

2

One of the major obstacles overcome by the SPARO architecture is the difficulty of
implementing addressable memory with optical components. This is a major
accomplishment since the design of the processor for CGR is intimately tied to the
design of local memory in a non-distributed architecture. The memor design, in
turn, reflects the nature of data structures used for CGR. We will therefore
describe the data structures and the associated memory structure in SPARO and
show how they dictate the processor design.

The computations in CGR and, in general, symbolic processing, are very memory
intensive. To guarantee efficient computing in SPARO, the choice of the memory
interconnection topology becomes important. Although many different memory
organization topofogies have been proposed and implemented, the choice was
diicult because most topologies are not efficiently implemented in optics. The
criteria for choosing the memory structure was based on the following observations.

First, there are no efficient ways to implement addressable memory optically. If an
optical memory were to be constructed based on the structure of electronic
memories, it would be grossly inefficient because of the time required to decode the
addresses, ([4], 2nd Tech. Report) since many logic stages are required for a 1-of-n
decoder. Consequently, optical memory must take the form of registers and of small
easily decoded addressable memory.

Secondly, the density of general interconnections that can be made are limited [15].
This limitation constrains the optical connections to be highly regular and precludes
the use of dynamically reconfigurable optical interconnects to represent the
connections between pieces of data.

Finally, the interconnection scheme between related data in the memory must be
very general to be efficient since the links between nodes of the graph will change
often. It is not practical to move data items and have proximity indicate
connections since the movement of data is inefficient compared to pointer
manipulation. Proximity is also excluded as a means of representing the data
structures since the vertices of an abitrary graph cannot be represented in a two-
dimensional structure.

Using these criteria, we examined different memory
topologies. In each case the direct data moves and modifications of connectivity
for the graph compromise performance. It is preferrable to have all data in fixed
locations while pointers are emulated for data access. Such a scheme reduces the
volume of data movement, which is otherwise expensive.

This suggests that the architecture employ fine-grained processing elements or
nodes (as called henceforth because of their analogy to nodes of the &raph and to
nodes of a network) in a non-distributed architecture [1]. The processing elements
are very tightly coupled, and relatively simple communication, a few data words, is
used. Also the memory is not separated from the processing elements and thus can
be considered to be a part of the nodes. This structure meets the requirements
imposed by optical implementation by reducing the need for addressable memory
while still exposing the parallelism in CGR.

If our architecture is to scale to a large number of processing nodes, then the
pointers, or addresses, will typically require more than 20 bits. It will be shown

3

later that this means that a typical node will require about 1000 bits of storage. If
optical elements are employed which have 1000 x 1000 pixel elements, then an
efficient representation is a linear array of nodes. This is important since both the
connections between nodes as well as the contents of the nodes can be
represented. Using a linear array as described is also attractive because the optical
interconnections will be more regular.

Each of the processing nodes uses only registers as memory because of the
difficulty in implementing typical forms of addressable memory with optical
elements. To perform graph reduction, the nodes operate by messages. Thus
processing in a node is activated on receipt of a message while it sends out
messages over a network to initiate other graph reduction operations.

A separate interconnection network is used to pass messages (with data) from node
to node. The interconnection network could be implemented in any fashion insofar
as it allows the transfer of multiple parallel messages. We now discuss the
structure of the processor and memory.

2.1.1 Structure of processor and memory

The combinator graph (CG) has a very special structure. Each node in the graph
has an 'arity' or out-degree of two. The only difference between the CG and
binary tree is that nodes in the CG may be shared by more than one parent node
(all nodes can only have two child nodes). This limited arity of nodes in the CG
suggests a direct mapping of the graph onto the processing elements. The
advantage of this mapping is that each node (as memory) only needs a limited
number of memories since it only has to maintain information about itself, its two
children and its parents (the case of multiple parents is explained in Section 3). As
a processing element it also contains information regarding its state and some very
limited working storage. The nature of architecture requires that the external
interconnection network transfer data to and from nodes in the array. Locations
of interconnected nodes cannot be guaranteed to exhibit locality in the array, due
to the nature of graph mutations in CGR. We have therefore partitioned the
processor and the communication into two separate functional parts to solve the
connectivity and data movement problem. The next subsection explains how the
processor array and the network can emulate a dynamic memory.

2.2 Network Design

The functionality of the network is determined by the nature of operations required
for CGR. The gross functions that are required as capabilities of the network are
graph traversal and data movement. These capabilities in turn require that the
network must be able to locate nodes in the array by their node numbers, and be
able to read/write data in and out of the data fields (e.g., node value or node
number). Another required feature of the network is the parallel access of nodes
in the plane. Since arguments of a strict function (i.e., a function that needs the
values of all its arguments to compute) can be evaluated in parallel [11], the
network should be able to accomodate multiple data movements in disjoint portions
of the CG. Efficient parallel access of the nodes in the graph also implies that
there should be low or at best no contention in the use of the network. The
problem of network contention, which arises in this network, will be addressed by
the network processor described in the Section 6. In the intervening sections, the

....-....

4

network can be considered to be a resource that quickly transfers several words of
data from one node to another.

2.3 Optical Implementation of SPARO

Examination of optical computing structures have revealed that the most promising
concept for realizing computing is symbolic substitution [3]. We have found,
however, that it cannot be easily used for simple data movement. A simple solution
would be to use symbolic substitution for the control and logic operations, while
using other techniques to move data between registers and nodes.

The technique for moving registers and nodes that we are currently examining is to
provide limited, regular interconnects that have optical logic gates at the inputs and
that are controled by pixels of the symbolic substitution system. Thus by enabling
or disabling the logic gates, information can pass on the interconnect from one
point on the plane to another point on the next plane. The schematic of a possible
processor that employs symbolic substitution and gated interconnects in Figure 3.2.1
shows how stacks of logic gates and interconnect optics would be configured. It
shows that the processor employs free space interconnects in three dimensions and
at that only one plane does the pixel layout exactly follow the linear array of
processors described above.

2.4 Scalability of SPARO

The problem of scalability is governed by the maximum feasible size of the planar
optical array. We will be concerned mainly with the height of the array which is
related to the size or the number of nodes in the CG. Considering the physical
limits of resolution of the pixel in the optical array, our recommendations are that
single array sizes be limited to 1000 x 1000. While this may not be large enough
for accomodating programs written for large applications such as expert systems, we
do have an approach for scaling the size of the architecture.

We propose to cascade multiple optical arrays in a circular configuration as shown
in Figure 3.2.2. In this ring-like connection, the arrays are placed laterally end to
end such that the complete configuration generates a large circular array. The
interconnection network is placed on the inside perimeter of the ring. In this
manner the effective size of the array can be increased by an order of magnitude
or more to handle problems of larger size. Scaling the SPARO architecture in this
manner would requre increasing the size of the address fields. This can be easily
accomplished by increasing the width of the optical array. No other changes would
be necessary.

2.5 Overview ummmary

As it is proposed, SPARO will perform combinator gaph reduction using an array of
processors on which the combinator graph is directly mapped. The array of
processors is expected to be constructed from different optical systems. Optical
systems performing symbolic substitution will be used for implementing control and
some of the logic operations, while optical registers will be used for movement of
data. In the next section the concepts for the operation of SPARO will be
described.

5

3. PRINCIPLES OF OPERATIONS

To handle the complexity of designing a computer with primitive optical components,
we employ a hierarchy of levels of operations that corresponds to levels of
functionality. This cate~orization is a framework applied to the development of the
architecture to systematically reduce the complexity of the task. The categorization
is similar to the one used in electronics. There the highest level of representation
is the source program which is compiled into machine code. Machine code in turn
(in some machines) is decomposed into register-transfer instructions representing the
actual hardware operations of the processor. With SPARO, we expect more levels
because the lowest levels of operations are even more primitive than those in
electronics. The different levels are denoted as the levels of instructions:
1) source progrm level (e.g., LISP code),
2 SKI rules (combinator graph),
3 macro-instructions for combinators (S, K, etc.) and functions (.+, *, etc.),
4) mini-instructions for re macro-instructions (e.&., for graph traversal),
5) micro-instructions - level intermediate between mini-instructions and symbolic

substitution rules
6) symbolic sdbstitution rules.

We will see later that not all levels are totally independent. It is also possibly
that some levels may be virtual in the final design. (The machine will have no
elements which correspond to operations at that level.) As we shall see later in
Section 5, some operations, such as function evaluation, have to utilize the other
two classes of operations. Although this classification mixes operations at different
levels, it provides us a way to make tractable the difficult problem of designing a
complex architecture. The complexity of design should be obvious when one notes
the disparity in the level of functionality between the high-level (LISP)
programming language operations and those of the symbolic substitution rules.

We describe the SPARO operation principle in the next three subsections. In the
first subsection, we outline the control mechanisms or the mechanisms that have
been used to implement the flow of control in the processor nodes. The second
subsection provides a brief summary of the CGR evaluation strategy based on the
normal order reduction introduced in Section 2. We emphasise the scope of
parallelism in our evaluation strategy. The final subsection explains the CG
representation in SPARO and how it relates to the evaluation strategy employed in'SPARO.

3.1 Control Mechnisms

Implementing the SPARO control consists of two parts. The first is to determine
the appropriate structure for the processors that realize the higher level functions
for CGR. The second part is the implementation of the supporting interconnection
network that both accesses indirect data and allows transfer of data from one
location to another in the optical plane. The interconnection network is subservient
to the control since any operation of the network is initiated only by a request
from a node.

Sequencing of instructions to execute a complex operation is done quite differently
than in electronic computers. In electronic computers the sequence of the
instruction is either hardwired or microprogrammed. In either case the control unit

o, ,

6

is centralized, i.e., separate hardware is dedicated for determining the control
sequence. In SPARO, the processor executes using a technique we call 'instruction
passing'. In instruction passing, the currently executing macro-instruction invokes
the next function by sending a message to the appropriate destination node. The
message is relayed by the network to the destination node which then executes the
macro-instruction. This is analogous to passing the entry point of a process in a
conventional multiprocessing environment. The control unit for SPARO is thus
decentralized.

Besides avoiding the use of storage elements, this method of decentralized control
can expose a high degree of parallelism because any number of nodes can be
performing purely local operations, while the network passes many instructions, in
parallel, from node to node.

SPARO does not have a separate memory management module since there is no
separate memory. As is clear from our design approach, the control and memory do
not have separate locii of operation. The control information has been integrated
in the SS rules that also manage the required data movements, graph mutations, and
function evaluation. This approach has been chosen to exploit the locality of SS
operations.

3.2 Evaluation Strategy

The evaluation strategy corresponds to the normal order CGR [8] that was
mentioned earlier. Normal order CGR allows the possibility of parallel reductions
of reducible expressions, especially, strict functions [12]. Moreover, during the
evaluation of a single redex, we attempt to exploit as much parallelism as possible
in the execution of the fine-grained operations. Because different nodes can
operate independently, such parallelism is possible even at the level of a single
combinator reduction. To make such parallelism possible for correct operation, we
must design each node as a finite state machine that can execute a specific set of
instructions. The detailed design of the processor node is discussed in Section 5.

Examination of the combinator reduction algorithms reveal, that besides activating
and suspending the nodes of the processor and initiating lateral moves, the
processor generates a large number of network messages. Since many reducible
expressions or redexes can be evaluated in parallel, there can be many possible node
accesses occurring at the same time. This leads us to believe that the network may
turn out to be a source of contention. The possibility of contention is not obvious
unless a closer look is taken.

3.3 Graph Representation

The limited arity or out-degree of nodes in the CG makes adjacency list
representations of the grqph very attractive. In such a representation (Figure
3.1a), there are as many elements in the list as there are nodes in the graph. Each
element in the list is comprised of a node and its children. To represent the CG,
the list will have three fields: current node number, left child, and right child.
Since the degree of each node is at most two, the complete graph can be
represented in an array of bits consisting of three essential fields (Figure 3.1b).
The first field maintains the node number or the address of the node. The
remaining two fields indicate the node numbers of the left and right child and thus

*) %

7

act as pointers to child nodes. This array can be mapped, with minor
modifications for CGR, into a two-dimensional optical array on which symbolic
substitution is applied.

The adjacency list representation makes graph traversal from the parent to child
nodes easy since information on the child nodes are included in the row for each
node. Graph traversal from a node to its parents is more difficult since a node can
have multiple parents. Information on the parent nodes is important since the
result of a subgraph reduction is always sent to its parent node. The node
representing the result of the reduction cannot be freed or deallocated from the
array unless one can ensure that no other node is waiting on it. This observation
implies that on completion of the reduction of a node or subgraph), the control
unit of the node must be aware of the number of parents that it possesses. To
facilitate this, the parent information is included as fields of the node.

A CG node can possess any number of parents. However, in the SPARO node we
have limited the number of parent fields to two. If more than two parent nodes
are possible, they are connected by using a special '&' node that is used to string a
list of parent nodes (Figure 3.2). Two parents fields are chosen for the following
reasons. First, a single parent field cannot save an evaluation request from a
second parent if the node is evaluating upon the request of the first. Second, if
more than two parents are possible, the & node can be used effectively to store
two parent fields at a time. When more than two evaluating requests arrive from
the parent nodes, they can be saved in the & nodes.
While we have provided a broad overview of SPARO, a much more detailed account
of the structure of SPARO is necessary to explain how graph reduction operations
are executed.

4.1 MORPHOLOGY OF SPARO

While the control mechanism of SPARO is provided in the next section, the purpose
of this section is to provide the necessary background, information on the node and
message formats as well as some basic macro-instructions used by SPARO. We first
describe the formats used for representing the data in processor nodes and
messages. Certain mini-instructions are common to all macro-instructions that
SPARO uses. These are described in the second part of this section.

4.1.1 Data Structures and Formats

There are two main data formats we are concerned about. The first is the format
for the nodes in the CG. This corresponds to the data format of each row of the
SPARO processor. The second data format is that of the message. The message
format determines the format of the rows in the network and the network
processor. While data formats specify the exact physical representation of the data,
data structures indicate how, at a higher level, the data is structured or organized.
The data structures to be considered are dictated by the high-level programminglanguage used to specify the program. We will therefore consider the
representations of the different data structures used in SPARO for CGR.

4.1.1 Data Structures and Data Types

As discussed in Section 2, the generic data structure for SPARO is the graph.

I-MR-A

8

Lists, which form the core data structure in functional languages such as LISP, are
just a special case of a graph. We will therefore only consider the representation
of graphs. Details on graph representation were covered earlier in Section 3.3. We
will mention that when a general list representation is sought, the linking of the
elements of the list can be done by the LISP operator CONS or its combinator
equivalent. Turner [8] suggests a combinator P as the curried version of the
CONS or pairing operation. Thus a list of three elements a, b, and c represented
in shorthand LISP notation as:

a:(b:(c:nil))

will be written as:

P a (P b (P c nil))

It is, however, more convenient to use CONS as a functional primitive rather than
the combinator P. This would greatly simplify the control of the processor nodes.

Since details on other aspects of graph representation were provided earlier in
Section 3.3, we list here only the possible data types that have to be distinguished
during CGR. The use of the different data types will become clear in the context
of how combinator reduction is done.

Due to the binary nature of the CG, a fixed size adjacency list representation is
very attractive. For simplicity, we will discuss graphs with atomic node values.
Complex data structures, such as lists, will be represented as a combinator
expression of list atoms and the CONS operator. The data fields in a node of a CG
are distinguished by the type of node it represents. Atomic values (including
combinators and functions) are maintained only in leaf nodes whose right child
always contains the value by convention. The & node, described earlier in Section
3.3, is used to string together multiple, specifically more than two, parents of an
argument. A node that is neither a leaf node nor a & node is called a regular
node. Thus, a node type is either & or regular or leaf.

The parent fields are always pointers and therefore do not require typing.
However, presence bits are required to indicate the existence of a parent. Each
node has two associated parent fields that are dynamically updated.

While we have described data types and data structure, we have not shown what
formats are used for the nodes in the processor or for the messages in the network
ani the network processor. We describe these next.

4.1.2 Data Formats

Since each node in the graph is identified by its node number, searching for a node
requires providing the network with the destination node number. So each path in
the traversal of the graph requires determining the destination node and then
providing the network with this information. Men traveling down the graph, the
left child (LC) or right child (RC) information is required at a node. For travelling
to the root, the parent node information is required. Since data can be shared in
the CG, a node can have multiple parents. Therefore, the parent value depends on
the path by which the node is reached and is dynamically updated.

9

The layout of the node in the processor is shown in Figure 4.1. The required fields

are:

Alloc bit (indicating whether the node is allocated or deallocated),

Activation bit (whether any operations are occurring in the node, indicates if
SS rules should be applied in this row),

State of node (one of three values: unevaluated, evaluating, and evaluated),

Instruction bits (representing the macro-instruction currently in execution),

LC,

LC type (data type such as immediate, relation or function),

RC,

RC type,

Left Parent, and

Right Parent.

The network and the network processor contain specific registers or buffers. The
registers are required to save incoming or outgoing message contents. The
processor generates messages which are sent to the network via the network
processor as shown in Figure 4.2. The format of the messages determine the
structure of the network and the network processor. Only four fields are
necessary for specifying a message:

instr or instruction that will be executed in the destination node),

dest or destination (node number),

source (current node number), and

two data fields datal and data2.

The source field is usually the parent of the destination node.

4.2 Basic Control Instructions

A basic set of mini-instructions is used to write the macro-instructions for SPARO.
These instructions are used to control the operations within a processor node, the
sequencing of instructions, and the processor memory management. The instructions
are described by their actual format.

4.2.1 Mini-Instructions

Three basic mini-instructions make up the macro-instructions. These instructions

10

move data between registers, initiate data transfers between processing nodes, and
control basic and control macro- and mini-instruction execution. All of these are
block structured and can take multiple arguments.

The simplest instruction is LOAD, which moves data from register to register within
a node. Condition flags are also set with the LOAD instruction.

Conditional statements are represented by IF-THEN-ELSE structures, while CASE
instructions are sometimes used to represent multiple IF-THEN-ELSE sequences.

The SEND instruction is used to construct messages in the processor to be sent by
the network processor. It sets up the data in the output buffer (in the network
processor). This buffer has four fields: dest, instr, datal, and data2. The network
processor then sends a message containing these four fields and one indicating the
current node (source).

4.2.2 Memory Management

The memory management operations are of two types: allocate and deallocate. An
allocate operation is used to create and assign new nodes in the processor, while a
deallocate instruction is used to free nodes that are not required anymore. The
deallocate instruction is thus used to perform garbage collection. Since we are
limited in the size of the array, memory management is an important function in
the processor.

4.2.2.1 Allocate

This function uses the network to allocate a node in the graph. A message to a
free node is sent using an indefinite form of the send instruction as shown below:

send
out buff/dest <- ?

5ut buff/instr <- instr
out-buff/datal <- datal
out-buff/data2 <- data2

where '?' indicates any available node, and instr, datal, and data2 refer to an
instruction and data to be passed to the newly allocated node.
The network then delivers this message to any node that does not have its 'alloc'
bit set.

4.2.2.1 Deallocate Macro-Instruction

The complement of the allocate instructions is the deallocate (D) macro-instruction.
It is more complicated since it must allow for the possiblity of two parents.

The basic operation of the D macro is to check if the node has two parents. If it
does, then the node is marked as having only one parent. If the node only has one
parent, then the node can be deallocated. Checking for multiple parents will be
done explicitly within the macro-instruction that invokes the deallocate instruction.

= 11

5. CONTROL IMPLEMENTATION IN SPARO

In this section we describe how the control functions in SPARO are implemented.
We focus on the macro-level architecture and list the algorithms required for the
basic set of functions and combinators. The basic set of functions is that which is
necessary for executing a pure functional language using graph reduction.

The set of combinators chosen is S, K, I, B, and C. Although S, K, and I
constitute the basic set of combinators, B and C will be required for optimizing the
size of compiled code. We have assumed that the CONS operation is implemented
as a primitive function rather than use the P combinator. The fixed-point
combinator Y will not be used to represent reentrant recursive code. Instead,
compiler annotations will be used in the compiled graph for purposes of efficient

aph reduction in SPARO. Compiler annotations will also be used to distinguish
reentrant iterative code.

When considering the list of primitive functions we will use LISP primitives
although the macro-level algorithms can be adapted easily for any pure functional
language such as SASL.. The primitive functions considered will include the
primitive 'eq' for comparison and 'cond' for conditional testing. The arithmetic
primitives will consist of the unary minus (-) and the binary plus (+) operators.
Only one Boolean primitive NOR (or NAND) will be considered. Separate
input/output functions IN and OUT will be assumed to read and write data to and
from SPARO. The input and output primitives will not be considered here.

This section is divided in three parts. In the first subsection we describe the
abstract finite state machine (FSM) of a processor node to explain the states of a
node. The second subsection outlines the macro-level algorithms for both
combinators and functions. In the third subsection we show how higher level
control structures, such as iterative and recursive structures, can be implemented
efficiently in SPARO.

5.1 Abstra Finite State Machine Model of a Processor Node

Although each processor node is an FSM that executes the different control
sequences for reducing combinators and functions, it can be considered as an FSM
at a higher level. This level of abstraction corresponds to specifying the state of
evaluation of the node. Specifically, a processor node can be viewed to be in one
of three external states: not evaluated (nev), evaluating (evg), and evaluated (evd).
Initially, all nodes are in the nev state. When the graph embedded in SPARO is to
be reduced, the root (user) sends an evaluation request. This request is manifested
as an 'apply' instruction from the root node and is sent to its leftmost descendant
as prescribed by normal order graph reduction. The state transition of a node is
determined by the external state information (nev, evg, or evd), the type of its LC,
and the instruction it receives as input. Thus, the actual state of a node is
determined by its external state and the type of its LC while the input to FSM is
the instruction received. We discuss below the state transitions that can occur.

If a node does not specify a combinator or a function then the following actions
are taken. A message is first sent to its LC to transmit the apply instruction. The
current node is then p laced into the evg state. If the node is a combinator or
function node, then the associated macro-level sequence is invoked. In case of a

12

function evaluation the collection of all required arguments is initiated.

A transition from the evg state to the evd state is made if the node is reduced to
a value. A node can be reduced to a value only as a result of a K or I reduction
or by a function evaluation. After the reduction a node sends an 'evaluation
complete' message to its parent. An evaluated node can be deallocated only if no
other parent is waiting on its value. Note that when multiple apply requests arrive
at a node with multiple parents, the requests are saved in the parent & nodes.
Each & node can hold two apply or evaluation requests. The parent and & nodes
are set into the evg state. When the child node is finally evaluated, the'evaluation complete' message is sent to all waiting parent nodes that had requested
the evaluation.

Note that since subgraphs are shared and not replicated, as in string reduction.
whenever an evaluation is requested of a shared subgraph, new nodes must be
created to represent the mutated subgraph. Thus, nodes have to be allocated
during a reduction. As will be seen in the detailed macro-algorithms, the
complexity of SPARO is not in the actual reduction sequence but in the management
of the shared subgraphs.

An explaination of the control algorithms that define the specification of a
processor node in SPARO are given next.

5.2 Combinator Reduction and Function Evaluation

The macro-instruction sequences or macros for the basic set of combinators and
primitives are given in the Appendix. All sequences are written using the mini-
instructions introduced in the previous section. The macro-instructions for
combinators and functions are written in specific format so as to expose the
available parallelism in each step. The format used is described below.

Every macro-instruction description is preceded by the state the node is in and the
instruction that it receives in the message from the network. This specifies the
current state and the received input of the node. A state transition can occur
only on the receipt of a message. The node undergoes a state transition, whereby
certain actions are initiated and messages are sent out on the network. These
actions correspond to the output of the FSM of the node, and are dictated by the
instruction specified in the message. Actions consist of assigning values to the
fields internal to the node and the fields of the outgoing message buffer (in the
network processor). The incoming and outgoing message fields are distinguished by
the use of prefixes in buff (buffer) and out buff, respectively. Messages are
invoked by the 'send' min-instruction.

The field assignments in a node can be done with parallel register to register
moves or loads (denoted by <-) where the actual writing of values can be done at
the end of the move cycle. This permits a swap of the form: a <- b, b <- a to be
done in one cycle. The convention adopted here, however, is that the internal
fields of the the node are assigned first (possibly in parallel). The fields of the
outgoing message are then assigned (loaded) with the proper values (all in parallel).

The three external states clearly do not suffice to completely describe the FSM that
represents the processor node. We will therefore use two state representations: an

t.mm

13

external and an internal state. The external state refers to the state of the
abstract FSM, and can have one of three possible values (nev, evg, or evd). The
internal state of the node is defined by the macro- and micro-instruction being
executed in the node and by the values of certain control fields and flags. As far
as the input to the FSM is concerned, it is only the instruction field of the
message that initiates the actions to be taken. During a specific macro-instruction,
the actions taken are governed by the node type (i.e., regular, &, or leaf) of any of
the LC, RC, or the data fields of the incoming message.

The macros described later are written as a sequence of actions that take place
during a state transition. Intermediate states of a node are indicated implicitly by
the specific instruction being executed, and the values of the control flags and
fields. Specific instructions being executed in the node are indicated by setting
specific bits associated with those instructions. Thus an SI micro-instruction, the
first instruction executed after an S combinator is recognized, is indicated by
setting the S1 bit in the instruction field of the node. Certain control fields and
flags are used for purposes of control in a SPARO node.

5.2.1 Control fields and flags

Our preliminary analysis of combinator reduction and functional evaluation
algorithms reveal that five Boolean flags are necessary for use by the macros.
These are:

2_arentspresent - This flag indicates that both parent fields of the node
are occupied, or that the node has two or more parents,

2nd apply received - This flag indicates whether the second parent of a node
has-requested an evaluation; applies only to nodes for which 2_parentsypresent
is true,

doing S -- This flag indicates that at the top level (root node of a
combihator subgraph) an S rather than a B combinator is being executed,

awaiting arity incr replies - This flag indicates that two new parents have
been added to the-parent list of a shared argument node (in case of a S, B,
and C combinator reduction),

awaiting eval completes - This flag indicates that both arguments of a binary
functionliavel'een evaluated; the binary function can now be applied.

Besides these flags, two other fields are used for describing a node type and the
level of the combinator subgraph. These are:

node_type: regular, &, and leaf, and

combinator level: 1, 2, or 3, where the number refers to level in the
combinator-subgraph; I is the level of a node whose LC is a combinator (S,
B, or C), while 3 is the root of the combinator subgraph.

We have assumed leaf nodes for atomic values in the CG, i.e., atomic values have
independent existence. Thus all arguments of a combinator or function are distinct
nodes. While this results in inefficient use of storage, it implies a more efficient

14

control. Maintaining separate identities for atomic values implies that every
argument is a pointer to a value. Such a representation eliminates the need for
checking whether every argument is a pointer or value, and considerably simplifies
the macro-instructions.

Besides the aforementioned flags, an 'annot' flag is used to indicate that a node is
annotated and cannot be reduced on first evaluation. Annot nodes are used to
describe recursive code, and are dealt in detail in the next subsection.

The memory management in SPARO is directly built into the control algorithms.
Thus, the macros explicitly control deallocation and allocation of node. A separate
state bit 'dealloc' is assumed to denote if the node is free or in use. An important
fact to note is that a shared subgraph, either appearing as a LC or a RC of a node,
that is not reducible in itself, cannot be deallocated. On receiving the first request
for evaluation, new nodes must be allocated to represent the mutated or reduced
subgraph. The shared subgraph will remain intact until the last evaluation request.
Only then can it be deallocated.

The communication between the processor array (nodes) and the network and the
network processor is handled by messages. Within a macro, a message (send) is
specifed by four fields: dest, instr, and datal and data2. The data2 field is not
always necessary. The source field does not need to be specified since a message
initiated in any node will always use the current node address as the source.

Functional units that execute primitives, such as + and AND, are assumed to be
located by a message with the destination address set to the name of the function
(denoted by functional unit). This assumption makes the implementation of the
control unit of SPARO independent of the implementation of the functional units.
The assumption also implies a pessimistic implementation where a few (or, in the
worst case, only one set of) functional units are shared by many nodes of SPARO.
Ideally, each node should have its own set of functional units so that there may be
no contention in access of the units or the network. Physical and technological
limitations, however, may prevent realizing the ideal situation.

While the macro-algorithms have been listed in the Appendix, we describe here an
example sequence of macro-instructions that would be used to reduce an S
combinator. Refer to the Appendix for the detailed macro-instruction.

5.2.2 An example combinator reduction

The combinator expression is assumed to be simply (S f g x). The CG for this
expression is shown in Figure 5.1. Although sharing of the top three nodes (1 - 3)
is not shown explicitly, the implications of doing so are discussed below.

When the CG is unevaluated, all four nodes of the CG are in the nev or
unevaluated state. The reduction is initiated when an apply instruction is received
at node 3. The parent information is then stored in the P1 field so that the final
reduced value of this CG can be communicated back. Since node 3 is a regular
node it sends an apply to the LC or node 2 and sets node 3 in the evg or
evaluating state.

Nodes 2 and 1 go through the same sequence of actions as node 3 since they are

15

also regular nodes. The apply instruction thus arrives at node 0 which is a leaf
node. Thus, the message msgnormal is constructed and sent up to node 1
(sendupl). Since node 0 is a leaf node, it is not expected to be shared and is
therefore deallocated. The message sent to node 1, which was in the evg state,
contains the instruction eval complete and the S atom in the datal field. The
macro-instruction correspondig to S is thus invoked. Since the buffer data in the
message is in the combinator/operator set (CombOp), the LC is loaded with the
atom S, and the macro-instruction comb 1 is invoked.

In comb1, the combinator level is set to 1, and the message msg mut argl is
constructed. Since an S cdmbinator has been recognized, the message will-specify
S1 as the next instruction. In comb1 a check is done to see if node 1 is shared.
If node 1 has two parents, indicated by the flag 2parents.present, then the
argument f cannot be consumed by this reduction and a pointer to f must be
created. This is achieved by the macro-instruction arity incr, which increases the
number of parent fields of the argument f. The arity in&rease procedure is simple
if f had only one parent, otherwise an & node has to be allocated using the macro-
instruction and node alloc. In the latter case the macro and node aboc sends back
the address of The newly allocated & node (which now points-to f) To node 1. Node
1 then has the new & node as its RC. If however f is not shared, then node 1 is
deallocated, else the node remains in the evg state.

The message msg mut argl from node 1 arrives at node 2 bearing the instruction S1
and the argumefit f (Zctually the pointer to f). The combinator level is set to 2.
The combinator level number determines the correct response on completion of the
arity incr macro. Since node 2 was in the evg state, the LC is loaded with the
argument f, and comb2 is invoked. In comb2, the message msg mut arg2 is
constructed. Msg mut arg2 specifies the instruction S2 for the node 3. As-in node
1, node 2 can be "shar(id. In such a case the parent list of both f and g have to be
updated. Thus, as in node 1, arity increase messages are sent out for each
argument. The Boolean awaiting arity increase replies is used to indicate that the
new parent fields has been added:. As i node T, node 2 can be deallocated if it is
not shared, or else it remains in the evg state.

The message from node 2 arrives at node 1 instructing that S2 be executed. The
combinator level is set to 3, and the doing S bit is set to indicate that S
combinator reduction is in process. As in the other two nodes, the argument x may
be shared so the arity inr macro is invoked to ensure proper sharing. When the
control returns to node 3 (in arity incr), it sends out a request (S3) for the
creation of a new node 4 for the expression (g x). S3 then sends back a message
to node 3 with the address of node 4, and specifying the instruction S3 reply.
Node 3 then sets node 4 as its RC, and sends out a request (S3 with apply) for the
creation of a new node 5 for the expression (f x). S3 with ap-ly starts evaluating
(f x) in normal order. When node 5 is evaluated the control is sent to node 3,
which is set as its parent. The function or combinator subgraph resulting from the
evaluation of node 5then uses node 4 as its argument.

While simple control structures involving combinators and functions have been
addressed, complex control structures such as recursion, common in functional
languages, have not been discussed thus far. Handling such control structures in
SPARO is discussed next.

16

5.3 Handling Complex Control Structures

We describe here how the control in the processor can be designed to execute
recursive and iterative structures. Recursive subgraphs are discussed in more detail
since the method for handling iterative subgraphs is just a special case of the
former.

5.3.1 Recursion

The typical method for executing recursive code is to expand out the recursive call
until closure is reached. The control flow sequence is usually maintained by using
a stack. Since stacks and other explicit memory structures are difficult to
implement in optics, we have chosen an alternate route. Instead of executing
shared code and saving different contexts on stack, we copy the subgraph for the
recursive structure and evaluate or reduce each instance separately. Thus each
instance of the recursive code is explicitly generated and reduced during CGR.
There are two implications to this approach. First, the recursive subgraph has to
be copied each time. Second, the original subgraph cannot be reduced and is
thereby destroyed before closure is reached. These two issues are examined next.

Copying a complete subgraph at runtime will be very expensive since the complete
subgraph is first copied and then executed. However, such a 'copy and reduce'
technique may not be necessary. One possibility is to pipeline the copying and
reduction operations. Thus, while the original graph is being copied in normal
order), the apply instruction can be sent down the incomplete graph in normal
order. Since copyin& requires allocating free nodes and sending data via messages,
the speed of copying will depend on the speed of the network. To prevent
evaluation of an incompletely copied node, certain control constructs will be
required to suspend evaluation until its child nodes have been specified.

Normal CGR reduces and thus destroys the original CG. That is, the combinator
graph is not reentrant. In the electronic case the compiled CG is stored in some
main memory, and recursive routines share the same code maintaining different
contexts at runtime on the stack. Since we do not have separate memory, we must
make other provisions for maintaining the recursive subgraph. To avoid use of a
separate special memory, we ensure that the original recursive graph is not
destroyed until closure is reached. To distinguish the recursive portions of the
code from the rest during execution, we use compiler annotations for all nodes that
constitute the recursive subgraph. An annotatednode will have its 'annot' bit set.
We now describe the control sequence that occurs when an annotated subgraph
receives a DF instruction. Note that another option to the annotated node
technique would have been to distinguish between compile-time generated nodes
and run-time generated nodes where the compile-time generated nodes are never
destroyed. Conceptually, there is no difference between the two options, and so we
have decided to examine the annotated case.

When the root node of a recursive subgraph receives an instruction to evaluate
(apply), it initiates a copying algorithm. If an incremental copying algorithm is
used, i.e., copying and graph reduction are pipelined, it can be executed
recursively. A copy instruction does the following: the present node is first copied
in a newly allocated node (the allocation is also initiated by the copy instruction),
and a copy instruction is sent to its LC and RC. Each child node then again

17

invokes the copying algorithm. The copying stops when leaf nodes are reached.
After the first node has been copied, an apply instruction is sent to the first copy
of the recursive subgraph. In this manner the copying and evaluation of the
subgraph can be accomplished in a pipelined fashion.

The correct sequencing of the recursive evaluation is specified by the linking of the
copies of the subgraph (shown in Figure 5.2). Let the head or root node of the
original recursive subgraph be called H. The node that specifies the recursive call,
i.e., the node in the body of the subgraph that points back to H, will be denoted
by T for tail. These nodes in the copies will be called H1 , T1, H2 , T2 , etc.. The
correct sequencing for evaluating the recursion proceeds as follows. The parent
node P of (H,.., T} sends down a request for evaluation, an apply instruction, to H.
Since H is the first annotated node, it initiates the first copying sequence. The
copy consists of the sequence {H 1 ,.., T1}. The tail T is set to point to the
original head node H. H sends an evaluation request to H1 with the address of its
parent P. Since the subgraph {H 1 ,.., T1 } is not annotated, it will be reduced. If
the recursive condition (the condition that determines the recursive call) is
satisfied, T1 is evaluated. Since TL points to H, another copy of the original
subgraph is made with the new tail T2 pointing to H. H2 is sent an evaluation
request from H with the address of T1 since T 1 is the new parent of H. In this
manner the subgraph copies are linked to emulate a nested call structure.

The recursive spawning of new copies continues till closure is reached when the
recursive condition is false, say at the kth copy. At this stage Tk is sent a
deallocate message since the recursive condition is false. Since Tk points to the
original subgraph, (H,.., T} is recursively deallocated. In parallel the kth copy
reduces and sends back a completion message to Hk, which in turn sends a
completion to Tk.1, the tail of the (k - 1)th copy. The (k - 1)th copy of the
subgraph is then reduced. The reduction proceeds until the first copy is reached.
Since H1 has P as its parent, the final completion message is sent from H1 to the
original requesting node.

It would appear that handling recursive calls is more efficient if block copying
rather than incremental copying is used. This does not affect the control sequence
described above. In block copying, a complete block of nodes that constitute the
recursive graph can be copied in a singe step. This avoids the problems of
flooding the network with messages to allocate nodes and checking if child nodes
have been allocated. Furthermore, all nodes would be local to the block thus
reducing contention in other parts of the processor. Block copying can only be
feasible if the size of the recursive subgraph is limited to a certain size.

5.3.2 Iteration

The problem of maintaining the iterative subgraph until iteration is complete is
similar to that of the recursive case. Therefore, a similar solution using compiler
annotations is chosen. The only difference is that unlike in recursion the life of
the iterative structure is usually known at compile time. Furthermore, the different
iterations do not exist at the same time. Only the current iteration must be saved.
The copying of the original subgraph is initiated if the termination condition is not
satisfied: A reduction can proceed as soon as the copying has completed or is in
progress in the case of incremental copying. Each iteration is completely reduced
before the next iteration is generated since no nesting, as in recursion, occurs. We

J

18

do not emphasise iteration in our control implementation since most procedures in
LISP are written using recursion. We note, however, that in terms of space
constraints, recursion is more demanding because multiple copies of the subgraph
exist simultaneously.

Having examined the detailed evaluation strategy for CGR in SPARO, we now
examine the optical implementation of the different components of the architecture
in the next section.

6. OPTICAL IMPLEMENTATION

The execution of the instructions described in the preceding section assumes that
each node contains some processing capabilites and the ability to send messages to
other nodes. The discussion also alludes to the use of a portion of the processor
that arbitrates data transfer to and from the network. This section describes
possible implementations of the each of these component systems. We first describe
the basic optical components assumed available and employed in SPARO.

6.1 Optical Primitives

Only a few optical elements are required to implement the structures needed for
SPARO. It is assumed that suitable nonlinear optical gates can be found to perform
the logic operations required. Interconnects between logic planes will likely employ
classical optical components such as mirrors, beam splitters, and lenses as well as
holographic deflectors.

The two techniques that SPARO employs are symbolic substitution and gateable
interconnects. Symbolic substitution is a technique to perform complex logical
operations by the manipulation of patterns. Its main attraction is that it is well-
suited to operation in parallel and it has a relatively straightforward implementation
in optics. Gateable interconnects are nothing more than masks that allow light to
be transferred to specific locations in the next logic plane in the system. In
SPARO, symbolic substitution is employed to perform the control operations within a
node, and gateable interconnects are used to transfer information between fields.

An optical system that performs one symbolic substitution rule consists of two
portions: the recognition optics and the scribing optics. In the recognition optics,
the fields where symbolic substitution are to be performed are optically split into
several copies. These copies are then shifted in varying directions and distance and
imaged onto a plane of optical gates operated as thresholding elements. In this
manner, specific patterns can be recognized. The light out of the optical gates
denotes locations where a pattern was recognized. In the scribing optics, this
output light is optically split into several portions, then shifted and recombined
creating the desired output pattern.

Each rule in a symbolic substitution system requires a specific recognition and
scribing optics for that rule. It may be possible, however, to combine shifted
images, or partial results of recognition and scribing to reduce the complexity of
many rule symbolic substitution systems.

Gateable interconnects could be realized by using a pixel from a control field to
control several optical gates configured as a programmable mask. If the light from

19

the control pixel is present then light would be passed through the mask. Gateable
interconnects could be realized by using such programmable masks in the paths of
light connecting the output from data fields to the imput of other data fields.
Figure 6.1 shows how symbolic substitution (SS) and gateable interconnects could
be used to move data around in an optical system. Specific pixels in the region
where symbolic substitution is performed are used to control masks that send
information from register A to registers B and C.

6.2 Optical Layout

As described earlier, the optical system is laid out as a linear array of nodes. The
elements of this plane are optical gates that provide the nonlinear functions
required for symbolic substitution. Free-space optical interconnects provide the
connections between fields in the nodes and on the network as well as for symbolic
substitution. Connections are provided for all processing elements in parallel to
facilitate simultaneous operation of all of the processors. The linear layout is
required to reduce the number of possible interconnects between pixels on the plane
so that diffraction effects can be managed.

Figure 6.2 shows schematically how the plane is functionally split into three
sections and how that plane makes up part of a larger system. The block in the
lower portion of the figure represents the optics employed for the interconnects
between planes of nonlinear elements. Logical operations are performed by
interconnecting the outputs of optical gates from one plane to the inputs of gates
in the next plane. The blocks and planes in Figure 6.2 correspond to the blocks
and planes in Figure 2.1. A complete cycle of light around the loop shown in
Figure 2.1 represents one machine cycle. The various stages are required to
gerform the operations needed by symbolic substitution and to set up the transfers
etween registers.

To explain the macro-architecture we will examine the interaction between the
processor portion of the optical plane with the network portion. An intermediate
stage is necessary to handle the management of data transfer between the network
and the processor. We will refer to this stage as the network processor. It will be
seen that the network processor stage alleviates the network contention problem
since, we believe, that a major portion of the execution time will be expended in
moving data from one node to another. Since there is ample scope for parallel data
movement, there is a high probability of contention for access to the network.

6.3 The Architecture of the Network

The network used by SPARO is best described as a micro-area network. It has an
extremely simple protocol, but it can pass messages in parallel between the many
nodes of SPARO. As was evident from the macro-level descriptions of the SKI
combinators, it is used by the processor by invoking send instructions. Here we
examine one possible configuration of the network. It was not designed for high
performance, but rather to demonstrate that a communications channel could be
developed which was in keeping with the overall system requirements.

The requirements used to develop this network, and which must be met by any
alternative, are:

20

parallel or near-parallel transmission of many messages,

simple (from the node processor point of view) contention management,

simple access,

supports node allocation,

nonblocking (partially managed through processor design),

The functionality of the network is determined by the nature of operations required
for CGR. The gross functions that are required as capabilities of the network are
graph traversal and data moves. These in turn require that the network must be
able to locate nodes in the array by their node numbers, and be able to read/write
data in and out of the data fields.

Another required feature of the network is the parallel access of nodes in the
plane. This is critical since we want to exploit any parallelism available during
CGR. When different subgraphs can be reduced simultaneously, the network should
be able to accomodate the data moves and traversal in disjoint segments of the
graph. Efficient parallel access of the nodes in the graph implies that there should
be no contention in the use of the network. As we will see later, addressing
contention will strongly influence the design of the architecture.

The obvious approach for the network to access nodes in SPARO is binary decoding
of the addresses or the node numbers. However, previous related work on memory
design in optics has indicated that binary decoding in optics is inefficient both in
space and time [1). Our approach has been to sequentially traverse nodes and
check node numbers (which are ordered in the array) whenever an address is given.
A number of nodes can be accessed simultaneously since all sequential traversals in
the array occur at the same speed.

The basic operation of the network is to sequentially step a message from node to
node along the linear array. If the destination matches the neighboring node, the
data is transferred from the network to the network processor.

We will assume, in our implementation, that the network searches for the node
number sequentially in the proper direction (up or down) of the array. The
sequential search means that at every node a comparison is made between the
destination node number and the current node number. While this appears slow, the
advantage is that both the processor and the network (and also network processor
which manages contention) can operate at the same speed and with the same cycle
time. Searches for nodes can be done in either direction to allow for parallel
searches crossing the same node without contention. Such a bidirectional search is
implemented by providing two sets of fields for each node in the network. Figure
6.3 shows the format of the network for implementing bidirectional searches.

The network can be viewed as a sequence of registers, one set of which transfers
data up the array while the other set transfers data down. In each register set the
basic operation is the transfer of one register to the next as in Figure 6.3. On
each processor cycle register data is moved up (or down) one step. Data transfer is
initiated by placing a message on the network. To place a message on the

21

network, the processor first determines the relative location (up or down) of the
destination. It then checks to be sure that on the next machine cycle its network
register will be free by examining an occupy' pixel or bit. If it will be, theprocessor transfers the message to the network. ff not, it checks again for a freed
register.

On every cycle the network compares the message destination to the current
position of the message. This is accomplished by comparing the node number field
to the destination number field of the message. If the message is at its
destination, it is moved off the network into the network processor. Otherwise,
it is passed to the next register in sequence.

As described, contention for the network is managed by refusing to send a message
if the network is busy. This method of managing contention reduces the buffering
requirements of the system since the node can be made to buffer the information
while it is waiting to send it out. Further, this method does not introduce more
inefficiencies in execution since a node, in most cases, does no processing until its
sub 'aphs have been reduced. This means that it can idle while waiting for accessto tme network.

Since multiple processes can be occurring on the same graph, a message may arrive
at a node that is still processing. In such a case the message must be buffered
until the current processing is complete. This buffering is provided by the network
processor. The network processor manages two buffers for messages from the
network. It only needs two buffers since our implementation of CGR has at most
two parents and children. Such limited connectivity constrains the number of
messages that can arrive simultaneously at a node, and thus limits the number of
requests that may have to be buffered. The use of & nodes provides the extra
buffering required in the case where traditional CGR would set up more than two
parents to a node.

Note that two accesses proceeding from different directions can access the same
node. This means that the network processor must contain two fields to store
messages from each direction. This is the most storage required since our
implementaion of CGR eliminates the possiblity of more than two different messages
reaching the processor at the same time.

If the message data cannot be loaded into the node, it is maintained in buffers.
During data moves from the network onto the processor, another portion of the
network processor may buffer the message so that the instruction currently
executing can finish.

The access time for the above interconnection network will be O(n) where the
number of nodes in the array is n. Since all data access is not guaranteed to
exhibit locality, the network may cause performance degradation. For this reason
we will augment the network with extra connections such that it can bypass blocks
of nodes. For example, if the network provides a connection between every node
and its kth neighbor besides connecting adjacent nodes, the maximum access time of
a node is O(n/k + k/2). We refer to this augmented network as the 'supernetwork.'
The best access time tor the supernetwork is O(sqrt(n)).

6.4 Architecture of the Processor

22

A study of the functionality of the processor shows that the control operations are
relatively simple and few, especially at the macro-level. The aim for the
development of an architecture tor the processor is to determine the minimal set of
instructions that need to be implemented.

The registers and functionality of the processor, described in Sections 4 and 5,
require that the processors store information and transfer it between fields; the
same functionality is required of the network. However, in the case of the
processor, the control for data transfers is provided by the executing instructions.

Currently we have not completed the design of the processor architecture, but have
schematically developed how it will operate. Figure 6.4 shows, schematically, the
basic functionality of our concept for the processor. Bit fields in the instruction
register control gateable interconnects between different lateral moves. The bit
fields in the instruction register, in turn, are controled by symbolic substitution
rules. We envision that the symbolic substitution rules would be developed from the
mini-instructions in a two-step process (mini-instructions to micro-instructions to SS
rules) so that the number of SS rules can be minimized.

At present only the functionality required for combinator graph reduction has been
specified for the processor. Functional units that perform operations such as
additions and comparisons will have to be added to complete the processor.

6.5 Network Processor

The network processor is a unit wthat buffers the request to and from the network.
It computes the direction in which to send a message and assures that the message
is saved in an empty register slot. A message is buffered in the network processor
if it is received while the node is in an evaluating (evg) state. The message
remains buffered until the current evaluation is complete.

While the use of the network processor combined with the limited number of
parents and children solves the contention problem for high levels of parallel data
movement, we have yet to address the lateral moves required in SPARO. The
possible lateral data moves are:

network to the network processor fields,

network processor to processor fields,

processor to the network processor fields, and

network processor to network fields.

For implementation, one would select a minimal number of possible data field moves
in each of these three categories.

Note that because the network processor works in concert with the processor and
the network, it will require its own set of "instruction" registers which would keep
track of its state relative to that of the processsor and the network. These
instructions will control and sequence the moves to the network and the processor.

23

Again, as with the processor, symbolic substitution will be employed to set up the
sequencing and gated interconnects will provide the actual data movements.

7. FUTURE WORK

We have presented a portion of an architecture to perform combinator graph
reduction, which was developed to exploit the parallelism of optics. It was
developed by examining the overall requirements of combinator graph reduction so
that the resulting architecture can be scaled to large systems. To complete the
architecture and make it viable for implementation several other aspects must be
considered. This section describes possible upgrades to the connection network,
addition of functional units, and extensions of the architecture to design expert
systems.

7.1 Upgrading the Network

The network design presented in Section 6 could become a bottleneck if SPARO
were to be constructed since a disproportionate amount of time is spent on
communication. Further work on SPARO is necessary to develop a more efficient
communications system. We describe several options in this subsection.

The linear network could be enhanced by the addition of the supernetwork
mentioned earlier. This addition would transfer data across many nodes in one
cycle rather than just one. Figure 7.1 shows how the supernetwork would be added
to the single-step network. In the example shown, data could be either passed to
the next node or it could be passed to a node 10 steps away. The optical
implementation of this supernetwork is not expected to be much more difficult than
for the single-step network; it only requires shifting an image by 10 nodes rather
than one. /

One problem in developing a network such as this is contention. Since data could
travel on many paths from source to destination node, an efficient routing strategy
would have to be developed. The increase in the number of data paths would also
require a strategy to ensure that data could pass on the different paths without
requiring buffering on the network.

Another related problem is node allocation. The scheme for memory allocation
described in Secton 4 would have to be modified, perhaps totally redesigned, to
account for the multiplicity of data paths. It may even require the use of an
allocation scheme as complicated as that used by the Connection Machine [9].

If a more complex routing scheme and memory management algorithm are required
for the supernetwork concept to be effective, it may be fruitful to examine more
richly interconnected topologies such as multistage interconnection networks (MINs)
or hypercube connection schemes. While the average data access times in either
topology is much smaller (O($log sub 2$ n) versus O(n)), there is an increased
overhead in the processing of the routing and contention management algorithms.
However, for large networks, it is possible that the richer interconnection
topologies may be more attractive.

Functional Units

ilm. IWO% - .

24

One of the components currently missing from SPARO is the set of functional
units. For SPARO to be complete it must be able to perform more than just the
functions required for combinator graph reduction. It needs to have primitive
functions (such as +, -etc) included in it. Two approaches exist for completing
SPARO. The first would be to add a functional unit to each node. The second
would be to have special nodes attached to the network for the sole purpose of
executing functions. We describe the tradeoffs for each approach.

Assigning a functional unit for each processor would provide the best performance.
The ability to perform primitive functions without a large number of data
movements would reduce the time taken by the functions. However, since most
nodes do not, and may never do in the course of program execution, perform the
primitive functions, the addition of functional units is very expensive in terms of
unused "computational power." The addition of functional units to each node would
require a larger optical system and a correspondingly longer cycle time. This waste
of computational power and longer cycle time may be justified if it leads to better
system performance than its alternative.

The second choice for implementation of functional units would be to use special
nodes on the network for performing the primitive functions. This, naturally, would
increase the traffic on the network and increase the time required for function
evaluation. However, this approach would simplify the nodes and would not add a
large amount of seldom-used hardware to the system. The contention of many
requests for a few resources would then have to be addressed. An example of a
potential problem would be more requests for addition than the number of functional
units. Some requests would naturally have to be buffered, but the location and
mechanisms need to be defined with careful regard to optics capabilities and
limitations.

7.3 Extensions to SPARO for Expert System Execution

The current SPARO design is geared towards executing functional languages,
specifically LISP. The design is also based on the execution of functional pimitives
alone. However, since our original goal was the design of optical processor for
expert system execution, we will focus on how SPARO is extended, augmented, or
modified for this purpose. In this subsection, we present an overview of expert
system architectures and show where SPARO fits in.

A gneral expert system is an inference engine that operates on a knowledge base
(KB), which is a knowledge repository for a specific domain. The KB can be in the
form of rules, frames, logic, semantic networks, or procedures, although rule-based
and frame-based expert systems are the most popular. We will therefore discuss
only the rule-based and frame-based systems.

In a typical execution step in the expert system, inference rules from the KB are
applied on facts or assertions that represent the real world. The body of facts is
also called the working memory (WM). In the case of rule-based systems, (where
most of the knowledge is conveniently expressed as experiential heuristics) the
inference mechanism corresponds to the following steps. First, the KB is searched
for rules that apply. This is the match or selection phase. Since multiple rules
may be applicable, a conflict resolution, usually a prioritization, is done to choose
one rule to fire. The chosen rule is executed, that is, the actions or conclusions

25

recommended by the rule are incorporated in the body of facts by addition.
modification, or deletion. If the KB is composed of frames (if complex structural
descriptions are necessary to describe the domain), similar steps are followed. The
difference is in the searching mechanism of the frames that apply. Facts in the
WM and the frames of the KB are usually organized hierarchically as opposed to a
large sequential list of production rules.

There are two ways of viewing the architecture of the inference engine that
comprises the expert system. One view is to treat the expert system as a loosely
coupled system consisting of a hardware platform executing the application program,
referred to as the execution engine for convenience, and the KB and its
management, referred to as the match engine. In the second view the application
program is tightly coupled with the KB. The difference between the views is
mostly conceptual but in terms of efficient implementation this difference may be
significant. In the first case, one could implement the match engine and execution
engine separately, and thereby partition the functionality of the inference engine.
In the second case, one has to incorporate some of the functionality of the KB
management into the execution engine.

When considering an optical implementation of expert systems, we treat the two
views as two possible options. In the first option the inference engine consists of
SPARO and a separate match engne, while in the second option the inference
engine is an extended version of SPARO.

The advantage of designing the match engine is obvious. Parallel associative
optical memories can be used to implement the match phase. This w'-d speed up
the match phase, a typical bottleneck in rule-based expert systems. Such an
implementation would also provide a significant advantage over electronic match
engines because of the possible parallelism. In the second type of implementation,
where the match is not implemented separately and the KB is part of the SPARO
optical plane, associative searches cannot be used as effectively. The second type
of implementation appears more appropriate for highly structured KBs such as those
using frames where associative searches are not usually carried out. One must
therefore conclude that a separate execution-match implementation is better for
rule-based KBs, while the single inference engine model appears better for highly
structured KBs.
The two approaches to expert system architectures, however, are not as different
as it may seem; there are cases where the first implementation may be used for
non-rule-based KBs. The degree of parallelism available during the searching of
data in the KB depends on the structure of the data in the KB. Rule-based
systems are not the only ones that allow for parallel searches of their KBs. In
practice [131, frame-based systems, such as the KEE commercial expert-system
building tool, allow production rules to be stored within and activated from frames
to do inference. Similarly, rule-based systems commonly incorporate frame-like
structures to facilitate the representation of large amounts of factual information.
Thus an associative search of the KB may be required in either type of expert
system. Furthermore, if frames are structured in a hierarchy based on a certain
categorization, then each category could be searched associatively for the
appropiate category. Such a nested associative search can still speed up the access
of frames in a KB. In short, there is ample scope for using the executiom-match
implementation even for non-rule-based expert systems.

'!!*

26

While a separate match and execution units in the inference engines exposes
parallelism during the match phase of execution, such an architecture has certain
drawbacks. Inferencing in an expert system can use either forward chaining or
backward chaining. In forward chaining, the firing of a rule (the discussion will be
limited to rule-based KBs) will change the state of the WM and cause other rules to
fire, and so on. In backward chainin#, the goal to be met is translated into
subgoals to be met, and so on, as specified by the rules. A rule is selected for
firing on the basis of its consequent (conclusion or action dictated by the rule)
rather than on the basis of its antecedent (conditions of the rule). Since a single
rule is usually selected for firing at each stage, a failure to satisfy the goal would
require backtracking to select a different sequence of rules. Backtracking that
requires some form of stack manipulation is difficult in optics as seen earlier in
the context of choosing the symbolic processing language. It would thus appear
that optical symbolic processors are better suited for forward-chaiming expert
systems. Since diagnostic-type problems typically use backward chaining, an expert
system based on forward chaining inferencing alone will not be as efficient in those
domains.

7.4 Execution-Match Inference Engine in Optics

In this subsection we present our architectural view of the expert system that is
based on our earlier work on SPARO. Given how cumbersome it is to build complex
control structures in optics, it is desirable to keep the match as simple as possible.
This implies putting as little functionality as possible in the match stage, and as
much control as possible in the execution stage. A good example of such control
complexity is the conflict resolution stage required in rule-based systems to select
the rule to fire when many rules are possible candidates.

To simplify the match engine architecture we will consider the following structure.
Consider the match to occur on a plane. If rules make up the KB, then each row
on the match optical plane will be assumed to be on one production rule. Each
row is then divided in two parts: the antecedent or the condition that asserts the
rule, and the consequent that describes the conclusions or actions that follows.
The antecedent or the consequent is expressed as a conjunction of clauses. These
clauses could be written as a disjunction of other clauses.

A number of guidelines would be used to simplify the complexity of the optical
matcher. First, all rules will be made equal in length. This implies breaking down
the clauses into conjunctions of the same number of Boolean variables. econd,
each clause in the rule is preferrably an atomic expression, i.e., a clause in a rule
is not composed of other clauses. The implications of these two guidelines is that
the rule memory is inefficiently implemented. The rows will not have the most
compact representation but the associative match process will be very simple.
Third, the conflict resolution that decides the rule to fire should be done in some
simple fashion within the matcher. Otherwise, if the execution engine conducts
the conflict resolution, all rules that could fire will have to be sent to it. Given
the data handling capability of SPARO, this would not be advisable. Since the
matcher will not possess much computing power, a simple scheme such as a 'first
chosen' scheme may be preferred. In this scheme the first rule that is applicable
will be chosen for execution.

8. SUMMARY AND CONCLUSIONS

27

We have developed an architecture (SPARO) for combinator graph reduction that is
targeted to be implemented with emerging optical devices. We have shown that the
constraints imposed by optical devices leads to a computer architecture with a very
different configuration than those designed with electronic components.

The constraints imposed by optical devices and structures lead to a physically non-
distributed architecture, which is partitioned functionally into a processor, a
network processor, and a communications network. The nodes of this parallel
architecture are fine-grained and employ optical memory in the form of registers to
avoid the need for address decoding. The memory is not separated from the
processing elements that implement combinator graph reduction. This has the
advantage that the parallelism of a truly non-von Neumann processor is available.

In SPARO, the combinator graph is directly mapped onto the processor plane; each
node of the processor contains one node of the combinator graph. The processor
nodes perform the operations required for combinator graph reduction by sending
messages that contain both information on the combinator graph to be modified and
the corresponding instructions that need to be executed. This direct mapping,
while exposing the maximum parallelism inherent in the problem, avoids the need for
separate memory and processor. However, using a direct mapping means that
SPARO may not efficiently use all its resources. Further, investigation of the
processor operation is required to see if the use of fine-grained optical structures
exposes enough parallelism to overcome the inefficiencies of the direct mapping of
the combinator graph onto a processor.

We have shown that recursive and iterative control structures can be implemented
as part of an optical computer. These basic control structures are present in
almost all real symbolic processing application programs and must be available to
the programmer. SPARO includes these as a basic part of its architecture without
the use of stacks or specialized memory to manage the context switching. It
achieves this by copying portions of the combinator graph. As with the direct
mapping, this implementation needs futher investigation to determine if it is a
viable approach for control structures.

Symbolic substitution and gate interconnects are the basic optical techniques
required to implement SPARO. Symbolic substitution is used for control flow in
each node and gated interconnects are used to move the data between registers and
between nodes. These optical systems where chosen since they offer the greatest
flexibility and are inherently digital. Examination of the number of symbolic
substitution rules and the complexity of the interconnects will govern the cycle
times that are possible for an optical computer such as SPARO. This in turn will
determine if the use of fine-grained digital optical computers is a viable approach
to optical computing.

28

REFERENCES

[11 Aloke Guha, Raja Ramnarayan, and Matthew Derstine, "Architectural Issues in
Designing Symbolic Processors in Optics," to appear in the Proceedings, 14th
International Symposium on Computer Architecture, June, 1987.

[2] Alexander A. Sawchuk and Timothy C. Strand, "Digital Optical Computing,"
Proceedings of the IEEE, Vol. 72, No. 7, July '84, pp. 758 - 779.

[3] Karl-Heinz Brenner, Alan Huang, Norbert Streibl, "Digital Optical Computing
with Symbolic Substitution," Applied Optics, Vol. 25, September 1986, pp. 3054
- 3060.

[4] M. J. Murdocca, "Digital Optical Computing with One-Rule Cellular Automata,"
Tech. Report, AT&T Bell Labs, 1986.

[5] Rodney A. Schmidt and W. Thomas Cathey, "Optical Representations for
Artificial Intelligence Problems," SPIE Vol. 625, Optical Computing (1986) pp.
226 - 233.

[6] Cardinal Ward and James Kottas, "Hybrid Optical Inference Machines:
Architectural Considerations," Applied Optics, Vol. 25, March 1986, pp. 940-
947.

[7] P. W. Smith and W. J. Tomlinson, "Bistable Optical Devices promise
Subpicosecond Switching," IEEE Spectrum, Vol. 18, June 1981, pp. 26 - 33

[8] David Turner, "A New Implementation Technique for Applicative Languages,"

Software-Practice and Experience, Vol. 9, 1979, pp. 31 - 49.

[9] W. Daniel Hillis, The Connection Machine, MIT Press, 1985.

[10] Chris Clack and Simon L Peyton Jones, "The Four-Stroke Reduction Engine,"
Proc. of the 1986 ACM Symposium on LISP and Functional Languages, pp. 220
- 232.

[11] David Turner, "Combinator Reduction Machines," Proc. of the International
Workshop on High-Level Computer Architecture, University of Maryland, May
1984, pp. 5.26 -5.38.

[12] Kenneth R. Traub, "An Abstract Parallel Graph Reduction Machine," Proc. of
the 12th International Symposium on Computer Architecture, June 1985.

[13] Communications of the ACM, Special Issue on Architectures for Knowledge-
Based Systems, Vol. 28, No. 9, September 1985.

[14] S. R. Vegdahl, "A Survey of Proposed Architectures for the Execution of
Functional Languages," IEEE Transactions on Computers, December 1984, pp.
1050 - 1071.

[15] M. Derstine, "Fundamental Physical Limits of Generalized Optical
Interconnects," Honeywell Tech. Report, 1986.

lp

29

APPENDIX: MACRO-INSTRUCTIONS

This appendix provides a description of the macro-instructions mentioned in Section
5. We first outline the additional flags and fields required for combinator and
function reduction. The first few macro-instructions, sendupl to S3, are common to
the set of macro-instructions that are described thereafter. All macros are written
in PASCAL-like statements, especially the conditional statements. This has been
done purely for readability, and should not be interpreted to be indicative of the
implementation. Note that statements between asterisks (*) represent comments.

Additional processor fields and flags (1-bit fields) required for reduction:

Type fields:

1) node .type = 'regular, &, leaf }
2) combhjatorlevel = { 1,2,3 }

Flags:

1) 2_parents_present
2) 2nd apply recvd
3) doiig TS
4) awaitig arity incr replies (* used when combinator level = 2 *)
5) awaiting-eval-completes (* used for evaluating binair funcs)

Data Fields:

1) temp (holds the pointer to 'x' in the top node of the S mutation *).fi
2) func (used for indicating functions when evaluating unary or binary

functions *)

Flags 3, 4, and 5 can be merged into a single flag, while
a single data field can be used for both data fields 1 and 2.

Types of atomic data:

CombOp set:
combfinators - S, B, C, K, I
unary & binary operators

Value set:
an)'atom not in above set.

Three common message constructs are used by many macro-instructions. Note that

the message fields are assigned only when the send instruction is invoked.

msg normal:

out buff/instr <- eval complete
outbuff/data <- RC-

30

msg_mutargl:

out buff/instr <- S/B/C/K/binaryfunc/1
out-buff/data <- RC

msg-mut_arg2:

out buff/instr <- S/B/C/2
out-buff/data1<- LC
outbuff/data2 <- RC

The following is a list of macro-routines that would be necessary for graph
reduction. Only combinator and function evaluations are considered. In case of
function evaluation, the generic procedures to execute both unary and binary
functions are provided.

Actions (macro-routines) taken upon completion of evaluation of a node:

sendupl: (* for a node having 1 or 2 parents: used to send messages to parent

node and update state of the current node *)

send msg to P1 (* msg is one of the three messages described above")

if not 2pp
then

load State <- dealloc
else

if 2nd applyrecvd
then

send msg to P2
load State <- dealloc

else
load State <- evd

sendup2: (* for a node known to have 2 parents; used in increasing the arity of
arguments f and g in S, B, and C combinators)

send msg to P1
if 2nd apply recvd
then -

send msg to P2
load State <- dealloc

else
load State <- evd

inbuff/instr: arityincr (* used when the number of parents of a node has
to be increased)

31

State

if 2jarentsresent
then

send
out buff/dest < -?
out-buff/instr < - and node alloc

else out-buff/data < - in_5uff/source
load 2_parentsjresent <- true
send

out buff /dest < - in buff/source
out-buff/instr < - arrty incr reply
out-buff/data < - nodF id -

in-buff/instr: and node alloc (* used for & node allocation when the number
of parents of a node is increased (arity
increase))

Status :free

load_- I RC < - in,_buff/source, node typ -W

2 arntspreent -tue,(* load 1=iparallel'

sendY - re
out buff/dest <- in buff/data 1
ou-buff/instr <- aiym el
out-buff/data <- iiff/source

inbf/intr: arity incr reply * occurs at the node which sent out the arity
increase message S

State evg

case
(combinator level - 1):

load RC< - in buff/suc
sendup2: - /sue

(combinator level =2):
if (in buff/data =LC)

tfin load LC < - in buff/source
else load RC < - in -buff/source

if awaitingarityincr-Feplies
then

load awaiting_,arity incr replies < -false
else

32

sendup2:
(combinator level = 3):

load temip <- re-buff/source
send

out buff/dest <- ?
out-buff/instr <- S3
out-buff/datal <- RC
out-buff/data2 <- temp

in-buff/instr: apply (* for regular and & nodes where message comes in after
evaluation is complete *)

State : evd

send msg to P2
load State <- dealloc

in buff/instr: apply (* for regular and & nodes where the second apply arrives
while in the evaluating state)

State : evg

load P2 <- in buff/source
load 2_parenipresent <- true

in buff/instr: apply kill (for re.glar and & nodes where an apply kill
arrives while in the evaluating state*)

State :evg

load 2.parents_present <- false (S 2_parentspresent must have been true)

in-buff/instr : applykill (for & nodes where an applykill arrives after the
evaluation is complete)

State : evd

if (RC = ptr)
then send apply kill to RC

if (LC = ptr) (* i.e. -nsg to be sent is msg mut arg2)
send apply kill to LC

load State < -dealloc
-- i----- O- i--- i------ lO00-- I I- illl-- i lllli- -- ill -- 0 - 0

WL A

33

in-buff/instr: S3 (this creates a new node setting LC, RC to incoming values,
and sends a reply back to the parent node)

Status • free

load P1 <- in buff/source
load II LC <-Tin buff/datal, RC <- in buff/data2 send

o7ut buff/dest <- Pi
out-buff/instr <- S3_reply

in-buff/instr apply (* for all nodes receiving applies)

State nev

load P1 <- in buff/dest
case node type of:-

regularnode:
send

out buff/dest <- LC
out-buff/instr <- apply

load State <- evg
& node:

send
out buff/dest <- RC
out-buff/instr <- apply

load - State <- evg
leaf node:

load msg < -msg normal
sendup1

in-buff/instr: S3with apply (creates a new node setting LC, RC to incoming
values; assumes that an apply instruction was
received)

Status : free

load P1 <- in buff/source
load I j LC <- n buff/datal, RC <- inbuff/data2 send

o7ut buff/dest <- EC
out-buff/instr <- apply

load - State <- evg

in-buff/instr : apply kill (* to deallocate a leaf node 5)

State : evd

34

if 2yparentsjpresent
then

load 2_parentsjpresent <-false
else

load State <-dealloc

in-buff/instr: eval complete (* for a regular node receiving a completion
message)

State evg

case in buff/data in
CoiibOp set:

load EC < -in buff/data
case LCof-

unary_func:
~ to _evalngunary-func

S/B7C/K/binary func:
goto combi

goto _I
Value set:

if Tn buff/source in functional unit setfnioevlad
the~i- -t (fntineautdS

load RC < -in buff/data
load node typi < - leaf
load rnsg < - msg normal
sendupi.

else
if awaiting evalcopes

then - copee
load LC < -in buff/data
load awaitingeval completes < -false

else
load RC <- in buff/dt
send- /dt

out buff/dest <- functional-unit
out-buff/instr <- func

out buff/datal 1 <- LC
outlbuff/data <- RC

-evaing_unary_func (for evaluating an unary function subgraph *

load func < - in buff/datal
load LC <-nil

send
out buff/dest < - RC
out-buff/instr < - apply

load State < - evg

35

comb 1 (* actions taken at level 1 of a combinator saibgraph)

load combinator level < -1
load rnsg < - msgmut arg 1

sending messages)
if not 2_parentsjpresent

then:
do send rnsg to P1

else:
send

out buff/dest < - RC
out-huff/instr <- arityjincr

(setting states *)
if not 2_arentspresent

then:
load State < - dealloc

else:
load State < - evg

_I (' actions for I combinator reduction)

load node-type < -'W
send

out buff/dest < - RC
out-buff/instr < - apply

load Slate < - evg

in buff/instr: K1 (* second instruction in sequence for K combinator in a regular
node at combinator-level 2)

State :evg

send
out buff/dest < - RC
out-buif/instr < - apply kl

load RC < - inbuff/datal
goto -I

in-buff/instr : S/B/C/i1 (* first instruction in sequence for S, B, C combinator
reduction in regular node at combinator-level 2'

State :evg

load LC < -in buff/data 1
goto conib2

36

comb2 (* actions taken at level 1 of a combinator subgraph)

load combinator level < - 2
load rnsg < - msg-mut-arg2

load awaiting-arity_incr-replies < -true

(* sending messages *)
if not 22parents~resent

then:
send msg to P1

else:
send

out buff/dest < - LC
out-buff/instr < - arity-incr

send
out buff/dest < - RC
out-buff/instr < - arity-incr

(setting states '
if not 2pp,

then:
load State < - dealloc

else:
load State < - evg

in buff/instr : binary_ fundl (* first instruction in sequence for evaluating a
binary function in a regular node at top level of

S tacem
b i a to r s u b g r a p h)

load func < - in buff/instr
load LC < - in-Buff/data, 1

load awaiting eval completes < -true
send

out buff/dest <- LC
out-buff/instr < - apply

send
out buff/dest <- RC
out-buff/instr < - apply

load State < - evg

in-buff/instr: S/B/C/2 (* second instruction in sequence for S, B, C combinator
reduction in regular node at combinator-level 3 '

State :evg

37

load combinator level <- 3
load -S 1 I LC < - inbuff/datal1, RIC < - in buff/data2, te mp < - RIC.
case32

load doingS < - true
send

out buff/dest <- temp

case B2: out-buff/instr < - arty incr
send

out buff /dest <-?
out-buff/instr <- S3 (to allocate new node, and set LC and RC)
out buff/datal < - RC
out-buff/data2 < - temp

case C2:
send

out buff /dest <-?
out-buff/instr <- S3 with apply (~same as S3 but also evaluate

out buff/datal < - LC L

out-huff/data2 <-temp

in buff/instr : 53_reply (response to S3 in a regular node at combinator level 3

State evg

load RIC < -in buff/source
if doing S (* setearlier)

theni
send

out buff/dest <-?
out-buff/instr <- S3 with apply
out buff/datal < - LC
out-buff/data2 < - temnp

else (* doihg B H
send-

out buff/dest < - LC
outfbuff/instr < - apply

in-buff/instr :any instruction other than apply (only for & nodes ~

State :evg

(latch incoming message ~
case in buff/instr of:

evaf-complete: (* i.e. incoming data =atom ~
load RC < - in buff/data 1
load msg < - msg normal
load node type Z- leaf

- ~ or

38

sendupl:
S/B/C/K/binary func/1:

load RC < in buff/datal
goto comb 1

S/B/C/2 :
load LC <- in buff/datal, RC <- in buff/data2 goto comb2

-- - - - - - ---- - - - - - - -- - - - - - - -- - - - - - - -

a)

23 1n 3n 1n

12 3

2 -4

3 4 5

4

5 _j-

Figure 3.1 a) Adjacency list representatmo of a graph
b) Sig] combinator graph reduction

AB

B
&

p
p

Figure 3.2 Using '& nodes to generate binary graphs

Destination Source jInstruction Data 1 Data2

Figure 4.2 Message format for SPARO

State Left Parent
Alloc LC Type RC Type Right Parent

Instruction Bits LC RC

Figure 4.1 Row formal for SPARO

1AMM

LM

Sfgx ->'fx(gx)

Figure 5.1 Combinator graph and reduction for'S'

P

bH Hi H2 Hk -1H

Figure 5.2 Expanding a recursive call

I +LLI
IPRj

Cliii _ .cm

