
"AI I 3 COST EFFECTIVENESS TRADE-OFFS INi SOFTMARE SUJPPORT 112
ENVIRONMENT STANDARDIZATION(U) TECHNION INTERNATIONAL
INC MILMINGTON DE R VERLING 38 SEP 86 BANC-85-5165-l

UNCLASSIFIED F326i5-85-C-5i65 F/G 12/5 MLlllllllllmlll
EIIIIIIIIIIIIE
/l//ElhllllhlE
EIIIIEIIIIIIIE
Ell~lllllllllE
IIIIIEEEIIIIIE

MiII I U..2 2

ma

MICROCOPY RESOLUTION TEST CHART

911C FILE C y,
o FINAL REPORT - September 30, 1986

G- TECHNION INTERNATIONAL, INC.

Cost Effectiveness TradeOffs In Software
Support Environment Standardization

Contract Nr. F33615-85-C-5165

DTIC
ELECTE i

SJUN 1

A
Prepared for

USAF Business Research Management Center
AFBRMC/RDCB Wright-Patterson AFB, OH

- 6 Twu o1p5oved
.Ule; ts; its

87 6 15 040O

ItS

COST EFFECTIVENESS TRADE-OFFS IN ADA-BASED
SOFTWARE SUPPORT ENVIRONMENT STANDARDIZATION

Richard Werling
Raymond C. Houghton, Jr.
Technion International, Inc.
P. 0. Box 417
Wilmington, DE, 19899

September 30, 1986

FINAL REPORT: Contract No. F33615-85-C-5165

Prepared For:

U.S. AIR FORCE BUSINESS RESEARCH MANAGEMENT CENTER
AFBRMC/RDCB
Wright-Patterson APB, OH
45433

HQ AIR FORCE SYSTEMS COMMAND
Deputy Chief of Staff, Acquisition Logistics
Directorate of Computer Resources,
AFSC/PLR
Andrews AFB, DC 20334

iJ

ACKNOWLEDGEMENTS

The authors are particularly indebted to several people for
their help during this study. Col. Kenneth E. Nidiffer was a
constant source of knowledge and insight regarding the formu-
lation of design requirements, system specification, and econo-
mics as practiced within the Air Force and DoD. Capt. Edward C.
Mitchell of AFBRMC, which made the work possible through its
support and funding, was extremely helpful as we navigated
through the turbulence.

William L. Byerly, of SASC Technologies, Inc. wrote the
detailed software specification and programmed key aspects of the
model.

OTIC

Copy
1"SP9orE,

ii

TABLE OF CONTENTS

Section Page

Acknowledgements ii

Table of Contents iii

List of Illustrations iv

List of Tables iv

List of Acronyms and Technical Terms v

EXECUTIVE SUMMARY S-I

Chapter 1. Objectives and Methodology I-I

Chapter 2. Findings II-1

Chapter 3. Conclusions III-1

Chapter 4. Recommendations for Implementation VI-1

Bibliography Bibl.-I

Appendices

A. Characteristics of environments (obtained A-1

by survey)

B. Summary description of econometric model B-I

C. Causal chain used as basis for model C-I

D. Excerpts from [Wer185) D-1

LIST OF FIGURES

S-1 USAF MCCR Software Costs S-i

I-1 Software Productivity Increases Exponentially 1-3

1-2 Types of Recent Software Environments 1-6

1-3 Regions of Greatest Leverage of Functions
Described by COCOMO Effort Multipliers 1-7

iii

1-4 Productivity Enhancement Leverage I-8

I-5 "HAPSE" Configurations 1-9

II-1 USAF MCCR Software Costs II-1

11-2 MCCR Software Inventory is Large and Growing 11-2

11-3 Assumed Workload 11-2

11-4 Control Strategy affects Net Benefits 11-4

11-5 Control Strategies 11-5

11-6 Costs Lead Benefits 11-5

II-7 Saturation Rate Affects Costs 11-6

II-8 Current Productivity Rate Affects Benefits 11-7

11-9 Statistical Plots of MODP and TOOL 11-8

II-10 Statistical Plots of LEXP and TURN 11-9

II-11 Statistical Plots of AEXP and VEXP II-10

C-i Assumptions and Causal Chain -- GFE/Environment C-4

C-2 Causal Chain - Programming Support Environment C-5

D-1 Where has the productivity gone? D-3

D-2 Productivity cost drivers D-4

LIST OF TASL3$

I-1 Summary of Tangible Benefits in Econometric
Equations 1-9

1-2 Summary of Tangible Costs in Econometric

Equations 1-10

II-1 Assumptions Used in Calculations 11-3

C-i Data Required by Econometric Model C-6

iv

GLOSSARY Of ACRONYMS AND TECHNICAL TERMS

Ada A standard programming language used in development
of new major DOD systess(ANSI/NIL-STD-1815A). Ada
is a registered trademark of the U.S. Government,
Ada Joint Program Office.

APSE Ada Programming Support Environment.

Benefits In this report and in the econometric model,
benefits to USAF stem from several sources: (a)
reduced number and variety of environments that
USAF must support; (b use of integrated software
development/support environment, incorporating
advanced software tools; (c) avoidance of program-
ming, by increased reuse of existing tested code;
Wd improved computer response time, which avoids
interfering with analysts and programmers work
patterns; and (e) skills steming from experience
with using an integrated software environment.

Contractor Developer of weapon systems, including the software
required for their operation. Often, contractors
also enhance and maintain systems and software
after the initial development, and through the
systems' in-service (post-deployment) life.

Costs In this report and in the econometric model, USAF
costs are differentiated into relatively "fixed"
and relatively "variable' costs. Costs are further
separated into three phases of an environment's
life cycle: (a) the "up-front" R&D investment to
design and develop an environment; b. operational
costs incurred by government and contractor users
throughout the country, as well as expenses for
centralized support and continued development of
the environment (e.g., configuration management,
documentation support, quality assurance and
testing); and (c costs for continuing improve-
ment (upgraded software versions and for eventually
replacing the environment.

Expenses covered include: programing and other
personnel, quality assurance, training, utilities,
as well as necessary expenses of supervision and
management.

v

Econometric A set of equations that describe the inter-rela-
Model tionships of economic factors. As used in this

report, the equations (and the accompanying Lotus
1-2-3 application program for implementing them)
that describe costs and benefits to USAF from use
of various combinations of (a) software environ-
ments and (b) control strategies.

Environment Advanced tools for software designers and program-
mers. It comprises a framework for integrating
sets of methods, procedures, and computer programs
(computerized software tools), to support the soft-
ware life cycle.

GFE/Environment As used in this report, a standard software de-
velopment and support environment made available to
contractors as government-furnished equipment.

HAPSE lypothetical Ada Programing Support Environment,
postulated for this (and the preceding) project.
The HAPSE is conceptualized as an "ideal type," to
be used for investigating productivity across the
software life cycle, and for comparison with actual
environments as they are developed.

The first level contains a basic set of software
tools. The second set adds to the basic set those
tools judged most necessary by software development
managers. The third level contains those, plus
additional tools judged valuable.

MCCR Mission-Critical Computer Resources.

Methodology A general collection of rules, methods, and philo-
sophies supporting software life cycle activities.

Method A set of specific rules, guidelines, and techniques
supporting software life cycle activities.

Post-Deployment Support of software after its initial deployment.
Support During the total life cycle of a system containing

software, most so-called "maintenance" is done to
enhance performance of the system in which the
software is embedded, by meeting new requirements
or adapting to changes in other system components.

Product The state of the market sought by vendors, in which
Differentiation their products are enough different from those of

other vendors that they are able to claim higher
prices than would be possible if other vendors
could offer competitive bids.

vi

Productivity The average number of software delivered source
instructions (DSI) per staff work-month. Includes
both freshly written and reusable software code
components. Though not a perfect measure, this
definition is still the least unsatisfactory and
most widely used indicator now available.

Reliability The probability that software will not cause
failure of a system for a specified time under
specified conditions.

Reusable Code Standard proven fragments of software that can be
adapted for reuse in new software systems.
Reusable code provides improved reliability and
maintainability as well as increased productivity,
because it need not be completely redesigned,
rewritten and tested.

Software Computer programs. Also called "code."

System Life Cycle The period of time from perception of need for a
defense system that contains mission critical
computer resources until its retirement. The
system life cycle includes hardware, software,
facilities, communications, policy and human
elements. For contrast, see Software Life Cycle.

Software Life As used in this report, the period of time from
Cycle perception of need for the software components of a

defense system. Includes initial development and
post-deployment support of MCCR software. For
contrast, see System Life Cycle.

vii

EXECUTIVE SUMMARY

BACKGROUND

Purpose of Research

The objective of the research was to prepare an econometric
model to determine quantitative benefits to the Air Force of
implementing various strategies for controlling integrated
automated software support environments. The model had to help
the Air Force quantify costs and benefits obtainable by various
methods of increasing productivity of developing and supporting
mission-critical software.

Value to USAF. If aircraft and missiles are the heart of
USAF, MCCR software is the brain. It is expensive. Every year
from 1985 to 1995, the USAF will spend from $5 to $7 billion
(1986 dollars) for MCCR software [Figure S-i].

Billion 1986 dollars= ~~$10 .t

F I!

$6 $63 8 $7 9 1 $73 9 $7 .4 1 $7.48

$$6

$4.72s

$4$3.81

$2

so~1 1 jLXF

86 86 87 88 89 90 91 92 93 94 95

S/W Support S/W Devlopment

Sourem: E.I.A.; AFSC/PLR
Tochnlon Internatlonal, Inc.

Figure S-1. USAF MCCR Software Costs.

The benefit expected as USAF uses integrated automated soft-
ware support environments is large and real. Benefits to USAF
will stem from: (a) reduction in the number of uniqu environ-

S-i

ments supported by the Air Force; (b) increases in the produc-
tivityof staff who actually use the standard environment; and
(c) increased reliability and maintainability of the software
produced by the standard environment.

Foundation in earlier work. The research built on work done
from October 1984 to June 1985, under USAF Business Research
Management Center contract Nr. F 33615-84-C-5114. The earlier
research began by asking this question:

Can and should the United States Air Force (USAF)
build and supply to contractors as Government-
Furnished Equipment (GFE) a Standard Government-
Owned Environment (GFE/Environment) for their use
in developing Ada'-based Computer Software for
Mission Critical Systems?

The 1984-85 study produced strong qualititative indications that
USAF can benefit significantly by changing ways by which its MCCR
software is acquired and supported. The present contract,
Nr. F 33615-85-C-5165, was undertaken to develop a mechanism for
improving the quantitative definition of those benefits.

What we were asked to do

Building on the 1984-85 study, we were asked to

it prepare and validate an econometric model for
implementing an Ada-based software support environment
in contractor and DoD organizations. The COCOMO model
will be augmented by non-quantitative sub-models.

f . . The model must include factors on control
strategies and constraints on successful implementation
by different organizations. The model will contain
features that allow for: a) projecting productivity
gains from use of various software tools and modern
programming practices; b) estimating the effects of
alternative control strategies for use of the environ-
ment; c) estimating effects of various constraints on
successful implementation; and d) forecasting effects
of providing a standard environment to contractors by
exercising the model for differences in contracting
strategy and contractor motivations."

We were to prepare a prototype computer program (for use on
the USAF standard Zenith 100 microcomputer, and written in
Microsoft FORTRAN).

'Ada is a registered trademark of the U.S. Government, Ada Joint
Program Office (AJPO).

S-2

I'o

METHODOLOGY

Technion conducted the work as seven separate tasks. In
Task 1 we developed a detailed Management Plan for the research.
Subsequent task descriptions follow.

Task 2. Prepare and validate an Econometric Model for
implementing an Ada-based software development/
support environment in contractor and DOD organiza-
tions. We updated data by surveying vendors,
users, and developers of environments that appeared
promising. While Technion began by dealing with
the industry point of view as well as the Govern-
ment's, the model delivered considers only the
Government side. Benefits were estimated using the
approach developed by Boehm in the COCOMO cost
estimated model. Costs were estimated using data
from the industry survey and from surveys made at
Tinker AFB and by USAF Logistics Command.

Task 3. Automate the econometric model on the USAF standard
Zenith Z-100 microcomputer. The resulting proto-
type automated model is implemented as an applica-
tion of the Lotus 1-2-3 "spreadsheet" program, and
is intended for use by commanders responsible for
development and support of MCCR software.

Task 4. Develop the technical user Documentation on the
contents of the automated model, and on how to use
the automated model.

Task 5. Using the econometric model, investigate effects of
providing a standard environment to contractors,
based on contractors' strategy and motivations.
Task 5 considered business and economic areas that
are not addressed in 4he minimum model actually
programmed. In this task we looked briefly at
vendors' business concerns, such as market shares
and vested interests in their own software tools,
technology, and products. The major obstacle to
overcome is the delay, a minimum of four years,
required to develop and field a GFE Environment.

Task 6. Using the econometric model developed in Task 2,
investigate effects of alternative control strate-
gies, based on organizational constraints to suc-
cessful implementation. Nine distinct control
strategies are considered. They represent differ-
ent combinations of voluntary [e.g., Jovial] and
required (e.g., Navy's CMS-2] use of GFE environ-
ments by contractors, in both initial development
and post deployment support contracts.

S-3

Jawi

Task 7. Using the econometric model, select strategies and
prepare cost/benefit tables for implementing
environments under varied conditions. In carrying
out this task, Technion first conducted sensitivity
analyses of the work done in Tasks 5 and 6, then
chose feasible USAF strategies for implementing
environments under varied conditions.

FINDINGS

General

Results of the research make it clear that:

1. The annual USAF costs to maintain the existing massive
inventory of non-standard MCCR computer programs are
immense. Costs are projected by EIA to be $6 billion
for FY 1990 [EIA86], five percent of the USAF budget.

2. Few systematic measures to improve productivity for
acquisition and support of MCCR software are currently
in place. Technion International estimates (using as
base the Electronic Industries Association's 1986
projection) that for the "business as usual" option-
without sianificant USAF action - total costs to USAF
will be close to $6 billion), 6.7 percent of USAF
budget.

3. Perhaps a dozen U.S. vendors can build an integrated,
automated environment for Ada MCCR software with today's
technology. The effort will require a minimum of four
years and about $75 million. Such environments could
harness known software engineering technology to produce
annual improvements in productivity of more than ten
percent. Several contractors have observed similar
annual increases in productivity in their internal
operations [Boeh8l], [Boeh84], [Werl86]. Boehm
describes systematic software productivity improvement
programs at length. (Boeh8l, pp. 641-689, particularly
682-689].

4. By itself, the GFE environment approach takes too much
time. A minimum of four years (and $74 million) is
needed to field a "first level" environment, capable of
helping USAF improve MCCR software productivity by about
six percent annually after delivery. The "third level"
environment, which would help improve productivity by
about ten percent annually after delivery, would need an
additional three years (and $200 million).

S-4

5. USAF can begin improving productivity in development of
MCCR software without waiting for improved software

Stools. Improved productivity is aided by, but is not

dependent on, availability of an improved software
development environment [Werl86J. Systematic produc-
tivity improvement efforts are well understood and
clearly successful. They rely on better use of existing
tools and on reuse of existing software "code frag-
ments." [BoehSl, pp. 686].

This approach is directed at improving the practice of
MCCR software development and support, supplementing the
many present efforts to further develop software engi-
neering theory. Both are needed, but at this moment we
believe USAF needs improvement in applied practice.

6. A two-pronged approach is most appropriate, with USAF
undertaking both (a) systematic productivity improvement
programs and (b) developing Ada-based software support
environments. USAF may learn from recent experience
with such related programs as the Army's ALS compiler.

Econometric Model

1. In controlling use of the integrated automated environ-
ment, two strategies offer the highest net benefits:

(a) Mandatory use for post-deployment support; with
no extraordinary requirements during development.

(b) Mandatory use for post-deployment support; with
voluntary use in development.

For all other options, benefits are negative.

Both of these options approximate the control strategy
USAF has used for the JOVIAL language.

2. The rate of introduction of standard environments has
great leverage over the magnitude of net benefits.
Rapid introduction, so that use is widespread within two
years, has greatest net benefit. Slow introduction,
extending over four or five years, has least net bene-
fit for USAF.

3. Net benefits to USAF are greater when existing produc-
tivity is low, less significant when productivity is
high.

S-5

AV

Sources of.. Benefits to_ USAF

Based on our research, USAF benefits would stem from these
sources:

1. Increases in productivity of staff who actually develop
and support MCCR software. This augmentation of human talent by
software tools is the dominant economic driver. (Boeh8lI,
[Boeh84], [Werl86].

2. Reduction in the number of unique environments now sup-
ported by USAF. Each weapon system contractor typically supplies
a unique environment tailored to the weapon system supported and
to the contractor's hardware, procedures, and proprietary soft-
ware. Currently, USAF is supporting about 400 different languages
and dialects, and several dozen unique environments [Ichb84],
[Lieb86]. Other benefits include reduction of training costs and
costs of contractor lock-ins. In economic terms, these are all
features of "monopolistic" market relationships.

3. Increased reliability and maintainability of the software %
produced by the standard environment.

RECOMMENDATIONS FOR IMPLEMENTATION

External

1. Consult with appropriate Congressional committees for
acceptable ways to implement these findings. An approach like
that which led to the "Warner Amendment" would probably be most
successful. House Government Operations Committee members have
traditionally opposed any measure that seems to interfere with
"full and free competition," and have challenged DoD initiatives
for standardization.

In contrast, the Armed Services committees would be most
likely to support USAF and DoD action to standardize software
support environments. With this external support, internal USAF
actions can be successful. Without it, we can expect to have new
layers added to the existing "scar tissue" at DoD.

Internal

1. Competitively acquire three automated integrated
software environments to develop and support MCCR software.
Perhaps a dozen U.S. vendors can do this today (e.g., General
Electric, TRW, Softech, Microsoft). Such environments could
harness known software engineering technology to produce annual
improvements in productivity of more than ten percent. (See
Appendix D).

S-6

By itself, this approach takes too much time. It could
be shortened if vendors reuse existing code. Starting from
scratch, it would take a minimum of four years (and $50 million)
to field a "first level" environment, capable of helping USAF
improve MCCR software productivity by about six percent annually
after delivery. The "third level" environment, which would help
improve productivity by about ten percent annually after delivery,
might take an additional three years (and $150 million).

2. Competitively acquire three libraries of Ada language
MCCR software "fragments," for systematic reuse. This requires
two efforts by each vendor: (1) test and validate candidate
existing code fragments; and (2) classify and catalog them in ways
that permit users to quickly identify promising candidates for
reuse.

i

S~7 I

CHAPTER ONE

OBJECTIVE AND METHODOLOGY

OBJECTIVE

'---)The objective of the research was to prepare an econometric
model to determine quantitative benefits to the Air Force of
implementing various strategies for controlling integrated
automated software support environments. The model had to help
the Air Force quantify costs and benefits obtainable by various
methods of increasing productivity of developing and supporting
mission-critical software. -

Econometric Model

~The principle deliverable is an econometric model describing
costs and benefits involved in using Ada-based software develop-
ment/support environments in DoD and contractor organizations.
It is designed to permit comparisons among a selection of such
environments. The model consists of econometric equations that
describe actions required, and effects expected, during imple-
mentation. The equations were developed to describe decision-
making as it typically takes place within AFSC.-

Benefits. Projected benefits to USAF come from: (a) more
productivity of staff who actually use the standard environ-
ment (s); (b) reduction in the number of unique environments USAF
supports; and (c) increased reliability and maintainability of
software produced using standard environment(s). In certain
scenarios, annual benefits to USAF total more than $1 billion by
1995.

Costs. Projected costs to USAF accrue from: (a) design and
development of new environment(s); (b) costs for training
government and contractor personnel in their use; and (c) ongoing
operations and maintenance costs. Annual costs will be less than
$100 million by 1995.

Prototype computer program. We automated the model as it was
in May-June 1986. The prototype program was written for the USAF
standard Zenith Z-100 microcomputer, as an application of the
LOTUS 1-2-3 computer program.

Continuing development. However, the model did not stop
evolving at that point! In fact, it is still being augmented at
this writing (a research phenomenon with ample precedent).

METHODOLOGY

Types of Econometric Model

We developed a multi-equation simulation model describing
USAF support activities for MCCR software during the years 1986-
1995. Before selecting this model type, we considered three
frequently used general classes of econometric models. The three
descriptions of economic models below are from (Pind8l, pp. xv-
xvi].

"Time-Series models. In this class of models we presume
to know nothing about the real world causal
relationships that affect the variable we are
trying to forecast. Instead we examine the past
behavior of a time series in order to infer
something about its future behavior. The time-
series method used to produce a forecast might
involve the use of a simple deterministic model
such as a linear extrapolation or the use of a
complex stochastic model for adaptive forecasting.
. . .Models such as this have been developed and
used to forecast the demand for airline capacity,
seasonal telephone demand, [and] the movement of
short-term interest rates. . ."

Figure I-1 shows such a forecast, which applies to 30 MCCR-
like projects listed in the "COCOMO" project data base [Boeh8l,
pp. 498-4991. During the decade of the 1970's, productivity for
development of software increased at more than 20 percent each
year.

"Single-equation regression models. In this class of
models the variable under study is explained by a
single function (linear or nonlinear) of explana-
tory variables. The equation will often be time-
dependent (i.e., the time index will appear
explicitly in the model), so that one can predict
the response over time of the variable under study
to changes in one or more of the explanatory
variables. . . . often used to forecast not only
the movement in short- and long-term interest
rates but also many other economic and business
variables."

Figure I-1 also illustrates this type of model, with "Time"
being the single independent variable.

1-2

3310 Expert System

'Soft.,ar, Factory' App~roaches

/ / e

-/ 7r1/ Environlments
// R sble Code

'cm / l ibrres

/of2 ~ADA / m

29 182 14/ OI

Softadre/
Tad.I Affordable

Large Memories

,40 l ntera ti~ac
P rog ramngI l

31 atch Prora!WIiflc

777II " 10

Figue I1. Sftwre Podutiviy Icreaes xponntilly

Figure c- ofstreructiv iaity mnceae Exoent ily

"ut-e satncimlation modaels ofindtisidclas rltof-

funion, fc sevra explanafitory tvaiable dhiah
Sioulaeo relate tocech ohe asolisnt theqa
vaiable siultndesuy theroh anse of tiequtos

Th xpe ostruc-eqution simulation modelswt

would be a complete model of the United States
textile industry that contains equations explain-
ing variables such as textile demand, textile
production output# employment of production
workers in the textile industry, investment in the
industry, and textile prices. These variables
would be related to each other and to other
variables (such as total national income, the
Consumer Price Index, interest rates, etc.),
through a set of linear or nonlinear equations."
[Pind~l. Emphasis added).

1-3

The multi-equation simulation model describes the type of
model developed during this project. Obviously, with less than
30 equations, the MCCR software model is much simpler than the
example described in the quotation. To put this into perspec-
tive, commercial models that describe portions of the U.S.
economy typically contain from 700 equations (Chase Econometrics
model) to 1450 equations (Townsend-Greenspan model) [Broo84].

Developing the model

The model began with a basic set of 31 equations agreed on
during late 1985 (the "Minimum Model"). After combining some,
and simplifying others, the model as proarammed contains 24
equations which describe economic behavior adequately for the
purpose.*

Constant technolocical change. Throughout the work we
addressed the need for continuing improvement in the capabilities
of all MCCR software development/support environments. An impor-
tant vendor argument against use of any GFE/environment is that
any required standard would inevitably result in degraded product
quality or productivity, because of the unprecedented rapidity of
technological change in the computing fields. The rapidity of
change renders one year's standard the next year's obsolescence.

Project Management Plan. Technion conducted the research as
seven tasks. In Task 1 we developed a detailed Management Plan
for the research. Subsequent task descriptions follow.

Task 2. Prepare and validate an Econometric Model for
implementing an Ada-based software development/
support environment in contractor and DOD
organizations. Technion updated date. by
surveying vendors, users, and developers of
environments that appeared promising.

Task 3. Automate the econometric model on the USAF standard
Zenith Z-100 microcomputer. The resulting proto-
type automated model is implemented as an applica-
tion of the Lotus 1-2-3 "spreadsheet" program, and
is intended for use by commanders responsible for
development and support of MCCR software.

Task 4. Develop the technical user Documentation on the
contents of the automated model, and on how to use
the automated model.

* Colonel Nidiffer developed additional refinements after the

prototype computer program was completed.

1-4

Task 5. Using the econometric model, investigate effects of
providing a standard environment to contractors,
based on contractors' strategy and motivations.
Task 5 considered business and economic areas that
are not addressed in the minimum model actually
programmed.

In this task Technion looked briefly at vendors'
business concerns, such as market shares and vested
interests in their own software tools, technology,
and products. This area, in which contractors'
interests may oppose those of the government, seems
to hold rich possibilities for future research.

Task 6. Using the econometric model developed in Task 2,
investigate effects of alternative control strate-
gies, based on organizational constraints to suc-
cessful implementation. Nine distinct control
strategies are considered. They represent differ-
ent combinations of voluntary [e.g., Jovial] and
required [e.g., Navy's CMS-2] use of GFE environ-
ments by contractors, in both initial development
and post deployment support contracts.

Task 7. Using the econometric model, select strategies and
prepare cost/benefit tables for implementing
environments under varied conditions. In carrying
out this task, Technion conducted sensitivity
analyses of the work done in Tasks 5 and 6, and
selected feasible USAF strategies for implementing
environments under varied conditions.

Types of environment

Houghton [Houg85] defines four different types of environ-
ments, classified according to the level of support by phase:

* FRAMING environments, which concentrate on the acti-
vities of systems definition and software definition that occur
before programming can begin. Framing environments usually
support only one specific methodology. Examples include: IDS,
DREAM and USE.

6 PROGRAIING environments, which support only the later
phases (programming and testing) of the software life cycle.
Some environments of this type support incremental compilation,
and allow programmers to execute program fragments. Examples
include: ALS, Arcturus, Rational's Ada compiler, and Smalltalk.

* GEIEAL environments, which support all phases of the
software life cycle. They usually support more than one
programing language and do not require users to follow one

1-5

specific -aethodology. They contain basic tools (udit,rs and text
processors) that support all phases -if t:,o- lift c-y'le, and thvi
may have advanced tools for certain phases. Examples include:
TRW's Software Productivity System (SPS-I), Boeing's ARGUS, UNIX,
and the French "Platine" system.

* METHODOLOGY-SPECIFIC life cycle environments. Provide
automated support for all life cycle activities. No automated
environment of this type exists beyond the conceptual stage.
However, some methodologies do provide limited support for the
entire life cycle.

As shown in Figure 1-2, most of the development work has been
done in the area of quadrant III, the GENERAL environment. In
the present research, Technion obtained descriptive data for ten
environments [Appendix A]. Because this is still an area in
which development work is quite new, we expected that a maximum
of about a dozen environments could be found (most in quadrant
III). We attempted to obtain data for at least two environments
in each quadrant.

Quadrant I Quadrant II

FRAMING [Systems and Software PROGRAMMING [Programming
Definition Phases] -- and Testing Phases] --

Examples: DREAM, USE Examples: ALS, Arcturus,
Smalltalk

METHODOLOGY-SPECIFIC GENERAL [All Phases of
[Automated Support for SOFTWARE Life Cycle]
ALL Phases of
System Life Cycle]

Examples: NONE (June, Examples: SPS, ARGUS,
1985) UNIX, Platine

Quadrant IV Quadrant III

Figure 1-2. Types of Recent Software Environments.

Leverage from Cost Drivers

In looking for the few software cost drivers that USAF can
manage, and providing the control "levers" needed to increase

1-6

productivity, we assigned the following COCOMO faczcrs to types
of envircnment.

Quadrant I Quadrant II

Framing [Definition Phasel Programmina and Test

(Product Complexity) CPLX TURN (Host computer
(Required Reliability) RELY Response Time)

(Required Schedule) SCED MODP (Use of Modern
(Volatility of Programming
Requirements) RVOL Practices)

(Volatility of TOOL (Use of Powerful
Target Computer) VIRT Software Tools)
(Experience with LEXP (Experience with
Target Computer) VEXP Language Used)

LIBR (Reuse of Software)

All tools useful in All tools useful in

Quadrants I and II Quadrants I and II.

Methodology-Specific General [All Phases]

Quadrant IV Quadrant III

Figure 1-3. Regions of Greatest Leverage of Functions
described by COCOMO Effort Multipliers.

USAF can manage six cost drivers in the systems and software
definition phase (quadrant I, "Framing" environments): CPLX,
RELY, SCED, RVOL, VIRT, and VEXP. SPO choices for the relative
values described by these cost drivers have the greatest effect
on ultimate project costs.

Similarly, in the programming and software test phase (quad-
rant II, "Programming" environments), USAF can manage five cost
drivers: TURN, MODP, TOOL, LEXP, and LIBR. Typically these
affect only a limited amount of total project cost.

USAF can manage all of these cost drivers in quadrant III
("General," supporting all project phases) and IV ("Methodology-
specific," supporting all phases) environments. The relative
importance of different phases, both in effort (work-months) and
duration (months) are showi, in Figure 1-4; totals for work-months
and duratiorn tum to 100 percent. Although it consumes least
effort of the phases in th,-- COCOMO model, the Plans and Require-
ments phase influences effort needed in all subsequent phases.

J-7

llmilI MEA_- MM &AM tl~ I AJ Ia Wk

PROJECT CHARACTERISTICS PRIORITIZED COCOMO SOFTWARE TOOLS

Work-Mos Duration Effort Multipliers __APPLICABLE

Plans & Requirements

7% 15% ACAP, CPLX, AEXP, Analyst capability
RELY, TIME, DATA, and experience might
VEXP, SCED, be increased by
TOOL, MODP methodologies or
[5 E.M.s not expert systems

relevant] techniques. Improving
TOOL and MODP
would have little
effect in this
stage.

Product Design

17% 20% CPLX, PCAP, ACAP, Capabilities and ex-
AEXP, RELY, TIME, perience of Analysts
STOR, VIRT, SCED, and Programmers
[6 E.M.s not might be increased
relevant] by methodologies os

expert system tech-
niques. Improving
TOOL and MODP would
have little effect
in this stage.

Programing

51% 40% CPLX, PCAP, ACAP, Bold-faced EM's can
TURN, TOOL, RELY, be improved by
MODP, TIME, VIRT, environments.
STOR, AEXP, VEXP,
LEXP, SCED. [DATA

not relevant]

Integration and Test

25% 25% RELY, CPLX, PCAP, Bold-faced EM's can
NODP, ACAP, TOOL, be improved by
TIME, STOR, VIRT, environments.
VEXP, TURN, DATA,
AEXP, LEXP, SCED

100% 100%

Figure 1-4. Productivity Enhancement Leverage.

I-8

, ¥ J w ', . 0 -

Hypothetical environments used

Five hypothetical environment configurations were defined in an
earlier study (Wer185]. They were termed "HAPSE I" to "HAPSE V,"
from Hypothetical Ada-based Programming Support Environment.

The minimal groups of software tools [for HAPSE I] are:

Compiler/assembler
Linker/loader

Text formatter

Editor

Tool capabilities for subsequent HAPSE versions

Tool capabilities are added in evolutionary developments of the
HAPSE. Figure 1-5, "HAPSE Configurations," shows that HAPSE
versions II to V contain the four minimal tools plus systematic
additions to tool capabilities.

TOOL CAPABILITY HAPSE II HAPSE III HAPSE IV HAPSE V

Requirements tracing X X X X
Debugger X X X X
Cross-reference analyzer X X X X
Call structure analyzer X X X X
Configuration management X X X X
Standards auditor X X X X
On-line help X X X X

Design support X X X
Statement coverage analyzer X X X
Timer/performance analyzer X X X
Project control X X X
Syntax-directed editor X X X
Menus X X X

Requirements language X X
Graphics generator X X
NIL/SPEC generator X X
Typesetter X X
On-line documentation X X

Locked security controls X

[Werl85], p. 111-27

Figure 1-5. "HAPSE" Configurations.

1-9

i

Benefit Factors Used

Three sets of benefit factors were used, roughly :orrespon-
ding to projected tools in for HAPSE versions II, III, and IV.

FISCAL YEARS
COCONO
ATTRIBUTE DESCRIPTION 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

"lAPSE II" multipliers
LIDR Use of existing

[reusable) software 0.89 0.88 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.86
TOOL Use of software tools 1.01 1.01 1.01 1.00 0.99 0.99 0.99 0.98 0.97 0.97
TURN Host Computer

response time 1.01 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.98
MODP Modern programming

practices 0.95 0.94 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.91
LXP Experience with

language 1.02 1.02 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.'00
SEN Experience with

environment 1.03 1.02 1.02 1.02 1.01 1.01 1.01 1.00 1.00 1.00

"HAPSE III" multipliers

LIBR Use of existing
(reusable] software 0.86 0.82 0.79 0.74 0.71 0.67 0.62 0.58 0.55 0.51

TOOL Use of software tools 1.00 0.98 0.97 0.95 0.93 0.92 0.90 0.88 0.87 0.85
TURN Host Computer

response time 1.00 0.99 0.98 0.97 0.95 0.95 0.93 0.92 0.91 0.90
KODP Modern programming

practices 0.94 0.93 0.93 0.92 0.90 0.89 0.88 0.87 0.86 0.85
LEXP Experience with

language 1.02 1.01 1.01 1.01 1.01 1.00 1.00 0.99 0.99 0.99
SEN Experience with

environment 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.96 0.96 0.95

"lAPSE IV" multipliers
LIBR Use of existing

[reusable] software 0.83 0.78 0.72 0.66 0.60 0.54 0.49 0.43 0.37 0.32
TOOL Use of software tools 0.98 0.97 0.95 0.92 0.90 0.87 0.85 0.83 0.80 0.78
TURN Host Computer

response time 0.99 0.97 0.95 0.93 0.91 0.89 0.87 0.85 0.83 0.81
MODP Modern programming

practices 0.93 0.91 0.89 0.87 0.85 0.84 0.82 0.80 0.78 0.77
LEXP Experience with

language 1.01 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92
SEN Experience with

environment 1.02 0.99 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92

1-10

?! asurirg C:sts and Benefits

The -.ost difficult part of the modeling process is assurinq
that all relevant benefits and costs are included, somehow, in the
equations. For example, many "economic" benefits do not appear in
USAF reports. In the case of "indirect" costs and benefits, even
when they can be identified they cannot necessarily be measured.
One can see this in Table I-i and in Table 1-2.

Each table shows cost or benefit accounts (many of which are
not reported). In Table I-1, the "++" symbol indicates benefit,
and the "- . indicates loss. The "??" indicates an account for
which it is not possible to predict net effect in advance. Note
that in many cases, "benefits" to the Government are accompanied by
"losses" to contractors. In both tables, bold-faced entries are
particularly difficult to measure.

BENEFITS TO GOVERNMENT
GOVERNMENT CONTRACTOR

BENEFIT ACCOUNT Direct Indirect Direct Indirect

Benefit over
"Known Environment" ++ + -- ?

"Non-Proliferation"
Costs ++ ?? -- ??

Avoidance of
"Retooling" ++ ?? ++ ++

Avoidance of
"Contractual Lock-In" ++ ++

Lower costs to
produce and support
MCCR software ++ ++ ?? ??

Less reliance on
programmers' skills ?? ?? ++ ??

Table I-1. Summary of Tangible Benefits
in Econometric Equations.

The same phenomenon is true for the cost side. Table 1-2 lists
some of the economic costs that USAF pays. The "++" symbol shows
types of cost that are incurred and can be traced in accounting
records. The "??" symbol represents costs that may not be
traceable. In general, indirect costs, which must be estimated
and allocated, present the greatest problem.

I-il

COSTSTOGOVERNMENT
GOVERNMENT CONTRACTOR

ACCOUNT Direct Indirect Direct Indirect

Capital Costs

Acquisition of
GFE Environments
(H/W, S/W, etc.) ++ ++ ?? ??

Site Preparation ++ ?? ??

Version upgrades ++ ??

Data Comm, Security ++ ?? ++ ++

Depreciation of
Environments, etc. ?? ++

Operating Costs

Maintenance of
Environments and
related H/W,S/W, etc. ++ ++ ++ ??

Labor of USERS
of Environments ++ ++ ??

Labor of Control
Strategy Implemen-
tation (and defense)
Staff ++ ?? ++ ??

Labor of Program
Management,
Config. Mgt, and
Procurement Staff ++ ?? ++ ??

Cost of Program
Delays associated
with control strategy ++ ?? ?? ??

Fringes on Labor cost ++ ++ ++ ++

Rent, light, power,
supervision, etc. ++ ++

Training of Users ++ ++ ??

Table 1-2. Summary of TapgDible Costs
in Econometric Equations.

1-12

Ruplacing labor ccsts with investments in environments.

USAF s cost fcr direct labor (in the form of USAF "spaces,"
"faces" or "contract dollars") really dominates the economic
analysis. They provide the tangible leverage USAF can exchange
for the many virtues of a standard environment. This is true
simply because the current cost for labor in the U.S. is four or
five times the cost for the environments and software tools.

"SAF probably spends little more than $10,000 average initial
cost and $2,000 per year variable cost for each of its present
environments. That is about $12,000, or about an eighth of USAF
cost for direct labor. That expectation justifies our assumption
that environments will produce tangible economic benefits by
replacing some of the labor cost now projected to be needed in
five years.

This is not to say this approach will reduce labor costs. We
know that is not feasible, considering the many political forces
at work. Instead, we are suggesting a way to reduce the rate of
exponential growth -- i.e., to keep those costs from continuing
their incessant eating away at funds that might be better applied
to other equipment/services needed by USAF, as they have for the
past decades.

Accomplishment

Task 2 - Preparation of econometric model. We completed
preparation and validation of the econometric model for imple-
menting an Ada-based software support environment in contractor
and DoD organizations. The equations were developed to describe
decision-making as it takes place within AFSC.

In developing the model equations, we:

a. Selected data and transformed them into consistent
variables.

b. Analyzed data collected, using statistical methods, and
developed econometric formulas describing benefit/cost behavior
of the variables. Together, we selected from the many feasible
equations, a set of equations that is usable and that provides
for the greatest practical predictive ability.

c. Equations were augmented by non-quantitative decision
tables that describe alternative organizational behaviors,
control strategies, and policy directives.

d. We were not able to complete the set of equations that
describe "off-books" costs and benefits such as the effects of
depreciation/amortization, and "opportunity costs" that cannot be
ignored by contractors.

1-13

Clearly, this was a challengino task. It could only be con-
sidered because the underlying research had been done. The
"COCOMO" project database, which includes 63 software projects
completed during the years 1964-1979, provided consistent
descriptions for projects done during a 15-year period character-
ized by rapid evolution in the practice of software development.
Of the 63 projects listed, 34 were software projects similar to
USAF mission-critical software projects.

However, the COCOMO project database includes no projects
that used the Ada language or integrated environments; none were
available during the time covered. The COCOMO project database
needed to be augmented with data on more recent projects. Our
efforts were not effective in meeting these needs. We were
surprised to find, for example, that data from the NASA Software
Engineering Laboratory's research and from RADC were of little
help. This is because many data elements in those data bases
were not collected, or were recorded using different definitions.

We obtained updated development and "maintenance" data for
COCOMO Effort Multipliers: MODP, TOOL, TURN, LEXP. We extended
present effort multipliers to estimate effects of using of soft-
ware tools integrated into one software environment ("SEN"), and
for reuse of standard code fragments ("LIBR").

We gave special attention to six variables, known to directly
improve productivity, by selecting software tools for inclusion
in an integrated software support environment. The individual
variables include:

(a) An integrated set of automated software tools

1b) Modern programming practices [COCOMO "MODP"].

(c) Higher order languages (such as Ada)

(d) Use of existing software, from libraries of "reusable
code fragments. We defined and arbitrarily assigned
the acronym "LIBR" to this variable.

(e) Hardware and software that provides response time short
enough and memory capacity large enough to avoid inter-
fering with programmers' trains of thought. [COCOMO
"TURN"].

(f) Design of tools, such as syntax-directed editors, that
help users speed improvement in learning (e.g., to gain
experience with language(s) used, type of software
application, and the "virtual" hardware/software/pro-
cedure machine for which the software is produced).

1-14

Ray Houghton obtained data for the econometric model from
telephone surveys, government sources, and from published
literature. He contacted government and industry users, vendors,
and literature to obtain: (1) percentage of their effort that is
plowed back into R&D; (2) percentage of resources and staff
assigned to support the environments; (3) percentage of resources
and staff required to obtain incremental improvements in perfor-
mance; and (4) length of environment "version life." Examples of
the environment data are given in Appendix A. Data were orga-
nized by environment type, and (where available -- only rarely)
include cost of developing each environment, time to complete
development of each environment, size (in lines of source and/or
object code) , and average version life in years. We attempted to
obtain a minimum of two samples of data for each of the four
environment types (shown in figures 3 and 4 of the December
Management Plan) . Colonel Nidiffer obtained current project
support data from AFLC installations and from Tinker AFB support
operations.

Task 2 - Model Validation. We were not able to obtain
valid data on historical USAF software development projects to
use in calibrating the selected equations. This unexpected
situation caused us real difficulties in the tasks of validating,
"tuning" and calibrating the model's equations.

Task 3. The Technion/SASC team automated the econometric
model developed in Task 2, on the USAF standard microcomputer
(Zenith Z-100). The model was programmed as an application of
the LOTUS 1-2-3 system (version 1.5), a "spreadsheet" program
widely used within USAF. On June 20, the resulting code was
delivered on a floppy disk (CDRL sequence 7).

The automated model we delivered is a prototype. As we cau-
tioned in our Management Plan:

'3.3.1 The Technion/SASC Technologies team will
exercise great care to ensure that the delivered
product meets the specifications. Nevertheless,
we must be mindful of past experience. When there
is little precedent for use of a new technique
(such as this evaluation model] in the field, and
when particular applications have not been
programmed before, initial versions of software
products are often closer in nature to prototypes
than to seasoned "products. In the present
project for example, the initial model will
include only the econometric equations and data

A.,elements determined in Task 2. Recognizing this,
V1 we must caution that -- in spite of all our care

-the delivered product might be seen by some as
not a fully validated and bug-free tool totally
adequate for operational deployment and use."

1-15

Mr. William P. Byeriy, of ';A-C 'echnoloqies, Lnc., p.r grammed the

application and wrote the user documentation [CDRLs 6 (User's

Manual), 8, 9, and 10].

Tasks 5-7. Using the automated program, we made analyses.
These involved making many runs, varying one factor at a time.

Four of the more significant results found are:

1. The model works.

2. A long time, at least four years, is required for USAF
to achieve the benefits of an integrated automated
software support environment.

3. A high "front-end" investment, ranging from $75 million
to more than $200 million, is required.

4. USAF needs to put a systematic data collection program
into place, in order to get meaningful data for
evaluation efforts such as this.

Research results are described in more detail in Chapter Two.

1-16

CHAPTER TWO

FINDINGS

Three categories of findings are presented. The first,
"General," relate to the potential impact on USAF MCCR software.
The second, "Characteristics," shows important properties of the
model. The third,"Development of econometric model," describes
findings regarding assumptions included in the model.

GENERAL FINDINGS

MCCR Software: Big and expensive business

If aircraft and missiles are the heart of USAF, MCCR software
is the brain. It is expensive. To keep its present MCCR
software operational and to develop new MCCR software, USAF will
spend $4.7 billion in FY1987. By FY 1995 this will rise to $7.4
billion (1986 dollars). Figure II-1 pictures this growth, while
Figure 11-2 shows the size of USAF's growing inventory of MCCR
software. Figure 11-3 translates this into thousand work-years.

Billion 1986 dollars$6

$4.48 $4.64 $4.69 $4.62 $4.64 $4.67

$4, $3.94 f (

$2.95 .7 I. 7 .81'$2.38

$0 1 3

M 6 87 88 89 90 91 92 93 94 95
Years

S/w Support m S/w Dwoopmont

Soures: E.I.A.; AFSC/PLR
Tochnion International, Inc.

Figure II-l. USAF MCCR Software Costs.

~ 2 r ~I1-1

Itl

Million lines of code, at $50 per line

186.4 89.6 90.8 91.8 92.4 92.8 93.4

80. 78.8

412 741

40-j . j
20K

0'86 87 88 89 90 91 92 93 94 96

Nbars
LiS/W Support M S/W Deveopment

Sourom E.L.A.; AFOC/PLR; Mnd
Toahnlan Intmrnstlonal. Inc.

Figure 11-2. MCCR Software Inventory is Large and Growing.

10Thousand work-years, Gov't & Contractor

100 89.6 90.8 91.8 92.4 92.8 93.4

100~ 68.878.8 8.

0,

20

80 87 88 89 90 91 92 93 94 95

Yws
S/ 8W Support M SW Development

Source: Technian International, Inc.

Figure 11-3. Assumed workload.

Table II-1 shows the assumptions we used in developing these
figures, and others shown below.

11-2

Table 11-1. Assumptions Used in Calculations.

1. ELECTRONICS INDUSTRY ASSOCIATION'S 1986 ESTIMATE
OF USAF MCCR SOFTWARE INVENTORY COST

(Billion 1986 dollars)

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
Raw Estimate Data
Software Support 2.95 3.60 4.35 4.95 5.45 5.80 6.15 6.50 6.85 7.25
S/ Development 1.77 2.16 2.61 2.97 3.27 3.48 3.69 3.90 4.11 4.35

Total Software 4.72 5.76 6.96 7.92 8.72 9.28 9.84 10.40 10.96 11.60

2. DEFLATION FACTORS AND ESTIMATE IN CONSTANT (1986) DOLLARS

Deflator (5.00%) 1.00 1.05 1.10 1.16 1.22 1.34 1.34 1.41 1.48 1.55

Est. Constant Dollars
Software Support 2.95 3.43 3.94 4.27 4.48 4.54 4.59 4.62 4.64 4.67
S/V Development 1.77 2.06 2.37 2.57 2.69 2.73 2.75 2.77 2.78 2.81

Total Software 4.72 5.49 6.31 6.84 7.17 7.27 7.34 7.39 7.42 7.48

3. SIZE OF USAF MCCR SOFTWARE INVENTORY WORKED ON EACH YkAR*

(In million delivered source instructions [DSI], at $50/DSI)

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Software Support 59.0 68.6 78.d 85.4 89.6 90.8 91.8 92.4 92.8 93.4
S/V Development 35.4 41.2 47.4 51.4 53.8 54.6 55.0 55.4 55.6 56.1

Total Software 94.4 109.8 126.2 136.8 143.4 145.4 146.8 147.8 148.4 149.5

4. USAF WORKLOAD, MCCR SOFTWARE DEVELOPMENT AND SUPPORT*
(Thousand work-years, at 1000 instructions per work-year)

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Software Support 59.0 68.6 78.8 85.4 89.6 90.8 91.8 92.4 92.8 93.4
S/V Development 35.4 41.2 47.4 51.4 53.8 54.6 55.0 55.4 55.6 56.1

TOTAL 94.4 109.8 126.2 136.8 143.4 145.4 146.8 147.8 148.4 149.5

* ccording to an informal communication with AFSC/PLR, the total work-years
(both USA? and contractor) for calendar 1986 is in the neighborhood of
120,000. This estimate, therefore, is in the ballpark. Without sore
detailed knowledge, these estimates cannot be refined further.

S* Total inventory may be as great as ten times the amount worked on during any
one year. Accuracy of the estimate, however, is subject to great uncertainties.

11-3

CHARACTERISTICS

Two control strategies offer highest net benefit

In controlling use of the integrated automated environment,
two strategies offer the highest net benefits. All others yield
negative benefits.

Both of the strategies approximate the control strategy USAF
has used for the JOVIAL language. The strategies are:

1. Mandatory use for post-deployment support, but no
extraordinary requirements during development. This
implies that development contractors can use tools and
techniques of their choice, subject to rigorous
acceptance testing by USAF to assure conformance to
applicable standards.

2. Mandatory use for post-deployment support, with
voluntary use during development. In effect, this is
the same as strategy (1) above.

The relative net benefits of the nine strategies are shown in
Figure 11-4.

CONTROL STRATEGY AFFECTS BENEFITS
fts&" cam

920

0 1 3 2 4 6 6 7 I 3

Figure II-4. Control Strategy Affects Net Benefits.

4=-4

The nin~e strategies used are shown in Figure 11-5.

Control Reczuired for use in:
Strategy Development Support

I Mandatory Mandatory
2 N/A Mandatory
3 Mandatory N/A
4 N/A N/A

5 Volunz:ary Voluntary
6 N/A Voluntary
7 Voluntary N/A
8 Voluntary Mandatory

9 Mandatory Voluntary

Figure 11-5. Control strategies.

Costs lead benefits

Figure 11-6 shows the time relationship for one example of
mandatory use during development. Costs, which are incurred from

(Mandatory /Absent Strategy, 800K ET2)

$Millon
$300- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-$2001

88 87 88 go 90 91 92 93 94 96

Years
- 4- Costs Benefits Not Benefits

Source: Technion International, Inc.

Figure 11-6. Costs lead benefits.

11-5

the beginning of the program, precede the initial benefits by a
year. Costs are then regained within a period of years, but the
period may be impracticably long to produce a viable net benefit
to USAF.

Rate of introduction has great leverage

The rate of introduction of standard environments exerts
substantial leverage in determining the magnitude of the net
benefits. Rapid introduction, so that the market is "satu-
rated" [i.e., essentially universal] within two years, yields the
greatest net benefit. Precedent for this can be found in the
market trajectory of the IBM PC. Slow introduction, extending
over four or five years, has least net benefit for USAF.
As shown in Figure 11-7, USAF annual costs are higher [benefits
held constant] for the slow introduction strategy.

(Mandatory /Absent Strategy)

Costs in $Million$1000

$8001- _ ~ - - - - - - _ _ _ _ _ _ _4

$600

$400 -- _ __ __ __'_--

$200

$0
86 87 88 89 90 91 92 93 94 95

Years
Z a-500, b-1.0 a-1000, b-O7

Source: Technion International, Inc.

Figure 11-7. Saturation Rate Affects Costs.

11-6

Current producti'vity rate affects benefits

Net benefits to USAF are greater when existing productivity
is low, and less significant when productivity is already high.
This is shown in Figure 11-8. The average annual production
rate, in lines of code per work-year (PLOC), is shown for three
levels -- 3000, 2000, and 1500. The net benefit is clearly much
higher for the low current levels of productivity.

CURRENT PRODUCTIVITY AFFECTS BENEFITS
(Absent/Mandatory Strategy

Aerage Net Benefit, $Milion
$600

$451

$421,-,<
S400-V

$200 $146
$11 i1ioo116

$8658

$0 -

'

PLOC - 3000 PLOC - 2000 PLOC - 1600

Strategy

1400K ET3 712K ET3 BOOK ET2 M 427K ET2

Source: Technlon Intrnational. Inc.

Figure 11-8. Current productivity rate affects benefits.

DEVELOPMENT OF ECONOMETRIC MODEL

The benefits computed by the model are derived from six cost
drivers. Four of these (MODP, TOOL, LEXP, and TURN) are from the
COCOMO model. Two others were derived from literature. They

are: (1) SEN, "skill in using an integrated environment;" and

(2) LIBR," reuse of existing proven library code fragments."

11-7

-'2

Statistical analysis

The four COCOMO drivers were derived from statistical analy-
sis of 33 MCCR-like projects included in the 63-project COCOMO
database (Boeh8l, pp. 496-97]. Plots against time for two, MODP
and TOOL, are shown in Figure 11-4 along with the coefficients of
correlation, R, and significant test values of the F-statistic.
The numbers on the plots refer to number of observations at that
point. Trend lines are least-squares lines for 1970-79, and are
extended to 1990.

70 7W 85 9 70 so

1.1X1.35 + +

1.2500 +1 1.AW3 1
1.isin0* 1.25M0 4

1.120 1.23000+

~~~~11000*.133
1.00 1 1.16667 +

1.050 9 1.la +
o i~o *1.UL333 *

o 1.00 + T 1. 67
.97 0 0+ 0 1.1loo +

S 0 M +1.03311 11

0.925000 + L 1.08667

0.8"5M + 4 2 1.0333

0.8M + 1.0667 +

MOO .99333 +1 4 10.00000 * 1 1 2 2 0.966667

0.75gM +_ 0.7Gm* .50000 4

0.730 + 0.933333 +

0. + 0.916667 +

0.75Wo # % 0.90000 + 2 2 2 3
0.60 M0 + .333 +

0.62500 +0 0.866667 + %
0o.6o + 0.00. 0 +
0.5-7M + \ 0.833333 +

0.510000 + 0.816667 +

0.5100 + % 0.00 3 +

0.5000 0.703333 +

0.40000 + 0 .7660 +

0.42Mo + 0.733333 +

0.400 + 0.716667 +
0.7000 +

70 75 0 85 90 70 75 so 85 90
0000 90. 70.0000 90.0

M 0 W M R -3 3 2 1 3 rMiI a R Ln g P u : 33 2 Y M

MODP TOOL

R = 0.733 Rt = 0.49

F = 36 F = 9.9

Figure 11-9. Statistical plots of MODP and TOOL.

11-8



Similar plots for LEXP and TURN appear below, in Figure II-10.

1 1.10000 -
1 19000 1.09000 +
I. 18 O * 1.08
1.17000 1.07000 +
1. 16W 1.06000 +1 2 1 1

h IS=3 1.0000
1.t 0 * 1.4
1.13000 + 1 1.03000
I.1LM00 1 1.02000

6 .11000 1.01000
1. + 1.000

L 1.00 T 0.9900 + 1 1 1 2 1 4 2
S 1.0 0 U 0.980000 +

1.07000 0.97000 +
S 1.0 N 0.960000 +

- *M 0.95M~ +

I.O + 0.9M0 +
,. 400 0.90000 * 1 1
.OlM - 0.920000 +

1.0100D 0.910000 + 1
. - 0.900000 *

0.9900D 2 1 5 4 3 0.9D +

0.980000 * 0.880000 +
0.97M * • 0.8700 +
0.96O + ' 0.800 + 1 3 4 1 30.9600.850000 *
0.95M 0 + 0.5 W *

.94 + C.840000 +
0. 93O. 0.830000 + 4

3.92000D 0.820000 +
- -181W0 +

0.890000 • • 0.790000 +
0.so000 * ,.noow +
0.870000 + 0.1 +
0.8 + 0.76000 +
0.8 0 0.7400 +

0.830000 + 0.730000 +
0.8200 + 0.730000 +
O.81MM + 0. 71W +
0.800000 * 0.700000 +

70 75 8D 85 90 70 75 80 85 90

70.0001 90.0000 70.00 90.0WD

ML Df/S PIfl :33 2 YM WM Pnr POIT:33 2 YM3

LEXP TURN

R = 0.456 R = 0.393
F = 8.12 F = 5.65

Figure II-10. Statistical plots of LEXP and TURN.

To estimate the SEN driver, we analyzed two related drivers.
AEXP relates to the experience of the analysts, and VEXP relates
to the team's experience with the target "virtual machine" (i.e.,
the target computer hardware, operating system, sensors, etc.].
Each of these drivers has a low level of significance, and their
trends are in opposite directions. We exercised considerable
judgment in interpreting both drivers. The plots are shown in
Figure II-li.

For the effect of reusable code, we relied on projections by
Boehm (Boeh8l, p. 686], (Boeh84,p. 33].

11-9



70 7(- 71so9

1.JM 1. I
1SA * .21m0
.Mu 1.Z1500

1.238. 1.2650
1.2y750 1.23750
1.23W0 1.21250
1.1M.200

3 1.18m5 *U +

1.17500 LOW51115
A 1.16M5 v I V 1.16250
9 1.150 E*. S

I IDM + 1.137W +r .12500 * 1/p 1.12500
1.1.250 + 1.11M50
1.10000 L*W #.00
1.0750 L .0m5 1 21223
1.075M0* 1.07500 +
1.06250 + 1.06250 +
1.00000 + J- 1.000 *1.03750 + 

1.01M5 +1.0250 + 1.02500
1.0125 + 1.0125 +
1.0000 + 1.0=00 *

0.901500+1 1 1 25 1 0.9875W041 1 42 3
0.97500 0.97M00 +
0.920 * 0.9620
0.15000 + 0.950004
0.937500 + 0.931500 +
0.925000 + 0.92500D + *
0.91m50 + 0.91M0 +
0.900000 + 1 1 1 0.90000 +
0.37500 + 0.3150 + I 4 1 1 1
0.87M00 0. 875000 +
0.820 0.062W0 +
0.85M3 0.85000 +
0.8150 0.837500 +
0.800 + 0.800 +
0.8150 + 1 2 4 2 2 1 0.ensM
0.30000 + 0.800000 4

70 75 80 85 90 70 75 30 85 90
70.0000 10.0000 70.0000 1 ~

MM. PQ= 1138:33 2 138 WMis 0038 MOI1:33 2 133

AEXP VEXP

R = 0.290 R = 0.212
F = 2.84 F = 1.46

Figure II-li. Statistical plots of AEXP and VEXP.

11-10



CHAPTER THREE

CONCLUSIONS

In this chapter we present a summary of conclusions from all
areas studied during the project. We follow the summary with our
recommendations for future modifications to the model.

SUMMARY OF CONCLUSIONS

Three categories of conclusions are presented. The first,
"General," relate to the potential impact on USAF MCCR software.
The second, "Econometric model," describes strategies for
controlling use of a GFE/environment, supported by results of
exercising the model. The third, "Characteristics," summarizes
the important properties of the model.

General

Results of the research make it clear that:

1. The annual costs of maintaining the existing inventory
of non-standard MCCR computer programs are immense.
Costs projected by EIA are $7.17 billion for FY 1990
(EIA86].

2. No systematic measures to improve productivity for
acquisition and support of MCCR software are currently
in place. For the "business as usual" option - without
significant USAF action - total costs to USAF may be
greater.

3. It is feasible for USAF to acquire integrated automated
software support environments. Perhaps a dozen U.S.
vendors can build an integrated, automated environment
for Ada MCCR software with today's technology. Such
environments could harness known software engineering
technology to produce annual improvements in produc-
tivity of more than ten percent. Some contractors have
observed such annual increases in productivity in their
internal operations [Boeh8l], (Boeh82], [Boeh84],
[Bita85], and [Werl86].

Technion International recommends that USAF undertake
such an effort, learning from the recent experience with
such related programs as the Army's ALS compiler.

l--

~III-1

i ii ,t



4. By itself, this recommendation takes too much time. A
minimum of four years (and $50 million) is needed to
field a "HAPSE II level" environment, capable of helping
USAF improve MCCR software productivity by about six
percent annually after delivery. The "HAPSE V level"
environment, which would help improve productivity by
about ten percent annually after delivery, would need an
additional three years (and $150 million).

5. USAF can begin improving productivity in development of
MCCR software without waiting for additional software
tools. Improved productivity is aided by, but is not
dependent on, availability of an improved software
development environment. Systematic productivity
improvement efforts are well understood and clearly
successful. They rely on better use of existing tools,
on careful determination of requirements, and on reuse
of existing software "code fragments." [Boeh8l, pp.
641-89].

Econometric Model

1. In controlling use of the integrated automated environ-
ment, two strategies offer the highest ret benefits:

(a) Mandatory use for post-deployment suDport; with
no extraordinary requirements during development.

(b) Mandatory use for post-deployment support; with
voluntary use in development.

Both of these options approximate the control strategy
USAF has used for the JOVIAL language.

For all other options, benefits are negative.

2. The rate of introduction of standard environments has
great leverage over the magnitude of net benefits.
Rapid introduction, so that use is widespread within two
years, has greatest net benefit. Slow introduction,
extending over four or five years, has least net bene-
fit for USAF.

3. Net benefits to USAF are greater when existing produc-
tivity is low, less significant when productivity is
high. That is, operations with the lowest productivity
would benefit most from using an integrated automated
software environment.

111-2



Characteristics simulated by the model

The model can be used to simulate behavior by varying control
strategies, environment characteristics, profiles for cost and
workload (development and support) over a ten-year period, and
model parameters. These changes are made by choosing "EDIT" from
the main menu, then by selecting "BENEFITS," "STRATEGY," "ENV-
TYPE," "YEAR," or "CONSTANTS." Details are given in the
companion volume.*

To modify benefits

Benefits, controlled by the BENEFITS.WKS file, can be
modified in three principle ways:

1. Year of introduction of the environment can be changed,
by EDITing the file.

2. Rates of improvement can be altered, for the six effort
multipliers now in the file, by changing the tabled
annual multiplier values.

3. Other multipliers and formulas can be added to the
ECONOMET.WKS file. A programmer knowledgeable in LOTUS
1-2-3 is needed for this option.

To modify stratecy

Strategy can be modified in four ways. One can change:

1. The number of government sites using a strategy.

2. The number of contractor sites subject to a strategy.

3. The weighting factor, WSCj.

4. From the PARAMETR.WKS file, the average number of
systems per site.

To modify an environment

An environment can be modified by editing the ENVDEF.WKS or
the BENEFITS.WKS worksheets, and the PARAMETR.WKS table's "COST"
option. Multiple characteristics and costs can be changed.

To modify costs

Costs can be changed by editing "PARAMETR.WKS" and choosing
the "COST" option. Multiple costs can be changed.

* Byerly, William P. Automated Econometric Model User's Guide.

June 20, 1986.

111-3

-_ III-



To chanue workload

The workload, in lines of code to be developed and supported,
can be changed in the "COSTS" option of PARAMETR.WKS.

To modify constants

Rate of penetration of the "market" for environments, con-
trolled by the "Pearla" and "Pearlb" parameters in ECONOMET.WKS,
can be changed to simulate faster or slower acquisition and in-
stallation of environments at government and contractor
facilities. This is done from the "CONSTANTS" menu selection.

The interest rate, used to compute present value of annual
costs over the ten-year simulation period, can be changed from
the present value of 0.1 [10.0 percent]. This is also done from
the "CONSTANTS" menu selection.

RECOMMENDED MODIFICATIONS FOR SUBSEQUENT VERSIONS

We recommend that several enhancements be considered for
future work.

1. Add more detail for interim steps in the process of
computing costs. Substantial detail is provided for in the file
design, but more definitive formulas are needed to use the
capability. Additional printed detail should include:

a. The number of environments to be acquired.

b. Capital costs for acquisition and site preparation.

c. Direct operations and maintenance costs, by
category, such as training

d. Add formulas using variables in the "Environment
Type" file. The file is active but at present has
no entries. More precise definition of contractor
variables can be attained by activating this
module.

2. Change sequence of menu steps. Many hours of exercising
the model have shown that menu steps, particularly for selecting
strategies and environments and for editing, can profitably be
resequenced to reduce required keystrokes.

3. Activate the "Environment Type" module.

4. Add cumulative return on investment (RO1 by year.

111-4



CHAPTER FOUR

RECOMMENDATIONS FOR IMPLEMENTATION

Recommendations are in two parts, those dealing with
organizations external to USAF and those inside.

External

1. Consult with appropriate Congressional committees for
acceptable ways to implement these findings. An approach like
that which led to the "Warner Amendment" would probably be most
successful. House Government Operations Committee members have
traditionally opposed any measure that seems to interfere with
"full and free competition," and have challenged DOD initiatives
for standardization.

2. In contrast, the Armed Services committees would be most
likely to support USAF and DoD action to standardize software
support environments. With this external support, internal USAF
actions can be successful. Without it, we can expect to have new
layers added to the existing "scar tissue" at DoD.

Internal

1. Technion International recommends that USAF begin a
systematic three-pronged effort to improve the state of MCCR
soft-ware practice, learning from the recent experience with such
related programs as the Army's ALS compiler. This approach is
directed at improving the practice of MCCR software development
and support, supplementing the many present efforts to further
develop software engineering theory. Both are needed, but at
this moment we believe USAF needs improvement in applied practice
are more urgent.

(a) Competitively acquire three automated integrated
software environments to develop and support !4CCR software.
Perhaps a dozen U.S. vendors can do this today (e.g., General
Electric, TRW, Sot tech, Microsoft). Such environments could
harness known software engineering technology to produce annual
improvements in productivity of more than ten percent. [See
Appendix D1.

By itself, this approach takes too much time. it
could be shortened if vendors reuse existing code. Starting from
scratch, it would take a minimum of four years (and $50 million)
to field a "first level" environment, capable of helping USAF
improve MCCR software productivity by about six percent annually
after delivery. The "third level" environment, which would help
improve productivity by about ten percent annually after
delivery, might take an additional three years (and $150
million).

'v-i



(b) Begin a systematic productivity improvement effort
program inside USAF. The technology is well understood and
clearly successful. It relies on better use of existing tools
and on reuse of existing software "code fragments." USAF can
begin improving productivity in development and support of MCCR
software immediately, without waiting for additional software
tools. Improved productivity is aided by, but is not dependent
on, availability of an improved software development environment.

(c) Competitively acquire three libraries of Ada

language MCCR software "fragments," for systematic reuse. This
requires two efforts by each vendor: (1) test and validate
candi-date existing code fragments; and (2) classify and catalog
them in ways that permit users to quickly identify promising
candidates for reuse.

N

IV-2



BIBLIOGRAPHY

[Alex86] Alexandridis, Nikitas A. "Adaptable Software and Hardware:
Problems and Solutions." IEEE Computer, Vol. 19, Hr. 2,
pp. 29-39.

Paper surveys MCCR software problems and literature and
concludes that adaptable, reusable software and hardware are
essential to mission-critical computing systems.

[Arth83] Arthur, Lowell Jay. Programmer Productivity: Myths, Methods
and Murphology. New York: John Wiley. 1983.

Book describes methods for improving software productivity used
by a unit of American Telephone and Telegraph company.
Reusable code is one element in the program described.

(Baro86] Baroudi, Jack J., and Ginzberg, Michael J. "Impact of the
Technological Environment on Programmer/Analyst Job Outcomes."
Communications of the ACM. Vol. 29, No. 6, June 1986,
pp. 546- 555.

Report of survey that attempted to relate technological
factors in analyst/programming jobs. The results are useful
as an early example of the type of research that needs to be
done in this field. However, only 11 percent of the variance
in job satisfaction [not a high proportion] is explained by the
variables studied.

[Bars84] Barstow, D. R., Shrobe, Howard E., and Sandewall, Erik.
Interactive Proarammina Environments. New York: McGraw-Hill
Inc. 1984.

Book is a collection of papers by authorities in the field of
interactive programming environments. It present develop-
ments to about 1982 from the fields of programing methodo-
logy, artificial intelligence and software engineering. The
book describes how to save time and increase productivity by
using interactive programming environments.

(Bask86] Baskette, Jerry. "Life Cycle Analysis of the AIM Project."
ACM Special Interest Group on Ada, Ada Letters, Vol. VI, Nr. 2,
March/April 1986, pp. vi.2-86 to vi.2-90.

Paper presents comparison of life cycle effort (work-months)
and durations (months) observed on the "AIM" project (which was
not further defined). Compares percentages to those of the
Softcost and COCOMO models, and to the proprietary GTE model.

Biblio-1



During the AIM project a heavy emphasis was laid on require-
ments, specification and design. Authors thought this had
reduced the number of errors and the required testing and
debugging time. No quality data were presented.

[Beau86] Beauchamp, Marc, with Katayama, Hiroko. "A few ugly facts."
Forbes. August 25, 1986, pp. 100-104.

Article cites "a few ugly facts" that challenge the conven-
tional wisdom about Japanese in software. "When the Japanese
began setting their software sweatshops, U.S. programmers
sneered -- computerdom's equivalent, they said, of writing
Shakespeare by committee. No one is sneering now. What
counts in software these days, argues George Lindamood, a
Washington D.C.-based computer consultant who worked for
Burroughs in Japan, 'isn't creativity and innovation as much as
delivery on time and budget'." Also see [Bela86] and [BusW84].

(Bela86] Belady, Laszlo A. "The Japanese and software: is it a good
match?" IEEE Computer. Vol. 19, No. 6, June 1986, pp. 57-61.

Paper is a personal account of the author's 18 months in Tokyo,
working in the IBM Japan Science Institute, helping to develop
a software technology research group. He found that "the real
down-to-earth software technology effort resides in . . . six
companies [in Japan]. This effort is aimed at improving

productivity and quality in an industrial every-day sense. The
companies are [in Belady's sequence]: Nippon Electric,
Hitachi, Fujitsu, Toshiba, Oki, and Mitsubishi.

He concluded that the best "counterstrategy for Japan's
competitors [including those in the U.S.] may be to become a
moving target. The moving target--the product of [U.S.]
flexibility--is very difficult to follow, particularly if you
are already following a very good plan [as the Japanese tend to
do]. Also see [BusV84] and [Beau86].

[Bita85] Bitar, Imad, Penedo, Maria B., and Stuckle, E. Don. "Lessons
Learned in Building the TRW Software Productivity System."

IEEE paper CH2135-2/85/0/0350$01.00.

Authors describe TRW's "Software Productivity System," as it
was developed from 1981 to 1984. TRW's productivity goals are

to increase TRW projects' productivity by a factor of 2

in 1985 and by a factor of 4 in 1990, using 1980 as the base-
line." Authors give examples of software tools used in the
SPS. Important conclusions are: (a) development environments
are mandatory for companies that develop large software systems
since they provide a large payoff in productivity; (b) the
man-machine interface must accommodate all classes of users and
be consistent across tools; (c) sometimes increase in produc-
tivity cannot be measured so easily since it may mean increase

Biblio-2



in quality, not necessarily in quantity; and (d) building a
software development environment involves initiatives in many
areas and corporate commitments. Also see [Boeh82] and
[Boeh84].

[Boeh8l] Boehm, Barry W. Software Engineering Economics. Englewood
Cliffs: Prentice-Hall. 1981.

Author presents an encyclopedic and highly detailed description
of the "COCOMO" software cost estimating system. He devotes an
entire chapter to a systematic description of methods for
developing a software productivity improvement program. The
book includes a consistent 63-project data base, from which the
COCOMO equations were derived. Thirty four of the projects are
broadly similar to USAF MCCR software projects.

(Boeh82] Boehm, Barry W., Elwell, James F., Pyster, Arthur B., Stuckle,
E. Donald, and Williams, Robert D. "The TRW Software
Productivity System." IEEE paper 0270-5257/82/0/0137$0.75.

Paper is an overview of the TRW Software Productivity System
(SPS), an integrated software support environment based on the
Unix(tm) operating system, a wide range of TRW software tools,
and a wideband local network. Important conclusions are: (a)
an integrated software productivity improvement program can
have an extremely large payoff (a factor of 4 by 1990); (b)

improving software productivity involves a long sustained
effort; (c) in the very long run, the biggest productivity
gains will come from increased use of existing software; (d)
software support environment requirements are still too
incompletely understood to specify precisely; (e) no single
software support system architecture will be optimal for all
organizations; (f) a rapid-prototyping capability is essential
to the evolutionary development of a software support environ-
ment; user-interface standards are essential for preserving the
conceptual integrity of an evolving support system; and (g)

user acceptance of novel development environments is a gradual
process which requires careful nurturing by the sponsoring
organization. Also see (Boeh82] and (Bita85].

[Boeh84] Boehm, Barry W. et.al. "A Software Development Environment

for Improving Productivity." Computer, Vol. 17, No. 6,
June 1984.

Paper presents background and status of TRW's Software Produc-
tivity System (SPS). Includes discussion of a 1980 software
productivity study. TRW corporate motivation for the study
stemmed from: increased demand for software, limited supply of
software engineers, rising expectations of software capabili-
ties, and anticipation of reduced costs for computer hardware.
The productivity study recommended that TRW initiate a long-
range effort to develop a corporate software development

Biblio-3



environment. In the short-term, the study recommended
development of a prototype environment.

The architecture and components of the prototype developed
(called SPS-1) included: the work environment (improved
office conditions for software engineers); the hardware (a
network of VkX's, LSI-1l/23's, terminals, and communication
equipment); a master project database (composed of a hier-
archical file system, a source code control system, and a
relational database); general utilities (menu, screen editor,
forms package, date/time, report writer); office automation
and project support (tool catalog, mail system, text editor/
formatter, calendar, forms management interoffice corre-
spondence package); and software development tools (require-
ments traceability tool, SREM, program design language,
Fortran-77 analyzer). TRW's experience in using the prototype
showed a definite improvement in productivity. Immediate
access to a good set of tools had the highest payoff of all
factors studied. Also see [Boeh82] and [Bita85].

[Boeh86] Boehm, Barry W. "A Spiral Model of Software Development and
Enhancement." ACM Special Interest Group on Software Engi-
neering Software Engineering Notes, Vol 11, Nr. 4, Aug. 1986,
pp. 14-24. Keynote presentation given at International
Workshop on the Software Process and Software Environments,
Coto de Caza, Trabuco Canyon, California, 27-29 March, 1985.

This is a very important paper describing attempts to further
the current state of practice at TRW. The paper describes the
software process as an iteration of four phases of activity
that could be adapted to fit a variety of approaches and
methods. Audience reaction was that this was a "metamodel."
Author described how the spiral model was used in developing
the TRW Software Productivity System (SPS). Essentially, the
spiral model makes four separate "rounds" of the spiral, during
each of which a prototype is developed. The first three
rounds are: Concept of operation; Software requirements; and
Software product design. The fourth round, which begins with
an operational prototype, continues through development and
acceptance test.

[Broo75] Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on
Software Engineering. Reading, Massachusetts: Addison-
Wesley Publishing Company. 1975.

Classic in the field. Wise and readable. For example, Brooks
is the source of these insights:

a) "Adding manpower to a late software project makes it
later" (p. 25]

b) ". . . plan to throw one away; you will, anyhow."
[p. 116].

Biblio-4



C) "Plan the system for change." [p. 117).

d) "The second-system effect . . . is a tendency to refine
techniques whose very existence has been made obsolete by
changes in basic system assumptions." [p. 56].

Also see (Fox82].

[Broo84] Brooks, Stephen H. "Macroeconometric Models: Theory and
Practice." One of a series of papers in applied business
economics commissioned by the National Association of Business
Economists. November 1984.

Paper highlights assumptions, construction, and limitations of
seven widely-cited econometric models of the total U.S.
economy. The seven models are:

a. Commerce Department (Bureau of Economic Analysis)
[1000 equations, demand-driven with some monetarist
and supply-side approaches];

b. Chase Econometrics [697 equations, demand-driven];

c. CitiSim (Citibank) [224 equations, monetarist];

d. Data Resources, Inc. [1247 equations,
demand-driven];

e. Federal Reserve Beard ("MPS" Model)
(475 equations; demand-driven];

f. Townsend-Greenspan [1450 equations, demand-driven];

g. Wharton Econometric Forecasting Associates

(1300 equations, demand-driven].

[BusW84] "Japan's Push to Write 'World-Class' Software." Business
Week. February 27, 1984. Pp. 96-98.

Argues that the Japanese are now as dedicated to the computer
software market area as they were to consumer electronics and
automobiles. Notes that "because of the lege-dary thorough-
ness of Japanese workers, 'the finished product here is
better, more reliable, and easier to maintain.'"

[Cont86] Conte, S.D., Dunsmore, H.E., and Shen, V.Y. Software Engi-
neering Metrics and Models. Menlo Park, California:
Benjamin/Cummings Publishing Company. 1986.

Based on over ten years of work by the Software Metrics Re-
search Group at Purdue University, this book describes soft-

Biblio-5



ware metrics and models. It also suggests how metrics and
models can be used by managers, analysts and programmers to
help develop more reliable and cost-effective software.

[Curt86] Curtis, Bill, Soloway, Elliot N., Brooks, Ruven E., Black,
John B., Ehrlich, Kate, and Ramsey, H. Rudy. "Software
Psychology: The Need for an Interdisciplinary Program."
Proceedings of the IEEE. August 1986, pp. 1092-1106.

Authors argue that software psychology must identify funda-
mental characteristics of human behavior involved in inter-
acting with software, and develop means to work with them.

[Dela77] Delaney, William A. "Software Managers Speak Out."
Datamation. October, 1977, pp. 77-78.

Article describes typical reactions of software managers of a
decade ago, and cites productivity rates typical at the time.

[DoD83] U. S. Department of Defense. "Software Technology for Adapt-
able, Reliable Systems (STARS) Joint Task Force Report." 15
March 1983. Reprinted in ACM SIGSOFT Software Engineering
Notes, Vol. 8, No. 2, April 1983. Also see [IDA84a, IDA84b]

Report began by noting that "the U.S. has lost its lead in many
of the mature technologies upon which our industrial base and
military power were built." It then described the new STARS
program in considerable depth. For an update, see (Lieb86].

[DoD85] U. S. Department of Defense, Defense Financial and Investment
Review (DFAIR). "[Report of] Defense Financial and Investment
Review [team]," June 1985.

The DFAIR team was chartered to study contract pricing,
financing and profit policies to determine if they are
resulting in effective and efficient spending of public funds
and maintaining the viability of the defense industrial base,
as well as to make recommendations for improvements. This is
the second study, comparable to the earlier "Profit '76" study.

(Duijl983] Duijn, Jacob. J. van. The Long Wave in Economic Life.
London: George Allen & Unwin. 1983.

Book discusses the role of innovation in "long wave" (50-60
year, or Kondratieff) economic cycles. Research on the long
wave has traditionally been done in Europe. Author shows
that timing of innovations is related to economic growth,
particularly to the (7-11 year) capital investment cycle and to
the 50-60 year cycle. Author notes that labor-saving
innovations can be expected to continue to dominate economic

Biblio-6



growth in the electrcnic computer sector during the 1973-1995
Kondratieff "downswing." He notes the long time lag (often
more than 20 years) between dates of "invention" and "innova-
tion" (i.e., implementation of an invention).

[Fox82] Fox, Joseph M. Software and Its Development. Englewood
Cliffs, Prentice-Hall. 1982.

This is one of two books written by people who have actually
managed software development projects (the other, of course, is
Brooks's Mythical Man Month). In this book, Fox draws on
his experience as manager of IBM's Federal Systems Division.
His account differs from most literature, in that he reports
the system and software life cycle as it appears from the
top, not as he imagines it or wishes it were. His insights
are extremely valuable for those who wish to understand the
"big picture" of USAF software management and productivity
improvement. Also see [Broo75].

(Fren85] Frenkel, Karen A. "Toward Automating the Software-Develop-
ment Cycle." Communications of the ACM, Vol. 28, No. 6,
June 1985, pp. 578-589.

Author surveys expert systems approaches to raising software
productivity. She concludes that ". . the pressure to
increase productivity and avoid a shortage of software engi-
neers is a major factor in driving expert-system projects.
Researchers are exploring available systems, or are building
their own improved versions, to relieve software developers of
tedious or time-consuming tasks. . . . Even if expert systems
are just another interim technology, it is likely that they and
the other approaches together will influence further work that
will achieve a significant increase in productivity."

[FSTC86) U.S. General Services Administration, Office of Software
Development and Information Technology, Federal Software
Testing Center. Software Aids and Tools Survey. Report
OIT/FSMC-86/002. November, 1985.

Report lists several hundred software productivity aids and
tools that were available in late 1985, primarily for the most
popular hardware and programming languages. Some are directly
applicable to MCCR software. The products are indexed by
software vendor, name, source language, host computer, stage of
life cycle, and conversion tool category. The preface iau-
tions that "These products have not been tested or validated by
FSMC." (p. iv). Many of the software products have more than
1000 users. Similar (and much more detailed) catalogs are
published by commercial firms such as Auerbach and Datapro 70.

Biblio-7

LM1 U m



[Gilb86] Gilb, Tom. "Estimating Software Attributes: Some Unconvention-
al Points of View." In ACM SIGSOFT Software Engineering Notes,
vol. 11, no. 1, Jan 1986, pp. 49-59.

An important paper for program managers. It gives a point of
view supplementary to those of Boehm, Halstead, McCabe and
Putnam. His emphasis is on how to get control over the results
of software projects. He presents ten "principles of estima-
tion." To show the flavor of his principles, here are two.

"4. Ask me not what the cost will be.
Design the price you want to see."

"9. Estimation is a losers' game.
Action wins your vital aim."

[Goul85] Gould, John D., and Lewis, Clayton. "Designing for usability:
key principles and what designers think." Communications of
the ACM, Vol 28, Mr. 3., March 1985, pp. 300-311.

Authors describe three principles which they believe must be
followed to produce a useful and easy to use computer system.
The principles are: early and continual focus on users;
empirical measurement of usage; and interactive design where-
by the system (simulated, prototype, and real) is modified,
tested, modified again, tested again, and the cycle is repeated
again and again.

They contrast this approach to other principled design ap-
proaches. For example, "get it right the first time," reliance
on design guidelines. They present data which show that their
design principles are not always intuitive to designers. They
identify arguments which designers often offer for not using
their principles, and answer them. Finally, they give an
example in which their principles were used successfully.

[Eami86] Hamilton, Margaret H. "Zero-defect software: the elusive
goal." IEEE Spectrum, March 1986, Vol. 23, Mr. 3, pp. 48-53.

Author argues that zero-defect software is possible in theory,
but lifficult to achieve. Most common errors are logic and
interface, but errors in user intent also occur. Author
surveys possible ways to overcome each type of error, and is
positive about prospects for success.

[Hans85] Hanson, Stephen Jose, and Rosinski, Richard R. "Programmer
Perceptions of Productivity and Programming Tools." Communi-
cations of the ACM, Vol. 18, No. 2, February 1985, pp. 180-189.

Paper describes a study using preference scaling methods to
determine from the point of view of the programmer, which

Biblio-8



programming tools would most favorably affect design and
development of software. Sample was not working with MCCR
software. Participating programmers were experienced COBOL
programmers from a major programming project at Bell
Laboratories. A major factor was whether programmers were Bell
employees (more familiar with a large range of software tools)
or contractors.

Sample size and composition were limited, but conclusions are
of interest. Minimal tools are interactive debugger and screen
editor. Next phase tools suggested are data dictionary and
automatic test generator. Third phase tools add process
monitors/meters and source beautifier. The authors suggest a
high degree of tool substitutability exists.

(Hara85] Harrison, Richard, and Zvegintzov, Nicholas. "How the software
workbench saved Christmas." Datamation, December 15, 1985,
pp. 61-65.

Paper describes efforts by the Federal Software Management
Support Center to develop Programmer's Workbench Demonstra-
tions. Also refers to vendors, including: Softool Corp.,
Motorola Four-Phase Systems, and Rand Information Systems Inc.

[ech82] Hecht, Herb. The Introduction of Software Tools. National
Bureau of Standards Special Publication 500-91. September
1982.

This special NBS/ICST publication discusses specific needs
for software tools in programming for management information
systems and for scientific applications. Steps for the
successful introduction of tools are discussed and measures
are described to deal with organizational obstacles and
difficulties posed by existing computer installations.

(Horo84] Horowitz, Ellis, and Munson, John B. "An Expansive View of
Reusable Software." IEEE Transactions on Software Engi-
neering, Vol. SE-1O, No. 5, September, 1984. pp. 477-487.

Paper surveys reusability of software, as well as application
generators and other potential tools. Authors cite four
nontechnical related issues: contractual problems; programmer
training; facilitation within the government; and maintenance
and modification of systems composed of reusable code elements.

[Houg82a] Houghton, Raymond C., Jr. Software Development Tools.
National Bureau of Standards Special Publication 500-88.
March, 1982.

Data base of more than 400 software tools, classified
according to the tool taxonomy given in FIPS PUB 99.
Appendices print the database in different sequences, such

Biblio-9

_ -- ~ l ! ii i ll, i, m u m l - -I



as: language written in, and hardware tools are intended
for. Data are current as of 1982. Updates to the data base
are provided to Rome Air Development Center, but are not
classified according the FIPS 99 taxonomy. RADC provides
up-to-date printouts.

(Houg82b] . "A Taxonomy of Tool Features for the Ada Prog-
raming Support Environment (APSE)." National Bureau of
Standards. NBSIR 82-2625. December, 1982.

A review of the Ada Programming Support Environment (APSE),
the Army's Ada Language System (ALS), and the Navy's Ada
Integrated Environment (AIE), based on the FIPS99 software
tool taxonomy. The document includes a comparison of
features in the categories of management, static analysis,
dynamic analysis, transformation, and input/output. Defines a
set of underlying tool primitives that support these
features.

[Houg85] . and Wallace, Delores R. "Characteristics and
Functions of Software Engineering Environments." U.S.
Department of Commerce, National Bureau of Standards paper
number NBSIR 85-3250.

An important paper. Provides examples of existing software
engineering environments now available commercially or in
research laboratories.

[Howd82] Howden, William E. "Contemporary Software Development
Environments." In Communications of the ACM. Vol. 25,
No. 5. Nay, 1982.

Paper proposes four levels of tool support that could be
provided by software engineering environments. For each
level, details the type of project, the estimated cost, and
the support provided. For example, Environment I has an
estimated cost of $35,000 and is for medium-sized projects.
Environment IV is estimated to cost $3 million and is for
large-scale projects. For each environment level, the author
presents tools and techniques for: requirements, design,
coding, verification, and management.

(Hunk8l] Huenke, H., Editor. Software Engineering Environments.
Amsterdam: North-Holland. 1981.

Book, which contains proceedings of a symposium held at
Lahnstein, Federal Republic of Germany, in June 1980, is
still of immense interest. Papers include [Mats8l]. Other
papers discuss issues and tools related to software engi-
neering environments, including functional aspects of
environments, computer aided design, support for concurrent

Biblio-10



and distributed system, human factors, description languages,
productivity, formal verification, performance, system
decomposition ind version control. Book concludes with a
bibliography Ly Hausen, Mullerburg and Riddle containing more
than 350 citations from 1968 to 1980.

(Ichb84] Ichbiah, J., "Ada: Past, Present, Future." In Communications
of the ACM. Vol. 27, Nr. 10, October 1984, pp. 991-997.

The article describes the genesis, conception and current
reality of Ada, and is outlined in the form of an interview
with the Principal Designer of the Ada language.

[IDA84a] Redwine, Samuel T., Jr., Becker, Louise Giovane, Marmor-
Squires, Ann B., Martin, R.J., Nash, Sarah H., and Riddle,
William Z. Dod Related Software Technology Requirements,
Practices, and Prospects for the Future. IDA Paper P-1788.
Washington, D.C.: Institute for Defense Analyses.
June 1984.

Excellent collection of papers relating to MCCR software.

[IDA84b] DeMillo, Richard A., Marmor-Squires, Ann B., Redwine, Samuel
T., Jr., and Riddle, William E. Software Engineering
Environments for Mission Critical Applications -- STARS
Alternative Programmatic Approaches. IDA Paper P-1789.
Washington, D.C.: Institute for Defense Analyses.
August 1984.

Collection of papers relating to software engineering
environments to be used for MCCR software.

[JLC84] Joint Logistics Commanders' Workshop. "Final Report of the
Joint Logistics Commanders' Workshop on Post Deployment
Software Support (PDSS) for Mission-Critical Computer
Software, Vol. I - Executive Summary." June 1984.

Account of discussions relating to problems of post-deployment
support of MCCR software, and potential solutions.

(Jone86] Jones, Capers. Programming Productivity. New York: McGraw-

Hill Book Company. 1986.

The latest book on the subject. Author gives many examples.

[Kend77] Kendrick, John W. Understanding Productivity: An Intro-
duction to the Dynamics of Productivity Change. Baltimore:
Johns Hopkins University Press. 1977.

Basic description of productivity, from an economist's point of
view.

Biblio-li



[Laud86] Laudon, Kenneth C. "Data Quality and Due Process in Large
Interorganizational Record Systems." Communications of the
ACM, Vol. 29, Nr. 1, January 1986, pp. 4-11.

Author assessed several federal- and state-maintained criminal
record systems, and found high levels of inaccurate, ambiguous,
and incomplete information. He found that a sample of records
from the FBI "Ident" system contained only 25.7 percent that
were complete, accurate, and unambiguous. 74.3 percent showed
some significant quality problems. This is an extreme case,
with federal and state organizations both cooperating and
competing with one another. Author explains that "Given this
uncertain political environment, the FBI has imposed few data-
quality controls over participants in its criminal-record
systems."

[Ledg82] Ledgrad, M. F., and Singer, A. "Scaling Down Ada."
Communications of the ACM. Vol. 25, No. 2, February 1982,
pp. 121-5.

Article stresses that, though Ada is an ambitious programing
language, its size and complexity may plague its technical
success. It presents means of streamlining the language and
providing an authorized subset in an effort to scale it down.

[Lieb86] Lieblein, Edward. "The Department of Defense Software
Initiative -- A Status Report." Communications of the ACM.
Vol. 29, No. 8. August 1986. Pp. 735-744.

Paper describes present status of major Dod software efforts.
The "Defense Software Initiative" consists of three major,
closely related programs: the Ada standard high-order language
program; STARS (Software Technology for Adaptable Reliable
System]; and the Software Engineering Institute. The massive
program includes several demonstration and reusability projects
of interest for this project: "Common Ada Missile Packages
(CAMP)"; "Ada Based Integrated Control System (ABICS)"; and the
"Automation of User Requirements" project.

(Lutt84] Luttwak, Edward N. The Pentagon and the Art of War.
New York: Institute for Contemporary Studies/Simon and
Schuster. 1984.

Author presents a "devil's advocate" argument, intentionally
presenting an adversary view of organizational constraints
which [unintentionally, as unforeseen side effects] interfere
with and delay development, acquisition, fielding and support
of technology in the U.S. Dept. of Defense. Sections
relevant to USAF MCCR software are found in pp. 89-91,
166-182, and 218-219.

Biblio-12



[Lyon85] Lyons, Michael L. "The DP Psyche." Datamation, August 15,
1985, pp. 103-110.

Article describes an international survey of programmer
personality types, based on the Myers-Briggs typology.
Also see [Sitt84].

[Mark83] Markus, M. Lynne. "Power, Politics, and HIS Implementation."
Communications of the ACM, Vol. 26, No. 6, June 1983,
pp. 430-443.

Paper discusses organizational implications of MIS implemen-
tation.

[Mats81] Matsumoto, Y., et.al. "SWB System: A Software Factory." In
Software Engineering Environments. H. Huenke, Editor.

Amsterdam: North-Holland. 1981.

It is difficult to overemphasize the importance of this
paper for production of NCCR software. Authors discuss a
self-contained large scale "software factory" that produces
software for critical applications (nuclear power station
controls). Both productivity and quality of the software
products are far superior to present U.S. practice.

The "factory," operated by Toshiba Corp.'s Heavy Apparatus
Engineering Laboratory, consists of three physical buildings,
2000 employees, a methodology, a software environment,
intense and systematic efforts to reuse tested code, career
paths, and lifetime employment, as well as its own personnel
management, finance, and quality control organizations.

The software environment consists of a number of tools and
techniques that emphasize the latter of the life cycle
(language and library processors, editors, debuggers, etc.).
The plans for the environment include addition of tools for
the front end (SADT, design languages, etc.).

[McI168] Mcllroy, M.D. "Mass-produced software components." In
Software Eng. Concepts and Techniques, 1968 NATO Conf.
Software Eng., Buxton, J. N., Naur, P, and Randell, B, eds.,
1976, pp. 88-98.

This is the earliest citation on the subject of reusable code.

[Nuns8l] Munson, John B. "Software Maintainability: A Practical
Concern for Life-Cycle Costs." IEEK Computer. November
1981, pp. 103-109.

An excellent, relatively early, discussion of the need to
improve post-deployment software support.

Biblio-13

... ..... ...



(Myer84] Myers, Ware. "Can Software dEvelopment processes improve--
drastically?" IEEE Software, July 1984, pp. 101-102.

A short, philosophical, note that may be of substantial
long term value.

(MyerS5] . "An Assessment of the Competitiveness of the

United States Software Industry." In Computer. March, 1985,
pp. 81-92.

Also see CZelk84].

[OTA86b] U. S. Congress, Office of Technology Assessment. Research
Funding as an Investment: Can We Measure the Returns? -- A
Technical Memorandum. OTA-TM-SET-36, April 1986.

Paper discusses difficulties of measurement in this field.

(Pind8l] Pindyck, Robert S., and Rubinfeld, Daniel L. Econometric
Models and Economic Forecasts, 2nd Ed. New York:

McGraw-Hill Book Company. 1981.

A thorough and rigorous treatment of the field. Authors both
received their Ph.D. degrees as M.I.T., where Pindyck is
Professor of Applied Economics at the Sloan School of
Management. Rubinfeld is Assoc. Professor of Economics and
Law at the University of Michigan.

[Rade85] Rader, Jock A. "Experiences Building and Using a Software
Engineering Environment for Avionics Software." IEEE paper

CH21352/85/0/0358$1.00.

Paper discusses experience in building a using an environment

in building MCCR software for radar applications at Hughes
Aircraft Company. Author describes preliminary experience. In
his view, reusable software is not as practical as has been
expected.

[Ridd86] Riddle, William E., and Williams, Lloyd G. "Software Environ-
ments Workshop Report." ACM SIGSOFT Software Engineering

Notes, Vol. 11, Nr. 1, Jan. 1986, pp. 73-102.

Paper describes a workshop, co-sponsored by the National
Science Foundation and the Rocky Mountain Institute of Software

Engineering.

Biblio-14

/lfliil1 N NI111 NA



[Samps84] Sampson, Charles H, Fritz, Robert E., Gillen, Michael J.,
Olson, Alan R., Sans, Conway C., and Fisher, Gerald A., Jr.
"Developing an Ada to CNS-2 Translator." Proceedings of
IEEE Computer Society 1984 Conference on Ada Applications and
Environments, October 15-18, 1984, pp. 83-88. IEEE Computer
Society Press. IEEE Catalog No. 84CH2083-4.

Discusses an approach to the problem of Dod-wide standard
software support environments. CMS-2 is a primary language
used by the U.S. Navy, which has a large inventory of MCCR
software written in the language.

[Silv85] . "Software Cost and Productivity Improve-
ments: An Analogical View." Computer. May 1985, pp. 86-96.

Important article for those working with MCCR software.
Author studied ways in which experienced software people
refer to previous projects ("analogies") in designing new
software. Author demonstrates that, by making small adjust-
ments in information flows and job designs, software managers
can reuse existing software more effectively. Among other
recommendations, author suggests including this activity in
procedures governing software life cycle, to permit designers
to include this process explicitly.

(Sitt84] Sitton, Sarah, and Chmelir, Gerard. "The Intuitive Computer
Programmer." Datamation. October 15, 1984, pp. 137-140.

Certain types of personality seem to be drawn to the occupation
of computer programmer. This paper reports on a study in which
typical characteristics were found and inferences drawn. Using
the Myers-Briggs Type Indicator, authors worked with a sample
of 27 volunteers in Texas. The most common personality type
among [the sample of] ADP people is ENTP [extrovert, intuitive,
thinking, perceiving]. Only about five percent of the general
population is of this type.

The occupation best suited to this personality type is that of
inventor. The type is ". . . good at analysis, especially
functional analysis, with a tolerance for and enjoyment of the
complex . . . always looking for new projects, new activities,
new procedures. . . They ignore the standard, the tradi-
tional, and the authoritative." Authors comment that "this
personality type places a high value on innovation and may rely
on ingenuity to carry the day, sometimes neglecting necessary
preparation. As soon as a problem is solved they may lose
interest--unless they are very self-disciplined--and simply
walk away from the project. Also see [Lyon85].

Biblio-15



[Stan84] Standish, Thomas A. "An Essay on Software Reuse." IEEE
Transactions on Software Engineeri, Vol. SE-lO, No. 5,
Sept., 1984, pp. 494-497.

Paper explores software reuse. It discusses briefly some
economic incentives for developing effective software reuse
technology and notes that different kinds of software reuse,
such as direct use without modification and reuse of abstract
modules after refinement, have different technological
implications. It then sketches some problem areas to be
addressed if we are to achieve the goal of devising practical
software reuse systems. These include information retrieval
problems and finding effective methods to aid us in
understanding how programs work. Author presents a philo-
sophical epilogue which stresses the importance of having
realistic expectations about the benefits of software reuse.

[StueS4] Stuebing, H.G. "A Software Engineering Environment (SEE) for
Weapon System Software." In IEEE Transactions on Software
Enaineering, Vol. SE-10, No. 4, July 1984.

Paper presents a large scale environment called FASP that is
hosted on multiple, large scale commercial computers. FASP
primarily supports the latter stages of software development,
but the author also discusses extension to the requirements
and design phases. The author attributes a two-fold increase
in productivity (lines per month) to FASP, and in increase in
software quality due to the tools, standards, and testing
associated with the FASP environment. FASP includes an
underlying database made up of libraries: Source library,
object library, test library, interface library, production
data library, and documentation library. The system is
command driven; the commands consist of lower level system
commands (command procedures). Testing is supported by the
Automated Testing Analyzer (ATA) and there is support for
multiple languages and target computers.

(Taj84] Tajima, Denji, and Natsubara, Tomoo. "Inside the Japanese
Software Industry." Computer. March 1984, pp. 34-43.

Paper describes the Japanese software industry, focusing on
Hitachi Engineering [HSK]. It is written from the viewpoint of
the Japanese, showing how that nation's philosophies, ways of
living, home and business environments affect the ways they
"manufacture" their software.

[USGAS6] U. S. General Accounting Office. "Government Equipment:
Defense Should Further Reduce the Amount It Furnishes to
Contractors." GAO/NSIAD-86-109, June 19, 1986.

GAO believes that the military services and defense agencies
should be allowed to provide general purpose equipment to

Biblio-16



contractors only under highly unusual circumstances which are
clearly defined, adequately controlled, and properly justified.
Specific guidelines should be developed for program managers
and contracting officials to use in determining when and under
what conditions the government can provide general purpose
equipment to service contractors.

(Wall84] Wallich, Paul. "A review of engineering workstations." IEEE
Spectrum. Oct. 1984, pp. 48-53.

Review of engineering workstations two years ago.

(Werl83] Werling, P.R. Alternative Models of Organizational Reality:
The Case of Public Law 89-306 [The Brooks Act]. D.P.A.
Dissertation submitted to the University of Southern
California School of Public Administration. 1983.

Paper addressed two major issues. In the first, economic
aspects of computing in the Federal government, author shows
that computing cost/performance improved by more than 30 per-
cent annually in the years 1958-1980. In these years, a new
'generation" of computing technology emerged every five years.

In the second, the author questioned why the Federal govern-
ment fell farther and farther behind the state of the computing
art after enactment of the Brooks Act in 1966. By 1980 Federal
computers averaged five years older than those in the private
sector, and were much less productive economically. Difficul-
ties were traced to fundamental discrepancies among three
models of organizational reality that describe behavior of
separate groups of public servants: a) operating agencies
(such as USAF] act in accordance with the "organizational
process" model, taught in the school of hard knocks; b) the
General Accounting Office and regulatory agencies exhibit
expectations and behavior that correspond to the "classical
management" model (taught in business schools); and c) authors
of legislation and implementing procedures function as though
guided by the "adversary proceedings" model (taught in law
schools).

Tests of seven substantive hypotheses showed that the "classi-
cal management" model is useful for the first estimate of
results, while the "organizational process" and "adversary
proceedings" models provide valuable insights for anticipating
dysfunctions in implementation.

(Wer185] _ _ , Houghton, R. C., Jr., and Chande, A. M. "Use of
a Software Development and Support Environment as Government-
Furnished Equipment (GFE)." Report of research conducted for
U.S.A.F. Business Research Management Center, AFBRMC/RDCB,
Wright-Patterson AFI, OH. June 28, 1985. The research was
supported under contract #F 33615-84-C-5114.

Biblio-17

Im 11



Paper describes: (1) what an integrated automated software
development/support environment should consist of; (2) what
software tools and methods were available [in 1985], and what
needed to be developed for the integrated automated environment
to be feasible; and (3) pros and cons of developing a standard
environment to be provided as Government-Furnished property.
Conclusions of the research were:

(a) USAF can now build an integrated, automated software
development/support environment with [19851 technology;

(b) More than 400 software tools were available [usually
written in FORTRAN, rather than in Ada], with at least
one tool to support each function needed during the life
cycle of software for mission-critical systems;

(c) Improvements in productivity, ranging from ten to twenty
percent annually, can probably be sustained by USAF
contractors who use such an environment;

(d) Use of a standard environment would improve the post-
deployment maintenance and enhancement of mission-
critical software;

(e) A standard environment must be designed to accommodate
significant future changes in software modules, user
interface, and methodology. That is, the functional
capabilities built into an environment must be designed
for frequent change throughout the entire life cycle of
the environment; and

(f) Because of the complexity of the issues, a detailed
econometric model is needed to establish the cost-
effectiveness of such a GFE program.

(Verl86] . "Data Collection System for Estimating Software
Development Cost." Report of research conducted for U.S.A.F.
Business Research Management Center, AFBRMC/RDCB, Wright-
Patterson AFB, OH. September 1986. The research was
supported under contract number F 33615-85-C-5123.

Paper describes research and development of a data collection
system to help USAF Contract Management Division [FCND)
resolve difficulties encountered in obtaining estimates of
costs and schedules for software development. AFCMD technical
evaluators need help in: (a) obtaining accurate estimates for
software before development by contractors; and (b) validating
estimated costs and schedules submitted by contractors. While
contractors reported productivity increases of more than ten
percent per year, USAF contracts did not reflect those gains.

Biblio-18



Paper describes how contractor developed: (a) a PC-based data
collection program that permits AFPRO specialists to encode
essential data on their software projects; and (b) a prototype
computer program for AFCKD specialists to use in evaluating
contractors' proposals for new software projects. The proto-
type computer program, based on the widely used "COCONO" cost
estimating model, separates cost drivers into two broad
categories. The first category of costs, primarily under the
control of the government, consists of project characteristics
that are Requirements-Driven. The second category, primarily
controllable by contractors, involves such cost drivers as
level of experience, use of software tools, and turnaround
time of the development computer.

Project staff visited with AFCND specialists and with contrac-
tors' cost estimators at six Air Force Program Review Offices
[AFPROs], to ensure understanding of the wide variety of AFPRO
functions and responsibilities. Contractor designed a data
collection system that provides input data required by four
popular models and is compatible with a VkX-based system in use
at Hanscom AFS, NA.

(Wolf84] Wolf, Alexander L., Clarke, Lori A., and Wileden, Jack C.
"An Ada Environment for Programing-in-the-Large."
Proceedings of IEEE Computer Society 1984 Conference on Ada
Applications and Environments, October 15-18, 1984,
pp. 52-62. IEEE Computer Society Press. IEEE Catalog No.
84CH2083-4.

[Zelk841 Zelkowitz, N.V., et.al. "Software Engineering Practices in
the U.S. and Japan." Computer. June 1984, pp. 57-65.

Paper gives results of an in-depth survey of 30 companies. It
shows that software development/support practices are ten
years behind software engineering research. Authors suggest
that tools now available can narrow this gap.

[Zveg84aJ Zvegintzov, Nicholas. "Immortal Software." Datamation, June
15, 1984. Pp. 170-180.

Paper argues that systems grow old, but rarely die. Author
recommends "structured retrofit" as a technique for keeping
systems vigorous.

[Zveg84b] _ _ . "Front-End Programming Environments."
Datamation. Aug. 15, 1984, pp. 80-88.

Paper describes several popular programming environments, then
marketed for the commercial software industry.

Biblio-19

r e,_



APPENDIX A

CHARACTERISTICS OF ENVIRONMENTS

The following pages summarize the survey conducted by Raymond
C. Houghton, Jr. The entries contain information required for
the econometric model, in some cases coded consistent with FIPS
99.

A-1



ENVIRONMENT SUMMARY

Environment Functionality Size Cost/ 1 10 100 Sites

MAPSE

I Average MAPSE 49% 450K S 18, 906K (development cost)

2 ALS/VMS 38% 500K S 22,660K (development cost)

3 VADS/VMS 36% 700K S 20,000 08,000 S2,000

4 R-14DOO (Rational) 36X. 1006K $600,00

5 Harris (HAPSE) 36% S 50,000

6 FASP 44% 600K+ GFE

APSE

7 Average APSE S4% 83GK S 80,866K (development cost)

8 STARS-SEE 82% 158MEG* *150,000K (development cost)

9 SPS/Unix 80%

10 SOFTOOL/VMS 53% 1.5MEG* S 60,000 0 24,000

11 ARGUS I/Unix 53% 70K S 50,000

Baseline OS

Unix 29% 13K (Kernel)
16HEG* (Support)

VAX/VMS 22% 250K

CDC Cyber 20% 700K

.estimated



Environment Index Number I

Environment Name Average MAPSE

Vander/Developer STONEMAN

Environment Type MAPSE

Number of Languages Supported 1

Functional Support (Functions/45) 22/45 a 49%

Underlying Operating System real-time, time sharing, or
virtual memory operating system

Size (KDSI) 450

Development Cost *iB, 955, Se

--- -- -- --Purcha- --- -- -- --Co- ---t--- -- ---S- -t---)

Purchase Cost (1 Site)

Purchase Cot (1005 Sites)

Number of Versions

Version Life (Months)

Contact

References Barry W. Boehm, 'Software
Engineering Economic.', Prentice-
Hall, 1981



FUNCTIONALITY Index No.

TRANSFORMATION STATIC ANALYSIS

a Editing SI Auditing

T2 Formatting S2 Comparison

a Instrumentation S3 Complexity Neasurement

Optimization S4 Completeness Checking

(T6 Translation) S5 Consistency Checking

Assembling Cross Reference

Compilation Data Flow Analysis

T6C Conversion Error Checking

Macro Expansion Interface Analysis

T7 Synthesis SIS Scanning

DYNAMIC ANALYSIS Statistical Analysis

DI Assertion Checking Structure Checking

D2 Constraint Evaluation Type Analysis

@ Coverage Analysis S14 Units Analysis

Resource Utilization S15 I/O Specification Analysis

D5 Simulation MANAGEMENT

D6 Symbolic Execution 61 Configuration Management

Timing (02 Information Managem.it)

(D8 Tracing) G2A Data Dictionary Management

Breakpoint Control 02B Documentation Management

Data Flow Tracing q File Management

Path Flow Tracing g Test Data Management

Tuning (G3 Project Management)

DI Regression Testing 03A Cost Estimation

633 Resource Estimation

03C Scheduling

G3D Tracking



Environment Index Number 2
---- -------------------------------------------------------------

Environment Name ALS (Ada Language System)
------- --------------------------------------------------------

Vander/Developer Softech, Inc., Waltham, MA
---- -------------------------------------------------------------

Environment Type KAPSE

Number of Languages Supported I
---- -------------------------------------------------------------
Functional Support CFunctions/45) 17/45 - 38%

Underlying Operating System VAX/VHS

Size (KDSI) see

Development Cost 622, 006,00

Purchase Cost (I Site) $1200 (Reproduction Cost)

--- -- -Purchase - --- ---Cost-- ---(IS-- -- --Sites)-- --

Purchase Cost (1000 Sites)

Number of Versions 3

Version Life (Months) 6

Contact Beverly Vidler, 617-890-6900

References Softech Literature

- ,.* * ~ %



FUNCTIONALITY Index No. 2

TRANSFORMATION STATIC ANALYSIS

Editing SI Auditing

Formatting 0 Comparison

T3 Instrumentation S3 Complexity Measurement

? Optimization S4 Completeness Checking

(T6 Translation) S5 Consistency Checking

Assembling Cross Reference

6 Compilation S7 Data Flay Analysis

T6C Conversion Error Chcking

Macro Expansion Interface Analysts

T7 Synthesis SIS Scanning

DYNAMIC ANALYSIS S11 Statistical Analysis

Dl Assertion Checking Structure Checking

D2 Constraint Evaluation Type Analysis

D3 Coverage Analysis 914 Units Analysis

D4 Resource Utilization S15 I/0 Specification Analysis

D5 Simulation MANAGEMENT

D6 Symbolic Execution ? Configuration Management

D7 Timing (02 Information Management)

(D8 Tracing) G2A Data Dictionary Management

Breakpoint Control 025 Documentation Management

D8B Data Flow Tracing Opp File Management

Path Flay Tracing 02D Test Data Management

Tuning (03 Project Management)

D10 Regression Testing G3A Cost Estimation

63B Resource Estimation

03C Scheduling

G3D Tracking



Environment Index Number 3

Environment Nama VADS (Verdix Ada Development
System)

Vander/Developer Verdix Corp., Aloha, OR

Environment Type MAPSE

Number of Languages Supported I

Functional Support (Functions/45) 16/45 a 36%

Underlying Operating System VAX/VHS

Size (KDSI) 7S8 (Includes Generation Code)

Development Cost

Purchase Cost (I Site) *20,0"

Purchase Cost (100 Sites) S8,666

Purchase Cost (iS0O Sites) $2,00

Number of Versions

Version Life (Months)

Contact David Schwartzman, 703-378-7600

References Verdix Literature



FUNCTIONALITY Index No. 3

TRANSFORMATION STATIC ANALYSIS

T? Editing S1 Auditing

T2 Formatting S2 Comparison

T3 Instrumentation S3 Complexity Measurement

( Optimization S4 Completeness Checking

(T6 Translation) S5 Consistency Checking

Assembling ? Cross Reference

( Compilation S7 Data Flow Analysis

T6C Conversion Error Checking

T6D Macro Expansion Interface Analysis

T7 Synthesis S1. Scanning

DYNAMIC ANALYSIS S11 Statistical Analysis

DI Assertion Checking e Structure Checking

D2 Constraint Evaluation 9 Type Analysis

D3 Coverage Analysis S14 Units Analysis

D4 Resource Utilization S15 I/O Specification Analysis

D5 Simulation MANAGEMENT

D6 Symbolic Execution Configuration Management

2 Timing (02 Information Management)

(D8 Tracing) Data Dictionary Management

Breakpoint Control Documentation Management

D8B Data Flow Tracing File Management

i Path low Tracing 02D Test Data Management

D9 Tuning (03 Project Management)

DIS Regression Testing 03A Cost Estimation

G3B Resource Estimation

03C Scheduling

G3D Tracking

, ... r ,, "*' ' , r! ' R V low



Environment Index Number 4

Environment Name R- 1000 Development System

Vander/Developer Rational Inc., Palo Alto, CA

Environment Type MAPSE

Number of Languages Supported I

Functional Support (Functions/45) 16/45 a36% (plus an Ada-oriented
Interface)

Underlying Operating System None

Size (KDSI) 1,868 (1 Hag)

Development Cost

Purchase Cost (I Site) *600,e

--- -- -Purchaue -- --- ---Cost-- ---(--- ---Sites)-- --

Purchase Cot (10S Sites)

Number of Version.

Version Life (Months)

Contact Jim Hake, 415-946-4761

References Rational Literature



FUNCTIONALITY Index No. 4

TRANSFORMATION STATIC ANALYSIS

0 Editing SI Auditing

T2 Formatting S2 Comparison

T3 Instrumentation S3 Complexity Measurement

Optimization S4 Completeness Checking

(T6 Translation) S5 Consistency Checking

Assembling 5 Cross Reference

Compilation S7 Data Flow Analysis

T6C Conversion Error Checking

TSD Macro Expansion Interface Analysis

T7 Synthesis 51 Scanning

DYNAMIC ANALYSIS S11 Statistical Analysis

DI Assertion Checking Structure Checking

D2 Constraint Evaluation Type Analysis

D3 Coverage Analysis 914 Units Analysis

D4 Resource Utilization S15 I/0 Specification Analysis

D5 Simulation MANAGEMENT

D6 Symbolic Execution Configuration Management

7 Timing (02 Information Management)

(D8 Tracing) Data Dictionary Management

Breakpoint Control Documentation Management

D8B Data Plow Tracing File Management

9 Path Flow Tracing G2D Test Data Management

D9 Tuning (03 Project Management)

DIG Regression Testing 03A Cost Estimation

G33 Resource Estimation

G3C Scheduling

G3D Tracking

I ~ ~ ~ ~ ~ ~ ~ ~ AJ 2XWW+"*+ ,- + ,irl ' i "'' lo r r



Environment Index Number 5

Environment Name HAPSE (Harris Ada Programming
Support Environment)

Vender/Developer Harris, Inc., Helburn, FL

Environment Type KAPSE

Number of Languages Supported I

Functional Support (Functions/45) 16/45 a 36X

Underlying Operating System H-800 or H-1200 (Harris Systems)

Size (KDSI)

Development Cost

Purchase Cost (I Site) *50,,,e
--- -- --Purchase--- -- --Cost- ----(1---@--Sites)-- --

Purchase Cost (100* Sites)

Number of Versions
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --I-

Version Life (Months)

Contact Bill Marlow, 305-977-552

References Harris Literature



FUNCTIONALITY Index No. 5

TRANSFORMATION STATIC ANALYSIS

Editing SI Auditing

T2 Formatting S2 Comparison

T3 Instrumentation S3 Complexity Measurement

(9 Optimization S4 Completeness Checking

(T6 Translation) S5 Consistency Checking

Assembling 9 Crom Reference

09 Compilation S7 Data Flow Analysis

T6C Conversion Error Checking

T6D Macro Expansion I Interface Analysis

T7 Synthesis SIG Scanning

DYNAMIC ANALYSIS S11 Statistical Analysis

DI Assertion Checking Structure Checking

D2 Constraint Evaluation Type Analysis

D3 Coverage Analysis S14 Units Analysis

D4 Resource Utilization S15 I/O Specification Analysis

D5 Simulation MANAGEMENT

D6 Symbolic Execution Configuration Management

Timing (02 Information Management)

(D8 Tracing) Data Dictionary Management

Breakpoint Control Documentation Management

DSB Data Flow Tracing File Management

i Path Flow Tracing G2D Test Data Management

D9 Tuning (03 Project Management)

DIG Regression Testing 03A Cost Estimation

633 Resource Estimation

03C Scheduling

03D Tracking

.9!



Environment Index Number 6

Environment Name FASP (Facility for Automated
Software Product ion)

Vender/Developer Naval Air Development Center
(NADC)

Environment Type NAPSE

Number of Languages Supported 3+

Functional Support (Functionm/45) 20/45 a 44%

Underlying Operating System CDC Cyber

Size (KDSI) 125K (Envelope)
125K (for each Language)

Development Cost

--- --- -- -Purcha - ----e- -Coat-- --(1---Site)-- -OFE--

Purhachat Cos( Site) F

Purchase Cot (10 Sites)

Number of Versions

Version Life (Months)

Contact Tony Williamson, 215-441-3145

References H. 0. Steubing, 9A Modern
Facility for Software Production
and Maintenance*, Proceedings of
COKPSAC, October 1981



FUNCTIONALITY Index No. 6

TRANSFORMATION STATIC ANALYSIS

T Editing SI Auditing

(f2? Formatting Comparison

,3 Instrumentation S3 Complexity Measurement

(4 Optimization S4 Completeness Checking

(T6 Translation) S5 Consistency Checking

Assembling Cross Reference

Compilation S7 Data Flov Analysis

T6C Conversion Error Checking

- Macro Expansion S9 Interface Analysis

T7 Synthesis $I Scanning

DYNAMIC ANALYSIS S11 Statistical Analysis

DI Assertion Checking S12 Structure Checking

D2 Constraint Evaluation S13 Type Analysis

(0 Coverage Analysis S14 Units Analysis

D4 Resource Utilization S15 I/O Specification Analysis

D5 Simulation MANAGEMENT

D6 Symbolic Execution Configuration Management

Timing (02 Information Management)

(D8 Tracing) Data Dictionary Management

(DS Breakpoint Control Documentation Management

DBB Data Flow Tracing File Management

Path Flow Tracing Teat Data Management

Tuning (G3 Project Management)

DI Regression Testing G3A Cost Estimation

03B Resource Estimation

G3C Scheduling

03D Tracking



Environment Index Number 7

Environment Name Average APSE

Vender/Developer STONEMAN

Environment Type APSE

Number of Languages Supported I

Functional Support (Functions/45) 38/45 a84X
----------------------------------------------------------------------------------

Underlying Operating System real-time, time shasring, or
virtual memory operating syatem

Size (KDSI) 836K

Development Cost *80, S",06

--- -- -- --Purc - -- --a---e--Co- ---t--(1- ---Site)- --

Purchase Coat (I~ Site)

Purchase Cost (100 Site.)

Number of Version.

Version Life (Months)

Contact

References Barry W. Boehm, 'Software
Engineering Economics*, Prentice-
Hall, 1981

MOW"



FUNCTIONALITY Index No. 7

TRANSFORMATION STATIC ANALYSIS

Y Editing SI Auditing

(I3 Formatting ( Comparison

115 Instrumentation S3 Complexity Measurement

Optimization (3 Completeness Checking

(T6 Translation) 3 Consistency Checking

Assembling Crosn Reference

Compilation S Data Flow Analysis

Conversion Error Checking

Macro Expansion Interface Analysis

T7 Synthesis Scanning

DYNAMIC ANALYSIS Statistical Analysis

D1 Assertion Checking Structure Checking

Constraint Evaluation Type Analysis

,9 Coverage Analysis S14 Units Analysis

,) Resource Utilization S15 I/O Specification Analysis

D5 Simulation MANAGEMENT

( Symbolic Execution Configuration Management

Do Timing (62 Information Management)

(D8 Tracing) Data Dictionary Management

Breakpoint Control Documentation Management

( j9 Data Flow Tracing File Management

48 Path Flow Tracing Test Data Management

Tuning (63 Project Management)

Regression Testing Cost Estimation

E Resource Estimation

9 Scheduling

STracking



Environment Index Number 8

Environment Name STARS SEE (STARS Softvare

Engineering Environment)

Vander/Developer STARS Systems Group

Environment Type APSE

Number of Languages Supported 1
---- -------------------------------------------------------------
Functional Support (Functions/45) 37/45 x 82X
---- -------------------------------------------------------------

Underlying Operating System none
---- -------------------------------------------------------------

Size (KDSI) 150,000K (Estimated)

Development Cost $15S0,556, Se
--- -- -- --Purchase-- -- -- --Coat- -- --(I- ---Site)- --

Purchase Coat ((I Site)

Purchase Cost (1*SS Sites)

Number of Versions S

Version Life (Months)

Contact Hank Steubing, 213-441-2314

References STARS SEE Specs



FUNCTIONALITY Index No. a

TRANSFORMATION STATIC ANALYSIS

Editing 41 Auditing

Formatting Comparison

CT3 Instrumentation S3 Complexity Measurement

Optimization Completeness Checking

(T6 Translation) Consistency Checking

Assembling Crown Reference

KT Compilation Data Flow Analysis

Conversion Error Checking

Macro Expansion Interface Analysis

c~2 Synt.&esis Scanning

DYNAMIC ANALYSIS Si1 Statistical Analysis

Assertion Checking 4)Structure Checking

D2 Constrainu Evluation (pType Analysis

(D ) Coverage Analysis S14 Units Analysis

D09 Resource Utilization S15 1/0 Specification Analysis

D05 Simulation MANAGEMENT

D6 Symbolic Execution Configuration Management

STiming (02 Information Management)

(D8 Tracing) Data Dictionary Management

(I)Breakpoint Control lpDocumentation Management

08B Data Flow Tracing C2)File Management

Path Flow Tracing Test Data Management

50 Tuning (03 Project Management)

G)Regression Testing Cost Estimation

033 Resource Estimation

(9 Scheduling

STracking



Environment Index Number 9

Environment Name SPS (Software Productivity
Syst em)

Vender/Developer TRW, Inc.

Environment Type APSE

Number of Languages Supported 4+

Functional Support (Functions/45) 36/45 - 80%

Size (KDSI)

Development Cost

--- -- -- --Purcha - --- ---e--Cost- -- --(1- ---Site)- --

Purchase Cost (I~ Site)

Purchase Cost (10 Sites)

Number of Versions

Version Life (Months)

Contact Inad Sitar, 213-535-4321

References Barry W. Boehm, et. al., *A
Software Development Environment
for Improving Productivity*,
Computer, June 1964



FUNCTIONALITY Index No. 9

TRANSFORMATION STATIC ANALYSIS

TV Editing Auditing

f2: Formatting Comparison

Instrumentation @ Complexity Measurement

Optimization Completeness Checking

(T6 Translation) * Consistency Checking

t Assembling Cross Reference

0 Compilation S7 Data Flow Analysis

T6C Conversion Error Checking

Macro Expansion Interface Analysis

T7 Synthesis Scanning

DYNAMIC ANALYSIS Statistical Analysis

( Assertion Checking Structure Checking

D2 Constraint Evaluation C Type Analysis

U Coverage Analysis S14 Units Analysis

D4 Resource Utilization S15 1/O Specification Analysis

( Simulation MANAGEMENT

D6 Symbolic Execution ! Configuration Management

) Timing (02 Information Management)

(Da Tracing) Data Dictionary Management

Breakpoint Control Documentation Management

Data Flow Tracing File Management

Path Flow Tracing E Test Data Management

(69) Tuning (03 ProJect Management)

F--)Regression Testing E Cost Estimation

03B Resource Estimation

(03C) Scheduling

'33 Tracking



Environment Index Number 10

Environment Name SOFTOOL

Vander/Developer SOFTOOL Corp., Goleta, CA

Environment Type APSE

Number of Languages Supported 4

Functional Support (Functionm/45) 24/45 - 53%

Underlying Operating System main-frame or super-mini scale
operating system (VAX/VHS)

Size (KDSI) 1,596K (estimated from required
disk storage)

Development Cost

Purchase Cost (I Site) $60,000

Purchase Cost (100 Sites) *24, 888

Purchase Cost (1000 Sites)

Number of Versions 5

Version Life (Months) 6 months

Contact Leon Presser, 805-683-5777

References SOFTOOL Literature



FUNCTIONALITY Index No. 10

TRANSFORMATION STATIC ANALYSIS

( Editing Auditing

n Formatting ( Comparison

I Instrumentation S3 Complexity Measurement

() Optimization S4 Completeness Checking

(T6 Translation) SS Consistency Checking

Assembling 9 Cross Reference

@ Compilation JU Data Flow Analysis

Conversion Error Checking

Macro Expansion Interface Analysis

T7 Synthesis Scanning

DYNAMIC ANALYSIS Statistical Analysis

D1 Assertion Checking Structure Checking

D2 Constraint Evaluation S13 Type Analysis

(9 Coverage Analysis S14 Units Analysis

#D4 Resource Utilization S5 1/0 Specification Analysis

D5 Simulation MANAGEMENT

D6 Symbolic Execution Configuration Management

D7 Timing (02 Information Management)

(D8 Tracing) 02A Data Dictionary Management

DSA Breakpoint Control 023 Documentation Management

D88 Data Flow Tracing 0) File Management

63 Path Flow Tracing 02D Test Data Management

Tuning (03 Projeot Management)

f Regression Testing 03A Cost Estimation

033 Resource Estimation

03C Scheduling

G3D Tracking



Environment Index Number 11

Environment Name ARGUS I

Vender/Developer Boeing Computer Systems

Environment Type APSE

Number of Languages Supported 4

Functional Support (Functions/45) 24/45 a 53%

Underlying Operating System Unix

Size (KDSI) 79K

Development Cost

Purchase Cost (I Site) 050 m

--- -- -Purchase -- --- ---Coat-- ---(--- ---Sites)-- --

Purchase Cost (10 Sites)

Number of Versions 2

Version Life (Months) 6-9 months

Contact

References Leon 0. Stucki, 'What about CAD/
CAN for Software? The ARGUS
Concept", Proceedings of
Softrair. July 1963.



FUNCTIONALITY Index No. 11

TRANSFORMATION STATIC ANALYSIS

+ )" Editing Auditing

T2 Formatting 2)Comparison

T3 Instrumentation S3 Complexity Measurement

T' Optimization Completeness Checking

(T6 Tranalation) ) Consistency Checking

,1 Assembling ( ) Cros Reference

i ) Compilation S7 Data Flow Analysis

T6C Conversion 9 Error Checking

: acro Expansion l Interface Analysis

T7 Synthesis C Scanning

DYNAMIC ANALYSTS S11 Statistical Analysis

DI Assertion Checking l Structure Checking

D2 Constraint Evaluation S13 Type Analysis

D3 Coverage Analysis S14 Units Analysis

D4 Resource Utilization $15 I/O Specification Analysis

D5 Simulation MANAGEMENT

D6 Symbolic Execution Configuration Management

D? Timing (02 Information Nanagement)

(DO Tracing) Date Dictionary Management

Breakpoint Control Documentation ManageNent

DO@ Data Flow Tracing File Nanagement

DOC Path Flow Tracing 02D Test Data Management

190 Tuning (03 Project Management)

DIS Regression Teting 03A Cost Estimation

030 Resource Estimation

( Scheduling

1 Tracking



OLD EQUATIONS

APPENDIX B

SUMMARY DESCRIPTION OF ECONOMETRIC MODEL

This appendix summarizes the equations used by the Automated
Econometric Model*. A more complete explanation is given in the
User's Guide. The equations determine costs, benefits, and net
benefits involved with implementation of a selected environment
(i) using a selected control strategy (j). The environment-
control strategy pair is referred to as a scenario (i,j). The
model tracks each scenario by year (n) for the period 1986-1995.
Thus equations may contain the three subscripts (i,j,n).

The model consists of cost equations, and benefit equations.
Net benefits of implementing the scenario (i,j,n) represent the
sum of benefits less the sum of costs over the years in the
period modeled.

COST EQUATIONS

Eqn 1: COST(i,J,a) - RC(ij,n) + OC(i,j,n) + DC(i,j,n), where:

COST(i,j,n) is the cost for implementing scenario (i,j)
for year (n);

RC(i,j,n) is the initial R&D (development) cost of a

scenario (i,j) for year (n);
OC(i,j,n) is the operational cost associated with

scenario (i,j) for year (n); and

DC(i,jn) is the "disposal" cost to USAF associated
with implementing scenario (i,j) for year (n).

Eqn 2: IC(ij,n) - MDVRC(i,n) a SVKIGNT(j), where:

Z ENVRC(i.n) is the initial R&D (development) cost of the
selected environment (i) for year (n);

SVEIGHT(j) is a weighting factor assigned to the
selected control strategy (W).

Iqn 3: OC(i,Jn) - FOC(i,J,n) + VOC(ij,n), where:

FOC(ij.n) is the fixed operating cost for a particular
scenario (i,]) for a given year (n);

VOC(l,j.n) is the variable operating cost for a particular
scenario (ij) for given year (n).

* Adapted from Automated Econometric Model User's Guide, June 20, 1986, pp. 3-1
to 3-7. The User's Guide presents a full description of the equations and their
implementation using LOTUS 1-2-3.

B-1



Eqn 4: FOC(i,j,n) = FOCENV(in) * GOVSIT(j), where:

FOCENV(i,n) is the fixed operating cost associated with
selected environment (i) for year (n);

GOVSIT(j) is the number of government sites operating
under the selected control strategy (j).

Eqn 5: FOCINV(i,n) a OVRRD(i,n) + CONFIG(i,n) + QA(i,n) + DOCSUP(i,n) +
TEST(i,n) + PRGSUP(i,n) + TRAIN(i,n), where:

OVRHD(i,n) is indirect cost not directly traceable to the
selected environment (i) in given year (n);

CONFIG(i,n) is cost of configuration management for the selected
environment (i) in year (n);

QA(i,n) is cost of quality assurance for the selected environ-
ment (i) for year (n);

DOCSUP(i,n) is cost of supporting documentation for environment (i)
in year (n);

TEST(i,n) is cost of test support for environment (i) in year (n);

PRGSUP(i,n) is cost of programming support for environment (i)
in year (n);

TRAIN(i,n) is training cost associated with environment (i)
in year (n)

Eqn 6: VOC(i,j,n) - VOCENV(i,n) * CONSIT(j,n), where:

VOCENV(i,n) is fixed industry operating cost associated with
environment (i) for year (n);

CONSIT(j,n) is the number of contractor sites operating under
control strategy ) for year (n).

Eqn 7: CONSIT(jn) - L/(1 + a- b*M), for j - 1,3,5,7, or 9

a 0 for j - 2,4,6, or 8

where: L is the upper limit on number of contractor sites;

a is "Pearl curve" constant (set at about 10001; and

b is "Pearl curve" constant [set at about 0.7].

B-2



Eqn 8: DC(i,j,n) BUP(i,n) + ICHG(i,n), where:

BUP(i,n) is cost of block upgrades (major changes, new software
versions) for environment (i) in year (n.

ICHG(i,n) is cost of incremental changes (minor software changes)
for environment (i) in year (n).

Eqn 9: BUP (i,n) - W(n) * RC(i,j,n), where:

W(n) is the percentage plowed back into continuing development
(R&D) of environment (i) for year (n).

Eqn 10: ICNG(i,n) - P(n) * RC(i,j,n), where:

P(n) is the percentage of support cost (RC(i,j,n)] expended for
continuing development (i.e., incremental improvements)
in environments during year (n).

COST CONSTRINTS

If the following cost constraints are violated, a warning message is
displayed:

Eqn 11: RC(i,J,n) / RCAP(n) ( 1
Eqn 12: OC(iJ,n) / OCAP(n) ( 1
Eqn 13: DC(i,j,n) / DCAP(n) ( 1

where RCAP(n), OCAP(n), and DCAP(n) are the government
funds limitations for year (n).

The warning display includes a tabulation of the computed costs and the funds
available. It then advises the user that he should assure availability of
adequate funds.

B-3



BENEFIT EQUATIONS

Eqn 14: BENFIT(i~j,n) - NPC(ij,n) + NAE(i,jn) +
NSR(i,j,n) + NEE(i,jn) + NTR(i,jn), where:

BENFIT(i,j,n) is the dollar benefit of implementing a particular
scenario (i,j) for year (n);

NPC(i,j,n) is the dollar benefit of nonproliferation [of different
software support environments] for year (n);

NAE(i,j,n) is the dollar benefit from use of advanced environment
i) for year (n);

NSR(i,j,n) is the dollar benefit from reuse of existing software,
by implementing scenario (i,j) for year (n);

NEE(i,j,n) is the dollar benefit from users' increased facility
[stemming from experience using an advanced
environment] in implementing scenario (i,j) for
year (n); and

NTR(i,j,n) is dollar benefit from improved personnel performance
associated with faster computer response [turn-
around] time of environment (i), using control
strategy (j) for year (n).

Eqn 15: NPC(i,j,n) - (FOC(i,j,n-1) + FOCKIW(i,n-1) * (ASPS -1) ] -

(ROC(i,j,n) + roCEMv(i,m) * (ASPS -1)* WSC(j)]

where:

ASPS is the average nuanber of system environments per
government site; and

WSC(j) is the tractional saving due to a common environment
being available throughout a given government site.

B-4

M i



Eqn 16: NAZ(i,j,n) z M(/PLOC(i) - (l/PLOC(n) * COMM))

CACPY(n) * (DIPY(j,n) * CONSITOj,n)/L : SIPY(j,n)]

wher.!:

PLOC(n) is the average lines of code delivered per programmer
for year (n);

COCOAE is a multiplier derived from "COCOMO" multipliers TOOL
(for degree to which software tools are used) and
NODP (for degree to which "modern programming
practices" are used);

ACPY(n) is average (total billed) cost per programmer in
year (n), (about S100,000 in FY 1986];

DIPY(j~n) is the number of delivered source instructions (DSI)
developed, operating under control strategy (j)
in year (n);

SIPYOj,n) is the number of delivered source instructions (DSI)
supported, operating under control strategy (J)
in year Wm.

Eqn 17: COCoAI [ NODPTO * TOOLTO] / (HODP(n) *TOOL(n)], where

MODPTO is the COCOKO multiplier MODP (extent to which modern
programing pra%.ices are used) before implementing
scenario (i~j);

TOOLTO is the COCONO multiplier TOOL textent to which software
tools are used) before implementing scenario (1.3);

NODPWn is the COCOMO multiplier MODP for year (n);

?OOL(n) is the COCOMO multiplier TOOL for year Wn.

Zqn 18: hBUmCJ'n * (C1/POCCD - (1/PLOC~a) * COCS3)]

(ACPY~n) * (DIPYCJ,n)) * COSIT(j,n)IL + SIY0j.n);

where:

COCOSP is a multipler. derived in eqn. 19, tot reuse of

existing software.

B-5~



Eq , 4 : COCOSR = LIBRTO / LIBR(n), where

1:BRT: iL a Lultiplier, derived from the COCOMO literature,
for "LIBR" (extent to which existing code Is

reused) before implementing scenario (ij);

LIBR t is a aultiplier representing extent to which existing
code is reused in modelling scenario (i,j) in
year (n).

Eqn 20: NEE(i,j,n) - [(1/PLOC(n)) - (1/(PLOC(n) * COCOZE))]

[ACPY(n) * (DIPY(jn) * CONSIT(j,n)/L + SIPY(j,n))
- COTYn)]

where:

COCOEE is a multipler, derived in eqn. 21, for benefit due to
experience using scenario (ij);

COTY(n) is the cost of training for scenario (ij) for year (n)

Eqn 21: COCOEE = [(LEXTO * SENTO) / (LZX(n) * SE(n))], where

LEXTO is the COCOMO multiplier LEXP (experience with the
programming language) before implementing
scenario (ij);

SENTO is the COCOMO-like multiplier for experience wih at
advanced environment before implementing
scenario (i,j);

LEX(n) is the COCOMO multiplier LEXP (experience with tbe
programming language) for year n) of iapAe@Mk'
scenario (i,j);

SEN(n) is the COCOMO-like multiplier for experience will
an advanced environment VT-t yea,
implementing scenaric i

LM



ENiVIRONMENT STANDARD!ZATION(IJ) TECI4NION INTERNATIONAL
INC MILMINGTON DE R WERLING 30 SEP 86 ORMC-85-5165-1

UNCLASS I FID315i5 -8 5 C5 F/G12/5 L

IEEE.., mol



!7

a&m ;: .
s

1111 25 1.6

MICROCOPY RESOLUTION TEST CHART



Eqn 22: CO'rY(n) W (CONSIT(n)-CONSIT(n-l)*NIP) /(DIPY(j,D)*DUR)]*ACPY(n)/6+

[CONSIT(n-l)*ACPY(n-l)/6*NIP /(DIPY(j,n)*DUR)] * 0.12

where:

NIP is the average number of deliverable source instructions
(DSI) per program; and

DUR is the average duration of the program.

NOTE: This equation assumes: (a) programmer turnover rate
of 12 percent per year; and Wb training requires two months
(i.e., 1/6 of a year).

Iqn 23: NMU,n) a [(1/PLOC(n))-(l/PLOC(n)'COCOTR))I * ACPY(n)
*(DIPY(J,n)*CONSIT(J,n)/L + SIPY(J,n)], where:

COCOTR is a multipler, derived in eqn. 24, for benefit due to
improved computer response (turnaround) time.

Eqn 24: COCOT a TURNTO / TUURN), where

TURNTO is the COCONO multiplier, TURN, for computer response
time, before implementation of scenario (i,j);

TURN(n) is the COCONO multiplier, TURN, for computer response
time for year Wn.

B-7



ADDITIONAL NOUATION8

This appendix summarizes additional equations developed to describe private
sector dynamics in more detail.* These equations, which were developed using an
alternative set of assumptions, have not been included in the Automated Econo-
metric Model. In summary, in this appendix we sketch one approach to use in
refining the model further.

Private sector incentives

The revised equations are intended to yield an annual average unit cost per
line of code delivered. Synthetic though it is, such an average unit cost is the
primary motivation for private sector firms. As the unit cost decreases, it
demonstrates and quantifies the economic benefits obtainable when engineers,
systems analysts and programmers working with the software tools in an environ-
ment, produce software of equivalent quality at lower unit cost. (Incidentally,
this sort of replacement of labor with machinery is referred to as a "Cobb-
Douglas" function).

The resulting costs, expressed in percentages, will look like this:

Unit Cost per
Line of Code

DIRECT COST FOR ANALYSTS/PROGRAMMERS $ 1.0000
GENERAL OVERHEAD, AT 50% .5000
CONTROL STRATEGY .0100 (example)
MANAGEMENT FUNCTIONS .8800

UNIT COSTS $ 2.3900

Assumptions

Assumptions underlying this appendix, which differ from those presented in
the report, are as follows:

a. The primary driver is total annual USAF MCCR software WORKLOAD(n) (the
quantity of software to be developed and the amount to be modified each year,
expressed in 1000 lines of code]. This determines the number of potential users
of environments.

b. Potential users are assumed to accept a new "challenger" ENVIRONMENT i)
or to conduct "Business as Usual," using their present practices, procedures, and
software tools ENVIRONMENT (bau). To reflect time delays in procurement, in-
stallation, and training, the number of "challenger" environments (i,n) brought
into service each year is limited using a "Pearl Curve" equation.

* Adapted from Automated Econometric Model User's Guide, June 20, 1986, pp. 3-1
to 3-7. The User's Guide presents a full description of the equations and their
implementation using LOTUS 1-2-3.

B-8



c. A time delay is considered, between funding of initial R&D and beginning
of benefits. During this period costs are incurred for the environment, but no
benefits are realized.

d. Finite (though perhaps not measurable) costs are assumed for:

Staff, both Government and contractor, to implement the nine
Control Strategies.

Continuing improvement in the capabilities of all MCCR software
development/ support environments. An important vendor argument
against use of any GFE/environment is that any required standard
would inevitably result in degraded product quality or productiv-
ity. Because of the unprecedented rapidity of technological change
in the computing fields, which renders one year's standard the next
year's obsolescence, this argument could be valid.

Contractors' strategy and motivations, based on vendors' business
concerns, such as market shares and vested interests in their own
software tools, technology, and products.

"off-books" costs and benefits such as the effects of deprecia-
tion/amortization, and "opportunity costs" that cannot be ignored
by contractors.

Equations

As before, the equations determine costs, benefits, and net benefits involved
with implementation of a selected environment (i) using a selected control
strategy (j). The environment-control strategy pair is referred to as a scenario
(i,j). The model tracks each scenario by year (n) for the period 1986-1995.
Thus equations may contain the three subscripts (i,j,n).

The model consists of workload equations, cost equations, and benefit
equations. Net benefits of implementing the scenario (ij,n) represent the sum
of benefits less the sum of costs over the years in the period modeled.

WORKLOAD EOUATIONS

Eqn a: VXLOADAF(n) a GOVTVKLD(n) + CNTRWKLD(n), where:

WKLOADAF(n) is TOTAL USAF NCCR Software Workload for year (n), in 1000
lines of delivered code. It can be estimated from AFSC data, or from the E.I.A.
(Electronic Industries Association] 1986 projection.

GOVTWKLD(n) is TOTAL USAF MCCR Software Workload served by Government
employees.

CNTRWKLD(n) is TOTAL USAF MCCR Software Workload served by Contractors
and their employees.

B-9



Eqn b: RZDuns(n) a VKLOADAFOn/PLOC(n), where:

REQDPERS(n) is the number of direct labor personnel needed to service
the workload in year (n);

WKLOADAF~n) is the workload to be serviced; and

PLOC(n) is the Production Lines of Code to be delivered per required

direct labor person in year Wn.

Eqn c: ZMSUi,n) a RZQDPZRS/(l + a-bern), where:

ENVTS(i,n) is the Maximum number of "challenger" environments (i) that
can be operational in year (n);

a is "Pearl curve" constant (set at about 1000]; and

b is "Pearl curve" constant (set at about 0.7].

Eqn d: INVS(bau,n) = [WKLOkDAP(n) - (IVTS(i,n) * PLOC(in))] / PLOC(bau,n),

where:

ENVTS(i,n) is the Quantity of "challenger" environments in use during
year (n);

ENVTS(bau,n) is the quantity of current environments in use in year (n);

PLOC(i,n) is the Production Lines of Code to be delivered per required

person in year Wn.

Eqn e: DLAICOST(n) a ACPYWn * (KMTS(bau,n) + INYTSUi,n)], where:

DLABCOST(n) is the cost for direct labor in year (n); and

ACPY(n) is average (total billed) cost per [direct labor]

environment user in year (n.

B-la



Zqn f: INDCTPC?(i,n) a CONIGPC(i,n) + QU&L8SU(i,n) + DOCNSUPP(in) +
TZSTSUPP(in) + PROGSUPP(i.n) + TRAIINSUP(i,n) +
CTLSTtT(i,n), where:

CONFIGPC(i,n) is ercent of direct labor cost for configuration manage-
ment for the selected environment (i) in year (n);

QUALASSU(i,n) is percent of direct labor cost for quality assurance for
the selected environment (i) for year (n);

DOCNSUPP(i,n) is percent of direct labor cost for supporting documenta-
tion for selected environment (i) in year (n);

TESTSUPP(i,n) is percent of direct labor cost for test support for the
selected environment (i) in year (n);

PROGSUPP(in) is percent of direct labor cost for programming support
for selected environment (i) in year (n);

TRAINSUPP(i,n) is percent of direct labor cost for training cost
associated with environment (i) in year (n); and

CTLSTRAT(j,n) is percent of direct labor cost required to develop,
oversee, and supervise implementation of the control
strategy (j) in year (n).

Note that the percentage cost to implement varies by
the control strategy chosen.

Eqn g: OC(i,j,n) * CDLABCOST(n) * INDCTPCT(in)] + CINTCOST(i,n) +
[SITZCOST(i,n) * [COISIT(n) + GOVSIT(n)] +

DZPRZC(in) + (ENVTS(i,n) * VBLCOST(i,n)]

where:

CENTCOST(i,n) = Annual cost of central control facility;

SITECOST(i,n) - Annual cost of each site at which environment (i) is
in use;

VBLCOST(i,n) = Variable costs (power, maintenance, light, air condi-
tioning, data comunication costs, etc.] for each
separate environment (i) installed during year (n); and

DEPRIC(i,n) = Annual depreciation charges for environments i).

B-11



BIUYIT oI ssATIOM

Eqn h. UCOSTLOC(ij,n) - COST(ij,n) / VKLOADAr(n), where:

UCOSTLOC(ij,n) is Unit cost per line of code delivered;

COST(ij,n) is TOTAL COST for implementing scenario (i,j) for year

(n); and

WKLOADAF(n) is TOTAL USAF MCCR Software Workload for year (n), in
1000 lines of delivered code.

B-12



APPENDIX C

CAUSAL CHAIN USED AS BASIS FOR MODEL

This material is adapted from [Werl85], pp. V-5 to V-9.

ASSUMPTIONS AND CAUSE-EFFECT CHAIN LEADING TO
SUCCESSFUL IMPLEMENTATION OF THE GFE APPROACH

Introduction

Post mortem reviews of complex programs often reveal that the
assumptions made early in a program were incomplete or incorrect.
For a program as complex as the GFE/Environment we must verify,
to the extent possible, the reasonableness of the assumptions and
of their assumed results. The "causal chain" approach, a graphic
research tool, is useful for analyzing complex programs that
involve economic, organizational, and technical assumptions.

The causal chain is used most for analyzing projects that
require successful negotiation of a series of steps before they
can be completed. The chain is used because it helps identify
and make explicit the assumptions made at each step, and the
reasonableness of the results expected from each successive
action in the chain.

Implementina the GFE/Environment

Figure C-1 shows the chain of assumptions and cause-effect
relationships for the GFE/Environment. It begins with "Generic
standards are valuable" and ends with "Lower cost to DoD for new
software." The three rows of boxes crossing the figure show the
assumptions and cause-effect relationships for: (1) use of a
single standard programming language (top row); (2) use of a
GFE/Environment (middle row); and (3) the resulting effect on a
defense system that contains hardware, software, facilities,
data, and people (bottom row).

Quantifyina assumptions. The four shaded boxes at the left,
and the one near the middle of the figure, represent basic
assumptions that are made (sometimes implicitly) and seldom
questioned. The three dashed boxes at the right represent
results desired from the project. Throughout the figure, each
pair of boxes connected by an arrow represents a cause-effect
transaction that is assumed to be effective.

We showed 27 numbered boxes on figure C-1. We can quantify
or measure at points associated with each of the 27 boxes, then
include the measurements in the equations of an econometric
model. In Table C-1 we indicate the box numbers, and show the
type of information required by the econometric model for those
points. We also show Technion International's estimates of
expected ranges of data.

C-1



POINTS AT WHICH ADDITIONAL DATA ARE NEEDED

This section, keyed to Figures C-i and C-2, and Table C-I,
details the data required and gives a range of probable values.
Figure C-2 shows excerpts from the flow of Figure C-I, with more
emphasis on blocks affecting the implementation of a GFE/Environ-
ment. Table C-1 shows specific data points and indicates ranges
of values expected.

Quantification needed

Quantification is needed at the following points in Figures
C-1 and C-2.

Language:

- What is the improvement in programmer productivity, both
for development and for subsequent enhancement/mainte-
nance of software, associated with use of one standard
programming language? (Box 3)

- What is the incremental expense of training programmers
in the standard language, to the skill level at which
they can implement the language's special features in
their work? (Box 5).

- What are the net benefits to proarammers of using the
language? (Box 6)

- What are the net benefits to contractors from having
their programmers use the language? (Box 7).

- To what degree are reliability and maintainability en-
hanced by having software written in the standard
language? (Box 8).

Environment:

- What are the benefits of a standard integrated automated
environment, in turns of improved productivity in
development, reduced time to complete testing, and
improved productivity in subsequent enhancement and
maintenance of software? (Box 12).

- What will be the acquisition cost of a GFE/Environment
[i.e., costs for developing requirements, acquiring a
GFE/Environment, and providing multiple copies as GFE to
contractors]? (Box 13).

- What will be the cost of training programmers in use of
the GFE/Environment (Box 14).

C-2



What are the incremental costs and benefits of having
contractors use the GFE/Environment, instead of their
customary softwaie production facilities? (Box 15).

How much lower will be the cost to DoD for development
of NEW software? (Box 9).

How much lower will be the cost to DoD for subsequent
enhancement and continuing development of software?
(Box 10).

System containing the software

What is the likelihood that characteristics of the
defense system (which drive the software development and
maintenance efforts) are compatible with the design of
the GFE/Environment and the project in which it is used
[e.g., system budget, schedule, required reliability,
complexity, and volatility of requirements on software]?
(Boxes 19 and 20).

- What will be the effect of the resulting software on
reliability and maintainability of the defense system
over its life cycle? (Box 22).

What will be the effect of the resulting software on the
performance of the defense system? (Box 27).

C-3



E

0

Ilad

0
.0

-F 4

4SS

C- 4



0

JIlii,'i lilA 2

--T - °4,J
e
c
0

i * >11111 IIIi li hi Ni !
0

-- ,5 i

II 0.

c

C

iI'It

atiEKELS-lll La0

--4

M

"a,

('-5



T.Ir c ata Required Ly Econometric Model./ I.
Box number Data Requlred _n__ Rnj3eof probable values

n a) GFE/Environment is imp- GFE/Environment continues
roved, and overcomes to provide productivity

pressures toward obso- improvements amount to at
lescence. least ten percent per year

after its deployment.

(5 Additional funding $1000-$5000 per programmer
needed by contractors to be trained (one to five

to train their people weeks each)
in using GFE/Environment.

"Learning curve" effects

may include: initial loss

of productivity, followed
by shift to more favorable
GFE/Environment learning

curve, with long-term
gain.

(4), (12) Productivity is raised Ada language produces from
by language and soft- eight to ten machine-lang-
ware tools used in uage instructions per Ada
GFE/Environment. language instruction.

(6), (14) Programmers learn, Set of integrated, auto-
accept, and use mated software tools helps
GFE/Environment programmers produce better
after training, products and becomes part

of their "normal" toolkit.

(13) Standard environment Yes, within four years.

can be built and Acquisition cost depends

provided promptly. on acquisition strategy.
Additional annual direct
support cost will also be
significant.

(15) Productivity improves Productivity increases by
for initial develop- factor of two to four.
ment as well as for
post-deployment,
enhancement/maintenance
of software.

(continued)

C-6



Table C-I, concluded

(17) Contractors have From 25 to 50 percent cf
adequate staff, with contractors' project staff
motivation, training, have adequate motivation,
and ability to perform training, and ability to
their work using the use the GFE/Environment.
GFE/Environment.

(25) GFE/Environment aids Range of values, from plus
in transition and use 50 percent (net help) to
of latest technology minus 25 percent (net
on AFSC MCCR projects. interference) with

transition.

(26), (8) GFE/Environment use Range of values, from
gives improved relia- zero to doubling of R-M-A
bility, maintainabil- with accompanying decrease
ity, and effective- in post-deployment support
ness of defense costs.
system.

(9) GFE/Environment Two to fourfold increase
lowers costs for in productivity, with
developing new soft- greater reliability and
ware. maintainability of new

software products.

(10) GFE/Environment lowers Doubled productivity in
time and costs for post-deployment enhance-
post-deployment modi- ment/continued development
fications of fielded of operational software.
software.

Estimates for data range were made by Technion International, and
are based on a wide variety of published and unpublished reports.
However, data in the right column should be used for no purpose
other than to plan data collection efforts.

C-7



APPENDIX D

EXCERPTS FROM (WERL86]'

(Can USAF improve productivity by more than ten percent each
year?]

Contractors are tripling this rate now, so we believe
USAF can do the same. This conviction underlies the rest of this
report.

CURRENT COST ESTIMATING TECHNIQUES

We learned during our visits (to six AFPROs and software
contractors' sites] that contractors develop cost estimates using
their normal internal accounting records. Contractors use
parametric cost estimating models primarily as "sanity checks."

Estimating often a Sales Function.

We spent only a few hours with contractors' cost estimating
s.aff. However, it s£emed to us that contractors' software
estimating procedures are intended to justify estimates rather
than to control costs. We noted that in contractors' organi-
zations, cost estimating and pricing are often sales/marketing
functions.

Contractors' estimates rely on data from their accountina records

Contractors' pricing systems are based on their "local"
accounting records. The typical cost estimate is assembled using
the "bottom-up" approach, with each supervisor estimating the
time required by the portion of the work for which his organi-
zational unit will be responsible. The total cost is arrived at
by summing these individual estimates. This method has both
strengths and weaknesses.

Strengths. Estimates are prepared by those individuals most
familiar with the organizational units that will do the work.
Thus, if supervisors have recent experience with the products and
technologies to be used, their estimates can be very good.

Weaknesses. When preparing competitive proposals, contrac-
tors' pricers usually think first in terms of "pricing to win,"
independent of the actual difficulty of the work to be done.
Thus estimates reflect: (a) how much funding they think USAF has

Werling, R., "Data Collection System for Estimating Software Development
Cost." Report of research conducted for USAF Business Research Management
Center, AFBRMC/RDCB. Wright-Patterson AFB, OH. September 1986. This re-
earch was supported under contract number F 33615-85-C-5123.

D-l



available for the product; (b) their probable competitors'related
products, capabilities, and experience; (c) the extent to which
"buying in" may be appropriate to their corporate plans; (d)
their own units' profit/loss position; and (e) the level of their
firms' backlogs. In general, these act as incentives to
underestimate the time and resources needed.

' . * Because the work is done by many estimators, their
situations and motivations may differ substantially. Managers
higher in the organization normally try to overcome this problen
by reviewing aggregated estimates as the process proceeds. On
balance, these probably act to over-estimate time and resource
needs.

Software not estimated separately.

Contractors rarely estimate and price software products sepa-
rately. In accordance with current regulations, they design the
system work breakdown structure (WBS) around hardware deliverable
components. Their cost reporting and accounting systems then
treat software products simply as components of the hardware
deliverables. As a rule, then, contractors collect only minimal
detail on software costs.

MANAGING PRODUCTIVITY FOR MCCR SOFTWARE DEVELOPMENT AND SUPPORT

USAF not benefiting from improved software productivity

For a combination of reasons, USAF is not getting the benefit
of the [10-15 percent] annual improvement in software producti-
vity observed in the industry. During our visits to AFPROs, we
were startled to find that contractors' present procedures for
estimating software costs assume no corresponding growth in pro-
ductivity. Instead of the annual improvement of 10-20 percent we
expected, contractors' estimates typically assume that develop-
ment procedures and conditions will be the same as those used
several years earlier. In effect, this leads to zero growth in
productivity, and to higher than appropriate costs to USAF. Yet,
such benefits are clearly available to USAF [Bita84], [Boeh8ll,
[Boeh84], [Druf82J, [Mats8l], [McNa85].

Software industry achieving productivity gains

Figure (I-1], from an earlier analysis by Technion Inter-
national, shows annual productivity increases exceeding 20 per-
cent [Wer185, p. IV-15]. Our statistical analysis of software
projects similar to MCCR showed that, when everythijg_ else is
held constant, annual productivity grew at more than 20 percent
during the 1970s. Although not yet recognized in management
literature, the phenomenon was acknowledged in discussions with
contractors. One contractor had observed a doubling of his

D-2



oiganization's sottware productivity during the prior seven years
[10.4% compounded], and projected an additional doubling in the
next fivc years [14.9% compounded]. Another's estimate was in
the same range. The program described below is intended to help
AFPROs approach these rates in negotiating similar annual
improvements.

Development technolopy has already raised productivity. Our
research shows that a number of contractors have systematic MCCR
software productivity improvement programs. Software technology
breakthroughs have been frequent and varied. During the decade
since 1975: (a) interactive programming has replaced more time-
consuming manual processes; (b) computer speeds and memory capa-
acities have improved exponentially; (c) compilers have become
more effective, faster, and more helpful to users; and (d)
"modern programming practices" and "software tools" help through-
out the entire software development/support cycle. Taken to-
gether, these advances have transformed the way production soft-
ware engineers do their work. The growth in improvement is
continuing, helped by recent DoD-sponsored efforts, such as the
ADA*, STARS, and SEI, which promise ongoing forces to improve the
process. P.

/
/

I-

i-- " 0

.1 ,' -

Figure [D-1]. Where has the productivity gone?

The way_to__ o. Our statistical analysis of 34 MCCR-like
projects from the COCOMO project data base [Boeh~l, pp. 496-7]
showed that a handful of cost drivers account for the lion's

D-3IN Iu,



share of productivity improvements. For example, regression
analysis revealed that during the 1970s three cost drivers
explained 87 percent of the variability in productivity. Figure
[D-21 relates variability in the logarithm of productivity
[actual delivered source instructions per work-month] to cost
drivers. It shows that three drivers (Use of Modern proqamming
practices, Time constraint in target computer, and Volatility of
requirements) were able to explain most of the variability in
productivity found for the sample of 34 projects.

MODP Used
67.5% .

• -.. : .OTHER
.... 12.9%

"TIME' "RVOL"
7.2% 12.4%

Logarithm of [ADSI Per work-month)

Soumcea: Boehm 1981, Technion Int'l

Figure D-2. Productivity cost drivers.

Summary

We have seen that software productivity improved, along with
technological advances, during the 1970s. Because a handful of
cost drivers exerts inordinate influence over project cost, du-
ration, and productivity, USAF can find levers to improve them.
Why has USAF not received the benefit of these technological
improvements? There are many reasons and many more conjectures.
Some of the reasons can be addressed by AFPROs and SPOs.

D-4



REPORT DOCUMENTATION PAGE
in. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

26. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/OOWNGRADING SCHEDULE Approved for Public Release:, Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

BRMC-85-5165-1

Gs. NAME OF PERFORMING ORGANIZATION tlb OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

TIfehnion Air Force Business Research Management CtrTechnion International, Inc AFRC(DB
AF BRMC (RDCBS)

Sc. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

P.O. Box 417 Wright-Patterson AFB OH1 45433
Wilmington, DE 19899

So. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)AFBRMC RDCB F33615-85-C-5165

Sc. ADDRESS (City. Stale and ZIP Code) 10. SOURCE OF FUNDING NOS.
Area B, Bldg 125 PROGRAM PROJECT TASK WORK UNIT
Wright-Patterson AFB 0tl 45433 ELEMENT NO. NO. NO. NO.

in- .SW.Support 71113 0 08 0'tast ect1eness ra ' Offs in S/W Support
Environment

12. %SNAL AUTHORS)
cnard Werling

13& TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT lYr.. Mo., Day) 15. PAGE COUNT
Final FROM 850929 TO 860930 860930 114

16. SUPPLEMENTARY NOTATION

17. COSATI CODES It SUBJECT TERMS (Continue on reverse InecesserY and identify by block number)
FIELD GROUP SUB. GR. Econometrics, eqqations, integrated systems, models,

ATRACT 41 nProductivity standards, cost effectiveness, control computex

19. ABSTRACT (Continue an reverse iinecelsry and identy by bock number)
The principal objective qf the study was to develop a multi-equation simulation model for
determining the quantitative benefits of implementing strategies for controlling
integrated, automated software support environments. The model describes suppor; activi-
ties for mission-critical cbmputer resources (MCCR). It is an econometric model which
describes the cost and benefits of using Ada-based computer software development/support
environments and permits comparison of these environments. Four types of environments
are discussed: framing, programing, general and methodology-specific.

20. OISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIED/UNLIMITO 0 SAME AS RPT. 0 OTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
(Inchde Area Codk)

-Capt Edward C. Mitchell (513) 255-6221 RDCB



I-F


