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NOMENCLATURE

a - 0A/d
ag - acceleration of the combustion gases
ab - acceleration of the combustion gases
averaged over the distace Lp
ap ~ acceleration of projectile
ag - acceleration of propellant grain
T - average acceleration of propellant grain
ap* - adjusted acceleration
A - tube cross sectional area at a given axial location
Ay - propellant burning surface area per unit volure
Ap - cross sectional area of projectile
at - damping constant
€D, - (propellant grain)/(combustion gas) velocity ratio
o - outer mixing length constant
Cp - coefficient of drag of cylindrical propellant grain
Cps ~ propellant grain specific heat capacity
d; ~ propellant grain perforate diameter
D - propellant grain drag force
e - combustion gas energy averaged over tube cross
section
£ - friction factor
Fa - acceleration number
Fpner ~— net force acting on a control volume within the tube
Fpnet - net force acting on the projectile
h - combustion gas static enthalpy
h. - combustion gas convective ccefficient
hg - combustion gas enthalpy at T=300K
hSg - specific energy release
H - combustion gas stagnation ernthalpy
H1 - cecmbustion gas static enthalpy
k - conductivity
kpuk - 9Kpu/dg
kput - axpu/at
|3
kpu2t - axpuz/a,
keut - IKey/d
K - Von Karman constant
K1 - nondimensional density ratio
K2 - nondimensional length acceleration
Kpu - density flux K factor
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Kpuz - momentum f£lux K factor

Key — energy flux K factor

1 - length of a propellant grain

1q ~ Prandtl mixing length, inner region

1; - Prandtl mixing length, outer region

lpr - Prandtl mixing length

L ~ distance x between breech and projectile

L¢ - distance from breech to open end of tube

Lp ~ distance between breech and projectile

Lg - distance between breech and propellant grain nearest
projectile

mmass - melar mass of combustion gas

Me ~ propellant mass

- mass Of projectile

M - mach number of projectile relative to atmosphere

Mg -~ volumetric rate of propellant consumption

n, ~ number of propellant grains per unit volume

P ~ pressure

Pr - Prandtl]l number

Paem = external (atmospheric) air pressure

P,ye = average chamber pressure

P.r - pressure at which projectile motion begins

Pg - "frontal" pressure, external pressure acting on front
of projectile

Ppb ~ pressure acting on base of projectile

dy ~ tube wall heat flux

r ~ radial coordinate, distance from centerline

b - time averaged radius of a propellant grain

Tp ~ propellant linear burning speed

rj ~ inner (perforate) radius of propellant grain

Is - outer radius of propellant ¢rain

R ~ tube radius

Rep - Reynclds number of combustion yases based on tube
diameter

Ratm =~ 9as constant for air

ch - gas constant for the combucstion gases

t - time

T ~ temperature

T - combustion gas rtemperature averaged over tube cross
sectional area

Taem =~ external {atmospheric) air temperature

Tig - ignition temperature of propellant

Tinie« - initial temperature of propellant
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tube wall ktoundary temperature
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combustion gas velocity averaged over tube cross
sectional area

combustion gas internal energy

combustion gas internal energy at T=300K

velocity of gas i
propellant grain velocity

dug/df

velocity of projectile

calculation velocity

predicted calculation velocity

velocity of projectile

velocity of propellant grain closest to projectile
radial velocity

propellant grain web thickness

dimensioral coordinate

radial coordinate, distance from wall

turbulent viscosity parameter

diffusivity

PP

kinetic energy of mass of gas at u
/ kinetic energy of gas
heat penetration length

p

velocity boundary layer thickness

displacement thickness for compressible flow in tubes
momentum thickness for compressible flow in tubes
energy thickness for compressible flow in tubes

density thickness for compressible flow in tubes

temperature boundary layer thickness

specific heat ratio Cp/Cv

radial coordinate, distaance from wall

covolume

nondimensional coordinate, from projectile to breech
absolute (or dynamic) viscosity

nondimensional distance, from breech to projectile
nondimensional constant, 3.14159

density of gas

combustion gas density averaged over tube crcss
section




P - average density
‘ Pm1 - density times velocity average
P2 - density times velocity squared average
Ps - propellant grain density
Ps - density of a grain including gas within perforation

- time in transformed domain
- tube wall shear stress

w
v - (propellant grain cross sectional area)
/ (tube cross sectional area)
v - porosity: (volume of gas)/(total volume)
Subscripts
atm ~ atmosphere
b - breech
CIL - CIL 3331 combustion gas
Cco - carbon monoxide gas
Co, - carbon dioxide gas
e - boundary layer edge
H, - hydrogen gas
H,0 - water vapor
i ~ axial grid location for gas coordinate system
ix - axial grid location for propellant grain coordinate
system
3 ~ radiai ygrid 1location
P - piston
N5 - nitrogen gas
st - steel
T - turbulent
w ~ tube wall
% - position x
§ - position §
& - initial
Superscripts
n - current time level

n¥l - predictor time level
n+l - next time level
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Chapter 1

INTRODUCTION

1.1 Background

The unsteady, compressible flow inside tubes that launch high-
speed projectiles (e.g., ballistic devices) is complex. For a tube
with geometry similar to that shown in Fig. 1.1, the flow is initiated
when propellant grains within the region bounded by the breech, tube
wall, and projectile ignites, causing pressure to rise. Once the
pressure exceeds some critical value, the projectile starts to
accelerate, moving away from the breech towards the open erd of the
tube.

The motion of the projectile causes the formation of momentum and
thermal boundary layers next to the tube wall and a series of expansion
waves at the base of Lhe projectile. The expansion waves formed at the
base of the projectile first propagate towards the breech, but later
reflect between the breech and the base of the projectile. These
expansion waves accelerate the combustion gas and propellant grains
behind the projectile. As the projectile travels towards the open end
of the tube, the speed of the projectile increases and variations in
velocity, density, temperature, and pressure from the breech to the

base of the projectile become more pronounced.

1-1
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In order to design high~performance ballistic devices, it 1is
necessary to have a good understanding of the physics taklng place
inside tubes that launch high-speed projectiles. The objective of this
investigation is to provide such an understanding by constructing an
interior ballistic model based on fundamental principles.

In the next section, the detailed objectives of this investigation
along with the approach used to meet the objectives are described.
Afterwards in Section 1.3, a brief literature survey is given. Finally

in Section 1.4, an outline of this report is given to guide the reader.

1.2 Objectives and Approach

The major objectives of this investigation are to

1. Study how velocity, density, temperature, and pressure vary
both temporally and axially inside tubes that launch high-speed
projectiles.

2. Explain the underlying physics affecting how velocity, density,
temperature, and pressure vary along the tube (e.g., the
effects of the momentum and thermal boundary layers).

3. Explain how ballistic design parameters (e.g., geometry of
tube) affect the pz2rformance (i.e., muzzle speed and peak
pressure) of ballistic devices.

The approach employed to meet the objectives of this investigation

was as follows: first develop a simple but physically meaningful
interior ballistic model and 1later modify that model by adding more

physics to create a more comprehernsive model. The first interior

ballistic wodel developed was based on equations valid for one-
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dimensional, inviscid flows with mass generation. Later, that model
was extended by adding viscous and heat transfer effects in order to
study the effects of the thermal and momentum boundary layers on the
flow.

Both of the interior ©ballistic models developed in this

investigation were based on the conservation equations of mass,

momentum, and energy. Since the dominating physics occur along the
axial direction of the tube and not along the radial or azimuthal
directions, the conservation equations were integrated analytically in
the radial and azimuthal directions to facilitate analysis (see Fig.
1.1). For the interior ballistic model involving viscous and
thermally-conducting fluids, the effects of the momentum and thermal
boundary layers next to the tube wall were accounted for by parameters
(referred to as K factors) describing the variation of velocity,
temperature, and density in the radial direction. The K factors were
determined by boundary-laver equations for unsteady compressible flows.

In the next section, a review is given of the different types of
interior ballistic models used for studying physics inside tubes that

launch high-speed projectiles.

1.3 Literature Survey

Interior ballistic models describing the physics inside tubes that

launch high~speed projectiles (such as ballistics devices) can be
classified into five types:
1. Empirical Models

@ 2. Quasi One-Dimensional Models

Zr
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3. One-Dimensional Models

4, Quasi Multi-Dimensional Models
5. Multi-Dimensional Models

Below, each of the above five types of interior ballistic .cls are

described.

Empirical Models

Empirical wmodels are constructed by fitting curves through
extensive amounts of experimental data obtained from a variety of
different ballistic devices and propellants. Examples of empirical
models are described in Refs. 1 = 5.

Though empirical models have their merits and uses, they cannot dc
two things. First, they cannot predict the physics inside ballistic
devices for which experimental data do not exist. Second, even for
problems in which there is adequate experimental data, empirical models
cannot explain the underlying physics controlling the ballistic

devices.

Quasi One-Dimensional Models (Also known as Lumped-Parameter Models)

Quasi one-dimensional (1-D) models are based on simplified
versions of the conservation equations of mass, momemtum and energy
valid for 1-D, unsteady flows. Such models are referred to as quasi
1-D instead of 1-D because one or more flow variables such as density
or pressure are assumed to depend only on time and not on position

along the tube so that only some of the 1-D effects are accounted for.




Quasi 1-D models still require a number of empirical inputs. Most
of these wmodels require empirical models for the rate at which
propellants burn, heat transfer rate from the walls, shear stress at
the walls, gas velocity as a function of time and position along the
tube, and gas pressure as a function of position along the tube.
Velocity and pressure variations are often modelled as isentropic
processes with empirical correction factors. Propellant burn rates are
typically modelled by empirical relations relating the burn rate to the
gas pressure and surface area of the propellants.

Quasi 1-D wmodels vary considerably in complexity. These models
range from relatively simple models which can only account for the
effects of a few ballistic parameters to very complex models that can
account for a large number of ballistic parameters. Examples of quasi
1-D models are given in Refs. 5 - 21.

Since quasi 1-D models are based on the conservation equations,
these models have a wider range of applicability than empirical models.
Specifically, these models can be applied to analyze ballistic devices
for which experimental data are not avaliable and can reveal some of
the underlying physics controlling the ballistic devices.

Here, it should be noted that since (1) empirical inputs are still
needed and (2) some 1-D effects and all of the two- and three-
dimensional effects are not accounted for, there are still a number of

physics that cannot be adequately accounted for by quasi 1-D models.

One-Dimensional Models
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A type of model one step more complex than the quasi 1-D models is
the 1-D model. The 1-D models are based on the conservation equations
of mass, momentum, and energy valid for 1-D, unsteady flows.

Unlike the quasi 1-D models, 1-D models do not require empirical
inputs for the variations of velocity and pressure along the tube. 1-D
models can calculate velocity and pressure variations based on the
conservation principles. As a result, 1-D models can be applied to
study physics such as pressure waves.

Similar to quasi 1-D models, 1-D models still need empirical input
regarding propellant burn rates, heat transfer rate from the walls, and
shear stress at the walls. Thus, there are still situations in which a
1-D model may be inadequate.

Examples of 1-D models are given in Refs. 22 - 25.

Quasi Multi-Dimensional Models

Since the flow inside ballistic devices is primarily in the axial
direction along the tube, it 1s reasonable to assume 1-D flow.
However, by assuming 1-D flow the following empirical data must be
supplied: the heat transfer rate from the walls, the shear stress at
the walls, and the effects of the momentum and thermal boundary layers
next to the walls on the inviscid flow (core flow).

One way to eliminate the need for empirical data for heat transfer
and shear stress at the walls and still retain the simplicity of 1-D
models is to construct quasi multi-dimensional models.

Quasi multi-dimensional models are models that can account for all

of the 1-D effects as well as some (but not all) of the two~ and three-
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dimensional (2- and 3-D) effects. Quasi multi-dimensional models are
derived from the conservation equations of mass, momentum, and energy
valid for 2- or 3-C, unsteady flows by neglecting variations of certain
flow variables along certain directions or by 1integrating the
conservation equations along certain directions.

Gough [Refs. 26 and 27) has developed quasi 2-D models for
analyzing burning of propellants. The authors of this report know of
no investigators who have developed quasi multi-dimensional models to
describe the flowfield between the breech and the base of the
projectile taking into account the effects of the momentum and thermal
boundary layers next to the tube wall. As mentioned in the previous

section, such a model was developed in this study.

Multi-Dimensional Models

Multi-dimensional models are based on the conservation equations
of mass, momentum, and energy for 2-D or 3-D, unsteady flows. Such
models have the potential to describe completely the physics inside
ballistic devices. However, at the present time existing computers
prohibit the direct simulation of turbulence, detailed dynamics of the
interaction between gas and solid propellants, and detailed chemical
kinetics of propellant combustion.

In view of the limited understanding of inter~phase drag and two-
phase turbulent transport properties (among others), the authors of

this report believe that multi-dimensional models are not warranted at

this time (i.e., quasi multi-dimensional models should be sufficient).
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1.4 Outline of Report

To guide the reader in reading this report, a description of how
this report is written is given here.

In Chapter 2, the details of an interior ballistic model developed
for analyzing inviscid flows inside tubes that launch high-speed
projectiles are presented. In Chapter 3, the wmathematical model
constructed for studying the unsteady, momentum and thermal boundary
layers next to the tube wall are presented. In Chapter 4, the quasi
multi-dimensionsl model developed for studying viscous flows inside
tubes that 1launch high-speed projectiles are presented. In Chapter 5,
a simple model is constructed for predicting how pressure and density
vary from the breech to the base of the projectile. Finally, in
Chapter 6, a summary is given of the important discoveries and

contributions made.
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Chapter 2

INVISCID FLOWS INSIDE TUBES N\
2.1 Introduction

In this chapter, an interior ballistic model for analyzing inviscid
flow inside tubes that launch high-speed projectiles is described. The
interior dallistic model is based on the conservation equations of mass,
momentum and energy valid for one-~dimensional, unsteady, compressible
flow of an inviscid and thermally-nonconducting fluid with mass
generation,

Previous investigators have developed interior ballistic models
similar to the one presented In this chapter [Refs. 20-24]. The
interior ballistic model presented in this chapter differs from the
interior ballistic models described in Refs. 20-24 {n the governing
equations, in the numerical method of solution, and in the way in which
boundary conditions were implemented.

In the next section, the problem of {nviscid flow inside tubes is
described in detail. Afterwards, in Section 2.3, the equations governing
inviscid flow inside tubes are described. 1In Section 2.4, the numerical
method used to obtain solutions is explained. (The combination of
governing equations and numerical method of solution is referred to as
the interior ballistic model.) 1In Section 2.5, the results generated by

the interior ballistic model are presented.
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2.2 Description of Problem

A schematic diagram of a typical tube assembly studied in this
investigation is shown {n Fig. 2.1. The tube assembly consists of a
projectile and a tube that i3 closed at one end (the hreech).

The region between the breech and the projectile initially contains
- a homogeneous mixture of solid propellant and inviscid combustion gas at
a pressure of 3.45 x 108 pa (500 psia) and temperature of 300 K. The
exterior of the tube assembly is exposed to air maintained at a pressure
of 1 x 10° Pa (14,7 psia) and a temperature of 300 K.

Two other tube assemblies (operating under identical conditions)
are shown in Figs. 2.2 and 2.3. All three tube assemblies have the same
initial interior volume and the same radius at the open end of the
tube,. Tables 2.1-2.3 present the equations and parameters needed to
specify the geometry of the tube assemblies.

The physical process which takes place within a tube assembly
proceeds as follows: at time t=0, combustion begins and the pressure,
temperature and density of the combustion gas rapidly increase. After
the pressure has exceeded a critical (starting) pressure Pcr' the
projectile is free to move without sliding friction. The presasure
difference across the projectile then causes it to accelerate and move
away from the breech. The process is considered to have ended when the
projectile exits the tube.

For the inviscid {nterior ballistic problem, we are interested in
evaluating the {nfluence of various parameters on gun performance.
Table 2.4 shows a 1ist of parameters necessary to specify the problem.
Equations, equation numbers, and values for these parameters are

presented in Tables 2.1-2.3 and in Tables 2.5-2.6 (3eec Section 2.5}.
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Figure 2.1

A tube assembly of constant radius.
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Table 2.1

Equations descridbing geometry of the tube assembly shown in Figure 2.1

Equation Eq. No.
RO X< L) = Ry (2.1)
AO € X < L) = nR% (2.2)

£ 6

3A(0 £ x £ Lf)
X =0 (2.3)

Rb (the tube radius at x=0) = 0.0150 m, Lp¢ (the initial distance from

the breech to the projectile) = 0.2202 m, and L¢ (the distance from the breech

to the open end of the tube) = 2.1920 m.




Table 2.2

®

Equations describing geomatry of the tube assembly shown in Figure 2.2

Equation Eq. No.

ROOL x <L J) = Rb[o.zs(t"—)2 - o.S(L" ) + 1] (2.4)
P po o

R(Lpd £ %L Lf) - Rb (2.8)

2 X U X \3
ACO < x < L) = mRy [o.oszs(t—-) 0.25(;=)

po pd )
. 0.75(3"-7)2- () +1] (2.6)
po po
) - R
ALy < X £ Lg) = Ry (2.7)
A0 < % < L) nRi < 3 - .
= LA 7 [0.25(;=)7- 0.75(;=)% 1.5(;) + 1] (2.8)
pob po po pd
8A(L_, £ x £ L)

R‘5 {Lhe tube radfus at x=0) = 00,0200 m, Lpd {(the initial distance from

the breech to the projectile ~ C.3i770 m, and Lg (the distance from the breech

to the open end of the tube) = 2.1488 m.
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Table 2.3

Equations describing geometry of the tube assembly shown in Figuwe 2.3

Equation Eq. No.

X (2 X
R(O < x £ Lg) = Ro[°°25(1‘;) - °'5‘L_f) +1] (2.10)

AO £ X < L) = nRi [0.0625(:—)“- 0.25(%)3

£ Le
2 x (2.11)
+ 0.75()%- (2) + 1]
R
2
9A(0 £ x £ L) nR i
L. 2025033 0.75()% 1,55 - 1] (2.12)
9x Lf Lf Lf Lf

Ro (the tube radius at x=0) = 0.0150 m, L (the initial distance from

pd
the breech to the projectile) = 0.1276 m, and Ly (the distance from the breech

to the open end of the tube) = 2.0994 m,
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Table 2.4
‘ Parameters needed to specify the inviscid interior ballistic problem
Tube Ceometry Parameters Propellant Parameters
‘radius (R) ‘type
*oross-sectional area (A) *grain geometry
*initial breech-to-projectile *initial mass (mcé)
axial distance (Lpd) *covolume (n)
*axial distance from the breech *density (ps)
to the open end of the tube (Lg) *initial web thickness (wb)
"specific heat capacity (Cpg)
Projectile Parameters ‘initial temperature (Ty,i.)
*mass (mp) ‘ignition temperature (Tig)
‘initial velocity (Upd) “linear burning speed (ry)
‘pressure at which projectile *specific energy release (hsg)
motion begins (P,.) ‘initial veloeity (”so)

1 ‘propellant grain-combustion
Alr Parameters gas velocity ration (CDy)
‘Temperature (T, en) ‘drag coeffieient (Cp)
*Pressure (Pg¢m) ‘initial axial distance between
*Specific heat ratio (Yatm) the breech and most remote
*Gas constant (Ryep) propellant grain (Lso)

Combustion Gas Parameters

‘molar mass (mmass)

‘initial temperature (Td)

6)
*initial velocity (Ud)

*initial pressure (P

»,

. o AL AL AL L S e R MY 4% 8 A A0 A ; > () L 0 Y 3l X JIS VNP IV %
e R .'f'",- : AR ! ‘.‘ DEA ryaraEin '_‘,';‘r VTN .‘,',=.~3."'?.+ .’ ’(4 ?.;‘-,".aﬁ.) ‘E',‘ '\' M f i il -L" ,a.h g, ﬁ.'.‘.‘.~3.l53-""‘ <




¢.5 Formulation of Problem

Introduction

This section presents the assumptions and the governing equations
used to describe the inviscid interior ballistic problem. The governing
equations have been classified into the following three groups:

1. Conservation Equations - the set of coupled 1st order partial
differential equations which describe
the conservation of mass, momentum
and energy.

2. Constitutive Equations -a group of equations which desceribe
dependencies between two or more
variables in the conservation
equations.

3. Auxiliary Equations - a group of equations resulting from
models developed for terms in either
the coonservation equations or the
constitutive equations.

In this section, the conservation equations governing this problem

are presented first. Aftervards the constitutive and auxiliary equa-
tions for this problem are presented. Here, it is noted that only the

final forms of these equationy are presented. The der{vation ol these

equations are given in this section or in Appendix A.




Conservation Equations

The following assumptinons were made to facilitate the derivation of

the conservation equations for the inviscid interior ballistic problem:
1) The problem 1s unsteady and one-dimensional iIn the axial

direction.

2) The propellant grains can be treated as a continﬁum.

3) The propellant grains are incompressible.

y) The propellant grains are distributed homogeneously across the
cross-sectional area of the tube at any axial location.

5) There is no interaction between the propellant grains and the
tube wall.

6) There is no heat transfer.

7 The combustion gas is an {nviseid fluid,

With these assumptions, the inviscid conservation equations can be

written as follows (see Appendix A for derivation):

Continuity of Propellant Grains

ou u
v s v s R
T VI YAV Mo (2.13)

Continuity of Combustion Gas

3 _ _pu 3A _ 3(pu) |

\) [ -
at A 3x ax (T5Ms (1 - #/0g)

- du u
= dv s 3 3A
G RITENE Rl of 12 (2.14)




Conservation of Momentum for the Combustion Gas

- ~=2
alpu) _ _3(pu) | === v _ 9P
3t ax Coutu us) * Pl ax X
(U + (=)u_] u, M
- pu l"v_ 8" 3R, (v, _S8,8
pu{ N = ¢ (TR ) | (2.15)

s

'Conseﬁvation-or Enebgy'for the Combustion Gas

% _ 3w 1
at ax 1-v

3v _ 3(Pu) _ u(e+P) A
9x ax A(1-v) 3x

)[e(u-us) + Pu)

305

- -e.\’ S _\’_ . _ - _ -
Ty 3 * (Mg {lngg-c (T =T ) = (h(D)

=} (2.16)
8

o jo!

- n(m ) -

where the terms of Eqs. (2.13)-(2.16) are defined as

1) A = the tube cross-sectional area

2) v = Ag/A = the ratio of propellant cross-sectional area to
tube cross-sectional area

3) ug = the propellant grain velocity

L) ﬁs = the rate of propellant consumption per unit volume

5) Py = the propellant graln density

6) 3 = the combustion gas density averaged over the tube cross-
sectional area at some axial location

7) U = the combustion gas velocity averaged over the tube cross-
sectional area at some axial location

8) P = the combustion gas pressure

9) T = the combustion gas temperature averaged over the tube




10)

11)
12)
13)
14)
15)
16)

cross-sectional area at some axial loocaticn

e = the combustion gas energy per unit volume averaged over
the tube cross-sectivnal area at some axial location

hsg = the ochemical energy released per unit mass of propellant
Cps = the specific heat capacity of the propellant

Tig = the ignition temperature of the propellant [Ref. 28]
Tinit = the initial temperature of the propellant

h(T) = the enthalpy of the combustion gas at temperature T

h(T1g) = the enthalpy of the combustion gas at temperature Tig

The conservation equations given by Eqs. (2.13)-(2.16) contain more

dependent

variables than the number of such equations. These

conservation equations are closed by the constitutive and the auxilliary

equations described in the next two sections.

Constitutive Equations

A modified ideal gas equation

An equation of state which describes the relationship between

combustion gas pressure, specific volume and temperature is needed. In

order to account for the deviation caused by the specific volume of the

propellant grains, an additional term n, the covolume, is employed with

the ideal gas equation in the following manner (Ref. 14]:




n = the covolume of the propellant grains

ch = a gas constant particular to the combustion gas

Energy per unit volume

-A constitutive relationship for energy was derived after making the
following assumption: the internal energy and kinetic energy modes are
the only significant energy modes for the combustion gas. Therefore,
the combustion gas irternal energy and kinetic energy terms can be
combined in the following manner:

2

- + 5T (2.18)

where u(T) = the combustion gas internal energy.

Propellant grain velocity

The last constitutive relationship used in this analysis describes
the dependency between propellant grain velocity and combustion gas

velocity. This relationship is defined as

u, * CD1u (2.19)

where CDy = the propellant grain-combustion gas velocity ratio.




Auxiliary Equations

Combustion gas internal energy

In order to evaluate the effects of the large temperature range of
the interior ballistic problem, the following two internal energy models
were developed:

1) A polynomial expression in which specific heat at constant
volume, C,, i3 a function of temperature. The derivation of
this expression is presented in Appendix A [Refs. 29, 30 and
31]. The resulting equation is

b3

u(T) ['7.1259x10u + u.922ux1o7(?’2) - 1.2872x10

2.8007x10°(T %) + 1.6310x10° (4nT) - 2.3833x103(T*2%)

+

3

1.25)

1.8069x103(T"2) + 6.2205x10' (T)- 8.8221(T

+

1.2517(T ") - 5.7297x10 (T *7%) - 5.5657x10 3(T%)

*

8.066x10-8(73)3(1000/mmass)J/kg (2.20)

wher~ mmass = the molar mass of the combustion gas.
2) A simpler expression {n which the specific heat ratio, v, is
assumed to be a constant [Ref. 31]. The resulting expression

is

Q(T) - [;O + [Rog/(v-1)]T}(1000/mmass)J/kg (2.21)




. where u, * a reference internal energy at T = 300°K.

Combustion gas enthalpy

Because of the insertion of the covolume term in Eq. (2.17), the

equation for combustion gas enthalpy becomes
h(T) = ho + u(T) + chT + nP (2.22)

where u(T), Rog: T, n, and P have been previously defined and h, = a

reference enthalpy at T = 300°K [Ref. 311].

Propellant grain-combustion gas velocity ratio

For the inviseld interior ballistic problem, it was assumed that no
net force acts on the propellant grains. Therefore, the equation for
the propellant grain-combustion gas velocity ratio becomes

Chy = 0 (2.23)

Rate of propellant consumption per unit volume

The following assumptions were made to facilitate the derivation of
an equation for the rate of propellant consumption per unit volume, .\315:

1) ﬂs is a function of time and axial position along the tute.

Q 2) The linear burning speed, ry, is a function of pressu~¢ o.ly.




3) The propellant grains are incompressable.

4) The total burning surface area (A, ) is constant.

5) The propellant grains are single-perforate cylinders.

6) The burning surface area of the ends of a propellant particle
(Apg) 1s small in comparison to the burning surface area of

~ the inner and outer cylindrical surfaces of the propellant

particle (Ap).

n The number of propellant grains (n) {3 a function of time and
axial position along the tube.

Based on these assumptions, the following equation for ﬁs was derived:

v Avdx
- = 2.24
R N ) Iry (2.24)
I Avdx
o]
where Ape 1s the total burning swrface area. The details of this

derivation are given in Appendix A.

Projectile velocity

By using Newton's second law, the projectile acceleration can be

expressed as

a = Pnet (2.25)
p m
p
where
1) Fpnet = the net force acting on the projectile in the axial
direction
2.

My = the mass of the projectile.




By assuming that the projectile slides freely and that the effects

of gravity can be neglected, Fpnet can be expressed as

Fpnet - (Ppb - Pf)Ap (2.26)
where
1) Ppp = the combustion gas pressure acting on the base of the
projectile
2) Pr = the "frontal" pressure, i{.e., the external pressure
acting on the front of the projectlile
3) Ap = the c¢cross-sectional area of the projectile.

The projectile acceleration may also be expressed in differential

form as
au
- P
T3 (2.27)
where Up is the projectile velocity.
Combining Eqs. (2.25)-(2.27) yields the following equation:
du (p - P
P._Bb__ T, (2.28)
dt mp pb

The frontal pressure Py in Eq. (2.26) may be found using the following
assumptions:

1) The atmospheric specific heat ratio Yatm is constant.

2) Quasi-steady conditions hold in front of the projectile.

3) The pressure increase in front of the projectile (due to

projectile motion) can be modeled as an isentropic compression




in the axial direction when the Mach number (relative to the
atmosphere) is less than or equal to 1.

4) The pressure increase in front of the projectile (due to
projectile motion) can be modeled as compression across a
normal shock when the Mach number (relative to the utmosphere)
exceeds 1.

Under these assumptions, the Mach number may be expressed as

MaU / Y e tafatnlatm (2.29)

and the frontal pressure may be expressed as

2
Y -1 Y -1
atm 2, atm
pr - Patm (1 + — M) (2.30)
where M < 1 or
Yatm
P =P (1 + IEEE:l)Yatm-1(3ZEEE_ Mo - 1532:1) (2.31)
f atm 2 Y +1 Y +1 '

where M > 1 [Ref. 32].
The differential expressicn for projectile acceleration can be
discretized and approximated at time 1level n+1 by the following

expression [Ref. 33]:

au TR T
(513)"+1 DB P .oa) (2.32)

Substitution of Eq. (2.32) into the discretized form of Eq. (2.28)

results in the following first-order accurate equation for projectile




velooity at time level n+1:

Pn+1_ Pn+1
ug*’ AR (—E‘l?f—)ag” At (2.33)
p

Projectile displacement

The projectile displacement (Lp) can be found from the formula

t dau

Lo(t) = L(t0) { RE at (2.34)

(o]

This equation may be discretized and approximated at time level n+1 by

the following expression:

n+! n Un*1+ Un




2.4 Numerical Method of Solution

Solutions for the conservation equations (EqQs. (2.13)-(2.16)) were
obtained by a finite difference method. Since finite difference methods
provide solutions only at grid points and time levels, both the spatial
domain and the duration of interest of Egs. (2.13)~(2.16) must be

discretized.

Discretization of the Spatial Domain

The spatial domain of interest for this problem i{s the distance
from the breech to the base of the projectile as shown in Fig. 2.1.
Typical values for this length interval range from a fraction of a meter
to a few meters. This continuous length interval must be replaced by a
system of grid points. The system chosen for this problem is shown in
Fig. 2.4 and consists of a fixed number of uniformly distributed grid
points. The spacing between the grid points Increases as the distance
between the spatial domain boundaries increases.

For problems with deforming spatial domains, the system of grid
points used here has two principal advantages over grid systems that
employ stationary grid points:

1) It avoids the problem of "uncovering" grid points as the
projectile travels down the tube. Therefore, interpolation
schemes for projectile base boundary values are unnecessary,
making numerical boundary conditions much easier to implement.

2) It minimizes the number of grid points necessary to resolve

Q the problem since no grid points need to be added as the

A :.“;"A."‘.“'.‘-l UATUCIUAA MO DU IO U KOO WA ol PR X .‘. SN AN
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‘ projectile travels down the tube.

These advantages have the effect of increasing computational

efficiency and simplifying coding requir:ments.
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Discretization of the Temporal Domain

The duration of interest for this problem i{is the time interval from
the start of combustion to the time when the projectile exits the
tube. Typical values for this time interval are on the order of a few
milliseconds. This continuous time interval must be replaced by a finite
number of time levels which satisfy the most limiting of the following
two criteria;

1) The time step c{ze (increment between two successive time

levels) must be small enough to ensure numerical stability.

2) The time step size must be small enough to ensure temporal

accuracy.

In this study, a constant time step size of 2 usec was used.

Derivation of the Finite Difference Equations

-~

The derivation of the finite difference equations (FDE's) needed to

obtain a solution to the inviscid problem involved three major steps:

1) The partial differential equations (PDE's) given by Egs.
(2.13)~(2.16) were transformed from the (x,t) coordinate
system to the (£,t) coordinate system,

2) The spatial and temporal domains of the ftransformed PDE's were
discretized (see Fig., 2.5) and FDE's at the interior grid
points were derived from the transformed PDE's.

3) FDE's at the boundary grid points (see Fig. 2.5) were derived
from the transformed PDE's and from physical ennstraints.

In this section, the conservation equations resulting from the




coordinate transformation between (x,t) and (E,t) used in step 1 are

presented first. Next, the FDE's derived {in steps 2 and 3 are shown,

Coordinate transformation

It 1s difficult to derive FDE's at grid point. that move. One way
to simplify the derivation of FDE's at moving grid points is to map
moving grid points in the (x,t) coordinate syatem onto
a (£,1) coordinate system where all grid points are stationary,

To accomplish this transformation, the independent

variables £ and 1 were defined such that

E = x/L (2.37)

where for Eq. (2.13),
L = Ls. the distance between the breech and propellant grain
closest to the projectile base.

and for Egs. (2.14)-(2.16),
L = Lp, the distance betweern the breech and the base of the
projectile.
Differentiation for a dependent variable ( ) with respect to x and

t can be expressed in terms of differentiation with respect to £ and t

as follows:
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a3 ) _8()

t 9t

U
Ve a0
T 3 (2.40)

€

where for EqQ. (2.13)
Up = Ug, the velocity of the propellant grain closest to the
projectile base.
and for Eqs. (2.14)-(2.16)
" Up = Up, the velocity of the projectile.
By using the transformation equations presented in this section,

the conservation equations (Eqs. (2.13)-(2.16)) can be rewritten as

follows:

Continuity of Propellant Grains

v Vs a1 AW W 2.11)
-2 Ls 14 L8 ] 4 A 9f ps
Continuity of Combustion Gas
é.é'.pﬁﬁz-e:a.a_h-l_3<ou> _ B
"L, %€ TAL % L9 ey s s)
m [ (u-u ) 3— - v(r s aA)] (2.42)
Conservation of Momentum for the Combustion Gas
-~ -~ -2
9(pu) 1 3(pu) _ 3(pu) - v _ 9P
T = E; (Upﬁ 5E 3% + [pu(u Js)‘PJ ‘sz '5—6]
EJ [..l( us] v aus h‘dsL
L—; {—T-—— -5— + (m)[ﬁ. + -——-Bps 1) (2.43)




Conservation of Energy for the Combustion Gas

de | de _ 3(eu) 1 em= o= 3v _ 2(Pu) _ U(e+P) 3A
LR (Ugt 3¢ - 3¢ * (T lelumu)*Pl 5% = S5= = 30wy 3¢
- Ju

ev s v\
(1-v) 32—} * (T:S)Ms{hsg_cps(Tig Tinte)

ey . ) E; } .
(h( - n(1y )3 °s] (2. 44)

The transformed conservation equations c¢an now be discretized and
applied at individual grid points., For conservation equations that have
been transformed with Lp as the scaling parameter (Eqs. (2.14)-(2.16)),
a representative grid point is indicated by the symbol { (see Fig. 2.5).
The propellant grain continuity equation (Fig. 2.13) has been transform-
ed with L, as the scaling parameter. A representative grid point for
this equation is indicated by the symbol i{¥ (see Fig. 2.5).

It should be noted here that there is not a direct oorrespondence
between values at 1locations i* and i since L, does not equal Lp in
general. Consequently. values in the i* grid point system must be mapped

onto the { grid point system. This mapping procedure is accomplished by

an interpolitive scheme which is described in Appendix A.
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Finite Difference Equations

The finite difference equations (FDE's) used to obtain solutions to
the transformed conservation equations (Eqs. (2.39)-(2.42)) were
obtained by implementing MacCormack's predictor-corrector scheme. This
explicit method is second order accurate in both space and time. In
this section, the resulting FDE's for the interi{or grid points are
presented first. Then the FDE's for both the breech and projectile base

boundaries are presented.

Finite difference equations at interior grid points

For each interior grid point 1 and i{¥, the FDE's are derived by
using MacCormack's predictor-corrector scheme to approximate the
transformed PDE's. The resulting interior grid point FDE's at the
predictor time level of n+i and the corrector time level of n+i are

presented as follows:

Continuity of Propellant Grains (Interior Point Predictor)

n+1 n At.n 1 n ne n n
Vie ® Vix * (-L-s-) (g5) LUgEy) (vu v(1_1).)
1
- ' n - n - 'n - _31’1 n
[(vJs)i. (vus)i’ (VJ(1-1)*] ( T )1. ai.Aﬁ

Mvas n
- (T_)“ Ag] (2.45)
8
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Continuity of Propellant Grains (Interior Point Correotor)
ntt 1 _n n+1 At .n*l 1 n+1 nel
n+ n+l n+1 s, n+1 _n+i
Vix ") - (v D lgenyw - Ul 1 - (5T Ay 88
M VL
- (3 ‘)““ £) (2.46)
s
Continuity of Combustion Gas (Interior Point Predictor)
—n+1 At\n 1 n_ (=n _-n -=.n -=.n
py - (E-) (g Ve (3] - 3y4) = TGeu)y - (oud ]
P M =N _ NN _ N _ (b1,
+ T)i [ui JSJ(VI vi-l)) (Lp) {( ) (P )
v Ys.n n v \N
+ (35 v 1 pit(u ) + (K')1 ‘1]} + AT(T:;)1L1
_ (PP 3P .
(ps)ij(Ma)i (2.47)

Continuity of Combustion Gas (Interior Point Corrector)

1, A1, n+l 1 n+1 n+1 n+1
. ‘5"E;’ RSN TR

-n+1 ( . —n+1)
Py 5 Py * Py

[(‘m)i"1 (;G);N‘I] . (Tg;)?”[;?” . (us)nﬂj(vril:: n+])}

Bt\n+T a,n+1 == n+ v el =n+l n+t
)(E;) (@Y G+ (27 5 [lug)y

Ny —




Conservation of Momentum for the Combustion Gas (Interior Point
Predictor)

I-ve S
o] - GO ¢ (ﬁi)

n 1 n ==n _ ,==.n _ -=2.n
(K-E)(Upﬁi[(pu)1 (pu)1-1] [(pu )1

- U7+ TGDE-u )T« PRGN - V)

1971=-v71 71
n n At \n, == n =N v N n.a.n
- (Py - P )1 - ‘E;’ Cow) g (U] + (3=, (u ) ()
VN, \Ay _ V0 UM e (N
* (1] - (135 At(%;)i(Ms)i (2.49)

Conservation of Momentum for the Combustion Gas (Interior Point

Corrector)
GDOM e L LGt - G . (%)(%i)ar? e (G
- GOTTGETT - GIHTTI (G (G )T
PN Ty LT L T

1.,01.n+1 == _n+1 _=n+1 v \n¢1 a . n+1
- (5)(1;) ( U)i {['Ji + (T:;)i (I)i
. \Y n+1( )n+1} _ %1 ( v )n*l (22)"*1(ﬁ )n+l (2.50)

T-v'1 p_1 s’y

Epre Y
i=vi sg’1 s

Conservation of Energy for the Combustion Gas (Interior Point Predictor)

1-1]

—n+1 =N At,n 1 n N =N -=n_,>=.N
0 e -e ¢ (L;) (R-){Upei(el-ei_1) - [(eu)i-(e-J)
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n n ! \n.,~~.\n -= N - N n n
[(Pu)1 - (P“)1-1] + (773)1[(°“)1' (eus)l* (P“)iJ(“i' v, _

i=1
- A;)n{[(eu) (727 Eu)] + FDDIDT + (3] T ]
s A_t(Tf—v)?(ﬁ_s)?{[hsg- Cos'Tig™ Tints) (h(T) |
- (1)) - (° )7) (2.51)

3

Conservation of Energy for the Combustion Gas (Interior Point Corrector)

MLl @ e . <§>< buyn*T (L P (U0e, (B~ &)
- [(eu)i+1 (eu)""] - [(Pu)m-(pu)“”J (s ';T‘[(smf*_"
- @M T - )(éi et
+ (—1’;);‘—*—‘(& )’1‘—’749‘?)?—3(%)’1‘_*7 + (-_"-;)"i‘-‘-’_ E-f;—(usg)fﬂ-}
* (%l\(1rv)T+1(ﬁs)?¢1{[hsg CPs(Tig Tinit)
- (n(T"i‘Tf) - (TN - (E—S)T} (2.52)

where all other variables have previously been defined and




Finite difference equations at boundary grid points

Finite difference equations for the breech and projectile base
boundaries were defined by first applying the transformed oonservation
equations (Eqs. (2.39)-(2.42)) at the boundaries subject to the

following constraints:

1) u(ge0,1) = 0 (2.54)

2)  u(gsl,1) = Up (2.55)
v

3) 3 (E~1,1) = 0 (2.56)

Then, MacCormack's predictor-corrector scheme was used with three-point,
one-sided differencing to approximate the resulting boundary
conservation equations, Boundary FDE's at the predictor time level

of N+l and corrector time level of n+l are presented as follows:

Continuity of Propellant Grains

Breech Boundary Predictor

n+1 n At.n 1 n 1 n
V.'. - \)1* - (t;) (FE){[Z(\)US)Z““ 5 (VJS>3‘]
ﬁvas n
+ ( ) e n A ] (2.57)
Pq i

Breech Boundary Corrector

nt 1 . n _ onely 1 AT nel 1 . n+1 L
Vik 3 (vig * Vg ) (2)(L3) <A£){[2(\Js)2* 5 (VJS)3, )
M_vL e
< (S SHMINS (2.58)

S
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. Proje-tile Base Boundary Predictor
n+1 n+1 (2.59)

L * V(IL-1)*

Projectile Base Boundary Corrector

n+1 n+
ViLe ® Y(IL-1)* (2.60)

Continuity of Combustion Gas

Breech Boundary Predictor

a5y - (" ey - 5 Gl - (EHMEDT B 0T

Pr =P " (I‘) ZE 2 L
o At - (R )P
srE - (IR, (2.61)

Breech Boundary Corrector

R ] T - -
o = s (e m ) - (PEO™! ptangT - 3 G
P

ol

3

et 5 neT.,e neT
( )(-——)1 (1 - (5;), YW (2.62)
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Projectile Base Predictor

-n*1 At\n,1 n,3 -n -n 1 =-n
3 ,==.n
- [5 (9“)IL 2(pu)IL - (DU)IL 2]
o | ] n
* (TE-)IL[U - Wy ILJ[E IL 2”IL -1 "3 vy
)]
n a.n -= N v n s.n n

B ( ©) UPplewy * G350 °1L[(“sg IL * el

p

(2.63)

v \n - (P_yn
C AR - R

Projectile Base Corrector

-n+1) ( )(Ar)n(l ){ n+1(3 -n+1 ~n+i 1 —=n+1

-—nt+1 1 ,—
n (ﬂ

ST 2L (R {7 2L Yo (5Pp, = 20p-4* 7912
-3 GHIT - 2G0T+ LGB )
R - eV - T T
-3 (%“;)"” (Y GnY . (1—1’-\7)’1‘_;_‘ B’I‘L‘t(u“)ﬁ
CRT AR B T - BFIETT e
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. Conservation of Momentum for the Combustion Gas
Breech Boundary Predictor
(Eﬁ);“’_1 -0 (2.65)
Breech Boundary. Corrector
==.Nn+1

(pu)1 -0 (2.66)

Projectile Base Boundary Predictor

-~ T _ T nel
(pu)IL = Ug (2.67)
Projectile Base Boundary Corrector
=4+l _ —n+1 +1 (
(G0 =5y u: (2.68)
Conservation of Energy for the Combustion Gas
Breech Boundary Predictor
-n+1 -n Atrn 1 =-=.n 1 ==-.n —-.n 1 =N
e, =¢g, - (E;) (EE){[Z(eJ)Z -3 (eu)3] + [2(Pu)2 -3 (PJ)3]}
Arn, v \n =-n n v yN,e N _ -
- (E;) (-1-:-\;)1 e1(15£)1 + At(-1—_—\,).'(Ms)1{[hsg Cps(Tig Tinit)
= € \n
@ - (T - neTy N - () (2.69)

S
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Breech Boundary Corrector

=n+1 1
e

A LRI )(él>"*‘ et - 1 eriib
- [Z(Pu)g”1 -% (P)"? 3 ]} (;_)(ﬁ_‘t)nﬂ( v (N+1 =n+!

n+t
=o' e, (u_.)

CY Rl
¢« GO M) - & Cos(Tig™ Tyny) = (CTD)
- h(??rr) - h(Tig))] - (EQ)HTT} (2.70)
Projectile Base Predictor
AR (A;)n(l‘){u ST el-2)
- [g (PO, - 2(ADY - % (PO, ]
* G LIEDT - Gu)h e ] 33 VT - 2V 1 5 Vi)
- <§i>"f[<za>§L C (I BT, ¢ DD,

\Y n -=n n \V) n v n
¢ e g ) ¢ AT (M) g, Cos{Tig™ Tingt)

-] _ _E_n
‘“(T?L) (T NY - (2]

(2.71)
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Projeotile Base Corrector

3@ T - G dpuld i Al 1l
-3 (Pﬁ)ff’-- Z(PE_)‘ffl_, f%(PG)FfEJ (Tl—v)f;_‘t( s)’I‘_f
* )n’1](2 ?;1 2“2;11* % “izfzj
- (%)(éi)"*’{[(éa>§i7+ (TG )M T BT

Foi! e w o G n

+

29V 1L sg cps(Tig- Tintt’

(h(f“*‘

) = (T )] - (“;—)“—;T

} (2.72)
g IL

Summary of the Solution Procedure

At this point all the equations needed to specify the {nvisecid
interior ballistic problem have been developed. A solution procedure

for this problem proceeds as follows:

1) Specify the input parameters listed in table 2-4, for all grid

points { and i¥.

II) Specify initial values for the dependent variables v, p, pu

and e for all grid points i and 1¥,

III) Find the values of the dependent variables at the predictor




u. e

2-39

time level n+1 in the following manner:

Predictor

1) Find V!

a)

b)

ec)

d)

e)

2) Find

a)

o)

c)

d)

e)

n+l
CEL Y B

find V™' at all interior t* points by using Eq.

1‘
(2.44)
find v?fT by using Eq. (2.57)
find vffz by using Eq. (2.58)
find vaT at all 1 grid points by interpolating
between vffT values at i%* grid points {see Appendix
A)
store all values of v?fT and vifT for use in the

corrector FDE's.

—n+1 == N+l n+l

Py (pu)1 and e

1

find 3?‘ !

' (55)?’1 and 5T+ at all f{nterior i grid

points by using Eqs. (2.47), (2.49) and (2.51)

find E?+1 and 3§ET by using Eq. (2.61) and Eq.

(2.63)

find (E-}):"1 by using Eq. (2.63)

-= N+
guess the value of (pu)?E by using a one-sided

difference version of Eq. (2.49)

find E?" and E?;’ by using Eq. (2.68) and Eq.

(2.71)




3)

)

5)

Find yu

a)

b)

c)

Find

a)

b)

e)

d)

Find

a)
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-+ Tn—*f and PE:T.
Yy 1 1
find uT_T at all i grid points by dividing (SG);‘+1
—nel
by p 1

-+t
find T? at all { grid points by applying efither of

__the internal energy equations (Eq. (2.20) or Eq.

.i2.2{f) 1n.Ed: k2.18) where all variables are dis-

cretized (i) predictor variables ey 4 Py

-Né
and u? ! are known

find P} at all 1 grid points by using Eq. (2.17)

where 3?*1 and T?" are now known

EzT n+t
Up , ( u)IL , and L
find P?" (the projectile frontal pressure) by using

P

Eq. (2.30) or Eq. (2.31)
find U:’1 by using Eq. (2.33) where all variables

are discretized (i) predictor variables

find (35)2:1 by using Eq. (2.67)

find L:+1 by using Eq. (2.35) where all varjables

are discretized (1) predictor variables

co, )"”, "*’, and L:*’.

find (CDI)?+1 at all {1 grid points by using Eq.

(2.23) where all variables are discretized (i)

predictor variables




6)

7)

)

Find

a)

b)

c)

d)

Find

a)

b)
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solve for UE:T and LE:T by using the {terative

method described in Appendix A

n+1

w )T ', .

8w and (u_,)

sg'iv '’ sg

find (us);"1 at all { grid points by using Eq. ( )

where all variables are disoretized (1) predictor

variables

find (us)?:1 at all {* grid points by interpolating

between (us)?+1 values at i grid points (see

Appendix A)

find (u“)';;1 at all {* grid points by wusing
backward differencing of (ua)?fT for grid
points (2«+IL)* and one-sided differencing

of (us)?:1 at grid point 1

find (use){"1 at all 1 grid points by {interpolating

>

+1

between (u )T, values at 1% grid points (see

£13

Appendi{x A)

n+l
s)i

n+1

(¥ M

and (Ms)

find (ﬁs)f:T at all 1 grid points by using Eq.

(2.24) where all variables are discretized (i)

o ———

predictor variables and (r,); depends on P?”

find P

?:1 at all {* grid points by interpolating be-

n+
b

tween P values at | grid pulnts (see Appendix A)
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¢) find (ﬁa)ffT at all {* grid points by using Eq.

(2.24) where all variables are discretized (i¥)

predictor variables and (r,);s depends on P?:1
nel N n+T

8) Find R1 , A1 and a, .

SRR "'~ -a) ‘use the set of ‘equations which oorresponds to the

chosen tube geometry (see Tables 2.1-2,3) to

n+1 n+1 n+1
find Ri . Ai and a,
9) Find RH:T A;:T and aE:T
LG IR € | in
8) rind A},', AT," and 2, at a1l 1% grid points by

n+1 n+i

interpolating between R?", A1 and ay values

respectively at 1 grid points

IV) Find the values of the dependent variables at the corrector
time level of n+1 in the following manner:

Corrector

n+1i n+l

1) Find Vig r vy oo

a) find v?:1 at all {nterior {* points by using Eq.
(2.46)

b) find v?:1 by using Eq. (2.58)

n+1
! ¢) find VL by using Eq. (2.60)
d) find v?'1 at all { grid points by interpolating bet-

0 ween \;?:1 values at 1* grid points (see Appendix A)

i o TR S AT T L
s s iy e TR Sy AT T TP T LT S T T R T T e e S T




2)

3)

e) store all values of v2:’ and v?‘1 for use in the
predictor FDE's,

Find 577, GOT', ana 37",

a) find 3?". (55)?*1, and 5?‘1 at all interior i grid
points by using Egs. (2.48), (2.50) snd (2.52)

b) find E?" and 3?;1 by using EqQ. (2.61) and Eq.
(2.64)

e¢) find (BG)?+1 by using Eq. (2.66)

d) guess the value of (;G)?L1 by using a one-sided
difference version of Eq. (2.50)

e) find e ang ' by ustng Ea. (2.70) and Ea.
(2.72)

Fina 777, 77" ang A

) fina @' at all 1 grid points by dividing (G0}
by By

b) find T)*' at all 1 grid points by applying either of

the internal energy equations (Eq. (2.20) or Eq.

(2.22)) in Eq. (2.18) where all variables are

discretized (1) corrector variables
=n+1  —n+1 =n+1
and e Py and uy are known




4)

5)

6)

o)

Find

a)

b)

c)

d)

Find

a)

b)

Find

a)

£1ina p?*' at all { grid points by using Eq. (2.17)
where 32'1 and T?*' are now known

n+1 - .n+1 n+1
Up ’ (pu)IL , and Lp .

find P?" (the projectile frontal pressure) by using
Eq. (2.30) or Eq. (2.31)
tind 02’1 by using Eq. (2.33) where.all variables
are disoretized ({) corrector variables

-=.n+1
rind (pu)IL by using Eq. (2.68)
find L:’1 by using Eq. (2.35) where all variables

are discretized (i) corrector variables

+
n+l Un 1

n+i
(CD1)1 ' y and Ls .

find (CD1)?+1 at all 1 grid points by using Eq.
(2.23) where all varjiables are discretized (1)

corrector varlables

solve for U:+1 and L:’1 by wusing the 1terative

method described in Appendix A

n+1 n+1 n+\
v (ug) Yin » and (usg)i

n+1
(ul) T (usC

s’

find (us)?" at all i grid points by using Eq.

(2.19) where all variables are discretized (i)

corrector variables




7

8)

b)

c)

d)

Find

a)

b)

e)

Find

a)
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find (us)?:1 at all {* grid points by interpolating

between (us)'i'"1 values at 1 grid points (see

Appendix A)

find (use)?:1 by using forward differencing
of (us)?:1 for grid points (1«+IL-1)* and one-sided

differencing of (us)?:1 at grid point 1

find (use)?+1 by interpolating
between (use)?:1 values at {* grid points (see

Appendix A)

e n+i o N+l
(Mg),  and (M), ".

find (ﬁs)';+1 at all { grid points by using Eq.

(2.24) where all variables are discretized (i)
n+1

corrector variables and ("b)i depends on P1

find P?:1 at all {* grid points by interpolating

between P?’1 values at 1 grid points (see Appendix

A)

find (ﬁs)?:’ at all {* grid points by wusing Eq.

(2.24) where all varjiables are discretized (i*%)

1
corrector variables and (r,)is depends on P?:
n+i n+1 n+1
R1 ' A1 and a, -

use the aset of equations which corresponds * the

chosen tube geometry (see Tables 2.1-2.3) to




n
]
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tind R7*Y, AT and 20!

t ' 1
9) Find R],', A7, and a7,
a) find R?:i. A?:1 and 52;1 at all 1% grid points by
interpolating between R?*l, A?" and a?" values

"~ pespectively at i grid points

V) Repeat steps III and IV until the projectile has traveled a

prescribed length Lg.

AR T N G T e T T T T e R T N S e T e S T R e e e
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2.5 Results

In this section, the results of several computer simulations of
inviscid interior ballistic flow are presented and compared. Salient
gun performance parameters were determined and conclusions were drawn

abcut their significance.

Description of Cases

A case study which isolated the effect of a parameter on gun per-
formance was made for the inviscid interior ballistic problem. Table
2.5 lists the values or equations of parameters which did not change in
these case studies. The assumptions common to all the inviseid interior
ballistic case studies are listed as follows:

1) Combustion gas flow i{s unstegdy and one-dimensional {n the

axial direction.

2) There is no heat transfer.

3 The combustion gas {s inviscid (e.g., there is no wall shear
force).

b) No net force is exerted on the propellant grains (i.e., the
propellant grains do not move from their i{nftial positions and
there is no propellant grain drag force).

Table 2.6 1lists the equations of parameters which were varied in

the inviscid interior ballistic case studies. The sum of the parametars

b listed in Tables 2.5 and 2.6 specify the inviscid interior ballistic
N
problem.
4§§ Case AA was the simplest inviscid interior ballistic case study.

._.. :|. bG EBCE O T s, -_‘,_,.’, .A of ,’-’ -’.‘:""'(‘ ) i _'.._',’_-;”‘"‘J [l ‘- u‘} v :"..'_‘ e A .l’.\‘.. .

[ P PUMA S MPOCR WU M R A P

sALN LN



2-48

Table 2.5

Specification in MKS units of parameters which remain

the same for all invisclid interior ballistic case studies

Projectile Parameters
v = 0.0

peé 6
Pop = 6.895 x 10

mP - .375

Air Parameters
Tatm = 300

5
Patg = 1.0 x 10
Yatm = 1.0
Ratp = 296.82

Combustion Gas Parameters

mmass = 24,0728
Té = 300
P, = 3.449 x 108

Ub = 0.0

Propellant Parameters
type = CIL 3331
grain geometry = cylindrical,

~single perforate
ps e 1660.820
Wy = 86,868 x 107
CPS - 1539-25
Tingg = 300
hgg = 4171.998 x 103
u = 0.0

se6
CD - 1'0




Table 2.6
Parameters and equations which were varied {n the
inviseid interior ballistic case studies

tube
Case n rp u(T) geometry
AA 0.0 £(Pyye) given by given by
o o Eq. (2.21) Eqs. (2.1)-(2.3)
8y '3(“’3)* ) iven b tven b
AB 1.08u4x10 b3 £f(Pave given by given by
Eq. (2.21) Eqs. (2.1)=-(2.3)
—3 m3
AC 1.084x10 (FE) £(Pigca1)* given by given by
Eq. (2.21) Eqs. (2.1)-(2.3)
-3 m3
AD 1.08ux10 (EE) f(Pigcal’ given by glven by
Eq. (2.20)* Eqs. (2.1)=-(2.3)
~3 m3
AE 1.084x10 (;E) £(P1oca)’ given by glven bv
Eq. (2.20) Eqs. (2.10)-(2.12)%

* Indicates a change in value from the previous case.
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In addition to the general assumptions listed previously, the following
simplifying sssumptions were used to analyze this case:

1) The covolume (n) is zero (i.e., the equation of state (Eq.
(2.17)) reduces to the ideal gas law).

2) The 1local linear burning rate (rb) depends on the spatial-
average pressure within the tube assembly.

3) ~The ratic of specific heats is constant (i.e., Eq. (2.21) is
used to describe the combustion gas internal energy).

4¥) The tube assembly is a straight tube.

The rest of the inviscid interior ballistic cases reduce these
simplifying assumptions one-by-one in the following manner:

1) Case AB i{s the same as case AA except that the covolume term
i3 no longer 2ero (see Table 2.6 for the value of n).

2) Case AC is the same as case AB except that the local linear
burning rate depends on local pressure,.

3) Case AD is the same as case AC except that the ratic of
specific heats is no longer constant (i.e., Eq. (2.20) is used
to describe combustion gas energy).

y) Case AE is the same as case AD except that the tibe assembly
radius varies smoothly from the breech to the open end of the

tube.

O R Y Ay S Ty e T N T S e e
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Table 2.7
’ ' Muzzle velocity, peak breech pressure, time of ocourence of
peak breech pressure, and percent differences for inviseid {nterior

ballistic cases AA-AE

Case Upf % Dif. Peak P | i-Dif. . Time (PKP) % Dif.
(m/sec) (10°Pa) (milli-sec)
AA 789 1902 1.70
AB 948 20.3 3585 85.5 1.55 -8.8
AC 961 1.4 36u2 1.6 1.50 -3.2
AD 897 3.7 4oo1 11,6 1.40 -6.7
AE 830 -16.7 1769 -55.8 1.15 -17.9
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Case Performanoe

Figure 2.6 shows a plot of breech pressuwre versus time for an ac-
tual gun firing [Ref. 28] and for cases AA-AE. Figure 2.7 shows a plot
of projectile velocity versus time for cases AA-AE. Table 2.7 1lists the
muzzle velocity, the peak breech pressure and the time of occwrence of
peak breech pressure for cases AA-AE., It also 1ists the percent differ-
ence (from the previous case) of each of these quantities.

The effect of the covolume term (n) can be seen by comparing caseu
AA and AB. When compared to case AA, case AB shows a 20.3% gain in muz-
zle veloecity, an 85.5% gain in peak breech pressure and an 8.8% decrease
in the time needed to reach peak breech pressue, This is the largest
change in gun performance found in the inviscid interifor ballistic case
studies. Accurate modeling of the covolume term is therefore seen to be
of paramount importance.

The effect of using local pressure values to find the local linear
burning rate can be seen by comparing cases AB and AC. When compared to
case AB, case AC shows a 1.4% gain in muzzle velocity, a 3.2% increase
in peak breech pressure, and a 1,6% decrease in the time needed to reach
peak breech pressure. This shows one of the significant effects of the
spatial pressure gradient on gun performance.

The effect of a non-constant gpecific heat ratio can be seen by
comparing cases AC and AD. When compared to case AT, case AD shows a
3.7% gain in muzzle velocity, an 11.6% increase peak breech pressure,
and a 6.7% decrease In the time needed to reach peak breech pressure,
This significant change in gun performance indicates that {nterior bal-

listic modeling should account for a non-constant specific heat ratio.




. The effect of a non-constant tube radius can be seen by comparing
cases AD and AE. When oompared to oase AD, case AE shows a 16.7%
decrease in muzzle velocity, a 55,.8% decrease in peak breeoh pressure
and a 17.9% decrease in the time needed to reach peak breech pressure.

This decrease in performance 1is accounted for by the larger
inorease in {nterior volﬁme of the tube assembly (at the time of peak
preséﬁre) for case AE when compared to case AD. This volume increase
lowers pressure and dominates the helpful effect of case AE's increased
projectile cross-sectional area.

Since case AE shows the dramatic effect that tube geometry can have

on gun performance, it is felt that more work should be done to find the

tube geometry which optimizes gun performance.
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Case AD Spatial Distributions

The data generated from case AD was chosen to {illustrate the
behavior of combustion gas spatial pressure, density, temperature and
velocity distributions for the inviscid interior ballistic problem.

Figure 2.8 shows combustion gas pressure plotted against normalized
axial aistance (x/Lp) at five projectile displacements. The first half
of the pressure plot corresponding to Lp = O.44 m shows the effect that
local pressure has on the propellant burning rate. Since the
relationship between pressure and the propellant burning rate i{s non-
linear (see Table A-1), the pressure plot in the burning reglon is also
non-linear. The second half of the presswre plot corresponding to Lp =
0.44 m {s essentially linear, which {s typical of gas expansion with no
combustion. The pressure plots corresponding to Lp = 0,88 m and Lp -
1.32 m show that the effect of the non-linear burning rate diminishes as
the shot progresses and the propellant {s consumed.

Figure 2.8 also shows that the slope of the axial pressure profile

fa initially negative with a 22% drop in pressure from the breech to the

projectile base when Lp = 0.44 m. As the shot progresses, the axial

pressure drop tends toward zero and when L, = 2.19 m (at the end of the
shot), there is only a 2% difference between breech pressuare and
X projectile base pressure,

Figure 2.9 shows combustion gas density plotted against normalized
axial distance at five projectile displacements. As in the plot of
pressure profiles, the effect of the propellant burning rate's

dependence on local pressure can be seen in the axial density profiles.

ng Figure 2.9 also shows that the slope of the axial density profil=2
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is initially negative with a 26% drop in density from the breech to the
projectile base when Lp = 0.44 m. As the shot progresses, this density
drop between boundaries tends toward zero. At the end of the shot (when
Lp = 2.19 m), there is actually a density increase of 4% at the base of
the projectile when compared to the breech.

An interesting phenomenon indicated by Fig. 2.9 is that the density
gradient in the region wheres no oombustion {s taking place is not
constant. Another phenomenon shown by Fig. 2.9 are the oscillations in
the density profiles near the projectile base boundary. These
oscillations become more pronounced as the shot progresses and are non-
physical in origin.

Figire 2.10 shows combustion gas temperatures plotted against
normalized axial distance at five projectile displacements. These plots
show that the axial gradient of temperature is nearly zero in the
combustion region. In the region of no combustion, however. the
temperature gradient is not constant.

Figure 2.10 shows that combustion gas temperature tends to rise
when approaching the projectile base, This temperature {ncrease appears
to have been caused primarily be energy transport from the combistion
region. The osclllations with temperature profiles near the projectile
base boundary are a response to the numerically induced oscillations in
combustion gas density.

Figure 2.11 shows combustinon gas velocity plotted against axial
distance at five projectile displacements. These plots show that the
axial gradient of velocity is nearly constant {n both the combistion
region and the region of no combustion and that the magnitude of the

axial gradient of velocity changes suddenly upon entry into the regioan
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of no combustion,

Inspection of the velocity plots in Fig. 2.11 reveals that in the
region where (x/Lp) is less than or equal to 0.5, the velocity first
increases with time and then decreases with time. This phenomenon
explains why the pressure gradient (see Fig. 2.8) tends toward zero
since the deceleration of combustion gas implies that the driving
potential (i.e., the pressure gradient) is being reduced.

Inspection of the velocity plots in Fig. 2.11 also shows that the

axial velocity distribution approaches a linear profile as the shot

progresses and the propellant is consumed.




Chapter 3
Boundary Layer Flows in Tubes

3.1 Introduction

The viscous effects which occur in the interior
ballistic cycle were studied using a core flcow driven
unsteady boundary layer model. The core flow distributions
of wvelocity, density, and temperature were used as edge
conditions to drive the unsteady boundary layer formed on the
inside of the tube.

The internal ballistic cycle boundary layer flow is
typical of most boundary layer flows in that it occurs in a
narrow region adjacent to the tube wall. The radial
gradients of velocity and temperature are governed Ly the
viscous mixing of the gas. The radial wvelocity and
temperature gradients are steep as velocities range from zero
at the tube wall to the core gas velocity and temperature
increases from ambient at the wall to the core gas
temperature,

The internal ballistic c¢ycle boundary layer flow is
different from typical boundary layer flows in that it is
highly non~steady. The projectile velocity increases through
time, from zero to over 950 meters/sec at the end of the
cycle. Pressures drop from a peak of 3x108 Pa to 5x107 Pa
near the projectile at the end of the cycle. Temperature
differcnces are the largest at the beginning of the cycle
with the tube wall temperature at 300 K and the chamber at
2800 K.

This boundary layer flow 1is different from typical
boundary layer flows in that the velocity and thermzl
boundary layers have zero thickness at two locations inst=2ad
of a single location. At the breech and the projectile, the
veloocity and thermal boundary layer thicknesses are zero.
Going from the breech to the projectile, the boundary laver

edges grow, reach a maximum distance from the tube wall, anc

return to zero.
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The internal ballistic cycle boundary layer flow is
also different in that the core velocities are driven by the
expansion of the2 chamber volume and the effects of transient
expansion waves from the projectile. These core values are
imposed as a boundary condition at the edge of the boundary
layer. In most tube flows, velocities are driven by a
pressure difference between the pipe inlet and the pipe exit.

Although the boundary layer is thin, the effect of the
boundary layer on the ccre is recognized as significant. As
heat is transferred to the wall, a cool dense layer of gas
forms next to the wall. A negative displacement thickness is
produced and the streamlines of the core flow move toward the
wall.

Some previous work has been done to study the boundary
layer flow of the internal ballistic cycle. Most of this
work takes advantage of the similarities between the gun and
the shock tube. That is, the internal ballistic cycle
boundary layer flow is often modelled as the boundary layer
which results from flow through a constant speed shock.
Mirels [Ref. 34 ] obtained the exact numerical solutions to
steady compressible laminar boundary layers behind shock
waves. Here the boundary layers look steady in a coordinate
system fixed to the moving shock wave. Yalamanchili and
Reddy [Ref. 5] extended this problem to include the effect
of wall temperatures different from the freestrean
temperature.

Ccok and Chapman [Ref. 26 ] studied the unsteady laminar
boundary layer on a flat plate produced by a constant speed
shock moving across the plate. The resulting wvelocity
boundary layer had zero thickness at the plate leadirg edge
and at the shock wave. Also, the velocity boundary layer
thickness in this study was found to Dbe 1less than the
corresponding velocity boundary layer thickness fcr a flat

plate flow or constant speed shock.
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However, the shock approximation is not an appropriate
model for this problem. First, the shock is assumed to move
with constant velocity. The projectile does not move at
constant velocity. Rather, the projectile starts from rest
and its velocity may exceed 950 meters/second at the end of
the cycle. This produces a rapidly changing freestream
cendition to which the boundary layer must adjust. Second,
the gas velocity is assumed constant once the gas has passed
«hrough the si_ck. In the interior ballistic cycle, axial
gradients are present, especially near the projectile.
Third, althcugh mass constantly crosses the plane of the

shock; mags cannot pass through the projectile.

Burglies {(Ref. 2 ] derived the momentum 1integral
houndary laver eqguations £. . non-steady, non-uniform flow
develcping in a tube. To facilitate £finding a solution,

urgles assumed that the profile shape factor Hj, (the ratio

petweer displacement thickness 8§, and momentum thickness 8,)

wasz constart alosng the tube length.
E better mcdel was assumed necessary tc¢ understand the

phyzics of the boundary layer fiow of the interior ballistic
o

vi. and to account properly for the efrects of the heat
transfer. “he obijective of the work described in thics
chapter was to model, calculate, and study th= unsteady
velczaty and temperature boundary iayers of the interior
ral:iistic cyc:ile. in *his work, a soluticon technigue was

adartced from the gereral algorvithm Icr uvnsteady ccmpressible
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resulted in tridiagonal systems, which were then solved using
an efficient tridiagonal solution procedure.

Among the answers sought from the boundary layer model
were the location of velocity and temperature boundary layer
edges in both space and time. Integral variables such as
density, displacement and momentum thicknesses were
determined and used to describe wviscous and thermal effects
occuring in the boundary layer. A good understanding of
these effects, will provide a physical basis for the
incorporaticn of second order effects of high speed flow in
tubes. These effects <can then be wused to improve
one-dimensional internal ballistic models.




2.2 Description of Problem

An illustration of an idealized boundary layer on a
barrel wall is shown in Fig. 3.1. The boundaries are the
axisymmetric tube, the fixed breech wall and the movable
projectile. A radial coordinate system is set on the breech
along the centerline.

The interior ballistic cycle begins with combustion
gases in the chamber enclosed by the tube, breech, and
projectile. This gas is at high pressure and high
temperature. The tube wall is fixed at ambient temperature.
The projectile starts at an initial distance along the tube,
with a fixed mass in the chamber. The seal between the
projectile and the tube wall is assumed to prevent mass from
leaving the chamber. The projectile does have mass, and
accelerates away from the breech because of the high chamber
pressure.

As the projectile accelerates, gas velocities along the
centerline increase, driven by the volume expansion of the
chamber. The work of Chapter 2 was used to produce these
necessary velocities, pressures, and temperatures which drive
the boundary layer flow. The no-slip c¢ondition on the tube
wall creates a velocity gradient between the wall and the
centerline, A boundary layer in velocity exists along the
length of the tube. Along the breech, the no-slip condition
forces all gas velocities to zero, and the velocity boundary
layer thickness 1is zero. Along the projectile wall, the
nc-slip condition forces all gas velocities to be identical
to the projectile velocity, making the velocity boundary
layer thickness zero.

An additional characteristic of this flow 1s the
unusually high tube wall shear stress near the projectile.
As the projectile accelerates from the breech, new tube wall
area 1s constantly being unccvered. The no-slip condition,
u{wall)=0, applies at all times along this new area. Gas

velocities in the core near the proijectile are approximate L0
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the projectile velocity itself. 1Inertial forces are much
greater than viscous forces and the boundary layer is kept
thin. The thin boundary layer, with high core velocity,
creates a steep gradient and unusually high tube wall shear
stress near the projectile.

As the projectile accelerates from the breech, the core
gas temperature drops but remains relatively high compared to
the cool wall, which is fixed at a low temperature, This

- gradient in gas temperature produces a thermal boundary layer

along the 1length of the tube except at the breech and
projectile wall. Along the breech and the projectile wall,
all gas temperatures are set egqual to the immediate core
temperature; and the thermal boundary layer thickness is
zero.

An additional characteristic of this flow 1is the
negative displacement thickness prcduced by the tube wall.
The tube wall, held at low temperature, produces a thin layer
of dense gas into which mass is constantly being entrained.
The radial velccity is negative and streamlines indicate a
negative displacement thickness exists.

Very shortly after the start of the interior ballistic
cycle, core gas velocities are high enough that momentum
effects dominate over the free convection from the cool wall.
It is assumed that the thermal boundary layer never reaches
the centerline, and there is a substantial amount of core gas
which never sees the effect of the cool wall,

Close to the projectile, heat transfer to the tube wall
is significant. As the projectile accelerates, cool tube
wall is constantly being uncovered. Because of this, the
thermal boundary layer near the projectile is not given the
opportunity to extend any appreciable distance into the core,
The hot core and cool wall create a steep temperature

gradient and high rate of heat transfer near the projectile

throughout the entire cycle.




2.3 _Formulation of Problem

The assumptions used to formulate the equations of

motion governing the previously described boundary layer flow
are: '

1) Combustion gases at high pressure and high
temperature fill a chamber. The mass of this
gas remains constant in time as no gas -is
allowed to escape the chamber. Also
throughout time, the tube wall is held fixed
at its initial ambient temperature,

2) As the projectile accelerates, core
velocities increase and boundary layers in
velocity and temperature form. Because these
boundary layers are thin and never reach the
centerline, there is some core gas which
appears to never see the effect of the cool
tube wall.

3) Gradients in the radial direction are much
stronger than gradients in the 1longitudinal
direction. Second derivatives (which
correspond to dissipation) in 2z are
negligible to second derivatives in r,.

4) The pressure gradient in the r direction
inside the thin boundary layer is negliigible
as compared to the longitudinal pressure
gradient. Pressure is a function only of z.

5) The radial velocity is small when compared to
the longitudinal velocity.

These assumptions emphasize that the internal ballistic
cycle is much like a typical boundary layer flow with a core
flow and thin layers where velocity and temperature gradients
exist. Such flow suggests the use of typical boundary layer
equations:

Continuity

do+_dxpv) + g(pu) = 0 (3.1)
Jt ror ox
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Energy
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For simplicity, the X-momentum equation will hereafter
be called the momentum equation. The unknowns in these
equtaions are:

1) longitudinal velocity, u
2) radial velocity, v
3) density, p
4q) stagnation enthalpy, H

With three equations for four unknowns, at least one
more equation is necessary to provide closure. Most often,
this equation is an equation of state. However, no single
equation exists which relates two or more of the above four
unknowns. Three equations will be introduced, with two
additional unknowns, temperature and static enthalpy. Since
the combustion gas is at sufficiently high temperature, the
ideal gas equation of state will be used:

P=p*Rg*T (3.4)
where P = pressure at a point

p = density at a point

ch = gas constant for the combustion gases

T = gas temperature at a point
The introduction of T is another unknown. The next

equation to be used is the static enthalpy equation:

Hl = H - (u?)/2 (2

[¥8)
(92}
-~

where Hl = static enthalpy at a point
H = stagnation enthalpy at a point
u = longitudinal velocity at a point
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thermal gradients are steep. For these reasons, the
‘ longitudinal coordinate A is chosen to be placed on the
projectile and oriented toward the breech. It must be noted

that any longitudinal grid point is dependent on space and

time. That is A=A(z,t).
The solution to the equations which govern the interior
ballistic cycle boundary layer flow is obtained by marching

in time. For a given time, the calculations sweep in the A

direction, from the projectile to the breech. This 1is
opposite in direction t- the actual gas flow itself and
viclates the principle +5 information is propogated only
downstream in boundary layer flows and calculations. It is
therefore necessary that the calculation variable also "flow"
from the projectile to the breech. A bound fcr the
longitudinal velocity of any gas particle is the projectile
velocity. That is, no core gas particle has a longitudinal
velocity which exceeds the projectile velocity. By choosing

a calculation variable U = u - ups gas velocities properly

orient from the projectile towards the breech.

The coordinate { is located on the wall and oriented
perpendicular to the core flow. Since viscous effects near
the wall are important, grid stretching is employed to
cluster more points near the wall and fewer points in the
core flow., Since the tube diameter remains constant in time
and there is no advantage to changing the stretching function
in time, the radial coordinate is not time dependent. The
resulting coordinate system is illustrated in Fig. 3.2.

The previously discussed governing eqgquations are
transformed (the details are given in Appendix B). These new
equations which govern the boundary layer of the interior

ballistic cycle are:

: ; . (O 1 X M Y v *
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Static enthalpy can be related to temperature using
experimental data:

H1l = H1(T) or T = T(H1) (3.6)

The reciprocal equation, T = T(H1l), assumes that the
static enthalpy and temperature are monotomic.

These six egquations apply to typical boundary layer
flows. The internal ballistic cycle has several departures
from the typical boundary layer:

1) The core flow occurs in a closed system

rather than an open sysvem, The projectile
velocity represents a bounds to the core
velocity. That 1is, no gas particle has a

longitudinal velocity which exceeds the
piston velocity.

2) The velocity and thermal boundary layers have
zero thickness at two locations instead of a
single location. At the breech and the
projectile wall, the velocity and thermal
boundary layer thicknesses are zero. As the
boundary layer equations spatially "march"
from one end of the tube to the other, the
velccity and thermal boundary layers must
reach a peak value and return to zero.

3) Core velocities are driven by the volume
expansion. Since the projectile experiences
acceleration thoughout the entire ballistic
cycle, the core velocities are also
constantly changing in space and time.

4) Cool tube wall is constantly being uncovered.
Typical boundary layer problems consider a
fixed amount of wall area as part of an
inertial coordinate system. This problem
constantly exposes new tube wall area at the
piston, which contributes to high shear
stress and high rates of heat transfer inear
the projectile.

The last item above indicates that the dynamics of most
interest occur near the projectile. Near the projectile,

core velocities reach maximum wvalues, and velocity ancd




Continuity
| ’ p + - 8,2 (zpv) + A2 _(pU) = O (3.7)
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Static Enthalpy

R I

H1 = H - (Uty)? (3.10)
2

", Gas Properties
T = T(H1l) (3.11)

Equation of State

P=p*ch*T (3.12)

The unknowns in these equations are:

1) calculation velocity, U
2) radial velocity, v
2) density, p
: 4) stagnation enthalpy, H
' 5) static enthalpy, H1
6) temperature, T

' The knowns in these equations are:

1) projectile velocity, u
2) pressure,

@ 3) wviscosity, u

v}




4) turbulent viscosity, Ko

5) Prandtl number, Pr

6) turbulent Prandtl number, Prp

7) gas constant, ch

8) metric coefficients, lt' A, Cy

The fluid property of turbulent viscosity Hp 1is

evaluated using a simple Prandtl mixing length model:

Hp = p * (1p)2 * %$ l (3.13)
y t

where lpt is the mixing length. The value of lpr is dependent

on whether a given gas particle is in the inner or outer

region of the boundary layer. In the inner region, the

mixing length lpr = 1; is evaluated by:

l1; =K * y * (l-exp(-y*/a%)) (3.14)
Y+ = Y/ ;a-u: ' Ru
19Y |w  Mw
where K = Von Karman constant = 0.41
Y = perpendicular distance from wall
A*= damping constant = 26
py= density at wall
= absolute or dynamic viscesity at wall
In the outer region, the mixing length lpr = 1, 1is

evaluated using:

1y = Cq * b, (3.15)

(e}

where C; = 0.089

8, = instantaneous velocity boundary
layer thickness.
The switch from the inner region mixing length .lpr = 14
to the outer region mixing length lpr = 1, is made when Ij

exceeds lo.
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3.4 Numerical Method of Solution

In the previous section, the equations (3.7) to (3.12)
were developed to describe the boundary layer flow of the
interior ballistic cycle. There is no analytical solution to
this set of non-linear partial differential equations. To
solve these coupled equations on a digital computer requires
that the continuous physical grid be discretized and that the
partial differentials be .replaced with finite difference
formulas. Typical for boundary layer flows, the following
techniques were applied to the momentum and energy equations:

1) Partial derivatives in time are forward
differenced, involving only the current time
step and the next time step forward in time.

2) Partial derivatives in the longitudinal
direction are all of first order. Backward
differencing is applied across the current
grid point and the preceeding grid point.

3) Partial derivatives in the radial direction
use at most three grid points, and are
central differenced where possible.

The following techniques typical for boundary layer
flows were applied to the continuity equation:

1) Partial derivatives in time are forward
differenced, involving only the current time
step and the next step forward in time.

2) Partial derivatives in the longitudinal
direction are all of first order. To aid in
properly determining mass flux, backward
differencing is applied across the currert
grid point and the preceeding arid point, and
across the respective pair of points nearer
the tube wall.

3) Partial derivatives in the radiali direction
are all of first order. Backward
differencing 1is applied acrcss the current
grid point and the neighboring point nearer
the wall.




Except for the partial time derivative, some choice
must be nmade for the time level of each term in the finite
difference equations. Normally all of the spatial derivative
terms are sought at the current time level (n) or the next
time level (n+l). Time levels of the spatial derivatives are
not mixed. The choice of time level often determines whether
the method of sclution is explicit or implicit. An explicit
scheme results wher there is only one unknown in each of the
governing equations. An implicit scheme results when any
equation contains more than one unknown. Iterative
techniques or matrix solvers, or both, must be used to solve
the implicit scheme coupled eqguations.

The eguations which govern the interior ballistic cycle
boundary layer flow cannot be solved explicitly:

1) The continuity eguation has a time derivative

across density (p), providing density at the
new time level.

2) The momentum equation has a time derivative
across calculation velocity (U), providing
calculation velocity at the new time level.

3) The energy egquation has a *ime derivative
across stagnation enthalpy (H), providirng
stagnation enthalpy at the new time level.

4) With density known, the ideal gas equation of
state provides temperature (T).

S5) The temperature being known implies a static
enthalpy (Hl) from gas property tables.

6) Static enthalpy (H1l) being known and the
calculation velocity (U) being known implies
a stagnation enthalpy (H) which 1s possibly
different from that obtained in step 3.

7) The radiail velocity (v) is never sclived.

N

The logical step to developmerit of an explicit schere
determine two values for the stagnation enthalpy (H, whiie

failing to solve for the radial velocity (v). The ez




which govern the interior ballistic cycle boundary layer flow
cannct be solved explicitly.

If the convention is retained that time levels within
spatial derivatives are not mixed, then an implicit scheme
must be used. All the spatial derivative terms are sought at
the next time 1level (n+l). Following the previously
mentioned guidelines for finite differencing, the resulting
equations are:
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Static Enthalpy
+1 o +1 1, 2
(H1, )" (H 4" (U, y+up) ™) (3.19)
2
Gas Properties
(T, ™ = T(H1 )™ (3.20)
Equation of State
(B, )™ = (p )M X Reg * (T O (3.21)

The subscript(i) refers to the axial location of a
computational grid point. This subscript (i) ranges from i=1
to i=IL, where IL is the number of axial grid points.

The subscript (j) refers to the radial location of a
computational grid point. This subscript (j) ranges from j=1
to j=JL, where JL is the number of radial grid points.

The solution to the finite difference equations is

obtained by marching in time. For a given time, calculations

sweep in the A direction, from the projectile to the breech.
This is in the same direction as the flow, propogating
information to the next i-station. At a give i-station,
unknowns in the finite difference equations occur at the
(3-1), (3j), and (j+l) gridpoints.

The continuity, energy, static enthalpy, and gas
property equations and the ideal gas equation of state are
all 1linear and can be efficiently solved on a digital
computer., However, the momentum equation is non-linear in
calculation velocity (U) at the gridpoint (i, 3J). To

efficiently solve the momentum equation on a digital

computer, this (Ui’j)2 term must be linearized. Newton

linearization is used:




(2)mt = 2Byt - ((G)n1) 2 (3.22)

where U = calculation velocity
= predicted calculation velocity,
U from most recent iteration
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The use of Newton linearization for the (Ui_,_)2 term of
the momentum equation necessitates the use of iteration in
obtaining a solution at a given i-station. The iteration
procedure starts with valu2s of H, U, p, and v from the

previous time level, adjusted for the projectile acceleration

and increase in chamber length. The energy eguation 1is

solved for stagnation enchaipy (H). The linearized momcnium
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equation is solved for calculation velocity (U). The ideal
gas equation of state is solved for density (p). The
continuity equation is solved for radial velocity (v). The

new values of H, U, p, and v are used as initial values for

the next iteration and the iteration process is repeated
until an acceptable solution is obtained. An acceptable
solution for the time level (n+l) at the given i-station
requires convergence by one of two criteria:

1) If the number of iterations for a given
station reaches 30, oscillation around the
correct answer is assumed. The oscillated
values from the two most recent iterations

are averaged to provide the answer at this
i-stacion for this time level.

2) For every variable, at every (i,3j) gridpoint:

a) If the absolute value for a variable at a
point is less than 1E-4, then convergence at
this point, for this variable, for this time
level is met.

or b) If the difference between successive
iterations for a variable at a point is less
than 00.01%, convergence at this point, for
this variable, for this time level is met.

The fluid properties of viscosity (M), temperature (T),

and Prandtl number (Pr) have been calculated and stored in
table form. These fluid properties are dependent on the
static enthalpy:

Ho= BOMHL O™ T = T((H1, )™ Pr = Pr((Hl, )"

These fluid properties are updated during an iteration

’{: step Ly the soclution of the energy equatior for the
.é. stagnation enthalpy (H) and the solution of the lirearized
f momentum equation for the calculation velocity (7)), which
- together define the static enthalpy (E1)
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" The fluid property of turbulent Prandtl number (Prq)

has been set to unity and requires no updating during
iterations.

] The fluid property of turbulent wviscosity (Hop) is

evaluated using a simple Prandtl mixing length model. The
turbulent viscosity is updated during an iteration step by
the solution of the energy equation for the stagnation
enthalpy, the solution of the linearized momentum equation

for the calculation velocity (U), and the solution of the

ideal gas equation of state for density (p).

o Very shortly after the start of the interior ballistic
“ cycle, core gas velocities are high enough that momentum
effects dominate over the free convection from the cool wall.
It is assumed that the thermal boundary layer never reaches

the centerline, and there is a substantial amount of core gas

ey -
T e T T

which never sees the effect of the cool wall. Within this

core gas, radial gradients in velocity or temperature do not

» exist and calculations are not necessary. At a given
¥ i-station, calculations are performed only to the boundary
. layer edge. The 1location of this boundary layer edge is

determined in the following manner:

1) At a given i-station, the radial velocity
gradient edge (JV) is defined as the first
grid point from the wall where
u e 0.95 * u(core).

2) At a given i-station, the radial temperature
. gradient edge (JT) 1is defined as the first
. grid point from the wall where
" T 2 0.95 * T(core).

g 3) At a given i-station, the boundary layer edge

is defined as the maximum of JV or JT, with
o an additional three grid pcints added t:o
4 allow for velocity or temperature boundary
i layer growth.

The location of the boundary layer edge 1is wupdated
B @ after each iteration.
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The <c¢ore velocities, ¢ore pressures, and core
temperatures which drive the internal ballistic cycle
boundary layer flow are taken from the work of Chapter 2.
These core values, determined by one-dimensional Euler
equations where specific heat is non-constant, will not
satisfy the boundary layer momentum or energy equations.
Some adjustment of the core gradients is necessary:

1) Along the centerline, the radial velocity
(v), and first and second derivatives in the
radial direction are zero. The momentum and
energy egquation reduce to a coupled set of
equations with unknowns of calculation
velocity (U), pressure (P), and enthalpy (H).
Imposing one of these three as an input
profile specifies the profiles of the other
two.

2) Velocities are considered of most importance,
and the velocity profile is chosen to be the
independent profile.

3) The momentum equation implies a pressure
profile from the initial value of pressure c¢n
the projectile. The energy equation implies
an enthalpy profile from the initial value of
enthalpy on the projectile. Velocity and
enthalpy prescribe the temperature profile.
Since the pressure and enthalpy profiles are
themselves dependent on the temperature, some
iteration is necessary to obtain a convergent
set of pressure and temperature profiles.




2.5 Results

To draw conclusions about boundary layer flow inside
tubes, several parameters are examined.

The velocity boundary layer edge (§,,) at a given
i-station is defined as the first location away from the wall
where the gas velocity equals 95% of the core velocity at
that i-station.

The thermal boundary layer edge (GT) at a given
i-station is defined as the first liocation away from the wall
where the gas temperature equals 95% of the core temperature
at that i-station.

For compressible flow inside tubes, the displacement
thickness (8;) is given by:

(}-O )
= 1 - 1 + 2 1 - pu -] rdr

2 j
R | Pele
_J r=R -

ket
R

For compressible flow inside tubes, the momentum
thickness (8,) is given by:

For compressible flow inside ¢tubes, the energy
thickness (83) is given by:

r=0
6 = 1 - 1+ 2 l | pu {1 - w2 | rdr
- = —
R R Palg u :

| Lo ¢
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For compressible flow inside tubes, the density
thickness (Sp) is given by:

("
- 1 - 1 + 2 1 -9 rdr
L e
R L pe
r=R

%
R

'The interior ballistic cycle occurs in an axisymmetric
tube, so that A = nRZ, dA = 2%rdr, and the 1limits of
integration go from the tube wall (r=R) to the centerline
(r=0) .

The work of Chapter 4 will model the interior ballistic
problem as one-dimensional. 1In this model, integral averages
over a Ccross sectional area remove radial dependence, so that
mass, momentum, and energy are only axially dependent. To
study the validity of this one-dimensional model, three
ratios are examined:

Koy = (/A [ p u da]
(1/a [ p dA] (1/a [ u dA)

Koy2 = [1/A | p u? da)
(1/a § p da) [1/a ] u? da)

Ken = (1/Afeuwan)
(1/a] e da) (1/a ] u an)
where e is the total energy:

e = pu(T) + 0.5u) = p[h - P+ 0.5u2]
P

If Kpu' Kpuz, Keu are close to unity, the
one~-dimensional model is good. The interior ballistic cycle
occurs in an axisymmetric tube, so that A = nRz, da = 27rdr,
and the limits of integration go from the centerline (r=0) to
the tube wall (r=R).

The boundary layer flow of the interior ballistic




3-26

probler was examined using input data from Heiney's test case
536 [Ref. 14 and 29]). The projectile started at a distance
of 0.22 meters from the breech. The chamber enclosed by the
projectile and breech was filled with combustion gases at a
pressure of 6.6 x 106 Pa ana temperature of 2916 K. As shown
in Fig. 3.3, input variations in pressure, temperature, and
velocity were determined at the projectile base through time
using the computer code of Ref. 14. A linear core velocity
profile was assumed from the projectile to the breech. The
pressure and temperature profiles are then determined from
the momentum and energy equations respectively.

The first output parameter examined was the
displacement thickness. Figure 3.4 shows that the
displacement thickness is negative for most of space and
time. A short time after the projectile passed a point in
the tube wall, the cool temperature of the wall created a
thin layer of dense gas next to the wall. Since the tube
wall temperature is held fixed at ambient temperature, core
gas is constantly entrained into this thin layer of dense gas
and the displacement thickness at a point continues to grow
in time. The movement of core gas towards the wall is
expansion that does no useful work. The pressure times
change in volume of this process is a measure of this energy
loss.

Figure 3.5 shows the momentum thickness as a function
of time and space for the test case 536. The momentum
thickness is similar to the displacement thickness in that it
is negative for the majority of space and time. The momentum
thickness differs from the displacement thickness in that
viscous forces have more influence. This is evident ain the
shape of the momentum thickness curve for fixed time. Near
the breech, the core velocity is small and the resulting
radial gradient of axial velocity is also small. Viscous
effects near the breech are small, so that thermal effects
dominate and the distributions of momentum and the

displacement thicknesses have a similar slope. Near the
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projectile, the gas velocities are high, causing large
velocity gradients in the radial direction. Viscous effects
dominate causing the momentum thickness curve to pass from
negative to positive. Once positive, the momentum thickness
reaches a maximum and returns to zero at the projectile. The
peaks in momentum thickness correspond to peaks in the
velocity boundary layer.

The ratio of the momentum thickness to the displacement
thickness is known as the shape factor Hy,. Figure 3.6 shows
the shape factor H;, as a function of time and space for the
test case 536. As the momentum thickness crosses from
negative to positive, the shape factor H;, experiences a sign
change. Examination of Figure 3.6 shows that the shape
factor Hj, is not constant in time. Figure 3.7 shows the
shape factcr Hy, normalized over axial distance. Figure 3.7
further shows that the shape factor H;, is not constant in
time. These suggest that the shape factor is not a good
correlator.

Figure 3.8 shows the velocity boundary layer as a
function of time and space. As predicted, this boundary
layer has zero thickness at two locations, the breech and the
projectile. It is seen that the velocity boundary layer is
small as assumed, reaching a maximum thickness of four
percent of the tube radius. The internal ballistic probiem
has the characteristic of removing points previously in the
velocity boundary layer. At a given x 1location, the
projectile passes and the boundary layer at this x location
grows, peaks, and then decreases. This has significance in
the fact that there are some points previously in the
velocity boundary layer that are removed from the velocity
boundary layer at this x location.

Figure 3.9 shows the thermal boundary layer as a
function of time and space for the test case 536. As
predicted, this boundary layer has zero thicknes, at two

locations, the breech and the projectile. It is seen that

the thermal boundary layer is small as assumed, reaching a
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maximum thickness of 11 percent of the tube radius. The
@ growth rate of the thermal boundary layer is approximately
twice that o¢f the velocity boundary layer. Further, all

points enveloped in the thermal boundary layer remain within
this thermal boundary layer through time.

The objective of the interior ballistic problem is to
accelerate a projectile. This objective is accomplished by
the high chamber pressure. The cool tube wall has the effect
of increasing the effective chamber volume and decreasing the
effective pressure which acts on the projectile. The final
result is a decrease in the muzzle exit velocity of the
projectile.

The density thickness (Fig. 3.10) provides a measure of
this effective volume increase. An assumption made of the
interior ballistic cycle was that the mass in the chamber is
constant. For the proper density flux at any given cross
section, the one dimensional model must increase the tube
radius since density thickness is negative. As the effective
volume increases, the effective pressure must decrease,
assuming the combustion gas acts as an ideal gas:

P *V=m>*ZRK*T = ccastant

The change in effective volume is shown in Fig. 3.11.
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Chapter 4

VISCOUS FLOW INSIDE TUBES

4.1 Introduction

In this chapter, an interior ballistic model for analyzing viscous
flow inside tubes that launch high-speed projectiles is described. The
interior ballistic model is of the quasi multi-dimensional type (see
Section 1.3) and is based on the interior ballistic model described in
Chapter 2 and the model for the momentum and thermal boundary layers
described in Chapter 3. The interior ballistic model described in this
chapter {s the first quasi multi-dimensional model ever developed for
analyzing the flowfield between the breech and the base of the projec-
tile which takes into account the effects of the momentum and thermal
boundary layers next to the tube wall.

In the next section, the problem involving viscous flow inside
tubes is described. Afterwards, in Section 4.3, the formulation of the
problem 1s presented. In Section 4.4, the numerical method used to

obtain solutions is described. Finally, in Section 4.5, the results are

presented.
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4,2 Description of Problem

The description of the viscous interior ballistic problem i{s the
same as the description of the inviscid interior ballistic problem (see
Section 2.,2) except that the combustion gas is now considered to be a
viscous fluid.

For the viscouS interior baliistic problem, we are interested in
evaluating the influence of viscosity, heat transfer, and the ratio of
propellant grain velocity to combustion gas velocity on gun performance,
Table 4.1 shows a list of parameters necessary to specify the problem.

Equations, equation numbers, and values for these parameters are

presented in Tables 2.1-2.3 and in Tables 4.2-4.3 (see Section 4.5).




Table 4.1
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Parameters needed to specify the viscous interior ballistic problem

Tube Qeometry Parameters

‘radius (R)
*cross-sectional area (A)
*initial breech-to-projectile
ﬁ)
‘axial distance from the breech
to the open end of the tube (L¢)

axial distance (Lp

Projectile Parameters

‘mass (mp)

‘initial velocity (Upo)

‘pressure at which projectile
motion begins (P,.)

Air Paramet'ers

*Temperature (T,..)

atm)
Specific heat ratio (Yatm)

‘Pressure (P

‘Gas constant (Ratm)

Combustion Gas Parameters

‘molar mass (mmass)
‘initial temperature (Té)
‘initial pressure (P,)
‘initial velocity (Uo)
*viscosity ()

‘conductivity (k)
‘friction factor (f)

*Prantl number (Pr)

Propellant Parameters

‘type
‘grain geometry
*initial mass (m,)
* covol ume (n)
*density (ps)
*initial web thickness ("b)
*initial prcpellant grain
length (ad)
‘initial perforate
diameter (did)
‘specific heat capacity (Cpg)
*initial temperature (T;.;¢)
‘ignition temperature (Tig)
‘linear burning speed (ry)

*specific energy release (h.,)

s
*initial velocity (uso) :
‘propellant grain-combustion
gas velocity ratio (CD,)
‘drag coefficient (Cp)
‘inftial axial distance between
the breech and most remote

propellant grain (st)

Tube Wall Parameters

*‘initial temperature (T )
W

¢
‘diffusivity (a)




4.3 Formulation of Problem

Introduction

This section presents the assumptions and the governing equations
used to describe the viscous interior ballistic problem. As {n the
inviscid formulation, the governing equations have been classified intn
the following three groups:

1. Corservation Equations - the set of coupled 1st order partial
differential equations which describe
the conservation of mass, momentum
and energy.

2. Constitutive Equations -a group of equations which describe

dependencies Dbetween two or more

variables in the conservation
equations.
3. Auxiliary Equations - a group of equations resulting from

models developed for terms {n either
the conservation equations or the
constitutive equations.

In this section, the conservation equations governing this problem
are presented first. Afterwards, the constitutive and auxiliary equ-
ations for this problem are presented. Here, it is noted that only the
final forms of these equations are presented. The derivation of these

equations are given in this section or in Appendix A.




Conservation Equations

The conservation equations governing this problem are the mass,
momentum and energy conservation equations. The following assumptions
were made to facilitate the derivation of the conservation equations for
the viscous interior ballistic problem:

D) The problem is unsteady and one-dimensional in the axial

direction were radial effects are accounted for by the K-
factor approach (see Appendix A).

2) Pressure varles in the axial direction only.

3) The propellant grains can be treated as a continuum.

4) The propellant grains are incompress-ble.

5) The propellant gra...s are distributed homogeneousiy across the

cross-sectional area of the tube at any axial location.

6) There {8 no interaction between the propellant grains and the

tube wall.

7) The combustion gas is a viscous fluid.

With these assumptions, the viscous conservation equations can be

written as follows:

Continuity of Propellant Grains

au u
a\) - 3 - i\i - S - * L (u 1)
at ax Us 3x T VE T Mg Py )
Continuity of Combustion Gas
- - 3K - -
3 _ _ pu dA _ == " p1 _ 9(pu) p - _ dv
ot pu & 3x  P* Tax Kpu 3% (1-v) [(KpuJ Js) X
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du, u .o
- v(5§3 + 13 %%)] + (T§3)M3(1 - p/ps) (4.2)
Conservation of Momentum for the Combustion Gas

3(pu%)

alpu) _ 1 - — 3v _ P
B — {-K + [pu (K ,u=-K u) + P) = -}
ot Kpu _puz ox puz pu s X  ax
- \
— [x jus (‘I-\a)Kpuus] " 3 3K ‘
L Ny gL LS UL R L
Kpu A ox ot oX -
v g u v -
(1_v)Kpu Y 1} {K u o= Ms[CD1 - l(p‘J p/ps]
1
- — [t _2n7R/A + D/A]} (4.3)
Kpuz1 V) w

Conservation of Energy for the Combustion Gas

' = ey = 3K
! de  _ 3(eu) 1 -= —_ =,y 0v _3(Pu) == ""eu
; 37" Keuw 3t TS (K, eu + Pu eu,) 5%~ ax %Y T5x
- - - ‘
i [(K,eu + Pu) + (1_v)eu 3 _ sy du NI
A ax  (1-v) 9x {(1-v) s sg
€

-C T ) = (h(T) - h(Tign))] - 3-}

Ps(Tign- init

1 2
T WR (-4
where the terms of Eqs. (4.,1)-(U.U) are defined as
1) A = the tube cross-sectional area

a 2) v = Ag/A = the ratio of propellant cross-sectional area to

tube cross-sectional area




| ' 3) u, = the propellant grain velooity
H ) ﬂs = the rate of prbpellant consumption per unit volume
5) Py = the propellant grain density
6) 3 = the combustion gas density averaged over the tube cross-
sectional area at some axial location
7) u = the combustion .gas -velocity averaged over the tube cross-
‘sectional area at some axial location
8) P = the combusticn gas pressure
9) T = the combustion gas temperature averaged over the tube
cross-sectional area at some axial location
10) e = the combustion gas energy per unit volume averaged over
the tube cross-sectional area at some axlal location

11) h = the chemical energy released per unit mass of propellant

88
12) Cpg =the specific heat capacity of the propellant
13) Tig = the ignition temperature of the propellant
14) Ty ¢ = the initial temperature of the propellant
15) n(T) = the enthalpy of the combustion gas at temperature T
16) h(Tig) = the enthalpy of the combustion gas at temperature Tig
17) L Pu/pu = he density flux K-factor
18) K 5" 332/352 = the momentum flux K-factor
| \
19) K:: « Bu/eu = the energy flux K-factor
290) CD1 = the propellant grain-combustion gas velocity ratio
21) 1, = the tube wall shear stress
! 22) D = the propellant grain drag force
23) q, = the tube wall heat flux

The conservation equations given by Egqs. (4.1)-(4.4) contain more

dependent varjables than the numbter of such equations, These
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oonservation equations are oclosed by the constitutive and the auxiliary
equations described in the next two sections.

Constitutive Equations

-The oonstitutive equations for the viscous {nterior ballistic
problem are the same as those presented for the inviscid interior
ballistic problem (see Section 2.2.

These equatjions are restated here
for convenience:

1)  An equation of state given by

Pl - n) = AT (4.5)
(4]
: 2)
.

A constitutive relationship for combustion gas energy given by
=M + 3T (4.6)
3) The dependency between

propellant grain

velocity and
combustlon gas velocity given by

u, - CD1 u (&.7)

Auxiliary Equations

The combustion gas internal energy and enthalpy equations geveloped

for the {nviseid {interior ballistic problem are also

used for the
viscous interfor ballistic problem and

are restated here for
convenience:

Combust.ion Gas Internal Energy
]

a(F) = [-7.1259x10" + 4.922ux107(F°2) - 1.2872x108(F ")

IO R MO LA

0§, ~

Pt

PLAE R Al Nl S Wi WA LR

BRI M
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+

2.8007x10°(F *%) + 1.6310x10"(2nT) - 2.3833x103(F %)
- 1.8069x103(T*°) + 6.2205x10'(T) - 8.8221(T *2°)
; . 1.551_7(?"5)- - 5.72_97x1o'3(T"75_) - 5._5_6_57x1o'3(T2) | _
+ 8.066x10-8(f3)](1000/mmass)J/Kg (4.8)
where mmass = the molar mass of the combustion gas.
Combustion Gas Enthalpy
h(H) = by ¢ u® + R T + P (4.9)

Propellant grain-combustion gas velocity ratio

Two formulas for the propellant grain-combustion gas ratio CD; were
developed for the viscous interior ballistic problem. The first formula
presentea here describes a varjable CDy; while the second assumes that
the propellant grain veloocity equals the combustion gas velocity.

The formula derived for the variable, CDy, 18 intended to express
only the most dominant physics involved in the interior ballistic
combustion/expansion process. Therefore, simplifying assumptions which
are more restrictive than those used to obtain the viscous conservation

equations (Eqs. (4,1)-(4.U)) have been used here. These assumptions are

w as follows:

By R T I S e T T R PR e O T e R T R S T T P I T T T A L e R T T S T A T T S SR F e R s ST e LI - R AT T Me0” e R b PR e . o <= T




1)

2)

3)

)

5)

6)

7
8)

Quasi-steady conditions hold for all time dependent varjiables
{nvolved in this derivation,

The temporal gradient of CDy has a much smaller magnitude than
either the temporal gradient of propellant grain velocity (ug)
or the temporal gradient of the combustion gas veloecity (u),

i-e.,

3CD1 aus 3u
el << lgel or e (410
At any time, u is a linear function of the projectile velocity
(Up) and the projectile travel length (Lp). i.e.,

u s (%—)U (4.11)

p 1%
The spatial gradient of CDy i{s negligible at any time, i.e.,

aCD
ox

1.o (4.12)

All other forces felt by a prcpellant graln are negligible in

comparison with the pressure drag force, l.e.,

The propellant grains are single perforate cylinders with a
time-averaged radius r and constant length 1.

The propellant grains are incompressible.

At any time, the combustion gas spatial density gradient is

I P
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. negligible, {.e.,
2
3% 0 (4.13)

Under these assumptions, the following two equations were derived for

CD«| 3.
1
CD1 =1 + E?é(1 a+1 (4,14)
2CpU 2
D" p
Fa = s————e (4.15)
3wrpsap
where
1) Fa = the acceleration ratio of propellant grains
to combustion gas
2) ap = the projectile acceleration

3) CD e a drag coefficient

and p, up, r, and Py have previously been defined.
The second formula used for CDy describes the limiting case for the

viscous interior ballistic problem. This formula is simply
CD, =1 (4.16)

The rate of propellant consumption per unit volume

Two formulas for finding the rate of propellant consumption per
unit volume (ﬁs) are presented here for the viscous interior ballistic

e problem. The first formula for ﬁs was also used for the {inviscid

interior ballistic prcblem (see section 2.3) and is restated here for




]

AN

convenience:

p'q = 0 [A ..\igl—]r

(b.17)
s s"bt IkvAdx

b
The seoqnd formula for ﬁs takes into account the non-constant burning
surface area of individual propellant grains. The following assumptions
were used in this derivation:

1) ﬁs is a function of time and axial positiqn along the tube.

2) The linear burning speed rp is a function of pressure only.

3) The propellant grains are incompressible.

4) The propellant grains are single-perforate cylinders.

S) The number of propellant grains per unit volume (n) is a

function of time and axial position along the tube.

Based on these assumptions, the following equation for ﬁs was

derived:
ﬁs = 0 AT, (4.18)
where
N A - 2{[:¢{Ewd1f]§1é - :: ;[;“]_-RZ;?RD} (4.19)
6" 16 b’ 6 b
2) Ry = [Coroat (4.20)
and

1) Wy " the inftial web thickness

2) d16 = the initial perforation diameter




3) 16 = the initial propellant grain length

See Appendix A for detailed derivations of Eqs. (4.17)-(4.20).

Projectile velocity

Two formulas for finding the projectile velocity Up at time level
n+1 are presented here for the viscous interior ballistic problem. The
first formula for 02’1 was also used for the inviscid interior ballis-
tic problem (see Section 2.3) and is restated here for convenlence:

P -P
R AT (-25———3)1\p At (4.21)

p P p
The second formula for Ug+1 makes use of a second-order accurate
approximation of the projectile acceleration. This approximation at

time level n+1 {s given by

au ut*lo yn u? - !
(-d—t-E)n” - % (—LTt——E) - -;- (—p-—Et—-P-—-) + O(Atz) (4,22)

Substitution of Eq. (4.22) into the discretized form of Eq. (2.28)
(developed {in Section 2.3), results in the following second-order

accurate equation for projectile velocity:
n+1 1, n _ . n-1 2 b~ Py
UM a e 2 - >¢§—P——-A At (4.23)

p p 3 p p mp pb

Projectile displacement

The equation which describes projectile displacement for the
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viscous interior ballistic problem is the same equation that was
developed to describe projectile displacement for the inviscid ballistic
problem (see Section 2.3). This discretized equation is restated here

for convenience:

nsl _.n P
Lp | Lp_¢ -2——2————“At _ S _(ufzu)

Wall shear stress

A -’'nple formula for tube wall shear stress (Tw) was derived by
using the "ollowing assumptions:

1) Quasi-steady conditions are valid for this analysis.

2) The Reynolds number for the tube, Rep, is greater than 5 x

10°,

3) The tube surface has a relative roughness of 0.002,

With these assumptions, it can be seen from the Moody friction fac-
tor diagram that the tube wall friction factor (f) is nearly constant
with a value of about 0.02 [Ref. 38]. The friction factor is related to

tube wall shear stress by the formula

(4.25)
3 Pl

From this equation, it follows that the tube wall shear stress may be

approximated as

1 = % £on (u.26)




Propellant grain drag foroce

A simple formula f{or the propellant grain drag force (D) was
derived by using the following assumptions:

1) Quasji-steady conditions are valid for this analysis.

2) The drag coefficient for the propellant (CD) is a constant.
" With these assumptions and by making use of Eq. (u4.7), the propellant

grain drag force may be expressed as
1 =20, _ 2
D= = CD pu- (1 CDl) vA (4.27)

Tube wall heat flux

Tube wall heat flux (q,) for the viscous interior ballistic problem
can be calculated quite easily if the temperature profile in the radial
direction {s known. A boundary layer analysis of this problem can
provide this information (see Chapter 3) and q, at some axial location
X, may then be found by Fourler's equation

oT (x_,t)
w a
qw(xa,t,) = =k _ar_.._. (4,28)

where
1) Kk = the combustion gas thermal conducti{vity.
2) T,(xa,t) = the tube wall boundary temperature.

3) r = a radial coordinate.

An estimate of the tube wall heat flux at some axial location x, can




also be made by using the formula

q, (x,0t) = h (x 0 [T(x ,t) - T (x.,t)] (4.29)

where h, is a local, time dependent combustion gas convection
coefficient.

In. order to derive -an expression:  for the tube wall boundary

temperature in Eq. (4.29), the following assumptions were made:

1) The heat transfer taking place 1Is conductive heat transfer
into the tube wall.

2) The effects of tube wall curvature may be neglected since the
heat penatration distance into the tube wall (&§(t)) is small.

3) The tube wall thermal properties are functions of temperature
only.

y) The temperature profile in the tube wall at any axial location
can be expressed as a second degree polynomial function of
temperature.

5) Quasi-steady conditions are valid for all time-dependent
variables.

6) The tube wall is inftially at temperature T,.

With these assumptions, the following discretized formula for tube

wall boundary temperature at location x, and time (n+1)At was derlved:

h
T, + (Eifz)a((no1)At)T(xa,(n+1)At)
3 (4.30)

Tw(xa.(n+1)At) - h

[1 + (=)8((n+1)4at)]

kst




where the details of this derivation and formulas for ho» kgt and
6((n+1)at) are given in Appendix A [Refs. 38,39]. An alternate (and
more accurate) approach to finding a value for hy is to use information

gained from a boundary layer analysis of this problem (see Chap. 3).

K-factors

Realistic values for K-factors (Kpu. Kpuz. and K, ) can be found
from a boundary layer analysis of the viscous interior ballistic problem
(see Chapter 3),

A simple model for K-factor variation which incorporates some of

the most dominant physics is presented here:

L
K=12 0.1 sin(n(x/L)2) P (4.31)
L,

CRE—Iun a0 2
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4.4 Numerical Method of Solution

Solutions were found for the viscous conservation equations (Eqs.
(4.1)=(4.4)) in the same manner that solutions were found for the invis-
cid conservation equations, 1i.e., by MacCormack's Predictor-Corrector
finite-difference method. Refer to Section 2.4 for a discussion on the
procedure used to approximate the conservation equations.

A summary of the procedure wused to obtain finite difference
equations (FDE's) which describe the viscous interior ballistic problem
is given below:

1) The partial differential equations (PDE's) given by Eqs.
(4.1)-(4.4) were transformed from the (x,t) coordinate system
to the (g,t) coordinate system.

2) The spatial and temporal domains of the transformed PDE's were
discretized (see Fig. 2.5) and FDE's at the interior grid
points were derived from the transformed PDE's.

3) FDE's at the boundary grid points (see Fig. 2.5) were derived

from the transformed PDE's and from physical constraints.

Transformed Conservation Equations
By using the transformation equations presented in Section 2.3, the
viscous conservation equations (Eqs. (4.1)-(4.4)) can be rewritten as

follows:

Continuity of Propellant Grains

(=

9 s 3

.L—E
)

a(vu ) vu
1 s s 3A s

- — - iy o = y,32
Ls ( 13 A aﬁ] P (4.32)

i<
<




Continuity of Combustion Gas

3_-Q - ﬂ;)_ £ EE - 1_. [____Kpupu EA + ;G _3Kpu + 3;1-1] + v M (1
91 I..p ok Lp A of P13 pu 9k (1-v) s
- 0/p,) +I—TL,‘—[(K a-u)i"--v<333+3§3—“)1 (4.33)
P/Pg =) T eu s’ 3¢ 3¢ R 9E ’
Conservation of Momentum for the Combustion Gas
260 . 1y px 26D 3G 1= o
9t Koybp P~ P4 3k o2 9% (-v) o2
K Lu 4 (=) _ul
-Ku)+P]h-£} pu {puz 1\)0‘159-,_\
pu’s 98 3¢ KpuLp A 13
X, x 3Kpu ) Bu
* Lp a1 Upe F13 3 (1-v)Kpu 13 }
u Voo -
+ {R—- (1—:—')MS(CD1 Kpu p/ps)
pu
1
W (21 /R + D/A)} (4,38
Conservation of Energy for the Combustion Gas
de de _ 3(en) 1 .- - = v
37 E; {Up 3 3t Koy 3% MR Ern [KeueJ eu + Pu) 3%
- v = -
) S(P‘Tl)} 1 a3 CLY ) [Keueu + (1-\))er + Pu] ar
oF Lp 3t A 3
Vo = aus VARYY
+ (g5)e ’a'é“} + (m)Ms{[hsg- Cps(Tig’ Ty nit)




= e, . 2 Y
- (h(™ - h('l‘ig))] - "_s} =y 7 (4.35)

The transformed conservation equations can now be discretized and
applied at individual grid points. For conservation equations that have
been transformed with Lp as the scaling parameter (Eqs. (4.33)-(4.35)),
a represeﬁtatlve grid point is indicated by the symbol i (see Fig. 2.5)._
The propellant grain continuity equation (Eq. (#4.32)) has been trans-
formed with Lg as the scaling parameter. A representative grid point for
this equation is indicated by the symbol i* (see Fig. 2.5).

It should be noted here that there is not a direct correspondence
between values at locations i* and i since Ly does not equal Lp in
general. Consequently, values in the i* grid point system must be mapped
onto the { grid point system. This mapping procecure is accomplished by

an interpolitive scheme which is described in Appendix A.

Finite Difference Equations

The finite difference equations (FDE's) used to obtain solutions to
the transformed viscous conservation equations (Eqs. (4.32)-(4.35)) were
obtained by implementing MacCormack's predictor-corrector scheme. This
explicit method is second order accurate in both space and time. In this
section, the resulting FDE's for the interior grid points are presented

first. Then the FDE's for both the breech and projectile base boundaries

are presented.




Finite difference equations at interior grid points

For each interior grid point | and i*%,

using MacCormack's predictor-corrector scheme to
transformed PDE's.
predictor time level of n+l

-presented as follows:

Continuity of Propellant Grains

Interior Predictor

n+1 n Atr.n 1 y{u" E (W=

n
(" Vi * (E;) (XE s Fyn(Vin ) [(vJs)i*

n
Vii-1)#*

M vbL

S ¢ a - 3. n
- (VJS)(i_l).J (vus)i, (A)i* ag - (= o )i 8E}
Interior Corrector
n+l 1., n _ n+l At n+1 1 n+1 n+l
Vie = (PO Vi) ¢ ( Y (= L (35) (vg Ei‘(v(i*1)'

vu ™11 = wu BT

[(vJ ) )y

(1+1)*

the FDE's are derived by
approximate the
The resulting interior grid point FDE's at the

and the corrector time level of n+1 are

——

n+1

Vis )




Continuity of the Combustion Gas

Interior Predictor

-+ -
by =Pyt <§l)"(‘ y(h ziw1 pr-q) -

==.n
" pu 1 [(pu) (oU)i_1]

; _ n - - (414N
Lo, - )T - v ) - (g p) (K 7 Y

+

v \N =n n a.n n
](pJ) + (=) [(us ), + (7‘-)i (us)ill

p£1 1-vipi £°1 ~
JRURY AT JP R
a0 - EINI (4.38)

Interior Corrector

~n+1 1)(-n . ~n¢1) . (1)(At)n¢l(1 ){Un41 =n+l_ -n+1)

Py = 3oy * py 2@ ® 84(Pia1™ Py
- K )™ -_—- (B’)"*’J (2™ Tk HrT
pu 1 1-v'{ pu {

- “’1]( n+t

n+i At .n+1 n+1 a.n+l
a)™ N -y - ™

($)
2" 'L ! 1 Al
p pu

n+l o == n+l v (N+1 =n+1 . n+1 an+1 n+i
+ (kpug)1 J(p:)1 + (773)1 Py [(‘sz)i + (A)1 (Js)i )
At *T, v \n*l.. _ p AtTo e N4
M ¢ MR R C OIS [LIRN (4.39)
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Conservation of Momentum for the Combustion Gas
Interior Predictor

GoT - G ¢ (BN ] (U} &, (k DICGDY - GIY_,)
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R 1 A'l '
Interior Corrector
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n+1 n+1 _n+ n+t —.n+1
+ L (K ), - (ek_..) + (k u)
P put’i p pug i puze b
v N+ net nel n+1
+ (T:;)i (Kpu 85)1 ( )[———T———yJ {(uvM )[(CD )
K 3 —_— T, —
- (BT - 2T - EENCR1M

Conservation of Energy for the Combustion Gas

Interior Predictor

—=n+1 -n At\n, 1 n
e -ei+(q)( ){U E(e e _y) - (K

) [(eu) - (eJ) ]

eu’i
=.n -, N 1 \n -—.n ,- n - . n n
= L(Pu) = (Pu)y ] ¢ (35) LUK, eu) = (eu )+ (Pu) T(v,

EG + LK, eJ) + (5 ) (eu )

n At\n
DY - (E;’ {(Kgpe

-3

AP + (1R O]) + srg {1

. e \n
= Cpg(Tyg = Typge) = (M(TY) = h(T NI - it
AT n2
- (TN D, (4. 42)

Interior Corrector
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- KT LEDT . G - LD T
. () X3 o= E:T_ — \n+1 n+l., n+l_  n+1
1 U, 807 - Gui™le (RO IT- VT)
BT 7T - T, v AT = T
(& 1" kg, g0 e Lk, s (o] Guy)]
T T, ()™ Bug)™)
ATy, v \MeT e ROT .
+ (T)(W)l (Ms)i {[hsg - CPS(TIQ- Tinit)
- (T - ner, 2 - D
S
- (AT )T (&) (4.43)

where all the terms of Egs.

except for
A
1) a SE
'] ¢
2) _py
pug .13
3K
3) kK L
put 13
0 aKeu
ug 9k
du
1 -.—s
5) Jsg 3%

(4.32)-(4.39) have previously been defined

(4., 44)

(4.45)

(4.46)

(4.47)

(4,48)

Finite difference equations at boundary grid points

Finite difference equations for the breech and projectile base




doundaries were defined by first applying the transformed conservation
equations (Egqs. (4.32)-(4.35)) at the boundaries subject to the

following constraints:

1) U(E=G,1) = 0 (4,49)

2) u(E=1,1) = up (4.50)
v

3) 3 (E=1,1) = O (4.51)

u) Kpu(E-O.r) .1 (4.52)

5) Kpu(Eﬂ,T) =1 (4.53)

6) K ,(§=0,7) =1 (4.54)
pu

7) K (E=1,7) =1 (4.55)
pu
x

8) -35- (E=0,1) = 0 (4.56)
3K

9) —35‘1 (E=1,1) = 0 (4.57)

Then, MacCormack's predictor-corrector scheme was used with three-point,
one-sided differencing to approximate the resuiting boundary conserva-
tion equations. Boundary FDE's at the predictor time level of n+1 and

corrector time level of n+1 are presented as follows:
Continuity of Propellant Grains

Breech Boundary Predictor

v
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n 1
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M VL

: )" ag) (4.58)

+ (
s

Breech Boundary Corrector

— ——

1 n+l 1, A1,0+T ] nel _ 1 nal
Vi =3 O # v = @UEDTTE@HI g - (5) (vug gy ]
Myvby mor
« (221" ae) (4.59)
ps

Projectile Base Boundary Predictor

n+1 n+1

VIL® T V(IL-1)* (4.60)
Projectile Base Boundary Corrector
n+i n+l
- y,
VILr " V(IL-1)* (4.61)
Continuity of Combustion Gas
Breech Boundary Predictor
-n+1 -n At,n 1 -=.n 1,,==-.N At\n v_\n.= n
P, =0, (E;) (ZE)[(Z)(DU)Z (5)(91)3] (E;) [(1_V)1(pls£)‘]
Ln_:o_n'n L,
+ At(1_v)1[1 (p )33y, (4.62)

8




Breech Boundary Correotor
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S
Projectile Base Boundary Predictor
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Projectile Base Boundary Corrector
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Conservation of Momentum for the Combustion Gas

Breech Boundary Predictor

(G -0 (4.66)
Breech Boundary Corrector
G -0 (4.67)

1

Projectile Boundary Predictor

== n+1 —n+1 +1
(pJ)IL =Py U; (b4.68)
Projectile Boundary Corrector

==.n+1 -n+1 n+1
(p.x)IL = oL Up (4,69)
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Conservation of Energy for the Combustion Gas

Breech Boundary Prediotor
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Breech Boundary Corrector
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Projectile Base Boundary Predictor
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(4.73)
s IL 2

Summary of the Solution Procedure

At this point all the equations needed to specify the viscous
interior ballistic problem have been developed. A solution procedure

for this problem proceeds as follows:

1) Specify the input parameters listed in table 4.1 for all grid

points { and i*%,

I1) Speecify initial values for the dependent varjables v, p, pu

and e for all grid points i and i¥*.

i I1I) Find the values of the dependent variables at the predictor
time level n+1 in the following manner:

Predictor

1) Find v2:1, and vn+1

i

a) find v, at all { interior points by using Eq. (4.36)

b) find v?:1 by using Eq. (4.58)

¢) find v?il by using Eq. (4.60)
d) find v?+1 at all { grid points by interpolating

between szl values at {* grid points (see Appendix A)
e) store all values of v?:1 and v?‘1 for use in the

@ corrector FDE's




2)

3)

4)

e)
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Find p?*1. (Bﬁ)n+1. and 3T+ .
a) find E?:T, (BG)?“, and 3?* at all 1 interior grid
points by using Eqs. (4.38), (4.40) and (4.42)
—n+1 -n+1
b) find P and PrL by using EqQ. (4.62) and Eq. (4.64)
- ==+l
find (pu)1 by using Eq. (4.66)
d) guess the value of (55)2;1 by using a one-sided
difference version of Eq. (4.,40)
e) find 3“’1 and E;i‘ by using Eq. (4.70) and Eq. (4.72)
—n+1  =n+1 n+l
Find PR T1 , and P1
a) find "1_T at all i grid points by dividing (BS)T”
by o7
Y Di
b) find T?+ all { grid points by applying the
internal energy equation (Eq. (4.8)) in Eq. (4.6)
where all variables are discretized (i) predictor
—n+1 =n+1 —n+l
variables and e1 ’ p1 , and u1 are known
e¢) find PT*1 at all 1 grid points by using Eq. ( )
where 3?‘1 and TT*1 are now known
N+l ==.n+1 n+t
Find Up , (pu)IL , and Lp .
a) find P?‘1 (the projectile frontal pressure) by using
Eq. (2.30) or Eq. (2.31)
b) find u:” by using Eq. (4.21) or Eq. (4.33) where all

variables are dlscretized (i) predictor variables




5)

6)
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¢) find (BE)?;‘ by using Eq. (U.68)

d) find L:‘1 by using Eq. (4.24) where all variablaes are

discretized (i) predictor variables

Find <co1)?". u:“. and L™,

S

a) find (CD1)':*1 at all { grid points by using Eq. (4.14)
or Eq. (4.16) where all variables are discretized (i)

predictor variables

1 n+1

b) solve for U:* and Ls by using the {terative method

described in Appendix A

N+ n+1 n+1 n+
1 1 1 1 , ' )
Find (ug) 'y (u) s (Jsg)i* and (JsE {

a) find (us);‘+1 at all i grid points by using Eq. (4.7)
where all variables are discretized (i) predictor

variables

Jn+1

b) find (us’i*

at all i{* grid points by interpolating

between (us)?:1 values at i grid points (see Appendix

A)

)n+1

¢) find (uSE i %

at all i* grid points by using backward

differencing of (us)?:1 for grid points (2 « IL)* and
Y

one-sided differencing of (us)?:1 at grid point 1

d) find (usg)?+1 at all 1 grid points by {interpolating
between (usg)?:1 values at {*¥ grid points (see

Appendix A)
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Find (M, )nﬂ and (M )2:'.

a) find (ﬁs)?" at all i grid points by using EqQ. (4.17)

or Eq. (L4.18) where all varjiables are discretized (i)

predictor variables and (r,); depends on Pm1

' b) find Pi, at all 1* grid points by interpolating

8)

9)

10)

between Pi‘1 values at i grid points (see Appendix A)

¢) find (A )7," at all 1* grid points by using Eq. (4.17)
or (4.18) where all variables are discretized (i¥%)

predictor variables and (r,) s depends on p2:1

n+1 n+1 n+l
Find R1 A1 , and a1 .

a) use the set of equations which corresponds to the

chosen tube geometry (see Tables 2.1-2.3) to find

n+1 n+1 nd n+1

Ri ’ Ai a ai
Find R, A7, and a7}
Nnd Riy » Ajy s and agy .
n+i nel n+1
a) find Ri* , A1 and a, at all i* grid points by
interpolating between R?*1, A?“, and 32’1 values

respectively at { grid points (see Appendix A)

n+l n+1 n+1
, and (qu)1

Find the dissapative terms (1 ) . D1

a) find (-rw)';“1 at all i grid points by using Eq. (4.26)

where all wvariables are discretized (i) predictor

L]

variables

b) find DT” at all 1 gric points by using Eq. (4.27)
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where all variables are disoretized (i) predictor

variables

¢) find (qw)'i“‘1

at all { grid points by using Eq. (4.28)
where all variables are discretized (i) predictor

variables, .or_by using heat flux information obtained

from a boundary layer analysis of this problem

11) Find the K-factors and derivatives of K-factors by using

Eq. (4.31) and Eqs. (4.44)-(4.48) or by using K-factor
information obtained from a boundary layer analysis of

this problem.

IV) Find the values of the dependent variables at the corrector

time level of n+1 in the following manner:

Corrector

1)

2)

n+1

Find vV, V]

{®

a) find v?:1 at all { interior points by using Eq. (4.37)
b) find v?:1 by using Eq. (4.59)
n+1
¢) find VIL# by using Eq. (4.61)
d) find v?*1 at all { grid points by {interpolating
between vT:1 values at i{* grid points (see Appendix A)
e) store all values of v?:1 and v?+1 for use in the

predictor FDE's,
Find ;n+1' (Bﬁ)n¢1, and e,
i i i
a) find 3?’1. (;G)?01 and E?“ at all 1 interior grid

poirts by using Eqs. (4.39), (4.49) and (4,u43)




. b) find 3:‘" and 3’1‘;‘ by using Eq. (4.63) and Eq. (4.65)

¢) find (BG):‘" by using Eq. (4.67)

d) guess the value of (35)?;1 by using a one-sided
difference version of Eq. (4.41)
e) find 3?*1 and 3?;1 by using Eq. (4.71) and Eq. (4.73)
3) Find 3?+‘. ??‘1, and_P2‘1.
&) find Ti;‘” at all i grid points by m{ricung”(EG)'i"1 )
by ;T+1

b) find T?" at all 1 grid points by applying the
internal energy equation (Eq. (4.8)) in Eq. (4.6)

where all variables are discretized (i) corrector

=n+1 —n+l

variables and e and ™' are known

1 P 1
e) find P?“ at all {1 grid points by using Eq. (4.5)

where ;?*1 and T?*I are now known
n+1 == n+i
§) Find Up , (pu)IL , and L

?“ (the projectile frontal presswre) by using

n+1

p .

a) find P
Eq. (2.30) or Eq. (2.31)

b) frind U:H by using Eq. (4.21) or Eq. (4.23) where all
variables are discretized (i) corrector variables

e) frind (35);;1 by using Eq. (4.69)

n+1

d)} find Lp by using Egq. (4.24) where all varlables are

discretized (i) corrector variables

n+1 n+1
5) Find (CD1)i ’ Us

, and "7,
s
a) find (CD1)?’1 at all { grid points by using Eq. (4,14)
or Eq. (4.16) where all variables are discretized (i)

@ corrector variables

b) solve for U';"1 and L:¢1

by using the {terative method




@ 6)

7

8)

® 9)
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described in Appendix A

n+1 n+l n+1 n+l
Find (u))y ', (u)yy's (485)1‘ 85)1

a) find (us);."1 at all i grid points by using Eq. (4.7)

, and (u

where all varjiables are discretized (i) corrector

variables

b) find (us)?;1 at all 1* grid points by interpolating

-between-(us)?’l values at i grid points (see -Appendix -

A)
n+1 . n+1
¢) find (us€)1‘ by using forward differencing of (u)) ,
for grid points (1 « IL-1)* and one-sided differencing
of (u )?:‘ at grid point 1%
N+t n+1
d) fingd (usei1 by interpolating between (us;)i' values
at {* grid points (see Appendix A)
¢ (Nt VERY R
Find (M)){"" and (M), .

a) find (P7I$)'1w1 at all { grid points by using Eq. (4.17)
or Eq. (4.18) where all variables are discretized (i)
corrector variables and (rb)i depends on P?*1

b) find P2;1 at all 1{i* grid points by interpolating

between P?+1 values at { grid points (see Appendix A)

¢) find (ﬁs)?;‘ at all {* grid polnts by using Eq. (4.17)
or Eq. (4.18) where all variables are discretized (i*)
corrector variables and (r,) s depends on P2;1

n+? n+t n+1

{0 A1 , and a1 .

a) use the set of equations which corresponds to the

Find R

chosen tube geometry (see tables ( )~( )) to find

n+1 n+i n+1
R1 ’ Ai and a1
n+1 n+1 n+1
Find Ri' ' Ai* , and ai, .



10)

1)

a) rind 8%, A" ana ]y at a1l 1% grid potnts by
interpolating bet ween RT", A?‘1 and a?+1 values

respectively at { grid points

n+l n+1

n+1
Find the dissapative terms (-:w)1 D1 , and (qw)1 .

a) find (Tw)?+1 at all { grid points by using Eq. (4.26)
where all variables are discretized (i) corrector

"“variables

n+1
i

where all variables are discretized (i) corrector

b) find D at all { grid points by using Eq. (4.27)
variables

c) find (qw)'i"+1 at all i grid points by using Eq. (4.28)
where all variables are discretized (i) corrector
variables, or by using heat flux information obtained
from a2 boundary layer analysis of this problem

Find the K-factors and derivatives of K-factors by using

Eq. (4.31) and Eqs. (H4.U44)-(4.48) or by using K-factor

information obtained from a boundary layer analysis of

this problen.

V) Repeat steps III and IV until the projectile has traveled a

prescribed length Lg.
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‘ 4,5 Results
In this section, the results of several computer simulations of
viscous interior ballistic flow are presented and compared. Salient gun

performance parameters were determined and conclusions were drawn about

their significance.

Description of Cases

A case 3study which isolated the effect of a parameter on gun
performance was made for the viscous interior ballistic problem. Table
4,2 1ists the values or equations of parameters which did not change in
these case studies. The assumptions common to all the viscous interjor
ballistic case studies are listed as follows:
1) Combustion gas flow is unsteady and one-dimensional {n the
axial direction (where radial effects are accounted for by the
K-factor approach).

2) Combustion gas pressure varies in the axlal direction only.

3) All K-factors are set to 1.0 and all derivatives of K-factors
are set to 0.0.

4) The tube assembly is a straight tube,.

Table 4.3 lists the equations of parameters which were varied {n the
viscous interior ballistics case studies. The sum of the parameters
listed i{n Tables 4,2 and 4.3 specify the viscous {interior ballistic

problem.
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- ‘ Table 4.2

Specification in MKS units of parameters (and equations) which

"remain the same for all visoous interior ballistic case studies

- U

Projeotile Parameters

pé « 0.0 .. . .-

Por = 6.895 x 105

Air Parameters

Tatm = 300
Pagm = 1.0 x 10°

Yatm = 1.1

a

Combustion Gas Parameters

Propellant Parameters

mmass = 24.0728

Td = 300

Py = 3.449 x 108

Ub = 0.0

u is given by Eq. (A.93)
k 1s given by Eq. (A.94)
Pr is given by Eq. (A.95)

f = 0.02

type = CIL 3352 .

graln geometry = cylindricai,
single perforate

Doy * 0.148

Py = 1660.820

W, = 86.868 x 107

d,, = 22.352 x 107

1, = 205.740 x 107

Cpg = 1539.25

Tingy = 300

Tyg = 600

heg = 4171.998 x 103

Ugg = 0.0

Cp = 1.0

Tube Wall Parameters

wa = 300

a = is given by Eq. (A.98)




Table 4.3
Parameters and eqQuations which were varied in the
visoous interior ballistic case studies

Eq. (4.27) Eq. (4.74) Eq. (4.26)

Case cD, D 4 ™ qy
-BA 0.0 - - given by 0.0 : - 0.0 0.0
. ... Eq. (M.27) _
BB given by given by 0.0 0.0 0.0
Eq. (uo1u)' Eq0 (u'27)

BC 1.0% given by 0.0 0.0 0.0
Eq. (4.27)

BD 1.0 given by given by 0.0 0.0
Eq. (4.27) Eq. (U4.74)*

BE 1.0 given by given by given by 0.0
Eq. (4.27) Eq. (4.74) Eq. (L4.26)*

éF 1.0 given by given by given by given by

Eq. (4.29)%

* Indicates a change in value from the previous case.
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Case BA was the simplest viscous interior ballistic case study. 1In
addition to the general assumptions listed previously, the following
simplifying assumptions were used to analyze this case:

1) The propellant grain-combustion gas velocity ratio (CD;) is
Q.O: S _ o
2)  There is no momentum generation. _
3) There is no tube wall shear stress.
4) There is no heat transfer.
The rest of the viscous interior ballistic cases reduce these
simplifying assumptions one-by-one in the following manner:
1) Case BB is the same as case BA except that CD1 is described by
EqQ. U4.14 and varies between 0.0 and 1.0.

2) Case BC is the same as case BB except that CD, is set equal to
t.0.

3) Case BD 13 the same as case BC except that momentum generation

described by the equation
o v L) —-—
Ps= A(T:3)M8001J (4,74)

is considered.
4) Case BE is the same as case BD except that tube wall shear
stress, 1, (given by Eq. (4.26)), is considered.

5) Case BF s the same as case BE except that tube wall heat

flux, g, (g8iven by Eq. (4.29)), is considered.
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Table 4. U
‘ Muzzle velocity, peak breech pressure, time of occurence of
peak breech pressure and percent differences for an actual

gun firing and for the viscous interior ballistic cases BA-BF

Case Uy $Dif. Peak P $Dif.  Time (PP) % Dif.

(m/sec) (10%Pa) (milli-sec)




Case Performance

Figure 4.1 shows a plot of breech pressure versus time for cases
BA-BF while Fig. 4.2 shows a plot of projectile velocity versus time for
cases BA-BF. Table 4.4 1lists the muzzle velocity, the peak breech
pressure and the time of occurence of peak breech pressure for cases BA-
BF. It also lists the percent difference (from the previous case) of
each of these quantities,

The effect of the propellant grain drag force can be seen by
comparing the viscous case BA with the inviscid case AD (see section
2.5) since the only difference between these two cases {s the addition
of a drag force term. When compared to case AD, case BA shows a
negligible difference in muzzle velocity, peak breech pressure and the
time needed to rea2... peak breech pressure.

The effect ¢. = variable propellant grain-combustion gas velocity
ratio on the numerical solution can be seen by comparing cases BA and
BB. When compared to case AA, case BB shows a 25.1% decrease in muzzle
veloeity, a 50.4% decrease in peak pressure and a 14.3% decrease in the
time needed to reach peak breech pressure.

When CDy {8 near 1.0, the propellant grain velocity is nearly that
of the gas. There is a discontinuity at position L4 where the number of
propellant grains drops suddenly from a finite value to zero. The effect
of the discontinuity seems to be to produce presswe pulses as seen in
Fig. 4.1. These pulses are not a physical phenomenon, but are produced
when the propellant grain and combustion gas grids move past each

other. The magnitude of these pulses was observed to increase when the

4!’ distance between the discontinuity and the projectile base decreases.
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The maximum effect of the propellant grain-combustion gas velocity
ratio (CD,) can be seen by comparing case; BA and BC. When compared to
case BA, case BC shows a 20.4% decrease in muzzle velocity, a 42.8%
decrease In peak breech pressure and a 7.1% decrease in the time needed
to reach peak breech pressure. This 1is the 1largest performance
difference observed in the viscous interior ballistic case studies.

Cases BA and BC also bracket the experimentally ontained muzzle
veloeity and peak pressure for an actual gun firing (see Table U.4).
The parameters which specify the viscous interior ballistic flow problem
were chosen to match the experimental conditions as closely as possible
[Refs. 14,29].

The effect of momentum generation can be seen by comparing case BC
and BD. Whe- compared to case BC, case BD shows a 1.8% increase in
muzzle velocity, a 3.1% decrease in peak breech pressure and a 3.8%
decrease in the time needed to reach peak breech pressure. This is the
only case ccomparison {in which there Is a decrease in peak breech
pressure when the corresponding muzzle velocity increases.

The effect of tube wall shear stress can be seen by comparing cases
BD and BE. When compared to case BD, case BE shows a 1.5% decreese in
mizzle velocity and negligible changes iIn peak breech pressuae and time
needed to reach peak breech pressure.

The effect of tube wall heat transfer can be seen by comparing
cases BE and BF. when compared to case BE, case BF shows a 3.1%
decrease in muzzle velocity, a 1.9% decrease in peak breech presswe and
a 4% decrease in the time nceded to reach peak breech pressure. This
indicates that the effects of heat transfer should be consideres when

constructing a detalled and accurate model of interior balllstic flow.
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0 Tube Wall Heat Transfer

Heat transfer data generated from case BF was chosen to 1llustrate
the unsteady {interior ballistic heat transfer problem. This heat
transfer problem was modeled as a 1-D conduction problem with unsteady
boundary_qonditions of the third kind. The details of the derivation of
the heat transfer equations used here are given in Appendix A and the
results of using these equations are presented as follows:

VFigureru.3 shows tube wall temperature plotted against normal ized
axial distance at five times (t) during the viscous interior ballistic
cycle. The maximum tube wall temperature of 1020 K was achieved by
adjusting the convection coefficient until the maximum calculated tube
wall temperature agreed well with the experimentally obtained maximum
tube wall temperature of 1050 K [Ref. 22].

Figire 4.3 shows that the highest tube wall temperatures develop
near but not at the base of the projectile. The high temperatures necar
the projectile base are accounted for by the large value of the convec-
tion coefficient in this region (see Fig. U.4). The sudden drop-off in
tube wall temperature at the base of the projectile occurs because
relatively cold (ambient temperature) tube wall is being uncovered as
the projactile travels down the tube.

Inspection of Fig. 4.3 also shows that the maximum tube wall
temperature of 1020 K occurs at t=1.34 milliseconds, which coincides

with the time at which peak pressure, maximum propellant burning rate,

and maximum combustion gas temperature occw, As the shot progresses
and combustion gas temperature decreases, tube wall temperature, as

shown {n Fig. 4.3, correspondingly decreases.
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. Figure 4.4 shows the convection coefficient (h,) plotted against
normalized axial distance at five times during the viscous interior
ballistic oycle. The formula used to calculate h, was based on a
modified version of the Sieder-Tate Nusselt number formula and tne
details of its derivation are given in Appendix A.

Figure 4.4 shows the strong similarity between the axial convection
coefficient profile and the axial combustion gas momentum profile. Also
noteworthy are the large magnitudes predicted for the convection
coefficient.

A drawback in the model used here to calculate h, is that it does
not take into consideration the fact that the thermal and momentum
boundary layer thicknesses decrease t¢ 2zero at the base of the
projectile. This boundary phenomenon would tend to accentuate h, near
the base of the projectlile more than {s shown in Fig. 4.4,

Figure 4.5 shows tube wall heat flux plotted against normalized
axial distance at five times during the viscous interfor ballistic
cycle.

Very large magnitudes of tube wall heat flux are indicated by Fig.
4.5 with the highest values occuring at t=1.34 milliseconds (which is
when peak combustion gas temperatures occur).

The most interesting aspect of the heat flux distributiocns shown in
Fig. 4.5 are the sharply {ncreased values near the base of the
projectile. This is the result of the combined effects of uncovering

previously unexposed tube wall area (which results in low tube wall

N\

temperatures) and the increasingly large values of h, near the base of

a the projectile.

Figure 4.6 shows the heat peretration distance into the tube
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‘ wall (8) plotted against axial distance at five times during the viscous
interior ballistic cycle. These plots again show the effect of
unocovering previously unexposed tube wall area as the projectile moves
down the tube. The highest value of § occurs In the region of the tube
assemdbly which has besn transfering heat the 1longest; namely, the ’
original chamber volume. The maximum value of § shown {n Fig. 4,6 is
0.72 millimeters and is typical of a 30 mm gun firing at amblent

conditions [Ref. 22].
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Chapter V
PRESSURE AND DENSITY GRADIENTS IN UNSTEADY TUBE FLOWS

5.1 Physical Mechanisms Causing Pressure and Density Gradlents

The physical mechanism which causes a pressure difference between
the breech and projectile is the acceleration of the projectile. As the
projectile accelerates, 1t produces a series of expansion waves behind
it. The pressure drops from breech to projectile through these waves,

The ballistic cycle begins as combustion occurs within the chamber
bounced by the breech, tube wall, and projectiles and increases the
pressure. Because the burning rate of the propellant increases with
increased pressure, high pressures are quickly produced. These high
pressures accelerate the projectile producing a series of exansion waves
behind it. These wave accelerate the gases behind the projectile to the
velocity of the projectile. They travel toward the breech, reflect, and
return to the projectile distributing the velocities of the gases
between the breech and the projectile.

As the projectile accelerates, the gases behind the projectile also
accelerate. This acceleration produces an gradient of pressure,
density, and temperature behind the projectile. Subseguently, the
pressure at the base of the projectile is lower than that at the breech.

The pressure drop i{s then governed by the acceleration of the
piston. After the acceleration stops, the pressure drop from the

stationary erd of the cylinder to the moving piston goes to zero. In a

typical ballistic system the acceleration begins low, it then increases
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rapidly to a peak and drops off with movement of the projectile. It
would then be reasonable that the drop of pressure from breech to
projectile would be dependent on the acceleration history of the recent
past. The recent past would be defined as the time between formation of
an expansion wave and when that wave has reflected and returned to the
piston, Once the expansion wave has returned to the piston, its
rema;ning éfrect _is only to lower the pressure of the gas in the

chamber.

5.2 Equations of Motion for Unsteady Flows

The breech to projectile gradients of pressure, density and
temperature are gorverned by the conservation equations of mass,
momentum and energy. One dimensional forms of these equations were
solved using simplifying assumptions to determine analytical
relationships between the projectile acceleration and the gradients.
The derivation of these relationships can be found in Appendix C. The
equations of motion for a mixture of gas and solids are the conservation

of mass and the conservation of momentum,

9 9

3;: (ps (1=-v') + pv') + % (ps“"\)') US + pv'u) = 0 (5.1)
9 . , 3 2 oty 2 ., . - QE

% (uspS (1=v') + upv') + T (usps (1=v') + u pv") ™ (5.2)
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It was assumed that the veleccity of the solids is related to the
velocity of the gas by a constant ratio throughout the tube at any
particular instant. No friction or heat transfer effects were
included. The two equations were combined to give an equation which has

a form similar to the unsteady Bernoulli equation.

p

B Roaxe (B g e [XE (5.3)
P m b Pm

The terms on the left hand sicde of Eqn 5.3 are acceleration terms.
The integrated acceleration produces the pressure difference from breech
to projectlile. The right hand side represents the pressure gradient

produced by the acceleration.

Acceleration Term

The acceleration term was evaluated for solids and gases. A linear
profile of velocity with distance was assumed for both the velocities of
gas and solids. The velocity of the solids was assumed to lag that of
the gas by the ratio us/ug. This approach was used bhecause several
different models including the XNOVA code [Ref. 40] indicated that the
velocity profile was quite linear.

When the acceleration of the piston is zero, the linear velocity
model seems to predict that the velocity past a point i{s alwavs decreas-
ing. When ap>v2/L, the velocity past a point will increase with time,
Wnen a <vZ/L, the velocity past a point will decrease with time. This

does not mean however, that the velocity of a particle s slowing

down. A3 one follows a particle [t continues on at the same or greater




velocity depending on the level of acceleration of the piston.
Assuming a linear velocity profile and integrating the acceleration

side of equatjon 5.3 gave

2
p L a u p 2 ) P
(BB 2 (B - (el - [FE (5.4)
pm m pm b pm
. La_* P, . _ )
or -——B 52 -- [ &QR (5.5)
2 b Pm

The most significant portion of the acceleration side is L ap /2. The

factor »p accounts for solids which are not accelerating as fast as

ml/pm

the gas. The projectile velocity squared portion of the acceleration
side will always have a minus sign in front of it because pml/pm is

always less than 1. When there are no longer any solids, pm /pm goes to

1

1 and the entire acceleration term goes to L ap/2.
The effect of the lagging behind of the solids is contained in the

term pml/pm'

Py = Pg(1-v")+pv!

m

) - 0 (1-v") us/v' + pv!

ml
This ratio is determined knowing the porosity, the gas density, and
us/u.

us/u was estimated as a constant along the barrel at any instant in
time. It was assumed to change with time. The ratio of average

acceleration of the solids over the average acceleration of the gas was

assumed to be equal to “s/”' The drag force on the cylindrical grain was
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assumed proportional to (u-us)z and equal to the acceleration of the
solid grain times its mass.

Ug/u was solved for as a function of a nondimensional acceleration
number, Fa. | Fa has been formulated to be a function of the easily

determined parameters.

2C.p U 2
Fa = D -
BWTODS ap
Ug 1
a—-l*ZFa (1 ‘VE Fa + 1) (5.6)

The assumption of a linear velocity profiie was tested using an
inviscid computer model of gas flow in a tube between breech and
projectile, The projectile was driven by estimates of accelerations
from experimental shots 536 and 571 which will be discussed later. The
ratio of the Iintegrated particle acceleration (left hand side of

equation 5.3) divided by a, L/2 was plotted against time in Figures 5.1

p
and 5.2, If the velocity profile was linear, the ratio wruld be 1. 1In
Figure 5.1 the last 70% of the time has a ratio of 0.98. This indicates

that the integrated acceleration estimate of a_ L/2 is 2% high. Figure

p
5.2 is for a case with a 309 higher peak pressure. This higher pressure
causes increased acceleration. This increased acceleration rate is the

probable cause of the hump in Figure 5.2 that starts at 0.002 seconds.

The peak of the hump, 1.07, indicates that the integrated acceleration

estimate of ap L/2 is 7% low.
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Pressure Gradient Term

The pressure gradient term was evalated for the two cases of gas
only and of gés and solids. The pressure was integrated by assuming an
isentropic relationship between pressure and density. The details of
the two derivations are given in appendix C.

The {ntegration of the gas only case stated {n terms of temperature

and density directly ylelded

P (yv-1)(-p,n) L a, £

&
— . (1 -
Pb Y R Tb

) (5.7a)

When stated in terms of pressure and density it yeilded

P (Y-1) p. L a_ ¢
ﬁé - (1 - °Y =) (5.7)
b b

The gas and solids case was integrated using a linearized form of
the term (P/Pb)(l/Y). The equation was stated in terms of temperature

and density

P ps(1/v'-1) —v'(1-pbn)La 52

£
2 s 1 + Y (= ¢ 1) [exp (
Pb o ZYRTD

) - 1] (5.8a)

It was also stated in terms of temperature and density.

>
P p_ (1/vt=1) -v' p La_ E”
. b
el e Y (S e 1) [exp () < 1) (5.80)
b b o (1/v'=1) b
The mulitiplie~ term (——————— + 1) carn greatly 1ncrease the pressure

r
L o
x




drop from breech to projectile over the gas only case. This 1is because
the large forces are needed to accelerate the solids which have a
density much greater than the gases. The average pressure can be
determined by integration of a series expansion of 5.8b.

kK, k22 k3 k' k°

> K 2 2 2
P~V KT 5 Tt 76 T 13%0) (5.9)

Ds(l/v'-1)
K1 z (————— + 1) Y
°b

*
v'(1-p N)la
- ——0a—2F
2 2YRT,

Kinetic Energy in the Gases

The ratio of kinetic energy in the gas solid mixture to the kinetic
energy of thne same mass moving at the projectile velocity is 1/6. & was
obtained using a linear velocity distribation and a density distribution

obtained from the pressure distribution Eqn. 5.8.

ps(l-v') P,
—_ (1 = =)
PpV 3py,
5« 3 (5.10)
05(1-v') ug 2 3p
—_— (=) + (1- ——E)

The case of gas only reduces 5.10 to 5.11.

3010 - 2

& = (5.11)
p
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5.3 Comparisions of Analytical Model with Experimental Data

The equations just described in were compared with experimental data
from Eglin AFB for firings with muzzle velocities of 1000 m/s.
Comparisons were also made with computer modelled predictions obtained
from Eglin AFB and the Ballistics Research Lab. The experimental data
came from two series of shots of 30 mm aircraft cannon. Each series
consisted of four shots. These runs were evaluated by shifting the time
scales to make the peak pressures coincide and then comparing the
measured pressures in time. The two pressure time traces which best
matched each other were then usep as the standard data for each series.

Each set of data consisted of time and for pressure readings. The
first reading was called the chamber pressure reading. It was not taken
at the breech tut just in front of the initial position of the rotating
band, The three other readings were taken at three downbore locations.

The data in a nondimensional form was used for the comparison with
analytical equations (5.7 and 5.8). The pressures at the three downbore
locations were normalized by the chamber pressure reading. The
resulting pressure ratio was less than 1 because the downstrean
pressures were always lower than the chamber pressure.

The aralytical pressure ratio was determined using equation 5.8 to
find the downbore pressure with respect to the breech pressure for both
the chamber location and the downbore location. Values of the variables
in equation 5.8 were obtained from an interior ballistics program of
Heiney [Ref 147, The variables needed were average porosity, breech
density and pressure, projectile acceleration, and breech to projectile

‘;a length., The analytical pressure ratio was determined as a functicn of

VLR R T N Y T RV M D e e 0 ¢ U /N £
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time for each downbore pressure tap location beginning from the time
that each tap was passed by the projectile.

The results are quite encouraging. Comparisons with the 536
experimental data i3 shown in Figures 5.3-5.5. The experimental data is
the jagged line. The other two lines are the results of calculations
from equation 5.8 with the upper line being a gas only calculation and
the lower line being the calculation when solids are included. At 1700
microseconds ir Figure 5.3 one c¢an see that the solids theory agrees
quite well with the data.

At a later time of 2500 microseconds in Figure 5.4 the gas only
theory seems to be a better estimate than that of the solids. This is
probably due to the fact that the solids do not follow directly tehind
the projectile but lag it., The E squared term in equation 5.8, causes
the majority of the pressure drop to occur in the 30% of the length just
behind the projectile. If the solids concentration is very low in this
region, the pressure will drop less and will better follow the gas only
theory.

The last figure in the 536 series is Figure 5.5. It shows good
agreement between theory and experiment for either gas only or gas and
solids. The two theoretical lines are very close because at 3000
microseconds there are very few solids left.

Comparisons of 571 experimental data with theory are shown |in
Figures 5.6-5.8. This shot had a muzzle velocity 7% higher than the
previous 536 shot. This was produced by a thinner grain web thickness.
Figure 5.6 shows the pressure ratio for downbore tap 2. Burning has
occurred more quickly and few solids remain so that the gas and solids

lines are very close, Predicted pressures are 1lower than those
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measured. One explanation may be lack of time for the velocity profile
to become linear after then time of peak pressure.

Figure 5.7 shows quite good agreement with the experimental data
over the last half of the time of the run., Figure 5.8 shows a pressure
ratio higher than the data. This may be caused by the hump in
acceleration ratio shown in Figure 5.2

Two higher speed causes were comparea wltﬁ theory. Experimental
data was not available for either of these. However, computer
predictions were available using two different codes which model the
flow of both solid and gas as the solids burn. Input conditions were
not available for these run so that the model of Chapter 2 could not
also be compared.

The first case was a 1400 m/s run., Combustion was complete and gas
only theory was compared. Pressure at the projectile base over pressure
at the breech was compared when the prcjectile was at the muzzle. The
computer prediction of the pressure ratio was 0.707 and the pressure
ratio of the theory of this work was 0.665.

The second case was a large diameter round with a 1450 m/s mzzle
velécity. Combustion was complete and the pressure ratios was compared
when the projectile was at the muzzle, The computer prediction of the
pressure ratio was 0.73' and the pressure ratio of the theory of this
work was 0.T7A47.

In both of these cases the theory matched the computer predictions
well. The Machk number of the gases behind the projectile in both of the

last two cases {s near 1.5 {ndicating that the flow is supersonic.
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Chapter 6

SUMMARY OF ACCOMPLISHMENTS AND DISCOVERIES

In this chapter, the accomplishments and discoveries made are

summarized.

Accomplishments

Four interior ballistic models were developed to analyze the
flowfiel&s inside tubes that launch high-speed projectiles. The first
model dcveloped was for analyzing unsteady, one-dimensional inviscid
flow inside tubes that launch high-speed projectiles. This model can
account for changes in the cross—sectional area along the tube and the
effect of temperature on the ratio of the specific heats.

The second interior ballistic model developed was for analyzing
the unsteady, two~édimensional, compressible, mowmentum and thermal
boundary layers next to tube walls of ballistic devices.

The third 1interior ballistic model developed was for analyzing
unsteady, one-dimensional viscous flow inside tubes that launch high-
speed projectiles. This model can account for (a) varfations of
velocity, density, and temperature in the radial direction; (b)
interphase drag between the cowmbustion gas and the propellant grains;

(¢) momentum generated due to burning of propellants; (d) heat transfer

to the propellants; and (e) unsteady heat transfer to the tube wall.
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The fourth interior ballistic model developed was an analytical
model for analyzing how density and pressure vary from the breech to
the base of the projectile.

The results obtafined by using the interior ballistic models

developed in this study were compared with experimental data.

Discoveries

Parameters having significant effects on the physics occurring
inside ballistic devices are presented here in descending order of
importance:

1. The covolume of the gas.

2. The tube cross-sectional area changes as a function of axial

distance.

3. Relative velocity between the propellant grains and the

combustion gas.

4. The ratio of specific heats as a function of local temperature.

5. Friction and heat transfer in the boundary layer.

6. The propellant burning rate as a function of local pressure.

Important effects occurring in the boundary layer include:

1. The displacement thickness i5 negative indicating that the

streamlines in the boundary layer turn toward the tube wall.

2. The cooling of the gas near the wall produces a significant

change in the effective volume which 1lowers the chamber
pressure.

3. The thickness of the momentum and thermal boundary layers goes

to zero at the breech and the base of the projectile.
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4. Profiles in both the momentum and thermal boundary layers ar
nongimilar.

Parameters affecting axial gradients of pressure and density were

determined to be

1. Gradients of pressure and density are governed by the product,
ap L, projectile acceleration times breech-to-projectile
distance.

2. Acceleration of the propellant grains has a significant effect
on the pressure and density gradients.

3. Supersonic interior ballistic flow exist and can be modelled by

the method described in Chapter 5.
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Appendix A

Derivation of Governing and Auxilliary Equations for

Inviscid and Viscous Flow inside Tubes.

Introduction

In this appendix, conservation equations which describe high speed
unsteady compressible flow in tubes with combustion are developed and
presented first. These equations were derived using a control volume
approach where a typical control volume is shown in Fig. A.1.

Next, auxiliary equations which describe the volumetric rate of
propellant consumption (ﬁs), the propellant grain-combustion gas
velocity ratio (CDy), tube wall heat flux (q,) and propellant grain
displacement (Lg) are developed and presented.

Last of all, auxiliary equations are presented for two

interpolative schemes which allow variable values to be mapped to and

from the { and i* grid point systems.
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Figure A.1l

Schematic of an infintesimal control volume.




Continuity of Propellant Grains

The following assumptions were used in deriving the continuity
equation for the propellant grains:
1) The propellant grains are incompressible.
2) The propellant grains are distributed homogeneously throughout
the control volume.
The propellant grains can be treated as a continuum.
The problem is unsteady and one-dimensional (in the axial
direction along the tube).
Under these assumptions, the propellant continuity equation can be

written as

the time rate

of change of the rate of the rate of
mass of propellant] = |propellant - |propellant
within the control influx efflux
volume

the generation of
propellant mass
within the control
vol-ume

. ar’as .
(ms + Y dx) + I (‘Ms\)AdX)

where the terms of Eq. (A.1) are defined as follows:

1) A= nRZ = the tibe cross-sectional area
2) v = AS/A = the ratio of propellant cross-sectional area to
tube cross-sectional area

Ms = the volumetric rate of propellant consumption within the

control volume

Mg = [f 0 vdAldax = p_v[[,dAJdx = p_vAdx




® 5) @y = [,pvuda = pova [ dh = p vu A (A.3)
Substitution of Eqs. (A.2) and (A.3) into Eq. (A.1) ylelds
2 (p_VvA)dx = - 2 (p u_A)dx - MvAdx (A.4)
ot s X 's'8

which can be rearranged to give

3y 3.8, v _’s __s (A.5)

Continuity of the Combustion Gas

The following assumption was used in deriving the continuity

equation for the combustion gas:

1 The problem {s unsteady and one-dimensional {in the axial
direction along the tube) where radial effects are accounted
for by the K factor approcach.

under this assumption, vhe combusticon gas continuity equation can be

written as

the time rate of the generation

change of combustion the rate of the rate of of combustion gas
combustion - |jcombustion +
gas mass within the as influx as efflux mass within the
control volume g g control volume
or,
am
aM . _ . 8 (] _
5t l = | m8 ‘ m8 + % dx + Mg(1 v)Adx (A.6)

where the terms of Eq. (A.6) are defined as follows:

@ 1) M =M (=) (A.T)




o 2) M= [f,p(1=v)dAddx = (1-v)([,pdAdax = (1-v)PAx (A.8)
3 my = [peuC1-viaa = (1-v) f,pudn - (1-v)5uK A (A.9)

Substituticn of Eqs. (A.7)-(A.9) into Eq. (A.6) ylelds the equation
9 RYT - - - ’
T [(1-v)pAldx = 5% Q¢ \))KpupJA]dx * M Adx (A.10)

which can be rearranged to give

EE 13 A = M (= p v - v

Substitution of the Propellant Continuity Equation (Eq. (A.5)) intc Eq.
(A.11) and subsequent rearranging yield the final form of the combustion

gas continuity equation

- -= 3K - M
.g-e = - L‘! % - -t- —_p_::l- - a(pu) S "- - ﬂ
at Kpu A 3x P X Kpu x (1-v) [(Kg;m'l Js) ax
o u a
s, s
v(-a-— '3 ax)] (A.12)

For the case of inviscid flow, all K-factors in Eq. (A.12) are seat

to 1.0 and all derivatives of K-factors are set to 0.0,

Momentum Equation for the Combustion Gas

The following assumptions were used in deriving the momentum
equation for the combustion gas:
1) The problem {s unsteady and ore-dimensional {(in the axial

direction along the tube) where radial effects are accounted

for by the K factor approach.
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2) The tube wall friction caused by the propellant grains is
@ negligible.
3) Pressure varies in the axial direction only.
Under these assumptions, the combustion gas momentum equation can be

written as

the time rate the genera- _
of change of the rate the rate tion of ﬁgf ?g:ozxfgr
combustion of combus- of combus- combustion
posed on the
gas momentum = |tion gas -|tion gas +lgas momen- |+
combustion gas
within the momentum moment um tum within
. . . within the
control influx efflux the contrcl control volume
- volame volume -
5 I Q%%ll = |mu] - |ma o+ 2%332 dx| + |P ax| + |z Fextl (A.13)
H where the terms of Eq. (A.13) are defined as follows:

1) Mu = [IApu(1—v)dA]dx-[(1-v)JApudA]dx-(1-v)5§KpuAdx (A.14)

2) mu = jpuzn-v)dA - (1-v)fpu2dA « (1-v)32%K oA (A.15)
. . - pu

3) P = CD, Mstu (A.16)

4) T Fop ® Fpet(pressure) + F(wall shear) + F(particle drag)

where, referring to Fig. (A.1)

a) Fpep(pressure) = F(pressure)|, - Flpressure)|,,qx

F(pressure)|,.qy/2

PA(1-v) - {PA(1-y) + % [PA(1-v) dx)

! + [P+ -g—: ?3(1-\))@
|
1 . - -g—x [PA(1-v)]1dx + (1-v)PdA
3 A
= - 3% [PACT-v)ldx + (1-v)P == dx

alP(1-v)]
ax

D

SA
'(1'\))P§§dX-A

dx+(1-v)P%%dx
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therefore,
Fray (Pressure) = QLE%%_XLJ (A1)
b) F(wall shear) = -tNZanx (A.18)

where a model for the wall shear stress (Tw) is presented
in Section 4.3
c) F(particle drag) = -Ddx (A.19)
where a model for the particle drag (D) is presented in
Section 4.3
Therefore, the net external force acting on the combustion gas i{n the

control volume may be expressed as

8[P(1 v)]

L Fext N oX

dx - rHZanx - Ddx (A.20)

Substitution of Eqs. (A.14)-(A.19) into Eq. (A.13) yields the following

equation

- a . ‘_
Ty {1 v)pJKpuA]dx i [(1- \))DJ K 2A]dx + CDyM, vAudx

pu
%— ((1-v)Pldx - 1,27Rdx - Ddx (A.21)
which can be rearrangad to give
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N (p . ¥ __ _Dy (A.22)

Substitution of Eq. (A.5), the propellant continuity equation, into Eq.
(A.22) and subsequent rearranging yield the final form of the combustion

gas momentum equation:

-2 Cou (K ,u - Kpuus) + P)

3pu) o 1 BlpuD) pu v _ P
ot K 2 3x (1-v) ax  3x
pu pu
(K u+ (+==)X_u_]
-= 2 1 u-'s K 9K 2
- P4 { pu P a—A + [__Lu + u 4
K_ 3 ax 3t 3x
pu
v Bug u _ v
EREMAPE U S e
1
+ W (1,,27R/A + D/A]} (A.23)

For the case of inviscid flow, all K-factors in Eq. (A.23) are set
to 1.0 and all derivatives of K-factors are set to 0.0. Also, the

dissipative terms T, and D are set to 0.0.

Energy Equation for the Combustion Gas

The following assumptions were used in deriving the energy equation

for the combustion gas:

1) The problem is unsteady and one-dimensional (in the ax!lal
direction along the tube) where rad{al effects are accounted
for by the K factor approcach.

2) Heat transfer in the axial direction is negligible.

3) Pressure varies only in the axial direction only.

Under these assumptions, the combustion gas energy equation can be
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written as
the time rate the rate
of change of the generation of energy
the rate of | (the rate of )
2o energy combustion | |ecmbustion | |2 IO || IERCRCENeC
within the $:?1§:ergy g??lzzergy within the control
control control volume| |[volume
volume boundaries
-or,
. . 3B . .
|E|-|E|-|E¢ﬁdx slQf-1}aQ (A.24)
where the terms of Eq. (A.24) are defined as follows:
1) E = [jAp(wuZ/z)(1-v)dA]dx-[(1-v)J'AedA]dx-(1-v)'e'Adx (4.25)
2) B [ lotu+ u?/2) + PIu(1-v)dA = (1-v) [yt + Puaa
= (1-v)AK_, 2u + P] (A.26)
the rate the energy rate the energy rate needed
of chemi- needed to raise to bring the newly
. cal energy the temperature of released gas within
3) Q = |release -|the propellant -|the contrcl volume up
within the within the control to the temperature of
control volume up to the the siurrounding
volume ignition temperature] |combustion gas
r gs

(A.27) are defined as follows:

or,
oo 6 |- e, |- (r.2)
where the terms of Eq. i

a) Qr - Msthsng (A.28)
b) ng - CPS(Tign- Tinit)Mstdx (A.29)
w e) Qgs « [h(T) - h(Tign)]Ms\’Adx (A.30)




therefore,

§ - Mst{hsgdx-C o7 ) - [h(T)-h(Tign)]}dx (A.31)

ps'Tign Tinit

4) éw - qw2wR(x)dx (A.32)

Substitution of Eqs. (A.25)-(A.32) into Eq. (A.24) yields the aquation

1-v)Ae -— -
3L ¢ ;er]dx = - %; {(1-v)A[Keueu + Pulldx - qwzwndx
i - MavA{hsg - cps(r18n - Tinit) - [n(T) - h(Tign)]}dx (A.33)
which can be rearranged to give

e o dew) | == 3(Kgy) (K0 + Pu) M _APW) 1y = By
ot eu 9x ax A 9x ax 1-v t

s (K ou+ P g 24 W lh -Co (T, _-T, .)

eu ax w R 8" 8g Ps' "ign init
- (0D - (T N (A.34)

Substitution of Eq. (A.5), the propellant continuity equation, into Eq.
(A.34) and subsequent rearranging yield the final form of the combustion

gas energy equation,

3(K_.)

%e . 3leu) 1 -e = = 3(v) _3(Pu) _ == °'"e
T Reu Tax  * Ty (Key®dtPu - eug) S X M T
r eu + Pu 2 Yeq -
L(Keueu + Pu) + (1_v)eJ] 24 oy a(us)

o A »* T ax - C T9) M 8g
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-(h(F) - S8y, 2
(M - nT NI - ShRde, § (M35

s

- CPa(Tign-Tinit
For the case of inviscid flow, all K-factors in Eq. (A.35) are set
to 1.0 and all derivatives of K-factors are set to 0.0. Also, the

dissipative term q, is set to 0.0.

Darivation of the Volumetric Rate of -Prcpellant Consumption Equation

In this section, two formulas for the volumetric rate of propellant
consumption (ﬁs) are derived. First, a formulua for the linear burning
speed (ry) is given and then two formulas for the local birning surface
area (Ab) are developed. For the development of the first burning sur-
face formula, a control volume approach {s used to relate the cross-
sectional area fraction of propellant (v) to the local burning surface
area. Figure (A.1) shows a control volume of cross-saectional area A and
length dx.

For the development of the second burning surface formula, the
assumptions of oconstant total burning surface area and constant
propellant grain burning surface area are dropped. Therefore, this

formulation should more closely model the real durning process.

Calculation of the linear burning speed

The linear burning speed is the speed at which the surface area c¢f
a propellant grain regresses due to combustion. During combustion, the
propellant grain radius (r) decreases a distance dr in a time interval

dt. The linear burning speed is therefore given by

r,o= — (A.36)




The linear burning speed is known to be primarily a function of

pressure. Table A-1 shows experimentally obtained linear burning speeds

for CIL 3331 propellant at different pressures [Ref. 14]. Values for

the 1linear burning speed at specific pressures are found by 1linear

interpolation between the listed burning speeds.

Calculation of the local burning surface area

The propellant grains chosen for this study are single perforate

and cylindrically shaped with the following dimensions:

1)
2)
3)

ry = the inner radius of the propellant grain
ro = the outer radius of the propellant grain

1l = the initial length of the propellant grain

The following assumptions are used to obtain the first equation for

the propellant grain burning surface area:

1)
2)

3)

y)

The propellant grains are incompressible.

The burning surface area of the ends of a propellant grain are
small in comparison to the burning surface area of the inner
and outer cylindrical surfaces cf the propellant grain,

The number of propellant grains per unit volume (n) {s a
function of time and distance along the combastion tube axis,
1.e., n = n(x,t).

The total surface burning area (Abt) is constant.

Under these assumptions, the volumetric burning surface area may be

expressed as

dr dr

dt dat

Ap = {2nllr (t=0) + T 5t 9t + 2mllr (t=0) - j = dtl}n (A.37)
(o] 0




TABLE A-1
. Linear burning speeds for CIL 3331 propellant at various pressures
Ty Pressure

(1073m/sec) (10%pa)
0.0 - 0.0

' ' © 330 S ' 20.7
5.08 34.5
7.1 48.3
9.65 69.0
13.21 103.5
17.27 138.0
20,57 172.4
24.38 206.9
30.48 275.9
36.83 344.9
43.69 413.9
55.88 551.8
68.58 689.8
116,84 1379.5
170.18 2069.3
210.18 2759.1
243,84 3448.9
309.88 9828.4
401,32 6897.7
635.C0 13795.4




A=-14

or
A, = 2:1(r1(t-o) + ro(t-o)]n (A.38)

Because the propellant grain geometry and assumptions chosen for
“this ‘analysis result in a constant total burning surface area, it is
convenient to recast Eq. (A.38) in the following way:
1) maltiply Eq. (A.38) by ps/ps where p_ is the propellant grain
density.
2) define a quantity known as the web thickness (w) where w =
(rg(t) = ry(t)) and multiply Eq. (A.38) by w/w.
Equation (A.38) can then be rewritten as
2nlp (r

s
Ab 5

- rf)n

- (A.39)

@ jon

If n refers toc the number of propellant grains contained within a
control volume of size Adx (see Fig. (A-1)), then the equation for the

local volumetric burning surface area becomes

A - X (A.40)

where Mgay * the mass of the propellant per unit volume contained within

the control volume.

If n refers to the total number of propellant grains, the equation
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for total burning surface area becomes

stt

Abt, - psw (A.W11)

where myy = the mass of the propellant charge per unit volume at time t.

Since Abt is a constant, it may also be expressed as

2mc¢

- 2
Ave X (A.42)

where

mg - the initial mass of the propellant charge per unit volume.
Hb = the initial web thickness of the propellant grains,
Equations (A.40)-(A.42) may then be combined to give Ap in terms of a

constant and a mass ratio, {.e.,

m
A v (.43)
st
where,
Moy * pstdx (A.ul4)
mg, = Pg Z vAdx (A.U5)

Substituting Eqs. (A.44) and (A.45) into Eq. (A.43) yields the final
form of the first equation for the local burning surface area
vAdx ]

A= A (A.46)

N
? vAdx

o)




The second formula derived for the propellant grain local burning
surface area uses only assumptions 1 and 3 of the previous derivation.
Under these assumptions, the local burning surface area may be expressed
as

a

r
o dtl)

t t
- Ab---Zw{[ld c{ & dr ({

Gt AILry(6e0) + [ at] + Iry(ee0) -

Car

t
v 2n{lr (t=0) - [ & a1? - [r (t=0) + %% atyln  (A.4T)
[o] (o]

By using Eq. (A.36), the definition of web thickness, and rearranging,

Eq. (A.U7) can be rewritten as
t t
Ay = 2mi{lwg + 2r (£=0)1(1, - i rpdt + W, = 2u, £ rdtin  (A.48)

Referring to Fig. (A.1), it can be seen that the number of propel-~

lant grains per unit volume in the control volume may be written as

[{propellant mass in CV/volume of CV]
n = (A.49)
cv mass of propellant grain
or
[psAdx/Ade
n - (AASO)
cv

t t
pgmiluy + 2r (t=0)dw, = 2w, £ redtill, - i r,dt]

Simplifying Eq. (A.56) and substituting it into Eq. (A.47) results in




the second formula for the local burning surface area:

t t
2{[w, + 2r (*=-0)101, - | rydt + W, - 2w, | rodt}
° 2 (A.51)

Ab -

t t
wllw, + 2r (te0) - 2 i rydtlll, - ({ rydt]

Calculation of the local volumetric rate of propellant consumption

The local volumetric rate of propellant consumption (ﬁs) may be
found by multiplying the propellant density by the 1local volume of

propellant consumed in time interval dt, {.e.,

Ms - psAbrb (A.52)

Formulation of the Propellant Graln-Combustion Gas Velocity Ratio

In this section, a relation 1s found between propellant grain
veloecity and combustion gas velocity. The relation derived is of an
approximate nature and is intended to express only the most dominant
physics, The main ooncept of this derived relationship between
propellant grain velocity and combustion gas velocity i{s that propellant

grain velocity can be expressed simply as

ug - CD1 u (A.53)

where

1) ug = the propellant grain velocity

@ 2) CDy = a parameter which describes the ratio of propellant




grain veloecity
’ 3) u = the combustion gas velocity
To derive an equation for CD‘, the following assumptions were made:
1) Quasi-steady conditions are valid for all time dependent
variables.
2) All other forces felt by a propellant grain are negligible in
- - " comparison to the pressure drag force, {.e.,
Fret = Fy (A.54)
3) At any time, u is a linear function of the projectile velocity

Up and the projectile displacement (Lp). i.e.,

where x is the axial distance from the breech.
b) At any time, the combustion gas spatial density gradient is

negligible, {.e.,

2.0 (A.56)
X

5) The spatial gradient of the propellant grain-combustion gas
velocity ratio i{s negligible at any time, i.e.,

aCD,

- - 0 (A.57)

6) The propeliant grains are incompressible.

7) The temporal gradient CDy has a much smaller magnitude than

Q either the temporal gradient ug or ths temporal gradient of u,




i.e.,
aCDh au
1 ) au
It | << Iggl o Igel (4.58)

8) The propellant grains are single perforate cylinders with a
time averaged radius r and constant length 1.

The first step in finding an expression for CDy 1is to find an
expression for the acceleration of the propellant particles (as) in
terms of known variables. To do this, a force balarce {s applied tc a
propellant grain at an instant in time. Using assumption 1, the drag
rorce felt by the propellant grain can be expressed in the following

way:

Fy = CDp(u-us)z(Zrl) (A.59)
where

1) CD = a drag coefficient for a propellant grain

2) p = the combustion gas density

3) 2rl = the frontal area of the propellant grain
Making use of assumption 2, the drag force (F4) may also be expressed by

Newton's Second Law:

2
Fd « (nr 1°s)as (A.60)

where Py = the propellant grain density. Combining Eqs. (A.59) and




(A.60) results in the following formula for ag:

Y
CD(u Js)
s i

(A.61)

A

The desired final form of an expression for propellant grain
acceleration is found by combining Eqs. (A.53) and (A.61):

2 2
CDu (1 CD1)

a - _ (AA 62)
8 mr o]

The second step used to find an expression for CDy; was to derive
expressions for the spatial average propellant grain acceleration
(55) and the spatial average combustion gas acceleration (a). Equation
(A.62) can be integrated in the axial direction and divided by the

integration interval (Lp-O) to find ES:

y Cpy 2(1- co, )

2 Jax (A.63)
pS

ml
rla

o

Using Eq. (A.55) from assumption 3, Eq. (A.56) from assumption 4, Eq.
(4.57) from assumption 5, and assumption 6, Eq. (A.63) can be rewritten

as

o)
]

2
1_
CD( CD1) £ Up3 Tpxzdx (A.6U4)

Performing the indicated integration results in the desired expression

for a_:
<)

(A.65)
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Differentiating Eq. (A.55) with respect to time gives the following

expression for the combustion gas acceleration:

(A.66)

]

»
o ¥

[ 4

oU
where a; = the projectile acceleration (3{2)

Equation (A.66) can be integrated in the axial direction and divided by

the integration interval (L,-0) to find a:
3 jp X a dx (A.67)
L o L

Performing the indicated integration results in the desired expression

for a:

Wi
[ ]

a (A.68)

o —
o

The last step needed to find an expression for CD; was to relate
35 and 3. This was done by making use of assumption 7 in the differen-
tiation of Eg. (A.68) with respect to time. The resulting equation is

as e CD13 (A.69)

Integrating Eq. (A.69) in the axi{al direction, dividing by the integra-

tion interval (Lp-O), and using assumption 5 results in the equation

?p CD1adx (A.70)
o

r‘d
o=
[+}]

n
o)
>
[ |
r'l—-




Performing the indicated integration results in the equation

= CD.& (A.TY)

w |

_ Substituting Eq. (A.65) and Eq. (A.68) into Eq. (A.71) results in the

equation

2

2
Cp(1-CD,) u
L v e p .1
— = - - 3 a 0D, (A.72)

s
where the acceleration ratio of propellant grains to combustion gas {s

2
2C_pU
Fa = 2P (A.73)
3mrp a
S p
Substituting Eq. (A.73) into Eq. (A.72) yields the desired expression
for the propellant grain-combustion gas velocity ratio:
1
CD1 - 1 + >Fa (1 - /IFa+1) (A.TH)
To check the validity of this expression, the following typical
interior ballistic values were chosen:
1 r =« 0.035 in = 0.0009 m
2)  pg ~ 0.06 1bm/in3 = 1664 kg/m3
3) p = 0.009 1bm/in3 = 250 kg/m3
u) UD = 1.0

Table A.2 lists values for CDy for typical values of U, and a,. The CD,

p p

-

ratios shown in table {A.2) are typical of those observed in interior




.Table A.2

Values for CD,

2C.p .
3?[’9-5 (1/m) U, (m/sec) a, (w/sec?) Fa cD,
| . i n/88c _
35.37 200 600,000 2.36 0.53
35.37 600 400, 000 31.8 0.84
35.37 1000 100,000 353.7 0.95




ballistic simulations.

Tube Wall Heat Flux

In this Aeotion. a formula for tube wall heat flux (q,) is derived.
The first part of this heat flux analysals is concerned with developing
formulas for the thermal properties of the ocombustion gas and tube wall.
Next, a formula {s derived for the heat transfer coefficient h,.
Finally, an {ntegral approach i{s used to find the hgeat penetration
lengt: {§) into the tube wall and the tube wall boundary temperature at
some axial location [Ref. 34].

With this information, the heat flux can be found by using a form

of the formula
q, - hc(‘r' -T) (A.75)

where

1) T i3 the average oombustion gas temperature at some axial

location.

2) T, is the tube wall boundary temperature at the same axial

locatinn,

Combustion gas and tube wall properties

In order to find the heat flux for the interior ballistic problem,

the relevant combustion gas and tube wall properties must be known.

Here, 1t {s assumed that the relevant properties vary linearly with




temperature acoording to the equation
' Feml +Db (A.76)
where
1) F = a temperature dependent property
2) T = temperature
3) m = a oonstant
) b ea oconstant
Table (A.3) shows the MKS values of u, k and Pr at two temperatures
for Hy, CO, Hp0, COp and Np. Applying Eq. (A.76) to these sets of data

results in the following formulas:

Properties of H,

Dy (T) - 035 10°T(T) + 49,259 x 1077 (A.T7)
2) Ky, (T) = 0.409 x 1073 + 60.353 x 1073 (4.78)
3)  Pry,(T) = -2.353 x 1072(T) + .708 (A.79)
| Properties of CO

1) uge(T) = 0,336 x 1077(T) + 74,200 + 1077 (A.80)
2)  Kkgo(T) = 0.0610 x 1073(T) + 6,700 x 1073 (A.81)
3)  Preg(1) = =5.000 x 10°3(T) + 0,745 (A.82)
Properties of H,0

Dy (T = 0.361 x 10°T(T) - 10,185 x 1077 (4.83)

2




. Table A.3

Gas properties at various temperatures

Constituent Temperatwe (T) Viscosity (u) Conductivity (k) Prantl number (Pr)

Gas (K) (-N—;-s-) (H_ ) (dimensionless)
Kk
m m
300 89.6 x 1077 183 x 1073 0.701
SR —— --2000 . 318.2x 10T - - 818x10°3 - . 0.661 -—
300 175 x 1077 25.0 x 1073 0.730
co 800 343 x 1077 55.5 x 1073 0.705
380 127.1 x 1077 24.6 x 1073 1.06
Hy0 850 296.9 x 10”7 63.7 x 1073 1.02
300 149 x 1077 16.55 x 10°3 0.766
€O, 800 337 x 10”7 55.1 x 10”3 0.716
300 178.2 x 1077 25.9 x 1073 0.716
N2 1300 466.2 x 1077 81.0 x 1073 0.701
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2)  ky,o(T) = 0.0832 x 1073(T) - 7.013 x 1073 (A.8)
T) = -8.511 x 10°9(T) + 1.092 (A.85)
3 Pry,o(D x

Properties of CO,

1) ugy (T) = 0.376 x 10°7(T) + 36.200 x 1077 (A.86)
2

D ka0 = 00771 x 10°KD) - 6,580 x 103  en

3) Prgg,(T) = =1.000 x 1074(T) + 0.796 (A.88)

Properties of N,

10wy (T) = 0.288 x 1077(T) + 91.800 x 1077 (A.89)
2

2)  ky,(T) = 0.0551 x 1073(T) + 9.370 x 1073 (A.90)

3)  Pry(T) = -1.500 x 107%(T) + 0.721 (A.91)

After finding formulas for u, kK and Pr for the constituents of the

combustion gas, the mass averaging formula

F e ™ (.011)FH + (.SZU)FCO* (.1NZ)FH

av 2 2O

+ (.183)FCO + (1.140)5'N (R.92)
2 2

was used to obtain the following combustion gas properties for CIL 3331
propellant:

1) = 0.338 x 10°7(T) + 57.412 x 1077 (A.93)

YeIL
2)  keqy = 0.0703 x 1073(T) + 3.322 x 1073 (A.94)

Q 3)  Prepp = =5.893 x 107°(T) + 0.800 (A.95)




Table A.U
Tube wall properties

Specific Heat

Tube Wall Temperature (T) Capacity (Cp) Conductivity (k)

Thermal

Diffusivity (a)

2
J W m
Material (k) (m) (H) (S—e-é')
. _ w0 w8 56T 14.82 x 107
Carbon Steel 1000 1169 30.0 3.27 x 1075




Table A.U4 shows the MKS values of Cp, k and o at two temperatures
for plain carbon steel. Applying Eq. (A.76) to this set of data results

in the following formulas:

1) CPge(T) = 1.137(T) + 32.330 (A.96)
2)  Kgy(T) = -0.04H5(T) + TH.500 (A.97)
3)  ag,(T) = =0.0193 x 10°6(T) + 22.520 x 1076 (A.98)

A convection coefficient model

A reasonable value for the convection coefficient h, {s needed in
order to find the heat transferred into the tube wall from the combus-
tion gas, The formula for h, presented here is of an approximate nature
for the {interior ballistic flow probiem. This {s because of the
assumptions needed to use a modified version of the Sieder-Tate Nusselt
number formula. The necessary assumpticns are as follows:

1) Quasi-steady state conditions hold.

2) The flow in the tube is fully developed.

3) The combustion gas flow in the tube is turbulent (i.e., it has

a Reynolds number, Rep, in excess of 2300).
) The Prantl number (Pr) for the combustion gas is greater than
0.5.
By using the above assumptions, the Nusselt number of the combustion gas

at some axial location x, along the tube and time t can be expressed as

45, 1/3,u 0.14
NuD(xa.t) = A ReD Pr (E;) (A.99)

wher- the temperature dependent properties Pr and y are given by Eq.

(A.95) and Eq. (A.93), respectively, and evaluated at Th - [T(xa,t) +
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Tu(xg,t)]72, the viscosity at the tube wall surface ug is given by Eq.
(A.93) and evaluated at Tw(xa.t), and A is chosen such that the calcu-
lated peak tube wall temperature agrees well with the experimentally
obtained peak tube wall temperature of 1050 K [Refs. 22,38). For this
analysis of the interior ballistic problem, a value of 0.075 was chosen
for A.
The convection coefficient of the combustion gas at some axial

location x4 along the tube and time t can be expressed as
K
hc(xa.t) - NuD(xa.t) 5 (A.100)

where k is the thermal conductivity of the combustion gas given by Eq.
(A.94) and D is the tube diameter. Substituting Eq. (A.99) into Eq.

(A.100) results in the formula

. 4/5, 1/3 0.1, k
hc(xa,t) (.o75 ReD Pr (“s) ](D) (A.101)

The Reynolds number in Eq. (A.101) is given by

p(xa.t) u(xa.t) D

ReD = m (A.102)

An integral method to find heat flux

Figure A.1 shows the geometry and coordinate system used to

analyze the tube wall heat transfer problem, The axial distance along

the tube is measured along the x axis and the distance into the tube
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wall 1s measured along the y axis where
. Yy = R-r (A.103)
The following assumptions were used to derive an expression for
tube wall heat transfer:

1) The heat transfer taking place in the tube wall i{s conduction
heat transfer in the y direction,

2) - The efrects-ot fube wall curvature may be.neglected“sxnoe thg;“_
heat penetration distance into the tube wall, &(t), is small.

3) The tube wall thermal properties are functions of temperature
only.

y) The temperature profile in the tube wall at any axial location
can be expressed as a second degree polynomial function of
temperatwe.

5) Quasi-steady oconditions hold for the conveotion coefficient
Nee

Using assumptions 1 and 2, the governing equation for tube wall heat

transfer at a fixed axial location x, and time t can be written as

2
3T(xa.y.t) 9 T(Xa|Ytt)

1
- - (A.104)
ag, at ayZ

with the {nitial condition
T(xa.t.o) « T} (A.105)

and the boundary condition

AT, (x,,t) _
] “Kgp —lgri— + MT,(x,,t) « HT(x ,t) (A.106)
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’ where

Ty(xy,t) is the temperature at the tube wall boundary

and
T(xa,t) 13 the combustion gas temperature.

Using assumptions 3 and 4, the temperature profile in the tube wall

can be expressed as
T(xa.y,t) = a + DT + cT2 (A.107)

subject to the constraints

ar(xa.s.c)
— =0 (A.108)
T(xa,G,t) = Ti (A.109)

By applying the constraints due to the heat penetration length
(Eqs. (A.108) and (A.109)) and the tube wall boundary condition (Eq.
(A.106)), the terms a, b and ¢ in Eq. (A.107) may be found. The

resulting tube wall temperature profile equation is

h = §
T(Xa.)'ot) ~Ti = ("ks_t)[T(xaot) - Tw(xaot)][E

- y*%] (A.110)

By integrating the governing equation (Eq. (A.104)) across the

Q region of heat penetration, using assumption 2, and applying the heat

sy AOSOAEE BN OO0 LA MDD M AL O ICUX U A OB A )
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penetration length oconstraint Eq. (A.108), the governing equation can be

rewritten as

aT(x_,y,t) T (x_,t)
%t o y y

By using Liebnetz's rule and the heat penetration length constraint

Eq. (A.109), the following two relations may be found:

3 ? 3% ? BT(xa.y.t)

3 T(xa.y.t) dy = Ti 3t + [—T]dy (A.112)
o o
2 _ 2§

Ti 3% " 3t ‘ri dy (A.113)

(o}

Substitution of Eqs. (A.112)and (A.113) into Eq. (A.111) and subsequent

rearranging results in the following Iintegral form of the governing

equation:
oT (x_,t)
> | - .« q,, 2B
x ) [T(xa.y.t) T1)dy L 3y (R.114)

Substituting the tube wall temperature profile equation (Eq. (A.110))
into Eq. (A.114) and performing the indicated integration yields the
following equation:

aTw(xa,t)

9 h = - - Switat’
T {;;: [T(Xa.t) T, (X ,t)] Z6 } ag, T (A.115)

Differentiating Eq. (A.110) with respect to y and applying the result at
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the tube wall boundary (y=0) yielAds the relation:

aTw(xa,t) hc

3y - Ko [T(xa.t) - Tu(xa.t)] (A.116)

By substituting Eq. (A.116) into Eq. (A.115) and using assumption %, Eq.

(A.1:6) can be rewritten as
3—([ﬁx t) - T (x_,t)]) 16% e a  [T(x_,t) - T (x_,t)] (A NT)
ot a’ wa'"""§ st-"*"a’ w a’ :

The socluation of Eq. (A.117) yields a value for & at time t and scme
axial location X, along the tube. Performing an integration of Eq.
(A.117) by use of a summation approximation yields the following

solution for § at time level n+i1:

n+1 _ 1/2
T 6(ast)J[T(xa,JAt) - Tw(xa.JAt)]At

s((n+1)at) = | L2 (A.118)
[T(xa.(n+1)u~) - Tw(xa,(n*1)At)]

where (aS )J is given by Eq. (A.98) at the average tube wall temperature

t

T ) . Tw(xa,jAt) + Ti
ave'J 2

(A.119)

For Eq. (A.118), the term Tw(xa,(n+1)At) 2an be approximated as
Tw(xa.nAt). If higher accuracy is desired, an iteration techniqie can
be used to update the value of &§((n+1)at),

Once §((n+1)At) is known, it can be substituted into the tube wall

temperature profile equation to find a value for the tube wall boundary

AN UL s VRSO L A A A AU A N LSS A DG AN UMM M MR RO I 6% AR It WOF X
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temperature at some axjal location X3 and time (n+1)At. The resulting

. equation is
n, _ ;
TL + (=) 6((n+1)88)T(x_, (n+1)at)
T (x_.(ns1)at) = St . (A.120)
[+ + (EE——)G((n*1)At)]

st

where kg, is given by Eq. (A.97) at the tube wall boundary temperature
cerresponding to time level n. Finally, the heat flux at time level n+!

at some axial locaticun Xy along the tube can be written as

q,(x_,(n+1)at) = hc[T(xa.(n+1)At) - T, (x,.(ne1)at)] (A.121)

Propellant grain displacement

In order to properly scale the transformed spatial domain of the
propellant grains, the propellant grain displacement (Ls) must be known,

Tce find Ls, an jterative procedure was used. The essence of this
proccedwre is to find an i grid point which corresponds to the IL¥ grid
point as shown in Fig. A.2. Once the location of this { grid point is
known, velocity information from the combustion gas probiem can be used
to find Uy (the propellant grain velocity at point IL%), After Ug is
deternined, L, can be found in a manner analogous to that used to find
Lp (see Section 2.3).

A step-by-step description of the iterative procedure used to rind

a Lg Is given here and proceeds as fyllows:




IL

i+l

1 (IL*)

i
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Figure A.2
i1 grid points correspond to the discretized combustion gas spatial domain.

Propellant grain displacement (LS) and projectile displacement (Lp) where

i T AT A g R

and i1* grid points correspond to the discretized propellant

1
|

grain spatial domain.

e T



1)

2)

3)

)

5)

6)

A-3T

Find the 1 grid point which corresponds to (IL¥)"'! by using
the formula

Ls,

ir' =« (1L-1) YSE + 1 (A.122)

P

where initially  _ . S _

L, =1L (A.123)

s s
Find the integer value i1 which corresponds to the value of ir
by using the formula

1 = INT(ir") (A.124)
where INT indicates an integer value
Calculate a ratio (PHE) which indicates the position of the
point ir' relative to the positions of the points { and i+1
(see Fig. A-2) by using the formula
PHE » ir' - { (A.125)
Find the combustion gas velocity and the propellant grain-

combustion gas velocity ratio at point ir' by using the

formulas
u(ir') = (1 - PHE)u(1) + (PHE)u(i+1) (A.126)
CDy(ir') = (1 - PHE)CDy(1) + (PHE)CDq(1+1) (A.127)

Find the propellant grain velocity at point {r' by using the
formula

Ug(ir') = CD, (ir*)u(ir") (A.128)

Guess the value of the propellant grain displacement (Ls) at




time level n+i by gsing the formula
net ~ . n LUy * U (ar")]

La - L8 + —3 At (A.129)

7) Check to see whether the difference between Lg(ir') in Eq.
(A.129) and Lg¢ in Eq. (A.122) is less than some s1all value
€. If this difference is less than ¢, then Eq. (A.129) has
yielded an aocceptable va''w for L,"”.' It this difference is

- still greater than e, then repeat steps 1-7 using the updated

value of L, found in Eq. (A.129).

A Conservative Scheme for Mapping i* Values onto the { Grid Point System

When mapping i¥* valuas onto the { grid point system (see Fig. A.3),
it is important that the mapping procedure be conservative. This i{s be-
cause of the very significant influence of i* variadbles on the interior
ballistic problem and the large number of times that this mapping prcoe-
dure must be carried out in the numerical solution procedure.

The mapping procedure develored ensures conservation by requiring
the spatial integral of whatever variable {s to be mapped to have the
same value in both grid pcint systems. A step-by-step description of
the mapping procedure {s given below:

1) Find the {* point which equals the ocorresponding { point (see

Fig. A.3) by using the formula

i%r = 1 + LP/LB (1-1) (A.130)

2) Calculate a ratic (PHE) which indicates the position of the

point {¥%r relative to the positions of point 1% and ({+1)#%
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k)

1) by using the formula

A=40

(see Fig. A.3) by using the formula

L INT(? ¢+ L /Ls (1=1))-1

PHE = (i-1) - - P
LB LQ

(A.131)

where INT {ndicates an {nteger value.

Find the interpolated value at point i%p (equivalently point

VAL(i%r) = (1-PHE)VAL({%®) « (PHE)VAL(i+1)®) (A.132)
To enswre oconservation of values mapped from the i* grid point
system to the { grid point system, the integral relation

x(}*r) x}i)

VAL*(x)dx = VAL(x)dx
0 °

(A.133)

is used in the following manner:

a) the left side of Eq. (A.133) is numerically approximated

as
x(L%r) _ INT(.%*r) L,
} VAL*(x)dx = L % (VAL(1=1) %) +VALUE®) Jrpramy
° {%e2

[(1-1)§p - (1*-1)L°]

+ % [VAL(1%) + VAL(1%r)]( TICSTY

(A, 134)

b) the right side of Eq. (A.133) is numerically approximated

as

(A.135)

L
% [VAL(1-1) + VAL(1)] 73;@;;

x(1) . 1
VAL(x)dx = £
° {=2
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where

Ls
I = (i*r-1) ¢ + 1 (A.136)

p
¢) by combining Eqs. (A.133)-(A.135), rearranging and recog-
~nizing that IL is numerically equivalent to IL*, i* values
cann be conservatively mapped onto the { grid point system

by the formula

INT(i%r)
VAL(1) = { T (L_/L )IVAL(1-1)%) + VAL(1%)]}
tra2 9 P
I-1
- { £ CVAL(1-1) - VAL(1)]} + [1 = (1*-1)(L_/L )
fe2 s P
- 1][VAL({*) + VAL(i%*r)] - VAL(i-1) (R.137)

5) Increment the value of { and repeat steps 1-4 until

{=1IL (A.138)

A_Non-Conservative Scheme for Mapping i Values onto the i* Grid Point
System

Since the i grid point system {s inherently less accurate than the
i* grid point system (because Ax 2 Ax*) conservative mapping of i values
onto the {* grid point system is not apprcpriate. Therefore, a simpler

mapping scheme was developed and {s presented here in a step-by-step

manner:



1)

- 2)

3)

4)

5)
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Find the i{r point whioh equals the corresponding (IL® - {#*)

point (see Fig. A.3) by using the formula

Ly
ir = (IL* - 1*)(E—) + 1 (A.139)
P
Find the integer value | which corresponds to the value of ir,
feee, — -
i = INT(ir) (A.140)
Calculate a ratio (PHE) which 1ndicates the position of the
point ir relative to the positions of points { and {+! (see
Fig. A.3) by using the formula
PHE = ir-i (A.141)
Map the { value onto the {* grid point system by using the
formula
VAL(IL*+1 - {*) = (1-PHE)VAL(1i) + (PHE)VAL(i-1) (A.142)

Increment the value of i* and repeat steps 1-U4 until

i* = IL* (A.143)



APPENDIX B

B.l Boundary Layer EqQuations

The physical coordinate system for the interior
ballistic cycle is shown in Fig. C.1. An axisymmetric tube
is closed on one end by the fixed breech wall and bounded on
the -other end by the movable projectile. "An axial coordinate
(x) is set on the breech and oriented toward the projectile.
A radial coordinate (r) is set on the tube centerline and
oriented toward the tube wall. The partial differential
equations which govern boundary layer flow in this coordinate
system are as follows:

Continuity
gp + _gxrpv) + g(pu) = 0 (B.1)
ot rodr dx
Momentum
/
plgu + vou + ugu | = @ (rudu ) - gp (B.2)
(at or 3x> rdr. Odr’/  9x
Energy
p/éﬁ + ugh + VQH\ - g - ugp (B.3)
\at ox ar/-" ot ox

= 9 [rl’y + up\aH + (H(1 - 1\+ pp/1 = 1 \uaﬁ17
rar[ '\Pr PE or ( ( Pr/ B Pry / dr] J

Static Enthalpy
Hl = H - (u?)/2 (B.4)

Gas Properties

T = T(H1) (B.S5)




Equation of State

P=p *Reg * T (B.6)

It is desired to perform calculations in a new
coordinate system. This new coordinate system is shown in

Fig. €C.2. An axial coordinate A is set on the projectile and

oriented toward the breech. A radial coordinate (y) is set
on the tube wall and oriented toward the tube centerline,.

Another radial coordinate { is parallel to (y) and clusters

grid pecints near the wall to capture the wall velocity
gradients and wall thermal gradients. The computational
coordinate system is functionally dependent on the physical
coordinate system by the following relationships:

y =R-r
T =t

A= A(x,t)
g = C(y)

By the chain rule:

r r dy d{ o or
= - A

il ol

90 =

Tl &

The previous equations (B.l1) to (B.6) are thus

transformed:

Continuity

go + A - 10,2 (zpv) + A Q (pu) =0 (B.7)
ot tgﬁ MEAFTe 25




Momentum

2. (u) + (Ac+A,u)gd (u) - v{,d_(u)

p(atu t 24 ax Cyac )

= 1 (r (W+pqp) §d_(u)) = A,QP (B.8)
Loyl (= (kg (g o &)

Energy

p(aﬁ * A - va C) & - Moo

- 1Cya_ [ [u.m—r_

Pr PrT ac
+ |u(1-1_)+ uT(l-l__) ucya_(u) T (B.9)
: °rp/ T
Static Enthalpy
Hl = H - y? (B.10)
2

Gas Properties

T = T(H1) (B.11)
Equation of State

P=p*Rg *T (B.12)

By boundary layer principles, it is necessary that the
longitudinal velocity "sweep” in the direction of the
computational coordinate A. The calculation velocity U is
chosen as U = u - Up - The projectile velocity 1is not

spatially dependent:

Po =0 g - gl o
A P




The partial differential equations which govern
. boundary layer flow in the computational coordinate system
simplify to:

Continuity
g0 + A - 1§,2 (xpv) + A, 2 (pU+pu,) = O (B.13)
@A M4 A P

‘Momentum

Cp(R(Utul) 4 (Au#h, (U+ul)) (D)) - vEd (U)
p(at" xt“’ax) Yor
= 10,9 (r(p+pu) 8,2 (U)) - A QP (B.14)
rCYag T C”a; 20

Energy
gH + (A +A, (U+u mm\- vl @H - 9P - (A +A, (U+u_.))gdp
p(&t SR - A/ Y ot PTG

= 10.9_ / _\ L. oH
v [r [\ Fr Pry CYac

+/pi1=1 %+ por1-1 \\w+u)ld (01 1 (B.15)
\ \ Pr/ T\ PrT)) p yac J .J,
Static Enthalpy

Hl = H - _u.m;p)_z (B.16)

2
Gas Properties
T = T (H1) (B.17)

Equation of State

P=p *Ryg *T (B.18)
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B.2 N ical Method of Soluti
‘ In the previous section, the equations (B.13) to (B.18)
were developed to describe the boundary layer flow of the
interior ballistic cycle. There is no analytical solution to
this set of non-linear partial differential equations. To
solve these coupled equations on a digital computer regquires
that the continuous physical grid be descritized and that the
partial differentials be replaced with finite difference
formulas. Typical for boundafy layer flowé, the following
techniques were applied to the momentum and energy egquations:

1) Partial derivatives in time are forward
differenced, involving only the current time
step and the next time step forward in time.

2) Partial derivatives in the longitudinal
direction are all of first order. Backward
differencing is applied across the current
grid point and the preceeding grid point.

3) Partial derivatives in the radial direction
use at most three grid points, and are
central differenced where possible.

The following techniques typical for boundary layer
flows were applied to the continuity equation:

l) Partial derivatives in time are forward
differenced, involving only the current time
step and the next time step forward in time.

2) Partial derivatives in the 1longitudinal
direction are all of first order. To aid in
properly determining mass flux, backward
differencing is applied across the current
grid point and the preceeding grid point, and
across the respective pair of points nearer
the tube wall.

3) Partial derivatives in the radial direction
are all of first order. Backward
differencing 1is applied across the current
grid point and the neighboring point nearer
the wall.




Except for the partial time derivative, some choice

‘ must be made for the time level of each term in the finite
difference equations. An implicit scheme is used where all

the spatial derivatives are sought at the next time level

(n+l) . The resulting finite differenced equations are as

follows:
’ Continuity

Eﬁ r(pi ))n’l (p1 -1, J)W1 +(pi 3= )MI +(pi -1, 3-1 )n*l
|L4A ; l:(p( 3 '(pi_llj n -(pi,j‘l )0 (pi-l,j-l
r' r' +1 - ."."1-

Pho v Aaup ) 0y Py

: +1 _ nel

2 ar t(pi.j-l)n P15
r . "

= i&ys IR EC AL N TR AN

AC_‘ __j

+1 - +] =
21! (pi,jUi,j)n (pi‘l jU‘“l -1)n 0 (B.19)
+1 -
:}l Py Vs )" (Pyoy, 3V

[ I

[~

4
=1

o1, 4ot ) n+l

Momentum

+1 +1 «1 _ n
'{Pi.,j_)“ !‘(Ui,j)" (U, )"+ (ug; )7 (ug; )
At |

s n‘l][(xtiﬂ'zg (Uy, y*up) )nq“. 3 (uy 5) RNy 5) nr ‘]
AA Ji ]

-Epi,jvi,j)ﬂ‘]rgyj (ui“-:f-u‘.-l,j)n”'ﬂé
2AT ] )
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=8y ‘rjmz)("i,m*"x.j + "l"[‘i,j+1+"l'1‘1,j>£yjo1/2 (U, y0y70y )

™
= Fgaza) (B gy g ¥ Byt g By (9 gm0y g™
2 2 Al '
- (AZi)n#l (Pi - Pi-l)n'#l
AN i (B.20)
Energy
Epi,j)n¢l‘! {-(Hi’j)n*l- (Hi,j)n
JL
+ o, 0t g #Ag, ) rup ] [, oo, et
P P2 T Yp 1,3 i-1,3 _j
. AA |-
L J
“ oy Vi e - Hi,j-x)'“j
| 2aL L
- -
) cyj EM/; /—pi'iﬂ:%:? T P10 TRy \
rjAC J Prilj‘ﬁPrilj PrTi’j+1+PrTi,j’
~ "~ 'Ti
!LCYM/z—I(Hi 31 7Ry, )
oA |
‘. _J
R - \ / o . -
+P‘ii_l-2_+l+“i,j!-'l _2 W o SYP TSR o TVS i 2
I, ' ] ' - ¥
I\ 2 - Prilj+Pri’j#1’/ '.\ Pro, .,,*Prp, .
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Pr, y*Pr; 5, Prq; y*Prp 4.

Ej-l/Z] <"1,j MLy TW iy IO )
1

- 1
Fy:-ua‘“i.: B0
: AL I
.- - 3
_(.'.“.&.J*.“x_. L S Lo SR M o PP
\ 2 \ Pry 4+Pry 4.,/ % 2 ( Prog, y*Pro 4
i . _ \ 1\ , . - 1" ..
U4, 57Uy, 5atup \)/§yj-1/2\:'(ui,j Uy, 3-0""
-
f.- +1 _ n ‘A ‘¢ q +1_ +
$UE™ = BTy Ay (U ) T (R )Py )]
. -~ N A j
) s (B.21)
Static Enthalpy
+] - +] +1 2
(H1 ™% = (H )" = (U y+up) ™) (B.22)
2
Gas Properties
]l = +
(T, )7 T((H1, )™ (B.23)
Equation of State
(B P = (p, )™ * Reg * (T )7 (B.24)

The subscript(i) refers to the axial location of a
computational grid point. This subscript (i) ranges from i=1l
to i=IL, where IL is the number of axial grid points.

The subscript (j) refers to the radial location of a
computational grid point. This subscript (3j) ranges from j=1
to j=JL, where JL is the number of radial grid points.

The solution to the finite difference eqguations is

obtained by marching in time. For a given time, calculations

sweep in the A direction, from the projectile to the breech.

This is in the same direction as the flow, propogating

information to the next i-station. At a give i-station,
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unknowns in the finite difference equations occur at the
. (3=1), (3), and (3+1) gridpoints.

The continuity, energy, static enthalpy, and gas
property equations and the ideal gas equation of state are
all linear and can be efficiently solved on a digital
computer. However, the momentum eguation is non-linear in
calculation velocity (U) at the gridpoint (i,3). To
efficiently solve the momentum equation on a digital

----- computer, - this- -(UL',) 2 term must be linearized. Newton

linearization is used. The resulting linearized momentum
equation is:

—k

(pi 4)."4 l[(Uilj)nOI - (Ui’j)n + (upi’j)nol - (up‘lj)ﬁ}
At J -

+ g » 1)
' [(pi'j)nu_j’r(kti*)‘uup)n 1]; (Ug, M= 00y, |
AN L »

M L
+ F—ei-'_j_)iil-lrlzi)n’l][-(Gi'j)n’l)z- (20’15611 j)nol' (Uj, jUi-‘.-, :)no','.'
A\ L .

B [.e_i'.lv’r'..?_)_r_“]"y'j:J r(Ui.L 5-01-1, j)r-oi.-l

2AL
"
=Sys  iFsean) Bogathy * gt by (90 amun )
_Ar' 2 2 A
SE50 / § -
VLN SR M U UGN o JUP L JURS £y3-1/2 (Uy amu; g
Vo2 2 Al J
ORI TAEE NNLEE (B.25)
M lL-- -4
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Here 61'3 is the predicted value of calculation
" velocity, taken to be U, , from the most recent iteration.
The use of Newton linearization for the (Ui,j)z term of the

momentum equation necessitates the use of iteration in
obtaining a solution at a given i-station. Since small tirn

- - l'ﬁe
steps are taken, the solution should change only slightly
from one time step to the next. The iteration procedure

‘starts with values of T, u, p, and v from the most recent

time satep. The projectile acceleration and increase in
chamber Jlength require adjustment of the calculation
variables H ana U, To use the temperature from the most

recent time step as an initial guess to the solution of
stagnation enthalpy:

(H1, )" & (M1 )"

' \
(”1.: - “’1.1*“p’2) "l '\“1,3 - ‘Ux,j+up)2) ’
2 2

: (H, " "Hnﬂn-Gyhfﬁﬂz‘n+{whﬂﬁﬁf%n“(&2m
' 2 2 ;

A\

To use the axial velocity from the most racent time

step as an initial guess to the solution of the calculation
velocity:

(U, )" & (u )"

(U, ,~up)™! & (U, ;mug)”

(U, )"0 @ (U ) 4 (up)™™ = (up)” (B.27)
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The energy equation is solved for stagnation enthalpy
(H) . All other variables are assumed known:

(A} (Hy , )™ + (B} (H; )™ + [C)(H 4,)"" = [D] (B.28)

where: (A] = [(Pi,_,_vz,j’nqjcyj
24,

' | - [ 1-1/2][ 3 _yg 1/2]E TRy 7 “';l‘_i e JHPR 1 o
I 12 852 - ry, j+Pr1 g1 Prp ytPEq L] T

(8) = [«n. g J + [wi.j’"“}[%nku (U, y+up) 172 ]
At A ]

* “&mvx.ﬂ’mjcw
| ™ 2ag

] rjmz.”CYﬁ Cyse1/2 [ui IR Ry FUP RO JOF ]
r, (Af)? Pr, +Pi‘.i,j PrT;;511+Pr'i;1.j ;

J

(( 1 j)rwl ]Cyj
28 4

i,3+1

- ["f_j:-_uz][ng Cy, -1/2 .[u g Ryt Hp ML

! r, (AC) Pry ,+Pr, ‘5-13};;'5+Pr,ri,j_

(1 = -[(pi,jvi,j)mlJCYJ
28,

- [ j91/2][c Yj.;l/zj {“1 j;l +ui,j + “Ti,:—,;"’u'ri,j -
(Af) 2 Pr, ,,.+Pr, y Prp, ,, +Prp

b
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o O F L IR L
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o _ . -
+ _Pi.jflfp';.g\ -2
A S *_-_/__E_T_i_'___j_’lf- p‘Ti,j (1- .2 - -
\ 2 ; Proy, 4 tPI7y 4
- 1 - -
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. He AL

+lE)mt - (e T
- At -

The values of H at the wall and boundary layer edge are
known. A coupled set of equations results for H which 1is
efficiently solved using a Thomas algorithm matrix solver.

The 1linearized momentum eguationrn 1is solved for
calculation velocity (U). All other variables are assumed

known:

[AJ (U, )"0+ [B](U. )™ + [C)(U, )" = (D] (B.29)

where: [A] = [(pi,,vi,y"'“cyj
24, ;
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& The values of U at the wall and boundary layer edge are

known. A coupled set of equations results for U which is
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efficiently solved using a Thomas algorithm matrix solver.

The ideal gas equation of state is solved for density

(p). All other variables are assumed known:

(pi j)n+1 = (P )nkl

cg (Ti j) n+l

The value of density is explicitly found at each grid
point. The continuity equaiton is solved for radial velocity
(v) . All other variables are assumed known:

(V;, gt = Ej-l(,pée_i:{‘_’%'?.‘_l)m. .AC *
] n+l i n+l
{ TPy, y) ] LCyj<pij) ;
R C(p, 0™ w(p,, " +(p, )™ +(p .)"*1'3-,
1.3 i-1.,3 i,3-1 i-1, 4-1 :
Aae :E(pi'j)n LRV CIUPIPY L L N A |
I 'r N + + .ﬁ ‘ !
+-7\, + kziup (pi j)n 1 _(pi 1 j)n 1 |

J

hal —

n+1 - nel
+ XZI | (Pi jUi 1) (pi-l,jUi-l,j)
i . 1 - *1
M ! +(pl j ] 1 j_l)n¢ (pi-l'j-lui-l,j'l)“

The value of v at the wall is known. Other values of v
are explicitly found by sweeping from the wall to the tube

centerline. The new values of H, U, p, and v are used as
initial values for the next iteration and the iteration
process is repeated until an acceptable solution is obtained.
An acceptable solution for the time level (n+l) at the given

i~-station requires convergence by one of two criteria:

1) If the number of iterations for a given
station reaches 30, oscillation around the
correct answer is assumed. The oscillated
values from the two most recent iterations
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are averaged to provide the answer at this %
i-station for this time level. g

2) For every variable, at every (i, j) gridpoint:

a) If the absolute value for a variable at a :
point is less than 1E-4, then convergence at ]
this point, for this variable, for this time
level is met.

or b) If the difference between successive
: iterations- for a variable at a point is less
than 00.01%, convergence at this point, for
this variable, for this time level is met.




B-17

ws(qoad DT3ISTI[eQ 3GTILIUT BY3 103 )
wa3zsks ajeutploos jeuciieinduod g b4

yooaiq 3e

0 o2y

211109l01d 3e

- ——

| 0 =N UJWQ\I/
aanjexadwss pue A31d2013A 3O
sxsiey xumvc:ona
/
_ e
| gk " m__f
; uibua1 T3QUEYD
g~

snipex aqny -

T

d

— . Q\Lv

ongumﬁOumq\\\ . {1em Yys231q
P-<13

: Sutaouw




B-18

R.3 _Boundary layer Thickpnesses

It is difficult to indicate a velocity or thermal
boundary layer thickness in a universal way. The influence
of viscosity and compressibility of high speed flow in tubes
decreases asymptotically from the wall to the centerline.
Defining the edge of a boundary layer equates to defining
when radial gradients are negligible. For this study, the
velocity boundary layer edge is defined to be the first

point. away from the wall where u 2 0.95 * u(core). The
temperature boundary layer edge is defined to be the first
point away from the wall where T 2 0.95 * T(core). Such

definition is arbitrary and varies among problems. There are
better parameters which describe the viscous and thermal
effects of high speed boundary layer flow in tubes. These

parameters are the displacement, momentum, energy, and
density thicknesses.

Risplacement Thickness

A meaningful measure of the viscous and thermal effects
for high speed flow in tubes 18 the displacement thickness.
As shown in Figure B.3, the displacement thickness is a
decrease in effective tube radius caused by a mass flux

defect. The actual flow containing radial gradients in
velocity and density 1is replaced by an ideal flow of
identical mass flux where radial gradients are absent. The

resulting change in tube radius, conventionally defined as
positive toward the core flow, is the displacement thickness.

The mass flux for the ideal flow is lessened by the
decrease in tube radius:

F-R-sl
Peue dA where dA = 27rdr

_) r=R
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The subscript e refers to the boundary layer edge or
core conditions. The loss of mass flux in the boundary
layer, as compared with the ideal flow, is given Dby:

r-R-8v

(Pgue—pu) da where dA = 2f%rdr
r=R

The integrand of the preceeding integral is zero from

r=R-§_ "to r=0. An equivalent expression for the loss of mass

flux in the boundary layer, as compared to the ideal flow, is
given by:

r=0
(Peue=pu) da where dA = 2ntrdr
r=R

Equating the mass flux lost in the ideal flow and the
mass flux defect in the actual flow:

=R-§ =0
onc, g
: PeUe 2firdr = (PeUe-Pu) 2mrdr

_,i r=R _) r=R

The displacement thickness for compressible viscous
flow in tubes is given by:

— e e & &

_El = 1 - 1+ 2 |1 - pu ¢ rdr
R Rr? Pele
r=R
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The integral within the equation for displacement
thickness was numerically integrated using the trapezoidal
rule:

(r=0 L

2 l - pu rdr = -2_ 2 1 = PoyeVave| Ty-172 (¥y=ryy)
r2 Pele R =2 Pe Ve R

_J r=R

where: SR

pave = (pj + pj~1) /2

Yave = (uj + uj-l)/z

Pe = the density along the centerline

ue = the axial velocity along the centerline

Ly, = the radius of the half point between the

(j) and (3j=-1) gridpoints.
ry-ry, = the differential change in radius

consistant with the limits of integration.

A unit of tube radius R was placed inside the integral
to normalize the variable r and reduce computational roundoff
error.

Momentum Thickpess
The momer um thickness (Fig. B.3) is a measure of the
momentum flux defect. The actual flow containing radial

gradients in velocity and density is replaced by an ideal
flow of identical momentum flux where radial gradients are
absent. The resulting change in tube radius, conventionally
defined as positive toward the core flow, is the momentum
thickness.

The momentum flux for the ideal flow is lessened by the
decrease in tube radius:

r=R-52

peue2 da where dA = 2nrdr
r=R




The loss of momentum flux in the boundary layer, as
compared with the ideal flow, is given by:
r-R-5v

Pu(ug-u) da where dA = 2xrdr
r=R

The integrand of the above integral is zero from r=R-J,

to r=0. An equivalent expression for the loss of momentum
i flux in the boundary layer, as compared to the ideal flow, is . _
given by:
r=0
| pu(ug-u) dA where dA = 27%rdr
d)r=R

Equating the momentum flux lost in the ideal flow and
the momentum flux defect in the actual flow:

rr-R‘BZ r=0

i peue2 2Rrdr = pu(ug-u) 2mrrdr
_Jr=R r=R

The momentum thickness for compressible viscous flow in

/o r=0

!

52 = 1 - 1+ 2 pu —] 1l - u-j rdr

peue~ ug !
_jr=R J

e
_J
The integral within the equation for momentum thickness

tubes is given by:

was numerically integrated using the trapezoidal rule:

r=0

2 Tpu .Wfi - U‘W rdr
: | el

RZ :peueli Ue
JL L

r=R
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JL

- 3 2 paveulvc.]ﬁ = Vuve Ty.1/2 (rj'rj_l)
————— l
R j=2 .

Pe Ve | Ve R i

JL

where P, .+ Per UY,, and u, have been previously defined.
Enerqgy Thickness

The energy thickness (Fig B.3) 1is a decrease 1in
effective tube radius caused by an energy flux defect. The
actual flow containing radial gradients in velocity and
density is replaced by an ideal flow of identical energy flux
where radial gradients are absent. The resulting change in
tube radius, conventionally defined as positive toward the
core flow, is the energy thickness.

The energy flux for the ideal flow is lessened by the
decrease in tube radius:

—J Veue3 dA where dA = Zftrdr
r=R

The 1loss o©0f energy flux in the boundary layer, as
compared with the ideal flow, is given by:

[}=R-8v
f pu(ue2—u2) da where dA = 2ftrdr

_/‘ r=R

The integrand of the above integral is zero from r=R-§,
to r=0. An egquivalent expression for the loss of energy flux
in the boundary layer, as compared to the ideal flow, is
given by:

(f-o

y pu(uez—uz) dAa where dA = 2nrdr

J r=R *,

Fe oW MR x-vmv.._mnmouﬂr_uw
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Equating the energy flux lost in the ideal flow and the
energy flux defect in the actual flow:

r-R-53 (I-O
peue3 2Xrdr - -J pu(uez-uz) 2Rrrdr
r=R

r=R

The energy thickness for compressible viscous flow in
tubes is given by:

(r-o
6; = 1 - 1+ 2 pu I(i - u? % rdr

= ' =2 2

2
R R . u u
J Pe e'L € J
r=R

The integral within the equation for energy thickness
was numerically integrated using the trapezoidal rule:

(—rﬂo

2 pu -1 1l - u rdr
RZ Peu

r=R
JL
= 2 Pavelave [[1 = U, o172 (ETymTyy)
R j=2 Pe Ye ! ue2 R
-

where p,..» Per U,,r and u, have been previously defined.
L . Thic

A new useful measure of the thermal effects occurring
in a boundary layer is the density thickness. The density
thicknesuy (Fig. B.3) is a decrease in effective tube radius
caused by a density flux defect. The actual flow containing
radial gradients in density is replaced by an ideal flow of
identical density flux where radial gradients are absent.

The density thickness is the resulting change in tube radius

and is defined as positive toward the core flow.
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The density flux for the ideal flow is lessened by the
decrease in tube radius:

rr-n-bv
J Pe dA where dA = 2%rdr
r=R

The loss of density flux 4in the boundary layer, as
compared with the ideal flow, is given by:

R - - f-r-R_sp A I . .o .- oo . oo -
d} (Pe = P) dA where dA = 2%rdr
r=R

The integrand of the above integral is zero from r-R-&v
to r=0. An equivalent expression for the loss of density
flux in the boundary layer, as compared to the ideal flow, {is
given by:

(r=0
-j (Pe — P) dA where dA = 2frdr
r=R

Equating the density flux lost in the ideal flow and
the density flux defect in the actaul flow:

(}-R-ﬁp | r=0
Pe 2Rrdr - ' (Pe = P 2Rrdr

.J r=R _J r=R

The density thickness for compressible viscous flow in
tubes is given by:

/r f}-Or_
8p - 1 - 1+ 2 il - 3;1 rdr

R \/ R?  Pe;
=R~
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The integral within the equation for density thickness
was numerically integrated using the trapezoidal rule:

(x=0

an
2 rl =P |vdr =~ 2 S 11 - Puve | Fyersz (rymryy)
Pe | R

Y L Pe R =2
r=R
where p,,, and p, have been previously defined.

Effactive volume changse

T 7" The objective of the interior ballistic problem is to
accelerate a projectile. Thisg objective is accomplished by
the high chamber pressure. The cool tube wall has the effect
of increasing the effective chamber volume and decreasing the
effective pressure which acts on the projectile. The final
reasult is a decrease in the muzzle exit velocity of the
projectile.

The density thickness provides a measure of this
effective volume 4increase. An assumption made of the
interior ballistic cycle was that the mass in the chamber was
constant, For the proper density flux at any given crose
section, the one dimensional model must increase the
effective tube radius since density thickness is negative.
As the effective volume increases, the effective pressure
must decrease, assuming the combustion gas acts as an ideal
gas:

P*Vesm®*R*Ta constant

For a given time, the percent change in effective
volume is given by:

Vow = Vors = Jm (R-8)2 dx - [n R? ax
Void ]q; R® dx
-/ REn2dx - =Rl - 1 |F E -8 | ax
% RZ L Lo ‘ R

—
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'rh_e integral ih the last expression was'numerical.ly
detemined using the trapezoidal rule: '

1L i
L - 2 - - 2
2P -812 a 1 X [1 BE“j L
i=2 R
2

whe:_e BP_'_V_‘_ - _(8p1. + 59‘_1) / |
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B.4 K Factors
The work of Chapter 4 modelled the interior ballistic

problem as one-~dimensional. 1In this model, integral averages
over a cross sectional area remove radial dependence, so that
mass, momentum, and energy are only axially dependent. To
study the validity of this one-dimensional model, three
ratios are examined:

Koy = [1/A [ p u an)
(1/a ] p da) (1/a [ u da)

Kouz = [1/a [ p uw? an)

——— - ——

(1/a | p aa) [1/a  u? da)

Key = [1/A [eu dA)
(1/a [ e da) (1/a | u da]

where e is the total energy:

e = p(u(T) + 0.5u2) = p[h - P + 0.5u2]
p

The pressure P is assummed independent of the radial
coordinate and can be removed from within the respective
integrals. Simplifying Kpu’

Key = [1/A [ phuda) + [p/a[udn] + (1/22 [ u? an)
(1/A ] ph dh - P + 1/2A | u? dA} (1/A ] u da]

1f Kpyr Kpy2. Ko, are close to unity, the
one-dimensional model is good. The interior ballistic cycle
occurs in an axisymmetric tube, s8¢ that A = nRZ, dA = 2ncdr,

and the limits of integration go from the centerline (r=0) to
the tube wall (r=R).
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The numerical integrations used the trapezoidal rule:

@ "

2
Kou = R ZP.V.“w. Tyo12 (Ly=Ty,)

2 jo2

JL JL

2 Pave F3-172 (Fy=Ty,y) z UYave Ty172 (Tyry)
j=2 I=2

. _ _ JL } L .
2
Kpuz = R Z paveuavez Ty (Fy—ryy)
-2

2 |3
.. TaL "I -
K 1Y, Pave E31sz (FymEy) || D Yol Ty, (FTg)
; L3z _' L 5-2 J
3 oL ]
: Kew = R? z Pavellavelave Fy-1/2 (Ty=Ty) '
2 3=2 1
JL L !
‘ P Z Upve Ty-1/2 (Fy~Fyy) +21 Z uave3 Ty (Ey7ry) ‘
.' ju2 j=2

- _
oL RS —]
Pavellave Fy-1/2 (Fy=ry ) . 2 Uave Fy-1/2 (Ty—Iyy)

i=2 : j=2 :
L _

JL
+1 Z uavez Ly-1/2 (rj'rj-l)l
2 §m=2

Sl -

- P * R2/ 2

— a—

where p,..r Per V,,s and u, have been previously defined. The
is defined to be (hj+hj_1)/2. The differential

" change in radius (ry-r

variable hwe

j.1) is consistent with the limits of

integration.
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APPENDIX C
SIMPLIFIED ANALYSIS OF PRESSURE AND DENSITY GRADIENTS

Unsteady Equations of Motion

- The flow of the combustion gas behind the projectile during the T
interior ballistic cycle was modeled wusing the one dimensional

conservation equation of mass and momentum.

a J 3 -yt )t -

3 (ps (1-v') + pv') + Y (ps(1 v') ug + pv'u ) =0 (c.1)

2 -y Ve —yr 2 .,y . 0P

3% (usps (1=-v"') + up v') + % (usps (1=v') + u® pv") X (C.2)
The flow {s composed of solids, s, and gas. The acceleration and

velocity are assumed to be related by the ratio ug/u. Several mean
densities are defined for use in equations D.! and D.2.

p_ = 95(1-v')*pv'

m

p

- -yt t
m ps {(1-v'") us/u + pv

2, 2
- -yt \
Pmo 93(1 v') ug /U + pv

For typical values of P and ug/u, pmz/pm1 was approximately equal

to pm1/pm' Substituting the mean density definitions and ratios into

C.1 and C.2 gives C.3 and C.\4.




| @ 5T (P * 33 (5 Ppu) = O (C.3)
m
. (Sml o,y . & (a2 )2, 2 .1
n Pn m x e ’n X ‘

_ o T 9P - P P, - - i}
9 ml ml n o 3 ml
P (=—— u) + u p.uU — (= u)
m 9t P Pm at Py M ox Pm

(C.5)

The second and fourth terms were eliminated by subtracting pmlu/pm

times equation C.3.

3 Pm 3 Pm _ 3
Pm 3T (K u) + oY 3% (F[;- u) = % (C.6)

pml/pm was assumed to vary slowly with time so it can be brought

outside the derivative.

P 2
ml du , 3 ml u _1 3
E;_ (3% * 5 (—E;) —3) " B; 55 (c.7)

Equation (C.7) was integrated in the x direction from breech (xs0,

u=0) to an arbitrary location downstream,

)
ml (x 9du ml 1 x dP
=[5 s ox+ ("m Y oz, - jpb o (c.8)

The left hand side of the equation represents the acceleration of the

gases. The first term in the instantaneous acceleration and the second




is the oconvective acceleration. In steady flows the second term drives

the pressure drop given by the right hand side.

Acceleration of the Gases and Sollds

Tne acceleratlion of the seolids and gases (left hand side of C.8)

" ‘causes the pressure to drop'rrom breech to projectile and is related to

the piston acceleration. The velocity of the gas is approximated as

u-upx/L based on numerical simulations of this and other work. After

the first one third of the ballistic cycle, the velocity distribution is
very linear,

The coordinate E=xs/L was used along with the following coordinate

streching function.

2V]
9 ? ]
KR T (c.9)

It was applied to the time derivative of term in equaticn C.8.

p Eu_ 3du p_.u 2 P
m1 x,9u _ *p ml 1 .- [ %
10(3- Le)"""(pm’zlx jpb'n

(C.10)

a|%

A
p

Using u-upﬁ, x=LE, and ap - aup/at the acceleration term (left hand

side of C.10) was tied to the piston acceleration and velocity.

2
p L a u p 2 p P
(M P, B My L (M2 L[ E QP (C.11)
P 2 P ¢ P, o
m m m b
La_*# p
Q or —£ g . - jP‘-;’_" (c.12)




When combustion is complete, pmllpm-1 and a!p is the acceleration

of the projectile, a If the projectile were accelerated from zero to

p*
a, over a distance L, it would have the kinetic energy mp Up2/2. The

energy to accelerate it would be force times distance, mp(ap/Z)L. This

then means that a L/2 = upz/z.

The pressure drop from breech to projectile {s then controlled by
" the projectile acceleration. This 1is 1logical because it 1is the
expansion waves behind the accelerating projectile which lower the
pressure.

The solids affect the acceleration term in equation B.1! through

pml/ m pml/pm becomes less than one when us/u is leas than one,
The assumption was made that us/u = 53/58.
accelerated by the drag forces of the faster gas. The drag force on the

The solids are
grain was estimated assuming it to be a cylinder in cross flow.
2 2
Drag = CDp (u™ - Ug ) 2rL/2 (C.13)

This force accelerates the grain where pé is the average density of the

grain {ncluding its gas filled perforations.

2, 2 2
7L Pg A CDp (u ug ) ZrOL/Z

u 2
cpu’ (1-(=2))
or a_ = -~ (~.14)
s L1s P
s
The gas velocity was assumed as u-UpE. The solids velocity, ug, was

assumed to be related to u. The spatial averages of the solids and gas

accelerations were obtained.
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iy ed em - La

C-5

g 2
S
C (1=(~=) p
1 D u 1 .2,.
o 8546 = oo v, [o €faz (C.15)
u, 2
e 1D e
ag = P S (C.15)
OOS
1 1 ) _
o 3595 = [o 8 cdt
3 .o
a8 "3 (C.16)
u
8,2
a u2 CD (1 (G.) )o(2) u
2. 3{; — - = (C.17)
a8 ofs p

C.17 was solved for us/u in terms of Fa an acceleration ratio.

u
S 1
= - 1 + >Fs (1 YU Fa + 1) (€c.18)
2CDpU 2
Fa = 2
Bwroos ap

Pressure Distribution

The acceleration of solids and gas in equation C.12 causes the
pressure to drop from breech to projectile.

3

o2 feee 5

> & - P (C.12)
b pm

Assuming Py = P and P = pY constant allowed integration of the rignht
hand side,
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Y-1
La_" Y p P Y
P 2, Dy - (&
> £ T;:TT—EE- \ (Pb) ) (C.19)

The equation of state was used to replace Pb/pb‘

ave | f; (1 + K, (exp (-K2£2) - 1)1d¢

P/p = RT / (1-pn) Y-1 (C.20)
* 2
La 2 YR Tb Pa
r - - m— o
or A
. o Y
P (Y=1)(1-p,N) L a_ £°
$5 - (1 R g P ) (C.22)
b b
Py ® ps(1-v') + v'p and P = p'C were assumed and C.12 was
irtegrated.
L ' P
a
P_ g2 .. f 3 ar (C.23)
2 Pb p (1=vt)+v'yp
)
P
* ———
La. g2 Po (P d(Pb)
b— - - o5 0p 79 =1) 177 (C.18)
b > s . (g_)
p. p
l ) b
(P/Po)Y was linearized as 1 + (%— - 1)/Y and equation (5,18) was
integrated. b
* 2
Lap 12 YR Tb P€
- — - | - R f g
5 va1-pbn)g” [17{14( Py 1)/ (Y(p (1/vi=1)/p +1))}] (C.25)
»
or PE ps(1/v"1) -v'(1-pbn)La 52
=Y +1)(exp (—55zz Py - 1] (C.26)
b b b
Pave/Po was obtained by integrating equation 5.20.
* 2
| p (1/7v'-1) -v'{(1-p.n)La_ £
ave I1 C s ¢ b P —_ 111
= 1 4+ ¥ (—m——— 1) [exp( ) 1]1d¢
Pb o} pb 2 YR Tb |
P AY




ps(1/v'-1)
K, = ( + 1) Y

b

*
v'(1-pr)La
¥ = ————
2 2YRTb

' : The exponential term is expanded In a serjes to facililate integration

‘ SO ‘ w243 b3 ]
lave | Ly (- e S N S ) (c.27)
Py 13 10 42~ 216 . 1320 e

Kinetic Energy in Gas and Solids

The ratio cof the density cf the as-solid mixture times up2/2

divided by the kinetic energv of tihe gas is §&.

2
2o e
.a L p,dE
5o 280 & ) ) (C.28)
-y ! + viang -\
al fo (pg(1=v') ug viguT) dg
= ¢

ug was assumed as a fraction of  u, u-up&. The density ratio

2
distribution was approximated as parabcelic, oe/pb = 1-(1- ;E) £ .
b
Integrating gave
p_(1-v') P
.-8-'— o{]-zp_)
P, v 3p
§ o3 —2 b (C.29)
4 [ 2
P 1=V’ u 3p
iR e A B
PV u Spb
wnen there are no sollds, v' = 1 and C.73 r=comes (.24,
p
(1 - =B
) 30,
5w — (€. -0
%}
3 p
1 - = &)
( 5 9







