, to be passed by value instead of by
reference.

Size reduction usually implies an increased cost of accessing
components. The decrease in storage size may be offset by increase in
size of accessing code and by slowing of accessing operations.

F.1.8 Pragmas SYSTEMNAME, STORAGEUNIT,
MEM OR YSIZE

These pragmas are not supported and are ignored.

B-5

I-U

F.2 Implementation- dependent Attributes

This section describes the name and the type of every implementation-
dependent attribute.

There are no implementation defined attributes. These are the values for

certain language-defined, impleme ntation-de pendent attributes:

Type INTEGER.
INTEGER'SIZE = 32 -- bit.

INTEGER'FIRST = - (2**31)
INTEGER'LAST = (2**31-1)

Type SHORT-FLOAT.
SHORT-FLOAT'SIZE = 32 -- bits.

SHORT-FLOAT'DIGITS = 6

SHORTYFLoATMANTISSA = 21

SHORTYLOArEMAX = 84

SHORTYFLoATEPsiLON = 2.0**(-20)

SHORTYLOATSMALL = 2.0**(-85)

SHORTJYLoATLARGE - 2 0*84

SHoRT-YLoArMACHINE..ROUNDS = false

sIIoRT-YLoArMACHINE-RADIX =16

SHORT-FLOArMACHINE-MANTISSA =6e
SHORT-YLoATMACHINE-EMAX =603

SHORT-3LoArMACHINE..EMIN =-54

SHORT-.FL OAT'MACHINE-OVERFLOWS = false

SHORT-FLOATSAFE..MAAX = 252
SHORT-YLOAI'SAFE-SMALL = 156#0.800000#E-63

SHORTFL OA'SAFEJ.ARGE = 1 6#0.FFFFF8#E83

Type FLOAT.
FLoATsizE =64 -- bifte.

FLOAT'DIGITS =15
FLoAT'MAN7ISSA =51
FLOAT'EMAX = 204

FLOAT'EPSILON = 2.0**(-50)

FLoAT'SMALL -2 0**(-2OS)

FLOAT'LARGE =(1.0-2**(.51))*2.0**204

FLOAT'MACHINE-.ROUNDS =false

FLOATMACHINE..RADIX =16

FLOAT'MACHINE-.MANTISSA =14

FLOAT'MACHINE-EMAX =63
FLOAT'MACHINE-.EMIN = -64

FLOAT'MACHINE-.OVERFLOWS =false

B-6

_ _ _ - -- - - - - ~ -.- - - - -.. - - - - - -A - - -

FLOAT'SAFE..RMAX - 252

FLOAT'SAFE-.SMALL = 16#0.80000000000000#E-53

FL OAT'SAFE-.LARGE = 1 6#0.FFFFFFFFFFFFEO#EO3

Type DURATION.
DURATION'DELTA = 2.0**(.14) s- econds

DURATION'FIRST = - 86,400

DURATION'LAST = 86,400

DURATION'SMALL = 2.00*(.14)

Type PRIORITY.
PRIORITY'FIRST = -128

PRIORITY'LAST = 127

B-7

F.3 Package SYST7EM

package SYSTEMv is

type ADDRESS is private; -3, ="defined implicitly;

type NAME is (UTS, MVS, (CMS, Prime5O, SperryllOO,
MIL..STD...1750A);

SYSTEM-LNAME : constant NAM'vE CMIS ; Target dependent

STORAGE-.UNIT constant 8;

MEMIORY-..SIZE constant :=2*24; -2*031 for XA mode

-In storage units

-System-Dependent Named Numbers:

MIN..INT :constant :INTEGER'POS(INTEGER'FIRST);

MAX-INT : constant INTEGER'POS(INTEGER'LAST);

MAX-..DIGITS :constant := 15;
MAX-MANTISSA : constant := 31;
FINE-..DELTA :constant :=2.0**(-31);

TICK :constant :=1.0;

-Minimum process delay is 1.0 second on UTS
-although clock can resolve to 0.001 second.

-Other System-Dependent Declarations

subtype PRIORITY is INTEGER range -127. .127;

-- Implementation-dependent additions to package SYSTEM1 --

NULL-ADDRESS :constant ADDRESS;

-Same bit pattern as 'null' access value

This is the value of 'ADDRESS for named numbers.

The 'ADDRESS of any object which occupies storage

-. is NOT equal to this value.

ADDRESS-.SIZE :constant := 32;

-Number of bits in ADDRESS objects,
==ADDRESS'SIZE, but static.

ADDRESS-SEGMNT-SIZE :constant :=2024;

B-8

Number of storage units in address segment

type ADDRESS-.OFFSET is new INTEGER;
.Used for address arithmetic

type ADDRESS-.SENT is new INTEGER;
Always sero on targets with
-- unsegmented address space.

subtype NORMALIZED-.ADDRESS-.OFFSET is
ADDRESS-..OFFSET range 0 .. ADDRESS-.SEGMNT-.SIZE -1

-Range of address offsets returned by OFFSET-.OF

function *+'(addr :ADDRESS; offset :ADDRESS-OFFSET)
return ADDRESS;

function *+*-(offset :ADDRESS-..OFFSET; addr :ADDRESS)
return ADDRESS;

-Provide addition between addresses and
-- offsets. May cross segment boundaries on targets
-. where objects may span segments.
-On other targets, CONSTRAINT-.ERROR will be raised

when OFFSET..OF(addr) + offset not in

-- NOIALI ZED...ADDRESS...OFFSET.

function *-"(left, right :ADDRESS) return ADDRESS-OFFSET;
-May exceed SEQENT..SIZE on targets where objects
-- may span segments.
-On other targets, CONSTRAINT-.ERROR

will be raised if
SECvfENT..OF(left) /= SEGMENT..OF(right).

function 3-*(addr :ADDRESS; offset :ADDRESS-..OFFSET) return
ADDRESS;

-Provide subtraction of addresses and offsets.
-May crods segment boundaries on targets where

objects may span segments.
On other targets, CONSTRAINT-.ERROR will be raised when

-- (OFFSET-.OF(addr) - offset)
-- not in NORMALIZED-.ADDRESS-.OFFSET.

function OFFSET-.OF (addr :ADDRESS)
return NORMALIZED.ADDRESS..OFFSET;

-Extract offset part of ADDRESS
-Always In range 0. .seg..size-

function SECMNT-OF (addr :ADDRESS) return ADDRESS.SEvEN'I':

-Extract segment part of ADDRESS

B-9

(sero on targets with unsegmented address space)

function MAKE-ADDRESS (offset ADDRESS-OFFSET;
segment ADDRESSSEQMENT 0)

return ADDRESS;

-- Build address given an offset and a segment.

-- Offset may be > segsise on targets where objects

-- may span segments, in which case it is equiv

-- to 'MAKEADDRESS(O,segment) + offset".

-- On other targets, CONSTRAINT-ERROR will be raised
-- when offset not in NORMALIZEDADDRESSOFFSET.

type SupportedLanguageName is (-- "Target dependent

-- The following are 'foreign' languages:
ASSEMBLER,

FORTRAN.MA I N,
FORTRAN,

COBOL..MAIN,

COBOL,

JOVIAL.MAIN,

PL 1 MAIN,

AIEASSEMBLER, -. NOT a "foreign" language - uses AIE RTS
UNSPECIFIEDLANGUAGEMAIN,

UNSPECIF IED-LANGUAGE

-- Most/least accurate built-in integer and float types

subtype LONGEST-INTEGER is STANDARD.INTEGER;

subtype SHORTEST-INTEGER is STANDARD.INTEGER;

subtype LONGEST-FLOAT is STANDARD.FLOAT;

subtype SHORTEST-FLOAT is STANDARD.SHORTFLOAT;

private

type ADDRESS is access INTEGER;

-- Note: The designated type here (INTEGER) is

-- irrelevant. ADDRESS is made an access type

-- simply to guarantee it has the same size as

-- access values, which are single addresses.

-- Allocators of type ADDRESS are NOT meaningfil.

NULL-ADDRESS : constant ADDRESS := null;

end SYSTEM

B-10

F.4 Representation Clauses

This section describes the list of all restrictions on representation clauses.

"NOTE: An implementation may limit its acceptance of representation clauses to
those that can be handled simply by the underlying hardware.... If a program
contains a representation clause that is not accepted [by the compiler/, then the
program is illegal." (LRM 13.1(10)).

There are no restrictions except as follows:

a. Length clauses are not allowed.

b. Representation clauses for enumeration types are not allowed.

c. Address clauses are not allowed.

d. Record-representation-clause:

Within a record-representation-clause, the object being represented must
be no larger than one 32-bit word.

The range of bits specified must be in the range of 0..31.

Record components, including those generated implicitly by the compiler,
whose locations are not given by the representation-clause, are layed out
by the compiler following all the components whose locations are given by
the representation-clause. Such components of the invariant part of the
record are allocated to follow the user-specified components of the
invariant part, and such components in any given variant part are
allocated to follow the user-specified components of that variant part.

B

B-if

m ----- 7

F.5 Implementation-dependent Components

This section describes the conventions used for any implementation-
generated name denoting implementation-dependent components.

There are no implementation-generated names denoting implementation-
dependent (record) components, although there are, indeed, such components.
Hence, there is no convention (or possibility) of naming them and, therefore,
no way to offer a representation clause for such components.

NOTE: Records containing dynamic-sized components will contain (generally)
unnamed offset components which will "point" to the dynamic-sized
components stored later in the record. CMS/Ada offers no means to specify
the representation of such components.

B-12

F.6 Address Clauses

This section describes the interpretation of expressions that appear in

address clauses, including those for interrupts.

Address clauses are not allowed.

B-13

F.7 Unchecked Conversions
This section describes any restrictions on unchecked conversions.

The source and target values must both be of an integer, enumeration, or
access type.

B-14

F.8 Input-Output

This section describes implementation-dependent characteristics of the
input-output packages.

(a) Declaration of type DirectIO.Count? [14.2.5]
O..Integer'last;

(b) Effect of input/output for access types?
Not meaningful if read by different program invocations

(c) Disposition of unclosed IN-FILE files at program termination? 114.1(7)1
Files are closed.

(d) Disposition of unclosed OUT-FILE files at program termination? [14.1(7)]
Files are closed.

(e) Disposition of unclosed INOUTFILE files at program termination?
[14.1(7)]

. Files are closed.

(f) Form of, and restrictions on, file names? [14.1(1)]
CMS filenames.

(g) Possible uses of FORM parameter in I/O subprograms? [14.1(1)]
The FORM string may contain 4 parameters:

i. RECFM and RECSIZE may specify CMS record format.

ii. PRINT (boolean) tells whether a text file is printer-destined.

iii. EBCDIC (boolean) tells whether the external file is in
EBCDIC and should be converted to/from ASCII internally.

(h) Where are I/O exceptions raised beyond what is described in Chapter 14?
[14.1(11)]

None raised.

(i) Are alternate specifications (such as abbreviations) allowed for file names?
If so, what is the form of these alternatives? [14.2.1(21)]

No.

(j) When is DATA-ERROR not raised for sequential or direct input of an
inappropriate ELEMENT-TYPE? [14.2.2(4), 14.2.4(4)1

When it can be assigned without CONSTRAINT-ERROR to a
variable,of ELEMENT-TYPE.

(k) What are the standard input and standard output files? [14.3(5)]
These default to the user's terminal. They may be redirected to-
CMS disk files via the CMS "FILEDEF" command. Standard
output may be appended to an existing CMS file.

(1) What are the forms of line terminators and page terminators? [14.3(7)1
Internally (to the Ada programmer):

B-15

Line terminator is ASCII.FL (line feed)
Page terminator is ASCILFF (form feed)

In the external EBCDIC file, these are converted to end-ox-record
and "new-page" carriage control (that is, standard IBM
conventions). Due to restrictions imposed by CMS, page
terminators and zero-length lines can exist only in printer-destined
files.

(m) Value of TextIO.Count'last? [14.3(8)1
integer'last

(n) Value of TextJO.Field'last? [14.3.7(2)]
integer'last

(o) Effect of instantiating ENUMERATION_10 for an integer type?
[14.3.9(15)]

The instantiated Put will work properly, but the instantiated Get
will raise Data..Error

(p) Restrictions on types that can be instantiated for input/output?
Neither direct I/O nor sequential I/O can be instantiated for an
unconstrained array type or for an unconstrained record type
lacking default values for its discriminants.

(q) Specification of package LowLevelIO? 14.6]
Low.LevelIO is not provided.

(r) Additional Restrictions
More than one internal file may not simultaneously access the
same external file (except for direct-io files opened for input).

B- 16

4 C .C '

F.9 Tasking

This section describes implementation-dependent characteristics of the
tasking run-time packages.

Even though a main program completes and terminates (its delendent
tasks, if any, having terminated), the elaboration of the program as a whole
continues until each task dependent upon a library unit package has either
terminated or reached an open terminate alternative. See LRM 9.4(13).

B-17

IM

F.1O Other Matters

This section describes other implementation-dependent characteristics of
the system.

a. Restrictions on SHARED variables (LRM 9.11):
Must be of a scalar or access type.

b. Package Machine-Code
Will not be provided.

c. Order of compilation of generic bodies and subunits (LRM 10.3:9):
Body and subunits of generic must be in the same compilation as
the specification if instantiations precede them (see Al-
00257/02).

B-18

F.11 Compiler Limitations

(a) Maximum length of source line?
255 characters.

(b) Maximum number of "use" scopes?
Limit is 50, set arbitrarily by SEMANTICS as maximum number
of distinct packages actively "used."

(c) Maximum length of identifier?
255 characters.

(d) Maximum number of nested loops?
24 nested loops.

B- 19

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file

name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGID1 (1..254 WA'A', 255 WV'1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG.ID2 (1..254 >'A', 255 =>21)
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1..127 >'A', 128 >'3',
Identifier the size of the 129..255 >A')
maximum input line length with
varying middle character.

$BIGID4 (1..127 O'A', 128 ->'4',
Identifier the size of the 129..255 -- 'A')
maximum input line length with
varying middle character.

$BIG INT LIT (1..252 0)'0', 253..255 -0"298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-1

6"ii.. i'' ... I ° " i' . i ''v ' ."

TEST PARAMETERS

Name and Meaning Value

$BIG REALLIT (1..249 :>'0, 250..255 =>"69.01")
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..235 =>' 1)
A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNT LAST 21- 17_83_6117
A universal integer literal
whose value is TEXT IO.COUNT'LAST.

$EXTENDED ASCII CHARS "abodefghij klmnopqrstuvwxyz" &
A string literal containing all "! S%?@[\]*"{}'
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 21417_183_647
A universal integer literal
whose value is TEXT 10. FIELDLAST.

$FILE HAME WITH BAD CHARS X}/#$-¥
An illegal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITH WILD CARD CHAR WILDCRD*
An external file name that
either contains a wild card
character, or Is too long if no
wild card character exists.

$GREATER THAN DURATION 90000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$OREATER THAN DURATION BASE LAST iO000000.0
The universal real value that is
greater than DURATION' 'BASLAST,
if such a value exists.

C-2

TEST PARAMETERS

Names and Meaning Value

t ILLEGAL EXTERNAL FILE NAME 1 BAD/CHAR
An illegal external f ile name.

$ILLEGAL EXTERNAL PILE MNM2 MUCHTOOLONGNAMEFORAFILE
An illegal external file name
that is different from
$ ILLEGAL BITE RNAL FILE NAME 1.

$1 NTEGER-FIRST -21417486418
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER-LAST 2_147_483_647
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THAN DURATION -90000.0
A universal real value that lies
between DURATION'BASS'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS THAN DURATION BASS FIRST -1 0000000.0
The universal re-al value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS 15
The universal integer literal
whose value is the mnaximum
digits supported for
floating-point types.

$MAX IN LEN 255
The universal integer literal
whose value Is the mnaximnum
input line length permitted by
the implementation.

sIaI-INT 214174183j417
The universal integer literal
whose value is SYSTEM .AK INT.

C-3

TEST PARAMETERS

Name and Meaning Value

$NAME NOOTHER PREDEF_NTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEGBASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NON ASCII CHAR TYPE (NON-NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

. . . i', .. . 4 C-4i 'k'r

APPENDIX D

WITHDRAWN TESTS

SOme tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada C mentary.

" C32114A: An unterminated string literal occurs at line 62.

" B33203C: The reserved word "IS" is misspelled at line 45.

" C34018A: The call of function 0 at line 114 is ambiguous in the

presence of implicit conversions.

• C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR instead of CONSTRAINT-ERROR as expected in
the test.

" B371 01A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

" C1lO1A4: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

" B5116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOLTYPE instead of ARRPRIBOOLTYPS--at line
4l.

C C48ooA: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

D- 1

WITHDRAWN TESTS

" B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

. B4A01OC: The object declaration in line 18 follows a sbprogram
body of the same declarative part.

" B7101B: The " at line 9 causes a declarative part to be
treated as a sequence of statements.

" C87B50A: The call of "I=/ at line 31 requires a use clause for
package A.

" C92005A: The "/=" for type PACK.BIG INT at line 40 is not visible
without a use clause for the package PACK.

" C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

. BC3204C: The body of BC3204C0 is missing.

D-2

... WNW.W~

