
A-0101 953 DISTRIBUTED SYSTEMS TECHNOLOGY SURYEY(U) /
CRNEGIE-MELLON UNIY PITTSBURGH PA SOFTWdARE ENGINEERING
INST E C COOPER MAR 97 CMU/SEI-87-TR-5 ESD-TR-S7-iS6

UNCLASSIFIED FIG 12/ NL

W N2.0

L

MICROCOPY RESOLUTION TEST CHART
NATIONIAL UUREAU OF STANDARDS- 1963-A

-- Carnegie-Mellon University

-* Software Engineering Institute

Wn
Dl0trtd O . Tchnoloby Survey

I-

JUN 3 01987

to smog" ." "k

87 6 29, 036' 7

.

Technical Report
CMEM4-Th-s

ESOTR-S-106
WMh IN7

Distributed Systems Technology Survey

Eric C. Cooper

Aooousion For

DTUC TAIB
1hanUMMOMOd 03

.Tustrifitles

AVailability Codes T I
F.E .CT~ Eu

Approved for pubic relm.
Diutrbutlon unfifflhed.

Software Engineering InstItute
Carnege-Mellon Univrsfty

Pitsbrgh, Pennsylvanla 15213

7;;;;.... ...

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFS. MA 01731

The Idm arid sid1I In this report shoul not be construed as an official
DoO position. it IS pulished In the Interest of scient and technical

Review and Approval

This report has been reviewed and Is approved for publication.

FOR THE COMMANDER,

Karl H. Shingle!,
SEI Joint Proga Ofic

This do=umnW Is abo~ Uwtuo Ow Delsm Tedminlod- Isndmn Cme~wr. DTIC provlds s aes w and Wansfer of
III a W I e do oml mgm on r 0.0 paertel DoD aee - -Figend poordia on fralsr. Ondol@6w U.S. Governmen

qsn~sfd ed 6 cuWrams o balinea ooplpsee -sm OiTI dmoy: Deleio Tecdaol inhrfmnCenkr.
SimanoSoo Aleundl. VA 222044145.

Cooisa of ftis docmamet we abo awW~le 11ugh to Nallond Tedwh nio drm6on Services. For kinornion on ordeing.
coased TM deadly: Naedoa TedwdMiad loftlo Servics. U.S. Deprinrt of Commnerce. Springfield, VA 22161.

11 9 1 1 il I ,-I I

jA

Tbof C o nt 9

1)bemdudnj)

2

mh rnetarks
3

PO"7ols 3
Rsfsrsnce Model 3

4.2. Trarpor Protocols 4
4.3. HVghe-Level Protocols 4

8) PormIng Languag buep 7

9) s)Reo Procedure COU 8
~Ul~lh~U RInoeProcedure Call 9(9.2. D1s=is ratsof Remote Procdure Cml 9

0) Solwo Tools for Dlstutsd 9alonet

14 DitWbutedl File System'~1

12.3. kftgangV Workstation Disks and File Servers 12
12.4. hitgratig File System Name Spaces 12
12.5. File Servers versus Database Servers 13

i3) Fult Tolernce 13
13.1.T13

2. ssWTraraclons14
141 Coclus14

Famword
The Technol o r e gge and Assessment PxOjeo omnhed a number of related kwestl-

I eu 9n techneology hI specM poblsm -ra I* review research and development
mnull ad oo-s do ave wdie prodoiw;

* new technologie vuugil eeu~ eier ws ofresearch anddevelpmernt results, ped-
odi srveys of speuoftes aw~ aeadstlcloni of paticularly good exaffqfts of the
sppion of speclic techologise wtl

*requIrsee for now tedmology 1Vmgi oostiing atudles of software development
nooke wil fte DoD. and case stdies of bolh successful and unsuccessful pr*j

Tedinuisgy aseset kwslve udsmiwn lte software development proes detemk~tg
"S Feei A! UM te8chnology for solvig; %p MC- i p obles a. OVAIUM" ng MR1 oftrtol
o sf w, mal 0 0ng gIbn lotecoologies to neede, and! dleninkn the p olewtW payWf of
MawW edholele As-sssment adivile of ft projed focuse oqa c otehnolog aa for

ITi Fpew Is ens of a seriee of an"ve upses. It Is not k 1nded ID prOvide an exhaustive
doussion of opls puiu is US ma Dfts of dotis ss ems Ndtelg. Rather, II is ides

as an Wroovs seview of US ltdwgy suveyed These sue owe omn~ad I BIl 190
ad "my~ "n.

Members ONft poda rswde WO -vi umlal leohuwlogl surveys have been Moucled
&I ~le heinooftfs The pjd d nt isWe is iU! to o rne surveys, but focused on
pleno oftesssdi In thse suewys. 7Me WOa Ini 1 1nA, ing US sur**v was not Io dsr lbea
US techfoo In hi en d I*A is ephmis ses OWa ~te 9Mw a ong Impad on or are

sla oi 8011110 InIUS 5U1nheU The eOV Own pus h port is Is
provide an oveeview oft t lesh lie US w e Mel deeoigsi e ni sw**Iro-

1IntroductIon
One of US cwr technology areas I whi! project mMoeo were blemied Is dutsAe eys-
tealsdhnoog. This reoW surveys the technical wouenhole hi eIn i dlstrlbuled eye.

Pson ona lils US ngforcebehind USpsoraln odf dislrlu ed sytem. oolaftiosara
coaleolsolle mey of provdin conpilin power is WdkAaies. Local mra netwoes are a ot-
etlihe my of shing mane to more eupensive and Ame freqetl use resources we lasr

~eir an W"g d"sks a Ufa as a meons fo users; to shae k"lorwtl.

In arbisd sysiems, however, Owre Is a fundaenal dichotom belooeen USe need for heegra-
Von (is achieve shtang and USe need for sulony (to control one's local environmient). Many of

$1110 tehIFa SCAL111nSe181 presSedheecanbe valisted i terms of how they balancethese two

Olbbusd-W-tema hawe a nunbera06weil kown" polen Ial beneft:

" Muideriy: Resumes cam be ade and reconhipired easily.
" Psefoemuic: Puallelemn can be used lo peefon joft more quickly.
" AwalobIT Pedurmoncy can be uised lo poide non-sop service.

To acheooe these beneft I pravce , however, requires solutlons, for a nurvte of dificult tech-
.ici prolems. Also, ther are traoff volalonshois between, for exampfs, using a distutd
syste f rese peeforwne versus usMig ft Increased avallobhIly. The folowing ec-
lions discuss; some of the Important tchnolos and bsues Involved in dsriued systems.
Refee a es I o opp op INt surveys wre Icuded I the discussion, but two general references are
approprIate here. Firs, ft book e dite by Lamoeon of a. 1181 is anl excelMt overview of many
usoet of dlostuted systems. Second, Tanerims book on coniute networks 136] Is prob-
aly em best Wut! 9 point for mnore kdonet on networks and prolocols.

2. Hardware Technology
Ecnomic factor we a majo reonm for the prolierat of dlstbted systoe. Processors,
memory, an magne tc ndoptical diss ar sufnt iexpne oallowan oganizationto
deflo a workstation MInevery office, Minaddltonto supportinga macdhn room with maInframnes
arvi ft servesa. Curt workstations typically have from I to 10 MIPS (mI1o1n MIstruotlons per
second) of procesing power I to 10 megabytes of memory, 20 to 200 megabytes; of disk
strape, an codt Ion than 20,000 dollars.

A variet 06 network technologies we avallabis for- Voeront n s conort. A distinc-
Von Is commionly made betwee local ae and long-hail networks. For both physical and ad-
,udnlstrtv0 reasons, local ame networks (LANs) are typically used within, and managed by, a
singl organtilon. Currently, most LANs are construced from coaxial cable or fiber optics, with
buiwiAdtl 1 raniging frm 10 to 100 mfin bit per second and longths on the order of I
kilomeoter. The iNoecon-nectlon topologie of such networks include bus, rIng, tee and star struc-

s.

Long-houl networks, on the other hand, can span confinerga, and are usuaNl managed by comn-
panies; or goverrmert agencies; for use by others. The technologies used for long-hsul networks
ftkitje telephone knm and satelkie Inks. Long-hail networks use one or more of the following

ewfth vitwr~s:

" Oaul sol -
" MmsopsAg h-
" Paicket WAWA~

C=A* swithn Is used I the telephone system. I thI schem, a route through the network Is
etIshed1 beore anyW data Is sent. Slice comnmunication between computers tends to come in

M2

bursts. circuit soitchkn doe not provide good utilization of avalable bandwidths, and the time
retqilr to pro-alocate a circuit may be unacceptably long.

Messge-withedand packet-switchd networks awe als called sicre-and-o'waid networks be-
couse data Is andepeindentl roued from one swichin node to another. For reasons of refllbity,
the ne Wor ~oplg of a storeand-forward network should be connected redundantly, so that
there we several paths or routs between any two nodes.

In message, swiching, Individuial messages we routed from one switching node to another. This
silninatse the long set-p tim associated with circut switcin and provides boner utlization of
bandwidths. The disadvantage of this approach s thW fth variable size of messages nukces kt
dficuit to allocate node buffering resources efficiently.

I packet switching, messages we first broken up irfo fixed-size packets, which are then Wn
ividually routed through the network and resseuled at the dstlinastion. Different packets of

the same message mray be routed along different paths, and hnce may arrive out of order.
Higher level protocols we used to hande out-of-order packets. Since all packets are of the same
(reltvel smal) size, buffering at Intermediate nodles le simplilied. The ARPANET le an examrple
of a long-hail packet-switched network.

3. Intemetworks
fecause of their low cost, workstations tend ID proilerafe I organizations. and the need for LANs
tends Io grow a well. Large organizations are soon faced with the necessity of conneting
several LANs through a structure called an Internetworc. In fact, someo of the components of an
Intemetwork can be long-hail networks. I the MARA Internet, for exampile, the long-haul
ARPANET Is connected with hundreds of LANs at univeisites; and research laboratories. The
same etore-and-fouward approach can be used In an Intemnetwork, viewing the Internet gateways
as the packet switches of a single larger network.

4. Protocols
Prolocols are used to provide virtual cormmunication services with properties different from (and
typically at a higher level than) those provided by the physical network. This leads naturally to a
layered model of prolocols, such as the one that has been standlardized i the ISO Reference
Model for Open Systems Interconnection [171.

Further discussion about protocols may be found in the survey article by Tanenbaum [37].

4.1. 1S0 Reteirenos Model
The ISO Reference Model consists of the following seven layer:

1. Physical layer low-level commnunication of bits
2. Data k layer franing, checksumning

3

& Netork lWer. tmtwolc addrskn and routin
4. Transport e relable communicaion, hos-to-hot addressing
5. Session layer: connection management, process-to-process addressing
6 Preenation layer data formatting, encryplion, compression
7. Application laye. user programs

The ISO Reference Model does not match all protocol architectures perfectly. In the DoD Internet
family of pmtocols, for example, the IP [26] and TCP [271 protocols provide functionality that
ranges from the data link layer to the session layer.

4.2. Transport Protocols
Conmunklcon services can be characterized by a number of attrbutes:

" The need for a connection establishment protocol before communication can occur
" The number of communicating entities
" Relabliy of data delivery

" Client inleface (messages or stream abstraction)
" Fixed or variable length of messages

The bli Is a brief characterzatlon of a number of transport prolocols according to the above

" Daagram protocol: connectionless, unreliable delivery, fixed-size packets. Ex-
amplas Include the Xerox PARC PUP protocol, the DoD Internet Protocol (IP). and
Vmh DoD User Diagram Protocol (UDP).

* Byte stream protocol: conection-based, reliable delivery, stream abstraction. Ex-
ample Include the Xerox PARC byte stream protocol (BSP) and the DoD trans-
mission control protocol (TCP).

" Message protocol: connectionless, reliable delery, varable-length messages. Ex-
amples include the protocol used by the Spice system [29.

9 Requetrp-onse protocol: connectionless, reliabledelivery, variable-length alter-
nating request/rponse messages. Examples are described by Birrel and

A ecm topic of research has been the Incorporation of many-to-many communication semantics
Into varous trainsport protcols 1, 8, 9. New protocols in each of the above classes wi lkely be
eIon-do with many-o-many semantics.

4.3. Hlgher-Level Protocols
Higher-level protocols, those implemented at the session layer or higher in the ISO model, are
corrspodnly harder to characterize. Examples from the DoD Internet family Include the Tel-
net nwork terminal protocol, the fie transfer protocol (FTP), and the mal delivery protocol
(SMTP). Other areas of research include protocols for graphics, window managers, voice, multi-
media messages, bootstrap ioadng, remote debugging and monitoring, and remote procedure
cal, dicussed more fuly below.

4

5. Heterogeneity
currnly ther IS no0 $Ingle standard machine architecture, opraing system, programming lan-
guage Or Programming ekWironmet, and such standards are not "iet t0 appear In the near
future. As a result, organizations fin themselves faced with the problem of Integratng a hetero-
geneous collection of such resources. As evidenced by a recent workshop in Eastsound,
Washington, that was devoted sole" to the problems of heterogeneity, and by current research
projects In heterogeneity at Institutions such as CMU and MIT, t Is the key problem In distri-
buted sysems today [241.

The most Important pittal to avoid Insa heterogeneous system Is the lowest common denominator
effect. This occurs when Interfaces are only defined for those operations tha are supported by all
cc iponents In the systm. As the rnmer of heergneu components Increases, this set of
ommon operations may approach the amplty set.

A nurnber of techiques can be used to avoid the loetcommon dnominator effect. One
technique Is a common data representation protocol, In which al communicating cormponents
translate tei Interactions Into a standard external representation. As described below, this can
be handled automatically In remote procedure call system through the use of a stub generator.
The main difculty with this technique Is that the representation protocoll itee suffers from the
lowest common denominator effect. The advantage. however, Is that such protocols are flexble
sOnc they are capable of representing arbitrary programming language data types We arrays and
records. DeSchon surveys a miunier of data repreetto standards, [101.

Another technique Is called option negotialtion [341. In which each pair of commnunicating paries
Inegotiates which protocol options they wil support. This approach alos each pair to commu-
nicte with maximal functionality. The option negotiation approach Is appicable at many levels In
a 1"eterogeneU s -1Q_ distributed systm.

The data repreenIationI protocol and option negotiation tectviques can be successfully corn-
bined. For exanmple, the reote proecdur call systm at the DEC Systems Relsearch Center
uses negotiation at bindiq ngom to decide betow two possil data represeNio protlocols.

A third and somewhat ad hoc approach to coping with heterogeneity Is the proxy tehiqe A
proxy Is a specialized agent In a remote environmert whose purpose Is to provid an Interlace to
th a eirorwnen tha Is more cornpatlble with other comp~onents of the systm. This approach
was firs used6 In remote job entry (RJE) systm to access batch facilties from timnesharing
systems. It has been used successfully In the Looms system [253 to li eg ae I13M mainframes
trensparerify Into a distrbuled UNlx' ovirorynerg.

0WOWN

6. Models of Distributed Programs

Although transparency is desrable at the highest lvel of a distributed "stem, at some lower
level the fact that te system is distributed must be made avilable to the pogrmmner. How this
is done is brge determined by the model of distribted programs that the system designer
adopts.

One of the most well known approaches, developed at Xerox PARC In the 1970s, Is called the
clen/server model. The computing environent is assumed to consist of personal workstions
and a coleclion of shared network services inplemented by server machines. Such services
might Include fle strage (discussed more fuly below), printing, and electronic mail. The pro-
grams runnin on the users workstation are viewed as clients of these servers. The cliert/server
model is a skple extension of the application prograv/operating system model familiar In central-
ked timesharing systems. It is flexible because new services awe easily added, and I supports a
heterogeneous environment wel: "Black boxes" can be used as serers as long as some inter-
face can be constructed on the client side. A disadvantage of the cllenlserv model is that It
does not support bad balancing or multi-machine parallel applications, although such program
structures can be shoe-ornmed into this model by using a pool f "Mcompute servers."

Some of these deficiencies are remedied In the network operating system (NOS) model. In this
model, a transparnt Interface to all network resources is presented to tho applications program-
mer. not just at the user Interface level. The Locus system at UCLA [25] and the Spice system at
CMU [29] are successful examples of systems that follow this model. A major disadvanae of the
network operating system model is Its difficulty In accommodating heterogenety (in the form of
black boxes) because It assumes that a common software interface can be installed on all the
network resources.

7. Operating System Issues
This section briefly descrbes a number of operating system features that are particularly impor-
tug for supporting distributed systems.

A message-based operating system consists of an efficient kernel imllemen~ttion of processes,
virtual memory, and inter-process communication, together with a set of server processes provid-
Ing conventional opsing system services such as device drivers and file systems. The Accent
kernel is a prime eftamnpe of a message-based system [29.

Message-based kernels alow inter-loess communication to be extended over the network in a
simple and transparent fashion. The key is the notion of intefediary processes that intercept
remoty destined messages and pertorn the a pro te forwarding.

There gImsno agreement that a ightweight process mechanism is essential to support com-
monly used distributed prgram structures. A number of lightweight processe can share a single
address space; this allows the conaruction of servers, for example, th correctly handle concur-
rent Incoming requests. The lack of such lightweight processes has been a weak point of UNIX
and a number of mesg e operang systems.

A proces migration facilty lows a running process to be moved from one machine to another.
Such a facility is a valuable mechanism for implamenting bad balancing policies, whereby jobs
ae moved off heavily loaded machines and onto lightly loaded ones. Variants of proces migra-
tion can be used to increase fault tolerance by checkpoinng process state. Process migration is
greatly simpli fed in message-based operating systems [28.

A simpler form of load balancing can be accomp shed at task creation time by starting the task
on a lightly loaded processor. Further experience Is needed to determine whether the full power
of process migration is necessary.

Workstation technology has advanced to the point where most new hiWh-end workstations are
mutiprocessors with approximately 10 processors. Operating system support for muftiproces-
sors, and In particular for efficient execution of parallel programs, will be an Increasingly Important
recuirement.

Finally, UNIX compatibilty is often a practical necessity. The wide variety of software tools avail-
able under UNIX would be prohibitively expensive to port to an Incompatible environment.

Many of the features mentioned in this section have been Included In the design and implemen-
tation of the MACH-1 operating system at CMU [31, a kernel and programming environment that
will probably serve as the new foundation for DARA-sponsored research in strategic computing.

8. Programming Language Issues
One approach to Integrating disrbtled programming prmitves into the programming environ-
ment Is to Incorporate them Into the programming language Itself. This approach can be accom-
plished in two ways: the mechanisms can be buill into the language, or they can be provided
extemaly.

CSP [161 and Ada [121 are examples of languages with buit-in communication primitives. This
approach extends the benefits of strong typing to distrbuted programs because the language is
the only Interlace to the communication mechanism. Unfortunately, most languages of this type
ignore the problem of heierogeneous environments. As discussed previously, in order to cope
with heterogeneity, some common data representation protocol or negotiation scheme must be
used among the language kplementations on different machines. Without a language-defined
standard, programs produced by different compilers are unlikely to be able to communicate. Ada
provides only a partial solution to this problem In the form of pragma statements that allow control
over the representation of data types.

In message-baed operating systems, primitives for message communication are typically Inte-
grated Into the programming language In the form of a subroutine rary. Again, Uttle support for
heterogeneity has been provided. Issues of data representaion and type safety are usually the
responsibility of the programmer.

Remote procedure call (RPC) systems represent a compromise between the built-in and the

7

external appmach. By using a stub generator, the remote procedure call mechanism can be
closey coupled to, yet separate from, the compiler. This approach Is described in more detail in
the next section.

9. Remote Procedure Call
Reote procedure call Is a conbined protocol-level and language-level mechanism for construct-
ing distributed programs. A remote procedure call mechanism allows a programmer to write a
distributed program in the same way one writes a single-machine program: using procedure calls
In one's favorlie programming language. Remote procedure call meshes well with both the
client/server and network operating system models.

The language-level Wtegration of remote procedure call into a conventional programning lan-
guage is typically accomplished by the use of a stub generator, a specialized compiler that trans-
Istes a module Interface into stub procedures for the client and server halves of a remote inter-
face. The stub procedures handle the details of representing the data types of the programming
language in an external form when they are sent in messages, and the converson to and from
the Internal form. The stub procedures also interface with the lower level request/response
protocol used to exchange the call and return messages.

The stub generator approach has a number of advantages:

* The stub generator manipulates source-level programs, so strong typing can be pro-
vided.

o The stub generator Is separate from the compiler, so the same stub generator can be
used with any compiler for that language.

* The stub generator is a natural place to 'hide" knowledge about the external repre-
sentation protocols and/or negotiation schemes used between heterogeneous
machines.

To invoke a remote procedure, the client stub builds a call message containing the name of the
procedure to be invoked and the external representation of Its arguments. The client sends the
cal message to the server machine, where it is Interpreted by the server stub. The arguments
are converted to their Internal representation and are passed to the named procedure. When the
procedure returns, Its results are externalized In a return message and sent back to the client.
Finally, the client stub converts the results back into Internal form and returns them to the client
program.

Nelson gives a comprehensive treatment of remote procedure call in his thesis [231. Birrell and
Nelson describe the transport protocol and binding mechanisms used In an Implementation of
RPC at Xerox PARC [6].

S

9.1. Advantages of Remote Procedure Call
The single biggest advantage of remote procedure cal is that it makes writing distributed pro-
grams almost as easy as writing single-machine programs. The same software development
netotdoMoge that work well for centralized systems, such as the use of modularity, abstract

data types, and stepwise refinement, continue to work just as well when extended with remote
procedure call.

9.2. Disadvantages of Remote Procedure Call
Although remote procedure call has become extremely popular, it Is not a panacea. In particular,
ii s not suitable for the transfer of large amounts of data, or for communication over high-latency
media. Special bulk data transfer protocols are preferred in such cases.

One common criticism of remote procedure call, namely that the synchronous nature of remote
procedure call does not allow any parallelism, is really not a problem. In fact, remote procedure
call neither helps nor hinders parallelism. The above criticism is usually accompanied by an
argument in favor of non-blocing remote calls, where the application can either poll for the return
value or have it delivered asynchronously. Such features are actually a poor man's substitute for
lightweight processes, and are only desirable in environments where processes are heavyweight
and expensive. If Ightweight processes ae well supported in the programring language and
environment, they become the natural means of achieving parallelism in conjunction with remote
procedure cal. f not, poling or asynchronous delivery mechanisms can be simulated with
remote procedure cal, but use of such features can result in rather convoluted programs. For the
most effective match, systems should support both remote procedure call and lightweight proc-
eses.

10. Software Tools for Distributed Environments
Making software tools function transparently in a distributed environment often requires substan-
tial effort. Consider some of the tools that have become standard equipment in centralized
environments:

*Compilers
* Uinkers

SDebuggers
*Profiing tools

e Version control and system conflguration tools

A number of Issues must be addressed when extending these tools to distributed environments.

IrogramvIng language ompil and Interpreters must be Integrated with communication
faclles such as message primitives or mo procedure call. The software engineering issues
m compicated by mechine dependencies, language dependencies, and compiler dependencies,

any one of which can el~ec the representation of programming language data types in messages.

Debuggemust be extended to allow single-stepping across machine boundaries when following

9

* V.

a chain of remote procedure calls. It should be possible to set breakpoints in remote modules
and to trace the flow of control of a distributed program. An advantage of nessae-bsed operat.
Ing systems #or ditributed debugging is the abilty to encapsulate the entire environment of a
process, since all of its interactions occur via messages.

Profiling tools provide the progrmmer with histograms of where time is spent in a program. This
alows the programmer to detect bottlenecks and to apply optimizations where they will do the
most good. In the distributed case, profiling must work correctly when portions of the program
execute at remote nodes.

Version control and system configuration is a particularly difficult problem in a distributed envon-
ment. Schmidt describes a variety of techniques for maintaining consistent releases of large
software systems In the Xerox PARC environment [311. Shared file servers, discussed below, are
essential to the success of such a scheme.

11. ecurlity

A distributed environment raises a runer of securty Issues. First the broadcast nature of most
local area networks makes them particularly vunereWl o eavesdrtopng. Anyone with a per-
sonal workstation on an Ethemet can easly monitor all networ trafflc. Secondly, the lack of
control over the software no In an Individual workstation mUe masquerades, replays, and
siia acolve threats possbl.

These problem are solved in single-machine or centraized environments by physical security:
locked machine rooms and protected teminal lines. Uroreunately, the decentraized nature of
dis tbuted systems precludes such measures. Iodc rathe than physical schemes must be
usedinstead.

The siOles problem I* solve Is tha of eaesrpping. The solution uses encryption: two per-
sons wishing to communicate do so by encrypting all their message with a secret key known
only to them. This effoctve constructs a secum private comnunication channel on top of the
underlying Insecure pujlc channel. The Data Encryption Standard (DES) can be used for secret-
key encryption and decryption [211. Hardware Implementations of DES am available and should
be Inckued in new workstations.

More elaborate eicryption-based schemes can be used to solve the authentication problem, in
order to prevent masquerades and smlr active threats [11. 22. In such a scheme, a person
can securey Identify himel to anothe person by obtaining fm a mutually %Mod authen-
tication service an proof of idnt that is unable to be forged. Brrell has dowrod a compre-
henve scheme that provides both privacy and authemicaion for rmote pocedum sh [.

The eryption4-as schme that have been proposed In ft fterame do not afford much
protection against denlmtlof-servce attacks. it has been observed ta passive threats are difficult
to deec buteasytoprev whieoactivethreats are eaytodetect butdifficuitto preve

10

12L Distributed File Systems
Disibid fil systems have more Impact on progranuning environments ftn any othe aspect

of distrbuted syoem. A good discssion of file servers and distributed fie systems may be
found In the survey m~cds by 8vobodova [3M.

12.. Mes aid Dlnactoalas
Fils we the primary means of Wtn and sharing long-lved Information in computer systems.
Flo systems may Impos structure on the conterts of files (Index or record structures or file
t"pe) or may Vest the costs merely aequences of bytes. This report takes the latter
qsproach and views a Usb as a sequence od uninterpreted bytes; any structure Imposed on file
contents Is viewe a a ogicall higher level. A common approach Is to deal only In machine-
sensible unique Identfiers at the Us system level

A separate concept, often limped togethe with the Mie sysm, Is the directory system, which
provides a mepping from ussr-sensible ames to Usl identifiers. Directordes may themselves be
orplemns as fils, containing nami'efWler pairs. The directory system Implements creation,
deltIon, lookup, and enumeratlon of namwedttllr pairs. Additional functions may Include ex-
pansion of patterns containing wildoard characters.

Tlhe drectoy systemn is responsible for any structuring of file names. A common approach Is a
mre siuctured directiory system In which the full name of a Usl is a path name consisting of a
seqence of =Mepnsre starting with the Woo drectory of the tree. For exmple, In the UNIX
drectory syse -probably the most common tree-structured system) the path name

VW mp 1W O denotes the Usl found by starting at the root directory (the leftmost 1. consuht-
Ing the dirictory uarto find the directory sm which In turn contains the entry p~wertex In the
UMI system. only the V/ Is Interpreted by the directory sem; Usl extensions such as Atx are
purely wivnvrion. Other directory stm provide more m&por for, and often more restrictions
on, the use of Us extensions. Another feature of directory system tha is ntssin- from UNIX is
the provisin of muftbl versions of files. Versions are typically specilled through additional file
name syntax, and Usl operations typically use dfferent default versions If none is specified. For
example, openin a Usl for reading would default to the mnost recent version. while deleting a file
would deloull to the oldest version.

A final component Is the protection system, often subsumed by the directory system. For ex-
ample, the direcity system can allow access control list to be, associated with each directory
entry, and can provide detailt acces contl through an Inheritance mechanism. Noe that an
sams control mechanism presupposes some method of securiely identifying people. I a distri-
builed environment, this can be accomplished with an authentication service a outlined above.

12.2 Sarng Files In a Distrbuted System
The ease with which fie can be shared In a distributed stm is a good measure of the overall
macces of Ow sysem. Several approache we possible. The lowest level technique Is the disk
sewrm. A disk sewver can be viewed as a ffuliported disk controlle whose I/O bus is the net-
work. This eppvwah requires minimal changes to the operating system of the client machine,

'r11

since the Interface Is similar to that of a local disk. The abstraction provided Is simply that of
vrtul disk pages. Although read-only sharing of ties Is simple with this technique, write sharing
poses difiules.

The disk server's interface Is too low-level to Implement concurrent write operations properly. For
example, there is no way to lock a file or to enforce access controls. Instead, the client operating
systems have to negotiate among themselves using a separate protocol.

An Intermediate level approach Is to provide an abstraction of files with unique IDs. The Interface
to such a file server can alow individual blocks of flies to be read or written, as well as logical
operations on the entire file such as locking. Fle servers of this type are usually accessed via a
directory system, which must Itself be a shared service.

The highest level approach Is to use a complete file and directory server, functionally equivalent
to the file and directory system on a cliet machine. Interfacing is again simple because file
operations can be intercepted at a high level and redirected to the remote server.

12.3. Integrating Workstation Disks and File Serves
Another Issue that is raisd when workations are netwokd with file servers is how to use
workstation disks most ofecdivey. One succeslul method, used in the Cedar file system (321,
considers a shared flies to be imtiable (read-on), and uses each workstation file system as a
cache for sorne porton of the globally shared fle syslem. Fine e created on the local file
system and remain prive uil they we glred back on h shared Go server. From that time on,
that version of the file may not be modMed i, w.. -y be shmred by other users (sublect to normal
protection mechanism of course). Guararilseng coilency is relatively simple; the shared file
serv must provide atomic creation of a new version of a file.

A different approach Is taken by the designers of the Camegle-Mellon ITC file system [30).
Workstation disks we also used as caches, bu shared files are not assumed to be immutable.
As a result, cache valdatlon Is required, iNed elther by the workstation before using a cached
fl, or by the e server when a shared e is modffied.

12.4. Integrating File System Name Spam
Once fle servers we used to permit shng of fles In a nAtwork, Inrtgat of many file name
spaces becomes an issue. The itegrated name space should allow a file to be named in the
same way from any machine in the network, In order to foster portable programs and minimize
confusion when users change workstations.

If the different file serms are at the Intermediate or low level described above, integration can be
achieved through a single (logically centralized) directory service. A more common case, how-
ever, Is that existing workstations, mainframes, and file servers all have their own file and direct-
ory systems that must be intgrated into a single name space. For tree-structured name spaces,
two schemes we possible. The first uses a super-root that logically contains the roots of all file
systems in the networ Additional syntax Is used lo refer to the super-root in full pathnames.
For example, the file name /JAurftb might be used to refer to usrab on machine A from any

12

ote machi e in the nOwork. Advantages of tis scheme are that i Is simple to implement and
ueranies consistent Interpretaion of ft names anywhere in the network. A disadvantage is
a h is no tramparent sice the iocatlion of a remote file is reflected In Is full path

name. This problem can be circumented through the use of symbolic inks, I directory system
feature which aim a user to kmpose an arbitrary view on top of the actual tree siruure.

The second scheme ailmow remote mount points in each local directory tree, so that each direct-
ory system may have a different view of the distributed system. The problem with this approach
is that consistent interpretation of names must be Obtained by convention; i is not erorced by
any mechanism. The logic of name Iterpretation on the local machine Is also more complicated.
On the other hand, I gives Individual machines more control over their view of the name space.

12.5. File Servers versus Database Servers
There Is growing agreement among designers of distributed ie systems that it Is kportant to
distinguish between fie system and database system functionaliy. For example, file servers
must support efficient sequential reading of small files and creation of new versions of flies, but
probably do not need to support large files or synchronized modification of portions of files. Data-
base severs, on the other hand, can be used for tcional updates to shared Information and
efficient access to large files. Making this distinction aim optimized file server and database
saver designs, rather than compromised designs stretched to ft both classes of needs.

13. Fault Tolerance
Another area In which distributed systems differ from centralized systems Is failure semantics.
Partial fabures, in which some but not aN of the conponents of a system continue to function, are
more common In distributed systems and add to their complexity. Various mechanisms are used
In order to cope with this complexity. The book by Anderson and Lee presents a thorough
overview of faul tolerance tchniques [2].

13.1. Trammctions for Reliability
Transactions are used to simplify the construction of reliable distributed programs, ones which do
not lose or corrupt data. Transactions were first used in database systems [14], but have since
been adopted In operating systems [331 and programming languages [201. A transaction has
hr essential properties, each of which must be guaranteed even In the presence of processor

and communication faires.

Serldzability, the first property, means that the concurrent execution of any number of trans-
actions is equIvalent to their serial execution In some order. This property isures that I each
transaction translorms a consitent database state Into another consistent database state, the

verall consistency of the database is preserved when transactions execute conurrntly.

The secon property is alomicky. which guarantees that a transaction Is an all-or-nothing opera-
tion; no pertial effects of a transaction am ever visible to other transactions. When more than one
processor is Involved, this requires some form of distributed commit protocol, the most well

13I

known of which Is two-phase commit [14.19]. At any time before committing, a transaction may
abort, leaving the system state as I the transaction had never been executed. The fact that
Intermediate effects are not visible to other transactions means that the domino effect (cascaded
aborts) cannot occur. When a transaction Is aborted, one can be sure that no other transaction,
eilther still running or already committed, could have relied on updates perormed by the aborted
transaction.

The third property Is permanence, which states that once a transaction commits, its effects be-
come permanent. Providing permanence In the presence of failures requires some form of stable
storage [19]. This Involves writing each logical page of data onto more than one disk and modi-
fying the read and crash recovery operations to take advanlage of the redundancy. it Is still
possible that the copies of the disk page can become corrupted In such a way that the read
operation would fail; but by Increasing the degree of repication, the probability of such a cata-
strophic failure can be made arbitrarily snal.

Crash recovery mechanism use stable storage In two ways: for chedkpoints and logs. A check-
point Is a snapshot of a consistent state ta can be rest od after a crash. A log Is a record of
the events or operations that affect the state of the system; It is replayed after a crash. Check-
points provide faster crash recovery, while kos ae less expensive during normal operation. N a
comination of these two schemes is used, the log need only be replayed from the most recent
checkpoint, and the time between checkpoints can be used to balance the cost of the normal and
recovery modes of operation.

13.2. Nested Tranactions
Nested transactions are a generalization of single-lev atomic transactions, in order to allow
them to mesh properly with the concepts of composiion and abstraction supported by program-
ming languages. In this scheme, a transaction consists of a tree of subtransactions. with a single
top-level transaction a the mot. The intermedlate effects of a transaction that has not yet com-
mitted am visible only to its descendants in the tree. The effects of a committed subtransaction
are visible only to ancestors and siblings In the tree. f a transaction aborts, any uncommitted
subtransactions must be aborted, and the effects of any committed subtransactions must be
undone. The nested transation model was chosen for the Argus system at MIT 1201.

13.3. Replication for Availability
The avallabilty of a system is the probability that the system will be up (either at a particular time
or on average). Replication is used to Increase the availability of distributed systems, either
through the use of a primay/msandby architecture or via a modular redundancy scheme. In a
prima4ry/sandby scheme, only a single component peorms Its normal functions; al the other
oOrrponen are on standby In case the primary falls. In a modular redundancy approach, all

componenta perform the same function, and some form of voting on the outputs Is used to mask
failues.

A classic prmy/fandby archileture Is Tandem's method of process pairs [41. The processes
In a process pair execute on different physical processors. One process Is designated as the
primary, the other as the standby. Before each request Is processed, the primary sends Ior-

14

manc abou t s Internal state to the standby In the torn of a checpoint. The checktpoint enables
the standby to complete the request I the primary fails.

The s prooec at Cornell uses a phiaystn, architecture for replicated objects (5M. In each
Interaction iwith a replicated objec I Isis, one replica plays the role of coordinator, and only It
perfonn the operation. The coordinator then uses a two-phase commi protocol to update the
othesrorplicas.

Triple modular and Nmnodular redundancy have long been familiar to designers of fault-tolerant
oorrpuer sy"ems [21. i triple modular redundancy, ever y computation Is carried out by each of

three processors. The results are then ompared. and I at least two agree that vaiue Is used. InI
the Circus system, repliatin was Itegrte with remote procedure cal in order to support mod-
ular redundancy A the program module level 191.

Gliords weighted voting schemne uses quonjms and version nutnbers to provide replication
traninparency for fles[3. hInthis alorithm, read aridwrite quorums (sets of replicas) are chosen
so that any read operation will iiciide t most recently written version. Heutlhy extended
Gliord algoritm to handle replicated abstract data type [151. I HerlWs *poach, con-
strit on quorumn assiginments wre derived ftrm analysis of the semnantics of the abstract data

14. Conclusion
Well designe distributed systems should stric appropriate balancs between the needs for
Inegration and autonomy, and between the needs for Increased peuomiance and increased
availablity. mhe itemized points beiow represent the features that project menbers recommend
for Iclusion In the operating system, programming languagle, and support environment of any
hLIIJT distributed system.

* Mesg-ad kernel
* Transparent networlc Itter-process omruanlcaton
* Remote procedure call faciy
* Group communicaion 1trate*d with remote procedure call
e Conventionael software toole extended for distributed environments
0 IOwihprcesses

Distributed daab system
& Distributed file system
& tx 00 ii Wity

15

(13 Muduqu Aharnad and Arus J. Bernaleln.
Mukas Co nca i In iUNIX 4.2M5.
hIPme of 10 5h NOwu~lb COnbreewe on Dieltad Conput Systerw,

Powe 80-67. may, 1965.
(2 T. Andeson and P. A.Lee.

Fail Toieam:.Ah~ R da wd Po'cIe
PreteIa, 1961.

33 Robert V. Barmn Richard F. RaUM.d Ellen Siegel. Avadle Tevanlan, anid Michael
W. Young.
MACH-I: A mul~oer- Or sd Opening Syste nd Euwronrmr.
hi ArthrWoiA (editor), New Con yut EnhraWlft: PWanWVecOr"arWSyfftOlc.

SIAM, 19m.
143 Joel F. Balilett.

A NonStop Kernel.
hIAAWO M~o*e1. 81h S~lrPoAim On OPerAVIhw 8)vaten. Pdn*C*A pages 22-29.

Deceridw, 1961.
PtLONhd as OPrig Syaterm Review, I15(5).

(5M Kenneth P. Brmn, Thomas A. Joeeph. Thomaes RaeucWe and Anm El Abbad.
hInlementlng F&au-Tolerunt Distrb Wed Objects
I PMOPOe.W of Me 4th SPFPOSfm On Relllyt I Dibbed Soft* &we Datba

SyatehM pages 124-133. Ooer 1984.
(63 Andrew D. Skrell and Bruce Jay Nelson.

h100smmng Rmoft Prorae Cab.
ACM TraneactM On Con We *Mmwi 2(l):3-U, February, 1964.

173 Andrew D. brell.
Secue Commuricoaon LWg Remo*e Pmmoe Cab.
ACM TraCtlo On Covputer Sj&Vns 3(1):1-14, February, 1965.

[6" David R. Chedo and Wily Zmaenepoel.
Dlstrbaed Proes Groups I te V Kernel.
ACM Tamweottns on Conwute Sps 3(2):77-10o7, may, 1965.

(93 Eue C. Cooper.
RPAPetaed bam Progvene
I PNXWoee~np of t 10th ACM Syriposhim on Operat 8>wteni Pfftc*Is, pages

63-78. Deceuiber, 1965.
PrIhdas OPe6raso I SYaeWM Re Vew 19(5).

1101 Annals L DeSchon.
A Survey ofO Datso bfeetan 5trdwV.
Tedwicel Repor RFC 971, SRI Netwoarlk honnon Certer, January. 1988.

1113 Whiuld DNe and Marli E. Helinn.
Privacy and Autenllonft: An Inroduallon lo CrlIrp hyf.
AOceeWWW of Me IEEE 67(3):397--427, March, 1979.

(123 1 WRoem~ MwwM fo te Ads PlOpwroft Lwpm"j
Ukted Staest Deprtrnert of DeO~ee 1963.
U.&. Goernmnet Printin Offoe, ANSUIIL-STD-ISISA-19613.

1e

[133 DOW~ K. 60&od.
VfWIe Vlig for Replcated Oata
hIn.01me o'f te 7th S$iripsorn~ on Operating System Princ#*us pages 150-162.

Dee=er 1979.
Piluhe as (peraifir System Review, 13(5).

[143 J. N. Gra.
Nowe on Datae Operating System.
I R. Byer and R. M. Graham and G. Segmueler (edi) Operating Systems An Ad-

wieCowae, pages 393-481. Sprn~ -Veft.g 1978.
Volumne W of Leckwae tes I Conriafer Scence.

[153 MaM Ios Y.
A Quonrnm-Consenaus Rpication Metthod for Abstract Data Types.
ACM Trmnsactbns on Computer Sy&enw 4(l):32--53, February, 1986.

1163 C.A. R. Hoare.
Co ilmlivialnc luelPcse.
Cwnmua*tW~n of te ACM 21(8):66-67, August. 1978.

1173 Reteve AVW of Open Systm ---eeconnn
I9STC97SC16, 1979.
Document N227.

[183 B. W. Larv~eo nd M. Paul and H. J. Seageit (editor)
Uctaw Anoe In Ccnpfle Science. Volumne 105: Dbtvtjuted SystemsArd~ecture

and khp*,ement al n. An A&Wanced Cours.
Spine-Veda, 1981.

1191 Buer W. Luimieo and Howard E. Sturgis.
Crash Recvery In a DWIsrbuted Data Storage System.
Compuer Science Laboiratory, Xerox PARC.

[201 Barbara Usiov anid Robedt Schellier.
Guardians and Actions: Linguistic Suppor for Robst Distributed Programs.
ACM TMaNeCOMn on Pforamfi Languages and System 5(3)381 -404, July, 1983.

[211 Dat Encrypton Standard
Natina Bureau of Standards. 1977.
Federal Inlormation Processing Standards Publication 46.

[2) Roger M. Needhiam and Michael D. Schroeder.
Using Encryption for Authentication In Large Networkts of Computers.

Iomta*r of t ACM 21(12)M93-99, December, 1978.
2) bruce Jay Nelson.

Remote Proceduro CalL
PhD #*ft.15 Computer Science Department, Carnegie-Mellon University, May, 1981.
Published asCMU report CMLLCS-81-119 and Xerox PARC report CSL-81 -9.

[243 David Nolki, Norm Hutchinon, Jan Sanlsi, and Michael Schwartz.
Report on the ACM SIOPS Workshop on Acoomodatig Heterogeneity.
Opeat Systen Rew 20(2).-24, April. 1986.

[253 G. Popek B. Wallier, J. Chow, D. Edwards, C. Kllne, G. Rudisin, and G. Thiel.
LOCUS: A Network Traruperenf, ig Reliablity Distributed System.
I Proosivallg of tOe 91h Synwskim on Operat System Pdnc*ies pages 1 69--1 77.

Decme, 1981.
PuLahed as Operatin Systemns Review, 15(5).

17

(21 Jon Postal.
I*Nert Protcol.
RFC 791. SRI Network Information Center, September, 1981.

1271 Jon Postel.
Tnhrrdslon Control Protocol
Technical Report RFC 793, SRI Network Inboration Center, September, 1981.

1281 Michael L. Powell and Barton P. Mille.
Process Migration I DEMOSAMP.
I Proceedings otf Oe 91h ACM Synposlum on Operating Systemns Pfincies, pages

110-119. October, 19633.
Published as Operating Swen Review, 17(5).

* (1291 Richard F. Rashi and Georg G. Robertson.
Accent: A Commnunication Oriented Network Operating System Kernel.
In Proceedings of the 81h Symuposim on Operating System Prnc*s, pages 64--75.

* December, 1981.
Published as Operang System Review, 15(5).

130] M. Satyanarayean, John H. Howard, David A. Nichols, Robert N. Sidebotham, Alfred
Z Spector, and Michasel J. West.
The ITC Distrbuted File System: Principles and Design.
In Proceedirg of the 101h ACM Symiposium on Operating Systems Principes, pages

35-50. Decebe, 1985.
Published as Operating System Review, 19(5).

1311 Eric Emerson Schmidt.
Controftn Large Software Devekpmsent In a Distrbuted Envfronment
PhD thesis, Computer Science Division, University of California, Berkeley, December,

1962.
Published as Xerox PARC report CSL-82-7.

(321 Michael D. Schroeder, David K. Gifford. and Roger M. Needham.
A Caching Fio System for a Programmers Workstation.
In Proceedings of the 101h ACMW Symposkm on Operating Systems Principles, pages

25-34. Decemer 1985.
Published as Operatng System Review. 19(5).

133 Alfred Z. Spector, Dean Daniels, Daniel Duchamp. Jeffrey L. Eppinger, and Randy
pascil.
Distrbuted Transactions for Reliable Systemns.
In Pftcedng of the 10th ACM Syrrpoahbm on Operating Systems Princ*iles, pages

127-146. December, 1985.
* Published as Operat Systemns Review, 19(5).

1341 Robert F. Sproull and Dan Cohe.
High-Level Prtocols.
Phvee" of the IEEE 88(1 1):1371 -1386, November, 1978.

(351 Wea Svobodova.
File Serwes for Network-Based Distributed System. 1

ACM Compuin SUrveys 16(4):353-396, December, 1984.
(36 ndrew S. Tanrtau.

Prergicell 1981.

f371 Andrew S. Tanorbim.
Network~m
AC~M Con pat Suiwys 13(4).453-489, Decorir, 1961.

19

-- al-q

jgUfl CLASSIFICATION OF THIS PAGE 00'4/ j-
I REPORT DOCUMENTATION PAGE

lal REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNLIITED, UNCLASSIFIED NONE
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/A VAILABILITY OF REPORT

N/A -- UNCLASSIFIED, UNLIMITED, DTIC, NTIS
2b. OECLASSI FICATION/0OWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORG NIZATION REPORT NUMBER(S)

CMU/ SEI-87-TR-5 ESD-TR-87-1'

Gal NAME OF PERFORMING ORGANIZATION Eb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

SOFTWARE ENGINEERING INST. (f tapplicable)

SEI SEI JOINT PROGRAM OFFICE

Or- ADDRESS (City. State and ZIP Cod) -7b. ADDRESS (City. State and ZIP Code)

CARENGIE-HELLON UNIVERSITY ESD/XRSI
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

HANqSCOM, MA 01731
Se. NAME OF FUNDINO/SPONSORING Ib. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

SEI JPO IESD/XRS1 F19628 85 0003
Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNtT

PITTSBURGH, PA 15213 ELEMENT NO. NO. No. NO.

_______________________________ 63752F N/A N/A N/A
11. TITIE (include Security- Classiiction)

DISTRIBUTED SYSTEMS ECHNOLGY SURVEY

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Yr.. Mo.. Day) ji5. PAGE COUNT

FINAL IFROM ... TO .. MARCH 87 20
16. SUPPLEMENTARY NOTATION

N/A

____. ______________________ 18I. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

F IE L D I G R O U P _ SU B . G R . - -I
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

THIS REPORT IS ONE OF A SERIES OF SURVEY REPORTS. IT IS NOT INTENDED TO PROVIDE
AN EXHAUSTIVE DISCUSSION OF TOPICS PERTINENT TO THE AREA OF DISTRIBUTED SYSTEMS
TECHNOLOGY. RATHER, IT IS INTENDED AS AN INFORMATIVE REVIEW OF THE TECHNOLOGY
SURVEYED. THESE SURVEYS WERE CONDUCTED IN LATE 1985 AND EARLY 1986.

20. DIST RI BUT ION/AVAI LABI LIT Y OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED C SAME ASRPT. W OTIC USERS UNCLASSIFIED, UNLIMITED, DTIC, NTIS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

KARL H. SHINGLER4126-30 EJP

DO FORM 1473, 83 APR E DITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS 'All

11 ~ ~ ~ ~ -------------- il.Fl 'Il I.lilil U111 l!1114919 l

uMau

