
-A181 891 ADA (TRADENAE) COMPILER VALIDATION SUMMARY REPORT VAX 1/1
ADA V13 VERSION 18 (U) FEDERAL SOFTWARE MANAGEMENT
SUPPORT CENTER FALLS CHURCH VA 87 NOV 86

UNCLASSIFIED F/G 12/5 NL

miunnuuinmnuuEEnhmmhmhmnhhhI
mmmmnmmmmnmmmE
nmhhmhmmnnEmmhE
mmflflflflflflfl

ILIO

1111.25 I JJ06
MI

MICROCOPY RESOLUTION TEST CHART

UNCLASSIFIED N1 IEUY~2
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE 52 STRUCTIONS
__ RE COMPLETEING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 7 NOV 1986 to 7 NOV 1987
VAX Ada V1.3, Version 1.8 of the Ada Compiler
Validation Capability (ACVC) 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Federal Software Management Support Center

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Federal Software Management Support Center, AREA & WORK UNIT NUMBERS

5203 Leesburg Pike, Suite 1100
Falls Church, VA 22041-3467

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 7 NOV 1986
United States Department of Defense 1 NUNt Ut F't5

Washington, DC 20301-3081ASD/SIOL 71
14. MONITORING AGENCY NAME & ADDRE SS(If different from Controlling Office) 15. SECURITY CLASS (of this report)

Federal Software Management Support Center UNCLASSIFIED
15a. RE FICATION/DOWNGRADING

N/A
16. DISTRIBUTION STATEMENT (of this Report) D TII

T- Approved for public release; distribution unlimited. ELECTE
00)JIL 0 6 i987

T'm 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report) L
Go A
r UNCLASSIFIED

I 18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DO '0" 1473 EDITION OF I NOV 65 IS OBSOLETE
I JA7 3 S/N 0102-LF-014-6601 UNCLASSIFIED

'"LuCRITY CLASSIFICATION OF THIS PAGE (WhenDat,',,te,et)

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

EXECUTIVE SUMMARY

This Validation Summary Report summarizes the results and
conclusions of validation testing performed on the VAX Ada
V1.3 using Version 1.8 of the *Ada Compiler Validation
Capability (ACVC).

The validation process includes submitting a suite of
standardized tests (the ACVC) as inputs to an Ada compiler and
avaluating the results. The purpose is to ensure conformance
of the computer to ANSI/MIL-STD-1815A Ada by testing that it
properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The
testing alao identifies behavior that is implementation
dependent but permitted by ANSI/MIL-STD-1815A. Six classes of
tests are used. These tests are designed to perform checks at
compile time, at link time, or during execution.

On-site testing was performed 3 Nov 1986 through 7 Nov 1986
at Nashua, NH under the auspices of the Federal Software
Management Support Center, according to Ada Validation
Orginization policies and procedures. The VAX Ada V1.3 is
hosted on the V.X series operating under VAX/VMS V4.4 and the
MinroVMS, V4.4.

The resolts of validation are summarized iii Lhe following
table:

RESULT TEST CLASS TOTAL

A_ C _D_ _ZD _ _L_

Passed 69 865 1329 17 13 46 2339

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 39 0 0 0 41

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

FSV8 6VSRDEC540OA

*Ada COMPILER
VALIDATION SUMMARY REPORT:

Digital Equipment Corp.
VAX Ada Vl.3

The host environment is the VAX series* of computers under
VAX/VMS V4.4, and the MicroVAX II and VAXstation II under
MicroVMS V4.4. The target environments are all hosts, and thn.
MicroVAX IT using thu- VAXELN Toolkit, V2.2 in combination with
VAXELN Ada, V1.1.

Completior of on-Site Validation:
7 Nov 1986

Prepared By:
Federal Software Management Support Cente -

5203 Leesburg Pike
Suite 1100 -njm

Falls Church, Va 22041-3467 Dist

Prepared For:
Ada Joint Program Office

United States Department of Defense [
Washington, D.C.

*VAX series includes the VAX-ll/730, VAX-11/750, Vax-ll/780,
VAX-1l/782, VAX-11/785, VAX-11/8200, VAX-1l/8300# VAX-11/8500,
VAX-l1/8600i VAX-11/8650, VAX-l1/8700, VAX-11/8800

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

87

Ada Compiler Validation Summary 'Report:

Compiler Name: VAX Ada Vl.3

Host Computer: Target Computer:

VAX 8800 - ------- VAX-11/750
VAX-11/785
VAX 8200
VAX 8700
VAX 8800

VAX-11/780 ------- VAX-11/730
VAX-11i/iSO
VAX-11/782
VAX 8300
VAX 8500
VAX 8600
VAX 8650

under under

VAX/VMS VAX/VHS

VAX 8800 MicroVAX II

under under:

VAX/VMS MicroVMS and VAXELN

And
VAXstation II VAXstation II under

MicroVMS
under

MicroVMS VAX-11/780 under VAX/VMS

MicroVAX II under VAXELN

Testing Completed on 7 Nov 1986 Using ACVC 1.8.

LO

EXECUTIVE SUMMARY

This Validation Summary Report summarizes the results qnd
conclusions of validation testing performed on the VAX Ada
V1.3 using Version 1.8 of the *Ada Compiler ValidationCmpability (ACVC) .

The validation process includes submitting a suite of
standardized tests (the ACVC) as inputs to an Ada compiler and
ivaluating the results. The purpose is to ensure conformance
of the computer to ANSI/MIL-STD-1815A Ada by testing that it
propurly implements legal language constructs and that it
ident.ifies and rejects illegal language constructs. The
testing ai identifies bebavior that is implementation
dependent buL permitted Lq ANSI/MIL-STD-1815A. Six classes of
tests are used. These tests are designed to perform checks at
compile time, at link time, or during execution.

On-site testing was performed 3 Nov 1986 through 7 Nov 1986
at Nashua, NH under the auspices of the Federal Software
ManageAent Support Center, according to Ada Validation
Orqnnization policies and procedures. The VAX Ada Vl.3 is
hosted on the VAX series operating under VAX/VMS V4.4 and the
MI,:r'%1MS, V4.4.

The re'',ilto, .)f validation are summarz.,0 U. ile following
table:

RESULT TEST CLASS TOTAL

-A- _L _ D _ _ _L_

Passed 69 865 1329 17 13 46 2339

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 39 0 0 0 41

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

There were 19 withdrawn tests in ACVC Version 1.8 at the time
of this validation attempt. A list of these test appears in
Appendix D.

Soao tests demonstrate that some language features are'or are
aot suppoited by an implementation. For this implementation,
the test determined the following.

. SHORT_INTEGER is supported.

• LONGINTEGER is not supported.

• SHORT_FLOAT is not supported.

" LONG_FLOAT is supported.

• The additional predefined types, LONGLONG_FLOAT
and SHORTSHORTINTEGER are supported.

" Representation specifications for noncontiguous
enumeration representations are supported.

" The 'SIZE ,iause is supported.

" The 'STOXAGE_SIZE clause is supported.

The 'SMALL ,l iwu, is supported.

Generic init speuifications and bodies jan be compiluu
in separate compilations.

Pragma INLINE is supported for procedures. Pragma
INLINE is supported for functions.

The package SYSTEM is used by package TEXT_10.

• Mode INFILE is supported for sequential I/O.

- Mode OUTFILE is supported for sequential I/O.

. Instantiation of the package SEQUENTIAL_IO with
unconstrained array types is supported.

. Instantiation of the package SEQUENTIALIO with
unconstrained record types with discriminants is
supported.

MUMA

" Dynamic c.-ation and resetting of files is supported
-for sequential I/O.

" RESET and DELETE are supported for sequential and
direct 1/O.

Modes IN_FILE, I TICUTFILE, and OUT_FILE are
supported for direct I/O.

Dynamic creation and resetting of files is supported
for direct I/O.

* Instantiation of p.--%.,age DIRECT_IO with unconstrained
array types and unconstrained types with discriminants
is not supported.

Dynamic creation and deletinn of files are supiorted.

. More than one iiiLernal file ;an be associated with the
same external fil only for reading.

" An external ftle associated with more than one internal
file can be reset.

" Illegal fil- Y's -.;.Annot exist.

ACVi, Tersion 1.8 was on-site via r, jnetic tape to
tTahu: RK. All tests, swnpt the with.,'wn tests and any
exeoi .. ble test-; that make ise of a floating point precision
greaLer than SYSTEM.MAX_IuITS, were compiled on a VAX 8800 and
a VAXstation II. Class A, C, D, and E tests were executed on a
VAX-ll/750, 785, 8200, 8700, 8800, MicroVAX II, and a
VAXstation II.

On completion of testing, execution results for Class A, C, D,
or E tests were examined. Compilation results for Class B were
analyzed for correct diagnosis of syntax and semantic errors.
Compilation and link editing results of Class L tests were
analyzed for correct detection or errors.

The Federal Software Management Support Center identified 2362
of the 2399 tests in Version 1.8 of the ACVC as potentially
applicable to the validation of VAX Ada V1.3. Excluded were
18 tests with source lines that were too long; and the 19
withdrawn tests. After the 2362 tests were processed, 23
tests were determined to be inapplicable. The remaining 2339
tests were passed by the compiler.

The Federal Software Management Support Center concludes that
these results demonstrate acceptable conformance to
ANSI/MIL-STD-1815A.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . . . 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1

2.2 CERTIFICATE 2-2
2.3 IMPLEMENTATION CHARACTERISTICS . 2-3

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS.. 3-1
3.2 SUIMMARY OF TEST RESULTS BY CLAsS . 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITrHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS ... - 3-2
1.6 SPLIT TESTCS........3-

X DDITfr')NAL TESit4 IeRQW-A'TION 0 3-4

3 ./.3 Test Site 3-6

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TETPAAETR

APPENDIX D WITHDRAWN TET

CHAPTER 1

INTRODUCTION

This Validation Summary Report describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. 'This
report explains all technical terms used within it and
thoroughly reports the results of testing this compiler using
the Ada Compiler Validation Capability (ACVC). An Ada compiler
must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features
must conform to the requirements of the Ada StandaM. The
entire Ada Standard must be t.plement-nd, and nothi.ng Can be
imple'ented that is nnt S.r the Standard.

Even though all vni7dated Ada compilers contuim to
ANSI/MIL-STD-1815A, it must be understood that some differences
lo exist between implementatiins. The Ada Standard permits
soxe implementation dependencies--fnr exam!e1a, the mavimum
length of identifiers or the uaximumw valueo of integer types.
Other differences between compilers result from limitations
impo nd on a coiapiler by the operating systems and by the
hardware. All of the depundencies de-iotontrated during the
pr' - of testing this cenpiler a gJ.vai, in the report.

Validation summary ReporLb are written according to a
ntandardized form-,it. The report for several different
,mpilers may, thnrefor, be l compared. The information

k ;his rer , is derived from 1he test results produced during
vai..dation testing. Additional testing information is given .n
section 3.7 and states problems and details which are unique
for a specific compiler. The format of a validation report
limits variance between reports, enhances readability of the
report, and minimizes the delay between the completion of
validation testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

The Validation Summary Report documents the results of the
validation testing performed on an Ada compiler. Testing was
carried out for the following purposes:

1-1

INTRODUCTION

" To attempt to identify any language constructs
supported by the compiler that do not conform to the
Ada Stdindard

" To attempt to identify any unsupported language
constructs zequired by the Ada Standard

. To determine that the implementation-dependent behavior
is allowed by the Ada Standard

est.wi of Li, - compiler was conducted tnder the iupervision of
the Federal Software Management Support Center according to
policies and prc dures established by thw Ada Validation
Orgqnt 'tion (AVO). Testing was conducted from 3 Nov 1986

,'" 7 Nov 1986 at Nashua, NH.

L.2 USE OF THIS VALIDATION SUMMKA/ REPORT

Cox-,tistent with the national laws of the originating countiy,
the Ada Validation oxyanization may make full and free public
disclosure o£ this report. In the United States, this is
provided in ,:----ince vi.th the "Freedom of Information Act (5
U.S.C. #55.). '1he resulLs of t'i.s validatl.on apply only to the
c.,mputeri, op.! t ing systems, and rnmpiler versions idenr i fied

.ao,)rganizations represeLod on the signe, ure page of taiis
':ort do not represent o warrant that all statements set

forth in this report are accurate and complete, or that the
subject compiler has no nonconformances to ANSI/MIL-STD-1815A
other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington, DC 20301-3081

or from the Ada Validation Facility (AVF) listed below.

Questions regarding this report or the validation tests should
be directed to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1-2

or to:

Ada Validation Facility
Federal Software Management Support Center
5203 Leesburg Pike
Suite 1100
Falls Church, VA 22041-3467

1.3 RELATED DOCUMENTS

Reference Manual for the Ada Programming.
Lancuae, ANSI/MIL-STD-1815A, FEB 1983.

2. A_-Validation Organization: Policies and
Procedures, MITRE Corporation, JUN 1982, PB
83-110601.

3. Ada Compiler Validation CaPability.
Implementeis' Guide, SofTech, Inc., DEC 1984.

1.4 DEFINITION OF TERMS

The Ada Compiler Validation Capability. A set
of programs that evaluates the conformance of :N
.;ompiler 1o the Ada language specification,
ANSI/MIL-STn-1815A.

,Ada S; adard AN::£/MTf, Tu.1811A, ."'bruary 1983.

Applicant The agency requesting validation.

AVF Ada Validation Facility. The Federal Software
Management Support Center. In the context of
this report, the AVF is responsible for
conducting compiler validations according to
established policies and procedures.

AVO The Ada Validation Organization. In the
content of this report, the AVO is responsible
for setting policies and procedures for
compiler validations.

Compiler A processor for the Ada language. In the
context of this report, a compiler is any
language processor, including cross-compilers,
translators, and interpreters.

Failed test A test for which the compiler generates a
result that demonstrates nonconformance to the
Ada Standard.

Host The computer on which the compiler resides.

1-3

Inapplicable A test that 1 features ut Lhe language that
a test compiler is not requi~l1 to support or
may legitimately support in a way other than
the one expected by the test.

Passed test A test for which a compiler generates the
expected result.

Target The computer for which a compiler generates
code.

Test A program that evaluates the c'nuformance of a
compiler to a lanrpiage specificati.on. In the
context of this report, the term iq used to
designate a single ACVC test The iext of a
program iay be the text of one or more
compilations

Withdrawn A test which has been found to be inaccurate in
test checking conformance to the Ada language

specification. A withdrawn test has an invalid
test objective, fnils to meet its test
objective, or contains illegal or erroneoas use
of the language.

1.5 ACVC --!ST CLASSES

to ANSI/MI,- 'TD-181A is et, uze using the .Aa
, ompi1:-, Validation Capability (ACVC1. The ACVC contains both
le qal Rnd illegal Ada program structued into six test classes:
A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Legal programs are
compiled, linked, and executed while illegal programs are only
compiled. Special program units are used to report the results
of the legal programs.

Class A tests check that legal Ada programs can be successfully
compiled and executed. (However, no checks are performed
during execution to see if the test objective has been met.)
For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada
compiler. A Class A test is passed if no errors are detected
at compile time and the program executes to produce a message
indicating that it has passed.

1-4

Class B tvbts check that a compiler detects illegal langunge
usa'1q. Class B tests are not executable. Each test in this
class is compiled and the resulting compilation listing is
• -IAined to verify that every syntactical or semantic error in
the-t is detected. A Class B test is passed if every,

... construct that it contains is detected by the compiler.

,.ass C tests check that legal Ada programs can be correctly
compiled dnad executed. Each Class C test is self-checking and
produc. a PASSED, FAILED, or NON-APPTTCrABLE message indicating
the result w, . it is executed.

Class D tests chack the compilation and execution capacities of
a compiler. Since there are no requirements placed on a
compiler by the Ada StandarI for some parameters (e.g., the
number of identifiers permitted in a compilation, the number of
an;.ts in a library, and the number of nested loops in a
subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class
D test fails to compile because the capacity of the compiler is
exceeded, the test is ulassified as inapplicable. If a Class D
test rompile" successfully, it i self-checking and produces a
?ASSE0 or FAILED m-'sage during execution.

Each class R test is self-checking and pAoduces a
NOT-NPPL±C"A'0.l, PASSED or FAILED message when it * piled
and ixecuted. Rowever, the Ada standard permits .n

c-.%senL~tioAi to' rsj! tL prograias containing some features
addressed by Class E tests during compi.lation. Therefore,
Class E test is passed bv a compiler if it is compiled
successfully and executes to produce a PASSED message, or it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs
involving multiple, separately compiled units are detected and
not allowed to exebute. Class L tests are compiled separately
and execution is attempted. A Class L test passes if it is
rejected at link time--that is, an attempt to execute the main
program must generate an error message before any declarations
in the main program or any units referenced by the main program
are elaborated.

Two library units, the package REPORT and the procedure CHECK_
FILE, support the self-checking features of the executable
tests. The package REPORT provides the mechanism by which
executable tests report results. It also provides a set of
identity functions used to detect some compiler optimization
strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The
procedure CHECKFILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of
the Ada Standard.

1-5

'%IIIJ lf~tfMh JNMM ll l MI I I II... - MW.. M6,MM "

*

Ihe operation of these units Is checked by a set of executable
test. These tests produce messages that are examined to verify
that the units are operating correctly. If these units are not
ope-ating correctly, then the validation is not attempted.

Some of the conventions followed in the ACVC are intended to
ensure that the tests are reasonably portable without
modification. For example, the tests make use of only the
basic set of 55 characters, contain lines with a maximum length
of 72 characters, use small numeric values, and place features
that may not be supported by all implementations in separate
tests. However, some tests contain values that require the
test to be customized according to implementaLion-specific
values. The values used for this validation are listed in
Appendix C.

A compiler must correctly process each of the tests in the
suite and demonstrate conformance to the Ada Standard by either
meeting the pass criteria given for the test or by showing that
the test is inapplicable to the implementation. Any test that
was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and
thec.i ore, is not used in testing a couipiler. The
n',.-nformant tests are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was
tested under the following configuration:

Compiler: VAX Ada V1.3

Test Suite: Ada Compiler Validation CapabiliLy, Version
1.8

Host Computer:

Machine(s): VAX-11/780, VAX 8800 and

VAXatation II

Operating Systems: VAX/VHS V4.4
MicroVMS V4.4

Memory Size: 12, 32, and 8 MB

Target Computer:

Nachinsli)*. VAX-l1/730, 750, 780, 782,
VAX-11/1t35, C20u, 8300, $500,
VAX 8600, 8650, 8Y00, P30l0,
MicroVAX II, VAXstation II

Operating System VAX/VHS V4.4
?4icroVMS V4.4
VAXELN V2.2

Memory Size: 4 -32MB

Communications Network:

2-1

CON.F TGURATION INFORMATION

2.2 CE1RTIFICATE INFORMATION

Base Configuration:

Compiler: VAX Ad& V1.3

Test Suite: Ada Compiler Validation Capability, Version
1.8

Completion Date: 7 Nov 1986

Host Computer:

Mwachine(s)i VAX-ll/730, 750, 780, 782, 785,
8200, 8300, 8500, 8600, 8650,
3700, and 8800

Operating System: VAX/VMS, V4.4

;Aachine(s): MicroVAX II, VAXatation II

Operating System: K4icrnVMS, V4.4

Target Computer:

Mar'i VAX-11/730, 750,)8'0, 782..
785, 8200, 8300, 8500, 8600,
8650, R~700, 8800

Operat~ing System: VAX/VMS, V4.4

Machine(s): MicroVAX II, VAXstation II

Operating System: MicroVMS, V4.4

Machine(s): MicroVAX II

Operating System: VAXELN Toolkit, V2.2, in
combination with VAXELN Ada,
Vi. 1

2-2

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
reimit implementation to differ. Class D and E tests
specifically check for such implementation differences.
However, tests in other classes also characterize an
implementation. This compiler is characterized by the
following interpretations of the Ada Standard:

Nongraphic characters.

Nongraphic characters are defined in the ASCII
character set but are not permitted in Ada programs,
even within rharacter strings. The compiler
correctly recognizes these charactecs as illegal in
Ada compilations. The characters are not printed in
the output 1iting. (See test B26005A.)

Capacities.

The compiLL=u oorrectly processes compilations
containing loop. rtatements nested to 65 levels,
bluck statements ncsted to 65 levels, procedures
n ested to 17 "als. It correctly processes a
compilation containing 72: -variables 1-n the -ase
declarative L&rt. (see tests D50AO3A..!T, D56onV,
j64005F..4, D290WA%

CONFIGURATION INFORMATION

Universal integer calculations.

An implementation is allowed to reject universal
integer calculations having values that exceed
SYSTEM.MAX INT. This implementation does not reject
such calculations and processes them correctly.
(See tests D4A002A, D4AO02B, D4AO04A, and D4AO04B.)

Universal real calculations.

When rounding to interger is used in a static
universal real expression, the value appears to be
rounded away from zero. (See test C4AO14A.)

2-3

* Predefined type.

This implementation supports the additional
predefined types SHORT_.INTEGER, WDNGFOAT, and
SHORT_SHORT!_INTEGER in the package STANDARD: (See
teat B8600lDT.)

* Based literal.

An implementation is allowed to reject a based
literal with a value exceeding SYSTEM.MAX_INT during
compilation, or it may raise NUMERICERROR during
execution. This implementation raises NUMERIC_
ERROR during execution. (See test E24101A.)

Array types.

An implementation is allowed to raise NUMERIC_ERR)R
for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEN.MAX-TNT.

A packed BOOLEAN array having a 1LE1ieT.H exceeding
10TEGER9ILAST raies NUMERICERROR wh.)n the array
objec~ts are decl'-od. (Sao test C52103X.)

A pdcked two- 11mensi aal BOOLEAN array with m~ore
t~han INTEGER'LAstr components raises KTWTC_.ERRo.M
1,n t -ra yj is declared. (See test

C52104Y.)

2-4

A null array with one LgAension of length greater
than INTEGERIAST may raise NUMERIC_ERROR either
when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMtaRLC_ERROR when the array
type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire
expression appears to be evaluated before CONSTRAINT-
RROR is raised when checking whpther the
.xpression's subtype is compatible wLth the target's
subtype. In assigning two-dimensional array types,
the entire exrression does not appear to be
evaluated before CONSTRAINT...ERROR is raised when
checking whethetr the expression's subtype is
compatible with the target's subtype. (See test
C52013A.)

Discriminated types.

During compilation, an implementation is allowed L-
J1ther accept oi. rejec!. an incomplete type with
discriminantgs that is ~1.1Ln an access type
definition wit.h a compatible dis,;riminate
corstra'nt. This implementation 'ic'epts such
subtypm indic rfn- during compilcaLion. (S^A test
F'14 04i,)

In assigaing record types wi~th discriminants, the
entire expression appears to be evaluated before
CONSTRAINT _ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate,
all choices appear to be evaluated before checking
against the index subtype. (See tests C43207A and
C43207B.)

2-5

In the evaluation of an aggregate contai, ng
subaggregates, all choices are evaluated before
being checked for identical bounds. (See test
E43212B.)

All choices are evaluated before CONSTRAINTERROR is
raised if a bound in a nonnull range of a nonnull
aggregate does not belong to an index subtype. (See
test E43211B.)

CONFIGURATION INFORMATION

* Functions.

The declaration of a parameterle~s function with the
same profile as an enumeration literal in the same
immediate scope is rejected by the implementation.
(See test E66001D.)

* Representation clauses.

The Ada ,tandard does not require an inplementation
to support representation clauses. If a
representation clause is not supp,, ted, then the
implementation must reject it. While the operation
of representation clauses in not checked by Version
1.8 of the ACVC, thoe. are used in testing other
language fnatu..as, Testing ind ;.,tes that i;e
specifications are .,upported, biat specification of
storage for a task activation is supported, and that
specification of SMALL for a fixed point type is
supported. Enumeration representation clauses
including those that specify noncontiguous values
appear to be supported. (See tests C55B16A,
C87B62A, C87B62B, C87B62C, and BCI002A.)

Generics.

When given a separately compiled generic unit
specification, some illegal instantiations, and a
body, the compiler rejects the body because of the
instantiations. (See tests BC3204C and BC3204D.)

Pragmas.

The pragma INLINE is supported for procedures. The
pragma INLINE is supported for functions. (See
tests CA3004E and CA3004F.)

2-6

Input/output.

The package SEQUENTIAL_10 can be instantiated with
unconstrained array types and record types with
discriminants. The package DIRECTIO cannot be
instantiated with unconstrained array types 'and
record types with discriminants without defaults.
(See tests CE2201D, CE2201E, and CE2401D.)

More than one internal file can be associated with
each external file for sequential I/O for reading
only. (See tests CE2107A..F.)

More than one internal file can be associated with
each external file for direct I/O for reading only.
(See tests CE2107A..F.)

An external file associated with more than one
internal file can be deleted. (See test CE2110B.)

More than one internal file can be associated with
"ach external file for Lext I/O for reading only.
(See tests CE3111A..E.)

Dynamic credt ion and 'reo;Lting of a sequenLial file
is allowed. fSee test CE22inA.)

Temporary 6wuential files are given a name.
Tetcporary direct files are given a name. Temporary
files given names are not deleted wl'en they are
closed, but are not accessible after the completion
of the main program. (See test CE2108A.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The Federal Software Management Support Center identifieO 2362
of the 2399 tests in Version 1.8 of the Ada Compiler
Validation Capability as potentially applicable to the
validation of VAX Ada V1.3. Excluded were 18 tests with
source lines that were too long; and the 19 wi'hdrawn tests.
After they were processed 23 tests were determined to be
inapplicable. The remaining 2339 tests were passed vy the
ernap i. I kr.

The F.deral Software Management Support Center concludes that
the t>st.%g results demonv'tate acceptable conformance to the
Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

Passed 69 866 1329 17 1? 46 ?339

Failed 0 0 0 0 0 0 0

N/A 0 2 39 0 0 0 41

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

TEST I1rnWRMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT

2 3 4 5 6 7 8 9 10 ii 12 14 Total

Passed 98 322 420 244 161 97 138 261 130 32 218 218 2339

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

N/A 18 3 0 3 0 0 1 1 0 0 0 15 41

W/D 0 5 5 0 0 1 1 2 4 0 1 0 19

LOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

rhe 1!ollowing tests have been withdrawn from the ACVC Version
1.8:

C32114A B37401A B49006A C92005A
B33203C C41404A B4AO10C C940ACA
C34(n18A B4 .I16A T37410x CA3005A..D
C3.)o$A C48008A C87 '8'- . BC320 .'

Sep Appendix D enr tlve rationale for withdrawing th.!u tests.

3.6 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use
of features that a compiler is not required by the Ada Standard
to support. Others may depend on the result of another test
that is either inapplicable or withdrawn. For this validation
attempt, 41 tests were inapplicable for the reasons indicated:

. C96005B - there are no out-of-range values for
type DURATION

" CE2107B, CE2107C, CE2107D, CE2107E, CE2111D
CE3111B, CE3111C, CE3111D, CE3111E, CE3114B
CE2110B

- with default open/create options (no FORM
string), VAX Ada allows more than one internal
file to be associated with the same external file
for mode IN_FILE only (multiple readers) , but
does not allow more than one association for OUT
-FILE or INOUTFILE in combination with mode IN
-FILE or another mode OUT_FILE (mixed readers and
writers or multiple writers).

3-2

SX ICU -

CE3115A - VAX Ada allows resetting of shared
files, but an implementation restriction
does not allow the mode of a file to be
changed from INFILE to either INOUT
_FILE or OUT_FILE (an amplification of
accessing privileges while the external
file is being accessed). Thus CE3115A
does not apply.

" CE2102D, CE21021, CE2111H - the creation of a file
of mode INFILE is not allowed

" CE24113H..C241i3Y - source lines exceed the
limit of 120 characters

• B52004D, B55B09C, C34001E, C55B07A -
LONGINTEGER is not supported

" C34001F, C35702A -
SHORT_FLOAT is not supported

" C86001F - TEXT_IO uses the prede~ined package
SYSTEM, which is made obsolete by the
user defined package SYSTEM

3-3

3.6 SPT,TT TESTS

If one or more errors do not appear to have been detected in a
Class B test because of compiler error recovery, then the test
fs split into a set of smaller tests that contain theI
itodetected errors. There were no split tests required for this
implementation.

3.7 ADDITIONAL TESTING INFORMATION

3.7.*1 Prevalidation

P~rior 1-' -validation, sets of test results for ACVC Version 1.8
produ.adc by VAX Ada 171.3 were submitted to the Federal
SoftwAre Management Sopport Center by the applicant for
pre-vatlidation review. Analysis of these results demos I-cte

that -onpiler successfully passed all applicable tesLs.

The £ific configurations submitted for the pre-validation
rp-vis- -'ere as follows:

Host Target

Proce!-.or Op-~Y~ 1. Sys. IIORSs_

VAX -11/780 VAX/VMS VAX -11/730 ~ ~ M
VA,'.*t/780 VAX/VM.'S VAX.'!1/780 VAA,/VMS
V,-it/78O VIAX/VS VAX-111/782 VAX/VMS
VAX-11/780 VAX/VdS VAX 8300 VAX/VMS
VAX-1/780 VAX/VMS VAX 8500 VAX/VMS
VAX-1/780 VAX/VMS VAX 8600 VAX/VMS
VAX-1/780 VAX/VMS VAX 8650 VAX/VMS
VAXstation II MicroVMS VAX-11/780 VAX/VMS
VAXstation II MicroVMS MicroVAX II VAXELN

The VAX-11/782 results were compared against the VAX-ll/730,
780, 8300, 8500, 8600 and the 8650 and found to be equivalent.

The results from the Vax-ll/780 were compared against the
MicroVAX 11, 730, 782, 8300, 8500, 8600, 8650 and 780 and found
to be equivalent.

The results produced by VAX Ada were the same for all tested
members of the VAX family--for those using VMS, MicroVMS, or
VAXELN.

3-4

3.,.2 Teat Method

A test magnetic tape containing ACVC Version 1.8 was taken
on-site by the validation team. This magnetic tape contained
all tests applicable to this validation as well as all tests
inapplicable to this validation except for any Class C tests
that require floating-point precision exceeding the maximum
value supported by the implementation. Tests that were
withdrawn from ACVC Version 1.8 were not run. Tests that make
use of values that are specific to an implementation were
customized before being written to the magnetic tape.

The test tape was written in VAX BACKUP format and was loaded
to disk using Digital Equipment Corp. standard utility
routines.

Once all tests had been loaded to disk, processing was begun
using command scripts provided by Digital Equipment Corp.

The validation was executed in batch control mode with the
files organized by chapter and class to allow the tests to be
run ilependently and in parallel.

A ,,-. o-ompilation library was created and initialized with all
units contained in the library given the logical name
ADA$PREuEFINED. The startup control fl1.e establir'ed the n;Viy
created library as tha current compilati in library and then
compiloA REPORT and t EcK_FILE Into that ibrary.

The p : ,alidation results were verified on-site. The various
tests results from the prevalidation execution were captured on
disk and used to compare against the on-site results using
"DIF", a difference utility.

The OPTIMIZE option was used to produce the compiled code.

The following configurations were tested on-site:

Host QP-. AYAL Tage 01

VAX 8800 VAX/VMS VAX-ll/750 VAX/VMS
VAX-ll/785
VAX 8200
VAX 8700
VAX 8800
MicroVAX II MicroVMS
MicroVAX II VAXELN

VAXstation II MicroVMS VAXstation II MicroVMS

3-5

3.7.3 Test Site

The validation team arrived at Nashua, NH on 3 N~ov 1986 aind
departed after testing was completed on 7 Nov 1986.

3-6

APPENDIX A

COMPLIANCE STA ,LEMENT

Digital Equipment Corpor-ition hat :iubmitted the following compliance
statement concerning VAX Ada and VAXELN Ada.

A-1

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: VAX Ada version 1.3
'est Suits: Ada Compiler Validation Capability, Version V1.8

flost Computers:

Machines:
VAX-11/730, vAX-1l/750, VAX-ll/780, vAx-11/782,
VAX-ll/785, VAX 8200, VAX 8300, VAX 8500,
VAX 8600, VAX 8650, VAX 8700, and VAX 8800.

Operating System:
VAX/VMS, Version 4.4

Machines:
MIicroVAX Z2, and

VAXstation 11.
Operating System:

YieroVMS, Veriun 4.4

Target Computers ' i.'r as host plues 'A)'LN):

Mar ~'ines:

VAX-1I/-785, VAX 8200, VAX 3300, VAX 8500,
VJAX 8600, VAX 8650, VAX SziPt), and VAX 8800.

Operating System:
VAX/VMS, Version 4.4

machines:
MicroVAX II, and

VAXstation II.
Operating System:

MicroVMs, version 4.4

machines:
MicroVAX II

operating System:
VAXELN Toolkit, Version 2.2, in combination with
VAXELN Ada, Version 1.1.

A-2

COMPLIANCE STATEMENT

Digital Equipment Corporation has made no deliberate extensions to
the Ada language stan3ard.

Digital Equipment Corporation agrees to public disclosure of this
report.

Digital Equipment Corporation agrees to continue to comply with the
Ada trademark policy, as defined by the Ada Joint Program Office.

_____________________________6 October 1986

Charles Z. Mitchell
VAX Ada Project Leader

A-3

APPENDIX B

APPENDIX F OF THE ADA STANDARD

rhe only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-,-Pendent
conventions as mentioned in chapter 13 of rIL-STD-1815A, and to
•rtain allowed restrictions on representation classes. The

lmp entation-dependent characteristics are described in the
foll:-ing secti,: which discuss topics one through eight as stated
in Appendix F of the Ada Language Reference manual
(NSI/MIL-STD-1815A). Two other sections, package STANMARD and file
naming con, at.inns, are also Lncluded in this ap-adix.

Portions oL -,i %ecti.on refer to Lhe followiryi 'ttachments:

1. AtLdchaent 1 - Implementation-Depcnr,1 ilLr)nas

2. Attachment 2 - VAX Ada Appendix F

(1) Implementation-Dependent Pragmas

See Attachment 1.

(2) Implementation-Dependent Attributes

Name T

P'ASTENTRY The value of this attribute is of type
SYSTEM.ASTHANDLER.

P'BIT The value of this attribute is of type
universal-integer.

P'MACHINE SIZE The value of this attribute is of type
universalinteger.

APPENDIX F OF THE ADA STANDARD

2' NULL PARAMETER The value of this attribute is of type
P.

P'TYPECLASS The value of this attribute is, of type
SYSTEM.TYPECLASS.

(3) Package SYSTEM

See Attachment 2, Section F.3.

(4) Representation Clause Restrictions

See Attachment 2, Section F.4.

(5) Conventions

See Attachment 2, Section F.5.

(6) Address Clauses

Seo Attachment 2, Section F.6.

0 /; *-jchecketi :o)UvPrq ons

VAX Ada supports the generic function UNCHECKED CONVERSION
with the following restrictions on the clasi of types
involved:

1. The actual subtype corresponding to the formal type
TARGET must not be an unconstrained array type.

2. The actual subtype coresponding to the formal type
TARGET must not be an unconstrained type with
discriminants.

(8) Input-Output Packages

SEQUENTIAL 10 Package

SEOUENTIAL 10 can be instantiated with any file
type, incTuding an unconstrained array type or an
unconstrained record type. However, input-output
for access types is erroneous.

B-2

APPENDIX F OF THE ADA STANDARD

VAX Ada provides full support for SEQUENTIAL 10,
with the following restrictions and clarifications:

1. VAX Ada supports modes 1N FILE and OUTyFILE for
sequential input-output.- However, VAX Ada does
not allow the creation of a file of mode
INFILE.

2. More than one internal file can be associated
with the same external file. However, with
default FORM strings, this is only 1lowed .:hen
all inteLnal files have mode IN FILE (multiple
readers). If one or more interni files have
mode OUT FILE (mixced readers and writers or
multiple writers), iln shaving can only be
achieved using FORM strings.

3. VAX Ada supports deletion of an external file
which is associated with more than one internal
file. In this case, tl.: external file becomes
immediately unavailable for any new
associations, but ,.,e current asswciations are
not affected; the external file is actually
deleted aftpr the last association has been
broken.

4. /AX Ada ailows resetting of Cj -, ?d files, but an
implementation restriction does not allow the
mode of a file to be chdnged from IN FILE te
OUT FILE (an amplification of accessing
privileges while the external file is being
accessed).

DIRECT_10 Package

type CNT is range 0 .. 2147483647;

TEXTIO Package

type CNT is range 0 .. 2147483647;
subtype FIELD is INTEGER range 0 .. 2147483647;

LOW LEVEL_10

Low-level input-output is not provided.

B-3

APPENDIX F OF THE ADA STANDARD

(9) Package STANDARD

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORT-SHORT INTEGER is range -128 .. 127;
-- type LONG_INTEGER is not supported

type FLOAT is digits 6;
type LONG FLOAT is digits 15;
type LONG-LONG FLOAT is digits 33;
-- type SHORTFLOAT is not supported

type DURATION is ielta 1.OE-4
range -131072.0 .. 131071.9999;

(10" .0tLc. Names

File names follow the conventions and restrictions of- the
target operating system.

B-4

Attachment 1

Implementation-Dependent
Pragmas

I This attachment defines the pragnas LISi, PAGE, and OPTINII/E, and
summarizes the definitions given elsewhere of tIhe remaining language-
defined pragmas. VAX Ada implementation-dependent information
(including the VAX Ada implementation-dependort ragmas) is mi rked
with change bars.

he VAX Ada ot.,gma TITLE is also defined in this annex.

Meaning

iST L:'Q I'KY Takes the simple name of a single
entry as the single argument; at
most one AST-ENTRY pragma
is allowed for any given entry.
This pragma must be used in
combination with the ASTENTRY
attribute, and is only allowed after
the entry declaration and in the
same task type specification or
single task as the entry to which
it applies. This pragma specifies
that the given entry may be used to
handle a VAX/VMS asynchronous
system trap (AST) resulting from a

Implementation-Dependent Pragmas 1-1

VAX/VMS system service call. The
pragma does not aftect normal use
of the entry (see 9.12a).

2 CONTROLLED Takes the simple name of an access
type as the single argument. This
pragma is only allowed i;imedi-
ately within the declarative part or
package specification that contains
the declaration of the access type:
the leclaration must occur L-vtore
the pragma. This pragma is not
allowed for a derived tvpe This
p agma specifies that ,.atic
storage reclamation must not be
performed for objects designated
by values of the access type, except
upon leaving the innermost bL.k
statement, subprogram body, or
task body that encloses the access
typv declaration, or after !eaving
the main program (see 4.8).3 ELABORATE Takes on,_ . more simplk. i-ames
denoting library units as arguments.
This pcagma is ,! 1wed imme-
diately ifter the context clause of
a compilation unit (before the sub-
sequent library unit or secondary
unit). Each argument muj:t be Ilhe
simple name of a ';biary unit men-
tioned by the context clause. This
pragma specifies that the corre-
sponding library unit body must be
elaborated before the given compi-
lation unit. If the given compilation
unit is a subunit, the library unit
body must be elaborated before the
body of the ancestor library unit of
the subunit (see 10.5).

EXPORT EXCEPTION Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a

1-2 Implementation-Dependent Pragmas

M0121Al
LMJ

VAX/VMS Linker global symbol), a
form (ADA or VMS), and a ccde (a
static integer expres,;ion that j-, in-
terpreted as a VAX condition code)
as arguments. A code value must
be specified whero the form is VMS
(the default if the form is not spec-
ified). This pragma is only allowed
at the place of a declarative , m.
and mus, apply to an exception
declared by an earlier declarative
item of the same declarative part
or package specification; it is not
allowed for a,'i oxception declared
with a renaming declaration. The
pragma permits an Ada excep-
tion to be handled by programs
written in other VAX language!
(see 13.9a.3.2).

EXPORTFUNCTION Takes an internal name denoting a
function, and optionally takes an
external designator (the name of a
VAX/VMIS Linker global symbol),
parameter types, and result type
as argmients. This pragma is only
allowed at ihe place c' i declarative
item, and must apply to a function
declared by an earlier declarative
item of the same declarativ,2 part
or package specificatic.i. In the
case of a function declared as a
compilation unit, the pragma is
only allowed after the function dec-
laration and before any subsequent
compilation unit. This pragma is
not allowed for a function declared
with a renaming declaration, and
is not allowed for a generic func-
tion (it may be given for a generic
instantiation). This pragma permits
an Ada function to be called from

Implementation-Dependent Pragmas 1-3

a program written in another VAX
language (see 13.9a.1.4).

EXPORT-OBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
VAX/VMS Linker global symbol)
and size designator (a VAX/VMS
Linker global symbol whose value
is the size in bytes of the exported
object) as arguments. This pragma
is only allowed at the place of a
declarative item at the outermost
level of a library package speci-
fication or body, and a:u ,pply
to a variable declared by an ear-
lier declarative item of the same
package specification or body;
the variable must be of a type or
subtype that has a constant size
at compile time. This pragma is
not allowed for objects declared
%%W-. renaming dcclaration, and
is not allowed in a generic unit.
This pragma permits an Ada ob-
ject to be -ferred to o' i ;,:tinewritten in another VAX ,l-guage
(sec 13.9a.2.2).

S"JRE Takes an internal nme rionoting

a procedtre. and optionally takes
an external designator (the name of
a VAX/VMS Linker global symbol)
and parameter types as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a procedure declared
by an earlier declarative item of the
same declarative part or package
specification. In the case of a pro-
cedure declared as a compilation
unit, the pragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. This pragma is not allowed
for a procedure declared with a

1-4 Implementation-Dependent Pragmas

renaming declaration, and is not
allowed fvt .a generic procedure (it
may be given for a generic inst~int
ation). This pragnia permit, an Ada
routine to be called from .. pr6~l
written in .inother VAX language
(see 13.9a.1.4).

EXPORE. VALUED. PROCEDURE Takes an internal name denoting
a procedure, and lptionall\ takes
an external designator (the name of
a VAX/VMS Linker global svimbob)
ar-i t- 1ramneter types as argumnent-

This agmais only allowed at th.,
plzi-;, of a declarative itemn, and
must apply to a procedure declared
by an earlier declarative item of the
same declk rative part or package
specification. In the case of a pro-
cedure declart d as a compilation
unit, the pragma is only allowed
after the procedure declaration and
before any subsequent con ipliiaion
unit. The first *> r only) parameter
of the pi,,t. 2 must be of mode
out. Th'- p ragma is oot allowed
for a prtdoit. -declared -ith a
ivnoining deck A.io andi is not
allowed for .~~~~rcprocedure (it
may be given for a generic instan-
tiation). Thi'. pragnia permits an
Ada procedure to behave as a func-
tion that both returns a value and
causes side effects on its parame-
ters when it is called from a routine
written in anoth~er VAX language
(see 13.9a. 1.4).

INI PORT_. EXCEPTION Takes an intei nal name denoting
an exception, and optionally takes
an external designator (the name
of a \rAXIVNMS Linker global synm-
bol), a form (ADA or VMS), and

implementation-Dependent Pragmas 1-5

a code (a static integer expres-
sion that is interpreted as a VAX
cotidition code) as arguments. A
code value is allowed only when
the form is VMS (the default if the
form is not specified). Thisj pragma
is only allowed at th(: place of a
declarative item, and tntist apply
tu an exception declated by an
earlier declarative item 'ifte Ja.1.e
declarative p~o; package spec-
ification; it is not allowed for an
exception declared with a renamning
dleclkition. This pr.-'.' o pei'mits a
non-Ada excty :on (DIus t notably.,
a VAX condition) to be handled bN
an Ada program (see 13.9a.3.1).

IMfPORLT FUNCTION Takcs an internal name denoting a
function, au.' optionally take-; an
external designator 111.- naniw of a
VAXIVMS I - r global symbol).
parameter types, resuh i)-pe, ind
mechanibo ' itrgurnents. Pragma
INTERFACE. iist be used xilh this
pragma (sc- ? This pragma
is only alho%%ed at iac - '- a
declarative itern tu-:, .ippl%-
to a function dt.clared by an athier
declarative item oi lxv sanme declar-
ative part or package spkecification.
In the case of a function declared
as a compilation unit, the pragma is
only allowed after the function dec-
laration and before any subsequent
compilation unit. This pragmia is al-
lowed for a function declared with
a renaming declaration; it is not
allowed for a generic function or a
generic function instantiation. This
pragma permits a non-Ada rou-
tine to be used as an Ada function
(see 13.9a.1.1).

IMPORT..OBJECT Takes an internal namne denoting
an object, and optionally takes an

1-4 Implemnentation-Dependent Pragmas

external designator (the name of a
VAX/VMS Linker global symbol)
and size a VAXIVMS Linker global
symbol whose value is the size in
bytes of the imported object) as
arguments. This pragma is only
allowed at the place of a declara-
tive item at the outermost level of
a library package specification or
body, and must apply to a .uic
declared by an earlier declarative
item of the same package speciti-
cation or body; the variable must
be of a type or subt)pt: that has a
constant size at compile time. This
pragma is not allowed ior objects
declared with a renaming declara-
tion, and is not allowe-d in a generic
unit. This pragma permits storage
declared in a non-Ada routine to
be referred to by ar ',da program
(see 13.9a.2.1).

tvIVORTPROCEDURE Takes an internal name denoting
a procedure, and optionally takesan external dc. ,ignator (the name ofa VAX/VMS 1 ler plobal s- t1lhol)

''" ter types, and niechai.,Aa
Pragina INTERI'ACE

mu. t Ln- tised with this prigma
(see 13.9). This pragmai.;. only
allowed at the place of a declar-
ative item, and must appily to a
procedure declared by an earlier
declarative item of the same declar-
ative part or package specification.
in the case of a procedure declared
as a compilation unit, the pragma
is only allowed after the proce-
dure declaration and before an\
subsequent compilation unit. this
pragma is allowed for a procedure
declared with a renaming declara-
tion: it is not allowed for a generic
procedure or a generic procedure

Imploementation-Dependent Pragmas 1-7

instantiation, This pragnia pe..rnits
a non-Ada routine to be used as an
Ada procedure (see 13.9a.1-1).

IMPORTVALUED-..PROCEDURE Takes an internal name denoting a
procedure, and optionally takes an
external designator (th, name of a
VAXIVMS Linker global symbol),
parameter types, and niechanism
as arguments. Pragma INTERI-CE
ntu.;t tie used with this pragmi (see
13.9). This pragma is only allowed
at the placr if a declarativ.e itemn,
and niu'4 apply to a piocedure
declare~d by ai earlier declarative
item of the same declaratix.- ,-art
or package --yecification. In the
case of a procedure declaredl as
a compilation unit, the pragma is
only allowed after the procedure
L4.eclaration and before any subse
quent compilation iinit. The first

('only) parameter of the proce-
dijj,r.- must be of mode out. This
pragmia is allowed for a procedure
declared with a renaming declara-
tion; it is not allot-c.:i for a ceneric
procedure. This pk'agma permits
a non-Ada routine that returns ai
value and causes side effects on its
parameters to be used a-z an '.dj

procedure (see 13.9a.I.1).

4 INLINE Takes one or more names as ar-
guments; each name is either the
name of a subprogram or the name
of a generic subprogram. This
pragma is only allowed at the place
of a declarative itemn in a declarative
part or package specification, or af-
ter a library unit in a compilation,
but before any subsequent compi-
lation unit. This pragma specifies
that the subprogram bodies should
be expanded inline at each call

1-8 lmpiementation-Depandent Pragmas

whenever possible; in the case of
a generic subprogram, the pragma
applies to calls of its instantiations
(see 6.3.2).

5 INTERFACE Takes a language name and a sub-
program name as arguments. This
pragma is allowed at the place of a
declarative item, and must apply in
this case to a subprogram declared
by an earlir declarative item of the
sanic dclarative part or package
specification. This pragnia is also
allowed for a library unit; in this
case the pri,rna aTist appear after
the subprogram declaration, and
before any subsequent compila-
tion unit. This pragma specifies
the othc. '.inguage (and thereby
the calling conventions) and in-
forms the compiler that an object
module will be supplied for the
corresponding subprogram (see
13.9)

In VAX Ada pragma INTERFACE
is required in combination with
pragmas IMPO! - rUNCTION,
IMPORT_ PROCEI)URE, and
IMPORT- VALUE D PROC17DURE
(see 13.9a.1).

6 LIST Takes one of the identifiers ON
or OFF as the single argument.
This pragma is allowed anywhere
a pragma is allowed. It specifies
that listing of the compilation i, to
be continued or suspended until
a LIST pragma with the opposite
argument is given within the same
compilation. The pragma itself
is always listed if the compiler is
producing a listing.

Implementation-Dependent Pragmas 1-9

LONG-FLOAT Takes either DFLOAT or G
FLOAT as the single argument.
The default is G-FLOAT. This
pragma is only allowed at the start
of a compilation, before the first
compilation unit (if any) of the
compilation. It specifies the choice
of representation to be used for the
predefined type LONGFLOAT
in package STANDARD and for
floating point type declarations with
digits specified in the range 7..15
(see 3.5.7a).

MAIN-STORAGE Takes one or tvo nonnegative
static simple expressions of some
integer type as arguments. This
pragma i-, only allowed in the
outprnCost declarative part of a
library subprogram; at most one
such pragma is allowed in a library
subprogram. It has .n effect only
when the subprogram to which itapplie< is used as a main program.

This prav,,;, causes a fixed-size
,tack lo be corated for a main task
(the t.- k associated with a main
program), and duiermine,; the
number of storage units (bytes) to
be allocated for the stack working
storage area andlor guard pages.
The value specified for either or
both the working storage area and
guard pages is rounded up to an
integral number of pages. A value
of zero for the working storage
area results in the use of a default
size; a value of zero for the guard
pages results in no guard storage.
A negative value for either working
storage or guard pages causes the
pragma to be ignored (see 13.2b).

1-10 Implementation-Dependent Pragmas

7 MEMORY SIZE Takes a numeric literal as the
single argument. This pragma
is only allowed at the start of
a compilation, before the first
compilation unit (if any) of the
compilation. The effect of this
pragma is to use the value of the
specified numeric literal for the
definition of the named number
MEMORY SIZE (see 13.7).OPTIMIZE Takes one of the identifiers TIME
or SPACE as the single argument.
This pragma is onl) ailoi., .1 within
a declarative part and it applies
to the block or body enclosing
the declarative part. it specifies
whether time or space is the pri-
mary optimization criterion.

In VAX Ada, this pragma is only
allowed immediately within a
declarative part of a body declara-='! t i o n

9 PACK Takes the -imple il'.irac if a recoid
or array type ... the singi 'i
merit. [he allowed positions tor
this pragma, and the restrictions on
the named type, are governed by
the same rules as for a representa.
tion clause. The pragma specifies
that storage minimization should be
the main criterion when selecting
the representation of the given type
(see 13.1).10 PAGE This pragma has no argument,
and is allowed anywhere a pragmais allowed. It specifies that the
program text which follows the
pragma should start on a new

Implementation.Dependent Pragmas 1-11

page (if the compiler is currently
producing a listing).

1 t PRIORITY Takes a static expression of the pre-
defined integer subtype PRIORITY
as the single argument. This
pragma is only allowed within
the specification of a task unit or
immediately within the ",jtermost
declarative part of a main program.
It specifies the priority of [he task
(or task.. of the task type) or the
priority of the main program (see
9.8).

PSr," rt OBJLC'i Take, an internal name denoting
an l , .,d optionally takes an
external designator (the name of
a program section) and a size (a
VAX/VMS linker global symbol
whose value it iiterpreted as
the size in byte-; of the exported
/imported object) as argiiments.
This pragma is only allowed at the
place of a declarative item at the
otiteiniost level . library rackaget pecifi,:ation or , .d- and nis
apply so a %',.,..ie decl., ef Zby ant
ea! I .'eclarative item of the same
packag e specification or body;
the variable must be of a type or
subtype that has a constant ize
at compile time. This pragma is
not allowed for an object declared
with a renaming declaration, and is
not allowed in a generic unit. This
pragma enables the shared use of
objects that are stored in overlaid
program sections (see 13.9a.2.3).

12 SHARED Takes the simple name of a vari-
able as the single argument. This

1-12 implementation-Dependent Pragmas

pragma is allowed only for a vari-
able declared by an object decla-
raion and w,,! type is a scalar
or access type; the variable decla-
ration and the pragma must both
occur (in this order) inanediately
within the same declarative part or
package specification. This pragma
specifies that every read or update
of the variable is a synchroniza-
tion point for that variable. An
implementation must restrict the
obj'cts for ,iiich this pragma is
allowed to objects for which each (oI
direct teading and direct updating
is implemented , ,., indivisible
ope~ation (see 9 11).

VAX Ada does not supp,.t pragma
SHARED (see VOLATILE).

S1 I AGL,. .IT Takes a numeric literal as the
-ingle argument. This pragma
is only allowedi at the start ot
a compilation, before the iir.t
compilation ,-nit (if any) of the
compilation. The er'.- t of thi.;
pragma is tc j.. -liae vatlt,: of th;
specified numeric literal for th,
definition of the named number
STORAGEUNIT (see 13.7).

In VAX Ada, the only argument
allowed for this pragma is eight (8).

14 SUPPRESS Takes as arguments the identifier
of a check and optionally also
the name of either an object, a
type or subtype, a subprogram, a
task unit, or a generic unit. This
pragma is only allowed either im-
niediately within a declarative part
or immediately within a package

Implementation-Depenent Pragmas 1-13

specification. In the latter case, the
only allowed form is with a name
that denotes an entity (or several
overloaded subprograms) declared
immediately within the package
specification. The permission to
omit the given check extends from
the place of the pragma to the end
of the declarative region associated
with the innermost enclosing block
statement or program unit. For a
pragma given in a package specifi-
cation, the permission extends to
the end of i :. cope of the named
entity.

If the pragma include,; a name, the
permi. ion to omit the given check
is further restricted: it is given only
for operations on the named object
or on all objects of the base type
of a named type or subtype; for
calls of a named subprogram; for
activations of tasks of the named
task type; or for instantiations oftle given generic unit (see 11.7).

VAX Ada does rw support pragma
SUPPRESS (see SUPPRESS ALL).

SUPPRESSALL This pragma has no argument
and is only allowed following a
compilation unit. This pragma
specifies that all run-time checks in
the unit are suppressed (see 11.7).

15 SYSTEM-NAME Takes an enumeration literal as
the single argument. This pragma
is only allowed at the start of
a compilation, before the first
compilation unit (if any) of the
compilation. The effect of this
pragma is to use the enumeration

1-14 Implementation-Dependent Pragmas

literal with the specified identifier
for the definition of the constant
SYSTEMNAME. This pragma
is oiliy allowed if the specified
identifier corresponds to one of the
literals of the type NAME declared
in the package SYSTEM (see 13.7).

TASK-STORAGE Takes the simple name of a task
and a static expression of some
integer type as arguments. This
pragma is allowed anywhere that
a task storage specification is al-
I,.ved; that is, the declaration of
the task type to which the pragma
applies and th,; pragma must both
occur (in this order) immediately
within the same declarative part,
package specification, or task spec-
itication. The effect of this pragma
is to use the value of the expres-
sion as the number of :At.age units
(bytes) to be allocated as guard
storage. The value is rounded up
to an integral number of pages: a
value of zero results in no guard
storage; a negative value -.i, - , [lie
pragma to be ignored ';i.3 ?a.

TIME-SLICE Takes a static expression of
the predefined fixed point
type DURATION (in package
STANDARD) as the single argu-
ment. This pragma is only allowed
in the outermost declarative part
of a library subprogram, and at
most one such pragma is allowed
in a library subprogram. It has an
effect only when the subprogram to
which it applies is used as a main
program. This pragma specifies the
nominal amount of elapsed time
permitted for the execution of a

implementation-Dependent Pragmas 1-15

task when other tasks of the same
priority are also eligible for exe-
cution. A positive, nonzero value
of the sta~i," expression enables
round-robin scheduling for all tasks
in the subprogram; a negative or
zero value disables it (see 9.8a).

TITLE Takes a title or a subtitle string, or
both, in either order, as arguments.
Pragma TITLE has the form:

prapa TITLE (titling-option
[.titling-option]);

titling-option :-
[TITLE)] string-literal

"1 (SUBTITLE -)] string-literal

This pragma is allowed anywhere
a pragma is alio , the given
string(,) supersede(s) the default
title and/or subtitle portions of a
compilation liting.

VOLATILE Tikv- the simple name Lt a vaih
able as the -single .,rgument. This
piagma is only allowed for a vari-
able declared by an object declara-
tion. The variable declaration and
the pragma must both occur (in this
order) immediately within the same
declarative part or package speci-
fication. The pragma must appear
before any occurrence of the name
of the variable other than in an ad-
dress clause or in one of the VAX
Ada pragmas IMPORTOBJECT,
EXPORT OBJECT, or PSECT
OBJECT. The variable cannot be
declared by a renaming declaration.
The VOLATILE pragma specifies
that the variable may be modified

1-16 Implementation-Dependent Pragmas

asynchronoCuslY. This pragma in-
structs the compiler to obtain the
eachtie t a aiabused frsem11)
valutie t as varabed (soe 9e1ory

lmplementation.Dependent Pragmas 1-17

Attachment 2

VAXAdaAppendix F

NOTE

This appendix is not part of the standard definihn of the
Ada programming language.

TliI. appendix summarizes the implementation-de'endent characteris-
tics of VAX Ada by

" Listing the VAX Ada pragmas and attributes.
* Giving the sp;:cification of the package SYSTEM.
* Presenting the restrictions on repreertation clauses and umchecked

type conversioiP.
* Giving the conventions for nimes J .,cting implem,. -iion-

depcodent component- in record representation clauses,
" c.Giving the interpretation of expressions in address clauses.
* Presenting the implementation-dependent characteristics of the

input-output packages.
* Presenting other implementation-dependent characteristics.

VAX Ada Appendix F 2-1

I Im piementation-Depen dent Pragmas

VAX Ada provides the followving ptagrnai, which are defined elsewhere
in the text. In addition, VAX Ada restricts the predefined language
pragmas INLINE and INTERFACE, and provides alternatives tu prag-
mas SHARED and SUPPRESS (VOLATILE and SUPPRE'S ALL). See
Annex B for a descriptive pragrna summary.

* AST-.ENTRY (see 9.12a)

* EXPORT- EXCEPTION (see 13.%;?.3.2)
" EXPORT-FUNCTION (see 13.9a 1 4)
* L-XPORTOBJECT (sve 13.9a.2.2)

* E'XrT 1'PROCFDURE (see 13.9a.4)
" EXPCOR1 VALUED- PROCEDUI,'- v .see 1 3.9a.1.4)
" IMPORT-EXCEP~TION (see 13.91.'. 1)
" IMPORTFUNCTION (see 13.9a.1.1)
* IMPORTOBJFCT (see 13.9a.2.1)
* IMPORT_ PROCEDURE (see 13.9a.1.1)

*IMPORT- VALUED- PROCEDT ME (see 13.9a. 1.1)

" LONG-FLOAT (,;et- 3.5.7a)

" MAIN- 51~G 0''\ ' C 13.2b)
" PSECT.C-G-jL'._; F Sce ; 3.9a.2.3)

* SL PIRESS. -Li. (see 11.7)

*TASK-STORAGE (see 13.2a)

*TIME-SLICE (see 9.8a)

*TITLE (see B)

*VOLATILE (see 9.11)

2-2 VAX Ada Appendix F

F.2 Implementation-Dependent Attributes

VAN Ada provides the following attributes, which are defined else-
ishere in the text. See Annex A for a descriptive attribute summary.

" ASTENTRY (see 9.12a)
" BIT (see 13.7.2)
* MACHINE-SIZE (see 13.7.2)
* NULL_PARAMETER (see 13.9a.1.3)
* T I'E CL.\SS (see 13.7a.2)

F..J Specificaticr of ,.. Package System

package SYSTEM Is

type NAN4E to (VAIVMS, VAXELN);

SYSTERI-1ANE coast&t &AME -= VAX_VNS,
sTORA.-'._UNIT constant = 8,
MNIORTSZE constant 2e*31-1;
MAIINT constant - 2*31-1;
MIN-1T constant * -(2,31)
NAI_DIh;, constant . 33,
4_1-NAIITISSA constnt - 31;
• ;.',.*ELTA constant = 2 0*(-30).
DICK constant = 10 0.*(-2),

eI. , IUORTTY 4v INTEGER range 0 '5.

Address type

type ADDRESS Is private;

ADDRESS.ZEIO : constant ADDRESS;

function " (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS.
function . (LEFT INTEGER; RIGHT ADDRESS) return ADDRESS,
functiol "- (LEFT ADDRESS, RIGHT ADDRESS) return INTEGER.
tuntio "- (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS.

function = (LEFT, RIGHT ADDRESS) return BCOLEAN.
function "I." (LEFT. RIGHT ADDRESS) return BOOLEAN.
function " CLEFT. RIGHT ADDRESS) return BOOLEAN;
function "= (LEFT. RIGHT ADDRESS) roter BOOLEAN.
function " (LEFT. RIGHT ADDRESS) return BOOLEAI.
function I)- (LEFT, RIGHT ADDRESS) return BOOLEAN.

VAX Ada Appendix F 2-3

JMa

-- Note that because ADDRESS is a private type
the functions "=* and "/=" are already available and

-- do not hve to be explicitly defined

generic
type TAIET In private.

function FETCHF ON.ADDRESS (A ADDRESS) return TARGET,

genric
type TARGET is private,

procedure ASSIGHITOADDRESS (A ADDRESS. I - TARGET),

type TYPE-CLASS io (TYPECLASSEUJNERATION.
fYPECLASS_ INTEGER.
TYPECLASSFIXEDPOtItI,
TYPECLASSFLOATIUGPOIIIT,
TYPE.CLASSARRAY,
TYPE-CLASS -RECORD
TYPE.CLASSACCESS.
TYPECLASSTASK.
TYPECLASSADDRESS).

VAX Ada fnet.ir.g point type declarations for the VAX
hardware floating-point data types

tpe DFLOAT to impekmentati-n.defined.
type FFLOAT ts tmplementaft-,mndefined,
type G.FLOAT Is ompklmentan_de fined.
type N.FLOAT Is smplemenfati.n-defined.

-- AST handler type

type iST-KAIDLE. is liited private.

1_0-AST.RAIIDLER -ensstan ASIt-ANDLER;

gon-Ada exception

Oi.ADA-ERROK : 0aeceptlen,

VAX hardware-oriented typos and functions

type BITAUAT Is array (INTEGER ranoe) of BOOLEAN,
pranis PACK(BIT-.ARAY).

subtype BIT.ARIAY.8 is BI1AUAT (0 7).
s"btypo BIT.AUAT_I16 s BIT-ARRAY (0 15).
subtype BIT-AUAY-32 Is IIT.ARAY (0 31).
subtype IT.AUAT.64 Is BITARRAY (0 63).

type UIISIGIHED_-BYTE Is range 0 266.
tor U11SIGIUEDB.YTESIZE use 8,

2-4 VAX Ada Appendix F

function 'act" (LEFT UNSIGNED-BYtTE) return UNSICHED.JITE,
f*act , 'and' (LEFT. RIGHT WISICUED..BYTE) rotorn UI1SICIED..DYTE.

function 'or* (LEFT. RIGHT UNSICU")J-YTE) return WNSIC!IED-BYTE,
function *xor* CLEFT. RIGHT USN~ED..3YTE) return USIGUEkW.BYTE,

function TO..WJSIGNED..BTTE CLEFT D IT..AIAlS_) return UNSICNUDYTE,
fuction 10-517-TARIAT-8 (LEFT :UNSICNED..DYTE) return BIT-.ARRAY-.

typo UISICNED-..3TE..ARRAY is array (INTEGER range <>) of UNSIGNED-BYTE.

tnpe UNSICIED.101D Is raule 0 . . 66636
for VUSICUEDVIRDSIZE uoe 16;

Inction In I (LEFT UNSICIIED-WORD) return IJNSICUEDVORD;
function *and- (LEFT. RIGHT UIISIGNED..VORD) return USIGJEOV-ORD;
functies *or' 'TEFT. RIGHT V USICMED-.VOID) retura WJ1SICIEDWORD,
guntion *xor" %LEFT. RIGHT UNSIG1IED..UCID, - k~rn UHSlG.-WfVll)

functien ?O..UkiG~UED-VORD (LEFT BIT-ARAAY-.16) return WIIS!C:;Er
funtion TO-91? AqRAY-16 (LEFT UNSICRIED-WORD) return BIT-AAI-i~ 6.

type UNSXCNED...OtD..AIU Is array (In1TEGER range ~)of VUS1IHEL-VORD,

typ WISICUED-LONCUORD In rage NIIL-INT MAX-.ItlT,

functisn Sot" (LEFT WISICIIED.LOICWORD) return JIISICIED-LONGUURD;
function "and" (LEFT. RIGHT WISICIIED-LOJCWORD) return WZSIGNED-LO?111ORD.
fliltions "or" (LEFT. RICH? WISICIIED-.LOIIORD) returvi UtIS1CIIED..LONGVO3D;
function *zor" (LEFT, RICH? VPSICIIED..L01GWOMt return UIISICIIEDLnICVORD;

function TO..UHS !GIED..LONCWORD (LEFT BIT.ARRAT.32)
return WIS ICIED-LOUGR ID,

functlon tO-SIT-ARLAY-32 (LEFT WIISIGNED-LONCWORD) retuM iT UARAY-.32.

typo UNSl..LOflGUORD-ARAY In
array (INTECER range <)) of U1ISICIIED.LOIICVORD,

tMp UUSIGNED-JUADWORD to record
LO UNSIGNED-LMCVORD,
LI :UIISIGNED..LONGWORD.
a"d record.

fwncties nst, (LEFT UIISICIIED-QUADVORD) return WISIGflED.QUADWOID.
foaction "sad' (LEFT. RICH? IIS ICUED QUADVORD) return WlS ICIIED..AUJ ~OOD;
function e*r" (LEFT. RIGH? UffSICNEDQUADVORD) return WIISICUEDAUADVORD,
feaction lxor* (LEFT. RIGHT UISICIIED-GUADVORD) return WISICIIED..GUADVORD;

fuseliles Ta-UNSICUD-UADvamD (LFT -DIT..AURAI.64)
retur* UUSICIIEDQUADWOID,

function TO.3!?..ARRAT..64 (LEFT UUSICIIED-QUADVORD) returt BIT..ARAAT.64.

IV" MUICM-QDUADWORD.*RUhT is
array (INTEGER range -c)) ot UNSICDED..UADVOID.

VAX Ada Appendix F 2-5

fausti1*R IOA.DAESS (X INTEGER) return ADDRESS.
funeties TO-ADDRESS (X WNICED..LONGWORD) return ADDRESS.
hanctles, TO-ADDRESS UI unmvr.al-integer) ret'rr ADDRESS

,..4,'tien TOIITECEZ (I ADDRESS) return INTEGER;
function ?U..UNSICNED.LONGWORD (X ADDRESS) return UNSICNEDLO.01JCWORD,

factisa 7O..UNSIONED-LOIIGCORD (X AST..HAUDLER) raers UNSICNED-.LONGVORD;

Conventional names for static subtypes of type UIISICIIEDLOIGWORD

subtype IflISICHED-1 Is USIGMEDLONGWORD range 0 2"* 1-1;
subtype VIJSIGIED-2 Is UHSIGI.ED.LOICWORD range 0 2"* 2-1.
subtype UIISk '44D..3 to UNSIGIIED-LOICWDRD range 0 2'. .3-1,
subtype UP~; 0-4 Is UIISIGIIED-LI1OVORD range 0 2"* 4-1;
subtype U1 is19051 UPS !~!I~lDLGUOW0RD range 0 2"* 5-1,

s*.Lype UNSIGIEhD-15 is UUISIGRIED-LOUCWOCRD range 0 2"* 6-1;
,,-**.,.Pe U1ISIGJED-T. is QUS IGIIED _LOUCWQORD range 0 2"* 7-1.
subtype W1StIIM') 3 is)UUS I IIED-LOIG WORD range 0 2"* 8-1.
subtype UIISICIk..9 is UTS I CITED- L OICWORD range 0 2"* g-1.
subtype uWsrIED..10 is UUSIGUIED..LOIICVORD range 0 2**1O-1;

subtype UflISIGNED-1.1 Is VIIS IGIED..OUG WORD range 0 :.ii
subtype UIISTGIMD12 is UIISIGIJED.LOIGWORD range 0 2*"12-1.
subtype UIISICRIED-.13 In UIISICIIEDJOIGVORD range 0 2*"13-1;
subtype UIISIGIIED14 is U1ISIGUED...LONGUDRD range 0 2**14-1;
sobtrpe UIISZIIED16 In UNSIGIED-.LOlCWORD range 0 2.'15-1.

sabt)L * .t,,SICNED-.16 Is uLjISIG11ED..LOHGWOID range 0 2-.16-1;
subtype UISIGIED17 Is UNSIGCUED.LOIICVORD rage 0 2-'17-1.
subtype UIISIGIIED15 to UHSIGIIEDLIIGWORD rangs 0 2*.18-1.
sqbtyp* WJISIGUED1g is UIISICIIED..LOIGHOID range 0 2' .. 9-.
sahtyps UTISICIIED-20 Is UIS IGN F0 .flUCVIGT1R, range 0 2*.20-1;

ssbtj~s UISICIIED-21 Is WIS I GIED*LOOOR.' .-Age 0 2'e21-1;
subtype UNSICIIED-.22 Is UWISIGIED-LOUIGWORO runge 0 2'.22-1;
subtype MISICfIMD-23 Is WIISIIIED..LIIGVORD range 0 2"*23-1,
subtype UITSICIIED-.24 Is WISIGHED..LONOW1ORD range 0 2**24-1.
sobtype VUSIG1ED26 Is WISIIIED..ONGWORD range 0 2**25-1;

subtype MISIGNED-.26 Is MISIIED-.LOZGWOID range 0 2**26-1;
subtype UNS!INED-.27 Is UISIGUED..LOOCVORD rasge 0 2..27-1;
subtype UIISICIIED-28 Is UISICIIED..ONGWORD runge 0 2**28-1;
subtype VNlSIGIIED-29 Is MUSIOUED-.LONGVORD range 0 2*'29-1;
subtype VIISIGNED-30 Is UIISIGI1ED..LOIICWORD range 0 2**30-1;
subtype UNSIGNED-.31 is UtZSIGOUED-.LOGWORG~D range 0 2**31-1i

-- Function for obtaining global symbol value.

fuction IMPORT-.VALUE (SYMBOL STING) return WISIOIIED-LONGVOID,

-- VAX device and process register operations

fatia READ-.REGISTER (SOURCE WIISICIIED-BYTE) raers UUISIOIED-..YTE,
lunettos EAD-RECISTER (SOURCE UIISICUIED-VORD) raern UIISICUED..ORD,
fuatieon READ-.REISIER (SOURCE UIISIGIIED-LUCUORD) raern MISIOIIED..LONGWORD;

2-6 VAX Ada Appendix F

procedure IRITE-.REGISTER(SOURCE UHSIGCEDBYTE,
TARGET out UUISTGIVD-BfTE);

W RITE-RFGI SrER (SOURCE WNIGNE-t5KI)
TARGET out UUSIGIIED-VORD),

Pr-a aWE!TE.R.ECISTER (SOURCE UWISTIIED-LOUGCWORD.
TARGET tint UIIS!IED.LOIICWOID),

fuactiena NYPE (REOJIUNBER .INTEGER) rotors UNSIOIIED-LONGWORD,
procedure NTPR (lEG JIUMBER INTEGER.

SOURCE UISIGNED.L0flCWORD).

VAX intorl.jcked-instruction procedure*

proedure CLEAR- IITER.Ocxki (Dir Is out BOOLEAN,
OLD-VALUE out BOOLEAN);

procedure SET.IITERLOCKED (BIT Is out BOOLEANI.
OLD..YA'.UE out BOOLEANI).

4ips ALIGI2ED-SHLT .I1flEGER Is
record

VALUE SHORT-INTEGER =0.
snd record.

for ALXGNED..SHORT..JNTECER usee
record

at mod 2.
sad record,

procedure ADD-INTERLOCKED (ADDEND Is SHORT. IUTEGER;
AUGEIID In cut ALIGNED..SHORTNITEGER;
SIGN out INTEGER);

~'re IHSQ..STAE[S Is (OK-11OT.FIRST, FAILI1O-.LOCK, OL-FIRSI);
,t EMRS7*TUS Io (0K-J10:.EAPTY, F&TL-HIOLOCK.

llt.FNPTY. Vac. .UA5.FJPTT),

etoz.dare 111501((ITEM In ADDRESS;
HEADER Is ADDRESS.
STATUS out INSQ..STATUS),

procedure REAGHI (HEADER Is ADDRESS;
ITEM cut ADDRESS;
STATUS cut RENA.STATUS);

procedure Il(50!! (ITEM In ADDRESS;
HEADER Is ADDRESS;
STATUS out IRSQSTATUS),

procedure RIJIOTI (HEADER Is ADDRESS.
ITEM out ADDRESS.
STATUS cut RENQ.STATUS);

privet*

-- Not shown

sad SYTEMJ,

VAX Ada Appendix F 2-7

F.4 Restrictions on Representation Clauses

The representation clauses alloxed in VAX Ada are ler'."> enumera-
tion, record representation. and address clauses.

In V.\X Ada, a representation clause for a generic formal type or a
type that depends on a generic formal type is not allowed. In addition,
a representation clause for a compoite type that ha- a component
or subcomponent of a generic formal type or a type derived from a
generic formal type is not allowed.

F.5 Cuoventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

VAX Ada does not allocate impl,.mentation-dependent components in
records.

F.6 Interpretation of Expressions Appearing in Address
Clauses

Expression - ,ppearing in address clauses must be ot the type
ADDRESS defined in package SYSTEM (see 13.7a.1 and F.3). In VAX
Ada, values of type SYSTEM.ADDRESS are interpreted as integers in
the range 0..MAXINT, and they refer to addresses in the user half of
the VAX address space.

VAX Atda allows address clauses for variables (see 13.5.

VAX Ada does not support interrupts.

F.7 Restrictions on Unchecked Type Conversions

VAX Ada supports the generic function UNCHECKED-_CONVERSION
with the restrictions given in section 13.10.2.

2-8 VAX Ada Appendix F

F A Implementation -Dependent Characteristics of
Input-Output Packages

The VAX Ada predefined packages and their operations are imple-
mented using VAX Record Management Services (RMS) file orga-
nizations and facilities. To give users the maximum benefit of the
underlying RMS input-output facilities, VAX Ada provides pack-
ages in addition to SFQU.ENTIAL_1O. DIRECTJO, TEXTJO, and
10-EXCEPTIONS. and VAX Ada accepts VAX RMS File Definition
Language (FDL) statements in form strings. The following sections
,ummarize the implementation -dependent characteristics of the VAX

X\da input-output packages. The VAX Ada Ritn-Tinie Re terelice Alanual
discusses those characteristics in more detail.

F-8.1 Additional VAX Ada Input-Output Packages

In addition to the language-defined input-output packagcs (SEQUENTIAL_
10, DIRECTJ0, and TEXTJO), VAX Ada provides the following
input-output packages:

" RELATIVEJO (see 14.2a.3)
" INDEXEDJO (see 14.2a.5)
* SEQUENTIAL- MIXED_ 10 (see 14.2b.4)
" DIRECT- M4XED-..10 (see 14.2b .6)
" RELATIVE- MIXED-J1 (see 14.2b.8)
" INDEXEDMIXED- 1 (see 14.2b.10)

VAX Ada does not provide the package LOW_.LEVEL1O.

F.8.2 Auxiliary Input-Output Exceptions

VAX Ada defines the exceptions needed by packages RELATIVEJO0,
INDEXED 10, RELATIVE_ MIXED_ 10, and INDEXEDMIXED- 1 in
the package AUX- 0_EXCEPTIONS (see 14.3a).

VAX Ada Appendix F 2-9

IM

F.8.3 Interpretation of the FORM Parameter

The value of the FORM parameter for the OPEN and CREATE proce-
dures of each input-output package may be a string whose value is in-
terpreted as a sequence of statements of the VAX Record Management
Services (RMS) File Definition Language (FDL), or it may be a string
whose value is interpreted as the name of an external file containing
FDL statements.

The use of the FORM parameter is described fc: -.,ch inplt-output
pac!'.ge in chapter 14. For information on the deflult FORM paiam
eters for each VAX Ada input-output package and for information on
using the the FORM parameter to specify external file attributes, see
the VAX Atii Run-Tiue Reference Manual. For inform,,tion on FDL, see
the Guide to VAX'l.NfS File Applications and the VAXVMS File Detinition
Language Facjilh Rehl,'rence .Manulal.

1F.13.4 Implementation-Dependent Input-Output Error Conditions

As specified in section 14.4, VAX Ada raises the following language-
defined exceptions for error conditions occurring during input-output
operations: STATUS ERROR, MODE ERROR, NAMEERROR, USE_
ERROR, END-ERROR, DATA-ERROR, and LAYOUTERROR. In
addition, VAX Ada raises the following exceptions for relative and
indexed input-output operations: LOCK. ERROR, EXISTENCE- ERROR,
and KFYERROR. VAX Ada does not ra~ie the anguage-defined
exception DEVICE-ERROR; device-related error conditions cause USE_
ERROR to be raised.

USEERROR is raised under the following conditions:

* In all CREATE operations if the mode specified is IN-FILE.
* In all CREATE operations if the file attributes specified by the

FORM parameter are not supported by the package.
* In the WRITE operations on relative or indexed files if the element

in the position indicated has already been written.
* In the UPDATE and DELETE ELEMENT operations on relative or

indexed files if the element to be updated or deleted is not locked.
" In the UPDATE operations on indexed files if the specified key

violates the external file attributes.

2-10 VAX Ada Appendix F

LM mo

* In the SETLINE.LENGTH and SET_ PAGELENGTH opera-
tions on text files if the lengths specified are inappropriate for the
external file.

* Ithe capacity of the external file has been exceeded.

NAME-ERROR is raised as specified in section 14.4: by a call of
a CREATE or OPEN procedure if the string given for the NAME
parameter does not allow the identification of an external file. In
VAX Ada, the value of a NAME parameter can be a strin. that denotes
a VAX/VMS file specification or a \Ak IvMS logical name (in either
case, the string; itd,,; an c%',ernal file) For a CREATE procedure, the
value of a NAME r':imeter can also h,' a null string, in which case it
nane a tempoa.ry extern, tile that is d leted when the main program
exit- lhe VAX Ada ..i,, Time Rcference Manval explains the naming f
e-0; .al files in more detail.

F.9 Other Implementation Characteristics

Implementation characteristics having to do with the definition of a
main program, various numeric ranges, and implementation limit' are
summarized in the following sections.

F.9.1 lefinition of a Main Program

A library unit can be used as a main program provided it has no
formal parameters and, in the case of a function, if its returned value
is a discrete type. If the main program is a procedure, the status
returned to the VAXIVMS environment upon normal completion of the
procedure is the value one. If the main procedure is a function, the
status returned is the function value. Note that when a main function
returns a discrete value whose size is less than 32 bits, the value is zero
or sign extended as appropriate.

VAX Ada Appendix F 2-11

F.9.2 Values of Integer Attributes

The ranges of values for integer types declared in package STANDARD
are as follows:

S,.-. i[-SHORT-INTEGER -128 .. 127

SHORT-INTEGER -327(x% 32767

INTEGER -2147483,48 .. 21474830417

For the packages DIRECf-10, i%'Ll NTTVE_10, SEQUENTIALMIXED. 10, DIRECT.. MIXED. 10, RELATIVE.. KIXED.. 10, INDEE.
MIXED-10. and TEXE. 10, the rang, of values for types COUNT and
POSITIVE-COUNT are as follows:

COUNT 11. 21474843647

POSITIVE- O~NT 1 214748.3647

For the package TEXT 10, the range of values for the type FIELD is as
f ollows:

FIELD 1) 21474SY-47

F.9.3 Values of Floating Point Attributes

FFloating Value

a nd Approximate
Attribute Decimal Equivalent

DIGITS 6

MANTISSA 21

EXMAX 84

EPSILON 16111KN l-'0-
approxcimatt-ly 9~.5.304 E-4)7

SMALL Io 84NNlKK)*e-21
approicimatt.I) 2.511,4-2

LARCE 11-O FFFF-F8O%. 21
approiimatly 1. 9342SE + 25

2-12 VAX Ada Appendix F

F-Floating V'alue
and Approximate

Attrihutz Decimal Equi ijlent

SAFEEMAX 127

J L .SMALL 16-(l.1MNK)kI-31
app. oximatedy 2.93874E -39

,-A .'ARGE I0.7FFFFC0-t..32
'11 pi~~atI 1 70141 E - 38

FIRST -1h-07FFF-FF8-.-32
app -~ nateIv -1.70141 E + 319

,AST 1b*0.7FFF-FF8't +32
approxmir., 1 70141 E+ 3M

't '4CHINE-ALIX 2

.i-EMNANTISSA 24

NIACHINE EXINX 127

MIACHINEEMIN -127

NIACHINEROUNDS Tmeg

KIACHINF-OVERFLOflNS Truet

D-Floating Value
ind Approximate

Attribute Decimal Equivalent

DIGITS 9

%iANTISS*' 31

EMIAX 124

EPSILON lb'I.411INhN~btr.-
approximately 9.313225746154SE-1tI

SMALL 16'0.84K)-fNHKNHMN_IIl'-31
approximately 2.3509887016446E-38

LARGE 16*0. FFFF-FFFE(XMW)-fXMae+ 31
approximately 2. 1 .1,7A7922(-5E + 37

SAFEEMAX 127

SAFESMIALL bI.t)ItMHNa-3
pproximateiy Z. 4387358770.957 L -39

VAX Ada Appendix F 2-13

DFloating Value
3rd App~roximate

Attribute Decimal Equialent

SAFE LARGE 1..7)FFF FFFFI~wl(kv+ 32
cli-poximte1%1. 7014118338124 F 3,14

IRst -loot).7FFF FFFF FFFF FFSe + 32
approximaiel% -1.70 1411 1Q 4tA 47E + M8

LAST 16*0.7FFF ' FFFFFF8r
approxan. 1.(11134w047E + 38

VA,'N7rADIX 2

.-'JiNlE MANTI' :;A 5o

\1IACHINE-EhlAx 127

MACHINF.EMIN -I r/

(V.NEROUNDS True

MlACHINEOVErFLMWS Truie

Q-Floating Value
and Approximnate

Attribute Decimal Equivalent

-IITS 15

KIANT"' 51

approximateth 8(.8817K41971 NilE -016

approximately 1 .94469~2274332E-4)62

LARGE 16(). FF FFFFFF-FFFF-Elluer+51
approximateIy 2,571 1(N387(3814E + 061

SAFEEMAX 10323

SAFESMALL I h0. (I(M KNO31KN N IMoe-255
approximateY 5.562644662M-4I

SAFELARGE 16.33 7FFF- FFFFFFFFFilar+ 2%4
approximately 8 4hh4o5674 312 E + 307

2-14 VAX Ad& Appendix F

C-11lng Value
and Approximate

Attribute Decimal Equivalent

FIRST -16-0l 7FFF-FFFF-FFFF-FC-i+256
approximatel, -84 ,:o432 .317

LAST lb*(I.7FFF..H.-FFFFF...FC-v- !:5o
approximately S..9884(-60743 12E -1 31 7

KMACHINF-RADIX2

RIA(CHIK!I- NiANTISS-\ 53

"\CHINE-ENIAX 10(23

.;AC;'.1~ALNDSTrue

%IACHlNE-OVERFLOUS rrov~

H-Floating Value
and Approximate

Attribute Decimal Equivalent

DIGITS13

E\IAX 44IS

EPSILO> lbsil4)N)IMtIKIINIIII(.e2

approxsr ately - i.- 477754?S9434 1222341 1771(3397E -('034

KdALL~ ~~~~~~1- ?OMNI 84~(Xk~uMlMI~IKK(lKJNK(.-
approximately 1. 1IM)65M2 1 4(i37918210L)34318l)20936E-4l134

ARGE lh-El FFFF FFFF FFFF-FFFF-FFFFFFFF-FFFE-0'e+ 111
approximately 4 .542742026847543(69332737993mN1E + 0133

SAFE..EKAX 16383

SAFESNIALL l'l IM MM MM MM MM MM MM Ih-19

approximately ~4 41' l527,8577t442337bi5656b9i45433(144E-4933

SAFELARGE 1(,-f) /FFF FFFF FFFF-FFFF-FFFF. FFFF-FFFFj~ + 41)%
4pprovimnately 5 14 18i5747bi78615l42542479hi,331 4(NE +4931

FIR, I' -10-o 7FFFFFFFFFFF FFFF FFFFFFFFFFFFC~C+40%)

approximately -594W6747ii7Nh15N$54247%b~331 4 N IE - 4931

VAX Ada Appendix F 2-15

H. Floating Value

and Approximate
Attribute Decimal Equivalent

LAST Ji.0o.7FFF-FFFr FFFF - FFF F FFFF FFFF FF (>-. 401A,
a1pl : x-tl 5 44i5747o78b 158254287966331400tE + 4931

MACHI\I -RADIX 2

MIACHINE MIANTISSA It

kIACI-INE..E1IAX16s

N1ACHINE-ENIIN -Io383

1z AC HI NE Q 0 L NDS TruLe

MACHINE C')VERFLt -' S True

F.9.4 Attributes of Type DURATION

The values of the Significant attributes of type DURATION are as
follows:

LL,-i ION' DELTA I)NMMt)E-414

PIJRArION' SMALL 2-14

DLURATION' FIRST -1310)72)MNI

DL\ i, :)% LAST 131071 191M9

M RATION\I LARGE 3I 714k394#.,375 E .0t5

F.9.5 Implementation Limits

Limit Description

32 Maximum numbetr nt to1rmat parameters in o %ubprogra'M or entr%
declaration that ore ot an unconstrained rt~ord type

120 Maximutm idtentitier length (numt-r of charatr%)

12)) Maximum numtier ot charactr-, in a %ouLrc line

245 Mlaximutm numtx-r of di%crjrninants for a rwid type

2-16 VAX Ada Appendix IF

Limit Description

24(, Maximumn noumrt'r u, torrni.i j .ram*.ttrs in an entry or 111,rrng~ram
J,. rat ion

255 kMaoiintin numnlexr of dirmtn'.ion% in an arra) t)Pe-

10123 Nlaxirritimni fitier of lihrar.v tonit' and %utinit% in a compilation

k Io'.u rt-

44N N.S AXIiniu numtixer oit li'rair iirit, anJl %iobunit% on an txor Litionc

321757 lai rim n umibr Lu ol'i~t, k t a.~i th PSECT tIPILLT lpragm~i,

kl.. mitrn viiimbr of enomer-mio n ;ttvral'. in in ronietratioi' to~jv

-5535 , .-Mlium numbe~r of chara ttvis in a %.i'at. of the r'rooiivtinvd tvpte

STR;%G

Maximum nlumbetr of traimt-. that in ot~pt; in -in propagate.

'535 Nlaiiiun, n.,ni.. of lint- ini a "uirkv file
,1 Maximum numt'tr of t w Iin af~c'Ivt

I ie compilation lo~ure of a gi~vn unit o% the. total -4-t of uinit, Mhat tht' 6:i~n uinit

2 The exe~ution t Iourt' of a given unit i% the ornpilitoon dIo-,vr~ 1'; Al)%%'iwttJ

wconkbr,, unit% ikltarv bldtv Anid mtiat'iiiP-

VAX Ada Appendix F 2-17

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent
values, such as the maximum length of an input line and invalid
file names. A test that makes use of such values is identified
by the extension. TST in its file name. Actual values to be
substituted are identified by names that begin with a dollar
sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given
below.

N fea and Keanina Value

1%TG_ID1 119 A's and a
IOlt

Identifier of size NAXINLEN
with varying last character.

SBIG_ID2 119 A's and a
'2'

Identifier of size MAXIM_LN
with varying last character.

$BIGID3 119 A's and a
'3' in the middle

Identifier of size NAX_ILN3
with varying last character.

&G_ID4 119 A's and a
'4' in the middle

Identifier of size IAX_ILn
with varying last character.

$BIGIJLITX 116 O's and
0296

An integer literal of value 298
with enough leading zeroes so
that it is NAX_1N _LM characters
long.

I

Name lean-ingvau

$BIGREAL.LIT 114 Os and
69.0E1

A rea3 ,literal that can be
either of flyating or fixed
point type, has value 690.0, and
has enough leading zeroes to be
MAXINLEN characters long.

$ BLANKS BLANKS
Blanks of length 1AX_1N_UN - 20

4'' LAST 2147483647
VL.:o of CNTIIAST in TEXT-O
package.

$F"TE-. ta..ASCI I_CNAR
abodefghijklanopqrstuvvxyz!$%?@\] l'(-

A ng literal containing all
t?;r C1I characters with
S) ble graphics that are not
Jr basic 55 Ada character

$F-Z._WL ST 2147483647
Value olt Field'IAST in TEXTO
* ,akage.

$FILZAIM_ yTN'_AD_CUAmU X)]6O$"&,Y
An ill.qal external file name
that either contains invalid
characters or is too long.

$!1 ZJIA_ .WI1T._IZ LD_...-CM XYZa
An external file name that
oithe, contains a wild a"
character or Is too long.

$GRATR T_ LAM.X_3TIOt 100000.0
A universal reel value that lies
between DtMATXO' BI' LAST end
VMTIOM'LAT or any value in
the range of DUKATION

e3IrATIUtMX-OUTION.MASCALSr? 10000000.0
The universal real value that is
greater than W1ATION DM3 'oAST.

sI LU.AL.. 3WAL_ ZJU
BAD-CHARACTER*

Illegal external tile ame.

C-2

Naman ni lue

$IULEGAL_ZXTZR AL_FILE..ANM2

XUCH-TOO-LWnG-NAME-FOR-A-FI LE-MUCH-TOO-LONG-NAME-FOR-
A-FILE

Illegal external file names.

$INTEGER_FIRST -2147483648
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEKGRLAST 2147483647
The ,.niversal integer literal
axprassion whose value is
iNTEGER' LAST.

$LZSSTHANDURATION -100_000.0
A universal real value that lies
between DURATION'IBASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS_THAN_DURATION_BASZ_FIRST -10_000_000.0
The universal real value that is
less then DURATION'SASE'FPST.

$MAXDIGITS 33
floating-point types.

$SAXIxNLN 120
Maxii input line length
permitted by the implementation.

SA HX SHORT_SHORTINTEGER
A name of predefined numeric
type other than FLOAT, INTEGER,
SNORT_FLOAT, SHORTINTEGR,
LONGFLOAT, or LONG_ITEGR,

SNKGmASDINT 16#FFFFFFFEI
A based integer literal whoee
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTUG MA.LXIT.

$*oPcAI_cAR_TYPZ (MON-NULL)
An enumerated type definition
for a character type woe
literals are the identifier
POMPJ and all non-ASCII
characters with printable
graphics.

C-3

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not
conform to the Ada Standard. When testing was performed, the
following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated:

B4AO10C: The objectdeclaration in line 18 follows
a subprogram body of the same declarative part.

BC3204C: The file BC3204C4 should contain the body
for BC3204CO as indicated in line 25 of BC3204C3M.

. C35904A: The elaboration of subtype declarations
SFX3 and SFX4 may raise NUMERICERROR (instead of
CONSTRAINT_ERROR).

C41404A: The values of 'LAST and 'LENGTH are
incorrect in IF statements from line 74 to the end
of the test.

C4800SA: This test requires that the evaluation of
default initial values not occur when an exception
is raised by an allocator. However, the Language
Maintenance Committee (LMC) has ruled that such a
requirement is incorrect (AI-00397/01).

C32114A: An unterminated string literal occurs at
line 62.

B33203C: The reserved word "IS" is misspelled at
line 45.

C34018A: The call of function G at line 114 is
ambiguous in the presence of implicit conversions
and inconsistente without.

.0 B37401A: The object declarations at lines 126-135
follow subprogram bodies declared in the same
declarative part.

0 B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized
with a value of the wrong type (PRIBOOLTYPE instead
of ARRPRIBOOLTYPE) at line 41.

B49006A: Object declaratives at lines 41 and 50 are
terminated incorrectly with colons; "END CASEW" is
missing from line 42.

D-1

B 7410ID: The "BEGIN" at line 9 is mistaken; it
causes the declarative part to be treated as a
sequence of statements.

* C87950A: The call of "/-" at line 31 requires a
*USE"' clause for package A.

* C92005A: At line 40, 0/w" for type PACK.BIG _INT is
not visible without a "USE" clause for package PACK.

* C94OACA: This test assumes that allocated task M~
will run prior to the main program, and thus assign
SPYNUXE the value checked for by the main program;~
however, such an execution order is not required by
the Ada Standard, so the test is erroneous.

* CA3005A..D (4 tests): No valid elaboration order
exists for these tests.

END 0? LIST

D-3

