mb-p181 853 DISTR!BUTED SYSTEMS TECHNOLOGY SURVEY(U)
e NEGIE-MELLON UNIV PITTSBURGH PR SOFTHARE ENGINEERING
INST E C COOPER MAR 87 CMU/SEI-87-TR-3 ESD-TR-87-1@6
MLRSSIFIED F/G 12/%

M, ‘
LS T l
"71; " ‘1'.\\ s l ‘

o

EEE
EEEE
SRE

FERREE

L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

LA UL
. 'o .l o.‘.:,b.i.
\' |' ‘c' Wy RS

1
'.l ‘,su I N

IR ORICC NS

¥* ‘r“,'t"o;‘i
‘

c N

O a"‘x’ 'n‘.\“

iy
"‘1::?

.

oy 4
‘»:.:"...‘..‘.v'

3.4, 0 ‘I

:' | 0 i I | \ .‘l :‘0'

!.' n

‘k‘o

‘4

* - » 3"
':'.""?t"‘:'u\ \‘: :': Ql::'
.b‘; W ‘ "‘i‘ i\'

l\‘u' 1}‘

R

o

| o
BOD-TR-37-108 e
Carnegie-Melion University . e
Software Engineering Institute X

Distributed Systems Technology Survey o

Enic C. Cooper o
March 1987 o

2

Technical Report

Distributed Systems Technology Survey

. 3

Eric C. Cooper

Aecoss!_on For

NTIS GRA&I

DTIC TAB

Unannounced 0
Justifioation

By.
Distridution/

Availadility Codes

Avall and/or
Dist Special

44 |

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Camegie-Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEl Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report shouid not be construed as an official
DoD position. it is published in the interest of scientific and technical
information exchange.

Review and Approval
This report has been reviewed and is approved for publication.

FORTHE COMMANDER =

!

\s&.\% g““’“—% ~ ._._ PR L Tooonoay
Karl H. Shingler, S '
SEl Joint Pr,og;am Office A

Cen e]

LA TR
YTy ‘

Py . b
s P [
;:J "ﬁ TS e 4
SR
o ' B L R
%8,

d

This document is aveilable through the Defense Technical informetion Center. DTIC provides acosss 10 and vansfer of

scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Govemment

ap%m personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical information Center,
Cameron Station, Alexandria, VA 22304-814S.

Copies of this document are also aveliable thwough the National Technica! information Services. For information on ordering,
please contact NT:S directly: National Technical information Services, U.S. Department of Commerce, Springfield, VA 22161.

1
2
3 A
3
3
4
4
5
6
6 N
7 -
8
9
9
9
GﬁmD 10
C12) Distributed File Systems; ::
12.2. Sharing Files in a Distributed System 1"
12.3. Integrating Workstation Disks and File Servers 12
12.4. Integrating File System Name Spaces 12
12.5. Flle Servers versus Database Servers 13 ;
13) Fault Tolerance ; - 13
13.1. T for Reliability 13
2. Nested Transactions 14
13.3. Repiication for Avallability 14
14 Conclusion 15
(—— e
0"{9
o
o
A
2
| c“,::l
e
e

. . -)
! 0 . 4 :
R B A S A O G N O O A e ety

Foreword

The Technology identlfication and Assessment Project combined & number of related investi-
gations 1o identlly:
o existing technology in a speciiic problem area 10 review research and development
results and commercially avallable products;
omwwmmammmwmmm

surveys of speciific arees, and identification of particularly good examples of the
Mummm

o requirements for new technology through continuing studies of software development
xmum,mmmummmwm

Technology assesement invoives understanding the software development process, determining
the potential of new technology for solving significant problems, evaluating new software tools
and methods, maiching existing fechnologies 10 needs, and determining the potential payoff of
new fechnologies. Assesement aclivities of the project focused on core technology areas for
ofiware engineering environments.

This report is one of & series of survey reporis. R s Not intended 10 provide an exhaustive
discussion of topics periinent 10 the aree of distributed systems technology. Rather, R is intended u
88 an informative review of the technology surveyed. These surveys were conducted in late 1985 b

and early 1908.

Members of the project recognized that more general technology surveys heve been conducted iy
by other investigators. The project did not aempt 10 duplioate those surveys, but focused on Q8
points not addressed in those surveys. The goal in conducting the surveys was not 10 describe i

the technology in general, but t© emphasize issues that eliher have a sirong impact on or are ’
unique 10 sofware engineering environments. The cbjecive In presenting these reports is to g;;;
provide an overview of the technologies that are core 10 developing soRtware engineering environ- g‘
ments. ,‘
o

1. Introduction o=y
Qo'i-
One of the core technology areas in which project members were interested is distriuted sys- §t:i{
tems technology. This report surveys the technical issues invoived in designing distributed sys- e
fems, wih perticular emphasis on those aspects that affect software engineering environments. o
[Economics Is the driving foroe behind the proieration of distributed systems. Workstations are a s
cost-efieciive way of providing computing power 10 individuals. Looal area networks are a cost- ::;:::;5
effective way of shering access 10 more expensive and less frequently used resources lke laser e
printers and large disks, a8 well as & Mmeans for users 10 share information. e
O
In distiributed systems, however, there is a fundamental dichotomy between the need for integra- o
tion (10 achieve sharing) and the need for autonomy (10 control one's local environment). Many of 4'\'.
2
K
1 o
o

1
- b . PR .
BSOS OO I ST ND BN IKIIN T POV A Mt MO RS KN MU NTAGC b o R O L g B oS MM KOS Wb 3P)

the technical sohstions presented here can be evaluated in terms of how they balance these two
needs.

Distributed systems have a number of well known potential benefils:

o Modularity: Resources can be added and reconfigured easily.

o Performance: Paralielism can be used 10 perform jobs more quickly.

o Avallabilly: Redundancy can be used 1o provide non-siop service.
To achieve thess benefits In praciice, however, requires solutions for a number of difficuk tech-
nical problems. Also, there are trade-off relationships between, for example, using a distributed
system for increased performance versus using & for increased avallabiiity. The following sec-
tions discuss some of the important technologies and issues involved in distributed systems.
References 10 appropriate surveys are included in the discussion, but two general references are
appropriste here. First, the book edited by Lampeon ef al. [18] is an excellent overview of many
aspects of distributed systems. Second, Tanenbaum's book on computer networks [36] is prob-
sbly the best starting point for more information on networks and protocols.

2. Hardware Technology

Economic factors are a major reason for the proliferation of distributed systems. Processors,
memory, and magnetic and optical disks are sufficiently inexpensive 10 aliow an organization to
deploy a workstation in every office, in addition to supporting a machine room with mainirames
and file servers. Current workstations typically have from 1 to 10 MIPS (million instructions per
second) of processing power, 1 to 10 megabytes of memory, 20 t0 200 megabytes of disk
storage, and cost less than 20,000 dofiars.

A variety of network technologies are avaiiable for interconnecting these components. A distinc-
tion is commonly made between local area and long-haul networks. For both physical and ad-
ministrative reasons, local area networks (LANs) are typically used within, and managed by, a
single organization. Cusrently, most LANs are constructed from coaxial cable or fiber optics, with
bandwidthe ranging from 10 to 100 million bits per second and lengths on the order of 1
kilometer. The interconnection topologies of such networks include bus, ring, tree, and star struc-
fures.

Long-haul networks, on the other hand, can span continents, and are usually managed by com-

panies or government agencies for use by others. The technologies used for long-haul networks
include telephone ines and satelite links. Long-haul networks use one or more of the following

switching techniques:
o Circult switching
o Message swilching
o Packet swilching

Circult switching Is used in the telephone system. In this scheme, a route through the network is
established before any data is sent. Since communication between computers tends to come in

XX » \ A ¥a e

.‘.."n‘h.t. . N RIS VN VR

m
!
|
|

f bursts, circul switching does not provide good utilization of available bandwidths, and the time
| required to pre-aliocate a circul may be unacceptably long.

Message-switched and packet-switched networks are aiso calied store-and-forward networks be-
cause data is independently routed from one swilching node 1o another. For reasons of reliability,
the network topology of a store-and-forward network should be connected redundantly, so that
there are several pathe or routes between any two nodes.

in message swilching, individual messages are routed from one switching node to another. This
oiiminates the long set-up time associated with circuk switching and provides better utliization of
bandwidths. The disadvantage of this approach is that the variable size of messages makes it
difficult to aliocate node bulfering resources efficiently.

in packet switching, messages are first broken up into fixed-size packets, which are then in-
dividually routed through the network and reassembled at the destination. Different packets of
the same message may be routed along different paths, and hence may arrive out of order.
Higher level protocols are used to handie out-of-order packets. Since all packets are of the same
(relatively small) size, buffering at intermediate nodes is simpilfied. The ARPANET is an example
of a long-haul packet-swilched network.

3. Internetworks

Because of their low cost, workstations tend 1o proliferate in organizations, and the need for LANs
tends to grow as well. Large organizations are soon faced with the necessity of connecting
several LANs through a structure called an intemetwork. In fact, some of the components of an
intermetwork can be long-haul networks. In the DARPA Internet, for example, the long-haul
ARPANET is connected with hundreds of LANs at universities and research laboratories. The
same etore-and-forward approach can be used in an intemetwork, viewing the intemet gateways
as the packet switches of a single larger network.

4, Protocols

Protocols are used 10 provide virtual communication services with properties different from (and
typically at a higher level than) those provided by the physical network. This leads naturally to a
layered model of profocois, such as the one that has been standardized in the ISO Reference
Modet for Open Systems interconnection [17].

Further discussion about protocois may be found in the survey article by Tanenbaum [37).

4.1. ISO Reference Mode!
The iSO Reference Mode! consists of the following seven layers:

1. Physical layer: low-level communication of bits
2. Data link layer: tframing, checksumming

3. Network layer: intemetwork addressing and routing

4. Transport layer: refiable communication, host-to-host addressing

5. Session layer: connection management, process-io-process addressing
6. Presentation layer: data formatting, encryption, compression

7. Application layer: user programs

The ISO Reference Modetl does not match all protocol architectures perfectly. in the DoD internet
family of protocols, for example, the IP [26] and TCP [27] protocols provide functionality that

ranges from the data link layer to the session layer.

4.2. Transport Protocols
Communication services can be characterized by a number of attributes:

¢ The need for a connection establishment protocol before communication can occur
o The number of communicating entities

 Reliability of data defivery

o Client interface (messages or stream abstraction)

o Fixed or variable length of messages

The following is a brief characterization of a number of transport protocols according to the above

altributes.

o Datagram protocol: connectionless, unreliable delivery, fixed-size packets. Ex-
amples include the Xerox PARC PUP protocol, the DoD Intemet Protocol (IP), and
the DoD User Datagram Protocol (UDP).

o Byte stream protocol: connection-based, reliable delivery, stream abstraction. Ex-
amples include the Xerox PARC byte stream protocol (BSP) and the DoD trans-
mission control protocol (TCP).

e Message protocol: connectionless, refiable delivery, variable-length messages. Ex-
amples include the protocol used by the Spice system [29).

 Request/response protocol: connectionless, reliable delivery, variable-length alter-

nating request/response messages. Examples are described by Birrell and
Neilson [6).

A recent fopic of research has been the incorporation of many-10-many communication semantics
into various transport protocols [1, 8, 8]. New protocols in each of the above classes will likely be

extended with many-to-many semantics.

4.3. Higher-Level Protocols
Higher-level protocols, those implemented at the session layer or higher in the ISO model, are
correspondingly harder to characterize. Examples from the DoD Internet family inchude the Tel-
net network terminal protocol, the file transfer protocol (FTP), and the mail delivery protocol
(SMTP). Other areas of research include protocois for graphics, window managers, voice, multi-
media messages, bootstrap loading, remote debugging and monitoring, and remote procedure
call, discussed more fully below.

st oM T A T T R A A W N N AR AR A ATy ’t..‘\‘)j

5. Heterogeneity

Currently, there is no single standard machine architecture, operating system, programming (an-
guage, or programming environment, and such standards are not ikely 10 appear in the near
future. As a result, organizations find themseives faced with the problem of integrating a hetero-
geneous collection of such resources. As evidenced by a recent workshop in Eastsound,
Washington, that was devoted solely 1o the problems of heterogeneity, and by current research
projects in heterogenelty at institutions such as CMU and MIT, this is the key problem in distri-
buted systems today [24].

The most important pitfall to avoid in a heterogeneous system is the lowest common denominator
effect. This occurs when interiaces are only defined for those operations that are supported by all
components in the system. As the number of heterogeneous components increases, this set of
common operations may approach the empty set.

A number of techniques can be used 10 avoid the lowest common denominator effect. One
technique is a common data representation protocol, in which all communicating components
transiate their interactions into a standard external representation. As described below, this can
be handied automaticatly in remote procedure call systems through the use of a stub generator.
The main difficulty with this technique is that the representation protoco! itsel suffers from the
lowest common denominator effect. The advantage, however, ig that such protocols are flexible
since they are capabile of representing arbitrary programming language data types ike arrays and
records. DeSchon surveys a number of data representation standards [10].

Ancther technique is called option negotiation [34], in which each pair of communicating parties
negotiates which protocol options they will support. This approach aiows each pair to commu-
nicate with maxima! functionallty. The option negotiation approach is applicable at many levels in
a heterogensous distributed system.

The data representation protocol and option negotiation techniques can be successiully com-
‘bined. For example, the remote procedure call system at the DEC Systems Research Center

uses negotiation at binding time 10 decide between two possbie data representation protocols.

A third and somewhat ad hoc approach 10 coping with heterogenetty is the proxy technique. A
proxy is a speciaiized agent in a remote environment whose purpose is to provide an interface to
that environment that is more compatible with other components of the system. This approach
was first used- in remote job entry (RJE) systems 10 access batch faciiities from timesharing
systems. R has been used successfully in the Locus system [25] to integrate IBM mainframes
transparently into a distributed Unix! environment.

Uax is @ registered trademark of Bell Laboratories.

6. Models of Distributed Programs

Ahough transparency is desirable at the highest levels of a distributed system, at some lower
iovel the fact that the system is distributed must be made available to the programmer. How this
is done is iargely determined by the model of distributed programs that the systems designer
adopts.

One of the most well known approaches, developed at Xerox PARC in the 1970s, is called the
client/server model. The computing environment is assumed to consist of personal workstations
and a collection of shared network services impiemented by server machines. Such services
might include file storage (discussed more fully below), printing, and electronic mail. The pro-
grams running on the user's workstation are viewed as clients of these servers. The client/server
model is a simple extension of the application program/operating system mode! familiar in central-
zed timesharing systems. & is flexbile because new services are easily added, and it supports a
heterogeneous environment well: “Black boxes™ can be used as servers as long as some inter-
face can be constructed on the client side. A disadvantage of the client/server mode! is that #
does not support load balancing or muki-machine paraliel applications, athough such program
structures can be shoe-horned into this model by using a pool of “compute servers.”

Some of these deficiencies are remedied in the network operating system (NOS) model. In this
model, a transparent interface 10 all network resources is presented to the applications program-
mer, not just at the user interface level. The Locus system at UCLA [25] and the Spice system at
CMU [29] are successful examples of systems that follow this model. A major disadvantage of the
network operating system model is its difficulty in accommodating heterogenelty (in the form of
black boxes) because k assumes that a common software interface can be instalied on all the
network resources.

7. Operating System Issues

This section briefly describes a number of operating system features that are particularly impor-
tant for supporting distributed systems.

A message-based operating sysiem consists of an efficient kemel implementation of processes,
virtual memory, and inter-process communication, together with a set of server processes provid-
ing conventional operating system services such as device drivers and file systems. The Accent

kernel is a prime eXampie of a message-based system [29).

Message-based kemeils aliow inter-process communication 10 be extended over the network in a
simple and transparent fashion. The key is the notion of intermediary processes that intercept
remotely destined messages and perform the appropriate forwarding.

There is growing agreement that a ightweight process mechanism is essential 1o suppon com-
monly used distributed program structures. A number of lightweight processes can share a single
address space; this allows the construction of servers, for example, that correctly handie concur-
rent incoming requests. The fack of such lightweight processes has been a weak point of UNiX
and & number of message-based operating systems.

w——

A process migration facility allows a running process to be moved from one machine to another.
Such a facility is a valuable mechanism for implementing load balancing policies, whereby jobs
are moved off heavily loaded machines and onto ightly loaded ones. Variants of process migra-
tion can be used to increase fault tolerance by checkpointing process state. Process migration is
greatly simpiified in message-based operating systems [28].

A simpler form of load balancing can be accomplished at task creation time by starting the task
on a lightly loaded processor. Further experience is needed to determine whether the full power
of process migration is necessary.

e

Workstation technology has advanced to the point where most new high-end workstations are
multiprocessors with approximately 10 processors. Operating system support for multiproces-
sors, and in particular for efficient execution of paralle! programs, will be an increasingly important
requirement.

e P WD A

Finally, UNIX compatibiiity is often a practical necessity. The wide variety of software t0ols avail-
I able under UNix would be prohibitively expensive to port to an incompatible environment.

Many of the features mentioned in this section have been included in the design and implemen- |
tation of the MACH-1 operating system at CMU [3), a kemel and programming environment that .
will probably serve as the new foundation for DARPA-sponsored research in strategic computing.)

8. Programming Language Issues

One approach to integrating distributed programming primitives into the programming environ-
ment is to incorporate them into the programming language itself. This approach can be accom-
plished in two ways: the mechanisms can be built into the language, or they can be provided
extermnally.

CSP [16] and Ada[12] are examples of languages with built-in communication primitives. This v
approach extends the benefits of strong typing to distributed programs because the language is
the only interface to the communication mechanism. Unfortunately, most languages of this type
ignore the problem of heiarogeneous enviconments. As discussed previously, in order to cope \
with heterogeneity, some common data representation protocol or negotiation scheme must be

used among the language impiementations on ditferent machines. Without a language-defined \
standard, programs produced by different compilers are uniikely to be able to communicate. Ada o
provides only a partial solution to this problem in the form of pragma statements that allow contro! v
over the representation of data types. N

In message-based operating systems, primitives for message communication are typically inte- 3
grated into the programming language in the form of a subroutine ibrary. Again, fittie support for ‘4
heterogeneity has been provided. Issues of data representaiion and type safety are usually the Y
responsibiiity of the programmer. X

Remote procedure call (RPC) systems represent a compromise between the built-in and the Y

e T e LT

EAr Y Yo
S K ‘l"‘l""ﬂ?".‘.n. .o"'.n‘,'n.?‘\‘. W ‘q\. ..!.Q..‘.‘! M

external approach. By using a stub generator, the remote procedure call mechanism can be

closely coupled 10, yet separate from, the compiler. This approach is described in more detail in
the next section.

9. Remote Procedure Call

Remote procedure call is a combined protocol-level and language-level mechanism for construct-
ing distributed programs. A remote procedure call mechanism allows a programmer 0 write a
distributed program in the same way one writes a single-machine program: using procedure calis
in one’s favorite programming language. Remote procedure call meshes well with both the
client/server and network operating system models.

The language-level integration of remote procedure call into a conventional programming lan-
guage is typically accomplished by the use of a stub generator, a specialized compiler that trans-
istes a module interface into stub procedures for the client and server halves of a remote inter-
face. The stub procedures handie the details of representing the data types of the programming
ianguage in an external form when they are sent in messages, and the conversion to and from
the intemal form. The stub procedures also interface with the lower leve! request/response
protocol used to exchange the call and retum messages.

The stub generator approach has a number of advantages:
» The stub generator manipulates source-level programs, so strong typing can be pro-
vided.

« The stub generator is separate from the compiler, so the same stub generator can be
used with any compiler for that language.

¢ The stub generator is a hatural place to “hide” knowledge about the external repre-
sentation protocols and/or negotiation schemes used between heterogeneous
machines.

To invoke a remote procedure, the client stub builds a cal message containing the name of the
procedure to be invoked and the external representation of s arguments. The client sends the
call message 1o the server machine, where It is interpreted by the server stub. The arguments
are converted to their iternal representation and are passed to the named procedure. When the
procedure retums, its results are externalized in a returm message and sent back to the client.
Finafly, the client stub converts the results back into intemal form and retums them to the client

program.

Neison gives a comprehensive freatment of remote procedure call in his thesis [23]. Birrell and
Nelson describe the transport protocol and binding mechanisms used in an implementation of
RPC at Xerox PARC [6).

Y S o v e T

N 0 Y Y0 ALY AR NG WU N NN Y U R
'.‘ ';‘"s‘ﬁ ;"‘;'l‘!‘lbl‘- AR AN A M N R e, UMM A T X M N A Y N KUK \0~;0“t' () .0.'.' NaRaNasX) W9 Sy

N .
(a1 S s aA

.ON

9.1. Advantages ot Remote Procedure Call

The single biggest advantage of remote procedure call is that it makes writing distributed pro-
grams almost as easy as writing single-machine programs. The same software development
methodologies that work well for centralized systems, such as the use of modularity, abstract
data types, and stepwise refinement, continue to work just as well when extended with remote
procedure call.

9.2. Disadvantages of Remote Procedure Call

Although remote procedure call has become extremely popular, R is not a panacea. In particular,
Rk is not sultable for the transfer of large amounts of data, or for communication over high-latency
media. Special buk data transfer protocols are preferred in such cases.

One common criticism of remote procedure call, namely that the synchronous nature of remote
procedure call does not allow any paralielism, is really not a problem. In fact, remote procedure
call neither heips nor hinders paralielism. The above criticism is usually accompanied by an
argument in favor of non-blocking remote calls, where the application can either poll for the return
value or have R delivered asynchronously. Such features are actually a poor man's substitute for
Nghtweight processes, and are only desirable in environments where processes are heavyweight
and expensive. i fightweight processes are well supported in the programming language and
environment, they become the natural means of achieving parallelism in conjunction with remote
procedure call. ¥ not, polling or asynchronous delivery mechanisme can be simulated with
remote procedure call, but use of such features can resutt in rather convoluted programs. For the
most effective match, systems should support both remote procedure call and lightweight proc-
esses.

10. Software Tools for Distributed Environments

Making software fools function transparently in a distributed environment often requires substan-
tial effort.. Consider some of the tools that have become standard equipment in centralized
environments:

o Compilers

o Linkers

« Debuggers

o Profiling fools

¢ Version controt and system configuration tools
A number of issues must be addressed when extending these tools to distributed environments.

Programming language compilers and Iinterpreters must be integrated with communication
facilities such as message primitives or remote procedure call. The software engineering issues
are complicated by machine dependencies, language dependencies, and compiler dependencies,
any one of which can effect the representation of programming language data types in messages.

Debuggers must be extended to allow single-stepping across machine boundaries when following it
e

, 2

&

1':':':'

AN

oA

» 0t R)

" N
o‘\\ oy ¢

DALY W e 1 3 . . - - T - .
P N Dt S R D O X St A O VA A LIRS AR X N K R T s S M P Mok g T AR AN AN

WY RINS, P Y

-
- "

T T

a chain of remote procedure calls. It should be possible to set breakpoints in remote modules
and to trace the fiow of control of a distributed program. An advantage of message-based operat-
ing systems for distributed debugging is the ability to encapsulate the entire environment of a
process, since all of its interactions occur via messages.

Profiling tools provide the programmer with histograms of where time is spent in a program. This
allows the programmer 10 detect bottienecks and 10 apply optimizations where they will do the
most good. In the distributed case, profiling must work cormrectly when portions of the program
execute at remote nodes.

Version control and system configuration is a particularly difficul problem in a distributed environ-
ment. Schmidt describes a variety of techniques for maintaining consistent releases of large
software systems in the Xerox PARC environment [31]. Shared file servers, discussed below, are
essential to the success of such a scheme.

11. Security

A digtributed environment raises a number of securlty issues. First, the broadcast nature of most
local area networks makes them particularly vuinerable 10 eavesdropping. Anyone with a per-
sonal worksiation on an Ethermnet can easily monitor all network traffic. Secondly, the lack of
control over the software run in an individual workstation makes masquerades, replays, and
similar active threats possible.

These problems are soived in single-machine or centralized environments by physical security:
locked machine rooms and protected terminal lines. Unfortunately, the decentralized nature of
distrbuted systems preciudes such measures. Logical rather than physical schemes must be
used instead.

The simplest problem 10 solve is that of eavesdropping. The solution uses encryption: two per-
sons wishing to communicate do 80 by encrypting all their messages with a secret key known
only to them. This effectively constructs a secure private communication channel on top of the
underlying insecure publiic channel. The Data Encryption Standard (DES) can be used for secret-
key encryption and decryption [21). Hardware implementations of DES are avaliable and should
be included in new workstations.

More elaborate encryption-based schemes can be used 10 soive the authentication problem, in
order 10 prevent masquerades and similar active threats [11, 22]. In such a scheme, a person
can securely identlly himsell t0 another person by obtaining from a mutually trusted authen-
tication service an “proof of identily” that is unable to be forged. Birrell has described a compre-
hensive scheme that provides both privacy and authentication for remote procedure calls [7].

The encryption-based schemes that have been proposed in the Nerature do not afford much
protection against denial-of-service attacks. Rk has been observed that passive threats are difficult
10 detect but easy to prevent, while active threats are sasy to detect but difficult to prevent.

10

12. Distributed File Systems

Distributed flile systems have more impact on programming environments than any other aspect
of distributed systems. A good discussion of file servers and distributed file systems may be
found in the survey article by Svobodova [35].

12.1. Files and Directoties

Fllss are the primary means of storing and sharing long-lived information in computer systems.

Flils systems may impose structure on the contents of files (index or record structures or file g
types) or may treat the contents merely as sequences of bytes. This report takes the latter i
approach and views a flle as a sequence of uninterpreted bytes; any structure imposed on file
contents is viewed as a logically higher level. A common approach is to deal only in machine- N
sensidle unique identifiers at the file system level.

A separate concept, often lumped together with the file system, is the directory system, which

provides a mapping from user-sensible names 1 file identifiers. Directories may themselves be
implemenied as files containing name/identifier pakrs. The directory system implements creation, 0
deletion, lookup, snd enumeration of name/identifier pairs. Additional functions may include ex- ot
pansion of patterns containing wildcard characters.

o
The directory system is responsible for any structuring of file names. A common approach is a ::3;;
tree structured direciory system, in which the full name of a file is a path name consisting of a i

sequence of components starting with the root directory of the tree. For exampie, in the UNix]
direciory system (probebly the most common tree-structured system) the path name -
Auss/eccipaper.iex denoies the file found by starting at the root directory (the leftmost “/*), consult-

ing the directory usr 10 find the direciory ecc, which in tum contains the entry paper.fex. In the .:‘j‘
UniX system, only the /" is interpreted by the directory system:; file extensions such as .fex are s
purely convention. Other direciory systems provide more support for, and often more restrictions)

on, the use of file extensions. Another feature of directory systems that is missing from UNiX is
the provision of multiple versions of flles. Versions are typically specified through additional file

name syntax, and file operations typically use different defaul versions K none is specified. For ‘.:':;:
example, opening a file for reading wouid defaulkt 10 the most recent version, while deleting a file ;:,4';
would defauk 1o the oidest version. o
r A final component is the protection system, often subsumed by the directory system. For ex- K
ample, the direciory system can allow access control lists 10 be associated with each directory e
entry, and can provide default access controis through an inhertance mechanism. Note that an B
200888 control mechanism presupposes some method of securely identitying people. In a distri- en
buted environment, this can be accomplished with an authentication service as outiined above. i
-4

12.2. Sharing Files in a Distributed System o
The ease with which files can be shared in a distributed system is a good measure of the overall 0
success of the sysiem. Several approaches are possible. The lowest level technique is the disk e

server. A disk server can be viewed as a multiported disk controlier whose 1/O bus is the net- s
work. This approach requires minimal changes to the operating system of the client machine,

1"

ROGENROSON0 i 1 . ¥ $. 0 . 1 » . . T Y
e TR T T T T N S R B o S S TN, o.l',. .0‘1.0".H.n DSOS L A X

since the interface is similar to that of a local disk. The abstraction provided is simply that of

virtual disk pages. Although read-only sharing of files is simple with this technique, write sharing
poses ditficulties.

The disk server’'s interface is too low-level to implement concurrent write operations properly. For
example, there is no way to lock a file or to enforce access controls. Instead, the client operating
systems have to negotiate among themselves using a separate protocol.

An intermediate level approach is to provide an abstraction of files with unique IDs. The interface
to such a file server can allow individual blocks of files to be read or written, as well as logical
operations on the entire file such as locking. File servers of this type are usually accessed via a
directory system, which must itself be a shared service.

The highest level approach is 10 use a compiete file and directory server, functionally equivalent
fo the tile and directory system on a client machine. Interfacing is again simple because file
operations can be intercepted at a high level and redirected 10 the remote server.

123. Integrating Workstation Disks and File Servers

Another issue that is raised when workstations are networked with file servers is how to use
workstation disks most effectively. One successful method, used in the Cedar file system [32),
considers all shared files 10 be immutable (read-only), and uses each workstation file system as a
cache for some portion of the globally shared file system. Flles are created on the local file
system and remain private until they are stored back on the shared file server. From that time on,
that version of the file may not be modified, and <y be shared by other users (subject to normal
protection mechanisms, of course). Guaranieeing consistency is relatively simple; the shared file
server must provide atomic creation of a new version of a flle.

A different approach is taken by the designers of the Camegie-Melion ITC file system [30].
Workstation disks are also used as caches, but shared flles are not assumed to be immutable.
As a result, cache validation is required, initiated either by the workstation before using a cached
file, or by the file server when a shared file is modified.

12.4. Integrating File System Name Spaces

Once file servers are used to permit sharing of files in a network, integration of many file name
spaces becomes an issue. The integrated name space should allow a file to be named in the
same way from any machine in the network, in order to foster portable programs and minimize
confusion when users change workstations.

if the ditferent file servers are at the intermediate or low level described above, integration can be
achieved through a single (logically centralized) directory service. A more common case, how-
over, is that existing workstations, mainframes, and file servers all have their own file and direct-
ory systems that must be integrated into a single name space. For tree-structured name spaces,
two schemes are possible. The first uses a super-root that logically contains the roots of all file
systems in the network. Additional syntax is used 10 refer to the super-root in full pathnames.
For example, the file name /./A/sr/id might be used to refer to /usr/7ib on machine A from any

12

o
!.':i:
other machine in the network. Advantages of this scheme are that i is simple 10 implement and i
guarantess consistent interpretation of fiie names anywhere in the network. A disadvantage is L
that this approach is not transparent since the location of a remote file is reflected in is full path -

name. This problem can be circumvented through the use of symbolic links, a directory system

feature which aliows a user 10 impose an arbitrary view on top of the actual tree structure. 2
The second scheme allows remote mount points in each local directory tree, 8o that each direct-
ory system may have a different view of the distributed system. The problem with this approach
is that consistent interpretation of names must be obtained by convention; R is not enforced by e
any mechanism. The logic of name interpretation on the local machine is also more compiicated. s
On the other hand, k gives individual machines more control over their view of the name space. o
At

12.5. Flie Servers versus Database Servers -
There is growing agreement among designers of distributed file systems that R is important to e
distinguish between file system and database system functionality. For example, file servers i
must support efficient sequential reading of small files and creation of new versions of files, but i
probably do not need 1o support large files or synchronized modification of portions of files. Data- e,
base servers, on the other hand, can be used for transactional updates o shared information and -
efficient access 1o large files. Making this distinction allows optimized file server and database s
server designs, rather than compromised designs streiched %o fit both classes of needs. :E;;:i
i
13. Fault Tolerance
Ancther area in which distributed systems differ from centralized systems is fallure semantics. .::i:’iﬁ
Partial fallures, in which some but not all of the components of a system continue to function, are "\{.ﬁ
more common in distributed systems and add 10 their complexity. Various mechanisms are used 0!
in order to cope with this complexity. The book by Anderson and Lee presents a thorough g
overview of fault tolerance techniques [2). .‘}.
13.1. Transactions for Reliability é::i?
Transactions are used 1o simplify the construction of reliable distributed programs, ones which do :{:..:}
not lose or comupt data. Transactions were first used in database systems [14], but have since W
been adopted in operating systems [33] and programming languages [20]. A transaction has T
three essential properties, each of which must be guaranteed even In the presence of processor non
and communication failures. :t.:;t‘;;;
Ny
Serializabiity, the first property, means that the concurrent execution of any number of trans- :tf:‘:f;
actions is equivalent 10 their serial execution in some order. This property insures that ¥ each -
transaction transforms a consistent database state into another consistent database state, the o
overall consistency of the database is preserved when transactions execute concurrently. '::::E
)
The second property is atomiclly, which guaraniees that a transaction is an all-or-nothing opera- ?;E::;'
tion; no partial effects of a transaction are ever visile to other transactions. When more than one Ut
processor is invoived, this requires some form of distributed commi protocol, the most well k":
ot
:"n:‘l':
13 \ .'_"‘

DRI

T) ORI Yy v » v W i) &, o/ LI ¥
Vo A A R AR NN LR AL RO NN TIORGOS ODDUEMOOOO AN, 1, X .,

-
AN LN S XX Y,

known of which is two-phase commit [14, 19]. At any time before committing, a transaction may
abort, leaving the system state as i the transaction had never been executed. The fact that
intermediate effects are not visible to other transactions means that the domino effect (cascaded
aborts) cannot occur. When a transaction is aborted, one can be sure that no other transaction,
okther still running or already committed, couid have relied on updates performed by the aborted
transaction.

The third property is permanence, which states that once a transaction commits, Rs effects be-
come permanent. Providing permanence in the presence of fallures requires some form of stable
storage [18]. This involves writing each logical page of data onto more than one disk and modi-
fying the read and crash recovery operations to take advantage of the redundancy. It is still
possbie that the coples of the disk page can become corrupted in such a way that the read
operation would fail; but by increasing the degree of replication, the probability of such a cata-
strophic fallure can be made arbitrarily small.

Crash recovery mechanisms use stable storage in two ways: for checkpoints and logs. A check-
point is a snapshot of a consistent state that can be restored after a crash. A log is a record of
the evenis or operations that affect the state of the system; R is replayed after a crash. Check-
points provide faster crash recovery, while logs are less expensive during normal operation. If a
combination of these two schemes is used, the log need only be replayed from the most recent
checkpoint, and the time between checkpoints can be used to balance the cost of the normal and

recovery modes of operation.

13.2. Nested Transactions

Nested transactions are a generalization of single-level atomic transactions, in order to allow
them to mesh properly with the concepts of composkion and abstraction supported by program-
ming languages. (n this scheme, a transaction consists of a tree of subtransactions, with a single
fop-level transaction at the root. The intermediate effects of a transaction that has not yet com-
mitted are visbie only 10 s descendants in the tree. The effects of a committed subtransaction
are visble only to ancestors and siblings in the tree. If a transaction aborts, any uncommitted
subtransactions must be aborted, and the effects of any committed subtransactions must be
undone. The nested transaction model was chosen for the Argus system at MIT [20].

13.3. Replication for Avaliabllity

The availability of a system is the probability that the system will be up (either at a particular time
or on average). Repilication is used to increase the availabiity of distributed systems, either
through the use of a primary/standby architecture or via a modular redundancy scheme. In a
primary/standby scheme, only a single component performs its normal functions; all the other
components are on standby in case the primary fails. In a modular redundancy approach, all
components perform the same function, and some form of voting on the outputs is used to mask
failures.

A classic primary/standby architecture is Tandem’s method of process pairs [4]. The processes
in a process pair execute on different physical processors. One process is designated as the
primary, the other as the standby. Before each request is processed, the primary sends infor-

mation about its internal state 10 the stancby in the form of a checkpoint. The checkpoint enables
the standby to compilete the request ¥ the primary fails.

The lsis project at Cornell uses a primary/standby architecture for replicated objects [5]. In each
interaction with a replicated object in Isis, one replica plays the role of coordinator, and only it
performs the operation. The coordinator then uses a two-phase commit protocol 10 update the
other replicas.

Triple modular and N-modular redundancy have long been familiar to designers of fault-tolerant
computer systems [2]. In tripie modular redundancy, every computation is carried out by each of
three processors. The resuits are then compared, and ¥ at least two agree, that value is used. In
the Circus system, replication was integrated with remote procedure call in order to support mod-
ular redundancy at the program module level [9).

Gifford’s weighted voting scheme uses quorums and version numbers to provide replication
transparency for files [13]. In this aigorithm, read and write quorums (sets of replicas) are chosen
s0 that any read operation will include the most recently written version. Herlihy extended
Gifford’s aigorithm to handie replicated absiract data types [15]. In Herlihy's approach, con-
straints on quorum assignments are derived from analysis of the semantics of the abstract data
types.

14. Conclusion

Well designed distributed systems should strike appropriate balances between the needs for
integration and autonomy, and between the needs for increased performance and increased
availability. The Remized points below represent the features that project members recommend

for inclusion in the operating system, programming language, and support environment of any
future distributed system.

o Message-based kemel

o Transparent network inter-process communication

o Remote procedure call facility

o Group communication integrated with remote procedure call

o Conventional software fools extended for distributed environments
o Lightweight processes

o Distributed file system

o Distributed database system

* UNix compatibitity

References

)

4]

19

(10

(L)

12

Mustaque Ahamad and Arthur J. Bernstein.
Multicast Communication in UNIX 4.2BSD.
uil'nu::nu:lbqalamflhuv!ﬂublnnlurunatulll¢:tumﬁnnnnt:|cuvlJi:nIhunotit:awrlnunlngy:iysmawrum
pages 80--87. May, 1985.

Tml'!ll’ A Lee.

wnobonv.mnmr. Rashid, Elien Siege!, Avadis Tevanian, and Michae!

. Young.

MACH-1: A Multiprocessor Oriented Operating System and Environment.

k\l}éﬂ::;VU:=:;(|tﬁlor).ll!urChaHUDMMWIIIﬁnvﬂlunnlarll:!!lnlﬂlt Vector, and Symbolic.
, 1986.

Joel! F. Bartiett.

A NonStop Kemel.
hpmggomsmumonopomwmmgmzzum
Published as Operating Systems Review, 15(5).

Kenneth P. Birman, Thomas A. Joseph, Thomas Raeuchie, and Amr El Abbadi.
FauR-Tolerant Distributed Objects.
in Proceedings of the 4th Symposium on ReliabMy in Distributed Software and Database
Systems, pages 124--133. October, 1964.

Andrew D. Birrell and Bruce Jay Nelson.
Remote Procedure Calls.

implementing
ACM Transactions on Computer Systems 2(1):39--59, February, 1984.

Andrew D. Birrell.
Secure Communication Using Remote Procedure Calls.
ACM Transactions on Computer Systems 3(1):1--14, February, 1985.

David R. Cheriton and Willy Zwaenepoel.
Distributed Process Groups in the V Kemel.
ACM Transactions on Computer Systems 3(2):77-107, May, 1985.

Eric C. Cooper.

Repiicated Distributed Programe.

in Proceedings of the 10th ACM Symposium on Operating Systems Principles, pages
63--78. December, 1965.

Published as Operating Systems Review, 19(5).

l\tl\llln L. DeSchon.
of Data Representation Standards.
‘ch!uuhalll!lslunliFt:ir71 SRI Network Information Center, January, 1986.

Whitfield Diffie and Martin E. Heliman.
Privacy and Authentication: An introduction 10
Proceedings of the IEEE 87(3)397-427, March, 1979.

Reference Manual for the Ada Programming Language
United States Department of Defense, 1983.
U.S. Government Printing Office, ANSIMIL-STD-1815A-1963.

s}

4

(18}

(16

nn

(18}

[19)

[21)

(24

[25)

David K. Gittord.

th?nhhSmmkmonOpomﬁ Systems Principles, pages 150--162.
December, 1979. e

Published as Operating Systems Review, 13(5).

J. N. Gray.

Notes on Data Base Operating Systems

in R. Bayer and R. M. Graham and G. Snglmollor(odllor). Operating Systems: An Ad-
vanced Couwrse, pages 393--481. Springer-Verlag, 1978.

Volume 60 of Lecture Notes in Computer Science.

Maurice Herfihy.
A Quorum-Consensus Repiication Method for Abstract Data Types.
ACM Transactions on Computer Systems 4(1).32--53, February, 1986.

C. A. R. Hoare.
| Processes.

Communicating Sequentia
Communications of the ACM 21(8):666--877, August, 1978.

Reference Model of Open Systems interconnection
1ISO/TCO7/SC186, 1979.
Document N227.

8. W. Lampeon and M. Paul and H. J. Siegert (editor).
Lecture Notes in Computer Science. Volume 105: Distributed Systems—Architecture
and implementation: An Advanced Course.

Springer-Veriag, 1961.

Butler W. Lampeon and Howard E. Sturgis.
Crash Recovery in a Distributed Data Storage System.
Computer Science Laboratory, Xerox PARC.

Barbara Liskov and Robert Scheltier.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs
ACMTMmonPrmmunwagosaMSystansS(S):381-404 July, 1983.

Data Encryption Standard
National Bureau of Standards, 1977.
Federal information Processing Standards Publication 46.

Roger M. Needham and Michael D. Schroeder.
Using Encryption for Authentication in Large Networks of Computers.
Communications of the ACM 21(12):993--999, December, 1978.

Bruce Jay Neison.

Remote Procedure Call.

PhD thesis, Computer Science Department, Camegie-Mellon University, May, 1981.
Published as CMU report CMU-CS-81-119 and Xerox PARC report CSL-81-9.

David Notkin, Norm Hutchinson, Jan Sanislo, and Michael Schwartz.
Report on the ACM SIGOPS Workshop on Accomodating Heterogenelty.
Operating Systems Review 20(2):9-24, April, 1988.

G. Popek, B. Waker, J. Chow, D. Edwards, C. Kiine, G. Rudisin, and G. Thiel.

LOCUS: A Network Transparent, High Reliability Distributed System.
MM&U‘DMWMWSNWM&M169--1W
mamwm 15(5).

(27]

[29)

130)

31]

Joh Postel.
internet Protocol.
RFC 791, SRI Network information Center, September, 1981.

Jon Postel.
Transmigsion Control Protocol.
Technical Report RFC 793, SRI Network Information Center, September, 1981.

Michael L. Powell and Barton P. Miller.

Process Migration in DEMOSMP.

In Proceedings of the 5th ACM Symposium on Operating Systems Principles, pages
110--118. October, 1983.

Published as Operating Systems Review, 17(5).

Richard F. Rashid and George G. Robertson.

Accent: A Communication Oriented Network Operating System Kernel.

in Proceedings of the 8th Symposium on Operating Systems Principies, pages 64--75.
December, 1981.

Published as Operating Systems Review, 15(5).

M. Satyanarayanan, John H. Howard, David A. Nichols, Robert N. Sidebotham, Alfred

Z. Spector, and Michael J. West.

The ITC Distributed File System: Principles and Design.

in Proceedings of the 10th ACM Symposium on Operating Systems Principles, pages
35--50. December, 1685.

Published as Operating Systems Review, 19(5).

Eric Emerson Schmidt.

Controlling Large Software Development in a Distributed Environment.

PhD ::;lc, Computer Science Division, University of California, Berkeley, December,
19882.

Published as Xerox PARC report CSL-82-7.

Michael D. Schwoeder, David K. Gitford, and Roger M. Needham.

A Caching File System for a Programmer's Workstation.

in Proceedings of the 10th ACM Symposium on Operating Systems Principles, pages
25--34. December, 1985.

Published as Operating Systems Review, 19(5).

Alired Z. Spector, Dean Daniels, Daniel Duchamp, Jeffrey L. Eppinger, and Randy

Pausch.

Distributed Transactions for Reliable

In Proceedings of the 10th ACM Symposium on Operating Systems Principles, pages
127--146. December, 1985.

Published as Operating Systems Review, 19(5).

Robert F. Sproull and Dan Cohen.

High-Level Protocols.
Proceedings of the IEEE 86(11):1371--1386, November, 1978.

Liba Svobodova.
File Servers for Network-Based Distributed Systems.
ACM Computing Surveys 16(4) 353--398, December, 1984,

Andrew 8. Tanenbaum.
Networks.
Prentice-Hall, 1981.

{371 Andrew 8. Tanenbaum.
Network Protocols.
ACM Computing Surveys 13(4):453—-489, December, 1981.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

te. REPORT SECURITY CLASSIFICATION
UNLIMITED, UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2s. SECURITY CLASSIFICATION AUTHORITY
N/A

. NO?%LASSI FICATION/OOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT
UNCLASSIFIED, UNLIMITED, DTIC, NTIS

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
CMU/SEI-87-TR-5

5. MONITORING ORGANIZATION REPORT NUMBER(S)
ESD—TR—87-1O§

SOFTWARE ENGINEERING INST. (11 applicable)

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL
SEX

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c. ADDRESS (City, State and ZIP Code)
CARENGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. ADDRESS (City, State and ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE
HANSCOM, MA 01731

8s. NAME OF FUNDING/SPONSORING [eb. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT 1DENTIFICATION NUMBER
ORGANIZATION (I applicadle)
SE1 JPO ESD/XRS1 F19628 85_0003
8c. ADORESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.
63752F N/A N/A N/A
_TITLE (Include Security Classification)
VDI STRTBUTED “SYSTEMS TECHNOLGY SURVEY
" ERR B
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Dey) 15. PAGE COUNT
FINAL FROM __oee TO s MARCH 87 20 h
16. SUPPLEMENTARY NOTATION
N/A L4
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

THIS REPORT IS ONE OF A SERIES OF SURVEY REPORTS. IT IS NOT INTENDED TO PROVIDE
AN EXHAUSTIVE DISCUSSION OF TOPICS PERTINENT TO THE AREA OF DISTRIBUTED SYSTEMS
TECHNOLOGY. RATHER, IT IS INTENDED AS AN INFORMATIVE REVIEW OF THE TECHNOLOGY

SURVEYED. THESE SURVEYS WERE CONDUCTED IN LATE 1985 AND EARLY 1986. .

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

uNcLAasSIFIED/UNLIMITED [same as reT. [oTic users (3}

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED, DTIC, NTIS

22s. NAME OF RESPONSIBLE INDIVIOUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMB0L
1 .
KARL H. SHINGLER 41358 Y630" SEI JPO
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS a5t

