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Abstract

We present a relaxation model based on an N-dimensional Coulomb po-
tential. The model has arbitrarily large storage capacity and, in addition,
well-defined basins of attraction about stored memory states. The model
is compared with the Hopfield relaxation model.

Aocosmlon For
IITIS GRA&M
DTIC TAB
UnanMounoed E0
.ut lt iat io.

litribut iog/

Availability Codes
1ailaid/ovw

Diat Spoela

tMPr

I l l l l III Y I1



I

1 Introduction

Equilibrium associative and distributed memories that are content address-
able and have the ability to recall stored memories more or less imperfectly
have been known and studied for years [1], [21, [31, [41, [5]. At the same time,
relaxation models have been the subject of much exploration [6]. In 1982,
Hopfield [71 introduced a relaxation model of memory storage and retrieval,
that incorporates simultaneously a distributed memory correlation matrix
and a relaxation process from a given input to an equilibrium state. Al-
though learning procedures can be included, the model has not emphasized
these. Among its problems are poor recall of stored memories when the
number of items stored exceeds some percentage of the number of neurons
involved.

The correlation matrix originally employed by Hopfield has relatively
weak recall properties when employed as an equilibrium distributed memory.
It gives perfect recall only when the inputs are orthogonal. When the inputs
are not orthogonal, one can still achieve perfect recall by some orthogonal
modification procedure such as Widrow-Hoff [8], or what Kohonen calls an
optimal asociative mapping. [1 Such procedures work if the number of
stored memories is equal to or smaller than the dimension of the system
(the number of synapses on each neuron). A procedure for storing as many
memories as desired for a given dimension has also been discussed[1O]. In
this procedure items can be stored at arbitrary points on a hypersphere with
variable regions of influence.

In this paper we present a general method for the construction of a
relaxation memory in which an arbitrary number of items can be stored. The
essence of the problem is to define a function whose minima lie at designated
points, corresponding to the items to be stored, and to show that these are
the only minima of the function. Then an appropriate relaxation procedure
is defined, so that any entering pattern relaxes to one of the stored items.

2 Hopfield's Model
and Some Improvements

In the Hopfield model[7], neurons are binary-valued threshold units and are
completely interconnected, with the strength of the connections given by
a correlation matrix formed from the memory states to be stored in the
system:
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where p = ±1. Input states are relaxed to local minima of a Liapunov
function,

- q i ,,(2)

by random, asynchronous updating of the neurons in the layer according to:

N
A -. 2 2(E Z ,,p,)- 1. (3)

j=I

In its original form, the Hopfield model functions poorly as a categorizer
when (m/N) ; 0.1, where m = the number of stored states and N = the
number of neurons. Given the limitations of the original model, improve-
ments have been sought. "Unlearning", an approach first tried by Hopfield
[111, employs the relaxation of random states to a stable state (often spuri-
ous attractors); a correlation matrix is formed from the relaxed state, and
then an amount proportional to this is subtracted from the original matrix:

rgeazad rselasd,ki -- UN - a . (4)

With "unlearning" the number of stored states that can be correctly recalled
approaches the dimensionality, N, and error correction is improved but falls
to zero as m -. N.[121

Recently, an interesting variation of Hopfield's "unlearning" has been
studied by Potter.J12] The algorithm is a hybrid combining elements of
Hopfield's *unlearning' with a modification reminiscent of the Widrow-Hoff
algorithm[8]:

U .=" U14 - a(r'"l ' - U') ,.*(,Inpu + 1). (5)

The symmetry of the synaptic matrix is preserved by making the same
modification to w~i each time a modification is performed on the element wui.
In simulations for which all of the input states at a radius of one Hamming
unit from each stored state were used for the modification procedure, a
radius of attraction of one Hamming unit was observed for m just below the
dimensionality, N. Above the dimensionality, the radius of attraction and
the percentage of stable stored states decays. In 1131, it has been shown
that Potter's algorithm may be viewed as an 'effective orthogonalization" of
the input with respect to the nonlinear relaxation process; a more complete
discussion of Potter's algorithm is given there.
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3 High Density Storage Model

In what follows we present a general method for the construction of a high
storage density neural memory. We define a function with an arbitrary
number of minima that lie at preassigned points and define an appropriate
relaxation procedure.

Let 2 i, ... , be a set of m arbitrary distinct memories in RN. The
"energy" function we will use is:

=- ,1 - _- L (6)

where we assume throughout that N > 3, L _> (N - 2), and Qi > 0 and
use I ... I to denote the Euclidean distance. Note that for L=I,N=3, is
the electrostatic potential induced by negative fixed particles with charges
-Q,. This "energy" function possesses global minima at f1 ,..., 4, (where
C(Z) = -oo) and has no local minima except at these points. A rigorous
proof is presented in Dembo and Zeitouni[14j together with the complete
characterization of functions having this property.

As a relaxation procedure, we can choose any dynamical system for which
C is strictly decreasing. In this instance, the theory of dynamical systems
guarantees that for almost any initial data, the trajectory of the system
converges to one of the desired points x-',..., in. However, to give concrete
results and to further exploit the resemblance to electrostatics, consider the
relaxation:

- Q, I ' I (L+ ) (- (7)

where for N=3,L=I, equation ( 7) describes the motion of a positive test
particle in the electrostatic field E# generated by the negative fixed charges
-Qi,...,-Qm at Ai,...,Z.

Since the field go is just minus the gradient of C, it is clear that along
trajectories of ( 7), 11 < 0, with equality only at the fixed points of ( 7),
which are exactly the stationary points of C.

Therefore, using (7) as the relaxation procedure, we can conclude that
entering at any i(0), the system converges to a stationary point of C. The
space of inputs is partitioned into m domains of attraction, each one corre-
sponding to a different memory, and the boundaries (a set of measure zero),
on which 9(0) will converge to a saddle point of C.

We can now explain why &I has no spurious local minima, at leat for
L=I,N=3, using elementary physical arguments. Suppose C has a spurious
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local minima at # XI,...,X,, then in a small neighborhood of g which does
not include any of the :Fj, the field E points towards 1. Thus, on any closed
surface in that neighborhood, the integral of the normal inward component
of Eg is positive. However, this integral is just the total charge included
inside the surface, which is zero. Thus we arrive at a contradiction, so 7can
not be a local minimum.

We now have a relaxation procedure, such that almost any #(0) is at-
tracted by one of the zE, but we have not yet specified the shapes of the
basins of attraction. By varying the charges Qi, we can enlarge one basin
of attraction at the expense of the others (and vice versa).

Even when all of the Qi are equal, the position of the Aj might cause
IS(O) not to converge to the closest memory, as emphasized in the example
in fig 1. However, let r - mini!5<,, I Z - :I be the minimal distance

s.

II

Figure 1: I(0) closer to :F but converges to i2, due to the existence of E3
(assuming R s, I and 6 < 1).

between any two memories; then, if I W(O) - i 1:_ it can be shown

(1+3 )'
that W(O) will converge to :, provided that (k =_ _ 1). Thus, if the
memories are densely packed in a hypersphere, by choosing k large enough
(i.e. enlarging the parameter L), convergence to the closest memory for any
"interesting" input, that is an input !sCO) with a distinctive closest memory,

is guaranteed.
The detailed proof of the above property is given in [141. It is based on

bounding the number of :i, j 5 i, in a hypersphere of radius R (R > r)
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around , by [2 + 1]N, then bounding the magnitude of the field induced
by any i, j 0 i, on the boundary of such a hypersphere by
(R- I (o)-:i I)-(L+I), and finally integrating to show that for 19(0)-Fi 1_<97

1+3 with 0 < 1, the convergence of j(O) to i is within finite time T, which
behaves like 0L+2 for L > 1 and 0 < 1 and fixed. Intuitively the reason for
this behaviour is the short-range nature of the fields used in equation ( 7).
Because of this, we also expect extremely low convergence rate for inputs
jl(O) far away from all of the Fi.

The radial nature of these fields suggests a way to overcome this diffi-
culty, that is to increase the convergence rate from points very far away, with-
out disturbing all of the aforementioned desirable properties of the model.
Assume that we know in advance that all of the i lie inside some large
hypersphere S around the origin. Then, at any point j! outside S, the field
E has a positive projection radially into S. By adding a long-range force
to Eg, effective only outside of S, we can hasten the movement towards S,
from points far away, without creating additional minima inside of S. As an
example the force (-ji for A S; 0 for i E S) will pull any test input 7(O)
to the boundary of S within the small finite time T -- 7, and from then on

the system will behave inside S according to the original field E4.
Up to this point, our derivations have been for a continuous system, but

from it, we can deduce a discrete system. We shall do this mainly for a
clearer comparison between our high density memory model and the dis-
crete version of Hopfield's model. Before continuing in that direction, note
that our continuous system has unlimited storage capacity unlike Hopfield's
continuous system [15], which like his discrete model, has limited capacity.

For the discrete system, assume that the ii are composed of elements
±1 and replace the Euclidean distance in (6) with the normalized Hamming

distance I - -t I - -k X' I - 11. This places the vectors :Fi on the

unit hypersphere.
The relaxation process for the discrete system will be of the type defined

in Hopfield's model in equation( 3). Choose at random a component to be
updated (that is, a neighbor X7' of ji such that 1 - fi J-L), calculate
the "energy" difference, 6C - (P') _ (ii), and only if SC < 0, change this
component, that is:

14-"i " O(W() - V(a)), (8)

where C(Az) is the potential energy in (6). Since there is a finite number of
possible/7 vectors ( 2 N), convergence in finite time is guaranteed.
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This relaxation procedure is rigid since the movement is limited to points
with components ±1. Therefore, although the local minima of C(i) de-
fined in ( 6) are only at the desired points ii, the relaxation may get stuck
at some I which is not a stationary point of ()I). However, the short-
range behaviour of the potential (i), unlike the long-range behaviour of
the quadratic potential used by Hopfield (equation (2)), gives rise to results
similar to those we have quoted for the continuous model (equation ( 7)).

Specifically, let the stored memories E1, ...,9m be separated from one
another by having at least pN different components (0 < p < I and p fixed),
and let 9(0) agree up to at least one ii with at most OpN errors between
them (0 < 0 < 1/2, with 0 fixed), then gi(0) converges monotonically to Fi
by the relaxation procedure given in equation (8).

This result holds independently of m, provided that N is large enough
(typically, Np In(QZ) > 1) and L is chosen so that - < ln<(). The proof
is constructed by bounding the cummulative effect of terms - -

j : i, to the energy difference 6C and showing that it is dominated by
1'9 - 4 I-L. For details, we refer the reader again to [14].

Note the importance of this property: unlike the Hopfield model which
is limited to m < N, the suggested system is optimal in the sense of In-
formation Theory, since for every set of memories ,i, ', separated from
each other by a Hamming distance pN, up to pN errors in the input can
be corrected, provided that N is large and L properly chosen.

As for the complexity of the system, we note that the nonlinear operation
a- L, for a > 0 and L integer (which is at the heart of our system computa-
tionally) is equivalent to e-L n(a) and can be implemented, therefore, by a
simple electrical circuit composed of diodes, which have exponential input-
output characteristics, and resistors, which can carry out the necessary
multiplications.

Further, since both £ and I j! are held fixed in the discrete system,
where all states are on the unit hypersphere, I i- :i 12 is equivalent to the
inner product of i and :j, up to a constant.

To conclude, the suggested model involves about m- N multiplications,
followed by m nonlinear operations, and then m. N additions. The original
model of Hopfield involves N 2 multiplications and additions, and then N
nonlinear operations, but is limited to m < N. Therefore, whenever the
Hopfield model is applicable the complexity of both models is comparable.
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