
-AlSI 892 ADA (TRADENAME) COMPILER VALIDATION SUMMARY REPORT t/1
OASYS OASYS VRDS ADA C (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER M-P AFS OH ADA VALI i9 JUN 86

UNCLASSIFIED F/G 12/5 Nt

IIIIIIEIIIIIIE
ElllllllhEllE

11L25 1-..

MICROCOPY RESOLUTION TEST CHART
w*AOmAI. @bAAU OF STAWiNW t~j A

-qa T

UNCLASSIFIED
kECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE RZ T CIN

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3 RECIPIELS-CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 19 JUN 1986 to 19 JUN 1987
OASYS, OASYS VADS Ada compiler, Version 1.7
InterPro 32 (NSC 32000) 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

AVF-WPAFB, Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 19 JUN 1986
United States Department of Defense 3. NUMBER OF PAES
Washington, DC 20301-3081 33

14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED

15a. R AJFICATION/DOWNGRADING

__________________________________N/A

6. DISTRIBUTION
STATEMENT (ofthisReport)

00 Approved for public release; distribution unlimited.

00
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

SUNCLASSIFIEDDTIC

I 18. SUPPLEMENTARY NOTES
J'UL U t).J' WT

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

O lum 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the OASIS VADS Ada ocmpiler, Version
1.7, using Version 1.7 of the Ada® Compiler Validation Capability (ACVC).

The validation process includes submitting a suite of standardized tests
(the AqCVC) as inputs to an Ada compiler and evaluating the results. The
purp0se is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during
execution.

On-site testing was performed 15 ;JUN 1986 through 19 JUN 1986 at ZAIAZ
Into-tational, Huntsville AL, under the direction of the Ada Validation
Faoi!t*;y (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The OASYS VADS Ada oompiler, Version 1.7, is hosted on an
InterPro 32 (NSC 32000) operating under Intergraph System V, Release 2.0.

The results of validation are sumarized in the following table:

RESULT TEST CLASS TOTAL
A B C D E L -

Passed 68 820 11441 17 11 23 2083

Failed 0 0 0 0 0 0 0

Inapplioable 0 4I 176 0 0 0 180

Withdrawn 0 41 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

eAda is a registered trademark of the United States Government
(Ada Joint Program Office).

AdaO Compiler Validation Sary Report:

Compiler Name: OASYS VADS Ada compiler,, Version 1.7

Host Computer: Target Computer:
InterPro, 32 (USC 32000) InterPro 32 (NSC 32000)

under under
Intergraph System V Intergraph SYstem V

Release 2.0 Release 2.0

Testing Completed 19 JUN 1986 Using ACYC 1.7

This report has been reviewed and is approved.

Ada Valid tion Fclt
Georgeanne Chitwood
ASD/SIOL
Wright-Patterson APB OH 45433-6503

AL~alion Office
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ad ortPormOfc
Virginia L. Castor
Director
Department of Defense
Washington DC

*Ada is a registered trademark of the United States Goverment
(Ada Joint Program Office).

87

AVF Control Number: AVF-VSR-42-1086

Adas COPILER
VALIDATION SUMuARY REPORT:

OASYS
OASYS VADS Ada compiler, Version 1.7

InterPro 32 (NSC 32000)

Completion of On-Site Validation:
19 JUN 1986 I- -7,:r ----"

-.

Prepared By:
Ada Validation Facility -.....

ASD/SIOL
Wright-Patterson APB OH 45433-6503 r oution'/... .

Prepared For:
Ada Joint Program Office A .

United States Department of Defense
Washington, D.C.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

*Plaoe Ufl3 form here.

t

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) smmarizes the results and conclusions
of validation testing performed on the OASIS VADS Ada compiler, Version
1.7, using Version 1.7 of the Adas Compiler Validation Capability (ACVC).

The validation process Includes submitting a suite of standardized tests
(the A 'CC) as inputs to an Ada compiler and evaluating the results. The
purp03e is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSt/IfIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at oompile time, at link time, or during
exacution.

On-site testing was performed 15 UN 1986 through 19 JUN 1986 at ZAIAL
Int%,,iational, Huntsville AL, under the direction of the Ada Validation
Faot : I ;y (AYF), aocording to Ada Validation Organization (AVO) policies and
procedures. The OASIS VADS Ada compiler, Version 1.7, is hosted on an
InterPro 32 (NSC 32000) operating under Intergraph System V, Release 2.0.

The results of validation are summarized in the following table:

RESULT TEST CLASS TOTAL
A B C D _ L __

Passed 68 820 114 17 11 23 2083

Failed 0 0 0 0 0 0 0

Inapplicable 0 4 176 0 0 0 180

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

*Ada Is a registered trademark of the United States Goverment
(Ada Joint Program Office).

-Il

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determihed the
following:

• SHORT INTEGER and SHORT FLOAT are supported.

• LONG-INTEGER and LONG-FLOAT are not supported.

. The additional predefined types TINY INTEGER, SHORT-INTEGER, and
SHORT-FLOAT are supported.

* Representation specifications for noncontiguous enumeration
representations are supported.

. Generic unit specifications and bodies can be compiled in separate
compilations.

" Pragma INLINE is supported for procedures and functions.

" The package SYSTEM is not used by package TEXT10.

* Modes Id FILE and OUT-FILE are supported for serpiantial I/0.

* Instantiation of the package SEQUENTIAL 10 with unconstrained
array types is supported.

Instantiation of the package SEQUENTIAL 10 with unconstrained

record types with discriminants is supported.

RESET and DELETE are supported for sequential and direct I/0.

Modes IN-FILE, INOUT FILE, and OUT-FILE are supported for direct
I/0.

* Instantiation of package DIRECT O with unconstrained array types
and unconstrained types with discriminants is supported.

. Dynamic oreation and deletion of files are supported.

" More than one internal file can be associated with the same
external file.

• An external file associated with more than one internal file can

be reset.

. Illegal file names can exist.

ACVC Version 1.7 was taken on-site via magnetic tape to ZAIAZ
International, Huntsville AL. All tests, except the withdrawn tests and
any executable tests that make use of a floating-point precision greater
than SYSTEf.tA1 DIGITS, were compiled on an InterPro 32 (NBC 32000). Class
A, C, D, and E tests were executed on an InterPro 32 (NBC 32000).

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntactic and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.

The AV? identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the OASYS VADS Ada compiler,
Version 1.7. Excluded were 170 tests requiring a floating-point prec~iaion
greater than that supported by the Implementation and the 16 withdrawn
tests. After the 2093 tests were processed, 10 tests were determined to be
inapplicable. The remaining 2083 tests were passed by the compiler.

The AVF concludes that these results demonstrate acceptable conformance to
ANSI/H.IL-STD- 1815A.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.*1 PURE 3SB OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS 1-3
1.11 DEFINITION OF TERMS 1-3
1.5 ACYC TEST CLASSES % a . * . e . * 1-41

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 CERTIFICATE INFORMATION 2-2
2.3 IMPLEMENTATION CHARACTERISTICS 2-3

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS * . * . . . * . . . s a 3-1
3.2 SUMMARY OFTEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BYCHAPTER 3-2

3.5 WITHDAWNLCESTS T.S...3-2
3.6 SNAPLI A TESTS 3-2
3.7 ADDITIOA TESTIN I.FORMATI.O.N 3-3
3.71 ADeIaIOALo ETN INFORMATION 3-3
3.7.2 Tet Meto 3-3

3o7.3 Test Site 3-41

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summazy Report (VSR) describes the extent to which a
specific Ada compiler co orifs to AJSI/MIL-STD-1815A. This report explains
all technical terms used within .it and thoroughly reports the results of
testing thli compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANST/XIL-STD-1815A). Any implementation-dependent features must conform
to the requirements of the Ada Standard. The entire Ada Standard must be
impi. :,nted, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/IL-STD-1815A, it
must be understood that some differences do exist between implementations.
Tibe AdA Standard permits some implementation dependencies--for example, the
maxtaum length of identifiers or the maxima values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report. .

V3Ra are written according to a standardized format. The reports for
several different copilers my, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this oompiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1. 1 PURPOSE OP THIS VALIDATION SUMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing vas carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

L-M

INTRODUCTION

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 15 JUN
1986 through 19 JUN 1986 at ZAIAZ International, Huntsville AL.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
opeating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ANSI/MIL-STD-1815A other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, KR 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson AB OH 115433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming L,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Caability Imple enters' Ouide, SofTech,
Inc., DEC 198;.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformance to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

LMC The Language Maintenance Committee whose function, is to
resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that evaluates the conformance of a compiler to a
language specification. In the context of this report, the
term is used to designate a single ACVC test. The text of a
program may be the text of one or more compilations.

Withdrawn A test found to be inaccurate in checking conformance to the
test Ada language specification. A withdrawn test has an invalid

test objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A is measured using the ACVC. The ACVC
contains both legal ani 1 llegal Ada programs structured I.Ito six teSt
nlAFe3i A, B, C, D, 9., aLid L, The first letter of a test n ame identifies
the class to which It belongs. Special program units are used to report
the results of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

1-4

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted In a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
rails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
Is self-cheoling and produces a PASSED or FAILED message during execution.

Each Class 3 test Is self-cheoking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
S'..Lard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
R Lest is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or If it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution Is attempted.
A Class L test passes if it is rejected at link tims--that is, an attempt
to execute the main program must generate an error message before any
deolarattons in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE9, support
the oe: I.eheoking V'eaturos of Lhe executable tests. The package REPORT
provi.,.s the mechanium by which executable tests report results. It also
provides a set of Identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

The operation of these units is chocked by a set of exeoutable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACYC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that say not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-speci io values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate oonformanoe to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was deteraned to contain an illegal

1-5

MNRODUCTION

language construct or an erroneous language construct is withdrcwn from the

ACYC and,, therefore,, is not used in testing a compiler. The nonconformant
tests are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: OASYS VADS Ada compiler, Version 1.7

Test Suite: Ada Compiler Validation Capability, Version 1.7l

Host C1. ,puter:

Machine(s): InterPro 32 (NSC 32000)

Operating System: Intergraph System V
Release 2.0

Memory Size: 4 megabytes

Target Computer:

Machine(s): InterPro 32 (NSC 32000)

Operating Systems Intergraph System V
Release 2.0

Memory Size: 4 megabytes

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Base Configuration:

Compiler: OASIS VADS Ada compiler, Version 1.7

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 3 September 1986

Host Computer:

Machine(s): InterPro 32 (NSC 32000)

Operating System: Intergraph System V
Release 2.0

Target Computer:

Machine(s): InterPro 32 (NSC 32000)

Operating System: Intergraph System V

Release 2.0

2-2

CONFIGURATION INFORMATION

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implem6ntation
differences. However, tests in other classes also characterize an

implementation. This compiler in characterized by the following
interpretations of the Ada Standard:

* Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but

are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as illegal in
Ada compilations. The characters are printed in the output
listing. (See test B26005A.)

. Capacities.

The compiler correctly processes compilations containing loop

statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures nested to 17 levels. It
correctly proOesses a compilation contailng 723 variables in the
same declarative part. (See tests D55AO3A through D55AO3H,
D56001B, D64005E through D64o50, and D2900O.)

. Universal Integer calculations.

An implementation is allowed to reject universal integer

calculations having values that exceed SYSTED.MAKX INT. This
implementation does not reject such calculations and processes

them correctly. (See tests D4Aoo2A, DAOO2B, D'AOO#A, and

DEAOOB.)

" Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORT FLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001CR, B86001CP, and B86001DT.)

. Based literals.

An implementation is allowed to reject a based literal with a

value exceeding SYSTEM.MAX XNT during compilation, or it may raise
NUMERIC ERROR during exeoution. This implementation raises
NUMERICERROR during execution. (See test 224101A.)

. Array types.

When an array type Is declared with an index range exceeding the

INTSOER'LAST values and with a component that is a null BOOLEAN
array, this compiler raises NUMERIC ERROR when the type is
declared. (See tests 136202A and 236202B.)

2-3

....... ..

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEOER'LAST
components raises NUMERIC ERROR when the array type Is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR either when declared or
assigned. Alternatively, an Liplementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises NUMERIC-ERROR when the
array type Is declared. (See test E52103.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is ;ompatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E38104A.)

In assigning record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT ERROR is
raised when checking whether the expression' s subtype is
compatible with the target's subtype. (See test C52013A.)

* Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being cheocked for identical bounds.
(See test 243212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggre-gate does not belong to
an index subtype. (See test E232119.)

tI 2-41

CONFIGURATION INFORMATION

. Functions.

The declaration of a parmaeterleas function with the same profile
as an enumeration literal in the same imediate scope in rejected
by the implementation. (See test 966001D.)

* Representation clauses.

Enumeration representation clauses are supported. (See test
DCi002A.)

* Prag"a.

The pragma INLINE is supported for procedures and functions. (See

tests CA30049 and CA300IF.)

" Input/output.

The package SEQUNTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT I0 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests
CB2201D, C922013, and CE2401D.)

More than one internal file can be associated with each external
file for sequential I/0 for both reading and writing. (See tests
CB2107A through C32107F.)

More than one internal file can be associated with each external
file for direct 1/O for reading only. (See tests C92107A through
C92107D and C22107F.)

An external file associated with more than one internal file can
be deleted. (See teat C2110B.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A through C3111.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in IN FILE mode.
(See test 923102C.)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted
when they are closed. (See tests C22108A and CE2108C.)

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AV? Identified 2093 of the 279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the OASYS VADS Ada campiler,
Version 1.7. Excluded were 170 tests requiring a floating-point precision
greater than that supported by the implementation and the 16 withdrawn
tests. After they were processed, 10 tests were determined to be
Inapplicable. The remaining 2083 tests were passed by the compiler.

The AVF concludes that the testing results demonstrate acceptable
conformance to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D 2 L

Passed 68 820 1144 17 11 23 2083

Failed 0 0 0 0 0 0 0

Inapplicable 0 4 176 0 0 0 180

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

3-1a

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
4_ 5 6~ 10 11 121

Passed 102 2341 308 2144 161 97 158 198 105 28 216 232 2083

Failed 00 00 00 00.0 0 00 0

Inapplicable 114 73 86 3 0 0 3 1 0 0 0 0 180

Withdrawn 0 1 41 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 2147 161 97 162 201 111 28 217 233 2279

3.51 WITHDRAW TESTS

The following tests have been withdrawn from the ACYC Version 1.7:

B14AOIOC C1411404A CA1003B
B83A06B C148008A CA3005A throueh CA3005D (14 tests)
85120011 C14A015A CE2107E
BC32014C C92005A
C35904A C940OACA

See Appendix D for the eat descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 180 tests were inapplicable for
the reasons indicated:

" C3140012t 8520041DO B55309C9 B86001CS, and C55B07A use LONG-INTEGER
which Is not supported by this compiler.

* C340010t C35702B. and B86001CQ use LONG-FLOAT which is not
supported by this compiler.

this new definition in this implementation.

" C96005B checks Implementations for which the smallest and largest
values in type DURATION are different from the amallest and
largest values in DURATION's base type. This is not the case for
this implementation.3-

LM-

TEST INFORMATION

170 tests were not processed because SISTEHMAX DIGITS was 15.
These tests were:

C214113L through C241113Y (141 tests)
C35705L through C35T05Y (114 tests)
C35706L through C35706Y (14l tests)
C35707L through C35707Y (14I tests)
C35708L through C3570ST (141 tests)
C35802L through C35802! (14i tests)
C4524I1L through C452141Y (141 tests)
C415321L through C415321Y (114 test.)
C145421L through C145421Y (114 tests)
C'454124L through C145424Y (114 tests)
C145521L through C415521Z (15 tests)
C415621L through C145621Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined.* The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A. Class C. or Class B test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 19 Class B tests.

B2141014A B37201A B67001B
B214104B8 938006A B67001C
9214104C B411202A B6T001D
B2AO03A B414001A B910ABA
B2A003B B6400O1A B95001A
B2AOO3C B67001A B971013
B33004A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACYC Version 1.7 produced by
the OASYS VADS Ada compiler, Version 1.7, was submitted to the LVF by the
applicant for prevalidation review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests.

3-3

TEST INFORMATION

3.7.2 Test Method

Testing of the OASYS VADS Ada compiler using ACYC Version 1.7 was conducted
on-site by a validation team. The base configuration consisted of an
InterPro 32 (NSC 32000) bost and target operating under Intergraph, System
V.

A magnetic tape containing ACVC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests applicable to this
validation, as well as all tests inapplicable to this validation except for
any Class C tests requiring a floating-point precision exceeding the
maximum value supported by the Implementation. Tests that make use of
values that are specific to an implementation were Customized before being
written to the magnetic tape. Tests requiring splits during the
prevalidation testing were included in their split form on the magnetic
tape. No editing of the test files was necessary when the validation team
arrived on-site.

The contents of the magnetic tape were loaded onto an InterPro 32 computer
and stored on a Maxtor hard disk. The Maxtor hard disk was moved to a
ieoond InterPro 32 and the tests were written to low density diskettes.
After the test files were loaded from the diskettes, the full set of tests
was compiled on the InterPro 32 and all exeoutable tests were run on the
InterPro 32. Results were written to low dasaity diskettes and loaded on a
ZAIAZ 32 and printed.

The compiler was tested using command scripts provided by OASYS. These
scripts were reviewed by the validation team.

Tests were run in batch mode using two host and target oomputer(a). Test
output, compilation listings, and job loge were captured on low density
diskettes and arohived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at ZAIAZ International, Huntsville AL on 15 JUN
1986 and departed after testing was completed on 19 JUN 1986.

3-4;

LA- t------------.~--*

APPENDIX A

COMPLIANCE STATEMENT

ZAIAZ has submitted the following compliance statement
concerning the OASIS VADS, Ada compiler.

A-1

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: DASYS Ada, Version 1.7

Test Suite: Ada Compiler Validation Capability. Version 1.7

Host Computer:

Machine: InterPro 32 (NSC 32000)

Operating System: Intergraph System V

Release 2.0

Target Computer:

Machine: InterPro 32 (NSC 32000)

Operating System: Intergraph System V
Release 2.0

ZAIAZ has made no deliberate extensions to the Ada ianguage

standard.

ZAIAZ agrees to the public disclosure of this report.

ZAIAZ agrees to comply with the Ada trademark poiicy, as
defined by the Ada Joint Program Office.

&6eliA4 -Date: l zua
ZAIAZ
William W. Smith
President

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent praguas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, 'and to certain allowed restrictions on
representation classes. The Implementation-dependent characteristics of
the OASYS VADS Ada compiler, Version 1.7, are described in the following
sections which discuss topics one through eight as stated in Appendix F of
the Ada Language Reference Manual (ANSI/MIL-STD-1815A). Package STPDARD
is also included in this appendix.

(1) Implementation-Dependent Pragas

SHARE BODY Pragu

The SHARE BODY pragma takes the name of a generic instantiation or
a generic unit as the first argument and one of the identifiers
TRUE or FALSE as the second argument. This prapma is only allowed
immediately at the place of a declarative item in a declarative
part of package specification, or after a library unit in a
compilation, but before any subsequent compilation unit.

When the first argument is a generic unit, the prapma applies to
all instantiations of that generic. When the first argument is
the name of a generic instantiation, the prapa applies only to
the specified instantiation, or to overloaded instantiations.

If the second argument is TRUE, the compiler will try to share
code generated for a generic instantiation with code generated for
other instantiations of the same generic. When the second
argument is FALSE, each instantiation will get a unique copy of
the generated code. The extent to which code is shared between
instantiations depends on this praga and the kind of generic
formal parameters declared for the generic unit.

3-1

APPENDIX F OF THE Ada STANDARD

EXTERNAL NAME Pragea

The EXTERNAL NAME prapa takes the name of a variable defined in
another language and allows it to be referenced directly in Ada.
The pragia will replace all occurrences of the variable name with
an external reference to the second name which is a link-argument.
The prapa is allowed at the place of a declarative item in a
package specification and must apply to an object declared earlier
in the same package specification. The object must be declared as
a scalar or an access type. The object cannot be any of the
following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

(2) Implementation-Dependent Attributes

NONE.

(3) Specification of Package SYSTEM

package SYSTEM is
type ADDRESS is private;
type NAME is (iprosysv);

SYSTEH NAME : constant NAME :a ipro sysv;
STORAGE UNIT : constant :a 8;
MEMORY SIZE c constant :a 16 77 14;
- System-Dependent Named N-ubers
MIN INT : constant : -2 147 483 647 - 1;
MAX-NT : constant ,a 2 T7483 47;
MAX DIGITS : constant at 15;
MAX HANTISSA : constant :a 31;
FINE DELTA : constant to 2.000(o14);
TICK : constant :a 0.01;
- Other System-dependent Declarations
subtype PRIORITY is INTEGER range 0. 7;
MAX RECSIZE i integer to 6401024;

private
type ADDRESS is neo INTEGER;

end SYSTEM;

3-2

APPENDIX P OF THE Ada STANDARD

(4) Restrictions On Representation Clauses

Prmse PACK:

Bit packing is not supported. Objects and components are packed

to the nearest whole STORAGEUNIT.

Size Specification:

The size specification T'SMALL is not supported.

Record Representation Clause:

Component clauses must be'aligned on STORAGE-UNIT boundaries.

Address Clauses:

Address clauses are not supported.

Interrupts:

Interrupts are not supported.

Change of Representation:

Change of representation is not supported for record types.

Representation Attributes:

The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

Machine Code Insertions:

Machine code insertions are not supported.

B-3

APPENDIX F OF TIE Ada STANDARD

(5) Conventions for Implementation-generated Names

There are no implementation-generated names.

(6) Interpretation of Expressions in Address Clauses

Address clauses are not supported.

(7) Restriotions on Unchecked Conversions

The predeftined generic function UNCHECKED CONVERSION cannot be
instantiated with a targst type which is an unconstrained array
type or an unconstrained record type with discriminants.

(8) Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as the
record Size (expressed in STORAGE UNITS) when the size of
ELEMENT TYPE exceeds that value* For example, for unconstrained
arrays such as string, where ELEMENT TYPE'SIZE is very large,
MAX REC SIZE is used instead. MAX REC SIZE is defined in SYSTEM
and oar be changed by a program before instantiating DIRECT1 to
provide an upper limit on the record size. In any case, the
maximum size supported is 1024 x 1024 x STORAGE UNIT bits.
DIRECT 10 will raise USE ERROR if MAX REC SIZE exceeds this
absolute limit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE as the
record size (express in STORAGE-UNITS) when the size of
ELEENT TYPE exceeds that value. For example, for unconstrained
arrays such as string, where ELEMENT TYPE'SIZE is very large,
MAX EC SIZE is used instead. MAX EC SIZE is defined in SYSTEM
and oan-be changed by a program before-instantiating INTEGER 10 to
provide an upper limit on the record size. SEQUENTIAL 10 imposes
no limit on MAX REC SIZE.

511

APPENDIX F OF THE Ada STANDARD

Package STANDARD

type INTEGER is range -2_14T483_648 .. 2147_483647;

type FLOAT in digits 15f

RANGE -1.7976931 3486232E+308 .. 1.7976931 3486232F,.308;

type SHORT FLOAT in digits 6

RANGE -3.40282Ks.38 .. 3.40282E.38;

type DURATION is delta 2.0K-i1l range -86400.0 .. 86400.0;

type TINY-INTEGER is -128 .. 127;

DURATION'SHALL, 6.10351562500000E-05 seconds

955

APPEDIX C

TEST PARAMETERS

Certain tests in the ACYC make use of implementation-dependent, values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST In its file
name,* Actual values to be substituted are identified by names that begin
with a dollar sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given below.

Meme and Meaning Value

$BIG IDI (i..498 0> 'Al, 499 0> '1',
identifier of size MAX IN LENI 500 o line feed character)
with varying last character.-

$BIG ID2 (1..498 0> 'A', 499 0> '2',
identifier of size MAX IN LENI 500 a> line feed character)
with varying lest character.-

$BIG 1D3 01..249 1 251..499 0> 'Al, 250 0> '3',
identifier of size MIAX IN LIIN 500 o line feed character)
with varying middle characoter.

$BIG IDII (1..2119 1 251..499 0> #Alp 250 0> '4',
identifier of size Max IN LII 500 a> line feed character)
with varying middle character.

$BIG INT LIT (1..4196 0> 10's 397..1199 o> "298",
An integer literal of value 298 500 0> line food character)
with enough leading zeroes so
that it is MAX-IN LIN characters
long.

C-1

TEST PARAMETERS

Na.. and Meaning Value

$BIG REAL LIT (1..#93 0> '0', 494..499 o*) 69.OE1"9
A real literal that an be 500 0> line feed character)
either of floating- or fixed-
point type, has value 690.0,, and
has enough leading zeroes to be
MAX IN LEN characters long.

WBAWKS (l..479 0>
Blanks of length MAX IN LEN - 20 480 0> line food character)

$COUNT LAST 2 147 4183J4'7
Value of COUNTILAST in TEXT-10
package.

$EXTENDED ASCII CRS 'abcdefghijklunopqrstuvwxyzt $%?@(J'' Hm
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 2 1 #7#83J47
Value of FIELD'LAST in TEXT-10
package.

$FILE NAME WITH BAD CHARS *iiglflmf(*?(]'1
An illegal- external f ile name
that either contains invalid
characters or is too long.

$FILE-NAME WITH WILD CARD CHAR '0/illegal/ file name/CE2 102C' .DAT'
An external file name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 100000.0
A universal real value .that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$OREATER THAN DURATION BASE-LAST 1 0000000.0
The universal real value that in
greater than DURATION'BASE'LAST.

$ILLEGAL EXRAL PILE 3*M1 1 /no/such/diretory/ILLEALXTERNALILENME 1
Illegal external f ile namem.

$ILL3OAL EXTERNAL FILE NA)32 /no/suoh/directory/ILLEALETRNALJILENkME2
Illegal external file names.

C-2

TEST PARAMETERS

Naead enn Value

$INTEGER-FIRST -21417_483_648
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTZGER-LAST 2)147418647
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THAN DURATION -1 00000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS -THAN DURATION BASS FIRST -1 0000000.0
The universal real value that is
less than DURATION' BASE' FIRST.

$MAX DIGITS 15
IRaziiu digits supported for
floating-point types.

$MAX IN Lem 500 (1199 plus line feed character)
Maiaum input line length
permitted by the implementation.

$MXINT
The value of I4AXIT in package 2_14174836j17
SYSTUM.

$KAME TINY-INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER
SHORT FLOA?q SHORT INTEGER,
LONG FLOAT, or LONG INTEGER.

$MEG BASED IT 1 6#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls In the aign bit
position of the representation
for SYSTENM.AK IT.

C-.3

TEST PARAMETERS

*301 ASCII CHAR TYPE NNUL
An eniumerated type definition N1~L
for a character type whose
literals ar, the identifier
30O1 NULL and all non-ASCII
characters with printable
graphics.

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

. B4A01OC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

* B83A06B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB NUZERAL of line 80 to be considered a homograph of the
enteration literal in line 25.

" BA2001l: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers." This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

" BC320C: The file BC3204Ct should contain the body for BC3204CO
as indicated In line 25 of BC3204C3M.

" C3590A: The elaboration of subtype declarations SF(3 and SFX4
may raise NUMERIC-ERROR (instead of CONSTRAINT-ERROR).

" C41O11A: The values of 'LAST and 'LENGTH are incorrect in IF
statements from line 74 to the end of the test.

" C480O8As This teat requires that the evaluation of default
initial values not occur when an exception is raised by an
allocator. However, the Language Maintenance Comittee (LMC) has
ruled that such a requirement is incorrect (A1-00397/01).

D-1

WITHDRAWN TESTS

" C4AO14A: The number declarations in lines 19-22 are incorrect
because conversions are not static.

" C92005A: At line 40, u/=" for type PACK.BIGINT is not visible
without a USE clause for package PACK.

" C940ACA: This test assumes that allocated task TT1 will run prior
to the main program, and thus assign SPYNU the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is erroneous.

* CA1003B: This test requires all of the legal compilation units of
a file containing some Illegal units to be compiled and executed.
According to AI-00255,. such a file may be rejected as a whole.

" CA3005A..D (4i tests): No valid elaboration order exists for these
tests.

. C92107E: This test has a variable, TE(PHASNAHE, that needs to
be given an initial value of TRUE.

D-2

* WN '~~' ~ ~

4

1'

