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NOMENCLATURE

a - A/a
ag - acceleration of the combustion gases
11g - acceleration of the combustion gases

averaged over the distace Lp
ap - acceleration of projectile

a. - acceleration of propellant grain
Irs - average acceleration of propellant grain

a p - adjusted acceleration
A - tube cross sectional area at a given axial location
Ab - propellant burning surface area per unit volure

Ap - cross sectional area of projectile

A+ - damping constant
CD 1  - (propellant grain)/(combustion gas) velocity ratio

C1  - outer mixing length constant

CD - coefficient of drag of cylindrical propellant grain
cps - propellant grain specific heat capacity

Sdi - propellant grain perforate diameter
D - propellant grain drag force
e - combustion gas energy averaged over tube cross

section
f - friction factor
Fa - acceleration number
Fnet - net force acting on a control volume within the tube
Fpnet - net force acting on the projectile

h - combustion gas static enthalpy
hc - combustion gas convective coefficient
ho - combustion gas enthalpy at T=300K

hsg - specific energy release

H - combustion gas stagnation enthalpy
Hl - combustion gas static enthalpy
k - conductivity

k put - aKpul/a

kputr - Kpu/a

kpu24 - iKpu2/rI

keu4 - aKeu/D4

K - Von Karman constant
KI - nondimensional density ratio
K2 - nondimensional length acceleration
KPu - density flux K factor

iv



Kpu2 - momentum flux K factor

Keu - energy flux K factor

1 - length of a propellant grain
10 - Prandtl mixing length, inner region

11 - Prandtl mixing length, outer region
1 pr - Prandtl mixing length
L - distance x between breech and projectile
Lf - distance from breech to open end of tube
Lp - distance between breech and projectile

Ls - distance between breech and propellant grain nearest
projectile

mmass - molar mass of combustion gas
mc - propellant mass

mp - mass of projectile

M - mach number of projectile relative to atmosphere
AS - volumetric rate of propellant consumption

nv - number of propellant grains per unit volume
P - pressure
Pr - Prandtl number
Patm - external (atmospheric) air pressure
Pave - average chamber pressure
Pcr - pressure at which projectile motion begins
Pf - "frontal" pressure, external pressure acting on front

of projectile
Ppb - pressure acting on base of projectile
qw - tube wall heat flux
r - radial coordinate, distance from centerline
7 - time averaged radius of a propellant grain
rb - propellant linear burning speed
Zri - inner (perforate) radius of propellant grain
ro - outer radius of propellant grain
IR - tube radius
ReD - Reynolds number of combustion gases based on tube

diameter
Ratm - gas constant for air
Rcg - gas constant for the combustion gases

t - time
T - temperature

- combustion gas temperature averaged over tube cross
sectional area

Tatm - external (atmospheric) air temperature

Tig - ignition temperature of propellant
T Tin - initial temperature of propellant
-w - tube wall boundary temperature

V



M - combustion gas velocity averaged over tube cross
* sectional area

- combustion gas internal energy

- combustion gas internal energy at T=300K
u - velocity of gas
us - propellant grain velocity

US4 - a)U's
Up - velocity of projectile

U - calculation velocity
. - predicted calculation velocity
Up - velocity of projectile
Us - velocity of propellant grain closest to projectile

v - radial velocity
w - propellant grain web thickness
x - dimensional coordinate

y - radial coordinate, distance from wallY+ - turbulent viscosity parameter

Greek

a - diffusivity

S - kinetic energy of mass of gas at Up

/ kinetic energy of gas
8q - heat penetration length

8v - velocity boundary layer thickness
V1 - displacement thickness for compressible f n tubes

82 - momentum thickness for compressible flow in tubes

83 - energy thickness for compressible flow in tubes

8P - density thickness for compressible flow in tubes

BT - temperature boundary layer thickness

Y - specific heat ratio Cp/CV

- radial coordinate, distance from wall

S- covolume

X - nondimensional coordinate, from projectile to breech

- absolute (or dynamic) viscosity

4 - nondimensional distance, from breech to projectile

n - nondimensional constant, 3.14159

p - density of gas

- combustion gas density averaged over tube cross

section

vi



S Pm, - average density

Pml. - density times velocity average

Pm2 - density times velocity squared average

Ps - propellant grain density

Ps - density of a grain including gas within perforation

T - time in transformed domain

Tw - tube wall shear stress

) - (propellant grain cross sectional area)
/(tube cross sectional area)

- porosity: (volume of gas)/(total volume)

Subscipts

atm - atmosphere
b - breech
CIL - CIL 3331 combustion gas
CO - carbon monoxide gas
CO 2  - carbon dioxide gas

e - boundary layer edge
H2  - hydrogen gas

H2 0 - water vapor
i - axial grid location for gas coordinate system
i* - axial grid location for propellant grain coordinate

system
j - radial grid location
p - piston
N2  - nitrogen gas

st - steel
T - turbulent
w - tube wall
x - position x

- position
0 - initial

Superscripts

n - current time level
7 - predictor time level

nrl - next time level

vii



Chapter I

INTRODUCTION

1.1 Background

The unsteady, compressible flow inside tubes that launch high-

speed projectiles (e.g., ballistic devices) is complex. For a tube

with geometry similar to that shown in Fig. 1.1, the flow is initiated

when propellant grains within the region bounded by the breech, tube

wall, and projectile ignites, causing pressure to rise. Once the

pressure exceeds some critical value, the projectile starts to

accelerate, moving away from the breech towards the open end of the

tube.

The motion of the projectile causes the formation of momentum and

thermal boundary layers next to the tube wall and a series of expansion

waves at the base of Lhe projectile. The expansion waves formed at the

base of the projectile first propagate towards the breech, but later

reflect between the breech and the base of the projectile. These

expansion waves accelerate the combustion gas and propellant grains

behind the projectile. As the projectile travels towards the open end

of the tube, the speed of the projectile increases and variations in

velocity, density, temperature, and pressure from the breech to the

base of the projectile become more pronounced.

1-1
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In order to design high-perforuance ballistic devices, it is

necessary to have a good understanding of the physics taking place

inside tubes that launch high-speed projectiles. The objective of this

investigation is to provide such an understanding by constructing an

interior ballistic model based on fundamental principles.

In the next section, the detailed objectives of this investigation

along with the approach used to meet the objectives are described.

Afterwards in Section 1.3, a brief literature survey is given. Finally

in Section 1.4, an outline of this report is given to guide the reader.

1.2 Objectives and Approach

The major objectives of this investigation are to

1. Study how velocity, density, temperature, and pressure vary

both temporally and axially inside tubes that launch high-speed

projectiles.

2. Explain the underlying physics affecting how velocity, density,

temperature, and pressure vary along the tube (e.g., the

effects of the momentum and thermal boundary layers).

3. Explain how ballistic design parameters (e.g., geometry of

tube) affect the performance (i.e., muzzle speed and peak

pressure) of ballistic devices.

The approach employed to meet the objectives of this investigation

was as follows: first develop a simple but physically meaningful

interior ballistic model and later modify that model by adding more

physics to create a more comprehensive model. The first interior

ballistic raodel developed was based on equations valid for one-
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dimensional, inviscid flows with mass generation. Later, that model

was extended by adding viscous and heat transfer effects in order to

study the effects of the thermal and momentum boundary layers on the

flow.

Both of the interior ballistic models developed in this

investigation were based on the conservation equations of mass,

momentum, and energy. Since the dominating physics occur along the

axial direction of the tube and not along the radial or azimuthal

directions, the conservation equations were integrated analytically in

the radial and azimuthal directions to facilitate analysis (see Fig.

1.1). For the interior ballistic model involving viscous and

thermally-conducting fluids, the effects of the momentum and thermal

boundary layers next to the tube wall were accounted for by parameters

(referred to as K factors) describing the variation of velocity,

temperature, and density in the radial direction. The K factors were

determined by boundary-layer equations for unsteady compressible flows.

In the next section, a review is given of the different types of

interior ballistic models used for studying physics inside tubes that

launch high-speed projectiles.

1.3 Literature Survey

Interior ballistic models describing the physics inside tubes that

launch high-speed projectiles (such as ballistics devrices) can be

classified into five types:

I. Empirical Models

2. Quasi One-Dimensional Models

II
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3. One-Dimensional Models

4. Quasi Multi-Dimensional Models

5. Multi-Dimensional Models

Below, each of the above five types of interior ballistic e¢ls are

described.

Empirical Models

Empirical models are constructed by fitting curves through

extensive amounts of experimental data obtained from a variety of

different ballistic devices and propellants. Examples of empirical

models are described in Refs. 1 - 5.

Though empirical models have their merits and uses, they cannot do

two things. First, they cannot predict the physics inside ballistic

devices for which experimental data do not exist. Second, even for

problems in which there is adequate experimental data, empirical models

cannot explain the underlying physics controlling the ballistic

devices.

Quasi One-Dimensional Models (Also known as Lumped-Parameter Models)

Quasi one-dimensional (1-D) models are based on simplified

versions of the conservation equations of mass, momemtum and energy

valid for 1-D, unsteady flows. Such models are referred to as quasi

1-D instead of I-D because one or more flow variables such as density

or pressure are assumed to depend only on time and not on position

along the tube so that only some of the 1-D effects are accounted for.

* a&ong
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Quasi 1-D models still require a number of empirical inputs. Most

of these models require empirical models for the rate at which

propellants burn, heat transfer rate from the walls, shear stress at

the walls, gas velocity as a function of time and position along the

tube, and gas pressure as a function of position along the tube.

Velocity and pressure variations are often modelled as isentropic

processes with empirical correction factors. Propellant burn rates are

typically modelled by empirical relations relating the burn rate to the

gas pressure and surface area of the propellants.

Quasi 1-D models vary considerably in complexity. these models

range from relatively simple models which can only account for the

effects of a few ballistic parameters to very complex models that can

account for a large number of ballistic parameters. Examples of quasi

I-D models are given in Refs. 5 - 21.

Since quasi 1-D models are based on the conservation equations,

these models have a wider range of applicability than empirical models.

Specifically, these models can be applied to analyze ballistic devices

for which experimental data are not avaliable and can reveal some of

the underlying physics controlling the ballistic devices.

Here, it should be noted that since (1) empirical inputs are still

needed and (2) some I-D effects and all of the two- and three-

dimensional effects are not accounted for, there are still a number of

physics that cannot be adequately accounted for by quasi 1-D models.

One-Dimensional Models
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A type of model one step more complex than the quasi I-D models is

the 1-D model. The 1-D models are based on the conservation equations

of mass, momentum, and energy valid for I-D, unsteady flows.

Unlike the quasi 1-D models, 1-D models do not require empirical

inputs for the variations of velocity and pressure along the tube. 1-D

models can calculate velocity and pressure variations based on the

conservation principles. As a result, 1-D models can be applied to

study physics such as pressure waves.

Similar to quasi I-D models, I-D models still need empirical input

regarding propellant burn rates, heat transfer rate from the walls, and

shear stress at the walls. Thus, there are still situations in which a

I-D model may be inadequate.

Examples of I-D models are given in Refs. 22 - 25.

Quasi Multi-Dimensional Models

Since the flow inside ballistic devices is primarily in the axial

direction along the tube, it is reasonable to assume 1-D flow.

However, by assuming I-D flow the following empirical data must be

supplied: the heat transfer rate from the walls, the shear stress at

the walls, and the effects of the momentum and thermal boundary layers

next to the walls on the inviscid flow (core flow).

One way to eliminate the need for empirical data for heat transfer

and shear stress at the walls and still retain the simplicity of 1-D

models is to construct quasi multi-dimensional models.

Quasi multi-dimensional models are models that can accoutt for all

of the 1-D effects as well as some (but not all) of the two- and three-
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dimensional (2- and 3-D) effects. Quasi multi-dimensional models are

derived from the conservation equations of mass, momentum, and energy

valid for 2- or 3-D, unsteady flows by neglecting variations of certain

flow variables along certain directions or by integrating the

conservation equations along certain directions.

Gough [Refs. 26 and 27] has developed quasi 2-D models for

analyzing burning of propellants. The authors of this report know of

no investigators who have developed quasi multi-dimensional models to

describe the flowfield between the breech and the base of the

projectile taking into account the effects of the momentum and thermal

boundary layers next to the tube wall. As mentioned in the previous

section, such a model was developed in this study.

Multi-Dimensional Models

Multi-dimensional models are based on the conservation equations

of mass, momentum, and energy for 2-D or 3-D, unsteady flows. Such

models have the potential to describe completely the physics inside

ballistic devices. However, at the present time existing computers

prohibit the direct simulation of turbulence, detailed dynamics of the

interaction between gas and solid propellants, and detailed chemical

kinetics of propellant combustion.

In view of the limited understanding of inter-phase drag and two-

phase turbulent transport properties (among others), the authors of

this report believe that multi-dimensional models are not warranted at

this time (i.e., quasi multi-dimensional models should be sufficient).
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1.4 Outline of Report

To guide the reader in reading this report, a description of how

this report is written is given here.

In Chapter 2, the details of an interior ballistic model developed

for analyzing inviscid flows inside tubes that launch high-speed

projectiles are presented. In Chapter 3, the mathematical model

constructed for studying the unsteady, momentum and thermal boundary

layers next to the tube wall are presented. In Chapter 4, the quasi

multi-dimensional model developed for studying viscous flows inside

tubes that launch high-speed projectiles are presented. In Chapter 5,

a simple model is constructed for predicting how pressure and density

vary from the breech to the base of the projectile. Finally, in

Chapter 6, a sugary is given of the important discoveries and

contributions made.
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Chapter 2

INVISCID FLOWS INSIDE TUBES

2.1 Introduction

In this chapter, an interior ballistic model for analyzing inviscid

flow inside tubes that launch high-speed projectiles is described. The

interior ballistic model is based on the conservation equations of mass,

momentum and energy valid for one-dimensional, unsteady, compressible

flow of an inviscid and thermally-nonconducting fluid with mass

generatin.

Previous investigators have developed interior ballistic models

similar to the one presented in this chapter [Refs. 20-243. The

interior ballistic model presented In this chapter differs from the

interior ballistic models described in Refs. 20-24 in the governing

equations, in the numerical method of solution, and in the way in which

boundary conditions were implemented.

In the next section, the problem of inviscid flow inside tubes is

described in detail. Afterwards, in Section 2.3, the equations governing

Inviscid flow inside tubes are described. In Section 2.4, the numerical

method used to obtain solutions is explained. (The combination of

governing equations and numerical method of solution is referred to as

the interior ballistic model.) In Section 2.5, the results generated by

the interior ballistic model are presented.

2-1
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2.2 Description of Problem

A schematic diagram of a typical tube assembly studied in this

investigation is shown in Fig. 2.1. The tube assembly consists of a

projectile and a tube that is closed at one end (the breech).

The region between the breech and the projectile initially contains

a homogeneous mixture of solid propellant and inviscid combustion gas at

a pressure of 3.45 x 106 Pa (500 psia) and temperature of 300 K. The

exterior of the tube assembly is exposed to air maintained at a pressure

of 1 x 105 Pa (14.7 psia) and a temperature of 300 K.

Two other tube assemblies (operating under identical conditions)

are shown in Figs. 2.2 and 2.3. All three tube assemblies have the same

initial interior volume and the same radius at the open end of the

tube. Tables 2.1-2.3 present the equations and parameters needed to

specify the geometry of the tube assemblies.

The physical process which takes place within a tube assembly

proceeds as follows: at time t-O, combustion begins and the pressure,

temperature and density of the combustion gas rapidly increase. After

the pressure has exceeded a critical (starting) pressure Per, the

projectile is free to move without sliding friction. The pressure

difference across the projectile then causes it to accelerate and move

away from the breech. The process is considered to have ended when the

projectile exits the tube.

For the inviscid interior ballistic problem, we are Interested In

evaluating the influence of various parameters on gun performance.

Table 2.4 shows a list of parameters necessary to specify the problem.

Equations, equation numbers, and values for these parameters are

presented in Tables 2.1-2.3 and in Tables 2.5-2.6 (see Section 2.5),

', .i
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Table 2.1

Equations describing geometry of the tube assembly shown in Figure 2.1

Equation Eq. No.

R(O .K x L I.f) f RH (2.1)

A(O J x • Lf) -H 2 (2.2)

W)AO K• x K. L f)
-a 0 (2.3)

ax

R (the tube radius at x-0) - 0.0150 m, L (the initial distance from

the breech to the projectile) - 0.2202 m, and Lf (the distance from the breech

to the open end of the tube) - 2.1920 m.

*

I
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Table 2.2

Equations describing geometry of the tube assembly shown in Figurwe 2.2

Equation Eq. No.

R (0 C x .ýC L )d, R 16[0.25( Lx 2 _ 0 . 5 (Lx) + (2.4)

P6 P46

M(0 K x -< L .)-nR
2 [0.0625(- x-)4 0.5-x)

6 6 L P6L

+ 0.75(-2L) 2_ (-L.-) + 11 (2.6)

PO P

A(L I~ x IL ) R i 2  (2.7)

W ,x Lpo __R [2 2(~-~-O7(~ + 1 () 1] (2.8)
3x L 02 L L3_07(L _2+15(Lp6 p6 p6 p6

WLP6-CQ <Lf (2.9)
ax

R 6(the tube rad-us at x-0) 0.0200 m, LP6(the init~ial. dist.ance from

the breech to the projectilp - 0C. 773 m, and Lf (the distance from the breech

to the open' end of the tube) - 2.1L488 m.
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Table 2.3

Equations describing geometry of the tube assembly shown in Figure 2.3

Equation Eq. No.

R(O - x I. L) - Rx[0.25(!_)2 - 0. 5 (X) . ] (2.10)
fLf L f

A(O •x I L) - vR' [0.0625(E-)- 0.25(L)3

0.75(&)2- _ (2.11)
Lf LC

a A M 0_. x <. LI 

( 2 .
2

f= 6 ro.25(-)3_ 0.75( ý)2+ 1.5(1-) - 1] (2.12)
ax L fL LfL Lf

R (the tube radius at x-0) - 0.0150 m, Lpd (the initial distance from

the breech to the projectile) - 0.1276 m, and Lf (the distance from the breech

to the open end of the tube) - 2.0994 m.

I n,
*
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Table 2.4

Parameters needed to specify the inviscid interior ballistic problem

Tube Geometry Parameters Propellant Parameters

'radius (R) *type

*oross-sectional area (A) *grain geometry

*initial breech-to-projectile *initial mass (m c)

axial distance (LUp) "covolume (n)

*axial distance from the breech *density (p s)

to the open end of the tube (Lf) 'Initial web thickness (w )

"specific heat capacity (Cps)

Projectile Parameters 'initial temperature (Tinit)

*masb (map) *ignition temperature (Tig)

-initial velocity (U p) *linear burning speed (rb)

"*pressure at which projectile *specific energy release (hsg)

motion begins (Per) *initial velocity (u s)
"propellant grain-combustion

Air Parameters gas velocity ration (CD1 )

*Temperature (Tatm) 'drag coefficient (CD)

"Pressure (Patm) 'initial axial distance between

*Specific heat ratio (Yatm) the breech and most remote

*Gas constant (Ratm) propellant grain (Ls5)

Combustion Gas Parameters

,molar mass (mmass)

"initial temperature (Ti)

,initial pressure (P

*initial velocity (U )

'9

Ia
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g., Formulation of Problem0

Introduction

This section presents the assumptions and the governing equations

used to describe the inviscid interior ballistic problem. The governing

equations have been classified into the following three groups:

1. Conservation Equations - the set of coupled 1st order partial

differential equations which describe

the conservation of mass, momentum

and energy.

2. Constitutive Equations -a group of equations which describe

dependencies between two or more

variables in the conservation

equations.

3. Auxiliary Equations - a group of equations resulting from

models developed for terms in either

the conservation equations or the

constitutive equations.

In this section, the conservation equations governing this problem

are presented first. Afterwards the constitutive and auxiliary equa-

tions for thi. problem are presented. Here, it is noted that only the

final forms of these equations are presented. The derivation of these

equations are given in this section or In Appendix A.
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Conservation Equations

The following assumptions were made to facilitate the derivation of

the conservation equations for the inviscid interior ballistic problem:

1) The problem is unsteady and one-dimensional in the axial

direction.

2) The propellant grains can be-treated as a continuum.

3) The propellant grains are incompressible.

4) The propellant grains are distributed homogeneously across the

cross-sectional area of the tube at any axial location.

5) There is no interaction between the propellant grains and the

tube wall.

6) There is no heat transfer.

7) The combustion gas is an inviscid fluid.

With these assumptions, the inviscid conservation equations can be

written as follows (see Appendix A for derivation):

Continuity of Propellant Grains

v aus av U V
S v- _- - u --- "'-A- (2 13)s @x A s Ps

Continuity of Combustion Gas

~ _puLA h±2 0~u VM( - P/
at A ax ax I-v- s 3

[(u-u) a - u u A (2.14)

•"'-• ~ ~ ~ ~ ~ ~ - V( ... -2 2-_:'"'*)3•••' ••••" •' •• • •t "••% ¥'",•''••
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C Conservation of Momentum for the Combustion Gas

- Conservation of Energy For the Combustion Gas

a(eu) 1 PA

ai _ - * (-)Le. [;(u-u ) I PI~ (u ~~)a

ax a ax ax

-ev 5 + 1--)s{[hsg-Cp(T g-lni)-"(h(T)

11v ax 1v SU s I BA a it

- h(TM9))J - e (2.16)

where the terms of Eqs. (2.13)-(2.16) are deFined as

1) A = the tube cross-sectional area

2) v = As/A = the ratio oF propellant oross-sectional area to

tube cross-sectional area

3) us - the propellant grain velocity

14) M~ = the rate of propellant consumption per unit volume

S g P

5) PA - the propellant grain density

6) v - the combustion gas density averaged over the tube cross-

sectional area at some axial location

7) u - the combustion gas velocity averaged over the tube cross-

sectional area at some axial location

8) P = the combustion gas pressure

9) -= the combustion gas temperature averaged over the tube

-- ~ ~~~ a .... g W• , •• R •,•m LEUILN. a- a ý ,ft ad ý dý R/•n L-J
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cross-sectional area at some axial location

10) *- the combustion gas energy per unit volume averaged over

the tube cross-sectional area at some axial location

11) hsg - the chemical energy released per unit mass of propellant

12) C - the specific heat capacity of the propellant

13) Ti8 - the ignition temperature of the propellant [Ref. 28)

-1) Tinilt -- the initial temperature of the propellant

15) h(I) - the enthalpy of the combustion gas at temperature T

16) h(Tjg) - the enthalpy of the combustion gas at temperature Tig

The conservation equations given by Eqs. (2.13)-(2.16) contain more

dependent variables than the number of such equations. These

conservation equations are closed by the constitutive and the auxilliary

equations described in the next two sections.

Constitutive Equations

A modified ideal gas equation

An equation of state which describes the relationship between

combustion gas pressure, specific volume and temperature is needed. In

order to account for the deviation caused by the specific volume of the

propellant grains, an additional term n, the covolume, is employed with

the ideal gas equation in the following manner [Ref. 14]:

-~ ) eg;F(.7

* where

LM.......... .. .
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n - the covolume of the propellant grains

Reg * a gas constant particular to the combustion gas

Energy per unit volume

A constitutive relationship for energy was derived after making the

following assumption: the internal energy and kinetic energy modes are

the only significant energy modes for the combustion gas. Therefore,

the combustion gas irternal energy and kinetic energy terms can be

combined in the following manner:

-- - ( - 1 -2) (2.18)e. p(u(T) ÷

where u(T) - the combustion gas internal energy.

Propellant grain velocity

The last constitutive relationship used in this analysis describes

the dependency between propellant grain velocity and combustion gas

velocity. This relationship is defined as

us CD1 U (2.19)

where CD, - the propellant grain-combustion gas velocity ratio.

0
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Auxiliary Equations

Combustion gas internal energy

In order to evaluate the effects of the large temperature range of

the interior ballistic problem, the following two internal energy models

were developed:

1) A polynomial expression in which specific heat at constant

volume, Cv, is a function of temperature. The derivation of

this expression is presented in Appendix A [Refs. 29, 30 and

31]. The resulting equation is

u(T) - [-7.1259x10 + 4.922i4x10 7(T 2 ) - 1.2872x10 (T-1)

+ 2.8007x10 5(T-'5) + 1.6310x104 (LnT) - 2.3833x10 3 (y. 2 5 )

- 1.8069xi0 3 (T" 5 ) + 6.2205xl0 (Y)- 8.8221(T1"25)

"+ 1.2517(T 1 5) - 5.7297x10- 3 (yI" 75 ) - 5.5657x10- 3 (y 2 )

"+ 8.066xI0"8 ( T3 )](1000/mmass)J/kg (2.20)

wher- mmass - the molar mass of the combustion gas.

2) A simpler expression in which the specific heat ratio, Y, is

assumed to be a constant [Ref. 31]. The resulting expression

is

u() - 0  [R R g/(Y-1)J]T(1000/mmass)J/kg (2.21)
o'

S....... ... ......... F"•' '•• '" • • • . .. . -- <-- . . .. -- ... " . .. .- •. .. . .. ... ... . .... . .. ,. ............. i ................... ------- - - - -
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where u = a reference internal energy at T - 300 0 K.0

Combustion gas enthalpy

Because of the insertion of the covolume term In Eq. (2.17), the

equation for combustion gas enthalpy becomes

h(T) - h 0 u(T) + R gT+ nP (2.22)

where u(T), Rcgo T, n, and P have been previously defined and ho a a

reference enthalpy at T- 3000K [Ref. 31].

Propellant grain-combustion gas velocity ratio

For the inviscld interior ballistic problem, it was assumed that no

net force acts on the propellant grains. Therefore, the equation for

the propellant grain-combustion gas velocity ratio becomes

CDI - 0 (2.23)

Rate of propellant consumption per unit volume

The following assumptions were made to facilitate the derivation of

an equation for the rate of propellant consumption per unit volume, M.:s

1) As is a function of time and axial position along the tube.

2) The linear burning speed, rb, is a function of pressu-c o.ily.
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3) The propellant grains are incompressable.

J4 ) The total burning surface area (Abt) is constant.

5) The propellant grains are single-perforate cylinders.

6) The burning surface area of the ends of a propellant particle

(Abe) is small in comparison to the burning surface area of

the inner and outer cylindrical surfaces of the propellant

particle (Ab).

7) The number of propellant grains (n) is a function of time and

axial position along the tube.

Based on these assumptions, the following equation for As was derived:

A PS[Abt ( Avdx ) ]rb (2.24)
s fL Avdx

0

where Abt is the total burning surface area. The details of this

derivation are given in Appendix A.

Projectile velocity

By using Newton's second law, the projectile acceleration can be

expressed as

a pflet (2.25)
ap - p

where

1) Fpnet - the net force acting on the projectile In the axial

direction

2, - the mass of the projectile.
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By assuming that the projectile slides freely and that the effects

of gravity can be neglected, Fpnet can be expressed as

Fpnet a (P-pb " Pf)A (2.26)

where

1) Ppb - the combustion gas pressure acting on the base of the

projectile

2) Pf - the "frontal" pressure, i.e., the external pressure

acting on the front of the projectile

3) Ap - the cross-sectional area of the projectile.

The projectile acceleration may also be expressed in differential

form as

a . dUp (2.27)
p dt

where Up is the projectile velocity.

Combining Eqs. (2.25)-(2.27) yields the following equation:

dU (P - Pf)
pb A (2.28)

dt m pb

The frontal pressure Pf in Eq. (2.26) may be found using the following

assumptions:

1) The atmospheric specific heat ratio Yatm is constant.

2) Quasi-steady conditions hold in front of the projectile.

3) The pressure increase in front of the projectile (due to

projectile motion) can be modeled as an Jsentropic compression
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in the axial direction when the Mach number (relative to the

0 atmosphere) is less than or equal to 1.

4) The pressure increase in front of the projectile (due to

projectile motion) can be modeled as compression across a

normal shock when the Mach number (relative to the ,tmosphere)

exceeds 1.

Under these assumptions, the Mach number may be expressed as

M - Up / atmTatm (2.29)

and the frontal pressure may be expressed as

2

Yatm- 1  2 atm1

Pf P atm (I + 2

where M S. 1 or

Yatm
Y atm-1 Yatm -1t2Yatm 2 Y atm-1

(1 -0 Y atm+1) (2.31)

where M > 1 [Ref. 32J.

The differential expression for projectile acceleration can be

diseretized and approximated at time level n+1 by the following

expression [Ref. 33]:

dUp Un+1- Un
(dt-.•n p --k + , O(At) (2.32)

dtAt

Substitution of Eq. (2.32) into the discretized form of Eq. (2.28)

O results in the following first-order accurate equation for projectile
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velocity at time level n*l1:

nl_ Pn+1Un~ lp (p -pv A~

Upn1  + ÷_ pb r )A P1 at (2.33)
p p m p

Projectile displacement

The projectile displacement (Lp) can be found from the formula

t du
L(t) - L(t 0) + d Rd (2.34)

p p t
0

This equation may be discretized and approximated at time level n+1 by

the following expression:

Ln+1 . Ln + At (2.35)
p p 2

I .... r ....... ,,• ... .... • .. :•--• -- . ....¢••.•:• 7.•;,• .•o,••. • ... VT. .......:•..• ... •__ .•_ .•=• . --.. ---- :•-•.= • • '-•.:• '•' • • _•-•'' ---S....
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2.4 Numerical Method of Solution

Solutions for the conservation equations (Eqs. (2.13)-(2.16)) were

obtained by a finite difference method. Since finite difference methods

provide solutions only at grid points and time levels, both the spatial

domain and the duration of interest of Eqs. (2.13)-(2.16) must be

discretized.

Discretization of the Spatial Domain

The spatial domain of interest for this problem Is the distance

from the breech to the base of the projectile as shown in Fig. 2.1.

Typical values for this length interval range from a fraction of a meter

to a few meters. This continuous length interval must be replaced by a

system of grid points. The system chosen for this problem is shown in

Fig. 2.4 and consists of a fixed number of uniformly distributed grid

points. The spacing between the grid points increases as the distance

between the spatial domain boundaries increases.

For problems with deforming spatial domains, the system of grid

points used here has two principal advantages over grid systems that

employ stationary grid points:

1) It avoids the problem of "uncovering" grid points as the

projectile travels down the tube. Therefore, interpolation

schemes for projectile base boundary values are unnecessary,

making numerical boundary conditions much easier to implement.

2) It minimizes the number of grid points necessary to resolve

the problem since no grid points need to be added as the
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projectile travels down the tube.

These advantages have the effect of increasing computational

efficiency and simplifying coding requiriments.
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Disoretization of the Temporal Domain

The duration of interest for this problem is the time interval from

the start of combustion to the time when the projectile exits the

tube. Typical values for this time interval are on the order of a few

milliseconds. This continuous time interval must be replaced by a finite

number of time levels which satisfy the most limiting of the following

two criteria:

1) The time step cize (increment between two successive time

levels) must be small enough to ensure numerical stability.

2) The time step size must be small enough to ensure temporal

accuracy.

In this study, a constant time step size of 2 psec was used.

Derivation of the Finite Difference Equations

The derivation of the finite difference equations (FDE's) needed to

obtain a solution to the inviscid problem involved three major steps:

1) The partial differential equations (PDE's) given by Eqs.

(2.13)-(2.16) were transformed from the (x,t) coordinate

system to the (&,i) coordinate system.

2) The spatial and temporal domains of the transformed PDE's were

disoretized (see Fig. 2.5) and FDE's at the interior grid

points were derived from the transformed PDE's.

3) FDE's at the boundary grid points (see Fig. 2.5) were derived

from the transformed PDE's and from physical constraints.

In this section, the conservation equations resulting from the
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ooordinate transformation between (xt) and (t,r) used in step 1 are

0 presented first. Next, the FDE's derived in steps 2 and 3 are shown.

Coordinate transformation

It is difficult to derive FDE's at grid pointL that move. One way

to simplify the derivation of FDE's at moving grid points is to map

moving grid points in the (x,t) coordinate system onto

a (t,i) coordinate system where all grid points are stationary.

To accomplish this transformation, the independent

variables & and *r were defined such that

= x/L (2.37)

t(2.38)

where for Eq. (2.13),

L - Ls, the distance between the breech and propellant grain

closest to the projectile base.

and for Eqs. (2.14)-(2.16),

L - Lp, the distance between the breech and the base or the

projectile.

Differentiation for a dependent variable ( ) with respect to x and

t can be expressed in terms of differentiation with respect to ý and t

as follows:

3( •) . a( ) (2.39)
ýx L D&
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(c) *•( ) U. •( ) (2.40)
at 3-r L BE

where for Eq. (2.13)

Uf - Us, the velocity of the propellant grain closest to the

projectile base.

and for Eqs. (2.14)-(2.16)

*Uf UP, the velocity of the projectile.

By using the transformation equations presented in this section,

the conservation equations (Eqs. (2.13)-(2.16)) can be rewritten as

follows:

Continuity of Propellant Grains

v US av 1 v(vu) LA M (2.141)

A aEa

Continuity of Combustion Gas

- U -

2E. _R &D _pu 3A 1 3(pu) V.
3 r L a& AL R& L + -I-7v)3 Pp p p Ps

aP aus u(2.2)
(1V-77p [ U) s '&- Y&- A2 REp

Conservation of Momentum for the Combustion Gas

a(pu) 1 a(pu) -a(9
2 ) + PiCU P a( ,]

aT F Up, a a s at c
p

"- (---)Us aA ( a•) s.• L
1-. A VTtA + (V) ]. (2.43)

p
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Conservation of Energy for the Combustion Gas

a. 1 (, _((u) i- P-u÷A(-. -) -r (UPC -
- aus

ev 3 + (--A -h C (T -T )T-1--17-v s 88hg- ps ig- nit

(h - h(Tg) - (2.44)ig Ps

The transformed conservation equations can now be d1scretized and

applied at Individual grid points. For conservation equations that have

been transformed with L as the scaling parameter (Eqs. (2.14)-(2.16)),

a representative grid point is indicated by the symbol I (see Fig. 2.5).

The propellant grain continuity equation (Fig. 2.13) has been transform-

ed with L. as the scaling parameter. A representative grid point for

this equation is indicated by the symbol i* (see Fig. 2.5).

It should be noted here that there is not a direct correspondence

between values at locations I* and I since L. does not equal Lp in

general. Consequently. values in the I* grid point system must be mapped

onto the I grid point system. This mapping procedure is accomplished by

an interpolitive scheme which is described in Appendix A.
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Finite Difference Equations

The finite difference equations (FDE's) used to obtain solutions to

the transformed conservation equations (Eqs. (2.39)-(2.412)) were

obtained by implementing MacCormack's predictor-corrector scheme. This

explicit method is second order accurate in both space and time. In

this section, the resulting FDE's for the interior grid points are

presented first. Then the FDE's for both the breech and projectile base

boundaries are presented.

Finite difference equations at interior grid points

For each interior grid point I and i*, the FDE's are derived by

using MacCormack's predictor-corrector scheme to approximate the

transformed PDE's. The resulting interior grid point FDE's at the

predictor time level of •T and the corrector time level of n+1 are

presented as follows:

Continuity of Propellant Grains (Interior Point Predictor)

n+1 n L (n) n 1 nn nn

vu
[(vu s)n , n . n _ )s U

S(V S) i , (iv ( *.1) ,] aA n A

M vLP5 vLn a] (2.45)

p 1
P5
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Continuity of Propellant Grains (Interior Point Correotor)

n*'l 1 n n~j 1 AT ¶ 1 n+1
v E + vi.) 3 +-I E ~( )

n+1 n~ i*+l nft

-j [l1 (vu)3 (1 1)* (vu)) -1* A i* af

* - (s~n A~1(2.416)

Continuity of Combustion Gas (Interior Point Predictor)

n1.- AT)n()(n- n -n
P, i - A p i*( i 1 1( ) - ( u 1  1

p1

+ n -n n 3(vn v n 1 ,T nV)n nil

p 1 si&1 Ai -

-n+1 1 (-n .- n+ 1 rf) L)n+1 L ) iUn+1 E(n4 l - Pn.1

- C~)l- - n+1, J(_p )n1V ,, Eu u +l)(fl+l - +
1+1 (pu) 1  1.- UiJ1 ±

-1 (Lrn+1 a!n.1(-- n+1 v yn+l -nl1 n+1
2 L P A i (Pu)1  1i-v U SE

(a) n+1 an+1 +21-' p5'i. 'n~s' (2.48)



2-31

Conservation of Momentum for the Combustion Gas (Interior Point
Predictor)

-- 4 -i ATn (1_(n n - 5n-2)n
(~~f - pu)1 + -,_In A, p~ u - (;5)n- Epu

Ai p1

- f -n_ + ;5 n(-Iu )n + pnf(l n~vn n_
1p ) 1 J Eu (u-u1 1-V I I

..n nl - )n(-;)n ,Un + -v I~ s , A n

p

+ V) nl n C-) n~~ )fpln( (2.419)
1 V i E 1-v 1 p s I i

Conservation of Momentum for the Combustion Gas (Interior Point
Corrector)

-:nl 1 -- )n n'1 )tn~le- -no.1p(u C)+ p )n*l +C-)(L) ()(Unl [ (pu)

Cpu)i 31 p pu 1  ui +

2 LL Ap p £ I -Vi1

+ (p) )Enpu OA - CLu )n)+l [(pu)n (uAu)n 2-0

1 n~-ni -&n1 1vni as n.1

Conservation of Energy for the Combustion Gas (Interior Point Predictor)

en~ -n -e in-n -n-n--
e. en + -)()(U& _ [(eu) n_(euj) n_p A& p -
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* -[u)~ I (u)'n- 1  1~-)VCieU) (eu) ~ (P (V)'VJv01

Am n[(;) ~)'n(iu +f (P4) n)(!)n + ( v~), jn(u n '
L 1 1-V 1 3 i 1 A i 1-V i i 3ý I

1+ 1T )(M8)(Ehg- C Ps(T i- T ) -t (h i'

-h(T 18 ) M 0!_fn (2.51)

Conservation of' Energy for the Combustion Gas (Interior Point Corrector)

-n+~1 1 -n -nl+1 1 )'r fl+1 1 flUn -Tin+l -n.f
e e+eLp A& p i i1ei

-- +P - j~1n+1_(p;fl+1 + l-n+1 -- 3n+1

- -n+~ -n+1 n+l_ n+1) (i()n+1l,,-- n+1
(eu8: + (PU)1  IN 1, -V (1 - L %Ee )

vn+1- n+1 -n. a~nti+ - )n+1 -n~~ n+1* (1--)i (e8) +(Pu)t A(i)1-v i e (u )36

1-V ( I~ 1 S)ni {[h s- C Ps(T g- Tini)

-n+7 e _n+1- (h(Ti ) - h(T ))) - - 1 (2.52)

where all other variables have previously been defined and

a a D (2.53)

la
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Finite ditfference equations at boundary grid points

Finite difference equations for the breech and projectile base

boundaries were defined by first applying the transformed conservation

eqruations (Eqs. (2.39)-(2.42)) at the boundaries subject to the

following constraints:

1) U(C-0,r) - 0 (2.54)

2) i(•-1,r) - U (2.55)p

3) (&(-l,) - 0 (2.56)

Then, MacCormack's predictor-corrector scheme was used with three-point,

one-sided differencing to approximate the resulting boundary

conservation equations. Boundary FDE's at the predictor time level

of n7T and corrector time level of n+1 are presented as follows:

Continuity of Propellant Grains

Breech Boundary Predictor

n+1 . - ( -)n (-1 ) [2(vu )n + I (vu ) n
vI* 1 L () A s* 2 (s3*

M "vL-•- (2.57)

Breech Boundary Corrector

n+1 1 n +1 nI I ()n+l 1 .ln+1 1 (Vu n+1vI* - • (v1 * ) - (-)(--) (•-•)[2(\,us)2, (u
J*' 2*+J L s &2* 2 3*S

+ (MsvLs)n- T (2.58)
ISPs 

I*

LJFV'&A#AW VW--•f
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Projeitile Base Boundary Predictor

n1 n1(2.59)•IL* ' (L-1)

Projectile Base Boundary Corrector

vn+1 vn+1 (.0VIL* V(IL1)* (2 60)

Continuity of Combustion Gas

Breech Boundary Predictor

-n+1 . -n A' n 1E-,n - 1 ,-n

p1 •- (L-)[ 2(pu) (- ) n
g P2 2 u3 L 1v11S

- Pp

Breech Boundary Corrector

-n.1 1 -n -n+l 1 M n~ l 1 --1n) 1 --u)+,
P1  - ÷ p1  ) - ( (I-)C2(pu) 2  -J(p)

p

AT At n+l[( v )n+1-n+I .n+1
L 1-v 1 (-) p1  (uý)1  J

+A.g ( v ) n+1[1r (p )n+1 ](M ),+I (2.62)2" I- I 1 - "

vi '"si
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Projectile Base Predictor

-n+I - 6(t1( ){IUn 3 -n -n If 1n
OIL P0 L +t7 (ti)( p( PIL 2PIL-1 + IL-2

pp 2p

Ip)L 2(u)L.1 *2Pu)IL-23

+(+R)IL[-n- 3u~tv n 2 vn +~v n

_, ILuI a)I]' 'I L-2 Il-i 2 vIL-i

IL)n v nX! -n a ILn

L p A I I LPU + 1-'-vIL PILI~ust)%AIILI

+ vt-~- nl (_)n ](A )n~ (2.63)1 v IL p8 IL aIL

Projectile Base Corrector

-nl+1 I (ý + 7nfl~ + (1) (L)fl (L) Un~l(I 7n+ ;n- + 1- 2I-n+1

[3 I,3nL - 2C ýn+i + 1 -- 3)+
IL IL-1  ~ p)IL-2

n+~)1L - C n+1 3+ n+i n+1 + 1 vn+l

I L I IL 2 VIL -
2 IL-1 2 V1L-1

I 1 M n+1, a n+l -;)n+i+ v _n+i -n-1 n1

2 L(-) IL- i L -v IL PIL IL S&)I )~ IL

+ s ) n 1 a nfl,+1 L (~ v fnl4 1 *E)~l( )n+1 (2.641)
(A)IL lL 2 + 1-v IL PS IL s ]( IL
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Conservation of Momentum for the Combustion Gas

Breech Boundary Predictor

(p0 - (2.65)

Breech Boundary Corrector

"i - 0 (2.66)

Projectile Base Boundary Predictor

-- 177 -F+1 ~n+1 2.7(•PIL " -IL p (2.67)

Projectile Base Boundary Corrector

(-- n+l -n+1 Un÷.
"IL " pIL p (2.68)

Conservation of Energy for the Combustion Gas

Breech Boundary Predictor

-n+ : -n i nI --nn 1 -- n n 1 -neI -eI - (r-) (-){[2(eu) -2 (eu) 3 [2(Pu) - - (Pu) 31

p

(L" n( v )n n v n •n
L _ 1i-v 1 1 S 1 1-V 1 s 1 sg ps ig InitP

h - )) (2.69)(1 hTIg p5 1
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Breech Boundary Corrector

-n+1 1 -n n- 1 nr+l i-{[t)n+1 1 -- nl+1e 2 (e 1 ' ) - (I)(L._ ) ( )2eG _ 2 (eu) 3 )
P

" [2(Pu)3 - (T)- "L" (1-v)1 el (uf)l

+ _ VI n+1 *n+1 i i
7 )(-Tvv (1 + {[hsg" Cp (T - )- (h(,f÷-1)

-n+(T1 )h(T n+)] TS1 (2.70)

Projectile Base Predictor

-nl+1 -n1 A lT n 1 n -n 2n +

I -n 2 P 3n n 1 nn2 ~ p2 L I-& L-2
- r[ (PU)IL - 2(pu') IL-i 2. (Pu) 1L-

+ (1-L_) [( IL- n)I L (Pu)I( n (3 n - + 1 n
1-v IL IL s IL IL 2 IL IL-1 v IL-2)

AT n + (fl vfn -- n an
-[ (eUi)IL 1- IL(eus) IL + A IL

p

+ ( \, eI -n n - )n ILsILL{[sg C P in
"1-v IL IeLlS IL) 1+ IL s I g ps(Tig- Tnit

(h(n hT@_n(.1
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Projectile Base Corrector

-n+l 1 -n -nil 1 A n1l 1 1n 3 I -n+l 1 -n+1

IL OIL+ IL L lit p -2 IL-_1+ f 01L-2

-2( P ) ,^ n+1 1 n+1 1 n+1 n+1
2 IL IL- + 2 IL-2 vIL SIL

(Pui) n]1(I vn - 2vn+ + I V n )
IL 2 IL IL-i 2 IL-?

-1 ) ni I - n+ 1 v )n+',- n+1 n+1 a ,nil
ILp [ 1--V IL esIL IL (AIL

S( ) en+l-n+l (u )n+l1 LA .(- C (T - T. n
""1-- IL ILl "IL 2"1-v IL sg ps ig Tint

(h()TI) -h(T g))J- (-) 1 (2.72)
IL ig PsIL

Summary of the Solution Procedure

At this point all the equations needed to specify the inviscid

interior ballistic problem have been developed. A solution procedure

for this problem proceeds as follows:

I) Specify the input parameters listed in table 2-4, for all grid

points i and i*.

II) Specify initial values for the dependent variables v, p, pu

and e for all grid points i and 1*.

A III) Find the values of the dependent variables at the predictor

IW
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time level n+T in the following manner:

Predi ctor
n+1 n+1

1) Find v 7 _71

a) find vn"1 at all interior 1* points by using Eq.

(2.44)

b) find v n+1 by using Eq. (2.57)

a) find vn+1 by using Eq. (2.58)ZL*

d) find vn÷ 1 at all I grid points by interpolating

between vn+1 values at i* grid points (see Appendix

A)
n~l n+l

e) store all values of V and v for use in the

corrector FDE's.

-n+- - -T+ -n+--
2) Find p , (p,)1 and ei 1

I ~II-n - •n+l --n.l

a) find Pn1 , (Pu)' and e 1  at all interior i grid

points by using Eqs. (2.47), (2.49) and (2.51)

b) find p1  and p ILby using Eq. (2.61) and Eq.

(2.63)

c) find (p,) 1  by using Eq. (2.63)1

d) guess the value or by using a one-sided

difference version of Eq. (2.49)

0) find +e--"1 and e by using Eq. (2.68) and Eq.

(2.71)

ism.. ._, - ,, .. , ,4.,, . . .
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3) Find -- I and Pin.

a) find at all I grid points by dividing (pu)I

by p1

b) find 7, at all i grid points by applying either of

---the internal energy equations (Eq. (2.20) or Eq.

(2.21)) in Eq. (2.18) where all variables are dis-

-n41 -niloretized (i) predictor variables and j1  -P1

-n* 1
and uI are known

c) find P+ at all I grid points by using Eq. (2.17)
i

where ; and are now known1 1

4) Find Un+ ,- ,n+l andP ,tUIL p n ;

a) find pn (the projectile frontal pressure) by using

Eq. (2.30) or Eq. (2.31)

b) find .n+1 by using Eq. (2.33) where all variables
p

are discretized (I) predictor variables

c) find (P)"IL by using Eq. (2.67)

d) find L by using Eq. (2.35) where all variables
p

are discretized (i) predictor variables

5) Find (CDl n,' U , and L

a) find (CD n at all I grid points by using Eq.

(2.23) where all variables are discretized Mi)

predictor variables



b) sol ve for Un7and L + by using the iterative

method described in Appendix A

6) Find (un)i- (u) 1 * " &)"1"* , and (u 3&)T

a) find (u s)+ at all i grid points by using Eq. (

where all variables are discretized (i) predictor

variables

b) find (u ) +at all 1 grid points by interpolating

between (u n+1 values at i grid points (see
Si

Appendix A)

c) find (u )n*1 at all i* grid points by using
3& 1*

backward differencing of (u n+- for grid

points (2-+IL)* and one-sided differencing

of (u ) n+ at grid point 1

. n+1
d) find (u ), at all i grid points by interpolating

between (u )+1- values at I* grid points (see

Appendix A)
n+1) Msn+1

7) Find (A a and (A .

a) find ( ns)T at all I grid points by using Eq.

(2.24) where all variables are discretized Ui)

predictor variables and (rb)i depends on Pn+1

b) find Pnl at all i* grid points by interpolating be-

tween P values at I grid pvInts (see Appendix A)twe i
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o) find (Ms)i* at all I* grid points by using Eq.

(2.24) where all variables are discretized (i*)

predictor variables and (rb)i± depends on -r+

8) Find I AL a and ai

. . .a) -use the set of equations which oorresponds to the

chosen tube geometry (see Tables 2.1-2.3) to

rind R* + +
A, and a,_n÷1 Anian an i÷Find R 1 1  "1 ~ n al

9) Find n l, A n d1 and d

) f nd R , Anl, and a1  at all I* grid points by

_n÷1 .n÷1 adn+1 vle
interpolating between R, , At and a, values

respectively at I grid points

IV) Find the values of the dependent variables at the corrector

time level of n+1 in the following manner:

Corrector

n.1 n+1
1) F in d v i, , 1 .

a) find vn+1 at all interior I* points by using Eq.

(2.46)

n+1b) find v,, by using Eq. (2.58)

c) find vn+1 by using Eq. (2.60)VIL*

d) find vn÷1 at all I grid points by interpolating bet-
I

ween n* 1 values at I* grid points (see Appendix A)

ween vi



2-43

e) store all values of v,, and v1  for use in the

predictor FDE's.

-n+÷1 ,--n+ +12) Find p , (pu;)I , and e

-- ÷I -- n11 1 e-1+ 1

a) find p1  , (pu)I , and e'£ 8at all interior I grid .............

points by using Eqs. (2.48), (2.50) and (2.52)

b) find Pl and by using Eq. (2.61) and Eq.

(2.64)

c) find (P)•+1 by using Eq. (2.66)

d) guess the v e IL 1 by using a one-sided

difference version of Eq. (2.50)

e) find and by using Eq. (2.70) and Eq.

(2.72)

3) Findu an,,!l and nP1-n U n+l and _nl

a) find ,n 1 at all I grid points by dividing

b) find 'T"i1 at all I grid points by applying either of

the internal energy equations (Eq. (2.20) or Eq.

(2.22)) in Eq. (2.18) where all variables are

discretized (i) corrector variables

n+l -n+1 ,nr-now
and nt Pi and .i are known

* @ A>-t- ~-'~
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o) fd P1 at all I grid points by using Eq. (2.17)

where pn and fn£ are now known

41) Find Up I -- n+1u
) , (Pu)IL , and L p

a) find Pn+1 (the projectile frontal pressure) by using
-f

Eq. (2.30) or Eq. (2.31)

b) find Un+1 by using Eq. (2.33) where all variables
P

are disoretized (i) oorrector variables

c) find (Pu)IL by using Eq. (2.68)

d) find L by using Eq. (2.35) where all variables

are discretized (i) corrector variables

n+1 n+1, n n+15) Find (CD 1 ) I,1 U and3Ln

a) find (CD ) n+1 at all I grid points by using Eq."ii

(2.23) where all variables are discretized (i)

corrector variables

b) solve for Un+1 and Ln+1 by using the iterative

a 5

method described in Appendix A

6) Fid u)•I n+1 u n+1 n+1

) F (u s)I* , (u s)i* , and (u s) I

a) find (u n+1 at all I grid points by ising Eq.

(2.19) where all variables are discretized (i)

corrector variables

1 M
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b) find Wu )nI at all i* grid points by interpolating

n+1between (uW )+ values at i grid points (see

Appendix A)

o) find (u )n+1 by using forward differencing3t 1*
•n+1

of (un) 1, for grid points (1*IL-1)* and one-sided

differencing of (u n+1 at grid point 1

n+1d) find (usk) by interpolating

between (U s)n+ values at i* grid points (see

Appendix A)

7) Find ( an+1 d (M )n+1"Isl n . si*

a) find ( n1) at all i grid points by using Eq.

si

(2.24) where all variables are discretized (I)

fln+ 1
corrector variables and (rb)i depends on P1

_n+l1

b) find *at all I grid points by interpolating

n÷1
between Pn values at i grid points (see Appendix

A)

c) find (M)n+1 at all i* grid points by using Eq.

(2.21) where all variables are discretized (i*)

n+1
corrector variables and (rb)i* depends on Pl*

fl~j n+1 n+1

8) Find , A n+ and a 18) Fid i ' i i

a) use the set of equations which corresponds • the

chosen tube geometry (see Tables 2.1-2.3) to

S. . ... . . . . ... q , i i -... ...... i . ..... ..... • • i" -••'•• U
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n+n n+1 1f i nd R , A• and a

9) Find I*1  Ai*1 and aid+1

_n÷1 n.n1 n+1 f
a) find R1 + , An1 and an1 at all 1* grid points by

.n÷1 .n÷1 n+1 vle
interpolating between ni , An and a values

respectively at I grid points

V) Repeat steps III and IV until the projectile has traveled a

prescribed length Lf.
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2.5 Results0
In this section, the results of several computer simulations of

inviscid interior ballistic flow are presented and compared. Salient

gun performance parameters were determined and conclusions were drawn

about their significance.

Description of Cases

A case study which isolated the effect of a parameter on gun per-

formance was made for the inviscid interior ballistic problem. Table

2.5 lists the values or equations of parameters which did not change in

these case studies. The assumptions common to all the inviscid interior

ballistic case studies are listed as follows:

1) Combustion gas flow is unsteady and one-dimensional in the

axial direction.

2) There is no heat transfer.

3) The combustion gas is inviscid (e.g., there is no wall shear

force).

4) No net force is exerted on the propellant grains (i.e., the

propellant grains do not move from their initial positions and

there is no propellant grain d,'g force).

Table 2.6 lists the equations of parameters which were varied in

the inviscid interior ballistic case studies. The sum of the parameters

listed in Tables 2.5 and 2.6 specify the inviscid interior ballistic

problem.

Case AA was the simplest inviscid interior ballistic case stidy.
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Table 2.5

Specification in MKS units of parameters which remain

the same for all Inviscid interior ballistic case studies

Projectile Parameters Propellant Parameters

U p 0.06 type - CIL 3331

Por " 6.895 x 106 grain geometry - cylindrical,

- p- .375 single perforate

Mcd - 0.1 4 8

Air Parameters Ps a 1660.820

Tatm 300 W6 - 86.868 x 10-5

Patm 1.0 x 105 Cps - 1539.25

"Yatm 1.41 Tinit - 300

Ratm = 296.82 Tig - 600

hag - 4171.998 x 103

Combustion Gas Parameters U = 0.0

mmass - 214.0728 CD - 1.0

T6 - 300

P6 a 3.449 x 106

U = 0.0

0
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Table 2.6

Parameters and equations which were varied in the

inviscid interior ballistic case studies

tube

Case rb u(T) geometry

AA 0.0 t(Pave) given by given by

Eq. (2.21) Eqs. (2.1)-(2.3)

m3g-3 m f(Pave) given by given by
AB 104i z-)

Eq. (2.21) Eqs. (2.1)-(2.3)

AC 1.08Wx,, 3(mg) f(Piocai) given by given by

Eq. (2.21) Eqs. (2.1)-(2.3)

AD kg f(P-oca3) given by given by
Eq. (2.20)* Eqs. (2.1)-(2.3)

3

AE 1.084xl0-3(-)3 f(Plocal) given by given by

Eq. (2.20) Eqs. (2.10)-(2.12)*

* Indicates a change in value from the previous case.

0
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In addition to the general assumptions listed previously, the following

simplifying assumptions were used to analyze this case:

1) The covolume (n) is zero (i.e., the equation of state (Eq.

(2.17)) reduces to the ideal gas law).

2) The local linear burning rate (rb) depends on the spatial-

average pressure within the tube assembly.

3) The ratio of specific heats is constant (i.e., Eq. (2.21) is

used to describe the combustion gas internal energy).

4) The tube assembly is a straight tube.

The rest of the inviscid interior ballistic cases reduce these

simplifying assumptions one-by-one in the following manner:

1) Case AB is the same as case AA except that the covollme term

is no longer zero (see Table 2.6 for the value of n).

2) Case AC is the same aa case AB except that the local linear

burning rate depends on local pressure.

3) Case AD is the same as case AC except that the ratio of

specific heats is no longer constant (i.e., Eq. (2.20) is used

to describe combustion gas energy).

4) Case AE is the same as case AD except that the t-ibe assembly

radius varies smoothly from the breech to the open end of the

tube.
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Table 2.7

Muzzle velocity, peak breech pressure, time of ocourence of

peak breech pressure, and percent differences for inviscid interior

ballistic cases AA-AE

Case Up5 Dif. Peak P % DIf. Time (PkP) % Dif.

(m/sec) (1O5 pa) (milli-sec)

AA 789 1902 1.70

AB 948 20.3 3585 85.5 1.55 -8.8

AC 961 1.14 3642 1.6 1.50 -3.2

AD 897 3.7 4001 11.6 1.140 -6.7

AE 830 -16.7 1769 -55.8 1.15 -17.9
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Case Performance0
Figjure 2.6 shows a plot of breech pressure versus time for an ac-

tual gun firing [Ref. 28] and for cases AA-AE. Figure 2.7 shows a plot

of projectile velocity versus time for cases AA-AE. Table 2.7 lists the

muzzle velocity, the peak breech pressure and the time of occurence of

peak breech pressure for cases AA-AE. It also lists the percent differ-

ence (from the previous case) of each of these quantities.

The effect of the covolume term (n) can be seen by comparing caseu

AA and AB. When compared to case AA, case AB shows a 20.3% gain in muz-

zle velocity, an 85.5% gain in peak breech pressure and an 8.8% decrease

in the time needed to reach peak breech pressure. This is the largest

change in gun performance found in the inviscid interior ballistic case

studies. Accurate modeling of the covolume term is therefore seen to be

of paramount importance.

The effect of using local pressure values to find the local linear

burning rate can be seen by comparing cases AB and AC. When compared to

case AB, case AC shows a 1.4% gain in muzzle velocity, a 3.2% increase

in peak breech pressure, and a 1.6% decrease in the time needed to reach

peak breech pressure. This shows one of the significant effects of the

spatial pressure gradient on gun performance.

The effect of a non-constant specific heat ratio can be seen by

comparing cases AC and AD. When compared to case AC, case AD shows a

3.7% gain in muzzle velocity, an 11.6% increase peak breech pressure,

and a 6.7% decrease in the time needed to reach peak breech pressure.

This significant change in gun performance indicates that interior bal-

listic modeling should account for a non-constant specific heat ratio.

L UA:tAIL 111
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The effect of a non-constant tube radius can be seen by comparing

oases AD and AE. When compared to case AD, case AE shows a 16.7%

decrease in muzzle velocity, a 55.8% decrease in peak breech pressure

and a 17.9% decrease in the time needed to reach peak breech pressure.

This decrease in performance is accounted for by the larger

increase in interior volume of the tube assembly (at the time of peak

pressure) for case AE when compared to case AD. This volume increa3e

lowers pressure and dominates the helpful effect of case AE's increased

projectile cross-sectional area.

Since case AE shows the dramatic effect that tube geometry can have

on gun performance, it is felt that more work should be done to find the

tube geometry which optimizes gun performance.
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Case AD Spatial Distributions

The data generated from ease AD was chosen to illustrate the

behavior of combustion gas spatial pressure, density, temperature and

velocity distributions for the inviscid interior ballistic problem.

Figure 2.8 shows combustion gas pressure plotted against normalized

axial oistanee (X/Lp) at five projectile displacements. The first half

of the pressure plot corresponding to bp . 0.44 m shows the effect that

local pressure has on the propellant burning rate. Since the

relationship between pressure and the propellant burning rate is non-

linear (see Table A-I), the pressure plot in the burning region is also

non-linear. The second half of the pressure plot corresponding to L =

0.44 m is essentially linear, which is typical of gas expansion with no

combustion. The pressure plots corresponding to L = 0.88 m and L -

1.32 m show that the effect of the non-linear burning rate diminishes as

the shot progresses and the propellant is consumed.

Figure 2.8 also shows that the slope of the axial pressure profile

is initially negative with a 22% drop in pressure from the breech to the

projectile base when L = Q 0.44 m. As the shot progresses, the axial

pressure drop tends toward zero and when Lp = 2.19 m (at the end of the

shot), there is only a 2% difference between breech pressure and

projectile base pressure.

Fig-jre 2.9 shows combustion gas density plotted against normalized

axial distance at five projectile displacements. As in the plot of

pressure profiles, the effect of the propellant buirning rate's

dependence on local pre.ssure can be seen in the axial density profiles.

Figure 2.9 also shows that the slope of the axial density profilc

Z Zr sp Zs pro



2-61

is initially negative with a 26% drop in density from the breech to the

projectile base when Lp - 0.44 m. As the shot progresses, this density

drop between boundaries tends toward zero. At the end of the shot (when

Lp - 2.19 m), there is actually a density increase of 4% at the base of

the projectile when compared to the breech.

An Interesting phenomenon indicated by Fig. 2.9 is that the density

gradient in the region wherp. no combustion is taking place is not

constant. Another phenomenon shown by Fig. 2.9 are the oscillations in

the density profiles near the projectile base boundary. These

oscillations become more pronounced as the shot progresses and are non-

physical in origin.

Figure 2.10 shows combustion gas temperatures plotted against

normalized axial distance at five projectile displacements. These plots

show that the axial gradient of temperature is nearly zero in the

combustion region. In the region of no combustion, however, the

temperature gradient is not constant.

Figure 2.10 shows that combustion gas temperature tends to rise

when approaching the projectile base. This temperature increase appears

to have been caused primarily be energy transport from the combustion

region. The oscillations with temperature profiles near the projectile

base boundary are a response to the numerically induced oscillations in

combustion gas density.

Figure 2.11 shows combustion gas velocity plotted against axial

distance at five projectile displacements. These plots show that the

axial gradient of velocity is nearly constant In both the combistion

region and the region of no combustion and that the magnitude of the

axial gradient of velocity changes suddenly upon entry into the region



2-62

or no combustion.

Inspection of the velocity plots in Fig. 2.11 reveals that in the

region where (X/Lp) is less than or equal to 0.5, the velocity first

increases with time and then decreases with time. This phenomenon

explains why the pressure gradient (see Fig. 2.8) tends toward zero

since the deceleration of combustion gas implies that the driving

potential (i.e., the pressure gradient) is being reduced.

Inspection of the velocity plots in Fig. 2.11 also shows that the

axial velocity distribution approaches a linear profile as the shot

progresses and the propellant is consumed.

R_1r.zrkL - -. _. .



Chapter 3

Boundary Layer Flows in Tubes

3.1 Introduction

The viscous effects which occur in the interior

ballistic cycle were studied using a core flew driven

unsteady boundary layer model. The core flow distributions

of velocity, density, and temperature were used as edge

conditions to drive the unsteady boundary layer formed on the

inside of the tube.

The internal ballistic cycle boundary layer flow is

typical of most boundary layer flows in that it occurs in a

narrow region adjacent to the tube wall. The radial

gradients of velocity and temperature are governed by the

viscous mixing of the gas. The radial velocity and

temperature gradients are steep as velocities range from zero

at the tube wall to the core gas velocity and temperature

increases from ambient at the wall to the core gas

temperature.

The internal ballistic cycle boundary layer flow is

different from typical boundary layer flows in that it is

highly non-steady. The projectile velocity increases through

time, from zero to over 950 meters/sec at the end of the

cycle. Pressures drop from a peak of 3x10 8 Pa to 5x107 Pa

near the projectile at the end of the cycle. Temperature

differ(:nces are the largest at the beginning of the cycle

with the tube wall temperature at 300 K and the chamber at

2800 K.

This boundary layer flow is different from typical

boundary layer flows in that the velocity and thermrwl

boundary layers have zero thickness at two locations instead

of a single location. At the breech and the projectile, the

veloocity and thermal boundary layer thicknesses are zero.

Going from the breech to the projectile, the boundary layer

edges grow, reach a maximum distance from the tube wall, and

return to zero.

3-1
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The internal ballistic cycle boundary layer flow is

also different in that the core velocities are driven by the

expansion of th? chamber volume and the effects of transient

expansion waves from the projectile. These core values are

imposed as a boundary condition at the edge of the boundary

layer. In most tube flows, velocities are driven by a

pressure difference between the pipe inlet and the pipe exit.

Although the boundary layer is thin, the effect of the

boundary layer on the core is recognized as significant. As

heat is transferred to the wall, a cool dense layer of gas

forms next to the wall. A negative displacement thickness is

produced and the streamlines of the core flow move toward the

wall.

Some previous work has been done to study the boundary

layer flow of the internal ballistic cycle. Most of this

work takes advantage of the similarities between the gun and

the shock tube. That is, the internal ballistic cycle

boundary layer flow is often modelled as the boundary layer

which results from flow through a constant speed shock.

Mirels [Ref. 3M ] obtained the exact numerical solutions to

steady compressible laminar boundary layers behind shock

waves. Here the boundary layers look steady in a coordinate

system fixed to the moving shock wave. Yalamanchili and

Reddy [Ref. 3S' I extended this problem to include the effect

of wall temperatures different from the freestream

temperature.

Cook and Chapman [Ref. 36) studied the unsteady laminar

boundary layer on a flat plate produced by a constant speed

shock moving across the plate. The resulting velocit%-

boundary layer had zero thickness at the plate leading edge

and at the shock wave. Also, the velocity boundary layer

thickness in this study was found to be less than the

corresponding velocity boundary layer thickness for a flat

plate flow or constant speed shock.

"a& iact
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However, the shock approximation is not an appropriate

model for this problem. First, the shock is assumed to move

with constant velocity. The projectile does not move at

constant velocity. Rather, the projectile starts from rest

and its velocity may exceed 950 meters/second at the end of

the cycle. This produces a rapidly changing freestream

ccndition to which the boundary layer must adjust. Second,

the gas velocity is assumed constant once the gas has passed

through the sh.ck. In the interior ballistic cycle, axial

gradients are present, especially near the projectile.

Third, although mass constantly crosses the plane of the

shoc. k; mass cannot pass through the projectile.

Burgles lRef. i2 ] derived the momentum integral

boundary layer equations f. . non-steady, non-uniform flow

deveboping in a tube. To facilitate finding a solution,

Furgles assumed that the profile shape factor H12 (the ratio

býteweer displacement thickness 8l and momentum thickness 82)

was constant along the tube length.

A better mcdel was assumed necessary to. understand the

Fn1>'o: the boundary layer flow of the interior ballistic

cyc. V_ and to account properly for the effects of the heat

transfer. The objective of the work described in this

chapter was to model, calculate, and study th.ý unsteady
emz c••. •r• temnorature bounda a 1 lyers of the interior

-a! list1c CICle. -: his work, a solution technicue was

adapted from -he genera_ alaorithm fcr unsteady ccmpressible
L.tu J ry layers iy Yw.}n:- and Z--'etcher iRe". ].. Th{

.ns weCe sov usir01 g the ,r It. v e

:• va .. h es, :,!3 , a~ . "i~e .-I .. e :rn i no CJart a

I EI Ie" et I, w Zl U S sn : -3

""' .*-'*
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resulted in tridiagonal systems, which were then solved using

an efficient tridiagonal solution procedure.

Among the answers sought from the boundary layer model

were the location of velocity and temperature boundary layer

edges in both space and time. Integral variables such as

density, displacement and momentum thicknesses were

determined and used to describe viscous and thermal effects

occuring in the boundary layer. A good understanding of

these effects, will provide a physical basis for the

incorporation of second order effects of high speed flow in

tubes. These effects can then be used to improve

one-dimensional internal ballistic models.
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3.2 Description of Problem

An illustration of an idealized boundary layer on a

barrel wall is shown in Fig. 3.1. The boundaries are the

axisymmetric tube, the fixed breech wall and the movable

projectile. A radial coordinate system is set on the breech

along the centerline.

The interior ballistic cycle begins with combustion

qases in the chamber enclosed by the tube, breech, and

projectile. This gas is at high pressure and high

temperature. The tube wall is fixed at ambient temperature.

The projectile starts at an initial distance along the tube,

with a fixed mass in the chamber. The seal between the

projectile and the tube wall is assumed to prevent mass from

leaving the chamber. The projectile does have mass, and

accelerates away from the breech because of the high chamber

pressure.

As the projectile accelerates, gas velocities along the

centerline increase, driven by the volume expansion of the

chamber. The work of Chapter 2 was used to produce these
necessary velocities, pressures, and temperatures which drive

the boundary layer flow. The no-slip condition on the tube

wall creates a velocity gradient between the wall and the

centerline. A boundary layer in velocity exists along the

length of the tube. Along the breech, the no-slip condition

forces all gas velocities to zero, and the velocity boundary

layer thickness is zero. Along the projectile wall, the

no-slip condition forces all gas velocities to be identical

to the projectile velocity, maki:ig the velocity boundary

layer thickness zero.

An additional characteristic of this flow is the

unusually high tube wall shear stress near the projectile.

As the projectile accelerates from the breech, new tube wall

area is constantly being uncovered. The no-slip condition,

u(wall)=O, applies at all times along this new area. Gas

9 velocities in the core near the projectile are approximate to

-W '.*A
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the projectile velocity itself. Inertial forces are much

greater than viscous forces and the boundary layer is kept

thin. The thin boundary layer, with high core velocity,

creates a steep gradient and unusually high tube wall shear

stress near the projectile.

As the projectile accelerates from the breech, the core

gas temperature drops but remains relatively high compared to

the cool wall, which is fixed at a low temperature. This

gradient in gas temperature produces a thermal boundary layer

along the length of the tube except at the breech and

projectile wall. Along the breech and the projectile wall,

all gas temperatures are set equal to the immediate core

temperature, and the thermal boundary layer thickness is

zero.

An additional characteristic of this flow is the

negative displacement thickness produced by the tube wall.

The tube wall, held at low terperature, produces a thin layer

of dense gas into which mass is constantly being entrained.

The radial velocity is negative and streamlines indicate a

negative displacement thickness exists.

Very shortly after the start of the interior ballistic

cycle, core gas velocities are high enough that momentum

effects dominate over the free convection from the cool wall.

It is assumed that the thermal boundary layer never reaches

the centerline, and there is a substantial amount of core gas

which never sees the effect of the cool wall.

Close to the projectile, heat transfer to the tube wall

is significant. As the projectile accelerates, cool tube

wall is constantly being uncovered. Because of this, the

thermal boundary layer near the projectile is not given the

opportunity to extend any appreciable distance into the core.

The hot core and cool wall create a steep temperature

gradient and high rate of heat transfer near the projectile

throughout the entire cycle.
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3.3 Formulatinn.Qf Prnhl&M

The assumptions used to formulate the equations of

-notion governing the previously described boundary layer flow

are:

1) Combust-ion -gases at high pressure and high
temperature fill a chamber. The mass of this

gas remains constant in time as no gas -is
allowed to escape the chamber. Also

throughout time, the tube wall is held fixed
at its initial ambient temperature.

2) As the projectile accelerates, core
velocities increase and boundary layers in
velocity and temperature form. Because these
boundary layers are thin and never reach the
centerline, there is some core gas which
appears to never see the effect of the cool
tube wall.

3) Gradients in the radial direction are much
stronger than gradients in the longitudinal
direction. Second derivatives (which
correspond to dissipation) in z are
negligible to second derivatives in r.

4) The pressure gradient in the r direction
inside the thin boundary 13yer Ais negligible
as compared to the longitudinal pressure
gradient. Pressure is a function only of z.

5) The radial velocity is small when compared to
the longitudinal velocity.

These assumptions emphasize that the internal ballistic

cycle is much like a typical boundary layer flow with a core

flow and thin layers whe-re velocity and temperature gradients

exist. Such flow suggests the use of typical boundary layer

equations:

Continuity

+ + a(D 0 (3.1)

at r r3 ax

LM



3-9

X - Momentum

r~k+vu a a (rpt (3.2)

Energy

P ~+ ub aHý ii- - ua (3.3)
ax , ; t x

[~ r ý(U + AT\ +-( 9 (1- L2+ 9T. 2wua 2 l9
rar Pr PrT)ar Prj PrT' arJ

For simplicity, the X-momentum equation will hereafter

be called the momentum equation. The unknowns in these

equtaions are:

1) longitudinal velocity, u
2) radial velocity, v
3) density, p
4) stagnation enthalpy, H

With three equations for four unknowns, at least one

more equation: is necessary to provide closure. Most often,

this equation is an equation of state. However, no single

equation exists which relates two or more of the above four

unknowns. Three equations will be introduced, with two

additional unknowns, temperature and static enthalpy. Since

the combustion gas is at sufficiently high temperature, the

ideal gas equation of state will be used:

P - p * Rcg * T (3.4)

where P = pressure at a point
p = density at a point
R : gas constant for the combustion gases
T gas temperature at a point

The introduction of T is another unknown. The next

equation to be used is the static enthalpy equation:

HI = H - (u 2 )/2 (3.5)

where HI - static enthalpy at a point
H = stagnation enthalpy at a point
u = longitudinal velocity at a point

l - - * --~~
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thermal gradients are steep. For these reasons, the

longitudinal coordinate X is chosen to be placed on the

projectile and oriented toward the breech. It must be noted

that any longitudinal grid point is dependent on space and

time. That is X=X(z,t).

The solution to the equations which govern the interior

ballistic cycle boundary layer flow is obtained by marching

in time. For a given time, the calculations sweep in the X

direction, from the projectile to the breech. This is

opposite in direction tr the actual gas flow itself and

violates the principle t- iniformation is propogated only

downstream in boundary layex flows and calculations. It is

therefore necessary that the calculation variable also "flow"

from the projectile to the breech. A bound for the

longitudinal velocity of any gas particle is the projectile

velocity. That is, no core gas particle has a longitudinal

velocity which exceeds the projectile velocity. By choosing

a calculation variable U = u - Up, gas velocities properly

orient from the projectile towards the breech.

The coordinate ý is located on the wall and oriented

perpendicular to the core flow. Since viscous effects near

the wall are important, grid stretching is employed to

cluster more points near the wall and fewer points in the

core flow. Since the tube diameter remains constant in time

and there is no advantage to changing the stretching function

in time, the radial coordinate is not time dependent. The

resulting coordinate system is illustrated in Fig. 3.2.

The previously discussed governing equations are

transformed (the details are given in Appendix B). These new

equations which govern the boundary layer of the interior

ballistic cycle are:
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Static enthalpy can be related to temperature using

experimental data:

il - Hl(T) or T - T(H1) (3.6)

The reciprocal equation, T = T(Hl), assumes that the

static enthalpy and temperature are monotomic.

These six equations apply to typical boundary layer

flows. The internal ballistic cycle has several departures

from the typical boundary layer:

1) The core flow occurs in a closed system
rather than an open sysiem. The projectile
velocity represents a bounds to the core
velocity. That is, no gas particle has a
longitudinal velocity which exceeds the
piston velocity.

2) The velocity and thermal boundary layers have
zero thickness at two locations instead of a
single location. At the breech and the
projectile wall, the velocity and thermal
boundary layer thicknesses are zero. As the
boundary layer equations spatially "march"
from one end of the tube to the other, the
velocity and thermal boundary layers must
reach a peak value and return to zero.

3) Core velocities are driven by the volume
expansion. Since the projectile experiences
acceleration thoughout the entire ballistic
cycle, the core velocities are also
constantly changing in space arid time.

4) Cool tube wall is constantly being uncovered.
Typical boundary layer problems consider a
fixed amount of wall area as part of an
inertial coordinate system. This problem
constantly exposes new tube wall area at 'he
piston, which contributes to high shear
stress and high rates of heat transfer oear
the projectile.

The last item above indicates that the dynamics of most

interest occur near the projectile. Near the projectile,

9 core velocities reach maximum values, and velucity anC
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Continuity

ag+xaf-Iy~p)+ Xza..Apu) -o(3.7)

Moment um

P i (U+Up) + 0XL+xz(U+up))i..AU) - V__-U

\ /

- Ar(JL~.T)azu) (3.8)
r XZaB

Energy

+ ()Xt+%~z(U+u P) )ad VýYa a - (Xt +XZ (U+u p))ak
=

r :)• ' i•Pr PrT)

1-T ~ (U+u a(U) (3.9)
L Pr PrT'J

Static Enthalpy

HI - H - (3.10)
2

Gas Properties

T - T(HI) (3.11)

Equation of State

P p *R *T (3.12)-- Rcg ( .2

The unknowns in these equations are:

1) calculation velocity, U
2) radial velocity, v
3) density, p
4) stagnation enthalpy, H
5) static enthalpy, Hi
6) temperature, T

The knowns in these equations are:

1) projectile velocity, up
2) pressure, p
3) viscosity,
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4) turbulent viscosity, IT

5) Prandtl number, Pr
6) turbulent Prandtl number, PrT
7) gas constant, Rcg

8) metric coefficients, Xt, Xz, ýy

The fluid property of turbulent viscosity 4T is

evaluated using a simple Prandtl mixing length model:

PT = P * (Ipr) 2  * lay j (3.13)

where 1pr is the mixing length. The value of 1pr is dependent

on whether a given gas particle is in the inner or outer

region of the boundary layer. In the inner region, the

mixing length Ipr = li is evaluated by:

1i K * y * (1-exp(-y+/A+)) (3.14)
y+ y/2vWI
Y = •w*

where K = Von Karman constant = 0.41
Y = perpendicular distance from wall
A+= damping constant = 26
Pw density at wall
1w= absolute or dynamic viscosity at wall

In the outer region, the mixing length 1pr = 1o is

evaluated using:

10 = Cl * 8v (3.15)

where C1 = 0.089

8v = instantaneous velocity boundary

layer thickness.

The switch from the inner region mixing length Ipr = i

to the outer region mixing length 1pr = 10 is made when 1i

exceeds 1.

q I j i J - • =-
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3.4 Numerical Method of Solution

In the previous section, the equations (3.7) to (3.12)

were developed to describe the boundary layer flow of the

interior ballistic cycle. There is no analytical solution to

this set of non-linear partial differential equations. To

solve these coupled equations on a digital computer requires

that the continuous physical -grid -be discretized and that the

partial differentials be replaced with finite difference

formulas. Typical for boundary layer flows, the following

techniques were applied to the momentum and energy equations:

1) Part-ial derivatives in time are forward
differenced, involving only the current time
step and the next time step forward in time.

2) Partial derivatives in the longitudinal
direction are all of first order. Backward
differencing is applied across the current
grid point and the preceeding grid point.

3) Partial derivatives in the radial direction
use at most three grid points, and are
central differenced where possible.

The following techniques typical for boundary layer

flows were applied to the continuity equation:

1) Partial derivatives in time are forward
differenced, involving only the current time
step and the next step forward in time.

2) Partial derivatives in the longitudinal
direction are all of first order. To aid in
properly determining mass flux, backward
differencing is applied across the current
grid point and the preceeding grid point, and
across the respective pair of points nearer
the tube wall.

3) Partial derivatives in the radial direction
are all of first order. Backward
differencing is applied across the current
grid point and the neighboring point nearer
the wall.
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Except for the partial time derivative, some choice

must be mide for the time level of each term in the finite

difference equations. Normally all of the spatial derivative

terms are sought at the current time level (n) or the next

time level (n+l) . Time levels of the spatial derivatives are

not mixed. The choice of time level often determines whether

the method of solution is explicit or implicit. An explicit

scheme results when there is only one unknown in each of the

governing equations. An implicit scheme results when any

equation contains more than one unknown. Iterative

techniques or matrix solvers, or both, must be used to solve

the implicit scheme coupled equations.

The equations which govern the interior ballistic cycle

boundary layer flow cannot be solved explicitly:

1) The continuity equation has a time derivative

across density (p), providing density at the
new time level.

2) The momentum equation has a time derivative
across calculation velocity (U), providing
calculation velocity at the new time level.

3) The energy equation has a time derivative
across stagnation enthalpy (H), providing
stagnation enthalpy at the new time level.

4) With density known, the ideal gas equation of
state provides temperature (T).

5) The temperature being known implies a static
enthalpy (Hi) from gas property tables.

6) Static enthalpy (Hi) being known and the
calculation velocity (U) being known impiiez
a stagnation enthalpy (H) which is possibl'
different from that obtained in step 3.

7) The radial velocity (v) is never solIved.

The logical step to development of an explicit scheme

determine two values for the stagnation enthalpy (H, while

failing to solve for the radial velocity (v) . The ez:ations
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which govern the interior ballistic cycle boundary layer flow

cannot be solved explicitly.

If the convention is retained that time levels within

spatial derivatives are not mixed, then an implicit scheme

must be used. All the spatial derivative terms are sought at

the next time level (n+l) . Following the previously

mentioned guidelines for finite differencing, the resulting

equations are:

Continuity

(p[, p )nf l +(pi_ J) +1 +((pi, - 1n + (Pr-1,- '

4 2A AX,, n (p. , J) n _ (p 1 i, r.) A._ n

-+ p ,_Jj (P1 , Vi, j)n÷_ (p1 ,
rj ~ - rj.1  9.,V 1 ~ 1)-1)

Lrj•

F- n. 1 -( - )•. - ,- 0 (3.16)

JAX + (p4 , IJ-U 1 , _-) n-1 - (Pi- 1, jU ,. j_) r..1

Momentum

)p jn+1-1(U , n-1 - (u1  )n + (u 0  .)r1• - (up 4,)r
La• , , j pi
L I

- r(P ,, 1) 1 j) +X (u1 ) o, (-u., J)n+

; 2A'

+ .T /Jj!!~ U*'~;
A~r~ K 2 2 L;
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(r1 1 ./. + n +A.I ~ l.
J-12 ' J. - 1 Ti,j, 2 --ý J- 1

2

- [~zi~n1N(P - P 1) ~AA.(3.17)

Energy

+ f~pi ?n-ý i F(;L zi)(U(H, +U)fw+1_1

LJ

-i(pi,~ fl3~(T
'Vi,,)n YiI i J H

2AC -

r. Pr,, ++Pri , Pr Ti, j+f+PTi, j

+4,J+ 1 9q 1,/ 2 + gTi,j~l+ gT \i, 2

2 Pr, ~+Pri, J~ 2 kPrT± ,. 1+PrTi,j

* 2 J g

I. j-, 41, " + ATA, j+ATi, i-i

2VL +. 1 ~*1 Pr,,+Pr,, -l J2 - r~i2

2 '4c



3-19

+ F(p i n+ - (pi)f n+ Fa A (tJ, j+U p n) F" P i, J n+1... (Pi_,)f. n*

(3.18)

Static Enthalpy

(Hloj)n÷1 = (Hi,)nl - (U(UiJ +Up) f+1) 2 (3.19)

2

Gas Properties

(Tij) • = T ( (HIi. j) fn1) (3.20)

Equation of State

(Pi, J)n+l . (pi,,)n+l * Rcg * (Ti, j)n (3.21)

The subscript(i) refers to the axial location of a

computational grid point. This subscript (i) ranges from i=1

to i=IL, where IL is the number of axial grid points.

The subscript (j) refers to the radial location of a

computational grid point. This subscript (j) ranges from j=l

to j=JL, where JL is the number of radial grid points.

The solution to the finite difference equations is

obtained by marching in time. For a given time, calculations

sweep in the X direction, from the projectile to the breech.

This is in the same direction as the flow, propogating

information to the next i-station. At a give i-station,

unknowns in the finite difference equations occur at the

(j-1), (j), and (j+l) gridpoints.

The continuity, energy, static enthalpy, and gas

property equations and the ideal gas equation of state are

all linear and can be efficiently solved on a digital

computer. However, the momentum equation is non-linear in

calculation velocity (U) at the gridpoint (i, j). To

efficiently solve the momentum equation on a digital

computer, this (Ui j)2 term must be linearized. Newton

* linearization is used:

_ _ - - - - - - - - - -- - - - - -_ - - -
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(U2 )n+' a 2(OU)n+' _ ((U) n•) 2  (3.22)

where U - calculation velocity
- predicted calculation velocity,

U from most recent iteration

The resulting linearized momentum equation is:

flpi ) n~ ]FU 1, J) rn+1 (U s, J )n + (U pi, j ) n+ (u (pi, J) n

J -L-
+ (1.jn÷!,r(Xzi,)n+l E- (01, n+1) 2- (26 , jU , frn+ý+ (U , jU,_!, j~n'ii,

) n-1 It (Uil j) n+1

FPi, Jvi, J y I -II

L 2Aý J

J I (r + ) Ii. J+i. + •TiJj+'IiTi* yJ (u ..- u. .3 .
Y , J+1/2) + i, j+1 i, j T j YJ+112 -

Aý2 2

- (rj-1/ 2 ). 1, J +Pi , J .+ Ti, j+gTi,+j-1 tyJ-./2 (u , - ,-1)

2 2 ,

- ((k )n+l(P - n+ (3.23)
zi

The use of Newton linearization for the (U, ) 2 term of

the momentum equation necessitates the use of iteration in

obtaining a solution at a given i-station. The iteration

procedute starts with valu-s of H, U, p, and v from the

previous time level, adjusted for the projectile acceleration

and increase in chamber length. The energy equation is

-,oived for stagnation er,,hipy (H). The linearized momcncupt
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equation is solved for calculation velocity (U). The ideal

gas equation of state is solved for density (p). The

continuity equation is solved for radial velocity (v) . The

new values of H, U, p, and v are used as initial values for

the next iteration and the iteration process is repeated

until an acceptable solution is obtained. An acceptable

solution for the time level (n+l) at the given i-station

requires convergence by one of two criteria:

1) If the number of iterations for a given
station reaches 30, oscillation around the
correct answer is assumed. The oscillated
values from the two most recent iterations
are averaged to provide the answer at this
i-staLion for this time level.

2) For every variable, at every (i,j) gridpoint:

a) If the absolute value for a variable at a
point is less than 1E-4, then convergence at
this point, for this variable, for this time
level is met.

or b) If the difference between successive
iterations for a variable at a point is less
than 00.01%, convergence at this point, for
this variable, for this time level is met.

The fluid properties of viscosity (g), temperature (T),

and Prandtl number (Pr) have been calculated and stored in

table form. These fluid properties are dependent on the

static enthalpy:

p p.((Hl )n.,) T = T((Hl, )'+1) Pr = Pr((H•1J. )n)

These fluid properties are updated during an iteration

step by the solution of the energy equation for the

stagnation enthalpy (H) and the solution of the linearized

momentum equation for the calculation velocity (*'), which

together define the static- enthalpy (H192



3-22

The fluid property of turbulent Prandtl number (PrT)

has been set to unity and requires no updating during

iterations.

The fluid property of turbulent viscosity (RT) is

evaluated using a simple Prandtl mixing length model. The

turbulent viscosity is updated during an iteration step by

the solution of the energy equation for the stagnation

enthalpy, the solution of the linearized momentum equation

for the calculation velocity (U), and the solution of the

ideal gas equation of state for density (p).

Very shortly after the start of the interior ballistic

cycle, core gas velocities are high enough that momentum

effects dominate over the free convection from the cool wall.

It is assumed that the thermal boundary layer never reaches

the centerline, and there is a substantial amount of core gas

which never sees the effect of the cool wall. Within this

core gas, radial gradients in velocity or temperature do not

exist and calculations are not necessary. At a given

i-station, calculations are performed only to the boundary

layer edge. The location of this boundary layer edge is

determined in the following manner:

1) At a given i-station, the radial velocity
gradient edge (JV) is defined as the first
grid point from the wall where
u Ž 0.95 * u(core).

2) At a given i-station, the radial temperature
gradient edge (JT) is defined as the first
grid point from the wall where
T Ž 0.95 * T(core).

3) At a given i-station, the boundary layer edge
is defined as the maximum of JV or JT, with
an additional three grid points added t,•
allow for velocity or temperature boundary
layer growth.

The location of the boundary layer edge is updated

after each iteration.
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The core velocities, core pressures, and core

temperatures which drive the internal ballistic cycle

boundary layer flow are taken from the work of Chapter 2.

These core values, determined by one-dimensional Euler

equations where specific heat is non-constant, will not

satisfy the boundary layer momentum or energy equations.

Some adjustment of the core gradients is necessary:

1) Along the centerline, the radial velocity
(v), and first and second derivatives in the
radial direction are zero. The momentum and
energy equation reduce to a coupled set of
equations with unknowns of calculation
velocity (U), pressure (P), and enthalpy (H).
Imposing one of these three as an input
profile specifies the profiles of the other
two.

2) Velocities are considered of most importance,
and the velocity profile is chosen to be the
independent profile.

3) The momentum equation implies a pressure
profile from the initial value of pressure on
the projectile. The energy equation implies
an enthalpy profile from the initial value of
enthalpy on the projectile. Velocity and
enthalpy prescribe the temperature profile.
Since the pressure and enthalpy profiles are
themselves dependent on the temperature, some
iteration is necessary to obtain a convergent
set of pressure and temperature profiles.

- cv-7tTvstr
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To draw conclusions about boundary layer flow inside

tubes, several parameters are examined.

The velocity boundary layer edge (8v) at a given

i-station is defined as the first location away from the wall
where the gas velocity equals 95% of the core velocity at

that i-station.
The thermal boundary layer edge (8 T) at a given

i-station is defined as the first location away from the wall
where the gas temperature equals 95% of the core temperature

at that i-station.

For compressible flow inside tubes, the displacement

thickness (81) is given by:

8 1 + 2 r-- Pu rdr

R L2 Peue'
, r-R

For compressible flow inside tubes, the momentum

thickness (82) is given by:
S~r=0

82 = 1- 1 + 2 ! u 1 - u rdr

RR :Peue ue

For compressible flow inside tubes, the energy

thickness (83) is given by:

83 = 1 21 2 I [u .i-u27rdr

R R eue Ue2

r=R L

0-
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For compressible flow inside tubes, the density

thickness (8p) is given by:

8 - - F1+ 2 1- p rdr

Rr-R

The interior ballistic cycle occurs in an axisymmetric

tube, so that A - 71R 2 , dA - 2Xrdr, and the limits of

integration go from the tube wall (r-R) to the centerline

(r-0).

The work of Chapter 4 will model the interior ballistic

problem as one-dimensional. In this model, integral averages

over a cross sectional area remove radial dependence, so that

mass, momentum, and energy are only axially dependent. To

study the validity of this one-dimensional model, three

ratios are examined:

Kpu - [l/A f p u dA]

(1/A J p dA] (1/A f u dA]

Kpu2 [1/A f p u2 dA]

[1/A f p dAl [1/A j u2 dA]

Kel- (1/A f e u dA]

(1/A Ie- dAl' (1/A u ciAj

where e is the total energy:

e =-p~u(T) + 0.5u2 ) - p rh - P + O.5u 2 ]

"If Kpu, Kpu2, Keu are close to unity, the

one-dimensional model is good. The interior ballistic cycle

occurs in an axisymmetric tube, so that A - ICR2 , dA = 2nrdr,

and the limits of integration go from the centerline (r=O) to

the tube wall (r=R).

* The boundary layer flow of the interior ballistic
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problem was examined using input data from Heiney's test case

536 [Ref. 14 and 29). The projectile started at a distance

of 0.22 meters from the breech. The chamber enclosed by the

projectile and breech was filled with combustion gases at a

pressure of 6.6 x 106 Pa and temperature of 2916 K. As shown

in Fig. 3.3, input variations in pressure, temperature, and

velocity were determined at the projectile base through time

using the computer code of Ref. 14. A linear core velocity

profile was assumed from the projectile to the breech. The

pressure and temperature profiles are then determined from

the momentum and energy equations respectively.

The first output parameter examined was the

displacement thickness. Figure 3.4 shows that the

displacement thickness is negative for most of space and

time. A short time after the projectile passed a point in

the tube wall, the cool temperature of the wall created a

thin layer of dense gas next to the wall. Since the tube

wall temperature is held fixed at ambient temperature, core

gas is constantly entrained into this thin layer of dense gas

and the displacement thickness at a point continues to grow

in time. The movement of core gas towards the wall is

expansion that does no useful work. The pressure times

change in volume of this process is a measure of this energy

loss.

Figure 3.5 shows the momentum thickness as a function

of time and space for the test case 536. The momentum

thickness is similar to the displacement thickness in that it

is negative for the majority of space and time. The momentum

thickness differs from the displacement thickness in that

viscous forces have more influence. This is evident in the

shape of the momentum thickness curve for fixed time. Near

the breech, the core velocity is small and the resulting

radial gradient of axial velocity is also small. Viscous

effects near the breech are small, so that thermal effects

dominate and the distributions of momentum and the

displacement thicknesses have a similar slope. Near the
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projectile, the gas velocities are high, causing large

velocity gradients in the radial direction. viscous effects
dominate causing the momentum thickness curve to pass from

negative to positive. Once positive, the momentum thickness

reaches a maximum and returns to zero at the projectile. The

peaks in momentum thickness correspond to peaks in the

velocity boundary layer.

The ratio of the momentum thickness to the displacement

thickness is known as the shape factor H1 2 . Figure 3.6 shows
the shape factor H1 2 as a function of time and space for the

test case 536. As the momentum thickness crosses from

negative to positive, the shape factor H1 2 experiences a sign

change. Examination of Figure 3.6 shows that the shape

factor H1 2 is not constant in time. Figure 3.7 shows the

shape factc~r H1 2 normalized over axial distance. Figure 3.7
further shows that the shape factor H1 2 is not constant in

time. These suggest that the shape factor is not a good

correlator.

Figure 3.8 shows the velocity boundary layer as a
function of time and space. As predicted, this boundary

layer has zero thickness at two locations, the breech and the

projectile. It is seen that the velocity boundary layer is

small as assumed, reaching a maximum thickness of four

percent of the tube radius. The internal ballistic problem

has the characteristic of removing points previously in the

velocity boundary layer. At a given x location, the
projectile passes and the boundary layer at this x location

grows, peaks, and then decreases. This has significance in

the fact that there are some points previously in the

velocity boundary layer that are removed from the velocity

boundary layer at this x location.
Figure 3.9 shows the thermal boundary layer as a

function of time and space for the test case 536. As

predicted, this boundary layer has zero thicknes. at two

locations, the breech and the projectile. It is seen that

the thermal boundary layer is small as assumed, reaching a

Ua
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maximum thickness of 11 percent of the tube radius. The

growth rate of the thermal boundary layer is approximately

twice that of the velocity boundary layer. Further, all

points enveloped in the thermal boundary layer remain within

this thermal boundary layer through time.

The objective of the interior ballistic problem is to

accelerate a projectile. This objective is accomplished by

the high chamber pressure. The cool tube wall has the effect

of increasing the effective chamber volume and decreasing the

effective pressure which acts on the projectile. The final

result is a decrease in the muzzle exit velocity of the

projectile.

The density thickness (Fig. 3.10) provides a measure of

this effective volume increase. An assumption made of the

interior ballistic cycle was that the mass in the chamber is

constant. For the proper density flux at any given cross

section, the one dimensional model must increase the tube

radius since density thickness is negative. As the effective

volume increases, the effective pressure must decrease,

assuming the combustion gas acts as an ideal gas:

P * V = m * R * T = crnstant

The change in effective volume is shown in Fig. 3.11.
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Chapter 4

VISCOUS FLOW INSIDE TUBES

14.1 Introduction

In this chapter, an interior ballistic model for analyzing viscous

flow inside tubes that launch high-speed projectiles is described. The

interior ballistic model is of the quasi multi-dimensional type (see

Section 1.3) and is based on the interior ballistic model described in

Chapter 2 and the model for the momentum and thermal boundary layers

described in Chapter 3. The interior ballistic model described in this

chapter is the first quasi multi-dimensional model ever developed for

analyzing the flowfield between the breech and the base of the projec-

tile which takes into account the effects of the momentum and thermal

boundary layers next to the tube wall.

In the next section, the problem involving viscous flow inside

tubes is described. Afterwards, in Section 4.3, the formulation of the

problem is presented. In Section 4.4, the numerical method used to

obtain solutions is described. Finally, in Section 4.5, the results are

presented.

4
14-1
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4.2 Description of Problem

The description of the viscous interior ballistic problem is the

same as the description of the inviscid interior ballistic problem (see

Section 2.2) except that the combustion gas is now considered to be a

viscous fluid.

For the viscous interior ballistic problem, we are interested in

evaluating the influence of viscosity, heat transfer, and the ratio of

propellant grain velocity to combustion gas velocity on gun performance.

Table 4.1 shows a list of parameters necessary to specify the problem.

Equations, equation numbers, and values for these parameters are

presented in Tables 2.1-2.3 and in Tables 4.2-4.3 (see Section 4.5).

-@---- ~-
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Table 4.1

Parameters needed to specify the viscous interior ballistic problem

Tube Geometry Parraeters Propellant Parameters

",radius (R) *type

• cross-sectional area (A) *grain geometry

"initial breech-to-projectile *initial mass (me)

axial distance (LM6 ) dcovolume (n)

'axial distance from the breech *density (p )

to the open end of the tube (Lf) *initial web thickness (w )

*initial prcopellant grain

Projectile Parameters length (A)

*mass (mrP) *initial perforate

"initial velocity (U p) diameter (di 6 )

*pressure at which projectile *specific heat capacity (CF.)

motion begins (Per) *initial temperature (Tinit)

"Ignition temperature (TIg)

Air Parameters *linear burning speed (rb)

•Temperature (Tatm) *specific energy release (hag)

"*Pressure (Patm) *initial velocity (ui )
'Specific heat ratio (Y atm) propellant grain-combustion

"Gas constant (Ratm) gas velocity ratio (CD,)

"drag coefficient (CD)

Combustion Gas Parameters *initial axial distance between

"molar mass (mmass) the breech and most remote

"initial temperature (T6 ) propellant grain (Ls36 )

"initial pressure (Pc)

"initial velocity (Uo) Tube Wall Parameters

"viscosity () *initial temperature (T w)

"conductivity (k) "diffusivlty (a)

"friction factor (M)

•Prantl number (Pr)
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14.3 Formulation of Problem

Introduction

This section presents the assumptions and the governing equations

used to describe the viscous interior ballistic problem. As in the

inviscid formulation, the governing equations have been classified intr,

the following three groups:

1. Con~servation Equations - the set of coupled 1st order partial

differential equations which describe

the conservation of mass, momentum

and energy.

2. Constitutive Equations -a group of equations which describe

dependencies between two or more

variables in the conservation

equations.

3. Auxiliary Equations -a group of equations resulting from

models developed for terms in either

the conservation equations or the

constitutive equations.

In this section, the conservation equations governing this problem

are presented first. Afterwards, the constitutive and auxiliary equ-

ations for this problem are presented. Here, it is noted that only the

final forms of these equations are presented. The derivation of these

equations are given in this section or in Appendix A.
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Conservat Ion Equations

The conservation equations governing this problem are the mass,

momentum and energy conservation equations. The following assumptions

were made to facilitate the derivation of the conservation equations for

the viscous interior ballistic problem:

1) The problem is unsteady and one-dimensional in the axial

direction were ralial effects are accounted for by the K-

factor approach (see Appendix A).

2) Pressure varies in the axial direction only.

3) The propellant grains can be treated as a continuum.

4) The propellant grains are incompress-ýble.

5) The propellant gra-.,s are distributed homogeneously across the

cross-sectional area of the tube at any axial location.

6) There is no interaction between the propellant grains and the

tube wall.

7) The combustion gas is a viscous fluid.

With these assumptions, the viscous conservation equations can be

written as follows:

Continuity of Propellant Grains

av au s av 1-1s V(4 1v--u --- vT- --M (J4 . )a -ax Us Tx A s Ps

Continuity of Combustion Gas

aKa
a -K A _x pu - K ax . [(K L '•"

at px A xpu ax (1-V) P.1 5 ax
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0 au 3 us3 (14.2)

Conservation of Momentum for the Combustion Gas

a(¢u) 1 u) • P)---
(m -K 2 + u 2pu pu 2u 1 pu sx

__L [K u2• + (l1_--V )K P u s] A + axKP 2
-KUL A -A+[ u _P/

KA ax at ax

auV K

+(-)K --I) + - ) C1-V Pu ax K .. i 7 5•sCD 1 - KP,• p/p]
pu

K 1(l-v) [.T2IrR/A + D/Al) (14.3)

Pu

Conservation of Energy for the Combustion Gas

a•e a(e) 1 av a(') e!1-= K + lv)( eu+Pe- u-- -- 5-e
"at eu s ax ax ax

[(K eU + P7j) + ( )eu a _ ev al[
e1-V A e V (Ch

A a x TT--Tv x- 7-_7 s sg

- Cps(TI. - Tinit) - (h(T) - h(Tn))J -
Psign P

- TI v w 2 (4.4)

where the terms of Eqs. (4.1)-(4.4) are defined as

1) A - the tube cross-sectional area

2) v - As/A - the ratio of propellant cross-sectional area to

tube cross-sectional area

Ir O P &L.1A - ' A
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3) us - the propellant grain veloolty

4) As M the rate of propellant consumption per unit volume

5) ps W the propellant grain density

6) p- the combustion gas density averaged over the tube cross-

sectional area at some axial location

7) u = the combustion gas-velocity averaged over the tube cross-

-sectional area at some axial location

8) P - the combustion gas pressure

9) f - the combustion gas temperature averaged over the tube

cross-sectional area at some axial location

10) e - the combustion gas energy per unit volume averaged over

the tube cross-sectional area at some axial location

11) hsg a the chemical energy released per unit mass of propellant

12) Cps -the specific heat capacity of the propellant

13) Tig a the Ignition temperature of the propellant

14) Tinit " the initial temperature of the propellant

15) h(f) - the enthalpy of the combustion gas at temperature I

16) h(Tig) - the enthalpy of the combustion gas at temperature Tig

17) K * pu/pu = the density flux K-factorPu

-2--18) K 2 -pu /pu - the momentum flux K-factor19) K P " - -
pu

19) Keu eu/eu - the energy flux K-factor

20) CD, = the propellant grain-combustion gas velocity ratio

21) -w " the tube wall shear stress

22) D - the propellant grain drag force

23) qw - the tube wall heat flux

The conservation equations given by Eqs. (4.1)-(4.4) contain more

dependent variables than the number of s¢c-h equations. These
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oonservation equations are closed by the constitutive and the auxiliary

equations described in the next two sections.

Constitutive Equations

The constitutive equations for the viscous interior ballistic

problem are the same as those presented for the invisoid interior

ballistic problem (see Section 2.2. These equations are restated here

for convenience:

1) An equation of state given by

S- n) - (4.5)

2) A constitutive relationship for combustion gas energy given by

12

3) The dependency between propellant grain velocity and

combustion gas velocity given by

us = CD1 U (4.7)

Auxiliary Equations

The combustion gas internal energy and enthalpy equations aeveloped

for the inviscid interior ballistic problem are also used for the

viscous interior ballistic problem and are restated here for

convenience:

Combustion Gas Internal Energy

) 14 7(y- 2) 6 •- 1)
uCT) - [-7.1259xl0 + JJ.92214x10(T ) 1.2872xl0 (Y
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-- 5 -- 25

S2.8007x105 (-' 5 ) T 1.6310xIO (ZnT) - 2.3833x10 3 (T5)

1.8069x10 3(f") + 6.2205x101 () - 8.8221(T1.25)

" 1.2517(T 15) 5.7297x10"3(-1"75) - 5.5657x10-3(T2)

"* 8.066x10-8(y3)](1000/mmass)J/kg (4.8)

where muass - the molar mass of the combustion gas.

Combustion Gas Enthalpy

h(T) - h0 * u(T) + RogT + nP (4.9)

Propellant grain-combustion gas velocity ratio

Two formulas for the propellant grain-combustion gas ratio CD, were

developed for the viscous interior ballistic problem. The first formula

presented here describes a variable CD, while the second assumes that

the propellant grain velocity equals the combustion gas velocity.

The formula derived for the variable, CDI, is intended to express

only the most dominant physics involved in the interior ballistic

combustion/expansion process. Therefore, simplifying assumptions which

are more restrictive than those used to obtain the viscous conservation

equations (Eqs. (4.1)-(4.4)) have been used here. These assumptions are

as follows:
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1) Quasi-steady conditions hold for all time dependent variables

involved in this derivation.

2) The temporal gradient of' CD, has a much smaller magnitude than

either the temporal gradient of propellant grain velocity (us)

or the temporal gradient of the combustion gas velocity (u),

i .e.,

ICD I << I(I or u. 10)

3) At any time, u is a linear function of the projectile velocity

(Up) and the projectile travel length (Lp), i.e.,

u E-(p)Up (4.11)
L pp

4) The spatial gradient of CD1 is negligible at any time, i.e.,

aCD1
ax 0 (4.12)
ax

5) All other forces felt by a propellant grain are negligible in

comparison with the pressure drag force, i.e.,

F net Fd

6) The propellant grains are single perforate cylinders with a

time-averaged radius r and constant length 1.

7) The propellant grains are incompressible.

8) At any time, the combustion gas spatial density gradient is



i4-11

negligible, i.e.,

. -m 0C(. 13)

ax

Under these assumptions, the following two equations were derived for

CDI:•

CD1 = 1 + -a(1 - AI'NF'17 (4.14)

Fa D p= (4.15)
3irrp 3a

where

1) Fa - the acceleration ratio of propellant grains
to combustion gas

2) a - the projectile accelerationP
3) CD - a drag coefficient

and p, Up, r, and ps have previously been defined.

The second formula used for CD, describes the limiting case for the

viscous interior ballistic problem. This formula is simply

CD1  - 1 (4.16)

The rate of propellant consumption per unit volume

Two formalas for finding the rate of propellant consumption per

unit volume (As ) are presented here for the viscous interior ballistic

problem. The first formula for Ms was also used for the inviscid

interior ballistic problem (see section 2.3) and is restated here for
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convenience:

vAdx ( 7
Ms S [Abt JLvAdx rb (4.17)

The second formula for N takes into account the non-constant burning

S

surface area of individual propellant grains. The following assumptions

were used in this derivation:

1) M is a function of time and axial position along the tube.
s

2) The linear burning speed rb is a function of pressure only.

3) The propellant grains are incompressible.

4) The propellant grains are single-perforate cylinders.

5) The number of propellant grains per unit volume (n) is a

function of time and axial position along the tube.

Based on these assumptions, the following equation for A was
s

derived:

A " psAbrb (4.18)

where

1) A 2{[w + di 6 ][tE, - Rb +w -
2 w6 Rb} (4.19)

Ab - w 61[w,6 + di1 - 2R b]• i - R b]

2) Rb - f rbdt (4.20)

and

1) wg - the initial web thickness

2) d1, - the initial perforation diameter
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3) 16 . the initial propellant grain length

See Appendix A for detailed derivations of Eqs. (4.17)-(4.20).

Projectile velocity

Two formulas for finding the projectile velocity Up at time level

n+1 are presented here for the viscous interior ballistic problem. The

first formula for Un÷1 was also used for the inviscid interior ballis-
p

tic problem (see Section 2.3) and is restated here for convenience:

n+1 un + ( )A At (4.21)
p p m pPp

The second formula for U n+1 makes use of a second-order accurate
p

approximation of the projectile acceleration. This approximation at

time level n+1 is given by

dUUnn+l n Un _ Un-1

- P P _ ( p + O(At2) (4.22)
dt 2 At 2 At

Substitution of Eq. (4.22) into the discretized form of Eq. (2.28)

(developed in Section 2.3), results in the following second-order

accurate equation for projectile velocity:

Un+1 U+ I (n _ Un-1) + 2 pb- A At (4.23)p p 3 p p 3 m p pb

Projectile displacement

The equation which describes projectile displacement for the
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viscous interior ballistic problem is the same equation that was

developed to describe projectile displacement for the inviscid ballistic

problem (see Section 2.3). This discretized equation is restated here

for convenience:

nU1 " n+1 + Lin

Lp LP .+ 2 At (i4.24)
p p-

Wall shear stress

A -' ole formula for tube wall shear stress (xw) was derived by

using the "ollowing assumptions:

1) Quasi-steady conditions are valid for this analysis.

2) The Reynolds number for the tube, ReD, ±5 greater than 5 x

105.

3) The tube surface has a relative roughness of 0.002.

With these assumptions, it can be seen from the Moody friction fac-

tor diagram that the tube wall friction factor (f) is nearly constant

with a value of about 0.02 [Ref. 38]. The friction factor is related to

tube wall shear stress by the formula

f 142 (4.25)

Spu~

From this equation, it follows that the tube wall shear stress may be

approximated as

Sf ;--2 (4.26)
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Propellant grain drag force

A simple formula for the propellant grain drag force (D) was

derived by using the following assumptions:

1) Quasi-steady conditions are valid for this analysis.

2) The drag coefficient for the propellant (CD) is a constant.

With these assumptions and by making use of Eq. (4.7), the propellant

grain drag force may be expressed as

D a I CD ;,12(1 - CD 2 vA (4.27)

Tube wall heat flux

Tube wall heat flux (qw) for the viscous interior ballistic problem

can be calculated quite easily if the temperature profile in the radial

direction is known. A boundary layer analysis of this problem can

provide this information (see Chapter 3) and qw at some axial location

xa may then be found by Fourier's equation

T w(Xa,t)
qw(XaIt) - -k ar (4.28)

where

1) k - the combustion gas thermal conductivity.

2) Tw(xat) - the tube wall boundary temperature.

3) r - a radial coordinate.

An estimate of the tube wall heat flux at some axial location xa can
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also be made by using the formula

qw(xapt) - h (x at)E[T(xat) - Tw(xat)] (4.29)

where hc is a local, time dependent combustion gas convection

coefficient.

In order to derive -an expression for the tube wall boundary

temperature in Eq. (4.29), the following assumptions were made:.

1) The heat transfer taking place is conductive heat transfer

into the tube wall.

2) The effects of tube wall curvature may be neglected since the

heat penatration distance into the tube wall (6(t)) is small.

3) The tube wall thermal properties are functions of temperature

only.

4) The temperature profile in the tube wall at any axial location

can be expressed as a second degree polynomial function of

temperature.

5) Quasi-steady conditions are valid for all time-dependent

variables.

6) The tube wall is initially at temperature Ti.

With these assumptions, the following discretized formula for tube

wall boundary temperature at location xa and time (n+1)At was derived:

Ti he (s)8((n+1)gt)f(Xa,(n+1)At)

T (x ,(n+1)At) - h (4. 3 0)

kst
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where the details of this derivation and formulas for ho, kst and

0 6((n+1)At) are given in Appendix A [Refs. 58,39]. An alternate (and

more accurate) approach to finding a value for hc is to use information

gained from a boundary layer analysis of this problem (see Chap. 3).

K- factors

Realistic values for K-factors (K Pu, K 2' and Keu) can be found
pu

from a boundary layer analysis of the viscous interior ballistic problem

(see Chapter 3).

A simple model for K-factor variation which incorporates some of

the most dominant physics is presented here:

K - 1 ± 0.1 sinCi(rx/Lp)2) a*f (4.31)

0
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°4.4 Nmerical Method of Solution

Solutions were found for the viscous conservation equations (Eqs.

(4.1)-(4.4)) in the same manner that solutions were found for the invis-

cid conservation equations, i.e., by MacCormack's Predictor-Corrector

finite-difference method. Refer to Section 2.4 for a discussion on the

procedure used to approximate the conservation equations.

A summary of the procedure used to obtain finite difference

equations (FDE's) which describe the viscous interior ballistic problem

is given below:

1) The partial differential equations (PDE's) given by Eqs.

(4.1)-(4.4) were transformed from the (x,t) coordinate system

to the (E,') coordinate system.

2) The spatial and temporal domains of the transformed PDE's were

discretized (see Fig. 2.5) and FDE's at the interior grid

points were derived from the transformed PDE's.

3) FDE's at the boundary grid points (see Fig. 2.5) were derived

from the transformed PDE's and from physical constraints.

Transformed Conservation Equations

By using the transformation equations presented in Section 2.3, the

viscous conservation equations (Eqs. (4.1)-(4.4)) can be rewritten as

follows:

Continuity of Propellant Grains

av U s au 1 v'sB
Tt ( 1s) .s 7A a& _ (4.32)

A 3 ps5 s
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Continuity of Combustion Gas

a- U __ p 3K

a(pJ 1. ap 1;J 3A• ) I-

= K Up Kpu - - - + + K Pu) + Vu
B-r L a& A aat pu at (1-V) S

p p

[ 2+E( (1_-- Vu3 u u1) 1P pu - sA a (33)
p

Conservation of Momentum for the Combustion Gas

-- 2
a• i 1 a(pu) a K eue. 1

-. - T-p {Up I, U- - Keu.,K -_v

KP"L {IJ 2K 3(pu T,7 u K 1.

(e [K 2 + ((----)K u]
-K a)P - p) 2u 1- PI' 3A-Kpus u )+P T t K iL pu A

PU p

aKp ~ aK p 3 K 2 a
+ u L U~ + P. + (-)K -
p 3r p 3F 1-V pu at

+ K VV 3(C 1- K p /ps)
pu

e1

K -V (2T w/R + DA)(4.34)

Conservation of Energy for the Combustioni Gas

E-K 'u I [zKK ~- u 5 p 3v
a-[ p 3 eu a& (l -7V eu1

aK eu [K eu+ ( V j)u +;:
1 3 L1J*..1 Ai-v s a p

p

+ (V.~~A + ( V )Ai ([h - C 5 (T - Tfl)
1- 3 -v s sg Ps ig ii
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- (f)- WT/ 1_e 2 w (4I.35)
ih(T P()S 71 (1V) HR

The transformed conservation equations can now be discretized and

applied at individual grid points. For conservation equations that have

been transformed with L as the scaling parameter (Eqs. (4.33)-(4.35)),

a representative grid point is indicated by the symbol i (see Fig. 2.5).

The propellant grain continuity equation (Eq. (4.32)) has been trans-

formed with L3 as the scaling parameter. A representative grid point for

this equation is indicated by the symbol i* (see Fig. 2.5).

It should be noted here that there is not a direct correspondence

between values at locations i* and i since L. does not equal Lp in

general. Consequently, values in the I* grid point system must be mapped

onto the I grid point system. This mapping procedure is accomplished by

an interpolitive scheme which is described in Appendix A.

Finite Difference Equations

The finite difference equations (FDE's) used to obtain solutions to

the transformed viscous conservation equations (Eqs. (4.32)-(4.35)) were

obtained by implementing MacCormack's predictor-corrector scheme. This

explicit method is second order accurate in both space and time. In this

section, the resulting FDE's for the interior grid points are presented

first. Then the FDE's for both the breech and projectile base boundaries

are presented.

L
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Finite difference equations at interior grid points

For each interior grid point I and I*, the FDE's are derived by

using MacCormack's predictor-corrector scheme to approximate the

transformed PDE's. The resulting interior grid point FDE's at the

predictor time level of n+1 and the corrector time level of n+1 are

-presented as follows:

Continuity of Propellant Grains

Interior Predictor

n+1 n + A)nI Un n n )_[Vs,

ViI* " Vi* A& s i* i*- V(i-l)* s *

(Vu n - n n) - M-s-v) s )n (4.36)

Interior Corrector

n+1 (1)(vn 1) + (1)(1) n+1 n+1 n) 1
Vi i** 2 LA& 3 i*(V(i+l)* vii*

( n+1 n+1 n+1 (A)n+l
- [(vus)(i+l)*- (vus) 1 * ) - (vuA)i A i*

" (Ms"sin l (4.37)

PS '*
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Continuity of the combustion Gas

Interior Predictor

-iiT -n + (Li n -Ln(n ;n_ ( n --;n --)n

+ (L~(K Uý)n -(u )n hIN(n _ v n_ (ki)n,(,( )nf (&)fl
-v i PUi 1 Si i-i L p pu i Ali

+ (k ) n(,)( '1- v s)n Al[( )si () (
pu& p 1v i / &i A

+ v( ~) nE1 - (k_)n)(A ) n (14.38)

Interior Corrector

-n+ 21 1 2n L. p A& 1 iT i+.1 -ni

-(K )n+K .,i7T n*l

p~ TTi -i PI

31 1+1 12 L.p pul AlI

n+ n 1 (v n+ 1 -n+ 1 n+1 a!)~ n.1+ kput i )pu) ~1-vi pi s~I A i SI

+ (A,)nfl+1Vf ( 1 - ~~ (L_)n~')(A )nfl1 (.4-39)
2 1-v i p~ 3 1
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Conservation of Momentum for the Combustion Ga3

Interior Predictor

n -- ni+ Af n f 1 1 nln1,nf--(K n
(Pu)1  - i -)(p 41 PUl j

p Pu

+- - - ~in--)n[ 2n-i -U)n, +n )Vn- n_ -,n

+( P)n{( pu)n1 U 2 )- n[(K pn v )n( ) n1 ( 1 V±1),

i_1 L Pu i P - pu-s i A i

"*L n(k ) U(g n + k n +(v )n nK. 7p PUT i rU i * U ( 2u 1  (.) 1 (K'aQ 4 1 S

" K PU(1-v) 1 '{(vM5 [(CD 1)~ - P

-( wn DRn, (14.40)

Interior Corrector

-;-~ f1l(-) -- l+
(P) f ([pu) i +Cpu) 1 )

(l)(AM)n~l(L)(_L)njUn+14 (K )n~l --. +l

Lp A&KPu ipiP

-i 1- n. --ni -nJ l n4'l5

+ (pu)1 )( (njl- ) ((u) [(K 2u)1 - (K u

n1)L, n+l nL, n+1 U ~n. )I( n+32)+
If L P1 1('~- l v1 ) ) - (P1. s
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+ Lpn (k PU nl- Un (Ek nl* (k 2u)1p ui p PUE i p

K P K 2 w+1 4)+ ( I((UM )()

Kpui

Conservation of Energy ror the Comb'istion Gas

Interior Predictor

-.fl+ -n + Mni )(n -,n- n tn,--)n --,3n
e i i L A& p &ii i-i Ke iI_1

E(Pu) (Pu) I- in eu) (eu + (P'a) J(V

1 1- IVj /LZ Siu1 3

-&n, ;-n+ n( v n- n
(- (k e.uK)u +(u.

+ P~,(~ a (v)(,l)n + AT( V n(M )n ([h
'i Ai 1- I i1-V si sg

- C~(T1 - T )-(h(f') -h(T -enPsmgiit I g))] s

(A-,)I ),(Z) (.21-V i w i R i

Interior Corrector

-n+1 (-~n+ jn.1 + 1 M ~n(_ 1 U~ &. -fl+l

0 pA&p (ileP
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1 wIi--.--- - --

.(( .... , (Ku nel, n*, nil n.l

-I Ke eU + + (l";* JIV l+ l- V ln )}

- (-) (-') -{(keu•;) U''*•CKoeu) "e-÷ ( •--)l - ( -T-eu )i,
2- L eu 1. eu 3 1v

+ ( +- -'*1-ann1 +- v f1- 'in

A1t ( L)n+l-( -)n+l h C (K -2 -) i Lsi {[hsg i ngt)

) - .:U) n1 I(!)'+' -( (eaun+1

2)+ kp[h C. (T.T

2~~~~~ 1- g F gii

)1 ) r pnI un+1 () (4.43)2 -() ( 1-viL w i R I

where all the terms of Eqs. (14.32)-('4.39) have previously been defined

except for

1) a BA (24.414)

puE a&
3K 2

3) k - ... - (4~.46)

3K
4) (14.47)eu D24) keu( - 4.I

3us
5) us "au (4.48)

Finite difference equations at boundary grid points

Finite difference equations for the breech and projectile base
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Zoundarles were defined by first applying the transformed conservation

equations (Eqs. (4.32)-(4.35)) at the boundaries subject to the

following constraints:

I) -(F=0,r) - 0 (4.49)

2) (4(--1,) - Up (4.50)

3) h' (F-a1,) - 0 (4.51)

4) K ( -O,r) - 1 (4.52)P u

5) K (C-1,r) 1 1 (4.53)
Pu

6) K 2 (t-O,T) - 1 (4.54)
pu

7) K 2 (E-1,T) - 1 (4.55)
Pu

8) 3 (ý-or) - 0 (4.56)

9) -E(•- ,) - 0 (4.57)

Then, MacCormack's predictor-corrector scheme was used with three-point,

one-sided differencing to approximate the resulting boundary conserva-

tion equations. Boundary FDE's at the predictor time level of n+1 and

corrector time level of n+1 are presented as follows:

Continuity of Propellant Grains

Breech Boundary Predictor

0 n+- - n Ln 1 n
( L -2 (-){[(2)(v - ( 3,s1 2 sI
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+ ( -n* (4.58)

Breech Boundary Corrector

--'+ 1 (v n n-" ) )( n--) 1.(.)(-(2)(vu - (½ )(vu ) .•S.... v* " I (* V* 21 L "4 a•-E's (•{() 2* 2 3 3*J

"M+vs5 s} (4.59)

Projectile Base Boundary Predictor

n+1 n+1 (4.60)
VIL* = V(IL_1)*

Projectile Base Boundary Corrector

n+l n+l (4.61)
VIL* = (IL-1)*

Continuity of Combustion Gas

Breech Boundary Predictor

-n+1 -n (n( -- n (1-n . n v n- ln
pl " p1 - ( -)(2) (u) 2  pu 3] (L P)1_ � ) I]

-- p

+ ()fn,1_ (L_)f ) n (4.62)1v 1 p 1 1
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Breoch Boundary Correotor

-n+1 1 ri1 1 r -- + 1-n+1

(1)L)*[ v *I - n+1

2- ~ 1-v 1 1(PS ~1  1

Projectile Base Boundary Predictor

~IL - IL (L) ( 6tUp 2 -I ()L-1 ~2 IL-2~

S(1)C P11)n- (2) (pu)n +2L-2 IL ~~IL-1 uIi

nP --l n> vl n 1n n n n a"v( U IL alU)L + (2--)vLILC+("s)VIL..2)~u) -rL E(

1-vIL p IL, A IL

pp

2 Ck L- 2f ](u IL Au IL- C4(p ) IL-2

1-vIL IL5 IL L1 2 I-



4-29

"I )n+1 -n+l1 C .4 n+- an+1 n+1
1-vIL PL E + ()IL

(A,( v ,n- ( )fn+l,(Al) n+4.65)

Conservation of Momentum for the Combustion Gas

Breech Boundary Predictor

u)1 - 0 (4.66)

Breech Boundary Corrector

--n+1 (1.)
(pu) 1  . o

Projectile Boundary Predictor

-- ,n+1 -n+ 1 in+ (
(p)IL m PIL p(4.68)

Projectile Boundary Corrector

-- n+1 -n+1 n+1
(Pu)IL " pIL Up (4.69)
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Conservation or Energy for the Combustion Gas

Breeoh Boundary Prediotor

-n+ 1 -' ATrn(l . n (1)(u)] ;( 2 )(1,);~1 .. .. • .- J (2) (;u ( ))Pi)
e1  at~ - 2 2 2

.n(-.)CL1, ))) n

1- V sg Ps ig init 1

- h( !)n) (Lt_)n n 2.) (4.70)
h(Tg))] - (e) n - t 1 R(w)1()0

Breech Boundary Corrector

-n+1 1 -n -n+1) 1 1 - n.1. 1 )--+1
el (el p el A" 2 2") 3

"(2)(P~i2  2C 3  2 -L 1-V 1 e's1

ALT (1_v)n+1 * .. nnl

(M )1+(C {[ (Ti TI (h(•1)

2 - 1 3 1 3sg- Ps ig nit 1

11 - (1)(--_)I~ (qw; R)nI(1 (4.71)
-g e n -1 w n 1 R 1

Projectile Base Boundary Predictor

-n+1 -n -AtnL n 3.-n --n 1+ 1--n
e IL eIL LC)CA) p fUF() C2)e IL1 2 L2

3 -n -n + 1-ýn )p,) p

(2) (- eu) (2) (_ n)e-
IL IL-if ( 2 IL-2 2 TL( IL-I
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0 , (½)(~PU)L_] + (-..•)L [e)1 nn-n (esI , n (U L][(I.)vi-n 3 n

2 (')IL (1)IL (-u)IL (iu)IL (3IL )IL (2)_IL

n n n n -n
-(2)v" + ('1)v IV )f }C- k eu)

IL-i 2 L-23 (1-v IL eu gIL) L eu& IL

+~ E(eu)IL+ r-( ILv SI4 (; + ((i))+(eus)f

(--,L,•s. n *n - C (T - Tn) - (h(T"L) - h(Tg))]
-v IL~ sIL Ps ig init IL ig

, en } _ )A n ()f 2(472)
p 5 IL 1-v IL wIL(R)IL

Projectile Base Boundary Corrector

-n÷1 1 -in +-n+) + (1) (A I)n÷-T.'[ -n.--n ,-n÷--
eIL - L(e L4 e2L L A-t p 2 IL )eIL-1

-n+ 3 n.-+1 [,eI+-1 (1 -n+i
((I) ( U)eLn - (2)e-,)n-'1 + (2 )(pU)h+ - eu

I i 2IL (ILI 2 -.

+ 1 n-- n 3 n--
-(-- )IL e IL (C us) IL - (PIA) IL L )vIL

1 n,1- + (2)- n+l (2) ( )n+ 1 --. n1 - - , n--

1-vIL IL 'L IL 2 IL
~T 1 ~1 1 rfl---nn'1

+ ()nV 1 CM)T {[T -( C T(T l)
2 i-v IL ) IL sg Ps ig init

- -a-
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W hT ) 0f4* Ar (q 1 (4-73)
)ig " IL 2 1-v IL IL R IL

Summary of the Solution Procedure

At this point all the equations needed to specify the viscous

interior ballistic problem have been developed. A solution procedure

for this problem proceeds as follows:

I) Specify the input parameters listed in table 4.1 for all grid

points i and i*.

II) Specify initial values for the dependent variables v, P, Pu

and • for all grid points i and i".

III) Find the values of the dependent variables at the predictor

time level n+1 in the following manner:

Predictor

n+1 n+1
1) Find vii , and vi.

a) find vin+1 at all i interior points by using Eq. (4.36)

b) find vn+ 1 by using Eq. (4.58)
i1 *

c) find vn+1 by using Eq. (4.60)

d) find v at all i grid points by interpolating

between 1+ values at i* grid points (see Appendix A)

e) store all values of V and for use in the

0 corrector FDE's
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2) Find p1  , (u ,and

--n+- T ,-n÷--T.+
a) find P1  , (pu)i , and 81 at all I interior grid

points by using Eqs. (4.38), (4.40) and (4.42)

-7n1•-n-1
b) find p1  and p Lby using Eq. (11.62) and Eq. (41.641)

-- nril

e) find (pu)I by using Eq. (1.66)

d) guess the value of (,-un-l by using a one-sidedPUIL

difference version of Eq. (4.40)

e) find - -n1 by using Eq. (4.70) and Eq. (4.72)e) indeI and eiL b sn q 1.0 n q 1.2

-n ind- -nil _nil'
3) Findu , Ti1 , and Pi 1

a) find u at all I grid points by dividing (pu)-

by Pi

b) find •i+at all i grid points by applying the
i

internal energy equation (Eq. (4.8)) in Eq. (4.6)

where all variables are discretized (i) predictor

--n+1 -n+1 --n+1
variables and e, . P1  , and u1  are known

c) find ÷n+1 at all i grid points by using Eq.
i
-n+1 _n+1

where Pi and T, are now known

4) Find Un-, "- n+ and Ln+1.p (PU)iL andLp p

a) find p+1 (the projectile frontal pressure) by using

Eq. (2.30) or Eq. (2.31)

b) find Un+1 by using Eq. (4.21) or Eq. (4.33) where all
p

0 variables are discretized (I) predictor variables
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c) rind by Using Eq. (14.68)

d) find Ln 1 by using Eq. (14.24) where all variables are
p

discretized (W) predictor variables

5) Find (CD 1 n)1  Un+ and Ln3

a) find (CD n+i at all i.grid points by using Eq. (4.14)

or Eq. (4.16) where all variables are discretized (i)

predictor variables

b) solve for Un+1 and Ln+1 by using the iterative method
S S

described in Appendix A

6) Find (u s) , (u) , (us) * , and (u _)+1Si us~i* 5 ) ,an s• i

a) fInd Wu ) 1  at all I grid points by using Eq. (4.7)

where all variables are discretized (i) predictor

variables

b) find (u n1 at all i* grid points by interpolating

between (us)n 1  values at i grid points (see Appendix

A)

c) find (u ) ns 1 at all i* grid points by using backward

n+1+differencing of (u.I for grid points (2 -. IL)* and

one-sided differencing of (u n)1 at grid point 1
5 I*

d) find (u ) at all I grid points by interpolating

between (usn)1 values at 1. grid points (see

Appendix A)
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7) Find Lt¶) an d (M )11

a) find (sA )1"1 at all i grid points by using Eq. (4.17)
s i

or Eq. (4.18) where all variables are discretized (i)

predictor variables and (rb)I depends on Pn+1
-i

p~n+lb) find -i* at all Pm grid points by interpolating

between P values at i grid points (see Appendix A)
i

"c) at all 1i grid points by using Eq. (4.17)

or (4.18) where all variables are discretized (i*)

predictor variables and (rb)i* depends on pi,

n+1 n
8) FindR * , and a i

a) use the set or equations which corresponds to the

chosen tube geometry (see Tables 2.1-2.3) to find

n1 an1 a+1-
Ai , A nda

_IT n+I n+19) Find Ri* , Ai* , and ai.

_n-+1 n+1- n ÷--
a) find Rni , AI* and al1 at all i* grid points by

interpolating between Rn- , Ai', and aI values

respectively at i grid points (see Appendix A)

10) Find the dissapative terms (T )n+1 n+1 )n+1
w i , D , and (qwi

a) find (w ) at all i grid points by using Eq. (4.26)
w i

where all variables are diseretized Wi) predictor

10 variables

b) fi n+1 at all I gri6 points by using Eq. (4.27)b) f~indP
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where all variables are disoretized Mi) predictorS
variables

f) rind (qw)I at all i grid points by using Eq. (4.28)

where all variables are discretized (I) predictor

variables, or-by using heat flux information obtained

from a boundary layer analysis of this problem

11) Find the K-factors and derivatives of K-factors by using

Eq. (4.31) and Eqs. (4.44)-(4.48) or by using K-factor

information obtained from a boundary layer analysis of

this problem.

IV) Find the values of the dependent variables at the corrector

time level of n+1 in the following manner:

Corrector

1) Find n+1 n+1vi* , vi

a) find vin+1 at all i interior points by using Eq. (4.37)
n+ 1

b) find v,1 by using Eq. (4.59)

c) find v n+1 by using Eq. (4.61)
ILO

d) find at all I grid points by interpolat.ing

between values at i* grid points (see Appendix A)
n+1 and ;Iro s h

e) store all values of vn+ and v for use in the

predictor FDE's.

-n +1 -- n+1n+
2) Find P , (p) 1  P and e .

a) find , (p) 1 1 and e- at all i interior grid

points by using Eqs. (4.39), (4.41) and (4.43)
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b) find and 7nI by using Eq. (4.63) and Eq. (4.65)

o) find (u)n" by using Eq. (4.67)

d) guess the value of r ;;n by using a one-sided

difference version or Eq. (4.41)
e) fnd-~l -n.1

e) find ;e1 and *l by using Eq. (4.71) and Eq. (4.73)

3) Find and -_pn1Fi n ,i , a I V

a) tind--jn1 at all i grid points by dividing (P)+ 1

Piby Pji

b) find at all i grid points by applying the

internal energy equation (Eq. (4.8)) in Eq. (4.6)

where all variables are discretized (i) corrector

-n+1 -n+1 -n+1
variables and eI 9 Pi and u1 are known

c) find at all i grid points by using Eq. (4.5)
i
-n+1 -n+1

where p1  and Tl are now known

4) Find Unl (Z)n+ , and LP P PUIL ' n p•

a) find Pn1 (the projectile frontal pressure) by using

Eq. (2.30) or Eq. (2.31)

b) rind Un+l by using Eq. (4.21) or Eq. (4.23) where all
p

variables are discretized (i) corrector variables
-- n+~

c) rind (PU)i1 by using Eq. (4.69)

d) rindn+1 by using Eq. (4.24) where all variables are
p

discretized (I) corrector variables

_ n÷1 un÷1 andn1
5) Find (CD1 )1  , Us , and L

a) find (CD)n+1 at all i grid points by using Eq. (4.14)i

or Eq. (4.16) where all variables are discretized Mi)

corrector variables

b) solve for Un+1 and Ln+1 by using the iterative method
3 a
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"described in Appendix A

n.1 n+1 nil n+1
6) Find (u 3 ) 0 (u a (,.I 3, and W .t) *

a) find (u )fl at all i grid points by using Eq. (4.7)

where all variables are discretized (i) corrector

variables

b) find .n+1 at all I* grid points by interpolating
- - between . .. ...

betwen (un+1 values at I grid points (see -Appendix -

A)
find ( n+l by using forward differencing of (u n1

e) fn 1*

for grid points (1 4# IL-1)* and one-sided differencing

of (u n+1 at grid point 1'
S, ,n+1 +

d) find (u ) by interpolating between (u val* es1• values

at 1* grid points (see Appendix A)

7) Find (A.1 ) and (As)n+1

a) find ( n+1 at all I grid points by using Eq. (4.17)i

or Eq. (4.18) where all variables are discretized (i)

corrector variables and (rb)i depends on P n+1

_n~1
b) find pn* at all 1* grid points by interpolating

between P values at i grid points (see Appendix A)

c) find ()I at all I* grid points by using Eq. (4.17)

or Eq. (4.18) where all variables are discretized (i*)
_nil

corrector variables and (rb)±w depends on P n+

,n+l n+l n+l8) Find i, A , and a,

a) use the set of equations which corresponds to the

chosen tube geometry (see tables ( )-( )) to find

n+l n+l n+1
1 Ai nd

9 F n+1 .n+ 1  n+19) Find RI* Ai* , and ai*
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_n+1 .n+1 n+1
a) find R• L A' 1 and a,, at all I* grid points by

interpolating between Rn+1 A n+ 1 and a n+1 values

respectively at i grid points

10) Find the dissapative terms (I )+a dn+1 )n1i

a) rind (T) +1 at all i grid points by using Eq. (4.26)
w I

where all variables are discretized Wi) corrector

variables . ..

b) find at all i grid points by using Eq. (4.27)
i

where all variables are discretized (i) corrector

variables
, n+ 1

c) find (qw) 1 at all I grid points by using Eq. (4.28)

where all variables are disc;etized (i) corrector

variables, or by using heat flux information obtained

from a boundary layer analysis of this problem

11) Find the K-factors and derivatives of K-factors by using

Eq. (4.31) and Eqs. (4.44)-(4.48) or by using K-factor

information obtained from a boundary layer analysis of

this problem.

V) Repeat steps III and IV until the projectile has traveled a

prescribed length Lr.

-W A Ad-
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4 .5 Results

In this section, the results of several computer simulations of

viscous interior ballistic flow are presented and compared. Salient gun

performance parameters were determined and conclusions were drawn about

their significance.

Description of Cases

A case study which isolated the effect of a parameter on gun

performance was made for the viscous interior ballistic problem. Table

4.2 lists the values or equations of parameters which did not change in

these case studies. The assumptions common to all the viscous interior

ballistic case studies are listed as follows:

1) Combustion gas flow is unsteady and one-dimensional in the

axial direction (where radial effects are accounted for by the

K-factor approach).

2) Combustion gas pressure varies in the axial direction only.

3) All K-factors are set to 1.0 and all derivatives of K-factors

are set to 0.0.

4) The tube assembly is a straight tube.

Table 4.3 lists the equations of parameters which were varied in the

viscous interior ballistics case studies. The sum of the parameters

listed in Tables 4.2 and 4.3 specify the viscous interior ballistic

problem.

0



Table 4.2

Speoifioation in MKS units of parameters (and equations) whioh

remain the same for all visoous interior ballistic case studies

Projeotile Parameters Propellant Parameters

.U -0d 0 0. ... type a CIL 3352

Por * 6.895 x 106 grain geometry = cylindrical,

single perforate

Air Parameters mre46 a 0.148

Tatm - 300 ps w 1660.820

Patm w 1.0 X 105 w6 - 86.868 x 10-5
Yatm w 1.41 d 16 " 22.352 x 10-5

Ratm - 296.82 16 - 205.740 x 10- 5

Cps - 1539.25

Combustion Gas Parameters Tinit - 300

mmass - 24.0728 Tg ft 600

T6 - 300 hsg - 4171.998 x 103

P6 - 3.449 x 106  U -6 M 0.0

U16 " 0.0 CD = 1.0

p is given by Eq. (A.93)

k Is given by Eq. (A.94) Tube Wall Parameters

Pr is given by Eq. (A.95) Tw1 - 300

f - 0.02 a - is given by Eq. (A.98)

w-
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Table 14.3
Parameters and equations whioh were varied in the

viscous interior ballistio case studies

Case CD1  D f 'w QW

-BA 0.0 - given by 0.0 0.0 0.0

-. Eq. (4.27) -..

BB given by given by 0.0 0.0 0.0

Eq. (4.14)* Eq. (4.27)

BC 1.0' given by 0.0 0.0 0.0

Eq. (4.27)

BD 1.0 given by given by 0.0 0.0

Eq. (4.27) Eq. (4.714)*

BE 1.0 given by given by given by 0.0

Eq. (4.27) Eq. (4.74) Eq. (4.26)*

BF 1.0 given by given by given by given by

Eq. (4.27) Eq. (4.74) Eq. (4.26) Eq. (4.29)*

* Indicates a change in value from the previous case.

B
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Case BA was the simplest viscous interior ballistic case study. In

addition to the general assumptions listed previously, the following

simplifying assumptions were used to analyze this case:

1) The propellant grain-combustion gas velocity ratio (CD1) is

0.0.

2) There is no momentum generation.

3) There is no tube wall shear stress.

4) There is no heat transfer.

The rest of the visCous interior ballistic cases reduce these

simplifying assumptions one-by-one in the following manner:

1) Case BB is the same as case BA except that CD1 is described by

Eq. 4.14 and varies between 0.0 and 1.0.

2) Case BC is the same as case BB except that CD1 is set equal to

1.0.

3) Case BD is the same as case BC except that momentum generation

described by the equation

P - A(T1 v )AsCD1  (4.74)

is considered.

4) Case BE is the same as case BD except that tube wall shear

stress, -r (given by Eq. (4.26)), is considered.

5) Case BF is the same as case BE except that tube wall heat

flux, qw (given by Eq. (4.29)), is considered.
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Table 4.14

0 Muzzle velocity, peak breech pressure, time of occurence of

peak breech pressure and percent differences for an actual

gun firing and for the viscous interior ballistic cases BA-BF

Case Upf % Dit. Peak P % Dif. Time (PkP) % Dif.

(m/see) (I05Pa) (milli-see)

BA 997 4009 1.140

BB 747 -25.1 1987 -50.4 1.20 -114.3

BC 793 6.2 2293 15.4 1.30 8.3

BD 807 1.8 2222 -3.1 1.25 -3.8

BE 795 -1.5 2224 <0.1 1.25 0.0

BF 770 -3.1 2183 -1.9 1.20 -4.0

EXP 960 3187 1.20

- 1e--.--0--~---.
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Case Performance

Figure 4.1 shows a plot of breech pressure versus time for cases

BA-BF while Fig. 4.2 shows a plot of projectile velocity versus time for

Cases BA-BF. Table 4.4 lists the muzzle velocity, the peak breech

pressure and the time of occurence of peak breech pressure for cases BA-

BF. It also lists the percent difference (from the previous case) of

each of these quantities.

The effect of the propellant grain drag force can be seen by

comparing the viscous case BA with the inviscid case AD (see section

2.5) since the only difference between these two cases is the addition

of a drag force term. When compared to case AD, case BA shows a

negligible difference in muzzle velocity, peak breech pressure and the

time needed to reae, peak breech pressure.

The effect o, . variable propellant grain-combustion gas velocity

ratio on the numerical solution can be seen by comparing cases BA and

BB. When compared to case AA, case BB shows a 25.1% decrea3e in muzzle

velocity, a 50.4% decrease in peak press.-re and a 14.3% decrease in the

time needed to reach peak breech pressure.

When CD, is near 1.0, the propellant grain velocity is nearly that

of the gas. There is a discontinuity at position L. where the number of

propellant grains drops suddenly from a finite value to zero. The effect

of the discontinuity seems to be to produce pressure pulses as seen in

Fig. 4.1. These pulses are not a physical phenomenon, but are produced

when the propellant grain and combustion gas grids move past each

other. The magnitude of these pulses was observed to increase when the

distance between the discontinuity and the projectile base dec'-eases.
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The maximum effect of the propellant grain-oombustion gas velocity

ratio (CD,) can be seen by comparing cases BA and BC. When compared to

case BA, case BC shows a 20.4% decrease in muzzle velocity, a 42.8%

decrease in peak breech pressure and a 7.1% decrease In the time needed

to reach peak breech pressure. This is the largest performance

difference observed in the viscous interior ballistic case studies.

Cases BA and BC also bracket the experimentally ontained muzzle

velocity and peak pressure for an actual gun firing (see Table 4.4).

The parameters which specify the viscous interior ballistic flow problem

were chosen to match the experimental conditions as closely as possible

[Refs. 14,29].

The effect of moment.zm generation can be seen by comparing case BC

and BD. Whe- compared to case BC, case BD shows a 1.8% increase in

muzzle velocity, a 3.1% decrease in peak breech pressure and a 3.8%

decrease in the time needed to reach peak breech pressure. This is the

only case comparison In which there is a decrease in peak breech

pressure when the corresponding muzzle velocity increases.

The effect of tube wall shear stress can be seen by comparing cases

BD and BE. When compared to case BD, case BE shows a 1.5% decrease in

muzzle velocity and negligible changes in peak breech pressuare and time

needed to reach peak breech pressure.

The effect of tube w.all heat transfer can be seen by comparing

cases BE and BF. When compared to case BE, case BF shows a 3.1%

decrease in muzzle velocity, a 1.9% decrease in peak breech pressu're and

a 4% decrease in the time needed to reach peak breech pressure. This

indicates that the effects of heat transfer should be considerel when

constructing a detailed and accurate model Qf interior ballistic flow.
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Tube Wall Heat Transfer

Heat transfer data generated from case BF was chosen to illustrate

the unsteady interior ballistic heat transfer problem. This heat

transfer problem was modeled as a I-D conduction problem with unsteady

boundary conditions of the third kind. The details of the derivation of

the heat transfer equations used here are given in Appendix A and the

results of using these equations are presented as follows:

Figure 4.3 shows tube wall temperature plotted against normalized

axial distance at five times (t) during the viscous interior ballistic

cycle. The maximum tube wall temperature of 1020 K was achieved by

adjusting the convection coefficient until the maximum calculated tube

wall temperature agreed well with the experimentally obtained maximum

tube wall temperature of 1050 K [Ref. 22].

Fig7ure 4.3 shows that the highest tube wall temperatures develop

near but not at the base of the projectile. The high temperatures near

the projectile base are accounted for by the large value of the convec-

tion coefficient in this region (see Fig. 4.4). The sudden drop-off in

tube wall temperature at the base of the projectile occurs because

relatively cold (ambient temperature) tube wall is being uncovered as

the projectile travels down the tube.

Inspection of Fig. 4.3 also shows that the maximum tube wall

temperature of 1020 K occurs at t-1.34 milliseconds, which coincides

with the time at which peak pressure, maximum propellant burning rate,

and maximum combustion gas temperature occur. As the shot progresses

and combustion gas temperature decreases, tube wall temperature, as

shown in Fig. 4.3, correspondingly decreases.

......
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Figure 4.4 shows the convection coefficient (he) plotted against

normalized axial distance at five times during the viscous interior

ballistic cycle. The formula used to calculate h. was based on a

modified version of the Sleder-Tate Nusselt number formula and tne

details of its derivation are given in Appendix A.

Figure 4.4 shows the strong similarity between the axial convection

coefficient profile and the axial combustion gas momentum profile. Also

noteworthy are the large magnitudes predicted for the convection

coefficient.

A drawback in the model used here to calculate he is that it does

not take into consideration the fact that the thermal and momentum

boundary layer thicknesses decrease to zero at the base of the

projectile. This boundary phenomenon would tend to accentuate he near

the base of the projectile more than is shown in Fig. 4.4.

Figure 4.5 shows tube wall heat flux plotted against normalized

axial distance at five times during the viscous interior ballistic

cycle.

Very large magnitudes of tube wall heat flux are indicated by Fig.

4.5 with the highest values occuring at t-1.34 milliseconds (which is

when peak combustion gas temperatures occur).

The most interesting aspect of the heat flux distributions shown in

Fig. 4.5 are the sharply increased values near the base of the

projectile. This is the result of the combined efrects of uncovering

previously unexposed tube wall area (which results in low tube wall

temperatures) and the increasingly large values of he near the base of'

4 the projectile.

Figure 4.6 shows the heat penetration distance into the tube

111111,1 - * i a
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wall (8) plotted against axial distance at five times during the viscous

interior ballistic cycle. These plots again show the effect of

uncovering previously unexposed tube wall area as the projectile moves

down the tube. The highest value of 8 occurs in the region of the tube

assembly which has be-in transfering heat the longest; namely, the

original chamber voltue. The maximum value of 6 shown in Fig. 4.6 is

0.72 millimeters and is typical of a 30 mm gun firing at ambient

conditions [Ref. 22).



Chapter V

PRESSURE AND DENSITY GRADIENTS IN UNSTEADY TUBE FLOWS

5.1 Physical Mechanisms Causing Pressure and Density Gradients

The physical mechanism which causes a pressure difference between

the breech and projectile is the acceleration of the projectile. As the

projectile accelerates, it produces a series of expansion waves behind

it. The pressure drops from breech to projectile through these waves.

The ballistic cycle begins as combustion occurs within the chamber

bounded by the breech, tube wall, and projectile and increases the

pressure. Because the burning rate of the propellant increases with

increased pressure, high pressures are quickly produced. These high

pressures accelerate the projectile producing a series of exansion waves

behind it. These wave accelerate the gases behind the projectile to the

velocity of the projectile. They travel toward the breech, reflect, and

return to the projectile distributing the velocities of the gases

between the breech and the projectile.

As the projectile accelerates, the gases behind the projectile also

accelerate. This acceleration produces an gradient of pressure,

density, and temperature behind the projectile. Subsequently, the

pressure at the base of the projectile is lower than that at the breech.

The pressure drop is then governed by the acceleration of the

piston. After the acceleration stops, the pressure drop from the

stationary end of the cy)inder to the moving piston goes to zero. In a

typical ballistic system the acceleration begins low, It then increases

5-1
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rapidly to a peak and drops off with movement of the projectile. It

0would then be reasonable that the drop of pressure from breech to

projectile would be dependent on the acceleration history of the recent

past. The recent past would be defined as the time between formation of

an expansion wave and when that wave has reflected and returned to the

piston. Once the expansion wave has returned to the piston, Its

remainir..ý effect is only to lower the pressure of the gas in the

chamber.

5.2 Equations of Motion for Unsteady Flows

The breech to projectile gradients of pressure, density and

temperature are gorverned by the conservation equations of mass,

momentum and energy. One dimensional forms of these equations were

solved using simplifying assumptions to determine analytical

relationships between the projectile acceleration and the gradients.

The derivation of these relationships can be found in Appendix C. The

equations of motion for a mixture of gas and solids are the conservation

of mass and the conservation of momentum.

(ps (1-v') + pv') + L. (ps(1-v,) us + pv'u) - o (5.1)

S(usP (1-v') + upv') + L (u2P (1-v') + u pv') = -LP (5.2)

a
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It was assumed that the velocity of the solids is related to the

velocity of the gas by a constant ratio throughout the tube at any

particular instant. No friction or heat transfer effects were

included. The two equations were combined to give an equation which has

a form similar to the unsteady Bernoulli equation.

Pml x au (PmU)2 I Px dPP f - dx + (m I - - fpb (5.3)

The terms on the left hand sice of Eqn 5.3 are acceleration terms.

The integrated acceleration Froduces the pressure difference from breech

to projectile. The right hand side represents the pressure gradient

produced by the acceleration.

Acceleration Term

The acceleration term was evaluated for solids and gases. A linear

profile of velocity with distance was assumed for both the velocities of

gas and solids. The velocity of the solids was assumed to lag that of

the gas by the ratio us/ug. This approach was used because several

different models including the XNOVA code [Ref. 40] indicated that the

velocity profile was quite linear.

When the acceleration of the piston is zero, the linear velocity

model seems to predict that the velocity past a point is always decreas-

Ing. When a p>v 2 /L, the velocity past a point will increase with time.

When ap<v 2 /L, the velocity past a point will decrease with time. This

does not mean however, that the velocity of a particle is slowing

down. As one follows a particle It continues on at the same or greater
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velocity depending on the level of acceleration of the piston.

S Assuming a linear velocity profile and integrating the acceleration

side of equation 5.3 gave

Pm1 L ' u 2 (Ml 2 Pml 2 f'&dP

S2 2 < M ' n - b PM

or 2 f m dP (5.5)

The most significant portion of the acceleration side is L ap /2. The

factor pml/Pm accounts for solids which are not accelerating as fast as

the gas. The projectile velocity squared portion of the acceleration

side will always have a minus sign in front of it because pml /Pm is

always less than 1. When there are no longer any solids, pml/PM goes to

1 and the entire acceleration term goes to L a p/2.

The effect of the lagging behind of the solids is contained in the

term pml/Pm.

Pm Ps(1-vI)+pv'

Pml = Ps (1-v') us/V' + pv'

This ratio is determined knowing the porosity, the gas density, and

us /U.

u5 /u was estimated as a constant along the barrel at any instant in

time. It was assumed to change with time. The ratio of average

acceleration of the solids over the average acceleration of the gas was

Sassumed to be equal to us/u. The drag force on the cylindrical grain was
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assumed proportional to (u-us)2 and equal to the acceleration of the

solid grain times its mass.

us/u was solved for as a function of a nondimensional acceleration

number, Fa. Fa has been formulated to be a function of the easily

determined parameters.

Fa - "C P 2

Us ¶

--S + -L 0 - VW -Fa-÷ 1) (5.6)
u 2Fa

The assumption of a linear velocity profile was tested using an

inviscid computer model of gas flow in a tube between breech and

projectile. The projectile was driven by estimates of accelerations

from experimental shots 536 and 571 which will be discu3sed later. The

ratio of the integrated particle acceleration (left hand side of

equation 5.3) divided by ap L/2 was plotted against time in Figures 5.1

and 5.2. If the velocity profile was linear, the ratio w'uld be 1. In

Figure 5.1 the last 70% of the time has a ratio of 0.98. This indicates

that the integrated acceleration estimate of ap L/2 is 2% high. Figure

5.2 is for a case with a 30% higher peak pressure. This higher pressure

causes increased acceleration. This increased acceleration rate is the

probable cause of the hump in Figure 5.2 that starts at 0.002 seconds.

The peak of the hump, 1.07, indicates that the integrated acceleration

estimate of ap L/2 is 7% low.

L
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Pressure Gradient Term

The pressure gradient term was evalated for the two cases of gas

only and of gas and solids. The pressure was integrated by assuming an

Isentropic relationship between pressure and density. The details of

the two derivations are given in appendix C.

The integration of the gas only case stated in terms of temperature

and density directly yielded

Y

PF. ('Y-1)(l-0bn) L ap., Y-

- (1 - (5.7a)Pb- Y R T b

When stated in terms of pressure and density It yeilded

- (0 - (Y-1)P a p (5.7b)

The gas and solids case was integrated using a linearized form of

(1/Y)the term (P/Pb)/. The equation was stated in terms of temperature

and density

P p s(I/v'-1) -v'(1- b)Lap r 2

- + y ( + 1) [exp C( -P ) - 1] (5.Ba)
b 1b 2YRT

It was also stated In terms of temperature and density.

P P 1/v'-1) - L' k -
Pb Ob p(1/v'-lL) exp 2YPb -- (5.b)

4 The multiplie- term C * 1) car, great]i increase the pressure
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drop from breech to projectile over the gas only case. This is because

the large forces are needed to accelerate the solids which have a

density much greater than the gases. The average pressure can be

determined by integration of a series expansion of 5.8b.

K23Pave 1 K K 22 K2 K2 K 2S•- • • • • -I-• )(5.9)
PO 1 3 T10 -422+f1-61T320'

K P(l v'-1 )
K1 =( Pb +1

v'(1-P bN)Lap

2 2 YRTb

Kinetic Energy in the Gases

The ratio of kinetic energy in the gas solid mixture to the kinetic

energy of the same mass moving at the projectile velocity is 1/6. 6 was

obtained using a linear velocity distribition and a density distribution

obtained from the pressure distribution Eqn. 5.8.

Ps (1-v') p

6 -3 PbV 3 ( (5.10)
P 5(1-V') s 32____ (-) + (1- -ab)

b f--u 5%b

The case of gas only reduces 5.10 to 5.11.

p
3(1 - 3p )

(I- 'O)
5 - (5.11)

AA ~( -AAAPA F1
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5.3 Comparisions of Analytical Model with Experimental Data

The equations just described in were compared with experimental data

from Eglin AFB for firings with muzzle velocities of 1000 m/s.

Comparisons were also made with computer modelled predictions obtained

from Eglin AFB and the Ballistics Research Lab. The experimental data

came from two series of shots of 30 mm aircraft cannon. Each series

consisted of four shots. These runs were evaluated by shifting the time

scales to make the peak pressures coincide and then comparing the

measured pressures in time. The two pressure time traces which best

matched each other were then used as the standard data for each series.

Each set of data consisted of time and for pressure readings. The

first reading was called the chamber pressure reading. It was not taken

at the breech but just in front of the initial position of the rotating

band. The three other readings were taken at three downbore locations.

The data in a nondimensional form was used for the comparison with

analytical equations (5.7 and 5.8). The pressures at the three downbore

locations were normalized by the chamber pressure reading. The

resulting pressure ratio was less than 1 because the downstream

pressures were always lower than the chamber pressure.

The analytical pressure ratio was determined using equation 5.8 to

find the downbore pressure with respect to the breech pressure for both

the chamber location and the downbore location. Values of the variables

in equation 5.8 were obtained from an interior ballistics program of

Heiney [Ref 14]. The variables needed were average porosity, breech

density and pressure, projectile acceleration, and breech to projectile

length. The analytical pressure ratio was determined as a functicn of
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time for each downbore pressure tap location beginning from the time

that each tap was passed by the projectile.

The results are quite encouraging. Comparisons with the 536

experimental data 13 shown in Figures 5.3-5.5. The experimental data is

the jagged line. The other two lines are the results of calculations

from equation 5.8 with the upper line being a gas only calculation and

the lower line being the calculation when solids are included. At 1700

microseconds ir Figure 5.3 one can see that the solids theory agrees

quite well with the data.

At a later time of 2500 microseconds in Figure 5.4 the gas only

theory seems to be a better estimate than that of the solids. This is

probably due to the fact that the solids do not follow directly behind

the projectile but lag it. The ý squared term in equation 5.8, causes

the majority of the pressure drop to occur in the 30% of the length just

behind the projectile. If the solids concentration is very low in tO.is

region, the pressure will drop less and will better follow the gas only

theory.

The last figure in the 536 series is Figure 5.5. It shows good

agreement between theory and experiment for either gas only or gas and

solids. The two theoretical lines are very close because at 3000

microseconds there are very few solids left.

Comparisons of 571 experimental data with theory are shown in

Figures 5.6-5.8. This shot had a muzzle velocity 7% higher than the

previous 536 shot. This was produced by a thinner grain web thickness.

Figure 5.6 shows the pressure ratio for downbore tap 2. Burning has

occurred more quickly and few solids remain so that the gas and solids

lines are very close. Predicted pressures are lower than those
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measured. One explanation may be lack of time for the velocity profile

to become linear after then time of peak pressure.

Figure 5.7 shows quite good agreement with the experimental data

over the last half of the time of the run. Figure 5.8 shows a pressure

ratio higher than the data. This may be caused by the hump in

acceleration ratio shown in Figure 5.2

Two higher speed causes were compared with theory. Experimental

data was not available for either of these. However, computer

predictions were available using two different codes which model the

flow of both solid and gas as the solids burn. Input conditions were

not available for these run so that the model of Chapter 2 could not

also be compared.

The first case was a 1400 m/s run. Combustion was complete and gas

only theory was compared. Pressure at the projectile base over pressure

at the breech was compared when the projectile was at the muzzle. The

computer prediction of the pressure ratio was 0.707 and the pressure

ratio of the theory of this work was 0.665.

The second case was a large diameter round with a 1450 m/s mzzle

velocity. Combustion was complete and the pressure ratios was compared

when the projectile was at the muzzle. The computer prediction of the

pressure ratio was 0.731 and the pressure ratio of the theory of this

work was 0.747.

In both of these cases the theory matched the computer predictions

well. The Mach number of the gases behind the projectile in both of the

last two cases is near 1.5 indicating that the flow is supersonic.

I
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Chapter 6

SUMMARY OF ACCOMPLISHMENTS AND DISCOVERIES

In this chapter, the accomplishments and discoveries made are

summarized.

Accomplishments

Four interior ballistic models were developed to analyze the

flowfields inside tubes that launch high-speed projectiles. The first

model doveloped was for analyzing unsteady, one-dimensional inviscid

flow inside tubes that launch high-speed projectiles. This model can

account for changes in the cross-sectional area along the tube and the

effect of temperature on the ratio of the specific heats.

The second interior ballistic model developed was for analyzing

the unsteady, two-dimensional, compressible, momentum and thermal

boundary layers next to tube walls of ballistic devices.

The third interior ballistic model developed was for analyzing

unsteady, one-dimensional viscous flow inside tubes that launch high-

speed projectiles This model can account for (a) variations of

velocity, density, and temperature in the radial direction; (b)

interphase drag between the combustion gas and the propellant grains;

(c) momentum generated due to burning of propellants; (d) heat transfer

to the propellants; and (e) unsteady heat transfer to the tube wall.

6-1
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The fourth interior ballistic model developed was an analytical

model for analyzing how density and pressure vary from the breech to

the base of the projectile.

The results obtained by using the interior ballistic models

developed in this study were compared with experimental data.

Discoveries

Parameters having significant effects on the physics occurring

inside ballistic devices are presented here in descending order of

importance:

I. The covolume of the gas.

2. The tube cross-sectional area changes as a function of axial

distance.

3. Relative velocity between the propellant grains and the

combustion gas.

4. The ratio of specific heats as a function of local temperature.

5. Friction and heat transfer in the boundary layer.

6. The propellant burning rate as a function of local pressure.

Important effects occurring in the boundary layer include:

1. The displacement thickness i* negative indicating that the

streamlines in the boundary layer turn toward the tube wall.

2. The cooling of the gas near the wall produces a significant

change in the effective volume which lowers the chamber

pressure.

3. The thickness o! the momentum and thermal boundary layers goes

to zero at the breech and the base of the projectile.
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4. Profiles in both the momentum and thermal boundary layers are

nonsimilar.

Parameters affecting axial gradients of pressure and density were

determined to be

1. Gradients of pressure and density are governed by the product,

ap L, projectile acceleration times breech-to-projectile

distance.

2. Acceleration of the propellant grains has a significant effect

on the pressure and density gradients.

3. Supersonic interior ballistic flow exist and can be modelled by

the method described in Chapter 5.
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Appendix A

Derivation of Governing and Auxilliary Equations for

Inviscid and Viscous Flow inside Tubes.

Introduction

In this appendix, conservation equations which describe high speed

unsteady compressible flow in tubes with combustion are developed and

presented first. These equations were derived using a control volu.me

approach where a typical control volume is shown in Fig. A.1.

Next, auxiliary equations which describe the volumetric rate of

propellant consumption (A ), the propellant grain-combustion gas

velocity ratio (CD,), tube wall heat flux (qw) and propellant grain

displacement (L.) are developed and presented.

Last of all, auxiliary equations are presented for two

interpolative schemes which allow variable values to be mapped to and

from the i and i* grid point systems.
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Continuity of Propellant Grains

The following assumptions were used in deriving the continuity

equation for the propellant grains:

1) The propellant grains are incompressible.

2) The propellant grains are distributed homogeneously throughout

the control volume.

3) The propellant grains can be treated as a continuum.

4) The problem is unsteady and one-dimensional (in the axial

direction along the tube).

Under these assumptions, the propellant continuity equation can be

written as

the time rate the generation of
of change of the rate of the rate of thpropellant mass
mass of propellant propellant - propellant +within the control

within the control influx lefflux volume
volume

or,

M at 3 M + x8 d ) + I A 1
'SI I r - I(;n i- v

where the terms of Eq. (A.1) are defined as follows:
= r2

1) A- %R = the tube cross-sectional area

2) v - As/A - the ratio of propellant cross-sectional area to

tube cross-sectional area

3) As . the voluetric rate of propellant consumption within the

control volume

4) Ms - [fAP vdA]dx - psv[fAdA]dx - psvAdx (A.2)
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5) is " fA svusdA " Psvus fAdA - psvu 3 A (A.3)

Substitution of Eqs. (A.2) and (A.3) into Eq. (A.I) yields

a (p vA)dx - - L (psu A)dx - MvAdx (A.4)

which can be rearranged to give

av a U av Vu aA V (A5)at Tx s Tx A ax _p

Continuity of the Combustion Gas

The following assumption was used in deriving the continuity

equation for the combustion gas:

1) The problem is unsteady and one-dimensional (in the axial

direction along the tube) where radial effects are accounted

for by the K factor approach.

Under this cssunption, The combustion gas continuity equation can be

written as

the time rate of Ihraeoi te t the generation
change of combustion the of of combustion gas
gas mass within th = combustion combuson + mass within thecontrol volume gas influx gas efflux control volume

or,

we m g E ( g a dx a+ o w ( s-v)Adx (A.6)

where the terms of Eq. (A.6) are defined as follows:

1) H M ()(A.7)
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2) M - [fAP(1-v)dA]dx - (1-v)[fApdA]dx - (1-v)ýAdx (A.8)

3) 98 " fAPu(1-v)dA (1-v) fAPUdA - (1-v)puKPuA (A.9)

Substituticon of Eqs. (A.7)-(A.9) into Eq. (A.6) yields the equation

a a
Tt E(1-v)YA)dx- - [(1-v)K puAldx vA Adx (A.10)

which can be rearranged to give

aLP + 1 L (KpA -- )+ + K hA1
at A ax pu -v (1-v) at + Kpu x (A.11

Substitution of the Propellant Continuity Equation (Eq. (A.5)) into Eq.

(A.11) and subsequent rearranging yield the final form of the combustion

gas continuity equation

-- K = u x - pu Fx K L + s (1_K ,-)-
aApI ax (-V) (Kpu S ax

aus u )
-. v(-- -I(.2ax A ax (A. 12)

For the case of inviscid flow, all K-factors in Eq. (A.12) are set

to 1.0 and all derivatives of K-factor3 are set to 0.0.

Momentum Equation for the Combustion Gas

The following assumptions were used in deriving the momentum

equation for the combustion gas:

1) The problem is unsteady and one-dimensional (in the axial

direction along the tube) where radial effects are accounted

for by the K factor approach.
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2) The tube wall friction caused by the propellant grains is

negligible.

3) Pressure varies in the axial direction only.

Under these assumptions, the combustion gas momentum equation can be

written as

the time rate the genera- the net exter-
of change of the rate the rate tion of nal force im-
combustion of combus- of combus- combustion nposed on the
gas momentum -tion gas - tion gas + gas momen- + combustion gas
within the momentum momentum tum within owbthin the
control inflix efflux the control wiontro volume
volume volume

or,

SI I (rnu
at jm'- l + ax-- dxl + Iý dxj IrJ F exti (A.13)

where the terms of Eq. (A.13) are defined as follows:

1) Mu - [fApu(1-v)dAjdx-[(1-v)JApudA~dx.(1-v)puK Adx (A.14)

2) mu - pu 2(1-v)dA - (1-v)fpu2dA - (1-v)p 2K 2A (A.15)

3) P - CDI 3 vAu (A.16)

4) E Fext -Fnet(pressure) + F(wall shear) + F(particle drag)

where, referring to Fig. (A.1)

a) Fnet(pressure) - F(pressure)I -dx

- F(pressure)Ix+dx/ 2

SPA(1-v) - {PA(1-0) + L PA(1-v)]dx)axdx

+ LP dx
ax 2

x- [PA(1-v)]dx + (-v)PdA
a BA
" " a•[PA(1-v)ldx + (1-)P L- dx

m~~~ ax a[ m m m m •m m = =. . . . . . . . . .. .:
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therefore,

Fnet(pressure) - -A aEP(-v)] dx (A.17)

b) F(wall shear) -rw 2rRdx (A. 18)

where a model for the wall shear stress (Cw) is presented

in Section 4.3

c) F(particle drag) - -Ddx (A. 19)

where a model for the particle drag (D) is presented in

Section 4.3

Therefore, the net external force acting on the combustion gas in the

control volume may be expressed as

E F 0 -A a[P(I-v) dx - t 2nRdx - Ddx (A.20)
ext ax w

Substitution of Eqs. (A.14)-(A.19) into Eq. (A.13) yields the following

equation

[(1-v)PJK A]dx - - [(1-v)pu K 2 Aidx + CD!MsvAudx
pu

- A 2 C1-v)Pldx - T 27Rdx - Ddx (A.21)ax w

which can be rearranged to give

K 2 --2 --2Pu -- aA A av) av

atp .x A ax - 1 +at

K -- 2 aK 2
P 11 - p u UV aS(-) -pu- + CDM D V " TPK {p at pu ax 1s (1v - a
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1 w "wR D1+ - [- A V (A.22)

Substitution of Eq. (A.5), the propellant continuity equation, into Eq.

(A.22) and subsequent rearranging yield the final form of the combustion

gas momentum equation:

[pu (K 2 u K- u) + P3

a(pu) (pu2) + pu av aP
at K '-1 {-K 2 ax (lv) ax axpu pu

__ [K 2U + (- )K u]
i- 2v pu s a K A{pu -A + [1-K u

K A ax tapu

aus u v
+ (1- A)pu a-x-] +K (0-v) Pu P/Ps]

Pu

+ [1 w2rR/A + D/Al] (A.23)
K Pu(1-v)

For the case of inviscid flow, all K-factors in Eq. (A.23) are set

to 1.0 and all derivatives of K-factors are set to 0.0. Also, the

dissipative terms T and D are set to 0.0.

Energy Equation for the Combustion Gas

The following assumptions were used in deriving the energy equation

for the combustion gas:

1) The problem is uinsteady and one-dimensional (in the axial

direction along the tube) where radial effects are accounted

for by the K factor approach.

2) Heat transfer in the axial direction is negligible.

3) Pressure varies only in the axial direction only.

Under these assumptions, the combustion gas energy equJation can be
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written as

the time rate the rate
of change of the rate of the rate of the generation of energy
combustion tcombustion o combustio o of combustion transferred
gas energy gas energy gas energy gas energy - across the
within the influx efflux within the control
control influx efflux control volume volume
volume boundaries

-or,

E + dx + I i- w (A.24)

where the terms of Eq. (A.24) are defined as follows:

1) E- [fAP(U+u 2/2)(1-v)dA3dx-C(1-v)fAedA~dx(1v)eAdx

2) A - •AP( 1 /2) + Plu(l-v)dA - (l-v) fA(e + P)udA

- (1-v)A[Keue + Pu] (A.26)

the rate the energy rate the energy rate needed
of chemi- needed to raise to bring the newly
cal energy the temperature of released gas within

3) Q release - the propellant - the control volume up
within the within the control to the temperature of
control volume up to the the s'irrounding
volume ignition temperature combustion gas

or,

j 6r - ig - gs (A.27)

where the terms of Eq. (A.27) are defined as follows:

a) 6r MvAh sgdx (A.28)

b) g - C Ps(T ign- T init)A vAdx (A.29)

c) gs [ [h(T) - h(T ign)]A vAdx (A.30)

gs ign s
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therefore, svA{hsgdx-CpTigTint) 
- h()-h(T

1 )I)dx (A.31)

4) w q"2wR(x)dx (A.32)

Substitution of Eqs. (A.25)-(A.32) into Eq. (A.24) yields the equation

aE(1-v)A•]ldx a
at X - -x {(lv)A[K eueU P+i }dx - qw2rRdx

- MsvA{hsg - C P(Tign - T int) - [h(T) - h(T)ign)1dx (A.33)

which can be rearranged to give

a(K (K) uae- a(e'• (u aKu) (eu• + a A a(Pu) +I_){__V

-K (;.A) u a~ p + (--)f aVat eu ax ax A ax ax 1-v at

-- -•xV q 2 Vshg p(in

+ (KeueU + Pu1) h- qi+ VAC T niT)

-(h(T) - h(T ignM))] (A.34)

Substitution of Eq. (A.5), the propellant continuity equation, into Eq.

(A.34) and subsequent rearranging yield the final form of the combustion

gas energy equation.

a - K (eu) 1 a(V) a(Pu) -- a(Ke'a)
a e'( a x eu " ax ax ax

- (Ke. u + + 1 aA ;V a(uu)

A a x (TY -- -- a g
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-Ca (T -T )-(h(T) - h(T (-L q i (A -35)
Psign init ii gn P3 w R

For the case of inviscid flow, all K-factors in Eq. (A.35) are set

to 1.0 and all derivatives of K-factors are set to 0.0. Also, the

dissipative term qw is set to 0.0.

Derivation of the Volumetric Rate of-Propellant Consumption Equation

In this section, two formulas for the volumetric rate of propellant

consumption (A 9) are derived. First, a formulua for the linear burning

speed (rb) is given and then two formulas for the local burning surface

area (Ab) are developed. For the development of the first burning sur-

face formula, a control volume approach is used to relate the cross-

sectional area fraction of propellant (v) to the local burning surface

area. Figure (A.1) shows a control volume of cross-sectional area A and

length dx.

For the development of the second burning surface formula, the

assumptions of constant total burning surface area and constant

propellant grain burning surface area are dropped. Therefore, this

formulation should more closely model the real burning process.

Calculation of the linear burning sp ed

The linear burning speed is the speed at which the surface area of

a propellant grain regresses due to combustion. During combustion, the

propellant grain radius (r) decreases a distance dr in a time interval

dt. The linear burning speed is therefore given by

S~dr
rb - (A.36)d t
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0 The linear burning speed is known to be primarily a function of

pressure. Table A-i shows experimentally obtained linear burning speeds

for CIL 3331 propellant at different pressures [Ref. 14). Values for

the linear burning speed at specific pressures are found by linear

interpolation between the listed burning speeds.

Calculation of the local burning surface area

The propellant grains chosen for this study are single perforate

and cylindrically shaped with the following dimensions:

1) ri - the inner radius of the propellant grain

2) ro . the outer radius of the propellant grain

3) 1 - the initial length of the propellant grain

The following assumptions are used to obtain the first equation for

the propellant grain burning surface area:

1) The propellant grains are incompressible.

2) The burning surface area of the ends of a propellant grain are

small in comparison to the burning surface area of the inner

and outer cylindrical surfaces of the propellant grain.

3) The number of propellant grains per unit volume (n) is a

function of time and distance along the comb:ustion tube axis,

i.e., n - n(x,t).

4) The total surface burning area (Abt) is constant.

Under these assumptions, the volumetric burning surface area may be

expressed as

Ab 2l[r (t-O) + dt] 2ir(tO)- dtn (A.3)

0 dt
0 0
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TABLE A-1

Linear burning speeds for CIL 3331 propellant at various pressures

rb Pressure

(1 0-3m/sec) (105pa)

0.0 0.0

3.30 20.7

5.08 34.5

7.11 48.3

9.65 69.0

13.21 103.5

17.27 138.0

20.57 172.4

24.38 206.9

30.48 275.9

36.83 344.9

43.69 413.9

55.88 551.8

68.58 689.8

116.84 1379.5

170.18 2069.3

210.18 2759.1

243.84 3448.9

309.88 9828.4

401.32 6897.7

635.00 13795.4

0



or

Ab u 2w1(ri(t-O) + r0(tmO))n (A.38)

Because the propellant grain geometry and assumptions chosen for

. . ....this analysis result in a constant total burning surface area, it is

oonvenient to recast Eq. (A.38) in the following way:

1) multiply Eq. (A.38) by p3 /Ps where ps is the propellant grain

density.

2) define a quantity known as the web thickness (w) where w =

(r0 (t) - ri(t)) and multiply Eq. (A.38) by w/w.

Equation (A.38) can then be rewritten as

21lp (r 2- r 2)n
Ab = P iw (A.39)

b p5w

If n refers to the number of propellant grains contained within a

control volume of size Adx (see Fig. (A-i)), then the equation for the

local volumetric burning surface area becomes

2mA sov (A.40)
Ab "p sw

where mscv a the mass of the propellant per unit volume contained within

the control volume.

If n refers to the total number of propellant grains, the equJation
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for total burning surface area becomes

A 2mst (A.L41)Abt p pw

where rt the mass of the propellant charge per unit iolume at time t.

Since Abt is a constant, it may also be expressed as

2m

bt- (A.p42)

where

m• 0- the initial mass of the propellant charge per unit volume.

w- = the initial web thickness of the propellant grains.

Equations (A.40)-(A.42) may then be combined to give Ab in terms of a

constant and a mass ratio, i.e.,

m

-- A msv (A.43)Ab Ab rst

where,

"mscv p 3PvAdx (A.44)

"mst =Ps vAdx (A.45)
0

Substituting Eqs. (A.44) and (A.45) into Eq. (A.43) yields the final

form of the first equation for the local burning surface area

A).A b I vAdx ](A.416)
ý vAdx
0
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0 The second formula derived for the propellant grain local burning

surface area uses only assumptions 1 and 3 of the previous derivation.

Under these assumptions, the local burning surface area may be expressed

as

t t t

&( (.0)- +r6(tO + 1r dt] 2 }}n (A.t47)

0 0

By using Eq. (A.36), the definition of web thickness, and rearranging,

Eq. (A.4T) can be rewritten as

t t)C~I %dt w6  w rdt n
Ab - 2r{[ww + 2r (t-O)]El, - + r- b dtln (A.48)

0 0

Referring to Fig. (A.1), it can be seen that the number of propel-

lant grains per unit volume in the control volume may be written as

n . [propellant mass in CV/voluime of CV] (A.49)
Cv mass of propellant grain

or

[ PsAdx/AdxJ
n = t t (A.50)

psi{[w6 + 2r (t-O)]w6 - 2w f J rbdtl[l - f rbdt]
0 0

Simplifying Eq. (A.56) and substituting it into Eq. (A.47) results in
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the second formula for the local burning surface area:

÷ t t

21[w + 2r i (t-O)][E16 - r bdt + w] - 2w6  f rbdt}
0 0 (A.51)Ab "t t

w61[w• + 2ri(t-O) - 2 f rbdt][16 - f rbdt]
0 0

Calculation of the local volumetric rate of propellant consumption

The local volumetric rate of propellant consumption (Ms) may be

found by multiplying the propellant density by the local volume of

propellant consumed in time interval dt, i.e.,

As - psAbrb (A.52)

Formulation of the Propellant Grain-Combustion Gas Velocity Ratio

In this section, a relation is found between propellant grain

velocity and combustion gas velocity. The relation derived is of an

approximate nature and is intended to express only the most dominant

physics. The main concept of this derived relationship between

propellant grain velocity and combustion gas velocity is that propellant

grain velocity can be expressed simply as

us - CD1 u (A.53)

where

1) us - the propellant grain velocity

"2) CD, - a parameter which describes the ratio of propellant
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grain velocity

3) u - the combustion gas velocity

To derive an equation for CDI, the following assumptions were made:

1) Quasi-steady conditions are valid for all time dependent

variables.

2) All other forces felt by a propellant grain are negligible in

-.. ... comparison to the pressure drag force, I.e.,

Fnet - Fd (A.54)

3) At any time, u is a linear function of the projectile velocity

U and the projectile displacement (Lp), i.e.,

U (A.55)L p
u Up

where x is the axial distance from the breech.

4) At any time, the combustion gas spatial density gradient is

negligible, i.e.,

22 . 0 (A.56)
ax

5) The spatial gradient of the propellant grain-combustion gas

velocity ratio is negligible at any time, i.e.,

aCD 1

-- 0 (A.57)

6) The propellant grains are incompressible.

7) The temporal gradient CD, ha3 a much smaller magnitude than

either the temporal gradient us or the temporal gradient of u,
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!CDA (As58)

D- -I << IL-I or IL

8) The propellant grains are single perforate cylinders with a

time averaged radius r and constant length 1.

The first step in finding an expression for CD, is to find an

expression for the acceleration of the propellant particles (a.) in

terms of known variables. To do this, a force balance is applied to a

propellant grain at an instant in time. Using assumption 1, the drag

'orce felt by the propellant grain can be expressed in the following

way:

Fd C DP(U-U S) 2(2rl) (A.59)

where

1) CD - a drag coefficient for a propellant grain

2) p - the combustion gas density

3) 2rl - the frontal area of the propellant grain

Making use of assumption 2, the drag force (Fd) may also be expressed by

Newton's Second Law:

Fd - (fr 21p s)as (A.60)

where ps - the propellant grain density. Combining Eqs. (A.59) and
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(A.60) results in the following formula for as:

CD (u-U )2as --- (A.61)
s wr Ps

The desired final form of an expression for propellant grain

acceleration is found by combining Eqs. (A.53) and (A.61):

C Du 2(1-CD1 )2

a- a- (A.62)s nr Ps

The second step used to find an expression for CD, was to derive

expressions for the spatial average propellant grain acceleration

(a s) and the spatial average combustion gas acceleration (a). Equation

(A.62) can be integrated in the axial direction and divided by the

integration interval (Lp-O) to find as

1 rpC C DU2(ICD1 )2

is " ~•ppD• U (C .-]dx (A.63)
P0 L rr p

Using Eq. (A.55) from assumption 3, Eq. (A.56) from assumption 4, Eq.

(4.57) from assumption 5, and assumption 6, Eq. (A.63) can be rewritten

as

C D(1-CD1 )2 Up2 2
a PPx2dx (A.64)s Ps a L 3 0

p

Performing the indicated integration results in the desired expression

for a
s

C D(1-CD 1) 2 2

a D .P-1 --2-- (A.65)s wr Ps 3

rl ... . . . . .. . . . . .. . ..- 3 - " • i .) .. ) , mm i .. .
I m m
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Differentiating Eq. (A.55) with respect to time gives the following

expression for the combustion gas acceleration:

a -X a (A.66)
L p

au
where a * the projectile acceleration (a-_R)p at
Equation (A.66) can be integrated in the axial direction and divided by

the integration interval (L p-0) to find a:

I 1 p x

a -~ L La dx (A.67)

Performing the indicated integration results in the desired expression

for a:

--aI (A.68)

The last step needed to find an expression for CD, was to relate

as and a. This was done by making use of assumption 7 in the differen-

tiation of Eq. (A.68) with respect to time. The resulting equation is

as a CD~a (A.69)

Integrating Eq. (A.69) in the axial direction, dividing by the integra-

tion interval (ip-O), and using ass'umption 5 resuilts in the equation

1 5 p a dx - L ý CD adx (A. 7)
p 0 p o
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Performing the indicated integration results in the equation

a. CDa (A. 71)

.... Substituting Eq. (A.65) and Eq. (A.68) Into Eq. (A.71) results in the

equation

CD(1-CD1 )2 U 2
wr ps 3 -2 pCDI (A 72)

where the acceleration ratio of propellant grains to combustion gas is

2CDPU 2
F3 D- (A.73)

3 3irrp a

Substituting Eq. (A.73) into Eq. (A.72) yields the desired expression

for the propellant grain-combustion gas velocity ratio:

CD1 - 1 + 1( - TFiaT) (A.74)
2Fa

To check the validity of this expression, the following typical

interior ballistic values were chosen:

1) r - 0.035 in - 0.0009 m

2) ps - 0.06 ibm/in 3 - 1664 kg/m3

3) p - 0.009 lbm/in3 - 250 kg/m3

4) L;D - 1.0

Table A.2 lists values for CD, for typical valuies of Up and a The CD,

ratios shown in table (A.2) are typical of those observed in interior
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Table A.2

Values for CD,

(1/rn) 2
31Dp( Up (m/sec) ap (m/sece) Fa CD1

35.37 200 600,000 2.36 0.53

35.37 600 400,000 31.8 0.84

35.37 1000 100,000 353.7 0.95
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ballistic simulations.

Tube Wall Heat Flux

In this section, a formula for tube wall heat flux (qw) is derived.

The first part of this heat flux analysis is concerned with developing

formulas for the thermal properties of the combustion gas and tube wall.

Next, a tormula is derived for the heat transfer coefficient he.

Finally, an integral approach is used to find the hoat penetration

lengtt. (8) into the tube wall and the tVbe wall boundary temperature at

some axial location [Ref. 34].

With this information, the heat flux can be found by using a form

of the formula

qw -hc(T - Tw) (A.75)

where

1) • 13 the average combustion gas temperature at some axial

location.

2) Tw is the tube wall boundary temperature at the same axial

location.

Combustion gas and tube wall properties

In order to find the heat flux for the interior ballistic problem,

the relevant combustion gas and tube wall properties must be known.

Here, it is assumed that the relevant properties vary linearly with
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temperature aooording to the equation

F -mT + b (A.76)

where

1) F - a temperature dependent property

2) T s temperature

3) m - a oonstant

4) b - a constant

Table (A.3) shows the MKS values of z, k and Pr at two temperatures

for H2, CO, H20, C02 and N2 . Applying Eq. (A.76) to these sets of data

results in the following formulas:

Properties or H2

1) AH2(T) - 0.135 x 10-7(T) * 49.259 x 10"7 (A.77)

2) kH2 (T) - O.409 x 10-3 + 60.353 x 10-3 (A.78)

3) PrH2(T) - -2.353 x 10"5(T) + .708 (A.79)

Properties of CO

1) mco(T) - 0.336 x 10-7(T) + 7"4.200 + 10-7 (A.80)

2) kco(T) • 0.0610 x 10-3(T) . 6.700 x 10-3 (A.81)

3) Prco(T) - -5.000 x 10"5(T) * 0.7145 (A.82)

Properties of H2 0

1) UH0(T) - 0.361 x 10-7(T) - 10.185 x 10-7 (A.83)
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Table A.3

Gas properties at various temperatures

Constituent Temperaftie (T) Viscosity (M) Cond'ictivity (k) Prantl number (Pr)

Gas (K) (s) A (dimensionless)
M 

m

300 89.6 x 10-7 183 x 10-3 0.701
-H2 -.2000 318.2 x 10-7- 878 x 10-3 0.661 .

300 175 x 10-7 25.0 x 10-3 0.730
Co 800 343 x 10-7 55.5 x 10- 3  0.705

380 127.1 x 10-7 24.6 x 10-3 1.06
H20 850 296.9 x 10-7 63.7 x 10- 3  1.02

300 149 x 10-7 16.55 x 10-3 0.766
CO2  800 337 x 10-7 55.1 x 10-3 0.716

300 178.2 x 10-7 25.9 x 10-3 0.716
N2 1300 466.2 x 10-7 81.0 x 10-3 0.701
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2) kH20(T) - 0.0832 x 10- 3 (T) - 7.013 x 10- 3  (A.8'4)

3) PrH20 (T) - -8.511 x 10- 5 (T) + 1.092 (A.85)

Properties of CO2

1) UCO2 (T) - 0.376 x 10- 7 (T) + 36.200 x 10-7 (A.86)

2) kC2 (T) - 0.0771 x 10- 3 (T) - 6.580 x 10-3 (A.87)

3) PrC0 2 (T) -1.000 x 10'.4(T) + 0.796 (A.88)

Properties of N2

1) P N (T) - 0.288 x 10- 7 (T) + 91.800 x 10-7 (A.89)

2) kN2 (T) - 0.0551 x 10- 3 (T) + 9.370 x 10- 3  (A.90)

3) PrN2(T) - -1.500 x 10- 5 (T) + 0.721 (A.91)

After finding formulas for 4, k and Pr for the constituents of the

combustion gas, the mass averaging formula

Fave - (.011)FH2 + (.524)F co (.142)FH20

+ (.1 8 3)Fco2 + (1.40)FN2 (A.92)

was used to obtain the following combustion gas properties for CIL 3331

propellant:

1) pCIL " 0.338 x 10- 7 (T) + 57.412 x 10-7 (A.93)

2) kCIL - 0.0703 x 10- 3 (T) + 3.322 x 10- 3  (A.94)

3) PrcIL - -5.893 x 10- 5(T) + 0.800 (A.95)
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Table A. 4
Tube wall properties

Specific Heat Thermal

Tube Wall Temperature (T) Capacity (Cp) Conductivity (k) Diffusivity (a)

2
Material (k) (--) (-)

kgK MK sec

400 487 56.7 14.82 x 10-6

Carbon Steel 1000 1169 30.0 3.27 x 10" 6

0
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Table A.4 shows the MKS values of Cp, k and a at two temperatures

0 for plain carbon steel. Applying Eq. (A.76) to this set of data results

in the following formulas:

1) CPst(T) = 1.137(T) + 32.330 (A.96)

2) kst(T) = -0.0445(T) + 74.500 (A.97)

3) a3t(T) = -0.0193 x 10- 6 (T) + 22.520 x 10-6 (A.98)

A convection coefficient model

A reasonable value for the convection coefficient h. is needed in

order to find the heat transferred into the tube wall from the combus-

tion gas. The formula for hc presented here is of an approximate nature

for the interior ballistic flow problem. This is because of the

assumptions needed to use a modified version of the Sieder-Tate Nusselt

number formula. The necessary assumptions are as follows:

1) Quasi-steady state conditions hold.

2) The flow in the tube is fully developed.

3) The combustion gas flow in the tube is turbulent (i.e., it has

a Reynolds number, ReD, in excess of 2300).

4) The Prantl number (Pr) for the combustion gas is greater than

0.5.

By using the above assumptions, the Nusselt number of the combustion gas

at some axial location xa along the tube and time t can be expressed as

Nu D(x at) - A Re / 5 Pr 1/ 3 (L-) 0 .14 (A.99)Da D

whert- the temperature dependent properties Pr and u are given by Eq.

(A.95) and Eq. (A.93), respectively, and evaluated at _ - [T(Xa,t) ÷m
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Tw(xa,t)]/2, the viscosity at the tube wall surface ps is given by Eq.

(A.93) and evaluated at Tw (x at), and A is chosen such that the calcu-

lated peak tube wall temperature agrees well with the experimentally

obtained peak tube wall temperature of 1050 K [Refs. 22,38). For this

analysis of the interior ballistic problem, a value of 0.075 was chosen

for A.

The convection coefficient of the combustion gas at some axial

location xa along the tube and time t can be expressed as

h (x t) - NuD (xa't) ! (A.100)

where k is the thermal conductivity of the combustion gas given by Eq.

(A.94) and D is the tube diameter. Substituting Eq. (A.99) into Eq.

(A.100) results in the formula

h (x ,t) - [.075 R 14dr] (A.101)ca' D P5D

The Reynolds number in Eq. (A.101) is given by

Re D a a (A. 102)
D

An integral method to find heat flux

Figure A.1 shows the geometry and coordinate system used to

analyze the tube wall heat transfer problem. The axial distance along

the tube is measured along the x axis and the distance into the tube
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wall is measured along the y axis where

Sy - R-r (A. 103)

The following assumptions were used to derive an expression for

tube wall heat transfer:

1) The heat transfer taking place in the tube wall is conduction

heat transfer in the y direction.

2) The effects of tube wall curvature may be neglected since the

heat penetration distance into the tube wall, 6(t), is small.

3) The tube wall thermal properties are functions of temperature

only.

4) The temperature profile in the tube wall at any axial location

can be expressed as a second degree polynomial function of

temperature.

5) Quasi-steady conditions hold for the convection coefficient

he.

Using assumptions 1 and 2, the governing equation for tube wall heat

transfer at a fixed axial location xa and time t can be written as

1 aT(xa y't) 2 T(Xa'y't)
a t- ata (A. 104)
0st at y2

with the initial condition

T(Xa ,t,o) - TI (A. 105)

and the boundary condition

-k aTw(xat) + hTw(xa,t) .- •a't) (A.106)

St aa
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where

Tw(Xat) is the temperature at the tube wall boundary

and

T(x at) is the combustion gas temperature.

Using assumptions 3 and 4, the temperature profile in the tube wall

can be expressed as

T(xa,y,t) - a + bT + cT2 (A.107)

subject to the constraints

aT(x a,,t)a 0 (A. 108)

T(X ,6,t) ,' Ti (A.109)

By applying the constraints due to the heat penetration length

(Eqs. (A.108) and (A.109)) and the tube wall boundary condition (Eq.

(A.106)), the terms a, b and c in Eq. (A.107) may be found. The

resulting tube wall temperature profile equation is

T(x ,y,t) - Ti - (-L-)[T(x ,t) - T (x ,t)][-Aa k 3t a w a 2

2

- 2y6 (A. 110)

By integrating the governing equation (Eq. (A.104)) across the

region of heat penetration, using assumption 2, and applying the heat
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penetration length constraint Eq. (A.108), the governing equation can be

0 rewritten as

I 3T(xaYt) 3VTx(a't)
2.t I I dy (A.111)
st 0 a ay

By using Liebnetz's rule and the heat penetration length constraint

Eq. (A.109), the following two relations may be found:

I • I•~T(xay)

S T(xa ,y,t) dy - Ti --. h o t" ,yt)I dy (A.112)

Ti -L6- a- I Ti dy (A.113)
at a t dy

Substitution of Eqs. (A.112)and (A.113) into Eq. (A.111) and subsequent

rearranging results in the following integral form of the governing

equation:

I •Tw(xa,t)

T(.ay,t) - Tildy ( (A.114)

Substituting the tube wall temperature profile equation (Eq. (A.110))

into Eq. (A.114) and performing the indicated integration yields the

following equation:

aTw(xat)
t {k _T(Xt) a Twat)] t 62} s -t ay (A.115)

Dst

Differentiating Eq. (A.11O) with respect to y and applying the result at

0
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the tube wall boundary (y-O) yields the relation:

aTw(xat) - he [T(x ,t) - Tw(X ,t)] (A.116)
By k st a a

By substituting Eq. (A.116) into Eq. (A.115) and using assumption 5, Eq.

(A.11.6) can be rewritten as

at) - T a (• 2 stE(xa 't) - Tw(Xa,t)] (A.117)

The solution of Eq. (A.117) yields a value for 6 at time t and some

axial location xa along the tube. Performing an integration of Eq.

(A.117) by use of a summation approximation yields the following

solution for 6 at time level n+1:

n+1 1/2
£ 6 (a st) J[(x aJAt) - T w(X ajAt)]At

6((n+1)&t) o taa (A.118)
[T(Xa,(n+l)..) - Tw(xa,(n÷1)At)]

where (a S) is given by Eq. (A.98) at the average tube wall temperature

Tw(ya,J~t) ÷T

(T T)J w a (A. 119)
ave j 2

For Eq. (A.118), the term Tw(x a,(n÷;)At) oan be approximated as

Tw(xa ,nht). If higher accuracy is de.ilred, an iteration technique can

be used to update the value of 6((n+1)tt).

Once 6((n+1)at) is known, it can be substituted into the tuJbe wall

temperature profile equation to find a value for the tube wall boundary

ILA & ILA P-1
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temperature at some axial location xa and time (n+1)&t. The resulting

S equation is

h0

Ti + (e -)-((n+l)at)T(X,(n+l)At)

Tw (x ,(n+l)at) st (A.120)w a [ (- )6((n+l)&t)]

2k st

where kst is given by Eq. (A.97) at the tube wall boundary temperature

corresponding to time level n. Finally, the heat flux at time level n+1

at some axial location xa along the tube can be written as

qw (xa ,(n+)At) - hcEf(xa ,(n+1)at) - Tw(xa ,(n+1)at)] (A.121)

Propellant grain displacement

In order to properly scale the transformed spatial domain of the

propellant grains, the propellant grain displacement (L.) must be known.

To find L., an iterative procedure was used. The essence of this

procedu,,e is to find an I grid point which corresponds to the IL* grid

point as shown in Fig. A.2. Once the location of this i grid point is

known, velocity information from the combustion gas problem can be *ised

to find Us (the propellant grain velocity at point IL*). After Us is

determined, L, can be found in a manner analogous to that used to find

L (see Section 2.3).

A step-by-step description of the iterative procedure used to find

Ls is given here and proceeds as f,-1lows:
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1) Find the i grid point which oorresponds to (IL*)n+1 by using

the formula

L
i[r' , (IL-1) -3- + I (A. 122)

p

where- initially.

LB, M L n (A.123)

2) Find the integer value i which corresponds to the val*.e of ir

by using the formula

I - INT(ir') (A. 124)

where INT indicates an integer value

3) Calculate a ratio (PHE) which indicates the position of the

point ir' relative to the positions of the points i and 1+1

(see Fig. A-2) by using the formula

PHE- ir' - i (A. 125)

4) Find the combustion gas velocity and the propellant grain-

combustion gas velocity ratio at point ir' by using the

formul as

u(ir') = (1 - PHE)u(i) + (PHE)u(i+I) (A.126)

CDl(ir,) 0 (1 - PHE)CDI(i) + (PHE)CD 1 (i+l) (A.127)

5) Find the propellant grain velocity at point ir' by using the

formula

Us(ir') - CD1 (ir')u(ir') (A. 128)

6) Guess the value of the propellant grain displacement (L.) at
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"time level nil by using the formula

L n+1 : Lan + 2uan÷ Ur')] At (A.129)

7) Cheek to see whether the difference between La(tr') in Eq.

(A.129) and L., in Eq. (A.122) is leas than some siall value

E. If this difference is less than e, theA Eq. (A.129) has

yielded an acceptable val',u for Lsn 1 . If this difference is

............. still gpeater than cthen repeat steps -1-7 using the updated

value of L., found in Eq. (A.129).

A Conservative Scheme for Mapping i' Values onto the i Grid Point System

When mapping I* values onto the I grid point system (see Fig. A.3),

it is important that the mapping procedure be conservative. This is be-

cause of the very significant influence of 1C variables on the interior

ballistic problem and the large number of times that this mapping proee-

dure must be carried out in the numerical solution procedure.

The mapping procedure develored ensures conservation by requiring

the spatial integral of whatever variable is to be mapped to have the

same value in both grid point systems. A step-by-step description of

the mapping procedure is given below:

1) Find the i* point which equals the corresponding I point (see

Fig. A.3) by using the formula

iOr - 1 + Lp/Ls (i-I) (A.130)

2) Calculate a ratio (PHE) which indicates the position of the

point iOr relative to the positions of point i* and (i,1)C
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(see Fig. A.3) by using the formula

L1 - INT[1 + L /L (1-1)J-1
PHE - U-I . - - 5 (A. 131)Ls Ls

where INT indicates an integer value.

3) Find the interpolated value at point O'r (equivalently point

.. . . .. . . i )_by using the formula . . .. . .. .

VAL(ir) - (1-PHE)VAL(!*) + (PHE)VAL(i+I)') (A.132)

4) To ensure oonservation of valujes mapped from the i* grid point

system to the i grid point system, the integral relation

X r x i)
t VAL*(x)dx - VAL(x)dx (A.133)

0 0

is used in the following mannert

a) the left side of Eq. (A.133) is numerically approximated

as

x( *r) ~INI'(,L*r) Ls

I VAL*(x)dx E£ Va [VAL(i-1)*)÷VAL(i*)](IL.*I)
o 1*-2

* V [VAL(i*) + VAL(i*r)][ - (A.134)

b) the right side of Eq. (A.133) is numerically approximated

as

T) 
L

VAL(x)dx 1 Y ' EVAL(i-1) + VAL(i)] (A. 135)
0 1-2
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where

I- (i'r-1) + 1 (A.136)
p

0) by combining Eqs. (A.133)-(A.135), rearranging and recog-

nizing-that IL is numerically equivalent to IL , 1* values

can be conservatively mapped onto the I grid point system

by the formula

INT(i*r)
VAL(i) - I t (L /L )[VAL(i-1)*) + VAL(i*)]}

i0-2 p

I-1

- I E [VALUi-1) - VAL(i)]} + [I - (i*-1)(Ls/Lp)
1-2

- 1][VAL(i*) + VAL(i*r)] - VAL(i-1) (A.137)

5) Increment the value of I and repeat steps 1-4 until

i - IL (A.138)

A Non-Conservative Scheme for Mapping I Values onto the i* Grid Point
Sys tem

Since the i grid point system is inherently less accurate than the

I* grid point system (because Ax Z Ax*) conservative mapping of I values

onto the i* grid point system is not appropriate. Therefore, a simpler

mapping scheme was developed and is presented here in a step-by-step

manner:
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1) Find the ir point whioh equals the oorresponding (IL* - i*)

0 point (see Fig. A.3) by using the formula

Ls

ir - (IL* - i*)(Lp) + 1 (A.139)

.- 2) Find the integer value I which corresponds to the value of ir,

I - INT(Ir) (A.140)

3) Calculate a ratio (PHE) which indicates the position of the

point Ir relative to the positions of points i and i+1 (see

Fig. A.3) by using the formula

PHE - ir-i (A. 141)

4) Map the I value onto the i* grid point system by using the

formula

VAL(IL*+l - I*) - (1-PHE)VAL(i) + (PHE)VAL(i-1) (A.142)

5) Increment the value of I* and repeat steps 1-4 until

* IL* (A.143)
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B.1 Boundary Layer Equations

The physical coordinate system for the interior

ballistic cycle is shown in Fig. C.I. An axisymmetric tube

is closed on one end by the fixed breech wall and bounded on

the -other end by-the movable projectile. An axial coordinate

(x) is set on the breech and oriented toward the projectile.

A radial coordinate (r) is set on the tube centerline and

oriented toward the tube wall. The partial differential

equations which govern boundary layer flow in this coordinate

system are as follows:

Continuity

a+ fo + a =u 0 (B.1)
at rclr ax

Momentum

P~u+ vii + Uua - .._J.rp&ia a. (B.2)

"\at ar ax) rar" ar' ax

Energy

P H+ uaH + vak1 - at - uax (B.3)ýat a X arl at ax

A F ~r F, + UT aH+ (Aij - + 9.T 1
- u 1 1

rar , Yr Pr) ar Pr) Pry' drj

Static Enthalpy

HI = H - (u 2 )/2 (B.4)

Gas Properties

T = T(Hl) (B.5)

B-- 1
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Equation of State

P - p* Rcg* T (B.6)

It is desired to perform calculations in a new

coordinate system. This new coordinate system is shown in

Fig. C.2. An axial coordinate X is set on the projectile and

oriented toward the breech. A radial coordinate (y) is set

on the tube wall and oriented toward the tube centerline.

Another radial coordinate • is parallel to (y) and clusters

grid points near the wall to capture the wall velocity

gradients and wall thermal gradients. The computational

coordinate system is functionally dependent on the physical

coordinate system by the following relationships:

y =R- r

T -t

X X(x,t)

By the chain rule:

ar ar ay KJKa

al- alal- xzail,Dz o~z R ~ A%

al- as ail. + al lu-- + Xtalla t a t at a tax at Ax

The previous equations (B.1) to (B.6) are thus

transformed:

Continuity

a + xt2 -. •yaJrpv) + X" Jz(Pu) = 0 (B.7)
* aCt aA ra
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Momentum

/ýU (Xkt+xzU)i..(u) ta

- rJ;k(r(A+AT)tya-(u)) - XA (B.8)
r ax

Energy

P(4-+(Xt+xzu)aH- V H - az ()t+xzu)aE

ax Y ra at Ai~ya FrFIu+MT-' tya
r t L LPr PrTý at

Static Enthalpy

Hl - H - u 2  (B.10)
2

Gas Properties

T - T(Hl) (B.11)

Equation of State

P - P * Rcg * T (B.12)

By boundary layer principles, it is necessary that the

longitudinal velocity "sweep" in the direction of the

computational coordinate X. The calculation velocity U is

chosen as U- u -u P. The projectile velocity is not

spatially dependent:

- 0 - L i) - au

axp p a
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The partial differential equations which govern
boundary layer flow in the computational coordinate system
simplify to:

Continuity

S+ kta - irya(rpv) + xzi.(PU+pUp) 0 (B.13)
at ra a

Momentum

P -PiU+uP) + (Xt+xz(U+up) )a...U) -V~ya-(U)

- J~a((+T;a() - Xa (B.14)

Energy

P~H+ (xt+xz(U+uP))aa'Y V;Yai -E - (Xt+XZ(U+U ))aEatAx aý at ax
- 2.~ya.. [r [1(U-+T- \ ;y&

r L LPr PrT' a

+ / 9- TI' 1-1 ))(U+Upflýya.(U)7 -2 (B.15)
SPr/ PrT/ " Jj

Static Enthalpy

HI - H - •p+2 2 (B.16)

2

Gas Properties

T - T(H1) (B.17)

Equation of State

P p * Rcg *T (B.18)
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B.2 Numarical Method of Solution

0 In the previous section, the equations (B.13) to (B.18)

were developed to describe the boundary layer flow of the

interior ballistic cycle. There is no analytical solution to

this set of non-linear partial differential equations. To

solve these coupled equations on a digital computer requires

that the continuous physical grid be descritized and that the

partial differentials be replaced with finite difference

formulas. Typical for boundary layer flows, the following

techniques were applied to the momentum and energy equations:

1) Partial derivatives in time are forward
differenced, involving only the current time
step and the next time step forward in time.

2) Partial derivatives in the longitudinal
direction are all of first order. Backward
differencing is applied across the current
grid point and the preceeding grid point.

3) Partial derivatives in the radial direction
use at most three grid points, and are
central differenced where possible.

The following techniques typical for boundary layer

flows were applied to the continuity equation:

1) Partial derivatives in time are forward
differenced, involving only the current time
step and the next time step forward in time.

2) Partial derivatives in the longitudinal
direction are all of first order. To aid in
properly determining mass flux, backward
differencing is applied across the current
grid point and the preceeding grid point, and
across the respective pair of points nearer
the tube wall.

3) Partial derivatives in the radial direction
are all of first order. Backward
differencing is applied across the currei~t
grid point and the neighboring point nearer
the wall.
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Except for the partial time derivative, some choice

must be made for the time level of each term in the finite

difference equations. An implicit scheme is used where all

the spatial derivatives are sought at the next time level

(n+l). The resulting finite differenced equations are as

follows:

Continuity
(Pi 5) n.•+ p j j) n- + (pi" n+I÷ + (pi_ j_)n+ '

14At;: (p" jn _(pi_j")n _,(pi,_• n (p_ j _)n

E-. _I-"P - , -

+i (pi ) + (P n).

-AX I ' -(pi_' .J_ 1L

- (p1  y, j uIl - rj-1 (P, , V, J -1 n+1

Y J I -

Moment urn

+ X F(pi U; jn1 _ (U1 i j )n ) (Up , 4)n" _ (Upi' 0) ( .19)

( J (p

®At -i9 - ~-(
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A ~(I- L+ 2 2/ u -)~

(B. 20)

Energy

1,, J) L1 Hinl-(i
L -L

S7-J

rjAý~ ý,Pr1 1.+Pr,, PrT i, ~+I+P rT±.- j

r- -- n 7

+ + +9i J~i., 2 + \ I )'+ j+1 gT±., 1-2

2 Pr, 1+Pr,,,, 1 2 -PrTi, )4 1 +PrTi,

bi 
4+ --Y 

-+ 1
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J-1/2]( L Pr 1 +Pr ' PrTI +PrT, J

r, . _:,. 2 JPrT +PrTI -
""2 + " 2~~~~~- ..... . .. ... j' g•i j' " - 1.'--.•! -

+ (Pi)n+1 - (p,)7,+ :(AXU +Up n+I.(p )+l_,ti zi I i• _.J 1... _' _•- .J)

_J ~ (B. 21)

Static Enthalpy

(Hi 1 , J) n+1 = (Hi j ) nl1 ((U1ij+Up) fl)2 (B.22)

2

Gas Properties

(Ti, ) r' -= T ((Hi 1 , J) n+1) (B.23)

Equation of State

(Pi, J)n+l = (p..j)n*l * Rcg * (Ti',)"' (B.24)

The subscript(i) refers to the axial location of a

computational grid point. This subscript (i) ranges from i=I

to i=IL, where IL is the number of axial grid points.

The subscript (j) refers to the radial location of a

computational grid point. This subscript (j) ranges from j=1

to j=JL, where JL is the number of radial grid points.

The solution to the finite difference equations is

obtained by marching in time. For a given time, calculations

sweep in the X direction, from the projectile to the breech.

This is in the same direction as the flow, propogatina

information to the next i-station. At a give i-station,

,9. .I I I. .
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unknowns in the finite difference equations occur at the

(j-1), (j), and (J+l) gridpoints.

The continuity, energy, static enthalpy, and gas

property equations and the ideal gas equation of state are

all linear and can be efficiently solved on a digital

computer. However, the momentum equation is non-linear in

calculation velocity (U) at the gridpoint (ij). To

efficiently solve the momentum equation on a digital

-..... computer, this- (Ui. )2 term must be linearized. Newton

linearization is used. The resulting linearized momentum

equation is:

r(pi I-( Lj ~i,1) n+1 (U,, ) n + (u pi. J) n'- (u pi.J)r~

LAt

+ [Pjn+1jVI t±+xiuP~fll iLI
L:, " _1J L

?--
n I n+ Jn12 (U U )*+( ,IiiI"*

F= , (r j ) L' + L1 , j....T± y au
22

"- ;(Z) lip - P4. ) (B.25)

L
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Here ,JU is the predicted value of calculation

velocity, taken to be UA, from the most recent iteration.

The use of Newton linearization for the (UI,,j) 2 term of the

momentum equation necessitates the use of iteration in
obtaining a solution at a given i-station. Since small t-.&

steps are taken, the solution should change only slightly
front one time step to the next. The iteration procedure

--.... starts with values -of T, u, p, and v from the most recent

time step. The projectile acceleration and increase in
chamber length require adjustment of the calculation
variables H ana U. To use the temperature from the most
recent time step as an initial guess to the solution of

stagnation enthalpy:

(Ml1 i, a (H11 , )n

I,•- Ul, Up)2 f1 i ' , - (U1  +U

22 2

(Hi, J) n-1 a (H , j) - (jU,+÷up) 2 2 + /(Ui, +u ) 2  'n 41 (B.26)

2 2

To use the axial velocity from the most recent time
step as an initial guess to the solution of the calculation
velocity:

(U1 ,j) ', a (ui, ')

(U ,4-U a (IJ -u )A

(Ui,)r*1 (U,•)• ~ + (up)-', - (up)p (B.27)
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The energy equation is solved for stagnation enthalpy

(H). All other variables are assumed known:

(A) (H 1,,._1 ) n+ + (B] (H1j,' ),, + [CI (Hi, J+) )n+1 - ED] (B.28)

where: (A] j ~(~Vi,).n+l 1 J

frj1/2F~~y~/;]JIjj+Ili,. 1i + ý'Ti,,jTi, j-11
--A; ~L7J 2  JLr±,, +Pr , -2 PrTi,.j+PiTi -ii

(B] j -l~ ~ Xii(i iF +U +

; Iy, y,12 Aij:1 +P~ + ATi,j+liPTi.j

~rJ At [Ipr 1, +Pri~ F r-T -,.+Prmi, j

+ C) +I ;[Pi yfj~

-rrJ-1,21~ ~yj411/22 f4Li ~ +A.L~j1 + I~Ti~..+9.Ti. -.

1r 1j t) Pri- j4: +Pr 1 , PrTi, j 4 +PrT -
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(D) (Hi - j

+ = (pi.jn)n+1".11 Xti+Ž±U+up )If1 +L7 A5:

I 2 \ rTij , J ÷I+ Pr i- , J

2

-. !*]LT 2 in T; -
J+•& i, J-2

2Prri, j+PrTi,

' * }/TiiJ J+

(U ,-U+• n+1 (UI- n+
______+________ y',+112 ____+___ .___

2

+F 1/

S2 • Pr1  ' j+Pr1  .

* . , /T \ , J-1,2

2I,. (Ui. JUi' j-l+up) n+I •yJ-1/2 (Ui, J-_U .J-1 ) nl

L 2.
* .FX t i+;Lz (Ui .j+Up P) ' Pi[( •.J) o Pi_ 1 ( _ .J) .

+ f(p1)n 1  _ (p)in-.

The values of H at the wall and boundary layer edge are

known. A coupled set of equations results for H which is

efficiently solved using a Thomas algorithm matrix solver.

The linearized momentum equation is solved for

calculation velocity (U). All other variables are assumed

known:

(A) (U , + (B) (U. n) ! + (C] (U .; .)nf 1 = [D] (B.29)

* where: [A] [(pi, Vi, J) 11n,

2. . ..;,
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r r-1/21 ~ j +g.J1+I.L~± J+I.L~ir i-1

r, (A4)T- 2 +_

(P, ]z (2 j (Xi. 1,j+Xjp

AXX

- rrj+1/2 ~ y YJ+1/2 1 ('j .1 1,± j gTi, J+I~'AT±,'\
Lr, -(~) . 2

+ v(i, jij1~1y
L 2A;

Lr i(c) 2 2

[C] -r~~,Jn1ýy

L. 2A

_j _t- y+1/2 F~, + +4i, + Lii g,

r A)22 2

[D) ~( )f+l I (U, n)l (u~ )n+1 + (u 1 n

[D rrl1( n) (
p p

AX

+ Fix (U 2 1,+ (P,)f~l-~l~(p ± n:)

AX

The values of U at the wall and boundary layer edge are
known. A coupled set of equations results for U which is
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efficiently solved using a Thomas algorithm matrix solver.

The ideal gas equation of state is solved for density

(p). All other variables are assumed known:

(pifl, + - (pJ))n+1

Rcg (Ti, j) n+l

The value of density is explicitly found at each grid

point. The continuity equaiton is solved for radial velocity
(v). All other variables are assumed known:

(Vi, j(n+1 (pi, jfVi, jl)fn + +1

2 r i( )n*1 (p1  )f÷1

.L (p i(piln+1

(p 1  + J)1 +1+(pi_1. j1
:4At (p ~)n -(pi_j .p n -(pi, _J n -(pi -l, - n i

; i.pl j_>
L, 

n
+ +~ X (ui (pi, n+ 1 P -,jil J) n~l

2A• AX + ( pi ji i, _l ) n +1 (pi_l, j~iilJ
j I_ n +,

The value of v at the wall is known. Other values of v

are explicitly found by sweeping from the wall to the tube

centerline. The new values of H, U, p, and v are used as

initial values for the next iteration and the iteration

process is repeated until an acceptable solution is obtained.

An acceptable solution for the time level (n+l) at the given

i-station requires convergence by one of two criteria:

1) If the number of iterations for a given
station reaches 30, oscillation around the
correct answer is assumed. The oscillated
values from the two most recent iterations
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are averaged to provide the answer at this
"i-station for this time level.

2) For every variable, at every (i,j) gridpoint:

a) If the absolute value for a variable at a
point is less than 1E-4, then convergence at
this point, for this variable, for this time
level is met.

or b) If the difference between successive
iterations- for a variable at a point is less
than 00.01%, convergence at this point, for
this-variable, for this time level is met.
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A-3 Boundary Layer Thicknesase

It is difficult to indicate a velocity or thermal
boundary layer thickness in a universal way. The influence

of viscosity and compressibility of high speed flow in tubes
decreases asymptotically from the wall to the centerline.
Defining the edge of a boundary layer equates to defining
when radial gradients are negligible. For this study, the

velocity boundary layer edge is defined to be the first

point- away -from the wall -where u k 0.95 * u(core). The
temperature boundary layer edge is defined to be the first

point away from the wall where T 2 0.95 * T(core). Such
definition is arbitrary and varies among problems. There are
better parameters which describe the viscous and thermal
effects of high speed boundary layer flow in tubes. These

parameters are the displacement, momentum, energy, and
density thicknesses.

Displacement Thickness

A meaningful measure of the viscous and thermal effects
for high speed flow in tubes is the displacement thickness.

As shown in Figure B.3, the displacement thickness is a
decrease in effective tube radius caused by a mass flux
defect. The actual flow containing radial gradients in
velocity and density is replaced by an ideal flow of

identical mass flux where radial gradients are absent. The

"resulting change in tube radius, conventionally defined as

positive toward the core flow, is the displacement thickness.

The mass flux for the ideal flow is lessened by the

decrease in tube radius:

rr-R-81

Peue dA where dA - 2nrdr

Jr-R



B--19

The subscript e refers to the boundary layer edge or

core conditions. The loss of mass flux in the boundary

S layer, as compared with the ideal flow, is given by:

r-R-8v

(Peue-PU) dA where dA - 2Xrdr

r-R

The integrand of the preceeding integral is zero from

r-R-Sv-to r-O. An equivalent expression for the loss of mass

flux in the boundary layer, as compared to the ideal flow, is

given by:

fr=Or (Peue-Pu) dA where dA - 2xrdr

Equating the mass flux lost in the ideal flow and the

mass flux defect in the actual flow:

Cr=R-81 Crro
Peue 2irdr (Peue-Pu) 2xrdrSr-R r-R

The displacement thickness for compressible viscous

flow in tubes is given by:

8 -+ 2 pu rdr
SR2 PeUe

F ,Rr-R

I.
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The integral within the equation for displacement

thickness was numerically integrated using the trapezoidal

rule:

r-0 JL

2 ~i-pu rdr - 2 1 (T- PAVOUAV rJ- 1 /2 (r -rJ1)

R L Peue R 2 L Pe Ue JR

r-R

where: .

Pave = (PJ + Pj- 1 )/2

Uave = (uj + uj_,)/2
ave - the density along the centerline

Ue - the axial velocity along the centerline
rj-1 / 2  - the radius of the half point between the

(j) and (j-1) gridpoints.
rj-r J_ = the differential change in radius

consistant with the limits of integration.

A unit of tube radius R was placed inside the integral

to normalize the variable r and reduce computational roundoff

error.
Momentum Thickness

The mome- im thickness (Fig. B.3) is a measure of the

momentum flux defect. The actual flow containing radial

gradients in velocity and density is replaced by an ideal

flow of identical momentum flux where radial gradients are

absent. The resulting change in tube radius, conventionally

defined as positive toward the core flow, is the momentum

thickness.

The momentum flux for the ideal flow is lessened by the

decrease in tube radius:

r=R-8 2

Peue 2 dA where dA = 2nrdr
r=R
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The loss of momentum flux in the boundary layer, as

compared with the ideal flow, is given by:

"IrR-Sv

PU(Ue-U) dA where dA - 2xrdr
r-R

The integrand of the above integral is zero from r-R-8v

to r-0. An equivalent expression for the loss of momentum

flux in the boundary layer,. as compared to the ideal flow, is

given by:

Qr.O
I PUUe-U) dA where dA - 2Xrdr

9 r=R

Equating the momentum flux lost in the ideal flow and

the momentum flux defect in the actual flow:

rr-R-82  -r-O

I PeUe 2 2itrdr - pu(Ue-u) 2Xrdr
J r=R _ r=R

The momentum thickness for compressible viscous flow in

tubes is given by:

r=O0 ee

82 = 1- 1+ 2 pu 1- u 'rdr

R R2 I uel
Sr=R -i

The integral within the equation for momentum thickness

was numerically integrated using the trapezoidal rule:

rmR
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JL
2 L [ I .v.!&'v2 ji -u~v. rj_1 ,2  (rJ ,l

R - Peue 1 ue] R
,j L

where Pave' Pe, Uave' and ue have been previously defined.

SEnergy Thickness

The energy thickness (Fig B.3) is a decrease in

effective tube radius caused by an energy flux defect. The

actual flow containing radial gradients in velocity and

density is replaced by an ideal flow of identical energy flux

where radial gradients are absent. The resulting change in

tube radius, conventionally defined as positive toward the

core flow, is the energy thickness.

The energy flux for the ideal flow is lessened by the

decrease in tube radius:

rr=R- 63

j 'eUe 3 dA where dA - 21rdrJr=R

The loss of energy flux in the boundary layer, as

compared with the ideal flow, is given by:

rr=R-8v
pU(Ue 2-U2) dA where dA - 2Xrdr

r=R

The integrand of the above integral is zero from r=R-8v

to r=O. An equivalent expression for the loss of energy flux

in the boundary layer, as compared to the ideal flow, is

given by:

SpU(Ue2-U2) dA where dA 2=trdr

JrR 2Urde
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Equating the energy flux lost in the ideal flow and the

energy flux defect in the actual flow:

rMR-83  r-
Peue3 2%rdr - Pu(Ue 2-U2) 29rdr

r-R J0 r-R

The energy thickness for compressible viscous flow in

tubes is given by:

jr-O
63 " 1 -• 1 + 2 L FU 2  -U2 rdr
R Ue2

RPeue''
J r=R - ýJL

The integral within the equation for energy thickness

was numerically integrated using the trapezoidal rule:

Fr=O
2 IPu [ U2] rdr

r-Reue

JL
i-2 ~ F� �uav Fl-Uave2  rj-1/2 (rj-rj1 )

R -LPe ueL u e 2 R

where Pave' Pe, IUve, and ue have been previously defined.

Density Thickness

A new useful measure of the thermal effects occurring

in a boundary layer is the density thickness. The density

tbicknesu (Fig. B.3) is a decrease in effective tube radius

caused by a density flux defect. The actual flow containing

radial gradients in density is replaced by an ideal flow of

identical density flux where radial gradients are absent.

The density thickness is the resulting change in tube radius

and is defined as positive toward the core flow.
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The density flux for the ideal flow is lessened by the

decrease in tube radius:

Fr-R-8v

J Pe dA where dA - 2Xrdr
r-R

The loss of density flux in the boundary layer, as

compared with the ideal flow, is given by:

J ( Pe - P) dA where dA - 2%rdr
r-R

The intedrand of the above integral is zero from r-R-8v
to r-O. An equivalent expression for the loss of density

flux in the boundary layer, as compared to the ideal flow, is
given by:

Cr-0

J (Pe - P) dA where dA - 29rdr
.•r-R

Equating the density flux lost in the ideal flow and

the density flux defect in the actaul flow:

rr-R-8O I r-O

Pe 2xrdr (Pe - P) 2Xrdrj•-R r-R

The density thickness for compressible viscous flow in

tubes is given by:

6 r- + 2 p rdr

r" R2 Perj
.,Ir-R ,
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The integral within the equation for density thickness

was numerically integrated using the trapezoidal rule:

"-•P'E O rd w 2 L 1 i ] r - / (rJ r, )

0 r=rmI2 - ae R~1 2  (,r

where P~ve and. P. have been previously defined.
EffantivMa vluma ehange

The objective of the interior ballistic problem is to

accelerate a projectile. This objective is accomplished by
the high chamber pressure. The cool tube wall has the effect

of increasing the effective chambet volume and decreasing the

effective pressure which acts on the projectile. The final
result is a decrease in the muzzle exit velocity of the
projectile.

The density thickness provides a measure of this

effective volume increase. An assumption made of the

interior ballistic cycle was that the mass in the chamber was
constant. For the proper density flux at any given cross
section, the one dimensional model must increase the

effective tube radius since density thickness is negative.
As the effective volume increases, the effective pressure
must decrease, assuming the combustion gas acts as an Ideal

gas:
P * V - m * R * T - constant

For a given time, the percent change in effective
volume is given by:

vA., - Vol d i (R-8 2 dx - It R2 dx

V old pY-dx

inX - -8-)2 dx X R 1 F, 2 dx

- R2 L o RJ

0
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The integral in the last expression was numerically
determined using the trapezoidal rule:

1..L 2 2dx - .%-2 L

i-2 (IL-i)

where 8 (8 +8_ ) /2pave Pi -Pi-i
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A.4 K Factors
The work of Chapter 4 modelled the interior ballistic

problem as one-dimensional. In this model, integral averages

over a cross sectional area remove radial dependence, so that

mass, momentum, and energy are only axially dependent. To

study the validity of this one-dimensional model, three

ratios are examined:

Kpu [1/A P u dA]

(1/A p dA] (1/A u-dA]

Kpu2 (I/A p u2 dA]

(1/A I p dA] (1/AJ u2 dA]

Keu [l/A e u dA]

(1/A I e dA] I/A u I]

where e is the total energy:

e - p(u(T) + 0.5u2 ) - p h-P + 0.5u 2 ]

The pressure P is assummed independent of the radial

coordinate and can be removed from within the respective

integrals. Simplifying Kpu:

Keu - (1/A p h u dA) + [P/A f u dA] + [1/2A f u3 dA]

[l/A p h dA - P + 1/2A I u 2 dA] [1/A J u dA]

If Kpu, Kpu2, Keu are close to unity, the

one-dimensional model is good. The interior ballistic cycle

occurs in an axisymmetric tube, so that A - gR2 , dA - 2nrdr,

and the limits of integration go from the centerline (r=O) to

the tube wall (r=R).

9
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The numerical integrations used the trapezoidal rule:

Kpu M R 2  PCveuav* rj.-1 / 2 (rJ- rj_
2 L.

Pave r,-./ 2 (rJ-r,-.] L nv rj-1/ 2 (rjrj-i]

Kp 2 • R2  pAveUave 2 rj-i/2 (rJ-rJ_

2
,JL ~3 'LI -

X "Pave r1 -i/ 2 (r-ji x • U4 ve 2 rj-i 2 (r 1 -r-i).

;JL

Keu R2  PavehaveUave rJ--1/2 (re-r J-1)L 2 E1-2

JL JL

SR Uav rji/2 (rj-r_1 ) +1 , Uave 3 rj1-/2 (rj-rj 1)

J-2 2 j-2

XPavehave r 1-i/2 (r1 -r 1 1
7. K Uav* r 1 -i/ 2 (jr-

JL J
+i•Uave2 rj~/ (rj-r, +1) u3r (J -2 L2J-

Paveaverj 11 2 (rJ- r1 -1) I Ar-/ ( -r-ý

2 --2

- p * R2 / 2

where Pave' Pe' Uave, and ue have been previously defined. The
variable have is defined to be (hj+hJ 1 1)/2. The differential

change in radius (rj-rj 1 i) is consistent with the limits of

integration.
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APPENDIX C

SIMPLIFIED ANALYSIS OF PRESSURE AND DENSITY GRADIENTS

Unsteady Equations of Motion

The flow of the combustion gas behind the projectile during -the

interior ballistic cycle was modeled using the one dimensional

conservation equation of mass and momentum.

a-T (ps (1-v,) p\,) + L (ps(1-v') us + pv'u ) - 0 (C.1)

a (1-v) + u2 vP + L p (C.2)
(u (1-v') (1-V) + u pv') L (u.2)

The flow is composed of solids, s, and gas. The acceleration and

velocity are assumed to be related by the ratio us/u. Several mean

densities are defined for use in equations D.1 and D.2.

Pm p5 (1-v')+pv'

Pm1 p (1-v') u/u + pv'

Pm2 PS (1-v') u22 u pvt

For typical values of pm and us/u, Pm2/Pml was approximately equal

to Pml/Pm. Substituting the mean density definitions and ratios into

C.1 and C.2 gives C.3 and C.4.

C-I
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. (P + (P PU -0 (.3)

a fM- ) 1fl 2 Pmu2) - - (C.4)

m M ax m

The two left hand terms of C.4 were expanded.

Om•..(ml• u*pU-- Oral -•M•- +- .,p-- mU¥ (ml u)-

Pro1 u ) +ro ) u p +(C.5)( Um at m PM-ýM-m ax P

+ Pml u L (P-l p )u (05)
x 3x

The second and fourth terms were eliminated by subtracting PmlU/Pm

times equation C.3.

P (Oral u)+p (fro u) = P(C.6)

Pm -t ax rn ax

Pm1/Pm was assumed to vary slowly with time so it can be brought

outside the derivative.

Pml au m u

PMl ( 3u+a(p,()2  u2(C7

m m m

Equation (C.7) was integrated in the x direction from breech (xO,

u-O) to an arbitrary location downstream.

Pml ~ ~ ~ i f u lU2 .. fx dPPmlfx ' dx + (re )I fx (C.8)

PM 0m 2x M b PM

The left hand side of the equation represents the acceleration of the

gases. The first term in the instantaneous acceleration and the second
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is the convective acceleration. In steady flows the second term drives

the pressure drop given by the right hand side.

Acceleration of the Gases and Solids

The acceleration of the solids and gases (left hand side of C.8)

causes the pressure to drop from breech to projectile and is related to

the piston acceleration. The velocity of the gas is approximated as

u-upx/L based on numerical simulations of this and other work. After

the first one third of the ballistic cycle, the velocity distribution is

very linear,

The coordinate &-x/L was used along with the following coordinate

streching function.

It was applied to the time derivative of term in equation C.8.

Pml x x~au- u au Pmlu 2 1 (PC1 dP

__ ) -) dx F p dx (c.10)

Using u-up&, x-L&, and ap au p/at the acceleration term (left hand

side of C.10) was tied to the piston acceleration and velocity.
p p{

[um 2 ap1 + (r2 (Pml))]&2 rPb dP

Pm L + 2 PM Pm1 2 b Tm (C.11)

or - a 2 . -_ Pb (C.12)
2 I IiM
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When combustion is complete, p ml/PM-1 and a*p is the acceleration

of the projectile, ap. If the projectile were accelerated from zero to

a over a distance L, it would have the kinetic energy mp U p2/2. Theap pvrp

energy to accelerate it would be force times distance, m p(a p/2)L. This

then means that a L/2 - U 2/2.
p p

The pressure drop from breech to projectile is then controlled by

the projectile acceleration. This is logical because it is the

expansion waves behind the accelerating projectile which lower the

pressure.

The solids affect the acceleration term in equation B.11 through

Pml/Pm. Pml/pm becomes less than one when us/u is leas than one.

The assumption was made that us/U . a /ag The solids are

accelerated by the drag forces of the faster gas. The drag force on the

grain was estimated assuming it to be a cylinder in cross flow.

Drag - CDP (u 2 
- us 2 ) 2rL/2 (C.13)

This force accelerates the grain where ps is the average density of the

grain Including its gas filled perforations.

%r2L p a a2 _ 2) 2r L/2

22

C u2 (1-(-s)Du p
or a ir (•.IJ)

S0

The gas velocity was assumed as u-U p. The solids velocity, us, was

assumed to be related to u. The spatial averages of the solids and gas

accelerations were obtained.
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s 2

C 0-(%-)) p

a a d& D u -uf (C.15)

"U2 C I to %) 2 u

D p

UOSa-. P- (w P - Fa )(C.15)

fIa d& f a aýdý

a

g 2P •C.16)

- 2 C(i-(- u)C2) p2a u C u 3
3%r pD a (C.17)

~~ 3, r o~p• ap

C.17 was solved for u./u in terms of Fa an acceleration ratio.

I A F + d1) (C.18)

_U! 12 + . (1 c. _

a2 P&

Assuming pm p and P py constant allowed integration of the rsght

hand side.
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F--

La 2 (Y P bpO~~ "(•) (I - ( ) ) (C.-19)
2 P b

The equation of state was used to replace Pb/PbV

P/p - RT / (1-pn) Y-1 (C.20)

La Y R T Pp r2 b (1-(b) ) (C.21)
2 0 7-71)1 -p bn)

or Y

P (Y-1)(1-P N) L a* Y-1

b P (C.22)
Pb Y R TR b

Pm p 5s(1-v') + v'p and P - p'C were assumed and C.12 was

integrated.

Lap_ 2 P& dP (C.23)
2 F2 P b PS(1-v')+v'p

2 pd(P

a. 'fPb Ps(1/v'-l) 1

PI) Pb

(P/Po) was linearized as 1 + (- - 1)/Y and equation (5.18) was
oPb

integrated.

S2 R Tb P1/v-

p , )I /1( - 1)/Pb+l))}] (C.25)
2 V7I -pbn b

or PF P*(2/v'-) "V'(1-Pbn)La* & 2

-= I + *1)[exp ( 2YRT - I] (C.26)
b b b

Pave/Pc was obtained by integrating equation 5.20.

P (1/v'-1) -v'(1' )n)La 2

ave [1 + Y ( -I ') b P 1]]d&
a b [0• b ie°p( 2 Y R Tb

P ave fl [1 + K (exp (-K 2 .2 ) - 1)]dF
Pb 0 2

I - - • • " • •1 "• ""• • :• • • • " ' • ... -• "% - -- • • ' l•".. . . ' - • • - ==MEM O--' ' -- "
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K Pp (1/v'-1)
K1 "(8 +)yPb

v' (1-PbN)La

2 2 YRTb

The exponential term is expanded In a ser~es to facililate integration

K 22 -K 3  K• K2
ave ' K K2 2 2 2 2 (C.27)

p i 3 10 2 +216 1320

Kinetic Energy in Gas and Solids

The ratio of tho density cf the oas-solid mixture times up 2 /2

divided by the kinetic energy of the gas is 6.

U2U P a cL fl° p dC
6 a 2 • o C 2 2  (C.28)

a L fi (p (O-N") u 3  VO2

2 2

u was assumej as a fraction of u, U-up{. The density ratio
sp 1- - ) ý2.distribution was approximated as parabolic, p - 1-(1

Integrating gave

pS( (1-v') Pp
. (1-=--

6 3 2 (C.29)

pbv 'u 5p b

When there are no solids, v - 1 and C.23 L-comes C.24.

3p,

0.. 3 P5. P
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