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Error Estimation Using the Simplex Method in

Nonlinear Least Squares Data Analysis

Gregory R. Phillips and Edward M. Eyring
Department of Chemistry

University of Utah
Salt Lake City, Utah 84112

ABSTRACT

)The simplex method is a widely-used technique in analytical chemistry.

Although primarily viewed as a technique for experimental optimization, this

method is also used for mathematical modeling, such as nonlinear least

squares curve fitting. Acceptable methods of chemical data analysis require

estimates of both the parameter values and their errors - something which is

not provided by current simplex algorithms. This paper proposes a procedure

for obtaining error estimates of the fitted parameters. The proposed method

can be easily impTemented on a laboratory minicomputer, greatly enhancing

the utility of the simplex method to analytical chemists. This procedure is

first described for a general function, and then illustrated using a data

set from the literature. 1 r.. , > Accession For
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INTRODUCTION

Many chemical and physical problems involve locating the position of an

optimum (e.g., a maximum or minimum response) which is a function of several

variables. By simultaneously varying several factors, the simplex method is

a much more efficient technique for finding such an optimum than traditional

methods of varying one factor at a time(1). This technique was introduced

in 1962 by Spendley et a1.(2) for optimizing either physical processes or

mathematical functions. Nelder and Mead(3) modified the original work to

allow the simplex to expand or contract according to the layout of the

response surface, greatly increasing the potential utility of the method.

In an early application to analytical chemistry, Long(4) used the

simplex method to optimize the colorimetric determination of sulfur dioxide.

However, it was not until Deming and Morgan(l) began to promote the

procedure in 1973 that the simplex method began to find widespread use among

analytical chemists. Largely as a result of their work, this technique is

now widely used by analytical chemists(5). Among its many applications,

simplex optimization finds extensive use in the development of analytical

methods and in optimizing the performance of analytical instruments(6).

Although primarily used by chemists for experimental optimization, the

simplex method has also been used for mathematical modeling, such as

nonlinear least squares curve fitting(7). In fact, Nelder and Mead(3)

emphasized function minimization in their work on the simplex method. A

simplex algorithm for nonlinear data analysis has recently been published as

part of a work on computer applications in chemistry(8). However, most

analytical chemists use nonlinear least squares routines based on gradients

(first-order derivatives) or on the Hessian matrix (second-order

derivatives). The advantages and disadvantages of these methods when
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compared to the simplex method depend largely on the type of information

being sought. In experimental optimization the functional relationship

between variables is usually not known; the simplex technique performs

excellently while derivative-based methods fail completely.

The simplex method does have some advantages even when the mathematical

model is known. One advantage is the absence of evaluation of partial

derivatives. Despite its apparent simplicity, the calculation of derivatives

can be a source of problems. Incorrect differentiation or errors in

programming the calculation of derivatives has been shown to be one of the

most common causes of failure in nonlinear least squares algorithms(9). As

the function being minimized becomes more complex, this advantage becomes

more attractive. The size of the algorithm is significantly reduced by the

absence of derivatives; the remaining calculations are simple and can be

easily programmed on a laboratory minicomputer. Probably the most

significant advantage of the simplex method is its robustness with respect

to starting values. All nonlinear fitting routines, including the simplex

algorithm, require initial estimates of the (unknown) parameters. The

simplex method will converge from almost any starting values. (Of course

poor initial estimates require more computational time.) Derivative-based

methods, on the other hand, require starting values close to the unknown

parameters. This consideration becomes especially important in the analysis

of multidimensional data.

When compared to derivative-based methods, the simplex method has two

major disadvantages: lack of speed and the absence of error estimation. The

simplex method is much slower than Hessian methods, and becomes even slower

as the number of variables increases. Problems with long computational times

can be mitigated, but not eliminated, by efficient coding in a language such
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as FORTRAN. In particularly bad cases, calculations can be run overnight and

the results examined the next day. The absence of error estimates Is not a

significant problem for experimental optimization, particularly if a

parametric model does not exist for the response surface. However, when

fitting data to theoretical models the lack of error estimates is a

fundamental problem. Analytical results are incomplete without a measure of

uncertainty in addition to an estimate for the unknown quantity. This is

illustrated in Figure 1, where absorbance versus time data from reference 1

have been modeled using a simplex algorithm. The data in Figure 2 were

obtained from Figure 1 by a 200% increase in the residuals. The parameter

estimates are the same for both cases. However the results are clearly not

equally reliable.

The simplex method first attracted our interest during an ultrasonic

absorption study of metal ion complexation kinetics. To maximize the

information obtained from our kinetic measurements, we explored the

possibility of using existing theoretical models for a multidimensional fit

of the acoustic absorption coefficient as a function of acoustic frequency,

temperature, and concentration. A Levenburg-Marquardt nonlinear least

squares algorithm(1O) has normally been used in our work; however,

application of this routine would require evaluation of the partial

derivatives of a complex function and, more importantly, "goodN initial

estimates of the unknown parameters. The simplex algorithm provides a method

of avoiding these problems, but lacks error estimates.

This paper is concerned with the estimation of errors in the calculated

parameters when using the simplex method for curve fitting. A proposal by

Nelder and Mead has been incorporated into a subroutine which can be

implemented with only minor modifications to an existing simplex algorithm.

UL " 1 011
"m, ,M
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Although this proposal is conceptually simple, our experience has shown that

problems can arise in its implementation unless care is taken. These

problems, our solutions to them, and improvements to the original proposal

are discussed below; our experiences may be beneficial to others. The

procedure is first outlined for a general function, and then illustrated for

the data set in Figure 1.

EXPERIMENTAL

The calculations reported below were performed on a DEC LSI 11/23

computer with 32K words of memory. A variable-size simplex algorithm coded

in FORTRAN by O'Neill(11) was used with minor modifications(12-14). Matrix

inversion was accomplished using subroutines from the UNPACK library(15),

although other statistical packages or locally developed programs should

also be satisfactory.

The algorithm by O'Neill was converted to single precision, except for

variance calculations. Most chemical data are not sufficiently precise to

warrant the additional computer memory and time required by double

precision calculations. These requirements are particularly important when

computations are done on a laboratory minicomputer such as the LSI. For

instance, kinetic data are obtained in our laboratory with an 8 bit ADC

(Tektronix 7D20) and have a precision of 1 part in 256. Double precision

arithmetic with a precision of 1 part in 1016 is clearly not justified.

The objective function being minimized is the sum of squares between

the measured and predicted observations. Following Bevtngton's notation,

this function will be referred to as X2(16). At convergence the variance

between the best k vertices of the simplex is less than a preset tolerance,

where k equals the number of unknown parameters. This criterion was

111mI
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suggested by Nelder and Mead(3) as being particularly advantageous for

least squares function minimization. The exact value of this tolerance can

significantly affect the estimated errors unless the precautions outlined

below are followed.

DESCRIPTION OF METHOD

The simplex procedure derives its name from the geometrical figure

which moves across the error surface in search of the minimum: a simplex is

a figure defined by one more point than the number of unknown parameters in

the function. For example, if experimental data are being fit to a function

with three unknown parameters, the simplex will consist of four vertices in

a three-dimensional space. Each point represents a set of parameter values,

and is associated with a vector in parameter space. The vertex with the

highest value of the error function is eliminated and replaced by its

reflection in the hyperspace defined by the remaining vertices. The rules

governing this action have been discussed elsewhere(1,6) and will not be

repeated here. This paper will confine its attention to the estimation of

errors in the fitted parameters.

For purposes of discussion, assume one is trying to fit n experimental

observations to a nonlinear function, f, with k unknown parameters. The

quantity being minimized is

X2= Z i W1 (yl-f i )2  (1)

where y1 and fi are the i th observed and predicted data points,

respectively, and wt is the weight due to nonconstant variance. (In cases
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2
of constant variance, wt is unity for all observations.) Once X has been

minimized the 'standard" simplex algorithm is complete; however errors in

the parameter estimates have not yet been determined.

A brief review of eiror estimation in nonlinear least squares is

appropriate at this point. Most error estimates are derived from the

curvature matrix evaluated at the minimum in the error surface(16).

Qualitatively, if the curvature with respect to a parameter, el' is small,
2

then X is relatively insensitive to the variation in that parameter.

Therefore, 01 is not well defined and will have a large uncertainty.

Conversely, if the curvature is large, that parameter will be well defined

and have a small uncertainty. The curvature matrix, a, contains the second

partial derivatives of X2. The ijth element of a is given by

2 2
a j(2)

The variance-covariance matrix contains estimates of the errors In the

parameters, and is given by e = s2 * 1. The quantity s2 is the mean square

error, and equals X 2/(n-k). The estimated standard deviation in the ith

parameter Is given by

aet  S (3)

where Is the Ith diagonal element of e.

This suggests that the simplex estimates can be used to calculate

partial derivatives and form the curvature matrix. This matrix can then be

inverted and used to compute the variance-covariance matrix. Martin and
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Hackbarth(17) followed a similar approach, using a commercial software

package to calculate the statis.ical properties of the simplex estimates.

The size of the commercial package used required that these calculations be

done on a large, centrally located computer. The current popularity of

laboratory computers results in large part from their ability to provide

experimental control (including data acquision) as well as to analyze data.

Consequently, the simplex algorithm should be capable of both curve fitting

and the estimation of errors in fitted parameters.

The simplex method does not yield any estimate of the curvature matrix

of second derivatives at the minimum. In their article, Nelder and Mead

briefly discuss a method of constructing this matrix without the evaluation

of derivatives. A detailed mathematical proof of their approach is beyond

the scope of this article; the interested reader is referred to the

original work(2,3). A flow chart of the procedure, including our

modifications, is presented in Figure 3.

The final simplex consists of k+1 vertices in k-dimensional parameter

space. Let these vertices be denoted by VO, ... , Vk, with X denoting the

value of the error surface at vertex Vi. Further, let V0 be the vertex with

the lowest error, X2. Finally, let 6 . ( ... , 1,) be the parameter

vector corresponding to vertex Vi. As usual the superscript "t" denotes

transpose.

A quadratic approximation can be used to fit the error surface in the

vicinity of the final simplex. The k+1 points of the final simplex are

combined to form "half-way points" 9ij=(Si +(j)/2, ij. The value of X2 at

81j is denoted by Xij. The combined set of (k+l)(k+2)/2 points are then

used to calculate X near the minimum:
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2 x +t -I + It(-1 t -1 l (4)

Table I defines the quantities in the above equation in terms of the values

2of X . Initially equation 4 may appear to be needlessly complex and no

improvement over more conventional approaches. The importance of this

-1 t+equation lies in its ability to define the gradient ((Q- ) a) and the

curvature matrix (0.5 (-)tBQ - 1 ) as simple functions of the error surface.

In using this approach, it is necessary to avoid two extremes: (1)

allowing the final simplex to become so small that the elements of the B

matrix are largely the result of rounding errors in the calculation of X 2

or (2) a simplex so large that the quadratic approximation is not valid.

Our experience with a variable size simplex algorithm suggests the first

extreme presents the greater hazard. This is particularly true when an

overly strict convergence criterion is applied. The curvature of the error

surface decreases as the final simplex becomes smaller. The elements of the

8 matrix are a measure of this curvature, and hence become poorly definel.

The seriousness of this hazard will, of course, depend on the shape of the

error surface and the function being fit.

To protect against a lack of curvature, Nelder and Mead(3) suggested

that the difference X1 - X2 should be at least 103 times greater than the

roundoff error in the calculation of X 2. Our experience has been that the2 2

relative difference, (X - Xo)/X2 , gives superior performance. If this

condition is not satisfied, the distance between Vi and the centroid is

doubled and the condition checked again. This process is repeated for each

vertex until the inequality is satisfied. Our work has indicated that use

of the relative difference along with realistic estimates of the roundoff

error provides protection against both extremes.
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Once the final vertices have been checked for sufficient curvature,

"half-way points" Vij are computed for I 0 J. With these points, sufficient

values of the error surface exist to construct the quadratic surface given

in equation 4. The parameter vector corresponding to the minimum in the

error surface is easily calculated:

mn 0 - QB -1a (5)

The inequality

atBB- a < 1/4 (6)

provides a check on the validity of the quadratic approximation. If this

inequality is not valid, 90 is replaced by 9min in Table I, the elements of

a, B, and Q are reevaluated and a new Smln calculated. Our experience to

date has been that 4min and 90 do not differ significantly. Nonetheless,

these calculations provide an additional check on the adequacy of the

quadratic approximation.

Finally, using updated versions of Q and B, the error matrix can be

calculated:

c = s2 2 QtB-1Q (7)

where s2. 2/(n-k). If n and 0 are identical, the existing Q and B

Xmin/(4 min 0

matrices can be used in this calculation. Given the ease of forming new

matrices using amin in place of 40 in Table I, we prefer to calculate

updated matrices. Since function evaluations are inexpensive in terms of
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computer time and memory, the only additional cost of this procedure is the

inversion of the B matrix.

ILLUSTRATION

An appreciation of the preceeding discussion can be gained by

estimating the errors in the parameters obtained when fitting the data in

Figure 1. The calculations involved in the application of simplex

minimization to this data set have been illustrated elsewhere(I,8). Our

concern is limited to the calculation of error estimates after the

minimization has been completed. We have analyzed this data set using

simplex, Levenburg-Marquardt, and Gauss-Newton programs; as seen in Table

II, the estimated parameters from each program are in agreement with those

obtained by previous authors(I,8).

The data are being fit to the nonlinear model

A = AM(1 - e-kt (8)

where A is absorbance, t is time, A is the absorbance at infinite time,

and k is the rate constant. A 3-dimensional plot of the error surface is

shown in Figure 4. Cross sections of the error surface at the fitted values

for A and k are shown in Figure 5. This figure clearly demonstrates that

A is more precisely defined than k, and is a strong argument for the

estimation of parameter errors in the analysis of this data set, as well as

data in other areas of chemistry.

After minimizing X2, the final simplex consists of three vertices In a

2-dimensional parameter space. There are two unknown parameters (A. and k).
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Figure 6 shows these vertices superimposed on a contour plot of the error

surface in the vicinity of the minimum. As discussed in the previous

section, proper error estimation requires that the curvature matrix be

computed from vertices sufficiently close together in parameter space so

that the quadratic approximation is valid, but sufficiently separated so

that the calculations are not simply the result of rounding error. It is of

interest to note that if the "final" vertices from O'Neill's simplex

algorithm are used to calculate error estimates, these errors are

physically unrealistic (i.e. negative numbers). Application of the

procedure outlined in Figure 3 results in an *expanded" set of vertices

surrounding the minimum. These "expandedN vertices and the resulting uhalf-

way" points are included in Figure 6. Considering the distorted shape of

the error surface, the ability of this procedure to envelope the minimum

and produce error estimates is quite good. The validity of our error

estimates can readily be appreciated when compared to more sophisticated

methods (see Table II).

Workers using the simplex commonly quote the standard deviation for

lack of fit, s, as an indication of precision in fitted parameters. In the

above example, the relative standard deviation in k equals 275% that in A,

demonstrating the inadequacy of s as a measure of the uncertainties in

these quantities. The importance of this problem is, of course, a function

of the model being fit, and another reason why parameter estimation is not

considered complete without some estimation of the parameter errors.
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CONCLUSION

Much of the work involving the simplex method in analytical chemistry

has involved experimental optimization(5). Error estimation is often not

appropriate for methods development or the optimization of instrumental

conditions. In most of these cases, there is no precise understanding of

the relationship between the individual factors. One of the advantages of

the simplex method is its ability to function In these types of situations.

Consequently, error analysis has not received the attention it deserves.

The simplex method can also be a useful tool for data analysis In

analytical chemistry(7). This technique is conceptually simple, easily

programed on laboratory minicomputers, readily applicable to complex

functions, and does not require either the evaluation of derivatives or

starting estimates which are close to the final (unknown) values. However,

to be useful for data analysis in a quantitative science such as analytical

chemistry, the simplex method must provide error estimates of the final

parameters. To the best of our knowledge, currently available simplex

routines for minicomputers do not provide these estimates.

This paper has discussed a method for calculating error estimates, and

the important factors in its implementation. The technique has been

discussed in general terms, and then illustrated using one specific data

set. However, this method is applicable to all problems in which

experimental data are fit to a mathematical model. It can be easily

incorporated into existing simplex routines, without requiring extensive

computer memory or statistical expertise from the chemist. In spite of this

simplicity, this method has a sound statistical basis and can provide

chemists with much useful information.

R a.&
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Table 1. Matrix Elemnents in Equation 4.

42 2 2
a vector: ai = 2 X01 - (Xi +3 X0 )12  11..

matrix: bi 2 (X2 +X2 -=2 X.2,k)
(1  0 0 x1

bj- 2 +2 2 2

Q mnatrix: qi i~j 091j

j-,.. k
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Table II. Nonlinear Analysis of Data in Figure 1.

A, absorbance at t-e k, rate constant

Method Estimate Error!a Estimate aror

Simplex

Reference 1 .404 b .170 b

Reference 8 .404 b .170 b

This work .404 .012 .170 .013

MarquardtlC .404 .009 .170 .010

NewtonsC .404 .006 .170 .007

!standjard deviation of the estimated parameter.

bNot calculated in the original work.

compu ted using the INSI library.
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Figure Captions

Figure 1. Absorbance versus time data from reference 1. The solid line

represents the nonlinear least squares fit using a simplex

algorithm.

Figure 2. Absorbance versus time data obtained from Figure I by a 200%

increase in the noise. Note that the fitted parameters are

unchanged in value, but are clearly less reliable.

Figure 3. A flow chart for the estimation of errors in the parameters

calculated by a simlex algorithm.

Figure 4. A 3-dimensional plot of the error surface for the data from

Figure 1.

Figure 5. Cross sections of the error surface obtained when k is varied at

AM-.40436 (- -- ), and when A. is varied for k-.16968 (- -).

Figure 6. Contour plot of the error surface in the vicinity of the minimum.

Key to symbols: (o) vertices in the final simplex of the fitting

routine, (*) vertices used to estimate errors, and (+) position

of the minimum in parameter space. Note that the position of the

final minimum coincides with one of the vertices from the simplex

routine.
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Brief

The simplex method is frequently associated with experimental

optimization. However, it Is also a valuable technique for nonlinear data

analysis. Current versions of the simplex algorithm do not provide error

estimates of the fitted parameters. The importance of these estimates is

discussed and a procedure is described for their calculation on laboratory

mini computerc..
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