-A181 891 ADA (TRADENAME) COMPILER VALIDATION SUMMARRY REPORT VAX
ADA V413 VERSION 18 (U)> FEDERAL OFTHRRE HRNRGEHENT
SUPPORT CENTER FALLS CHURCH VR @87 NOV
UNCLASSIFIED F/G 12/5

w

-
-~

Rk

a9
. | EEEFTTITH

A -

1.25
=

. 1““4 4
MICROCOPY RESOLUTION TEST CHART

AD-A181 891

UNCLASSIFIED nm ‘ ﬂLE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ry

REPORT DOCUMENTATION PAGE

s-mvc-nous
RE com-’x.x-:ﬂ-:mc FORM

1. REPORT NUMBER |2. GOVT ACCESSION NO.

3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle) . .
Ada Compiler Validation Summary Report:

VAX Ada V1.3, Version 1.8 of the Ada Compiler
Validation Capability (ACVC)

6. TYPE OF REPORT & PERIOD COVERED
7 NOV 1986 to 7 NOV 1987

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
Federal Software Management Support Center

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS

Federal Software Management Support Center,
5203 Leesburg Pike, Suite 1100

Falls Church, VA 22041-3467

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADORESS

12. REPORT DATE

Sda nggg Eroggam nglce £ Def 7 NOV 1986

nite ates Department of Defense T RORBER

Washington, DC 20301-3081ASD/SIOL ‘ G

14. MONITORING AGENCY NAME & ADDRESS(/fdifferent from Controliing Office) 15. SECURITY CLASS (of thisreport)
Federal Software Management Support Center UNCLASSIFIED

15a. QE%EBBE!FICATION/DO"'NGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. ELECTE

JUL 0 6 1987 3

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

A

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD T 1473

EDITION OF | NOV 65 IS OBSOLETE

1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SLCuURITY CLASSIFICATION OF THIS PAGE (When Data t ntereu)

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

EXECUTIVE SUMMARY

This Validation Summary Report summarizes the results and
conclusions of validation testing performed on the VAX Ada
V1.3 using Version 1.8 of the *Ada Compiler Validation
Capability (AcCVC).

The validation process includes submitting a suite of
standardized tests (the ACVC) as inputs to an Ada compiler and
- 2valuating the results. The purpose is to ensure conformance
T of the computer to ANSI/MIL-STD-1815A Ada by testing that it
properly implements legal language constructs and that it
. ideni.ifies and rejects illegal language constructs. The
K testing also identifies behavior that is implementation
~ dependent but permitted by ANSI/MIL-STD-1815A. Six classes of
tests are used. These tests are designed to perform checks at
compile time, at link time, or during execution.

; On-site testing was performed 3 Nov 1986 through 7 Nov 1986
e at Nashua, NH under the auspices of the Federal Software

IS Managenent Support Center, according to Ada Validation

Vol Organization policies and procedures. The VAX Ada V1.3 is

o hosted on the VAX series operating under VAX/VMS V4.4 and the
' MicrnVMS, V4.4.

ﬂf The results of validation are summarized in the following
ity table:

RESULT TEST CLASS TOTAL
A B € D E L _____
Passed 69 865 1329 17 13 46 2339
t Failed 0 0 0 0 0 o 0
‘:' Inapplicable 0 2 39 0 o o 41
i Withdrawn ©o 7 12 0 0 0 19
— TOTAL 69 874 1380 17 13 46 2399

RN

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

1]

FSVB86VSRDEC540A

*Ada COMPILER
VALIDATION SUMMARY REPORT:
Digital Equipment Corp.
VAX Ada V1.3

The host environment is the VAX series* of computers under
VAX/VMS V4.4, and the MicroVaX II and VAXstation II under
MicroVMS V4.4. The target environments are all hosts, and the
MicroVAX IT using the VAXELN Toolkit, V2.2 in combination with

VAXELN Ada, V1.1.

Completior of Ca-Site Validation: A
7 Nov 1986 gzL-;.gf

Prepared By: Die s ooy
Federal Software Management Support Centex— '~~~ '™~
5203 Leesburg Pike __Avalintodite Deder
Suite 1100 Aveil amljer
Falls Church, Va 22041-3467 DIst ! Syecial

o

Prepared For:
Ada Joint Program Office
United States Department of Defense
wWashington, D.C.

*VAX series includes the VAX-11/730, VAX-11/750, Vax-11/780,
VAX-11/782, VAX-11/785, VAX-11/8200, VAX-11/8300, VAX-11/8500,
VAX-11/8600, VAX-11/8650, VAX-11/8700, VAX-11/8800

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

C A e e e S e - .. - e e

Ada Compiler Validation Summary Report:
Compiler Name: VAX Ada V1.3

Host Computer: Target Computer:

VAX 8800 = = = = = = - - VAX-11/750
VAX~11/785
VAX 8200
VAX 8700
VAX 8800

VAX-11/780 = = = ~ = = = VAX-11/730
VAX-11//80
VAX-11/782
VAX 8300
VAX 8500
VAX 8600
VAX 8650

under under

VAX/VMS VAX/VMS

A

VAX 8800 MicroVax I

under

VAX/VMS

VAXstation II

under

undey

MiecroVMS and VAXELN

VAXstation II under
MicrovMs

VAX-11/780 under VAX/VMS
MicroVMs
MicroVaAX II under VAXELN

Testing Completed on 7 Nov 1986 Using ACVC 1.8.

EXECUTIVE SUMMARY

This validation Summary Report summarizes the results and
conclusions of validation testing performed on the VAX Ada
V1.3 using Version 1.8 of the #*Ada Compiler Validation
Capability (ACVC).

The validation process includes submitting a suite of
standardized tests (the ACVC) as inputs to an Ada compiler and
avaluating the results. The purpose is to ensure conformance
of tha computer to ANSI/MIL-STD-1815A Ada by testing that it
propecly implements legal language constructs and that it
ideni.ifies and rejects illegal language constructs. The
testing aluo identifies bhehavior that is implemeantation
dependent hul permitted Ly ANSI/MIL-STD-1815A. Six classes of
tests are used. These tests are designed to perform checks at
compile time, at link time, or during execution.

On-site testing was performed 3 Nov 1986 through 7 Nov 1986
at Nashua, NH under the auspices of the rederal Software
Ky Manageunent Support Center, according to Ada Validation
o Oorganization policies and procedures. The VAX Ada V1.3 is
oo hostaed on the VAX series operating under VAX/VMS V4.4 and the
o MicreIMS, V4.4.

The results of validation are summariz»? i;. ihe following

table:
RESULT TEST CLASS TOTAL
A B € D E L _______
Passed 69 865 1329 17 13 46 2339
Failed 0 0 o 0 0 0 0
gg Inapplicable o 2 39 () 0 0 41
&E Withdrawn ©o 7 12 o 0 0 19
N TOTAL 69 874 1380 17 13 46 2399

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

D30 il ¥ 0) WU A0 Talt 7ol Bt 2
SRR T I A U L L R AR ‘7'_'4“[]‘}:1 LR b_i 8 {“ 4

T

There were 19 withdrawn tests in ACVC Version 1.8 at the time
of this validation attempt. A list of these test appears in
Appendix D.

Sou. tests demonstrate that some language features are 'or are
aot auppo:rted by an implementation. For this implementation,
the test determined the following.

SHORT_INTEGER is supported.
LONG_INTEGER is not supported.
SHORT_FLOAT is not supported.
LONG_FLOAT is supported.

The additional predefined types, LONG_LONG_FLOAT
and SHORT_SHORT_INTEGER are supported.

Representation specifications for noncontiguous
enumeration representations are supported.

The 'SIZE clause is supported.

. The 'STORAGE_SIZE clause is supported.

. The 'SMALL «11w~n is supported.

Generic wnit specifications and bodies can be compileud
in separate compilations.

Pragma INLINE is supported for procedures. Pragma
INLINE is supported for functions.

The package SYSTEM is used by package TEXT_IO.
Mode IN_FILE is supported for sequential I/0.
Mode OUT_FILE is supported for sequential I/0.

Instantiation of the package SEQUENTIAL_IO with
unconstrained array types is supported.

Instantiation of the package SEQUENTIAL_IO with
unconstrained record types with discriminants is
supported.

mhﬂwm,_.._f_____ff_i_____________________----T

. Dynamic c-~ation and resetting of files is supported
- for sequential 1/0.

, . RESET and DELETE are supported for sequential and
", direct I1I/0. .

Modes IN_FILE, INCUYT_FILE, and OUT_FILE are
supported for direct I/0.

| . Dynamic creation and resetting of files is supported
A for direct I/0.

Ty . Instantiation of pu:kage DIRECT_IO with unconstrained
- array types and unconstrained types with discriminants
is not supported.

Dynamic creation and deletion of files are sup;orted.

R . More than one iuternal file .an be associated with the
€ same external file only for reading.

. An external file associated with more than one internal
Yy file can be reset.

A . Illegal fil~ vnmes annot exist.

ACV:: Tergion 1.8 was ..:.2n on-site via wmagmetic tape to
, tfasshu.. NH. Al) tests, sv npt the withd.awn tests and any
iy exe: :...ble test- that make use of a floating »oint precision
h# greaier than SYSTEM.MAX Lit.ITS, were compiled on a VAX 8800 and
e a VAXstation II. Class A, C, D, and E tests were executed on a
e VAX-11/750, 785, 8200, 8700, 8800, MicroVAX II, and a
VAXstation II.

Oon completion of testing, execution results for Class A, C, D,
i or E tests were examined. Compilation results for Class B were
", analyzed for correct diagnosis of syntax and semantic errors.
s Compilation and link editing results of Class L tests were
analyzed for correct detection or errors.

v The Federal Software Management Support Center identified 2362
: of the 2399 tests in Version 1.8 of the ACVC as potentially

' applicable to the validation of VAX Ada V1.3. Excluded were
4 18 tests with source lines that were too long; and the 19

> withdrawn tests. After the 2362 tests were processed, 23
tests were determined to be inapplicable. The remaining 2339
tests were passed by the compiler.

Ve The Federal Software Management Support Center concludes that
A these results demonstrate acceptable conformance to
ANSI/MIL-STD-1815A.

) A A NN AR (B g
RORFRNICAN L O o’.:B"'s";%‘ KRR 'a”v‘\';‘ﬁ.ay',f.i..'a’.ft'.,t‘)

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT
1.2 USE OF THIS VALIDATION SUMMARY REPORT .
1.3 RELATED DOCUMENTS . ¢ ¢ ¢ ¢ o o s o s
1.4 DEFINITION OF TERMS . « « ¢ ¢ o o o o &
1.5 ACVC TEST CLASSES . ¢ ¢ « ¢ ¢ o o o o+ &

e e & o

L] L [] [* -
® o o o =

* o o o @

v &

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED . « « « « « « « s o o o + - 2=1

2.2 CERTIFICATE . . « v e e e e e e e s e e . 2=2

2.3 IMPLEMENTATION CHARACTERISTICS s s s e o o o & 2=3
. CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS e e o o . e » e o o o e o o 3-1
: 3.2 SUMMARY OF TEST RESULTS BY CLASS .« .+ + » « . . 3-1
s 3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
N 3.4 WITHDRAWN TESTS + + « o o o 5 o s o = s o o o o« 3=2
K 3.5 INAPPLICABLE TESTS s e e s s s e s & 3=2
: .6 SPLIT TESIS ‘ e 1

5/ ADDITYONAL TESTING IN“CRMATION . . . ¢ « « « « 3~-4
; s»s.3 Prevalidation . . - + ¢« ¢ ¢ ¢ o o + 4« o o o 3-4
’ 3.7.2 vwest: Method . ¢ o ¢ ¢ v ¢« o ¢ o o ¢ 5 « s o o 3-5

3- /03 Test Site . . e @ O 3-6

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD
APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

R e e DL

8 DXL D ROLCO O ; ' » '
X AT LTS “,:}"a,_*"-.":..‘,'13"!;ﬁ'.t,‘v’i.‘_:u',t,.“. O h" B 'o. " .. "'"') O

z-

CHAPTER 1
INTRODUCTION

L

7

This Validation Summary Report describes the extent tn which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This
report explains all technical terms used within it and !
thoroughly reports the results of testing this compiler using
the Ada Compiler Validation Capability (ACVC). An Ada compiler
nust be implemented according to the Ada Standard
(ANSI/MIL~-STD-1815A). Any implementaticn-dependent features
must conform to the requirements of the Ada Standard. Jhe
entire Ada Standard must be implemented, and nothing can be
implem:nted that is not in the Standard.

Even though all validated Ada compilers contuim to
ANSI/MIL-STD~1815A, it must be understood tha: some differences
1o exist between implementatinns. 'fhe Ada Standard permits
sciie imprlementation dependencies--fnr exaun!2, the maximum
length of identifiers or the amaxiwin values of integer types.
Other differences between compilers result from limitations
impos:red on a cowpiler by the operating systems and by the
hardware. All of the depwndencies deunciustrated during the

pro- s of testing this compiler aras givas in the report. -

validation Summary Reporisz are written according to a
astandardized foricat. The report for several different

smpilers may, thoreior::, be suslily compared. The information
.+ this rers! is derived from the test results produced during
vai.dation testing. Additional testing information is given in
section 3.7 and states problems and details which are unique
for a specific compiler. The format of a validation report
limits variance between reports, enhances readability of the
report, and minimizes the delay between the completion of
validation testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

The Validation Summary Report documents the results of the
validation testing performed on an Ada compiler. Testing was
carried out for the following purposes:

O AR R T e s A e At
3‘-'15:‘5"hl‘li;’!is'-'“x‘d'-ll'u. LS UL KL ‘.,‘Q‘,‘.l. LT ALY

- AARGAD ' 3 -
R R RN D DN

. Y

i INTRODUCTION

. To attempt to identify any language constructs
supported by the compiler that do not conform to the

L Ada st.andard ‘

i

R . To attempt to identify any unsupported language

JM constructs required by the Ada Standard

i « To determine that the implementation-dependent behavior
ag is allowed by the Ada Standard

. :ﬁ‘g

:&ﬁ ‘astiny of ti:i compiler was conducted under ¢Le supervision of

ey the Federal Sofrware Management Support Center according to
' policies and prc :dures established by tii: Ada Validation
Organi:~rtion (AVO). Testing was conducted from 3 Nov 1986

.ﬁg v 9y 7 Nov 1986 at Nashua, NH.
o
ﬁ& 1.2 USE OF THIS VALIDAYION SUMMAiY REPORT
0N ’
2 Con::istent with the national laws of the originating country,
v the Ada validation orjyanization may make full and free public
Wy, disclosure oif this revort. In the United States, this is
ﬁﬁ provided in 2:c®ance with the "Freedom of Information Act® (5
oeh U.S.C. #5%2). “ne results of this validatioun apply only o the
g cymputer«s, op.:. ‘ting systems, and compiler versions ideniified
" i1 khie »aport.
ﬁﬁ vit= drganizations represeaiced on the signeture page of tiais
ﬁ% »g0rt do uot represent o. warrant that all statements set
b% forth in this report are accurate and complete, or that the
?i subject compiler has no nonconformances to ANSI/MIL-STD-1815A
other than those presented. Copies of this report are
g available to the public from:
ﬁ% Ada Information Clearinghouse
e Ada Joint Program Office
! OUSDRE
g The Pentagon, Rm 3D-139
1211 S. Fern, C-107
ﬁs- Washington, DC 20301-3081
4383
s or from the Ada Validation Facility (AVF) listed below.

Questions regarding this report or the validation tests should
be directed to:

e Ada Validation Organization
yﬁ. Institute for Defense Analyses
wh 1801 North Beauregard

A0 Alexandria VA 22311

s:.;l

e

:"] 1-2

B

i:','\

] "l,‘,

. et v - . o -_‘-_<._~..‘;_ - . - i
A.“'- \"",-"?;"_- N s

o

OO O WA YA A AN CACA RS NCRCRAT SRR (T
XOIAGIEDN) Sl hk SR GO R AN Aa B A A

4

18 R ¥

D |

g or to:

Ada Validation Facility

Federal Software Management Support Center
; 5203 Leesburg Pike
5 Suite 1100
: Falls Church, VA 22041-3467

1.3 RELATED DOCUMENTS

‘ i. Reference Manual for the Ada Programming_
. Lanquage, ANSI/MIL-STD-1815A, FEB 1983.

Y 2. Ada Vvalidation Orga es and
- Procedures, MITRE COrporation, JUN 1982, PB
82-110601.

W 3. Ada Compiler Validation Capabjjliiy .

Ay Implementers' Guide, SofTech, Inc., DEC 1984.
!

N 1.4 DEFINITION OF TERMS

Q? Ny The Ada Compiler Validation Capability. A set
ﬁ{ of programs that evaluates the conformance of a
3& compiler *o the Ada language specification,

D ANSI/MIL~STP~-1815A.

U ada S: .ndard AN /MTC, -3TL -1815A, ~“abruary 1983,

?% Applicant The agency requesting validation.

KRN

* AVF . Ada Validation Facility. The Federal Software

Management Support Center. 1In the context of
s this report, the AVF is responsible for
pX conducting compiler validations according to
established policies and procedures.

R

o AVO The Ada Validation Organization. In the
content of this report, the AVO is responsible

Y for setting policies and procedures for

?g‘ compiler validations.

v

n% Compiler A processor for the Ada language. In the

A context of this report, a compiler is any

i language processor, including cross-compilers,

o translators, and interpreters.

iy

}ﬁ Failed test A test for which the compiler generates a

ga result that demonstrates nonconformance to the

U Ada Standard.
Host The computer on which the compiler resides.

b 1-3

o DX . eSO Y SRS Rt
SRR RS R VG N WY BGAC Wiy e i l'i\o" Lt ¢ X K1Y, A e BRI S s 'l V! ‘o' ottt

Inapplicable A test that u:s~s features ovi the language that
a test compiler is not required to support or
may legitimately support in a way other than
the one expected by the test.

Passed test A test for which a compiler generates the
expected result.

Target The computer for which a compiler genecates
code.
Test A program that evaluates the conformance of a

compiler to a lanquage specification. In the
context of this report, the term is used to
designate a sinygle ACVC test. The text of a
program aiay be the text of one or more

i compilations
. Withdrawn A test which has been found to be inaccurate in
test - checking conformance to the Ada language

specification. A withdrawn test has an invalid
test objective, f~ils to meet its test
objective, or contains illegal or erroneocus use
nf the languaqge.

o e m

1.5 ACVC viST CLASSES

oaduvimance to ANSI/MIT,- STD-1815A is mrasurzed using the Ada
ompilae Validation Capability (ACVC);. The ACVC contains both
leqal and illegal Ada program structu.ed into six test classes:
A, B, ¢, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Legal programs are
compiled, linked, and executed while illegal programs are only
compiled. Special program units are used to report the results
of the legal programs.

Class A tests check that legal Ada programs can be successfully
compiled and executed. (However, no checks are performed
during execution to see if the test objective has been met.)
For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada
i language) are not treated as reserved words by an Ada

' compiler. A Class A test is passed if no errors are detected

g at compile time and the program executes to produce a message

! indicating that it has passed.

o 1 4 \ . a) N . ?
Wty Y TG TR

Class B tusts check that a compiler detects illegal language
usaje. Class B tests are not executable. Each test in this
class is compiled and the resulting compilation listing is
wwined to verify that every syntactical or semantic error in
the Laost is detected. A Class B test is passed if every.
" il construct that it contains is detected by the compiler.

<.ass C tests check that legal Ada programs can be correctly
compiled and executed. EFEach Class C test is self-checking and
produc~< a PASSED, FAILED, or NON-APPLTCABLE message indicating
the resuli wit2: it is executed.

Class D tests chack the compilation and execution capacities of
a compiler. Since there are no requirements nlaced on a
compiler by the Ada Standarl for some parameters (e.g., the
number of identifiers permitted in a compilation, the number of
anits in a library, and the¢ number of nested loops in a
subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class
D test fails to compile because the capacity of the compiler is
exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a
PASSEDN or FAILED m-rssage during execution.

Bach cClass E test is self-checking and psroduces a
NOT-APPLLCA'sI.E, PASSED or FAILED message when it iz <i.apiled
and xecuted. Hnwever, the Ada standard permits .:n

' -wmentation t- rejo.{L programs containiny some features
addressed by Class E tests during compilation. Therefore, «
Class E test is passed by a ~ompiler if it is compiled
successfully and executes to produce a PASSED message, or it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs
involving multiple, separately compiled units are detected and
not allowed to exetute. Class L tests are compiled separately
and execution is attempted. A Class L test passes if it is
rejected at link time-~that is, an attempt to execute the main
program must generate an error message before any declarations
in the main program or any units referenced by the main program
are elaborated.

Two library units, the package REPORT and the procedure CHECK_
FILE, support the self-checking features of the executable
tests. The package REPORT provides the mechanism by which
executable tests report results. It also provides a set of
identity functions used to detect some compiler optimization
strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The
procedure CHECK_FILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of
the Ada Standarad.

The operation of these units is checked by a set of executable

test. These tests produce messages that are examined to verify
that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

Some of the conventions followed in the ACVC are intended to
ensure that the tests are reasonably portable without
modification. For example, the tests make use of only the
basic set of 55 characters, contain lines with a maximum length
of 72 characters, use small numeric values, and place features
that may not be supported by all implementations in separate
tests. However, some tests contain values that require the
test to be customized according to implementaiLion-specific
values. The values used for this validation are listed in
Appendix C.

A compiler must correctly process each of the tests in the
suite and demonstrate conformance to the Ada Standard by either
meeting the pass criteria given for the test or by showing that
the test is inapplicable to the implementation. Any test that
was determined to contain an illegal language construct or an
errnneous language cunstruct is withdrawn from the ACVC and
ther.fore, is not used in testing a coupiler. The
noronformant tests are given in Appendix D.

CHAPTER 2
CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was
tested under the following configuration:

Compiler: VAX Ada V1.3

Test Suite: Ada Compiler Validation Capabiliiy, Version
1.8

Host Computer:

Machine(s): VAX-11/780, VAX 8800 and
VAXstation II

Operating Systems: VAX/VMS V4.4
MicrovMs V4.4

Memory Size: 12, 32, and 8 MB
Targe® Computer:
Machinn(s) VAX-1l/730, 750, 780, 732,
VAX-11/72%, £20u, 8300, 3500,

VAX 8600, 8650, 8700, 7300,
Microvax 11, vaXstation II

Operating Systenm VAX/VMS V4.4
MicrovMs V4.4
VAXELN V2.2

Memory Size: 4 - 32MB

Communications Network:

CONFTGURATION INFORMATION

2.2 CERTIFICATE INFORMATION
Base Configuration:
Compiler: VAX Ada V1.3

Test Suite: Ada Compiler Validation Capability, Version
1.8

Completion Date: 7 Nov 1986
Host Computer:
Machine(s): VAX-11/730, 750, 780, 782, 785,
8200, 8300, 8500, 8600, 8650,
3700, and 8800
Operating System: VAX/VMS, V4.4
Machine(s): MicroVAX II, VAXstation II
Operating System: MicrovMs, V4.4
Targel Computer:
Machirna(s): VAX~11/730, 750, i80, 782,
785, 8200, 8300, 8500, 8600,
8650, 700, 8800
Operating System: VAX/VMS, V4.4
Machine(s): MicroVax II, VAXstation II
Operating System: MicrovMs, Vv4.4

Machine(s): ' Microvax II

Operating System: VAXELN Toolkit, v2.2, in
combination with VAXELN Ada,
Vi.l

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
re:wit implementation to differ. Class D and E tests
specifically check for such implementation differences.
However, tests in other classes also characterize an
implementation. This compiler is characterized by the
following interpretations of the Ada Standard:

. Nongraphic characters.

Nongraphic characters are defined in the ASCII
character set but are not permitted in Ada prograus,
even within character strings. The compiler
correctly recognizes these characters as illegal in
Ada compilations. The characters are not printed in
the output listing. (See test B26005A.)

. Capacities.

The compiler coirectly processes compilations
containing loop ~tatements nested to 65 levels,
block statements ncsted to 65 levels, procedures
nested to 17 1~vals. It correctly processes a
compilation ¢rntaining 727 variables in the came
Jeclarative p.art. (See tests DSSA03A. .Y, D5§0NIR,
64005E. .G, D290D24)

CONFIGURATION INFORMATION
. . Universal integer calculations.
An implementation is allowed to reject universal
integer calculations having values that exceed
SYSTEM.MAX INT. This implementation does not reject
such calculations and processes them correctly.
(See tests D4A002A, D4A002B, D4AOO4A, and D4AO04B.)

. Universal real calculations.

When rounding to interger is used in a static
universal real expression, the value appears to be
rounded away from zero. (See test C4AOl4A.)

-
——
i

Predefined types.

This implementation supports the additional
predefined types SHORT_INTEGER, LONG_FLOAT, and
SHORT_SHORT_INTEGER in the package STANDARD. (See
test B86001DT.)

Based literals.

An implementation is allowed to reject a based
literal with a value exceeding SYSTEM.MAX_INT during
compilation, or it may raise NUMERIC_ERROR during
execution. This implementation raises NUMERIC_
ERROR during execution. (See test E24101A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR
for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_1INT.

A packed BOOLEAN array having a 'LEuGflH exceeding
14TEGER'LAST raises NUMERIC_ERROR wlL:n the array
objects are decls+~d. (See test C52103X.)

A packed two- limens' »nal BOOLEAN array with more
than INTEGER'LAST components xaiscs NUMFRTC _ERROQR
vuen the avray iype is declared. (See tast
C52104Y.)

A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERIC_ERROR either
when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERIC_ERROR when the array
type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire
expression appears to be evaluated before CONSTRAINT_
ERROR is raised when checking whether the
~xpression's subtype is compatible with the target's
subtype. In assigning two-dimensional! array types,
the entire expression does not appear to be

evaluated before CONSTRAINT_ERROR is raised when
checking whether the expression's subtype is
compatible with the target's subtype. (See test
C52013A.)

Discriminated types.

During compilation, an implementation is allowed c.u
1ither accept o:r rejec:. an incomplete type with
discriminants that is uzed in an access type
definition with a compatible discriminate
corstra'nt. This implementation acspts such
subtype indicai-ieana AQuring compilation. (Sre test
F12? 040,)

In assiguing record types vith discriminants, the
entire expression appears to be evaluated before
CONSTRAINT_ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate,
all choices appear to be evaluated before checking
against the index subtype. (See tests C43207A and
C432078B.)

In the evaluation of an aggregate contair, ng
subaggregates, all choices are evaluated before
being checked for identical bounds. (See test
E43212B.)

?i All choices are evaluated before CONSTRAINT_ERROR is
Ly raised if a bound in a nonnull range of a nonnull

! aggregate does not belong to an index subtype. (See
' test E43211B.)

CONFIGURATION INFORMATION
Functions.

The declaration of a parameterless function with the

same profile as an enumeration literal in the same

: immediate scope is rejected by the implementation.
o (See test E66001D.)

o . Represertation clauses.

The Ada standard does not require ai inplementation

B to support representation clauses. 1f a

e represcentation clause is not supp.o:ied, then the

e implementation must reject it. While the operation
N, of representatinn clauses in not checked by Version
1.8 of the ACVC,; they are used in testiny other
language f~2atu.es. Testing indic:tes that sise
.oat specifications are ..upported, ‘hat specification of
storage for a task activation is supportesd, and that
e specification of SMALL for a fixed point type is
3 supported. Enumeration representation clauses

vet including those that specify noncontiguous values
appear to be supported. (See tests C55Bl6A,
C87B62A, C87B62B, C87B62C, and BCl002A.)

NN . Generics.

When given a separately compiled generic unit
specification, some illegal instantiations, and a
e body, the compiler rejects the body because of the
R instantiations. (See tests BC3204C and BC3204D.)

¥ . Pragmas.

The pragma INLINE is supported for procedures. The
B pragma INLINE is supported for functions. (See
Ly tests CA3004E and CA3004F.)

Lon s e a0 W0 Ty W0 8y Ve i) ! "
;3,; RUOOOOCUR RN RRICN i‘r,_!,.,j 148 ‘.:;.l,ﬁ,o,?.gk

A

. Input/output.

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with
R discriminants. The package DIRECT_IO cannot be
) instantiated with unconstrained array types ‘and
O record types with discriminants without defaults.
e (See tests CE2201D, CE2201E, and CE2401D.)

More than one internal file can be associated with
. each external file for sequential I/0 for reading
‘i Only. (see tests CE21°7A. .F.)

S More than one internal file can be associated with
‘ each external file for direct I/0 for reading only.
(See tests CE2107A..F.)

}é An external file associated with more than one
g internal file can be deleted. (See test CE2110B.)

A More than one internal file can be associated with
cach external file for text I/O for reading only.
(See tests CE3111A..E.)

Oynamic creation and reseiting of a sequential file
N is allowed. /See tesi CE2217A.)

Temporary seyuential files are given a name.
‘e Tewporary direct files are given a name. Temporary
L files given nan~s are not deleted whan they are
K closed, but are not accessible after the completion
of the main program. (See test CE2108A.)

CHAPTER 3
TEST INFORMATION
3.1 TEST RESULTS '

The Federal Software Management Support Center identified 2362
of the 2399 tests in Version 1.8 of the Ada Compiler
Validation Capability as potentially applicable to the
validation of VAX Ada V1.3. Excluded were 18 tests with
source lines that were too long; and the 19 withdrawn tests.
After they were processed 23 tests were determined to be
inapplicable. The remaining 2339 tests were passed “y the
connilar,

The Federal Software Management Support Center concludes that
the t::stig results demon~trate acceptable conformance to the
Ada Standard.

3.2 SUMMARY OF TEST RESULTS BRY CLASS

RESULT TES4 CLASS TOTAL

A B [o] D E L —
Passed 69 865 1329 17 12 46 2339
Failed 0 0 N 0 0 o o
N/A 0 2 39 0 0 0 41
Withdrawn 0 7 12 0 0 0 19
TOTAL 69 874 1380 17 13 46 2399

-

S -)

&'.“r‘ (ol "“'-. .'\:.

TEST INFORMATION
3.3 SUMMARY OF TEST RESULTS BY CHAPTER
RESULT
—2 3 4 5 _6 7 8 9 10 1l 12 14 Total

Passed 98 322 420 244 161 97 138 261 130 32 218 218 2339

Failei © 0 0 0 0 0 0 0 0 0 0 0 0
N/A i8 3 0 3 0 0 1l 1l 0 0 0 15 41
W/D 0 5 5 o 0 1l 2 2 4 0 1l 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399
3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version
l1.8:

C32114A B37401A B49006A Cc92005a
B33203C C41404A B4A010C C240ACA
C34n18A B451.16A B7410.0 CA3005A..D
C3-301A C48008A c8/8- .1 BC3¢0" ™

See Appendix D for tha rationale for withdrawing th.sce tests.
3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use
of features that a compiler is not required by the Ada Standard
to support. Others may depend on the result of another test

that is either inapplicable or withdrawn. For this validation
attempt, 41 tests were inapplicable for the reasons indicated:

. C96005B - there are no out-of-range values for
type DURATION

. CE2107B, CE2107C, CE2107D, CE2107E, CE2111D
CE3111B, CE3111C, CE3111D, CE31l1l1lE, CE3114B
CE2110B

- with default open/create options (no FORM
string), VAX Ada allows more than one internal
file to be associated with the same external file
for mode IN_FILE only (multiple readers) , but
does not allow more than one association for OUT
_FILE or INOUT_FILE in combination with mode IN
_FILE or another mode OUT_FILE (mixed readers and
writers or multiple writers).

3=-2

U0 ou LI ONOUIOUC [) (20 I J A ey, ;
’h ""” AR '“““”“ “":".“h‘“,‘«‘,%"" ."?.’b‘,o"g'o.\ c‘l '.r,".... -5“' '0."0 ola

‘(Iv
ho,g-.n

CE3115A - VAX Ada allows resetting of shared
files, but an implementation restriction
does not allow the mode of a file to be
changed from IN_FILE to either INOUT
_FILE or OUT_FILE (an amplification of
accessing privileges while the external
file is being accessed). Thus CE3115A
does not apply.

CE2102D, CE2102I, CE2111H - the creation of a file
of mode IN_FILE is not allowed

CE24113H..C24113Y - source lines exceed the
limit of 120 characters

B52004D, B55B09C, C3400l1E, C55BO7A -
LONG_INTEGER is not supported

C34001F, C35702A ~
SHORT_FLOAT is not supported

C86001F - TEXT_IO uses the predeiined package
SYSTEM, which is made obsolete by the
user defined package SYSTEM

3.6 SPT.TT TESTS

If one or more errors do not appear to have been detected in a
o Class B test because of compiler error recovery, then the test
i is split into a set of smaller tests that contain the .
wndetected errors. There were no split tests required for this

implementation.

3.7 ADDITIONAL TESTING INFORMATION l

& 3.7.1 Prevalidation

¢ Frior +- wvalidation, sets of test results for ACVC Version 1.8
produc.ad by VAX Ada V1.3 were submitted to the Federal
Software Management Support Center by the applicant for
pre-validation review. Analysis of these results demo. ,ccated

f that - ~ompiler successfully passed all applicable tests.

,-"

*5 The spucific configurations submitted for the pre-validation

)

., revi~- -rere as follows:

a Host Target

)

ﬁ; Processor Op. Sys. B ocessor Op. Sys.

s VAX -11/780 VAX/VMS VAX-=11/730 TAY ;UM

i VA.-t11/780 VAX/VMS YAX-"1/780 VhAa/VMS

V.. {-i1/780 VAX/VMS VAX~-11/782 VAX/VMS

ﬁ VAX-11/780 VAX/viMS JAX 8300 VAX/VMS

et VAX-11/780 VAX/VMS VAX 8500 VAX/TMS

5 VAX-11/780 VAX/VMS VAX 8600 VAX/VMS

" VAX=-11/780 VAX/VMS VAX 8650 VAX/VMS
VAXstation II MicroVMs VAX-11/780 VAX/VMS
VAXstation II MicroVMs Microvax II VAXELN

g The VAX-11/782 results were compared against the VAX-11/730,

% 780, 8300, 8500, 8600 and the 8650 and found to be equivalent.

The results from the Vax-11/780 were compared against the
Microvax II, 730, 782, 8300, 8500, 8600, 8650 and 780 and found

Q to be equivalent.

¥ The results produced by VAX Ada were the same for all tested
members of the VAX family--for those using VMS, MicroVMs, or

VAXELN.

Ml L

3 g 40N RO 3 . A
LA W\ RAUSIAPOA)f .""A’s‘:ﬁ."-. Al “?“Jf ‘}n. -’."i AN e

sIa%00e

3...2 Test Method

A test magnetic tape containing ACVC Version 1.8 was taken
on-site by the validation team. This magnetic tape contained
all tests applicable to this validation as well as all tests
inapplicable to this validation except for any Class C tests
that require floating-point precision exceeding the maximum
value supported by the implementation. Tests that were
withdrawn from ACVC Version 1.8 were not run. Tests that make
use of values that are specific to an implementation were
customized before being written to the magnetic tape.

The test tape was written in VAX BACKUP format and was loaded
to disk using Digital Equipment Corp. standard utility
routines.

Once all tests had been loaded to disk, processing was begun
using command scripts provided by Digital Equipment Corp.

The validation was executed in batch control mode with the
files organized by chapter and class to allow the tests to be
run {:~iependently and in parallel.

A oy compilation library was created and initialized with all
units contained in the library given the logical name
ADASPREVDEFINED. The startup control file establir'ied the newliy
created library as th2 current compilai...n library and then
compiled REPORT and HECK_FI{LE into that iibrary.

The pr :~alidation results were verifi~d on-site. The various
tests results from the prevalidation execution were captured on
disk and used to compare against the on-site results using
"DIF", a difference utility.

The OPTIMIZE option was used to produce the compiled code.

The following configurations were tested on-site:

Host Op. Sys. Target Op. Sys.
VAX 8800 VAX/VMS VAX-11/750 VAX/VMS
VAX-11/785
VAX 8200
VAX 8700
VAX 8800

Microvax II MicrovMs
MicroVax II VAXELN
VAXstation II MicrovMs VAXstation II MicrovMs

3.7.3 Test Site

The validation team arrived at Nashua, NH on 3 nNov 1986 and
departed after testing was completed on 7 Nov 1986.

APPENDIX A

S = e
SO S

COMPLIANCE SYIATEMENT

Digital Equipment Corporation has submitted the following compliance
statement concerning VAX Ada and VAXELN Ada.

s mctidm s el e Yot we AL kb d b m s e se— we wme ¢ . .= L

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration: ¢

Compiler: VAX Ada Version 1.3 _
Test Suite: Ada Compiler validation Capability, Version V1.8

Host Computers:

Machines:
VAX-11/730, VAX-11/750, vax-11/780, VAX-11,/782,
VAX-11/785, VAX 8200, VAX 8300, VAX 8500,
VAX 6600, VAX 8650, VAX 8700, and VAX 8800.
Operating System:
VAX/VMS, Version 4.4

Machines: ’

MicroVAX 11, . and
VAXstation II.

Operating System:
MirroVMS, Version 4.4

Target Computers ‘' am2 as host plus 7AXFLN):

Machines:
JAX-11.,730, VAX-1' .50, VAX-11/780, VAX--11/1782,
VAX-1:,785, VAX 8200, vAX 3300, vAX 8500,
VAX 8600, VAX 8650, VAX 3700, and VAX 8800.
Operating System:
VAX/VMS, Version 4.4

- Machines:
T "Mierovax 11, and
VAXstation 11I.
Operating System:
MicrovMs, Version 4.4

Machines:

Microvax 11

Operating System:
VAXELN Toolkit, Version 2.2, in combination with

VAXELN Ada, Version 1.1.

COMPLIANCE STATEMENT

Digital Equipment Corporation has made no deliberate extensions to
the Ada language standard.

Digital Equipment Corporation agrees to public disclosure of this
report.

[

Digital Equipment Corporation agrees to continue to comply with the
Ada trademark policy, as defined by the Ada Joint Program Office.

(i:3($~JZQLr’:L(VQN\DL~X~AALQ\
) 6 October 1986

Charles 2. Mitchell
VAX Ada Project Leader

et e

-
BSOS
dlgpe s’ 0

APPENDIX B

APPENDIX F OF THE ADA STANDARD

the only allowed implementation dependencies correspond to
tmplementation-dependent pragmas, to certain machine-i~pendent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
-artain allowed restrictions on representation classes. The
iapl :mentation-dependent characteristics are described in the
following sectiys which discuss topics one through eight as stated
in Appendix F of the Ada Language Reference manual
{\NSI/MIL-STD-1815A). Two oiher sections, package STANDPARD and file
naming con-<ntinmns, are also included in this appandix.

Portions oi .!i- section refer to the followin~ rttachments:

1. Atiachment 1 - Implementation-Depenelr-i Liagmas

2. Attachment 2 - VAX Ada Appendix F

(1) Implementation-Dependent Pragmas

See Attachment 1.

(2) Implementation-Dependent Attributes

Name Type
P'AST_ENTRY The value of this attribute is of type

SYSTEM.AST_ HANDLER.

P’'BIT The value of this attribute is of type
universal integer.

P'MACHINE_SIZE The value of this attribute is of type
universal_integer.

B-1

APPENDIX F OF THE ADA STANDARD
£'NULL_PARAMETER The value of this attribute is of type
P.

P’'TYPE_CLASS The value of this attribute is 6 of type
SYSTEM.TYPE CLASS.

(3) Package SYSTEM

See Attachment 2, Section F.3.

(4) Representation Clause Restrictions

See Attachment 2, Section F.4.

(5) Conventions

See Attachment 2, Section F.5.

(6) Address Clauses

Secv Attachment 2, Section F.6.

(!, Juchecked ‘onversions
VAX Ada supports the generic function UNCHECKED CONVERSION
with the following restrictions on the class of types
involved:

1. The actual subtype corresponding to the formal type
TARGET must not be an unconstrained array type.

2. The actual subtype coresponding to the formal type

TARGET must not be an unconstrained type with
discriminants.

(8) Input-Output Packages
SEQUENTIAL_IO Package

SEQUENTIAL 10 can be instantiated with any file
type, including an unconstrained array type or an
unconstrained record type. However, input-output
for access types is erroneous.

APPENDIX F OF THE ADA STANDARD

VAX Ada provides full support for SEQUENTIAL 10,
with the follcwing restrictions and clarifications:

1. VAX Ada supports modes IN FILE and OUT_FILE for
sequential input-output. However, VAX Ada does
not allow the creation of a file of mode
IN FILE.

2. More than one internal file can be associated
with the same external file. However, with
default FORM strings, this is only allowed .hen
all inteinal files have mode IN FILE (multiple
readers). If one or more internai files have
mode OUT _FILE (mived readers and writers or
multiple writers), c(icen sharing can only be
achieved using FORM strings.

N 3. VAX Ada supports deletion of an external file
e which is associated with more than one internal

! file. In this case, tl.c external file becomes
immediately unavaijlable for any new
associations, but ilie current assuciations are
ool not affected; the external file 1is actually
Nyt deleted aft~r the last association has been
NN broken.

4. 7AX Ada allows resetting of <hao.:d files, but an
implementation restriction dJdoes not allow the
mode of a file tn be «ciianged from IN FILE tc

v OUT_FILE (an amplification of accessing

L privileges while the external file is being

accessed).

DIRECT_IO Package

type CNT is range 0 .. 2147483647;

TEXT_I10 Package

type CNT is range 0 .. 2147483647;
subtype FIELD is INTEGER range 0 .. 2147483647;

LOW_LEVEL_IO

Low-level input-output is not provided.

APPENDIX F OF THE ADA STANDARD

(9) Package STANDARD

type INTEGER is range -2147483648 .. 2147483647;
type SHORT_ INTEGER is range -32768 .. 32767;
type SHORT SHORT INTEGER is range -128 .. 127;
-- type LONG_INTEGER is not supported

type FLOAT is digits 6;

type LONG FLOAT is digits 15;

type LONG_LONG_FLOAT is digits 33;
-- type SHORT FLOAT is not supported

type DURATION is Jclta 1.0E-4
range -131072.0 .. 131071.9999;

(10 sii:> Names

File names follow the conventions and restrictions of the
target operating system.

LR L

Attachment 1

Implementation-Dependent
Pragmas

1 This attachment defines the pragmas LIST, PAGE, and OPTIMI/E, and
summarizes the definitions given elsewhere of the remaining language-
defined pragmas. VAX Ada implementation-dependent information
(includirg the VAX Ada implementation-dependent >ragmas) is morked
with change bars.

! The VAX Ada prsgma TITLE is also defined in this annex.
Sieg 4 Meaning
AST_LNIRY Takes the simple name of a single

entry as the single argument; at
most one AST_ENTRY pragma

is allowed for any given entry.
This pragma must be used in
combination with the AST_ENTRY
attribute, and is only allowed after
the entry declaration and in the
same task type specification or
single task as the entry to which

it applies. This pragma specifies
that the given entry may be used to
handle a VAX/VMS asynchronous
system trap (AST) resulting from a

Implementation-Dependent Pragmas 1-1

2 CONTROLLED

3 ELABORATE

EXPORT_EXCEPTION

1-2 Implementation-Dependent Pragmas

VAXIVMS system service call. The
pragma does not attect normal use
of the entry (see 9.12a).

Takes the simple name of an access
type as the single argument. This
pragma is only allowed immedi-
ately within the declarative part or
package specification that contains
the declaration of the access tvpe;
the declaration must occur tetore
the pragma. This pragma is not
allowed for a derived type This
pragma specifies that - uatic
storage reclamation must not be
performed for objects designated
by values of the access type, except
upon leaving the innermost blo.k
statement, subprogram body, or
task bady that encloses the access
type declaration, or after leaving
the main program (see 4.8).

Takes onc «. more simple rames
denoting library units as arguments.
This pagma is ', Nowed imme-
diately 1fter the context clause of

a compilation umnt (before the sub-
sequent library unit or secondary
unit). Each argument must be ihe
simple name of o 'ibuary unit men-
tioned by the context clause. This
pragma specifies that the corre-
sponding library unit body must be
elaborated before the given compi-
lation unit. If the given compilation
unit is a subunit, the library unit
body must be elaborated before the
body of the ancestor library unit of
the subunit (see 10.5).

Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a

- . -

EXPORT_FUNCTION

VAXI/VMS Linker global symbol), a
form (ADA or VMS), and a cnde (a
static integer expression that 1> in-
terpreted as a VAX condition code)
as arguments. A code value must
be spccified when the form is VMS
(the default if the form is not spec-
ified). This pragma is only allowed
at the place of a declarative (lom,
and must apply to an exception
declared by an earlier declarative
item of the same declarative part
or package specification; it is not
allowed for a1 cxception declared
with a renaming declaration. The
pragma permits an Ada excep-
tion to be handled by programs .
written in other VAX languages
(see 13.9a.3.2).

Takes an internal name denoting a
function, and optionally takes an
external designator (the name of a
VAX/VMS Linker global symbol),
parameter types, and result type
as argumants. This pragma is only
allowed at the place ¢f 1 declarative
ite,n, and must apply to a function
declared by an earlier declarative
item of the same declarative part
or package specificatic 1. In the
case of a function declared as a
compilation unit, the pragma is
only allowed after the function dec-
laration and before any subsequent
compilation unit. This pragma is
not allowed for a function declared
with a renaming declaration, and
is not allowed for a generic func-
tion (it may be given for a generic
instantiation). This pragma permits
an Ada function to be called from

Implementation-Dependent Pragmas 1-3

EXPORT_OBJECT

< PORI_PROC - 1 JRE

1-4 Implementation-Dependent Pragmas

a pragram written in another VAX
language (see 13.9a.1.4).

Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
VAX/VMS Linker global symbol)
and size designator (a VAX/VMS
Linker global symbol whose value
is the size in bytes of the exported
object) as arguments. This pragma
is only allowed at the place of a
declarative item at the outermost
level of a library package speci-
fication or body, and must apply
to a variable declared by an ear-
lier declarative item of the same
package specification or body:
the variable must be of a type or
subtype that has a constant size
at compile time. This pragma is
not allowed for objects declared
wiit. 1 renaming duclaration, and
is net allowed in a generic unit.
This pragma permits an Ada ob-
ject to be -~ferred to ! = ini:tine
written in another VAX language
(sec 13.9a.2.2).

Takes an internal name denoting

a procedure, and optionally takes
an external designator (the name of
a VAX/VMS Linker global symbol)
and parameter types as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a procedure declared
by an earlier declarative item of the
same declarative part or package
specification. In the case of a pro-
cedure declared as a compilation
unit, the pragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. This pragma is not allowed
for a procedure declared with a

PN PUM (] ? % "
R T O

e At A b ALE b i dle 4 ,--—..Ky.‘-n'n““-v“T

renaming declaration, and is not
allowed fui a generic procedure (it
may be given for a generic instant:
ation). This pragma pernuts an Ada
routine to be called trom . progiam
written i another VAX language
(see 139a.1.4).

EXPORT_VALUED_PROCEDURE Takes an internal name denoting
a procedure, and ptionally iakes
an externai designator (the name ot
a VAXIVMS Linker global symbuoly
and rarameter types as arguments
This pragma is only allowed at th»
pla-2 of a declarative item, and
must apply to a procedure declared
Ly an earlier declarative item of the
same declarative part or package
specification. In the case of a pro-
cedure declar.d as a compilation
unit, the pragma is only allowed
after the procedure declavation and
befure any subsequent conipiiaiion
unit. The first -or only) parameter
of the piocerir: must be of mode
i out. Thic pragma is not allowed
for a precedur~ declared cith a
renaming decla-caon and is not
allowed for » ; cneric procedure (it
may be given for a generic instan-
tiation). This pragma permits an
Ada procedure to behave as a func-
tion that both returns a value and
causes side effects on its parame-
ters when it is called from a routine
written in another VAX language
(see 13.9a.1.4).

INPORT_EXCEPTION Takes an internal name denoting
an exception, and optionally takes
an external designator (the name
of a VAX/VMS Linker global sym-
bol), a form (ADA or VMS), and

Implementation-Dependent Pragmas 1-5

VT Sy ARy (T TT Yy 30 T g Ty Ry €y
AR DORTERNGTR A U Mk O

IMPORT_FUNCTION

IMPORT_OBJECT

16 implementation-Dependent Pragmas

a code (a static integer expres-
sion that is interpreted as a VAX
condition code) as arguments. A
code value is allowed only when
the form is VMS (the default if the
form is not specified). This pragma
is only allowed at the place of a
declarative item, and must apply
to an exception declaied by an
earlier declarative item . tnie sarae
declarative pait o+ package spec-
ification; it is not allowed for an
exception declared with a renaming
declaration. This prao-a permits a
non-Ada excepion (most notably,
a VAX condition) to be handled by
an Ada program (see 13.9a.3.1).

Takes an internal name denoting a
function, an optionally take< an
external designator ("> name of a
VAXIVMS 1 .-\er global symbob),
parameter types, resull iype, and
mechanism wguments. Pragma
INTERFACE ranst be used with this
pragma (sc.- > This pragma

is only allowed at ine e L 12
declarative itern = naust apply

to a iunction declared by an carlier
declarative item of the same declar-
ative part or package specification.
[n the case of a function declared
as a compilation unit, the pragma is
only allowed after the function dec-
laration and before any subsequent
compilation unit. This pragma is al-
lowed for a function declared with
a renaming declaration; it is not
allowed for a generic function or a
generic function instantiation. This
pragma permits a non-Ada rou-
tine to be used as an Ada function
(see 13.9a.1.1).

Takes an internal name denoting
an object, and optionally takes an

IMPORT_PROCEDURE

external designator (the name of a
VAXIVMS Linker global symbol)
and size {(a VAX/VMS Linker global
symbol whose value is the size in
bytes of the imported object) as
arguments. This pragma is only
allowed at the place of a declara-
tive item at the outermost level of
a library package specification or
body, and must apply to a «aciable
declared by an earlier declarative
item of the same package speciti-
cation or body; the variable must
be of a type or subtype that has a
constant size at compile time. This
pragma is not allowed for objects
declared with a renaming declara-
tion, and is not allowed in a generic
unit. This pragma permits storage
declared in a non-Ada routine to
be referred to by ar “da program
(see 13.9a.21).

Takes an internal name denoting

a procedure, and optionally takes
an external du .ignator (the name of
a VAXIVMS 1 :nker global s mbal)
Jrormzter types, and mechain an
as wimnents. Pragima INTERVACE
must b nsed with this pragma
(see 13.9). This pragma i: only
allowed at the place of a declar-
ative item, and must apply to a
procedure declared by an earlier
declarative item of the same declar-
ative part or package specification.
In the case of a procedure declared
as a compilation unit, the pragma
is only allowed after the proce-
dure declaration and before any
subsequent compilation unit. This
pragma is allowed for a procedure
declared with a renaming declara-
tion: it is not allowed for a generic
procedure or a generic procedure

Implementation-Dependent Pragmas 1-7

1-8

4

IMPORT_VALUED_PROCEDURE

INLINE

Iimplementation-Dependent Pragmas

, ; p) Al
ey b .‘l‘.fa,«,!'-.{: SRR WO PRI

instantiation. This pragma pe:mits
a non-Ada routine to be used as an
Ada procedure (see 13.9a.1.1).

Takes an internal name denoting a
procedure, and optionally takes an
external designator (th: name of a
VAX/IVMS Linker global symbol),
parameter types, and .1echanism
as arguments. Pragma INTERFACE
mut be used with this pragma (see
13.9). This pragma is only allowed
at the placr »f a declarative item,
and must apply to a procedure
declarcd by un earlier declarative
item of the same declarative nart
or package specification. In the
case of a procedure declared as

a compilation unit, the pragma is
only alliwed after the procedure
declaration and before any subse
quent compilation nnit. The first
(<1 only) parameter of the proce-
durs must be of mode out. This
pragma is allowed for a procedure
declared with a renaming declara-
tion; it is not allowe.d for a peneric
procedure. This pragma permits

a non-Ada routine that returns a
value and causes side effects on it
parameters to be used as an da
procedure (see 13.9a.1.1).

Takes one or more names as ar-
guments; each name is either the
name of a subprogram or the name
of a generic subprogram. This
pragma is only allowed at the place
of a declarative iten in a declarative
pait or package specification, or af-
ter a library unit in a compilation,
but before any subsequent compi-
lation unit. This pragma specifies
that the subprogram bodies should
be expanded inline at each call

Wt [l)

D0
Q‘i..u‘.‘:,.' 80 4 3

U) 9 LRI
N '._’of..':!a'bfg,'i"‘i‘.»g"r’l.o'hl

; ‘.u'?t?o

S
,'t‘,‘l

P
o e

-

5

INTERFACE

LIST

whenever possible; in the case of
a generic subprogram, the pragma
applies to calls of its instantiations
(see 6.3.2).

Takes a language name and a sub-
program name as arguments. This
pragma is allowed at the place of a
declarative item, and must apply in
this case to a subprogram declared
by an ear'icr declarative item of the
samc deciarative part or packhage
specification. This pragma is also
allowed for a library unit; in this
case the prazma aiost appear after
the subprogram declaration, and
before any subsequent compila-
tion unit. This pragma specifies
the othe. "inguage (and thereby
the colling conventions) and in-
forms the compiler that an object
module will be supplied for the
corresponding subprogram (sce
13.9)

In VAX Ada pragma INTERFACE
is required in combination with
pragmas IMPO! ~ “UNCTION,
IMPORT_PROCEDURE, and
IMPORT_VALUED_PROCTNURE
(see 13.9a.1).

Takes one of the identifiers ON
or OFF as the single argument.
This pragma is allowed anywhere
a pragma is allowed. It specifies
that listing of the compilation is to
be continued or suspended until
a LIST pragma with the opposite
argument is given within the same
compilation. The pragma itself

is always listed if the compiler is
producing a listing.

Impiementation-Dependent Pragmas 1-9

LONG_FLOAT

MAIN_STORAGE

1-10 Implementation-Dependent Pragmas

Takes either D_FLOAT or G_
FLOAT as the single argument.
The default is G_FLOAT. This
pragma is only allowed at the start
of a compilation, before the first
compilation unit (if any) of the
compilation. It specifies the choice
of representation to be used for the
predefined type LONG_FLOAT

in package STANDARD and for
floating point type declarations with
digits specified in the range 7..15
(see 3.5.7a).

Takes one or two nonnegative
static simple expressions of some
integer type as arguments. This
pragma i: only allowed in the
outermost declarative part of a
library subprogram: at most one
such pragma is allowed in a library
subprogram. It has an effect only
when the subprogram to which it
applies is used as a main program.
This prag.sa causes a fixed-size
stack 1o be ¢ eated for a main task
(the task associated with a main
program), and duiermines the
nuinber of storage units (bytes) to
be allocated for the stack working
storage area and/or guard pages.
The value specified for either or
both the working storage area and
guard pages is rounded up to an
integral number of pages. A value
of zero for the working storage
area results in the use of a default
size; a value of zero for the guard
pages results in no guard storage.
A negative value for either working
storage or ﬁuard pages causes the
pragma to be ignored (see 13.2b).

7

10

MEMORY_SIZE

OPTIMIZE

PACK

PAGE

Takes a numeric literal as the
single argument. This pragma

is only allowed at the start of

a compilation, before the first
compilation unit (if any) of the
compilation. The effect of this
pragma is to use the value of the
specified numeric literal for the
definition of the named number
MEMORY_SIZE (see 13.7).

Takes one of the identifiers TIME
or SPACE as the single argument.
This pragma is only allov. 4 within
a declarative part and it appliey

to the block or body enclosing

the declarative part. It specities
whether time or space is the pri-
mary optimization criterion.

In VAX Ada, this pragma is only
allowed immediately within a
declarative part of a body declara-
tion

Takes the <imple naae of a record
or array type us the singl- 1ou
ment. [he allowed positions tur
this pragma, and the restrictions on
the named type, are governed by
the same rules as for a representa-
tion clause. The pragma specifies
that storage minimization should be
the main criterion when selecting
the representation of the given type
(see 13.1).

This pragma has no argument,
and is allowed anywhere a pragma
is allowed. Tt specifies that the
program text which follows the
pragma should start on a new

Implementation-Dependent Pragmas 1-11

1 PRIORITY

PSLC *_OBJEC]

12 SHARED

1-12 Implementation-Dependent Pragmas

page (if the compiler is currently
producing a listing).

Takes a static expressiun of the pre-
defined integer subtvpe PRIORITY
as the single argument. This
pragma is only allowed within

the specification of a task unit or
immediately within the ~utermost
declarative part of a main program.
It specifies the priority of the task
(or task.. uf the task type) or the
priority of the main program (see
9.8).

Takes an internal name denoting
an vije: t 1d optionally takes an
eviernal designator (the name of

a program scction) and a size (a
VAX/VMS Linker global symbol
whose value is uiterpreted as

the size in bytes of the exported
limpuited object) as arguments.
This pragma is only allowed at the
place of a declarative item at the
outermost level of a library package
specification or budy, and must
apply tea voi e declaied by an
ear' laclarative item of the same
Package specitication or body;

the variable must be of a type or
subtype that has a constant size

at compile time. This pragma is
not allowed for an object declared
with a renaming declaration, and is
not allowed in a generic unit. This
pragma enables the shared use of
objects that are stored in vverlaid
program sections (see 13.9a.2.3).

Takes the simple name of a vari-
able as the single argument. This

T
i

(e R
1! /9:’1

: L} SUPPRESS

R SIORAGL L NIT

pragma is allowed only for a vari-
able declared by an object decla-
raiion and wiwowe iype is a scalar
or access type; the variable decla-
ration and the pragma must both
occur (in this order) inunediately
within the same declarative part or
package specification. This pragma
specifies that every read or update
of the variable is a synchroniza-
tion point for that variable. An
implementation must restrict the
objects for L ivich this pragma is
allowed to objects for which each of
direct reading and direct updating
is implemented .1 indivisible
opeiation (sec Y 11).

VAX Ada does not suppuit pragma
SHARED (see VOLATILF).

Takes a numeric literal as the
<ingle argument. This pragma

is only allowed at the start ot

a compilation, before the {irst
compilativn nit (if any) of the
compilation. The ef’. . t of this
pragma is tc G:c che valve of the
specified numeric literal for the
definition of the named number
STORAGE_UNIT (see 13.7).

In VAX Ada, the only argument
allowed for this pragma is eight (8).

Takes as arguments the identifier
of a check and optionally also

the name of either an object, a
type or subtype, a subprogram, a
task unit, or a generic unit. This
pragma is only allowed either im-
mudiately within a declarative part
or immediately within a package

implementation-Dependent Pragmas 1-13

SUPPRESS_ALL

15 SYSTEM_NAME

1-14 Implementation-Dependent Pragmas

specification. In the latter case, the
only allowed form is with a name
that denotes an entity (or several
overloaded subprograms) declarcd
immediately within the package
specification. The permission to
omit the given check extends from
the place of the pragma to the end
of the declarative region associated
with the innermost enclosing block
statement or program unit. For a
pragma given in 4 package specifi-
cation, the permission extends to
the end of 11 .cope of the named
entity.

If the pragma includes a name, the
permission to amit the given check
is further restricted: it is given only
for operations un the named object
or on all objects of the base type
of a named type ur subtype:; for
calls of a named subprogram; for
activations of tasks of the named
task tvpe; or for instantiations of
the given generic unit (sec 11.7).

VAX Ada does r- * support pragma
SUPPRESS (see SUPPRESS | ALL).

This pragma has no argument

and is only allowed following a
compilation unit. This pragma
specifies that all run-time checks in
the unit are suppressed (see 11.7).

Takes an enumeration literal as
the single argument. This pragma
is only allowed at the start of

a compilation, before the first
compilation unit (if any) of the
compilation. The effect of this
pragma is to use the enumeration

-
M, i
LN R

TASK_STORAGE

TIME_SLICE

literal with the specified identifier

for the definition of the constant
SYSTEM_NAME. This pragma :
is ouly allowed if the specified

identifier corresponds to one of the
literals of the type NAME declared

in the package SYSTEM (see 13.7).

Takes the simple name of a task
and a static expression of some
integer type as arguments. This
pragma is allowed anywhere that

a task storage specification is al-
lewved; that is, the declaration of
the task type to which the pragma
appiies and the pragma must both
occur (in this order) immediately
within the same declarative part,
package specification, or task spec-
itication. The effect of this pragma
is to use the value of the expres-
sion as the number of stc1age units
(bytes) to be allocated as guard
storage. The value is rounded up
to an integral numhber of pages: a
value of zero results in no guard
storage; a negative value v.ir - -, the
pragma to be ignored {i:¢ i3 2a).

Takes a static expression of

the predefined fixed point

type DURATION (in package
STANDARD) as the single argu-
ment. This pragma is only allowed
in the outermost declarative part

of a library subprogram, and at
most one such pragma is allowed
in a library subprogram. It has an
effect only when the subprogram to
which it applies is used as a main
program. This pragma specifies the
nominal amount of elapsed time
permitted for the execution of a

implementation-Dependent Pragmas 1-1§

. >3 8% o R O X i : M I TION T 0
. s , O T I ORUBLOU0 S5y IONINARSRAA NI TS
AT R “‘?:’7’.:"?-‘.}"!-” INEE T B R

TITLE

VOLATILE

1-16 Implementation-Dependent Pragmas

task when other tasks of the same
priority are also eligible for exe-
cution. A positive, nonzero value
of the staiic expression enables
round-robin scheduling for all tasks
in the subprogram; a negative or
zero value disables it (see 9.8a).

Takes a title or a subtitle string, or
both, in either order, as arguments.
Pragma TITLE has the form:

pragma TITLE (titling-option
[.tatling-option]));
titling-option :@=z
{TITLE =>] string_literal
| (SUBTITLE =>] string_literal

This pragma is allowed anywhere
a pragima is aliow .2, the given
string(s) supersede(s) the default
title and/or subtitle portions of a
compilation listing.

Takeo the simple name ot a van
able as the single irgument. This
piagma is only allowed for a vari-
able declared by an object declara-
tion. The variable declaration and
the pragma must both occur (in this
order) immediately within the same
declarative part or package speci-
fication. The pragma must appear
before any occurrence of the name
of the variable other than in an ad-
dress clause or in one of the VAX
Ada pragmas IMPORT_OBJECT,
EXPORT_OBJECT, or PSECT_
OBJECT. The variable cannot be
declared by a renaming declaration.
The VOLATILE pragma specifies
that the variable may be modified

asynchronously. This pragma in- :
structs the compiler to obtain the

value of a variable from memory

each time it is used (see 9.11).

Implementation-Dependent Pragmas 1-17

il W =

R

gy

C L Vg T

Attachment 2

VAXAdaAppendixF

NOTE

This appendix is not part of the standard definition of the
Ada programming language.

Th:. appendix summarizes the implementation-dependent characteris-
tics of VAX Ada by

Listing the VAX Ada pragmas and attributes.
Giving the spacification of the package SYSTEM.

Presenting the restrictions on repre<entation clauses and nnchecked
type conversions.

Giving the conventions for names - cting implem. - .iion-
depcindent components in record representation clauses,

Giving the interpretation of expressions in address clauses.

Presenting the implementation-dependent characteristics of the
input-output packages.

Presenting other implementation-dependent characteristics.

VAX Ada Appendix F 2-1

2. v f 23
S ‘.‘s"‘o' Gt a'.‘i"“.'» MWK L MO M R M N AR e

.

e

.‘.':.'n S

""_71

S/
d‘:r;.

W
LEPI |
e

¢ "l

.?;;v;
-" ¥ ' Implementation-Dependent Pragmas

tql ¢
‘f::: VAX Ada provides the following pragmas, which are defined elsewhere
:g;k‘ in the text. In addition, VAX Ada restricts the predefined language
e:.:n pragmas INLINE and INTERFACE, and provides alternatives to prag-
Uyt mas SHARED and SUPPRESS (VOLATILE and SUPPRESS_ALL). See

Annex B for a descriptive pragma summary.

:,;: e AST_ENTRY (see 9.12a)
R, ¢ EXPORT_EXCEPTION (see 13.54.3.2)
e * EXPORT_FUNCTION (see 13.9a 1 4)

e [XPORT_OBJECT (sce 13.9a.2.2

e TIXPORT_PROCFDURE (see 13.9a.1.4)

<t e EXPOR1_VALUED_PROCEDUK! ‘see 13.9a.1.4)

o o IMPORT_EXCEPTION (see 13.91.:.1)

f.;: e IMPORT_FUNCTION (see 13.9a.1.1)

l' -

) e IMPORT_OBJFCT (see 13.9a.2.1)

) e IMPORT_PROCEDURE (see 13.9a.1.1)
f;‘ * IMPORT_VALUED_PROCEDURE (see 13.9a.1.1)
o : * LONG_FLOAT fsee 3.5.7a)
i;j.':‘ o MAIN_S'ORAGF (2o 13.2b)

" e PSECT (&jii.J wsee 13.9a.2.3)

s e SUPPRESS_..Li. (see 11.7)

:. o TASK_STORAGE (see 13.2a)

D

:::.' e TIME_SLICE (see 9.8a)
‘::;:; * TITLE (see B)

* e VOLATILE (see 9.11)

o

? Y‘
W

s

ffﬁ:i

{‘:;
2t 2-2 VAX Ada Appendix F
g

{3

e

oA

n ,‘

5

T, g, P AN, 8 XD AT I AT ey S Tt ety B ONORE
L3y RO RN e A X T AR 00, S X0 e LR LR N A RS S OINORIC TODTRA

3

)
|

) ‘ﬂ,@‘i"'
»

' 1,0

3»‘,7,3‘!:“‘1 '

F.2 Implementation-Dependent Attributes
VAN Ada provides the following attributes, which are defined else-
where in the text. See Annex A for a descriptive attribute summary.
e AST_ENTRY (see 9.12a)
e BIT (see 13.7.2)
¢ MACHINE_SIZE (see 13.7.2)
e NULL_PARAMETER (see 13.9a.1.3)
e TYPE_CLASS (see 13.7a.2)
.5 Specificaticr nf th2 Package System

package SYSTEN is

type HAME is (VAX_VMS, VAXELN);

SYSTEN _UANME
STORAGS_UNIY
MENORY _STZE
MAX_INT
MIn_imr
MAX_DIGi: >
MAX_NANTISSA
-1l DELTA

1 1CK

. constant HAME := VAX_VNS,
: comstant

. constant
. constant
© constant

. coastant

constant
constant

coastant

: 2e831-1,

eu. PRIGRITY ¢s INTEGER

Address type

type ADDRESS

is private;

ADDRESS_ZERO :

function “o*
faaction ".¢
fuaction *-*
function °-*

fuaction “"=*
function */=*
functioa "«*
feaction “<=*
fuaction *>*
fuaction ">=»

(LEFT
(LEFT :
(LEFT :
(LEFT -

29231-1;
-(2¢031),
33,

a1,

2 002 (-30),
10 0s»(-2),

range 0

constant ADDRESS;

(LEFT, RIGHT
(LEFY, RIGHT

(LEFT, RIGHT -
(LEFT, RIGHT
(LEFT, RIGHT .

ADDRESS, RIGHT :
INTEGER; RIGHT
ADDRESS,; RIGHT
ADDRESS; AIGHT -

(LEFT, RIGHT :

ADDRESS)
ADDRESS)
ADDRESS)
ADCRESS)
ADDRESS)
ADDRESS)

‘5,

IRTEGER) return ADDRESS,
ADDRESS) retura ADDRESS,
ADDRESS) retura INTEGER,
INTECER) retura ADDRESS,

retara
rotarn
retura
retura
retura
retura

BCOLEAR,
BOOLEAN,
BOOLEAN;
BOOLEAN,
BOOLEA!N,
BOOLEAN,

VAX Ada Appendix F 2-3

3
¥
3
i

-~ Note that because ADDRESS is a private type
-- the functions *"=* and "/=" are already available and
-~ do not hve to be explicitly defined

geaeric
Sype TARGET s private;

function FETCH_FROM_ADDRESS (A : ADDRESS) retura TARCET,

geaeric
type TARGET is private,

procedurs ASSIGH_TO_ADDRESS (A : ADDRESS, T . TARGET),

type TYPE_CLASS is (TYPE_CLASS_ENUNERATION,
[YPE_CLASS_INTEGER,
TYPE_CLASS_FIXED_POINT,
TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS _RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK.
TYPE_CLASS_ADDRESS) ,

VAX Ada flnatirg point type declarations for the VAX
hardeare floating-point data types

t7pe D_FLOAT s smplementatr on_defined,

type F_FLOAT e tmplementatiin_defined,

type G_FLOAT 1o impl-mentation_defined,

type H_FLOAT te smplementatin_defined,
~- AST handler type

type AST_HANDLER 1a limited privete.

NO_AST_HANDLER - coastant AST_HANDLER,

~=- Non-Ada exception

HOU_ADA_ERROR : exceptien,

== VA hardvare-oriented types aad functions

type BIT_ARRAY is arreay (INTEGER reage <>) of BOOLEAN,
pragma PACK(BIT_ARRAY), -

subtype BIT_ARRAY_S is BIT_ARRAY (O 7.
subtype BIT_ARRAY_16 i@ BIT_ARRAY (0 . 16),
subtype BIT_ARRAY_32 4o BIT_ARRAY (0 31).
subtype BIT_ARRAY_64 is BIT_ARRAY (0 63),

type UNSIGNED BYTE 4s range O 386,
for UUSICHNED BYTE'SIZE wuse 8,

2-4 VAX Ada Appendix F

fuactios ‘aot"™ (LEFT : UNSIGHED _BYTIE) retura UNSIGNED_BYIE,
f-acti.. “ead® (LEFT, RIGHT : UNSIGUED_BYTE) rvetura UNSIGNED_BYTE,
fuaction ‘or® (LEFY, RIGHT : UNSIGIFD_BYTE) retura UNSIGNED BYIE, .
functioa “xor® (LEFT, RIGHT : UMSICHED_BYIE) return UNSIGLED_BYTE,

functiea TO_UNSIGNED_BYTE (LEFT : BIT_ARRAY_8) retura UNSIGHED BYTE,
fuactions TO_BIT_ARRAY_8 (LEFT : UNSIGHED_BYTE) zetura BIT_ARRAY_S,

type UNSIGNED _BYTE_ARRAY is array (INTEGER ramge <>) of UNSIGNED_BYTE,

type UNSICHED_WORD 4s Tange O .. ©€5535
for UNSIGNED WORD'SIZE wuee 16;

fuaction °r ' (LEFT : UNSIGNED_WORD) retura UNSIGHNED_WORD;
function *and: (LEFT, RIGHT - UNSIGMED_WORD) retura UNSIGIED_VWORD;
functior "or* “LEFT, RICHT : UNSIGHED_WORD) retura UNSICNED_WORD,
fanction “xor™ (LEFT, RIGHT : UNSIGUED_WORD, . -tnea UNSIGL-D_¥ORD

fuaction IO _UN>'GUED_WORD (LEFT BIT_ARRAY_16) retura UNSIGHEl ...
fenction TO_BIT_aRRAY_16 (LEFT UNSIGNED_WORD) returm BIT_ARRAY 16,

type UNSIGHED_WORD_ARRAY is array (INTEGER range <>) of UNSIGNEL_WORD,

Sype UNSICHED LOHGWORD s reage MIN_INT MAL_INT,

funetisa “aot* (LEFT UNSICNED_LONGYORD) retura UlSIGUED_LONGWORD,;
fuaction “and® (LEFT, RIGCHT - UNSIGHED_LONCWORD) retura UNSIGLED_LONGWORD,
functien “or® (LEFT, RIGHT : UMSIGIIED_LOWCWORD) seturn UNSICUED_LONGWORD;
fuactien “xor~ (LEFT, RIGHT : UNSIGNED_LONGWOPZ: cetura UNSIGIED _LNNGWORD,

functien TO_URSIGUED_LONCWORD (LEFT BIT_ARRAY_32)
retura UNSIGNED_LOHGECRD,
fanction T0_BIT_ARRAY_32 (LEFT UNSIGNED_LONGWORD) retuss 17 _ARRAY_32;

Sype UNSIIED_LONGWORD_ARRAY is
array (INTECER range <>) ef UNSICHED_LOHGWORD,

Sype UNSIGNED QUADVORD is rvecerd
L0 UNSIGNED_LONGYORD,
L1 : UMSICUED_LOUGYORD,
end recerd,

feaction “aet” (LEFT UNSIGNED _QUADYORD) retura UNSIGHED_QUADWORD,
feactioa “"and” (LEFT, RICHT UNSIGMED_QUADVWORD) retura UNSIGHNED_QUACYORD;
fuaction “"or® (LEFT, RIGHT - UNSICHED_QUADVWCRD) retura UNSIGNED_QUADWORD,
fuactiea “xor® (LEFT, RIGRT UNSIGHED QUADWORD) vetura UNSIGNED_QUADWORD;

feaction TO_UNSICIFED_QUADWORD (LEFT - BIT_ARRAY_64)
returs UNSICUED_QUADWORD,
fuaction TO_BIT_ARRAY_ 64 (LEFT UNSIGUED_QUADVORD) retura BIT_ARRAY_ 64,

Sype UNSICUED_QUADWORD ARRAY 4e
arrsy (INTEGER raage ¢>) of UNSIGNED_QUADYORD,

VAX Ada Appendix F 2-5

=

function TO_A.ORESS (X : INTEGER)

function TO_ADDRESS (X : UNSIGNED_LONCYWORD)
tanction TO_ADDRESS (X : unsversal_inleger)
\wa3tion TO_INTEGER (€1 ADDRESS)
fusction TO_UNSIGNED_LONGWORD (X ADDRESS)

fesction

TO_UNSIGNED LONGYORD (X :

Coaventional names for static sudtypes of type

return ADDRESS,
return ADDRESS;
retrra ADDRESS

retura INTEGER,
retura UNSICHED LOVCWORD,

AST_HANDLER} retura UNSIGHED LORGWORD.

UNSIGNED_LOHGWORD

subtype UNSIGNED_.1 4s UNSIGHED_LONGWORD range 0 2*s 1-1;
subtype UNSICIED_2 4 UNSIGHED _LONGWORD rangs © 2% 2-1,
sudtype UNSLHED_3 4e UNSIGHUED LONGYORD range O 2es 3-1,
subtype UNS::i 0_4 da UNSIGUED_LONGYORD rangs O 2% 4-1;
subtype UL, .44ED_5 3@ UNSIGUFED_LONGYORD raage O 2s% 5-1,
tubiype UNSIGIHED_6 4s UNSIGNED_LONGWORD ramge O .. 2¢s 6-1;
woype UNSIGNED_7 de NUSIGHED _LOUCWORD vange O . 2¢s 7-%,
subtyps UNSIGUSD 3 {e UNSIGHED_LONGYORD range O 2¢+ 8-1,
sudtype UliSIGLeu_9 48 UNSIGNED_LONGWORD range O 2s+ 9-1,
subtype UNSICHED_10 ie UNSIGUED_LONGWORD range O 2s+10-1;
subtype UNSIGNED_1i 4e UNSIGUED_LO!GYORD ramge O .. 2.#11-1,
subtype UNSIGNED_12 4s UNSIGUED_LONGYORD ramge 0 .. 2e¢12-1;
subtype ULSIGNED_13 4s UNSIGNED_LOJNIGWORD range O .. 2s+13-1;
sudtype UNSIGUED_14 $e UNSIGHED_LONGWORD range 0 . 2es1d-1;
subtyne UNSIGHNED_16 4s UNSIGHED_LONGWORD range O .. 2ee15-1,
04bty:: NSIGNED_16 i UIISIGIED_LONGCWORD raage 0 2+016-1;
subtype UNSIGNED_ 17 4is UHSIGUED_LONGYORD raage O 20417-1,
sudtype UISIGHED 38 4 UNSIGHED_LOHCYORD zaage O . 2es18-1,
subtype UNSIGUED_19 is UNSIGHED_LONGWORD raage O . 2+:i9-1;
swheyne UNSIGHED_20 18 UNSIGHFD LNNGY3AS raage O 2+220-1
audt; 2 UNSICHED_21 is UNSIGHED_LONGWORD .ange O 2021-1,
anbtype UNSIGUED_22 4 UUSIGHED _LOHGWIRD vange 0 . 2es22-%;
subtype UNSIGHED_23 ie UNSIGUED_LONGWORD ramge O .. 2+423-1,
subtype UNSIGHUED_24 ie UISIGHUED_LOHGWORD range O .. 2ee24-1,
subtype UNSIGHED_26 4s UNSIGIED_LONGWORD ramge O .. 2¢+25-1,
subtype UNSICNED_26 s UNSICHED_LONGYWORD zaage O .. 2¢¢26-1;
subtype UNSICHED_27 4e UNSIGHED _LONCWORD range O .. 2¢¢27-1;
subtype UNSIGNED_28 4is UNSIGUED_LONGWORD ramge 0 .. 2¢028-1;
sndtype VNSIGUED_29 is VNSICHED_LORGWORD raage O .. 2¢¢29-1;
subtype UNSICNED_30 is UNSIGUED_LONGWORD range O .. 20930-%;
oubtype UMSIGHED_31 ie UNSIGHED_LONGWORD ramge O .. 2ee31-1;
-- Function for obtaining global symbol values
functiea IMPGRT_VALUE (SYMBOL . STRING) retura UNSIGNED_LONGYWORD,

== VAX device and process register operations

fuaction READ_REGISTER (SOURCE - UNSIGNED_BYTE)
faaction READ_RECISTER (SOURCE : UNSIGNED_WORD)

function READ_REGISTER (SOURCE : UNSIGNED_LONGWORD) retura VNISIGHED_LONGWORD;

2-8 VAX Ada Appendix F

retura UNSIGHED _BYIE,
retura UNSIGNED_WORD,

T

procedure WRITE_REGISTER(SOURCE : UNSIGNED_BYIE,
TARGET : ewt UNSIGHFD_BYIE),

psored2ce WRITE_REG)STER(SOURCE ~ UNSIGHED_#URD, ¢
TARGET . out UNSIGNED_WORD),

pr.- o, "~ WRITE_RECISTER(SOURCE UNSIGUED_LONGWORD,
TARCET »ut UNSIGNED_LONCWORD).

fasction NFPR (REC_NUMBER . INTEGER) retura UNSIGIED_LONGWORD,
precedure NTPR (REG_NUNBER INTEGER,
SOURCE UNSIGUED_LONGYORD) ;

VAX 1aterlucied-iastruction procedures

procedure CLEAR_INTERI.OZNEY (BI: ia out BOOLEAil,
OLD_VALUE . eout BOOLEAID,
procedure SET IUTERLOCKED (BIT © 4m out BOOLEAN,

OLD_VATUE ewt BOOLEMI),

«4p® ALIGNED_SHIRT TNTEGER ie
record
VALUE : SHORT_IHTEGER = O,
oad record,
for ALIGNED_SHORT_INTECER use
record
at mod 2;
end record;

procedure ADD_INTERLOCKED (ADDEND ia SHORT_INTEGER,
¢ AUGEND in out ALIGNED_ SHORT_IPTEGER;
sicn : out INTEGER) ;

*vre INSQ_STAIUS ie (OK_NOT FIRST, FAIL_NO_LOCK, OK_FIRST):
;¥ REMQ_STATUS 4e (OX_NOI_ENPTY, FATL_NO_LOCK,
NK_ENPTY, ¥a.._#AS_ENPIY),

st03edure INSGHI (ITEM . ia ADDRESS;
HEADER : 4a ADDRESS;
STATUS : eut INSQ_STATUS),

procedare REMQHI (HEADER : 4a ADDRESS;
ITEN : out ADDRESS;
STATUS : out RENMQ_STATUS)

! procedure INSQTI (ITEM : 4a ADDRESS;
HEADER : im ADDRESS;
STATUS : owt INSQ_STATUS),

procedure RENQTI (HEADER : 4m ADDRESS;
ITEN . out ADDRESS;
STATUS : owt RENQ_STAIUS) .

private
== Not shown

oad SYSTEN,

VAX Ada Appendix F 2-7

) » " M)
N . iigié‘!‘"a‘vg‘:",”".‘r .

~

F.4 Restrictions on Representation Clauses

The representation clauses alloned in VAX Ada are ler~th, enumera-
tion, record representation. and address clauses.

In VAX Ada, a representation clause for a generic formal type or a
type that depends on a generic formal type is not allowed. -In addition,
a representation clause for a composite type that has a component

or subcomponent of a generic formal type or a type derived from a
genenc furmal type is not allowed.

F.5 Cuuverntions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

VAX Ada does not allocate implementation-dependent components in
records.

F.6 lnterpretétiaﬁ of Expressions Appearing in Address
Clauses

Expression- .ppearing in address clauses must be ot the type
ADDRESS Aetined in package SYSTEM (see 13.7a.1 and F.3). In VAX
Ada, values of type SYSTEM.ADDRESS uare interpreted as integers in
the range 0.. MAX_INT, and they refer to addresses in the user half of
the VAX address space.

VAX Ada allows address clauses for variables (see 13.5.

VAX Ada does not support interrupts.

F.7 Restrictions on Unchecked Type Conversions

VAX Ada supports the generic function UNCHECKED_CONVERSION
with the restrictions given in section 13.10.2.

2-8 VAX Ada Appendix F

Fa Iimplementation-Dependent Characteristics of
Input-Output Packages

The VAX Ada predefined packages and their operations are imple-
mented using VAX Record Management Services (RMS) file orga-
nizations and facilities. To give users the maximum benefit of the
underlying RMS input-output facilities, VAX Ada provides pack-
ages in addition to SEQUENTIAL_IO, DIRECT_IO, TEXT_IO, and
I0_EXCEPTIONS, and VAX Ada accepts VAX RMS File Definition
l.anguage (FDL) statements in form strings. The following sections
ammarize the implementation-dependent characteristics of the VAX
Ada input-output packages. The VAX Ada Rumn-Time Reference Manual
discusses those characteristics in more detail.

F.8.1 Additional VAX Ada Input-Output Packages

In addition te the language-defined input-output packages (SEQUENTIAL
I0, DIRECT_IO, and TEXT_IO). VAX Ada provides the following
input-output packages:

s RELATIVE_IO (see 14.2a.3)

e INDEXED_IO (see 14.2a.5)

¢ SEQUENTIAL_MIXED_IO (see 14.2b.4)

e DIRECT_MIXED_IO (see 14.2b.6)

s RELATIVE_MIXED_IO (see 14.2b.8)

s INDEXED_MIXED_IO (see 14.2b.10)

VAX Ada does not provide the package LOW_LEVEL_IO.

F.8.2 Auxiliary Input-Output Exceptions

VAX Ada defines the exceptions needed by packages RELATIVE_IO,
INDEXED_IO, RELATIVE_MIXED_IO, and INDEXED_MIXED_IO in
the package AUX_IO_EXCEPTIONS (see 14.5a).

VAX Ada Appendix F 2-9

F.8.3 Interpretation of the FORM Parameter

The value of the FORM parameter for the OPEN and CREATE proce-

;j dures of each input-output package may be a string whose value is in-
terpreted as a sequence of statements of the VAX Record Management
Services (RMS) File Definition Language (FDL), or it may be a string
whose value is interpreted as the name of an external file containing
FDL statements.

The use of the FORM parameter is described fo: -ach input-output

pact>ge in chapter 14. For information on the default FORM param
K eters for each VAX Ada input-output package and for information on

using the the FORM parameter to specity external file attributes, see

the VAX Adu Run-Time Reference Manual. For information on FDL, see
the Guide to VAXVMS File Applications and the VAX:VMS File Detinition
Languaye Facility Reference Manual.

F.8.4 Implementation-Dependent Input-Output Error Conditions

As specified in section 14.4, VAX Ada raises the following language-

;’;. defined exceptions for error conditions occurring during input-output
- operations: STATUS_ERROR, MODE_ERROR, NAME_ERROR, USE_
! ERROR, END_ERROR, DATA_ERROR, and LAYOUT_ERROR. In

addition, VAX Ada raises the following exceptions for relative and
indexed input-output operations: LOCK_ERROR, EXISTENCE_ERROR,
and KEY_ERROR. VAX Ada does not raise the language-defined

| exception DEVICE_ERROR; device-related error conditions cause USE_
£ ERROR to be raised.

i USE_ERROR s raised under the following conditions:

e In all CREATE operations if the mode specified is IN_FILE.

¢ In all CREATE operations if the file attributes specified by the
FORM parameter are not supported by the package.

e In the WRITE operations on relative or indexed files if the element
in the position indicated has already been written.

e In the UPDATE and DELETE_ELEMENT operations on relative or
indexed files if the element to be updated or deleted is not locked.

e In the UPDATE operations on indexed files if the specified key
violates the external file attributes.

2-10 VAX Aca Appendix F

¢ In the SET_LINE_LENGTH and SET_PAGE_LENGTH opera-
tions on text files if the lengths specified are inappropriate for the
external file. :

¢ It the capacity of the external file has been exceeded.

NAME_ERROR is raised as specified in section 14.4: by a call of

a CREATE or OPEN procedure if the string given for the NAME
parameter does not allow the identification of an external file. In
VAX Ada, the value of a NAME parameter can be a strin 3 that denotes
a VAXIVMS file specification or a VAX vMS logical name (in either
case, the string names an oviernal file) For a CREATE procedure, the
value of a NAME py:ameter can also be a null string, in which case it
names a tempuary external tile that is Jdeleted when the main program
exit: The VAX Adu Run-Time Reference Manval explains the naming - f
evt. .ial files in more detail.

F.9 Other Impleméﬁtation Characteristics

Implementation characteristics having to do 'ith the definition of a
main program, various numeric ranges, and implementation limits are
summarized in the following sections.

B —_—

F.9.1 Oefinition of a Main Program

A library unit can be used as a main program provided it has no
formal parameters and, in the case of a function, if its returned value
is a discrete type. If the main program is a procedure, the status
returned to the VAX/VMS environment upon normal completion of the
procedure is the value one. [f the main procedure is a function, the
status returned is the function value. Note that when a main function
returns a discrete value whose size is less than 32 bits, the value is zero
or sign extended as appropriate.

VAX Ada Appendix F 2-11

3 Lit‘(”s‘,:i P ot .,6_#.‘;';‘5" 'i'.;ﬁ'» ONAINEN

F.9.2 Values of Integer Attributes

. The ranges of values for integer types declared in package STANDARD
)
i are as follows:
'l
Iy S.:-RI_SHORT_INTEGER -128 .27
SHORT_INTEGER 32768 32707
INTEGER -2147483048 . 2147483047

For the packages DIRECI_1O, RLI ATIVE_IO, SEQUENTIAL _
MIXED_IO, DIRECT_MIXED_IO, RELATIVE_MIXED_1O, INDEXED_
MIXED_I0), and TEXT_IO, the rang: of values for types COUNT and
POSITIVE_COUNT are as follows:

i COUNT 0 . 2147483047
! POSITIVE_ OUNT . 2147483647
4 For the package TEXT_IO, the range of values for the type FIELD is as
' follows:
FIELD 0 2147483647

F.9.3 Values of Floating Point Attributes

F_Floating Value
and Approximate

o e e o o

< Attribute Decimal Equivalent
K DICITS 6
MANTISSA 21
ENAX 84
EPSILON Toe(). 1UNNI_(KNbre—4
approximately 9.53674E-17
N SMALL To=() BUN_(NN)#e=21
approximately 2.5%494E-20
. LARCE 16200, FFFF_F8le + 21
approximately 1.93428E + 25

2-12 VAX Ada Appendix F

F_Floating Value
and Approximate

Attribut: Decimal Equivalent

SAFE_EMAX 127

SoFL SMALL 160 7N _(XK)=e-31
app- oximately 2.93874E-39

3Aik " ARGE 16200 7FFF_FClize + 32
ap o mately 1.70N41E + 38

FIRST <1620 7FFF_FF¥~e + 32
app ' nately =1.70141E + 38

CAST 16020 7FFF_FF8#e + 30
approx:inc .. 170141E+ 38

MTACHINE_RADIN 2

{0 hNE_MANTISSA 24

MACHINE_ENIAX 127

MACHINE_EMIN -127

MACHINE_ROUNDS True

MACHINF_OVERFLOWS True

Altribute

D_Floating Value
ind Approximate
Decimal Equivalent

DICITS
MANTISS ~
ENAX

EPSILON
approximately
SMALL
approximately
LARGE
approximately
SAFE_EMAX

SAFE_SMALL
pproximately

Y
3
124

Tt 4000_B0N0_0000_(NKlee=7
9.3132257461548E -10

1600, BD_(0_(N_(Hi01#e=31
2.3519887016446E -38

1620, FFFF_FFFE_OUN)_(XN)¥e + 31
2.127647922655E + 37

127

1o J000_0000_D000_1iK#e-31
2.9387358770557 L -39

VAX Ada Appendix F 2-13

D_Floating Value
and Approximate

Attribute Decimal Equivalent

SAFE_LARCE 16=0.7FFF_FFFF_(M_thkbee + 32
approxamately 1.7014118338124F « 38

RSy -16#t).7FFF_FFFF_FFFF_FF&se + 32
approximaicly L7014 18340047 + 38

LAST 1640 7FFF_FFFF_FFFF_FFRae+ 32

appron. matei.
MaAac L INT _RADIX
MCHINE_MANTICSA
WACHINE_EMAX
MACHINF _ENIN
1A NE_ROUNDS
MACHINE_OVERFLOWS

1701411834017 + 38
2

S6

127

=127

True

True

Attribute

G_Floating Value
and Approximate
Decimal Equivalent

DICITS

MANT “7

ENIAX

PSILON
approximately

SMALL
approximately
LARGE
approximately
SAFE_EMAX
SAFE_SMALL
approximately

SAFE_LARGE
approximately

2-14 VAX Ada Appendix F

15
51
204

To20) 300 _CONRD_(N0_IN)#p=12
8 881784197001 E-N06

Taot) BN _OMO_IKKK)_(K)ee-51
1.944692274332E 62

1600.FFFF_FFFF_FFFF_Else +51
2.5711 0087081 4E + 061

1023

1620, 1000_EKI0N_(NRK)_(N)#e-255
5 562684646268E -3M

16#0) FFFF_FFFF_FFFF_Flloe + 250
8 YBRIO5674312E + 307

o o me wr *

G_Floating Value
and Approximate

Attribute Decimal Equivalent

FIRST ~10+0) 7FFF_FFFF_FFFF_FCoe+256
approximatel. -8 9884007431 2E « 307

LAST 160 7FFF_ERFE_FFFF_FCoe - 250

approximately
MACHINF_RADIX
MACHINE MANTISSA
CUACHINE_EMAX
ACHIIE TN
GACHINE _ROUNDS
VMACHINE_OVERFLOWS

8. 9KR465074312E « 307
5

-

53
1023
-1023
True

True

H_Floating Value
and Approximate

Attribute Decimal Equivalent

DICITS 33

MANTISS A m

ENEAX 441

EPSILOY 1ot} 4D00_OOD0_(000_O000_IXMKD_(KNN_INKN)_{lee =27

approxr ately 7 SLIT197775489434122239117703397E K134

SMALL Theti SUOD_OER_ENRN_DUOO_(000_(60_IKNK_ (bee=111
approximately 1.10065652146379182109343 18020936 E 41134

: ARGE 16#0) FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFE_Use+ 111
approximately 4.5427420268475430659332737993NKE +(133

SAFE_EMAX 16383

SAFE_SMALL 1600, T000_OOD_DN_ON0_(KKK)_(NNN_OID_ ke e~4(95
approximately 8 JU5257857781233765656094543HM4E 4933

SAFE_LARGE 16#0) 7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_(we + 40
approvimately S 918657 47078615882542879n0 331 HNE + 4931

FIRST 1020 7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_Cee+ 409

approximately

=5 Y4RAS74707 86 15K82542879063314I0E + 4931

VAX Ada Appendix F 2-15

0
g ‘}“,h

Gty

Eb v .

-

H_Floating Value
and Approximate

Attribute Decimal Equivalent

LAST los0). 7FFF_FFFE_FFIT_FFFF_FFFF_FFFF_FFFF_Cee+ 419
apt - -aLately 5 9480574767860 1588254 28796633 14I0E + 4931

MACHINY_RADIX 2

MACHINE_MANTISSA H3

MACHINE_EMAX 16383

MACHINE_EMIN -16383

EIACHINE _ROUNDS True

MACHINE_OVERFL. %S True

F.9.4 Attributes of Type DURATION -

The values of the significant attributes of type DURATION are as

follows:

DUk TTON' DELTA I (OODE 14

PURATION' SAALL 2~

DURATION' FIRST 131072 6K

DUK + 7 iINTLAST 131071 9999

DURATION! LARGE | 3107 19999389045 1375E » 05

F.9.5 Implementation Limits

Limit Description

32 Maximunt number of formal parameters in a subprogram or entry
declaration that are ot an uncomstrained record type

120 Maximum identitier length (number of characters)
120 Maximum number of characters in a source hne
245 Maximum number of discriminants for a record type

2-16 VAX Ada Appendix F

Limit Description

246 Maximum numitver 0! tormal parameters 10 an entry or subprogram
GJiocrration

255 Maximum number of dimensions 10 an array type

"2 Maximum number ot hibrary units and subumits 10 o compilation
dowre]

s Maxanum number of hbrary umits and subunits 10 an execution
'(‘\ulez

32757 AMavimum number 0i obies ts dex lared with PSECT_OBJLCT pragmas

TR3R AL avum pember of enrme ption Hiterals 1N an enumeration tyx
vsitmtion

255835 o cmum number of characters 10 vadue of the prafetined type
STRING

63333 Maximum number ot trames that ah except: 10 Can propagate

2535 Maximum number of lines in o soure hile

23| -1 Maximum number of tits 11 any objen t

the compilation closure of a iven unit s the total set of unmits that the wiven unit
depends on, directly and indirect)y

ZThe execution (losure of a yiven umit s the compilation dosure plus all assated
scondary uauts (ibrary bodues and subunitsy

VAX Ada Appendix F 2-17

APPENDIX C
TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent
values, such as the maximum length of an input line and invalid
file names. A test that makes use of such values is identified

by the extension. TST in its file name.

Actual values to be

substituted are identified by names that begin with a dollar
sign. A value is substituted for esach of these names before
the test is run. The values used for this validation are given

below.
Name and Meaning
3BTG_ID1

Identifier of size MAX_IN_LEN
with varying last character.

$81G_1ID2

Identifier of size MAX_IN_LEN
with varying last character.

$31G_1ID3

Identifier of sise MAX_IN_LEN
wvith varying last character.

*udG_ID4

Identifier of size MAX_IN_LEN
with varying last character.

$BIG_INT_LIN

An integer literal of value 298
wvith enough leading serces so
that {t is MAX_IN_LEN characters

long.

Yalue

119 A's and a
ll!

119 A's and a
'2!

119 A's and a
'3* in the middle

119 A's and a
'4' in the middle

116 0's and
0298

!
m@.ulumﬂ

$BIG_REAL 'LIT
»
A real ,literal that can be
either of fluating or fixed
point type, has value 690.0, and
has encugh leading seroces to be
MAX_IN_LEN characters long.

$BLANKS
Blanks of length MAX_IN_LEN - 20

SN LAST
Vali:e of CNT'LAST in TEXT_i.0
package.

$EME: . ¢+ DI_ASCII_CHARS

Yalue

114 0's and
69.0E1

BLANKS

2147483647

abcdefghijklmnopqgrstuvwxyz!$82@[\]~"' ()~

A ng literal containing all
the CII characters with
B blo aphics that are not

r c 55 Ada character
$P.ITLIL_LSST

Value o1 Pield'LAST in TEXT_IO

-ackage.

$TILE_MNANE_WITH_BAD_CHARS
An illagal external file name
that either contains invelid
characters or is too long.

SPILE_MAME_WITH_WILD_CARD_CHAR
An external file name that
either contains a vild card
character or is too long.

SGREATER_THAN_DURATION
A universal resl value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION

SGREATER_THAN_DURATION_BASE_IAST
T™he universal real value that fis
greater than DURATION''BASE'LAST.

S$ILLEBGAL_EXTERNAL_FILE_NANE
Illegal external file name.

2147483647

X))l088~6~Y

XYZe

100_000.0

10_000_000.0

BAD-CHARACTER® -

Nape and Meaning Value
$ILLEGAL EXTERNAL_FILE_NAME2

MUCH-TOO-LONG-NAME~-FOR-A~FILE-MUCH-TOO-LONG~NAME~FOR-
A-FILE ‘

Illegal external file names.

$INTEGER_FIRST -2147483648
The universal integer literal
expression wvhose value is
INTEGER'FIRST.

$INTEGER_LAST 2147483647
The 'niversal integer literal
axprossion whose value is
I[NTEGER'LAST.

$LESS_THAN_DURATION =-100_000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

S$LESS_THAN_DURATION_BASE_FIRST =10_000_000.0
The universal real value that is
less then DURATION'BASE'FIRST.

$MAX_DIGITS 33
floating-point types.
SMAX_IN_LEN 120

Maximum input line length
peramitted by the implementation.

SNAME SHORT_SHORT_INTEGER
A name of predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER,

$NEG_BASED_INT 164FFFFFFrEY
A based integer literal whose
highest order nonsero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

SNON_ASCII_CHAR_TYPE (NON_NULL)
An enumerated type definition
for a character t wvhose
l1iterals are the identifier
NON_NULL and all non-ASCII
characters with printadble

graphics.

APPENDIX D
WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not
conform to the Ada Standard. When testing was performed, the
following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated:

. B4AO10C: The object_declaration in line 18 follows
a subprogram body of the same declarative part.

. BC3204C: The file BC3204C4 should contain the body
for BC3204CO as indicated in line 25 of BC3204C3M.

. C35904A: The elaboration of subtype declarations
SFX3 and SFX4 may raise NUMERIC_ERROR (instead of
CONSTRAINT_ERROR).

. C41404A: The values of 'LAST and 'LENGTH are
incorrect in IF statements from line 74 to the end
of the test.

. C48008A: This test requires that the evaluation of
default initial values not occur when an exception
is raised by an allocator. However, the Language
Maintenance Committee (IMC) has ruled that such a
requirement is incorrect (AI-00397/01).

. C32114A: An unterminated string literal occurs at
line 62.

. B33203C: The reserved word “IS" is misspelled at
line 45.

. C34018A: The call of function G at line 114 is
ambiguous in the presence of implicit conversions
and inconsistente without.

. B37401A: The object declarations at lines 126-135
follow subprogram bodies declared in the same
declarative part.

. B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized
with a value of the wrong type (PRIBOOL_TYPE instead i
" of ARRPRIBOOL_TYPE) at line 41.

Y, . B4S5006A: Object declaratives at lines 41 and 50 are
e terminated incorrectly with colons; “END CASE:" is
p nissing from line 42.

B74101B: The "BEGIN" at line 9 is mistaken; it
causes the declarative part to be treated as a
sequence of statements.

C87B50A: The call of "/=" at line 31 requires a
"USE"™ clause for package A.

C92005A: At line 40, "/=" for type PACK.BIG_INT is
not visible without a "USE"™ clause for package PACK.

CS40ACA: This test assumes that allocated task TT1
will run prior to the main program, and thus assign
SPYNUMB the value checked for by the main program:
however, such an execution order is not required by
the Ada Standard, so the test is erroneous.

CA3005A..D (4 tests): No valid elaboration order
exists for these tests. :

END OF LIST

