

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

REPRODUCED AT GOVERNMENT EXPENSE •

1

• • •

.

THE FILE MARY (2)

Inclassified Ib. AlsTRCTIVE MARKINGS Unclassified None SKOWTY CLASSIFICATION AUTHORITY PARTINETION (AVAILABILITY OF REPORT Approved for public release and sale. Distribution unlimited. E. DECLASSIFICATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) E. RAME OF PREVORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) California Institute of Technology B. OFFICE SYMBOL (Praphicable) J. MONITORING ORGANIZATION OFFICE OF Naval Research (Praphicable) None S. MONITORING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION (Praphicable) J. MONITORING ORGANIZATION (Praphicable) ADDRESS (CP, Stee, and ZP Code) (California Institute of Technology Pasadena, CA 91125 The ADDRESS (CP, Stee, and ZP Code) (Chemistry Program BOOMS, QUINCY Street (Chemistry Program BOOMS, QUINCY Street Chemistry Program Recent Developments in Electron Transfer Reactions PROJECT NUMBERS (PROJECT NO. (NO.C NO. (NO.C NO. (NO.C NO. (NO.C NO. (NO.C NO. (NO.C NO. (NO.C NO. (NO.C NO. (NO. (NO. (NO. (NO. (NO. (NO. (NO. (AD-A181 87		MENTATION	PAGE		
Unclassified None BACKWY CASHFARDON AUTHORITY 3. DBTRBUTON / AVAILABUTY OF REPORT BE SCUNY CASHFARDON AUTHORITY 3. DBTRBUTON / AVAILABUTY OF REPORT BE SCUNY CASHFARDON AUTHORITY 3. DBTRBUTON / AVAILABUTY OF REPORT BE DECASHFARDON / DOWNGRADING SCHEDULE DISTRBUTON / AVAILABUTY OF REPORT ADDRESS (DR) SERV. AND ZE COMP S. DOFICE SYMBOL California Institute GD OFFICE SYMBOL OT Technology TA MAME OF MONITORING GRANIZATION K ADORESS (DR), Sere. and ZP Code) Office of Naval Research Moves Laboratory of Chemical Physics Chemistry Program Pasadena, CA 9125 DB. OFFICE SYMBOL Make OF FUNDING FUNDON (SONSORING ORGANIZATION REPORT NUMBER DE DEFICE SYMBOL Office of Naval Research B. OFFICE SYMBOL K ADORESS (DR), Sere. and ZP Code) DE OFFICE SYMBOL Office of Naval Research B. OFFICE SYMBOL K ADORESS (DR), Sere. and ZP Code) Office of Naval Research K ADORESS (DR), Sere. and ZP Code) OFFICE OF NAVAL RESEARCH BUD MC STREE BUD MC STREE BUD MC STREE BUD MC STREE	ORT		15 RESTRICTIVE	MARKINGS		
A CONTROLING ADDING SCHEDULE A DECOMPOSED DUDIC TRADECOMPT ADDIADULT ADDIADUL	classified		None			
BB DECASSIFICATION FORMATION SCREEDULE Distribution unlimited. L PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) Technical Report No. 2 S. MANE OF PROCENTING ORGANIZATION (or applicable) Of Technology See Constraints in the of the office symbol Of Technology See Constraints in the of the office symbol Of Technology See Constraints in the office of Naval Research K address (Gry, Sare, and ZP Code) See Constraints in the office of Naval Research Name Of Naval Research Bb. Office symbol Office of Naval Research Bb. Office symbol Office of Naval Research Bb. Office symbol NO0014-87-K-0064 In stitute office of			Approved	for public	release and	sale.
A PHFORMUNG ORGANIZATION REPORT NUMBER(S) Technical Report No. 2 S. MAME OF PREVENTING ORGANIZATION (California Institute of Technology (California Institect Of Techotogy (California Institute Of Technology (California	CLASSIFICATION / DOWNGRADING SCHEDULE		Distribut	tion unlimi	ted.	
Technical Report No. 2 An MARE OF PERCENTING ORGANIZATION California Institute of Technology 66 OFFICE SYMBOL (# applicable) 7*. NAME OF MONITORING ORGANIZATION Office of Naval Research C ADDRESS (Gry, Ster, and ZP Code) Noves Laboratory of Chemical Physics California Institute of Technology Pasadena, CA 91125 7*. ADDRESS (Gry, Ster, and ZP Code) Chemistry Program Office of Naval Research B: MAME OF FUNDING (SPONSORING ORGANIZATION OFFICE OF Naval Research 8*. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-87-K-0064 Chemistry Program BOD N. Quincy Street API ington, Virginia 22217 8*. ADDRESS (Gry, Ster, and ZP Code) (MORE CENTRONICABLE) 10. SOURCE OF FUNDING NUMBERS NO0014-87-K-0064 R ADTINGTON Prepared for Publication in Electron Transfer Reactions 10. SOURCE OF REPORT (rear, Month, Day) 15. PAGE COUNT Nov 29 _ 1967 12 PRESONAL AUTHOR(S) R. A. Marcus 13b. TIME COVERED From 12/1/86 To 5/30/81 14. DATE OF REPORT (rear, Month, Day) 15. PAGE COUNT Nay 29 _ 1967 12 PRESONAL AUTHOR(S) R. A. Marcus 11 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 12 PRESONAL AUTHOR(S) R. A. Marcus 11 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 13 SUBJECT (Continue on reverse if necessary and identify by block number) 15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ASTIGACT (Continue on reverse if necessary and	ORMING ORGANIZATION REPORT NUMBER(S)		S. MONITORING	ORGANIZATION	REPORT NUMBER	S)
	hnical Report No. 2					
Laitornia institute (* appricant) Office of Naval Research K. ADDRESS (Chy, State, and ZP Code) Noyes Laboratory of Chemical Physics Chemistry Program California Institute of Technology Arlington, Virginia 22217 NAME OF VIDONO(SPONSORING Bb. OFFICE SYMBOL PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER OMEGANZATON Office of Naval Research PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER OMEGANZATON Bb. OFFICE SYMBOL PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER OFfice of Naval Research NO0014-87-K-0064 NO0014-87-K-0064 NO0014-87-K-0064 NO0014-87-K-0064 NO0014-87-K-0064 ADDRESS (Chy, Steret NO0014-87-K-0064 NO0014-87-K-0064 ADDRESS (Chy, Steret NO0014-87-K-0064 NO004-87-K-0064 ADDRESS (Chy, Steret NO0014-87-K-0064 NO004-87-K-0064 ADDRESS (Chy, Steret NO0014-87-K-0064 NO004-87-K-0064 ADDRESS (Chy, Steret NO NO0014-87-K-0064 NO004-87-K-0064 ADDRESS (Chy, Steret NO NO ADRESS (Chy, Steret NO ATINGTON, Virginia 22217 NO NO ATINGKON NO 1. ITHE (Andued Security Classification) Rece	ME OF PERFORMING ORGANIZATION 6b.	OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORG		
L ADDRESS (CR), State, and ZP Code) Noves Laboratory of Chemical Physics California Institute of Technology Pasadena, CA 91125 NAME OF FUNDING (SPONSONING GREANZATON NAME OF FUNDING (SPONSONING GREANZATON OPA AND RESS (CR), State, and ZP Code) OPA AND RESS (CR), VIGENS (CR), V	Technology	in ebbuceoia)	Office of	[•] Naval Res	earch	
Noves Laboratory of Chemical Physics California Institute of Technology Chemistry Program Arlington, Virginia 22217 Is MAME OF FUNDING (SPONSORING ORGANIZATOM OFFICE SYMBOL OFFICE SYMBOL ORGANIZATOM OFFICE SYMBOL OFFICE SYMBOL ORGANIZATOM OFFICE OF Naval Research 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERS (NO0014-87-K-0064 Is SOURCE OF FUNDING NUMBERS Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217 10. SOURCE OF FUNDING NUMBERS (NO. C. TASK 4133004/accessin 02 In Ington, Virginia 22217 In Source OF FUNDING NUMBERS (NO. C. TASK 4133004/accessin 02 It for the Properties in Electron Transfer Reactions 2. PREONAL AUTHOR(S) R. A. Marcus B. A. Marcus B. YPE OF REPORT Technical Report I'B. TIME COVERED FROM 12/1/86 to 5/30/81 IA DATE OF REPORT (Year, Month, Day) I'S PRECENTIARY NOTATION Prepared for Publication in Nouveau J. Chimte PRELOF GROUP I'B. SUBJECT/TERMS (Continue on reverse if necessary and identify by block number) PRELOF Contracts and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes. Construction/AuxalLability of AdSTRACT 20 DISTINUTION/AVALABILITY OF AdSTRACT 21 AdSTRACT SECURITY CLASSIFICATION.	DRESS (City, State, and ZIP Code)	······································	7b. ADDRESS (Cit	y, State, and Zil	P Code)	
Arlington, Virginia 22217 Chemistry Program BOO N. Quincy Street Arlington, Virginia 22217 I. Title Golded Security Classification Recent Developments in Electron Transfer Reactions Recent Developments in Electron Transfer Reactions PROGRAM Prepared for Publication in Nouveau J. Chipte Cosati Codes IIII SUBJECT TEAMS (Continue on reverse if necessary and identify by block number) Electron transfer proceeses. Astron Sub-GROUP Electron transfer reactions are reviewed. The more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes.	yes Laboratory of Chemical Phys lifernia Institute of Technolog	ics	Chemistry	Program		
	sadena, CA 91125	У	Arlington	, Virginia	22217	
OTITICE OF Naval Research IV appricate() NO0014-87-K-0064 L ADDRESS (Ciry, State, and ZP Code) Chemistry Program B800 N. Quincy Street Arlington, Virginia 22217 IN ONE CF FUNDING NUMBERS PROGRAM PROJECT An Harcus PROGRAM Arctists PROJECT 1. Title (Include Security Classification) Recent Developments in Electron Transfer Reactions 2. PERSONAL AUTHOR(S) R. A. Marcus R. A. Marcus 3. TYPE OF REPORT 13b. TIME COVERED FROM 12/1/86, TO 5/30/81 14. DATE OF REPORT (Yeer, Month, Day) 15. PAGE COUNT 3. TYPE OF REPORT 13b. TIME COVERED FROM 12/1/86, TO 5/30/81 14. DATE OF REPORT (Yeer, Month, Day) 15. PAGE COUNT 3. TYPE OF REPORT 13b. TIME COVERED FROM 12/1/86, TO 5/30/81 14. DATE OF REPORT (Yeer, Month, Day) 15. PAGE COUNT 3. TYPE OF REPORT 13b. TIME COVERED FROM 12/1/86, TO 5/30/81 14. DATE OF REPORT (Yeer, Month, Day) 15. PAGE COUNT 3. TYPE OF REPORT 13b. TIME COVERED FROM 12/1/86, TO 5/30/81 14. DATE OF REPORT (Yeer, Month, Day) 15. PAGE COUNT 7 COSATI CODES 18. SUBJECT/TERMS (Continue on reverse if necessary and identify by block number) 15. SUBJECT/TERMS (Continue on reverse if necessary and identify by block number) 9. ASTRACT (Continue on reverse if necessary and identify by block number) Fractions in electron transf	ME OF FUNDING / SPONSORING 8b. (OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT I	DENTIFICATION NU	IMBER
L ADDRESS (City, Steek, and ZIP Code) Chemistry Program BOD N. Quincy Street An ington, Virginia 22217 1. Title (Include Security Classification) Recent Developments in Electron Transfer Reactions 2. PERSONAL AUTHOR(S) R. A. Marcus 3. YVE OF REPORT 13. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION Prepared for Publication in Nouveau J. ChipHe 7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15. Page COUNT 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Electron transfer, proceeses. 9. ADSTRACT (Continue on reverse if necessary and identify by block number) Earlier results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION.	fice of Naval Research	r appricable)	N00014-87	-K-0064		
Chemistry Program BOO N. Quincy Street Anlington, Virginia 22217 1. TIFLE (Include Security Classification) Recent Developments in Electron Transfer Reactions 2. PERSONAL AUTHOR(S) R. A. Marcus 3a. Type or Report Technical Report 13b. TIME COVERED PROM 12/1/86 TO 5/30/B1 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT FROM 12/1/86 TO 5/30/B1 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT FROM 12/1/86 TO 5/30/B1 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT FROM 12/1/86 TO 5/30/B1 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT FROM 12/1/86 TO 5/30/B1 16. SUBPLEMENTARY NOTATION Prepared for Publication in Nouveau J. Chimte 7. COSATI CODES FIELD GROUP SUB-GROUP Electron transfer, proceeses. Fraction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes. 7. Authority of ABSTRACT 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT EURICE CONTURES 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT EURICE CONTURES 21. ABSTRACT SECURITY CLASSIFICATION. 21. ABSTRACT SECURITY CLASSIFICATION.	DRESS (City, State, and ZIP Code)		10 SOURCE OF F	UNDING NUMBE	RS	
BUDY N. QUINCY STREET Control of the control of th	emistry Program		PROGRAM	PROJECT	TASK	WORK UNIT
1. TITLE (Include Security Classification) Recent Developments in Electron Transfer Reactions 2. PERSONAL AUTHOR(S) R. A. Marcus 3a. TYPE OF REPORT Technical Report 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Burger Contract FIELD Image: Continue on reverse if necessary and identify by block numbers FIELD GROUP 11. SUBJECT TERMS (Continue on reverse if necessary and identify by block numbers) FIELD GROUP 11. SUBJECT TERMS (Continue on reverse if necessary and identify by block numbers) Earlier results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes. Keywer div DICC Source String transfer Stecurity CLASSIFICATION	lington, Virginia 22217				02	
Recent Developments in Electron Transfer Reactions 2. PERSONAL AUTHOR(S) R. A. Marcus 3a. TYPE OF REPORT 13b. TIME COVERED FROM 12/1/86. TO 5/30/81 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT FREMONAL AUTHOR(S) R. A. Marcus 13b. TIME COVERED FROM 12/1/86. TO 5/30/81 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT FREED 16. SUPPLEMENTARY NOTATION Prepared for Publication in Nouveau J. Chiptle 7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Electron transfer, proceeses. FIELD GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Earlier results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes. (May 12 ABSTRACT SECURITY CLASSIFICATION 21 ABSTRACT SECURITY CLASSIFICATION (DOISTRIBUTION / AVAILABILITY OF ABSTRACT (DOISTRIBUTION / AVAILABILITY OF ABSTRACT	LE (Include Security Classification)					
2 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number, FIELD GROUP SUB-GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number, FIELD GROUP SUB-GROUP Electron transfer processes. Fraction, rates 9. ASTTACT (Continue on reverse if necessary and identify by block number) Earlier results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes. (Keywe choic) 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 21 ABSTRACT SECURITY CLASSIFICATION	PLEMENTARY NOTATION repared for Publication in Nouv	<u>i to 5/30/87</u> eau J. Chim	May 29 14	987	, UGY) IS. PAGE	
FIELD GROUP SUB-GROUP Electron transfer processes. Feaction values. Field transfer results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes. Ight emission from metal electrodes. Keywe chi Volume JUN 2 4 1987 20 Distribution/Availability of ABSTRACT Electro transfer security classification. End Substract security classification.	COSATI CODES 18.	SUBJECT TERMS (Continue on reverse	if necessary ar	nd identify by bloc	k number
Electron transfer, processes. reaction, rates, satistical (Continue on reverse if necessary and identify by block number) Earlier results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes. Keyward DTIC JUN 2 4 1987 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNUMITED SAME AS RET FIDTIC USERS	LD' GROUP SUB-GROUP	Electron to	ancfor mooo	9	1	
9. ASTRACT (Continue on reverse if necessary and identify by block number) Earlier results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes. (Keywa do) DIG DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIEDUNUMITED SAME AS RET DISTRICT USERS 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIEDUNUMITED SAME AS RET		feac-4, ent	ansier proces	585.	Ę	$\langle \rangle$
Earlier results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes.	TRACT (Continue on reverse if necessary and i	dentify by block r	number)			
Earlier results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes. (Keywe etc.) DTIC ELECTE JUN 2 4 1987 E MONCLASSIFIED/UNLIMITED SAME AS RPT FLOTIC USERS 21 ABSTRACT SECURITY CLASSIFICATION						
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 21 UNCLASSIFIED/UNLIMITED SAME AS RPT DISCUSSES	riler results and more recent of viewed. The more recent result fects on reaction rates, solver ght emission from metal electro	levelopments is include in it dynamics, ides. (key	in electron nverted behav early steps	transfer r vior, elect s in photos	eactions are ronic orient ynthesis, an D ELE	ation d TIC CTE
228 NAME OF RESPONSIBLE INDIVIDUAL 2226 TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	TRIBUTION / AVAILABILITY OF ABSTRACT INCLASSIFIED/UNLIMITED SAME AS RPT. AME OF RESPONSIBLE INDIVIDUAL	DTIC USERS	21 ABSTRACT SE Unclassi 225 TELEPHONE (CURITY CLASSIFI fied Include Area Cod	CATION (a) 22c. OFFICE SY	4 1987 U
K. A. Marcus 818 356-6566 MC 127-72	L. A. Marcus		818 356-	6566	<u>MC 127-</u>	.72

OFFICE OF NAVAL RESEARCH

Contract N00014-87-K-0064

R&T Code 4133004---02

Technical Report No. 2

Recent Developments in ElectronTransfer Reactions

by

R.A. Marcus

Prepared for Publication

in

Nouveau J. Chimie

California Institute of Technology Noyes Laboratory of Chemical Physics Pasadena, California 91125

29 May 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government

* This document has been approved for public release and sale; its distribution is unlimited

87 6 23 022

RECENT DEVELOPMENTS IN ELECTRON TRANSFER REACTIONS

Marcus, Rudolph, A. Noyes Laboratory of Chemical Physics[†] California Institute of Technology Pasadena, California 91125 USA

<u>Abstract</u>

Earlier results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes

[†]Contribution No. 7484

Acces	sion For	
NTIS	GRA&I	
DTIC	TAB	1
Unanr	ounced	
Just	fication_	
Dist: Ava:	lability (Codes
	Avail and	/or
Dist	Special	
1-1		
V1 - 1	1 1	

Introduction

Research on electron transfer reactions in solution and at electrodes is one of current considerable activity. In this lecture, several aspects of electron transfer theory and experimental tests of its predictions are first summarized.¹ Some recent developments are then reviewed. They include the inverted effect, ^{1,2} electronic orientation effects, ^{3,4} solvent dynamical effects, ⁵⁻⁹ the mechanism of some primary steps in the bacterial photosynthetic reaction centers (superexchange vs. intermediate)^{10,11}, a possible cause of their high efficiency, and light emission from metal electrodes due to electron transfer.^{12,13}

Summary of Earlier Work

In the theory of electron transfer reactions factors such as the changes in molecular structure of the reactants (e.g., changes in bond lengths accompanying the charge transfer between the reactants), changes in solvation of the reactants accompanying the charge transfer, the effect of the driving force of the reaction – ΔG° ("standard" free energy of reaction in the prevailing medium), and the work required to bring the reactants together and to separate the products, are treated.¹ An electronic factor which may, in some cases, cause the reaction to be "nonadiabatic" is also relevant.¹

Detailed theoretical expressions based on these effects have been derived for the rate constant of bimolecular or intramolecular electron transfers in solution and for electron transfers between a reactant and an electrode. Since we have described them in a recent review,¹ we omit a detailed description in the written version of this lecture. We merely note, for clarity in some of the following comments, that the free energy barrier for the reaction ΔG^* , which appears in the expression for the rate constant k, is given in terms of the reorganization quantity λ and ΔG° by eq. 1. (We have neglected the work terms¹ for notational brevity in this presentation.):

$$\Delta G^* = \frac{1}{4} \lambda \left(1 + \Delta G^o / \lambda \right)^2 \tag{1}$$

In the case of an electrode reaction, a similar equation arises, but with ΔG° replaced by an activation overpotential and with a λ which is at least one-half the λ for the corresponding reaction in solution, the value depending on the typical distance between the reacting ion and the electrode in the transition state.¹ An expression for these λ 's is given in ref. 1.

The resulting theoretical expressions for the homogeneous and electrochemical rate constants led to a variety of predictions, which have been the subject of many experimental tests.¹ The predictions include the following:¹

(1) the rate constant k_{12} for reaction between two different redox systems is related to the rate constants of the self-exchange reactions of each of the systems, k_{11} and k_{22} , and to the equilibrium constant K_{12} by the relation $k_{12} = (k_{11} k_{22} K_{12} f_{12})^{\ddagger}$, where f_{12} is a known function of the k_{ii} 's and K_{12} ; (2) the rate constant k of a series of similar reactions (*i.e.*, those possessing a similar reorganization term λ) depends on the standard free energy of reaction ΔG° or, in the case of an electrode reaction, on the activation overpotential ne($E - E^{*}_{o}$), according to the relation RT d ln k/d($-\Delta G^{\circ}$) = 0.5(1 + $\Delta G^{\circ}/\lambda$); (3) there is a dependence of ln k on the dielectric properties of the solvent $(D_{op}^{-1} - D_{s}^{-1})$ with a known slope, in the absence of specific solvent-solute interactions;

(4) the rate constant for the electrochemical exchange current at an electrode $k_{\rm el}$ (zero activation overpotential) and for the corresponding self-exchange reaction in homogeneous solution $k_{\rm ex}$ are related according to $k_{\rm el}/Z_{\rm el} \leq (k_{\rm ex}/Z_{\rm ex})^{\dagger}$, where the Z's denote collision frequencies with the electrode $(Z_{\rm el})$ and in

-3-

solution (Z_{ex}) (the equality sign occurs when no adsorbed solvent layer separates the reactant from the electrode);

(5) with increasingly negative ΔG° , k increases as $-\Delta G^{\circ}$ gets larger, which is the normal behavior, but when the driving force $-\Delta G^{\circ}$ is very negative, k decreases as $-\Delta G^{\circ}$ gets larger (the 'inverted region'), for a series of homogeneous reactions of similar λ ; the maximum in k occurs at $-\Delta G^{\circ} = \lambda$; (6) the k's can be calculated in terms of bond lengths (angles) changes, sizes and charges of reactants, dielectric properties of the solvent and, in the particular case of nonadiabatic reactions, an electron transfer matrix element; (7) there is a quantitative expression relating the free energy barrier of the reaction and the position of the analogous charge transfer spectral absorption maximum, as well as a relation to the photoelectric emission spectrum.

The k's mentioned above are, when the work terms are non-negligible, intended to be 'work-corrected' k's. Of the various predictions some are not particularly model-dependent, the cross-relation (1), for example, while some, such as the quantitative effect of a non-specific solvent (3), depend on the assumption of a dielectric continuum used for the solvent outside the innermost coordination shell of the reactants. Comparison of the various predictions with the experimental data has been described in the review with Sutin.¹

Electron transfers are perhaps the simplest of all chemical reactions, when no bonds are broken. The detailed analysis which was possible for them has also served to stimulate use of some of the expressions, such as the cross-relation (1), with some theoretical basis, for the k's for other transfers (proton, hydride, methyl, sulfuryl, phoxphoryl). References are given in ref. 1.

-4-

Recent Developments

1. The inverted effect.

A prediction which was rather elusive was that of the 'inverted' effect (5). Recently, impressive evidence for this effect has been found for an intramolecular charge transfer by Miller, Calcatterra and Closs,² who mention also earlier evidence, the study of charge transfer in a glassy matrix.¹⁴ Various possible interfering effects in the case of bimolecular reactions in solutions have been discussed,¹⁵ and further studies of the elusiveness of the effect for bimolecular systems in solutions are warranted. A striking contrast between the behavior of mobile bimolecular systems in solution, where diffusion control can tend to mask the inverted effect, and the intramolecular case have also been described by Miller *et al.*² The inverted effect itself is of interest not only in itself but also because of its potential relationship to the high efficiency of photosynthetic systems, a point to which we return later.

2. Electronic orientation effects.

Orientation effects on electron transfer reactions have been studied experimentally in several systems, including an investigation of cofacial porphyrins¹⁶ and a study of "jawed" porphyrin-like molecules with their y-axes roughly perpendicular to each other.¹⁷ In the first instance, the electron transfer from an excited magnesium porphyrin to a free base porphyrin was very rapid in the forward direction $(k > 10^{11} \text{ s}^{-1})$ and relatively slow in the reverse direction $(k \sim 10^9 \text{ s}^{-1})$, while in the case of the jawed porphyrins the rate was slow in both directions $(\sim 10^9 \text{ s}^{-1})$. The first result is consistent with the fast rates estimated for cofacial $(5,\pi) \rightarrow (5,\pi)$ transfers and slow rates for $(5,\pi) \rightarrow (4,\pi)$ case (because of orthogonality or near orthogonality for the cofacial arrangement).³ The number 5 or 4 refers to the number of modes of the electronic wave function about the z-axis of the prophyrin, $(5,\pi)$ being, thereby, the LUMO and $(4,\pi)$ the HOMO for the porphyrin. Calculations for various geometrical arrangements have been given in ref. 3, using a

NECONSTRUCTOR

-5-

quite approximate model of a porphyrin, a spheroidal cavity having a well depth for the electron such that the fall-off of ln k with distance was appropriate to that found at large distances. The slowness of the back reaction in the cofacial case may also be partly due to the inverted effect, since that reaction has a very negative ΔG° and the speed of the forward reaction suggested only a small reorganization barrier λ . Analogous calculations for the orientation appropriate to these in a bacterial photosynthetic reaction center indicated that no large difference in forward and back reactions was expected for the given geometry.³ In that case, the slowness of the back reaction may be due to other factors, such as the 'inverted effect': the nonpolar nature of the environment makes for a small λ ,¹ and thereby enhances (cf eq. 1) the possibility of having an inverted effect.

In the treatment of electronic orbital orientation effects on electron transfers, there are two types of effects which can occur, "through bond" and "through space" (or "through the solvent medium"). The first of these becomes possible when the two reactants are linked by actual chemical bonds. Distinguishing between the two types is of current interest. The treatment of orientation effects in ref. 3 is for a "through space" transfer, while that in ref. 4 is "through bond".

3. Solvent dynamical effects.

The study of solvent dynamical effects has been spurred by recent picosecondtype measurements of intramolecular charge transfers in which the intrinsic rate of reaction is so fast that the slow step is the dynamics of the solvent motion itself.⁵⁻⁹ The solvent relaxation rate is characterized by a 'constant charge' dielectric relaxation time, τ_L . Several intramolecular charge transfers in organic solutes in a series of aliphatic alcohols as solvents were studied.⁵ The smaller alcohols, (e.g., methanol, ethanol) were dielectrically too fast for the rates to be measured with the equipment used (resolution time ~15 ps, but faster response equipment of subpicosecond time is now available). For the other alcohols studied, 1-propanol to 1-

-6-

decanol, there was agreement between the intramolecular charge transfer rate constant and the reciprocal of τ_L .⁵ Questions regarding the choice of τ_L , types of intramolecular charge transfer (two-state versus relaxation on a single electronic state curve), non-exponential versus single exponential time decay, and the role of the ratio of intramolecular (λ_i) to solvational (λ_0) contributions to λ for each of these topics have been discussed. ^{6,8,9} An approximate expression for the reaction time τ in terms of the usual "equilibrated" rate constant k_e (rate constant when τ_L is small) and τ_L has been given in refs. 6 and 8 for the case (as seen in ref. 9) that λ_i/λ_0 is small:

$$\tau = k_{e}^{-1} + F\tau_{r} \tag{2}$$

where F is a known functure of λ_i / λ_0 and $\Delta G^* / RT$.^{6,8} References to other experiments besides those in ref. 5 are given in refs. 6, 8 and 9, including an apparently fractional dependence of τ on τ_L in a rather viscous medium.¹⁸ Theoretical calculations leading to a fractional dependence when λ_i / λ_0 is not small are given in ref. 9. The field of solvent dynamics is a rich one and is of much current interest.

4. Early steps in bacterial photosynthesis.

こうちょう かくかいかい

The early electron transfer steps in the reaction centers of photosynthetic bacteria have been the subject of many recent experiments, many of them in the picosecond domain. The field was given a major thrust when the crystal structure of one of the reaction centers was determined.¹⁹ Some discussion and review of the kinetics and structure is given in ref. 1.

The geometrical arrangement is such that a possible electron transfer route, which yields opposite charges across the membrane, is

 $(BChl)_{2}^{*} \xrightarrow{e} BChl \xrightarrow{e} BPh \xrightarrow{e} Q \quad (3)$ $I \qquad II \qquad III \qquad III$

where the symbols denote, respectively, a photoexcited bacteriochlorophyll dimer, a monomer, a bacteriopheophytin, and a quinone.

Of particular interest is the role, if any, played by the BChl monomer in eq. 3. The loss of the electron from I occurs in 2.8 ps.¹⁰ A recent determination led to no detection of a BChl⁻ intermediate.¹⁰ The limits of detectability, however, were perhaps of the order of 15%.

Two possible explanations for not observing BChl⁻ include: (1) the mechanism of electron transfer from I to III in eq. 3 occurs via a superexchange mechanism, in which case there is only a virtual existence of BChl⁻, and not an actual intermediate, and (2) there is an actual intermediate BChl⁻, but the rate constant for electron transfer from II to III is much faster than that for transfer from I to II.

To distinguish between these two mechanisms, I believe that existing magnetic data can be used: the radicals (BChl₂)⁺ and BPh⁻ are known to interact only very weakly in the reaction center.²⁰ Based on some preliminary calculations, it does not appear, at present, that this weak coupling is consistent with the extremely rapid loss of the electron from I to II if a superexchange mechanism prevails.¹¹ The high superexchange coupling which is assumed to lead to a fast reaction would also lead to a large magnetic coupling. The second alternative mechanism, on the other hand, serves to decouple the two. A detailed treatment will be given elsewhere.¹¹

The system in eq. 3 is of particular interest in the context of the present meeting, because of the high efficiency of the photosynthetic reaction center for utilizing solar energy. In particular, a back reaction to reform $(BChl)_2$ is much slower (~10 ns) than the eventual formation of Q⁻ (~200 ps). The explanation of the resulting high efficiency is related to the nature of the electronic coupling between the four entities in eq. 3 and to the possibility of an inverted effect in slowing down the highly exothermic reformation of an unexcited (BChl)₂. [The reformation of an excited (BChl)₂ singlet state is presumably slow by virtue of being energetically

-8-

uphill, and the formation of an excited (BChl)₂ triplet state from the two radicals (BChl)₂⁺ and BPh⁻ (or BChl⁻) is slow because of the necessary spin realignment discussed by various authors, cited in ref. 1.

Perhaps the main features of this highly effective solar utilization scheme in eq. 3 include (1) having two reactions $I \rightarrow II$ and $II \rightarrow III$, each sufficiently downhill that there is a possibility of forming two distant weakly coupled radicals, and (2) having a nonpolar environment in the membrane in the vicinity of I and II, thereby making the λ in eq. 1 small (or the λ in a corresponding quantum mechanical equation small), and so creating the conditions for an 'inverted effect' for a given ΔG° .

5. Light emission from metal electrodes.

The phenomenon of the inverse photoelectric effect, namely the emission of light from a metal electrode when the latter is bombarded by high energy electrons, is well-known.²¹ Recently, McIntyre and Sass showed that such emission also occurs when an electron is transferred between (to or from) an ion in solution and a metal electrode under a high driving potential.¹² The 'threshold' of the light- emission spectrum was linear in the metal solution potential difference. The emission was fairly broad. As the authors remarked, one might be able to extract a reorganization energy λ from the data.

One possibility is to adapt a treatment of intramolecular charge transfer spectra developed in 1965. ²² In the present case, the 'molecule' is the ion in solution and the metal. Initially, the electron (or hole) in the ion has a distribution of momenta, in contrast with the electron bombardment case where it is possible to use electrons of given velocity ("k-resolved photoelectric emission").²¹ We consider first an assumption, intended to be purely exploratory, that the optical electron transfer matrix element is greatest when the transfer is made to the Fermi level, E_F .

In this case, the value of λ can be determined by measuring the spectral emission maximum, hv_{max} , for a given value ΔE_m of the metal-solution potential

-9-

relative to the standard value for that half-reaction:

$$hv_{\max} = -\lambda + \Delta E_m \tag{42}$$

1.4.1

(The sign convention for ΔE_m is such that the higher the driving force ΔE_m , the larger hv_{max} .) A discussion of the analogous equation for intramolecular charge transfer spectra is given in ref. 23. Equation 4 is, however, inadequate - it predicts more dependence of hv_{max} on ΔE_m than shown by the data.¹²

Using a somewhat less restrictive assumption, focusing instead on the high energy side ("threshold") hv_{th} of the emission band and assuming a Gaussian distribution of solute-solvent energy levels one finds

$$hv_{th} = -\lambda + \Delta E_m + \gamma \left(4\lambda k_B T\right)^{\frac{1}{2}}, \qquad (5)$$

where k_B is the Boltzmann constant and γ is a constant whose value depends on the definition of the "threshold" and which is roughly 1.1-1.2. (Equation 5 is still purely exploratory, however.) Using eq. 5 and the data in ref. 12, the λ for electron transfer from the benzophenone radical anion in acetonitrile as solvent is calculated to be about 0.4 eV, and that for transfer to the thianthrene cation in the same solvent to be about 0.3 eV.

This value of λ may be compared with the λ found for a homogeneous reaction by Miller *et al.*,² who used an equation analogous to eq. 1 to determine λ : the minimum value of ΔG^* and hence the maximum value of the rate constant, when plotted for series of reactants of different ΔG^0 , occurs at $-\Delta G^0 \simeq \lambda$. The value of λ for the compounds they studied (for a reacting pair consisting of an aromatic molecule and a quinone) was found, thereby, to be about 1.2 eV in the polar solvent methyltetrahydrofuran and about 0.6 eV in the nonpolar solvent isooctane. Remembering that the λ in the electrochemical case is predicted to be one-half (or larger than one-half) the value for the homogeneous solution case,¹ the value for the

-10-

polar solvent is seen to be very roughly comparable with that obtained from the photoemission data for this other system.

Values of λ for inorganic ions have been obtained by Delahay *et al.* using photoelectric emission of electrons from ions in solution.²⁴ Concluding Remarks and acknowledgement.

The field of electron transfers has grown enormously from its earlier development, based on isotopic exchange reactions, in the late 1940's and the 1950's. The examples cited above are intended to give some of the more recent developments.

It is a pleasure to acknowledge the support of this research by the Office of Naval Research and by the National Science Foundation.

References

	1.	Marcus,	R. A. and Sutin,	N., Biochim.	Biophys. 1	Acta, 198	5, 811, 26
--	----	---------	------------------	--------------	------------	-----------	------------

- Miller, J. R., Calcaterra, L. T., Closs, G. L., J. Am. Chem. Soc. 1984, 106, 3047;
 Closs, G. L., Calcaterra, L. T., Green, N. J., Penfield, K. W., Miller, J. R., J.
 Phys. Chem., 1986, 90, 3673.
- 3. Cave, R. J., Siders, P., Marcus, R. A., J. Phys. Chem. 1986, 90, 1436.
- 4. Closs, G. L., private communication.
- 5. Kosower, E. M., Huppert, D., Chem. Phys. Lett., 1983, 96, 433.
- 6. Sumi, H., Marcus, R. A., J. Chem. Phys., 1986, 84, 4894.
- 7. References to work of Zusman, Alexandrov, Wolynes, Hynes, Ovchinnikova and others are given in ref. 6.
- Sumi, H., Marcus, R. A., J. Chem. Phys., 1986, 84, 4272; Marcus, R. A., Sumi,
 H., J. Electroanal. Chem., 1986, 204, 59.
- 9. Nadler, W., Marcus, R. A., to be submitted.
- Martin, J.-L., Breton, J., Hoff, A. J., Migus, A., Antonetti, A., Proc. Natl. Acad. Sci. USA, 1986, 83, 957.
- 11. Marcus, R. A., to be submitted.
- McIntyre, R., Sass, J. K., J. Electroanal. Chem., 1985, 196, 199; Phys. Rev. Lett., 1986, 56, 651.
- 13. Marcus, R. A., to be submitted.
- Miller, J. R., Beitz, J. V., Huddleston, R. K., J. Am. Chem. Soc., 1984, 106, 5057.
- 15. E.g., Siders, P., Marcus, R. A., J. Am. Chem. Soc. 1981, 103, 748.
- Netzel, T.L., Kroger, P., Chang, C.K., Fujita, I., Fajer, J., Chem. Phys. Lett.,
 1979, 67, 223; Netzel, T. L., Bergkamp, M. A., Chang, C.K., J. Am. Chem. Soc.,
 1982, 104, 1952, and references cited therein.

- Overfield, R. E., Scherz, A., Kaufmann, K. J., Wasielewski, M. R., J. Am. Chem. Soc., 1983, 105, 4256, 5747.
- 18. McGuire, M., McLendon, G., J. Phys. Chem., 1986, 90, 2549.
- Deisenhofer, J., Epp, O., Miki, K., Huber, R., Michel, H., J. Mol. Biol., 1984, 180, 385.
- A discussion of this point is given in Haberkorn, R., Michel-Beyerle, M.E., Marcus, R. A., Proc. Natl. Acad. Sci. USA, 1979, 76, 4185.
- E.g., Denninger, G., Dose, V., Scheidt, H., Appl. Phys., 1979, 18, 375 (1979);
 Woodruff, D. P., Smith, N. V., Phys. Rev. Lett., 1982, 48, 283, and references cited therein.
- 22. Marcus, R. A., J. Chem. Phys., 1965, 43, 1261.
- Marcus, R. A., Sutin, N., Comments Inorg. Chem., 1986, 5, 119; Hush, N. S., Electrochim. Acta, 1968, 13, 1005.
- 24. Delahay, P., Dziedzic, A., J. Chem. Phys., 1984, 80, 5381, 5793, and references cited therein.

