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ABSTRACT

This thesis investigates the feasibility of micro-
computer based simulation of scalar wave propagation in var-
ious media. Models for lossless media and media with a loss
coefficient which is linear in frequency have been coded in
FORTRAN and simulated successfully on a commercially avail-
able micro-computer, with simulation times less than thirty
minutes. The spatial impulse responses for classical
problems using square and circular-piston excitation are
presented graphically, along with new, innovative, spatial

excitation source shapes.
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I. INTRODUCTION

Due to diffraction effects, acoustic imaging and tissue
characterization techniques require information about the
insonifying wave at the object's location. The propagation
of a pulsed ultrasound wave with arbitrary temporal and
spatial shape is pot well understood, and requires
development of computer-aided analysis and simulation
techniques.

A computationally efficient method to model ultrasound
propagation from a planur source within a medium has .been
developed by Guyomar and Powers [Refs. 1,2]. The method is
applicable to lossless media, media with a linear frequeﬁcy
loss coefficient such as biological tissue, énd media with a
quadratic frequency loss coefficient such as liquids and -
gases. Relying on Fast Fourier Transforms (FFTs) instead of
integral solutions that require geometric interpretation
makes the method very suitable for computer implementation.

Models for all three cases have been previously
developed, coded in FORTRAN, and simulated on an IBM 3033
mainframe computer [Ref. 3]. The purpose of this thesis was
to investigate the feasibility of generating micro-computer
solutions of the models within a realistic amount of time.

As the average execution time was thirty seconds on the

mainframe for a 64 x 64 array size, a time limit of thirty




mninutes was set as a realistic goal. While the difference
between thirty seconds and thirty minutes may appear
unacceptable, rapid advances in micro-computer technology is
narrowing this margin appreciably.

Since the previously written FORTRAN\proqrams were un-
available, the project required starting from the beginning.
A first attempt was made using a commercially available pro-
gram called MATLAB. MATLAB is an array-oriented program
containing b&ilt—in functions such as Bessel and Fast
Fourier Transforms, as well as the ability to program new
functions. Limitations later discovered in MATLAB required

" _ starting over, programming the entire project in Microsoft

-~
e mn o

Fortran Version 3.31. The result is a stand-alone,

- e

user-interactive program allowing customized computer runs
o tailored to a specific set of inpﬁt variables. only the
K lossless and linear loss coefficient cases have been imple-
' mented, the third case with quadratic loss coefficient is
g left for future expansion. The goal of thirty minutes was
i obtained by code optimization and exploiting array symmetry
where it existed.
;: The program was tested and results verified using clas-
: sical problems such as a square or circular-shaped piston
% spatial excitation. Once verified, the program was used to
o compute the spatial impulse response of new excitation
a shapes. Examples of these include pyramid-shaped pulsed

sources and pulsed linear array elements.
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II. PROBLEM DESCRIPTION

The problem solved by Guyomar and Powers [Refs. 1,2]

uses the geometry of Figure 1.

i

| OBSERVAT | ON
PLANE

/Y

/ /'-/ ’
" SOURCE
SUANE

Figure 1. Source and Observation Planes.
Given a separable source of excitation

v(z,y,0,t) = s(z,y)T(t), (1)

the problem is to find the acoustic potential ¢(x,Y.,2z,t) at

an observation point located a distance z above the source

plane. A rigidly baffled source plane and linear,




homogeneous media are assumed. It has been shown [Ref. 2]

that the potential is given by
$(z,9,2,t) = s(z,y)T(t) ; ; ¢ 9(z,y,2,t). (2)

The * indicates convolution over the variable appearing
directly below it and g(x,y,z,t) is the impulse response or
Green's function that solves the wave equation and meets the
appliéable boundary conditions, as shown in the block

diagram of Figure 2.

6 (xy.0.t) Propagation glx.y.z.t)
ot + : >
. boundary conditions

FiQu:e 2. Block diagram of impulse response.

In the spatial domain, ¢(x,y,2,t) is also given ([Refs.

4-8] as
#(z,y,2,t) = T(t)¢ h(z,y,2,t) (3)

where h(x,y,z,t) is the "spatial impulse response" and is

equal to
h(I, y,Z,t) = 3(11 y); ;g(z) Y, Z)t) (4)

where g(x,y,z,t) is the Green's function (or impulse re-

sponse) . In a linear system, the relationship between the
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spatial impulse response, h(x,y,z,t), and the Green's
function, g(x,y,z,t), is illustrated by the block diagram of

Figure 3. Using the two-dimensional spatial Fourier trans-

s(x.y)6 (t) Propagation
—_— + 0>
boundary conditions
hixyztl =
sbxyhegaixy.z.t)

Figure 3. Block diagram of spatial impulse response.
form of Equation 4, ¢(x,y,z,t) can be written as
#(z,v,2,t) = T(t); 7' {33} (5)

where the tilde notation indicates the transform of the spa-
tial function.
In the spatial frequency domain, the transform of the

spatial impulse response is
h(z,y,z,t) = F~1 {55} . (6)

The convolutions in Equations 2 and a are difficult to
implement on a computer. The technique presented by
Equations 3, 5, and 6, and shown graphically in the block
diagram of Figure 4, reduce two of the convolutions to

multiplication.
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From Equation 6 we see that if we interpret § as the

angular spectrum of s, then ¥ can be thought to be the

"propagation transfer function" associated with propagation

sixy)T(t) Propagation
— + >
boundary conditions
¢ Ixy.zt)

= T(t) -:- hix.y.zt)

six V)T 6% glxy.zt)
xyt

Figure 4. Block diagram of general solution.

in the medium. This propagation transfer function behaves as
a time-varying spatial filter that increasingly attenuates
the higher spatial frequencies of the source as time
increases.

Three propagation models have been developed, one for
each type of media. The general technique followed for each
model begins with the representative wave equation for the
specific medium and finding the Green's function (or the two
dimensional spatial transform of fhe Green's function) which
solves the wave equation. Using this Green's function or
its spatial transform, the spatial impulse response,
h(x,y,z,t), is found from Equation 6. From this, the acous-
tic potential ¢(x,y,z,t) can be calculated for an arbitrary

plane in the positive~z half space using Equation 5.

12
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A. CASE 1: LOSSLESS MEDIA

The results of the transfer function approach for loss-

less media follow, as published by Guyomar and Powers [Ref.

1].

The wave equation is the Helmholtz equation

2
_1.2_2 =0.

The Green's function is

5(ct - R)
g(z’y’z’t)= (sz 3

where

R=\[z2+y? + 22.

For this problem the spatial impulse response is

2s(z,y); , 5[t — (R/c)]
2xR

hz,y,2,t) =
Taking the spatial transform yields

gp1 = l5-’0 (PV c?t? - 22) H(ct - z),
x

where the tilde indicates the two-dimensional

transform and

p=\12+ 1}
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The multiplicative constants can be dropped since the re-
sults will be normalized to maximum values. The transfer

function for propagation in lossless media is then

gor=Jo (p\/ c?t? — 22) H(ct - 2), (13)

where J, is the Bessel function of the first kind for order

zero. For programming considerations the term
2 = Veit? - z2 (14)

is calculated as a unit and identified as 2ZPRIME in both
this paper and the source code.

'For a given value of z, one can calculate the value of
9p1 for each value of time, then take the inverse spatial
transform of the product. The result is the spatial impulse

response of Equation 8.

B. CASE 2: T10OSS COEFFICIENT LINEAR IN FREQUENCY

For media which exhibits a loss coefficient that in-
creases linearly with frequency, the results of Guyomar and
Powers [Refs. 1,2] follow.

The wave equation for media with a linear loss coeffi-

cient is the telegrapher's equation

1 3%¢ 3¢ _

2
Vi-Gar T Aw ~O (19)
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For this case it is the spatial transform of the
Green's function that is required. It has been found by an
alternate method [Ref. 9] to be

i(!ﬂfw‘at) =

o [V AIFA) VT = 2] e AR (et - 2) for p < Ac/2

(16)
Jo VA= (AEVEE = 23] e~A%H(ct ~ 2) for p > Ac/2,

where I, is the Modified Bessel function of the first kind
of order zero. By definition, the propagation transfer

function is equal to the transform of the Green's function,

sO

gp?(fz: fv,z’ t) =
Io [\/pz — (A%c%/4) V32 - zz] e~ A2 (ct — z) for p < Ac/2

(17)
Jo [\/p2 - (A%c%/4) vicit? — zz] e~A/2H (¢t = z) for p > Ac/2.
The transform of the spatial impulse response is
;‘(fz;fmz;t) =
§(fz, fy)lo [\/ﬁ2 - (A%c2/4) V22 - 22] e~ A2 [ (et — 2) for p < Ac/2
(18)

5(fz, fy)Jo [\/;’2 — (A%c2/4) V2 - 22] e~At2H(ct — 2) for p> Ac/2.

The algorithm for finding the spatial impulse response
is similar to the lossless case. The transform is found of
the driving function s(x,y) and multiplied by sz evaluated

at each spatial frequency. Taking the inverse transform of

this product yields the required spatial impulse response.




III. PROGRAM DESCRIPTION

A. PROGRAMMED IN FORTRAN

Fortran was the language chosen for the program for
three reasons: 1) the availability of International
Mathematical and Statistical Library (IMSL) ([Ref. 10] rou-
tines, specifically those used to calculate Bessel 'functions
and one- or two-dimensional Fast Fourier Transforms, 2) the
portability of the source code to other brands of micro-.
computers and compilers, and 3) familiarity of the source
code for other students and professionals. Microsoft-
Fortran Versiop 3.31 was the .Aspecific brand of compiler.

used.

B. ADVANTAGE OF SYMMETRY

Most of the arrays generated l:;y the program are sym-
metrical. This was used as an advantage in reducing thé
number of calculations required and therefore the execution
time of the program. As operation of the program is de-
scribed, the areas where symmetry has been used are identi-
fied. Figure 5 is provided to aid in these explanations by
providing a "map" of an array base. Figure 5 shows a 64 x

64 array base situated on the X,Y plane and divided into

four quadrants. Note that the quadrants are unequal in




size, i.e., quadrant II includes rows 1 through 33 and

columns 1 through 33 for a 33 x 33 "sub-array" while quad-

l 33 64

QUADRANT QUADRANT
[l I

33 Y

QUADRANT QUADRANT
111 Qv

N

X

Figure 5. Base array configuration.

rant I includes rows 1 through 33 and columns 33 through 64
for a 32 x 32 "sub-array". Similarly, when the left side
(quadrants II and III) is to be calculated as a whole, the
calculations cover all 64 rows and columns 1 through 33.
The different sizes are required to ensure that only column
33 contains "peak" information and also that element (33,33)

is the physical center of the array. The importance of this

17
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and the reason why it is required will be explained later.

In-line code provides the required "flipping" actions to
expand one or two quadrants into a full 64 x 64 array of in-

formation.

C. BLOCK DIAGRAM

Figure 6 is a block diagram illustrating the infor-
mation flow through the program. The program is explained
block by block in the following text.

1. User input

The program starts by obtaining information specific
for the problem to be run. Using on-screen prompts, the
user selects a problem name, filter type, excitation shape
and size, and values for z; RHO, and MAXTIME. If filter Ip2
is selected for lossy media, the user is further prompted
for a value of the loss coefficient A.

The problem'name assigned must be eight characters
or less and conform to MS-DOS filename specifications. Once
entered, the program concatenates three different extensions
to the filename. This creates the names of the three output
files generated by the program.

The first file created is <filename>.IMP, where
<filename> is the filename entered by the user. The program
stores the 64 x 64 spatial excitation array, s(x,y), in the

default directory under this name prior to taking its two

18
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dimensional FFT. It is provided should the user want to

graphically show the spatial excitation shape.

The second file created is <filename>.TXT. This is

a printable text file which summarizes the user's inputs for

a particular problem.

[ — =
FILTER gp) ~ |FILTER g, |

SSLESS LOSSY | LINEAR |
[A MEDTA

J

L T

CUTPUT
T0O
DIsK

Figure 6. Program block diagram.

The third and last file created is <filename>.DAT.
This file contains the final 64 x 64 array which is the spa-

tial impulse response for the given problem.

19
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All three files are in ASCII text format. They can
be printed using the DOS PRINT command, put into a word
processing program for printing, or put into a graphics
program for conversion into a picture. All figures
generated for this thesis were produced by translating the
<filename>.IMP or <filename>.DAT file to MATLAB format using
the translation program supplied with MATLAB. The converted
files were then read into MATLAB and plotted using the MESH
command. As new, improved, graphic routines for micro-
computers are ‘introduced, a future improvement would be
incorporation of qraphic routines into the program.

' As the program is written, fourteen different source
excitation configurations are allowed, nine of which have
been implemented. The choice of fourteen different'configu-
rations was arbitrary, providing a godd selection of choices

and ease of future expansion. Each of the remaining five

configurations can be implemented by adding its name to the
screen formatting code and writing the FORTRAN code to gen-
erate the excitation shape. The desired source excitation
shape is selected by entering the selection number found
next to the shape's description.

The variable RHO represents the radial distance in
the spatial frequency domain as shown in Equation 12. It is
identified by the Greek character , in Equations 11 through
13 and 16 through 18 but will be referred to as RHO to match

the source code. RHO is used to create a 1 x 64 vector
20 \
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called RHOl1 which in turn is used to generate a 64 x 64 ar-
ray called RHO2. The vector RHO1l is unique since it must
start approximately at -RHO and increment until it is equal
to 0.0 in RHO1(33). From here it continues to increase un-
) til it equals +RHO in RHO1(64). Since the vector is »f even
length, it cannot be formed simply by dividing the entire
range of RHO (-RHO to +RHO) by 64 and using this value as
the increment. . To do so would create equal values in
RHO1(32) and RHO1(33) which defeats the requirement that

RHO1(33) contain singular information, in this case the

value 0.0.

The largest value of time, in seconds, for the time
dimension is represented hy the variable MAXTIME. For each
problem, time starts at the instant that the wave front
first arrives at the.observation plane. This is when time =
Z/C, where C is the sound velocity (1500 meters/second), aﬁd
increments linearly until it equals MAXTIME. To prevent a
run-time error, the user is prompted for a value of MAXTIME
which is greater than Z/C seconds.

The height of the observation plane above the X,Y
pPlane is represented by Z (in meters). It is typically a
small number, several hundredths of a meter, or can be set
to zero. A value of 0.1 meters (10 cm) was used for

debugging the program and producing the results found in the

Numerical Simulations section.
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2. Generate ZPRIME vector

At the completion of user input, the program starts
to generate the required vectors and arrays. The first of
these, the TIME vector, is initialized and then used to
generate the ZPRIME vector. Both vectors are 1 x 64 in size
and represent a series of time steps starting at time = Z/C
and increasing to MAXTIME.

'The program contains a variable called STEP. Its
default value of 4 (which can be changed) sets rows 1
through 4 of the final RESULT array to 2zero after all
calculations have finished. This simulates the step
function H(ct-z). Since any information contained in the
first four rows, is 1lost, these values need not be
calculated. For this reason, TIME starts at TIME(STEP+1),
or TIME(S5), with a value of Z/C seconds, and increments
linearly until it reaches MAXTIME in TIME(64). The smooth
linear progression of time from Z/C to MAXTIME is obtained
using the following code segment:

INC = (MAXTIME - TS)/REAL(NROWS-STEP-1)
DO XX I = (STEP+1),NROWS

TIME(I) = TS + (I-STEP-1) * INC
CONTINUE

where TS = Time Start = Z/C, NROWS

64, and STEP = 4.
As an example let MAXTIME

1.0E~-4 seconds and Z =
0.1 meters as determined by the user. The quantity TS
equals 6.666667E-5 seconds and this value is stored in

TIME(S). Each element of TIME is increased by INC =
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5.649718E-7 until it equals MAXTIME in TIME(64). The

elapsed time for this particular simulation is MAXTIME - TS
- 3.3333333-5 seconds.

The ZPRIME vector is created using values found in
the TIME vector as shown in Equation 14. Each value of TIME
is squared and multiplied by c2. Subtracting z2 from this
product and taking the square root produces a ZPRIME ele-
ment. Continuing with the previous example, two sample
ZPRIME elements are

ZPRIME (6) = SQRT(TIME(6)2 * c2 - 22) = 1.304644E-2
ZPRIME(7) = SQRT(TIME(7)2 * c2 -~ Z2) = 1.848934E-2
The algorithm loops until ZPRIME(STEP+1) through ZPRIME (64)
have been calculated. .
3. Generation of RHO2 array

The next significant step is formation of the RHO2
array. First the RHOl1l vector is created by calculating an
increment and base value using the code

INC = REAL(RHO)/REAL(NCOLS/2~-1)

BASE = REAL(-RHO1l) - INC
Assuming a value of 200 for RHO, INC = 6.451613 and BASE =
-206.451613. This results in a RHOl1 vector starting with
-206.451613 in RHO1(1), with each successive element incre-
mented by INC. This method ensures a value of 0.0 in
RHO1(33), =-200.0 (-RHO) in RHO1(2), and +200.0 (+RHO) in
RHO1(64). As with the TIME vector, simply setting the RHO1

vector to range from -RHO in RHO1(1) to +RHO in RHO1(64)
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would result in identical values in RHO1(32) and RHO1(33).

This would not meet the requirement that RHO1(33) contain
singular information.

After completing the RHOl vector, its values are
used to generate - the RHO2 array. First the RHOl1 vector
values are placed in row 33 of RHO2 and its transpose in
column 33, The program then fills in the blank array
elements in quadrants II and III using the Pythagorean
theorem with the values found in the respective row 33 and
column 33 positions. Continuing with the example using RHO
= 200, the value -206.451613 would be found in elements
RHO2(33,1) and RHO2(1,33) (column major_format). Using the
Pythagorean theorem, element RHO2(1,1) would receive the
value 291.966671. This represents the value of RHO as
calculated radially from  the central positirn of
RHO2 (33,33).

Since the RHO2 array is symmetrical, only quadrants
II and III (left side) must be calculated. Although the
time saved here is small, the algorithm using these values
later in the program needs only the values found in the left
half. Therefore the right side values are not calculated.

4. Spatial excitation generatijon

Generating the spatial excitation array is the next
step. The first five selections represent single piston
spatial excitations centered about position (33,33) on a 64

X 64 base array called PULSE. The five shapes available are
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the square piston, circle piston, gaussian, pyramid, and
truncated-pyramid. All five shapes require the user to
specify the width (or diameter) of the excitation. The
value of width must be an odd integer to ensure symmetry
about PULSE(33,33), and less than or equal to 63 since the
base array size is 64 x 64. Small values between 9 and 15
provide excellent results.

The square and circle selections create a simple
spatial excitation with amplitude = 1.0. A resolution
problem exists with the circular excitation. Simply, it is

impossible to represent a circular shape using a small

number of square elements. The larger the diameter, the

smoother the outer surface becomes, but with a 64 x 64 array
size the range of available diameters is limited. The only
solution is an increase in array size to 128 x 128 o
larger. This is an éxpellent area for future expansion as
micro-computers become faster and less memory limited.

The Gaussian selection creates a circular-shaped
excitation with amplitude following a gaussian distribution.
The spatial excitation is truncated at the user specified
diameter, and its width measured at the 1/e point. This
excitation, as well as the pyramid and truncated-pyramid,
represent non-piston sources with spatial variations in

amplitude.

The pyramid creates a four-sided tapered spatial

excitation with a peak amplitude of 1.0 at the center and




tapering off until it equals 0.0 at the base. The size of

the base is determined by the input value of width. For

example, a pyramid excitation of width 11 would have its
center at PULSE(33,33) and occupy the region bordered by

rows 29 through 37 and columns 29 through 37. The amplitude

would decrease linearly and equal zero at the outer edges of
the above region. The truncated-pyramid is similar except
that the amplitude tapers off at a slower rate until it
equals 0.0 at the array's outer edges. At the specified‘
value of width, the pyramid is truncated, resulting in a
"square house" shape with tapered roof and square sides.

The remaining selections all represent 1ine§r arrays
of five elements each. An individual element size of 5 x 5
located “on 10. unit wide center points was selected for
convenience. Shape’ selections for the individual
excitations é;e square, circular, and gaussian. Two
additional arrays also use 5 square elements, but the
amplitude of the elements are stepped or parabolic in shape.

The stepped array has a center element of amplitude = 1.0,

two adjacent elements of amplitude = 2/3, and two outer
clements of amplitude = 1/3. The five elements thus create
a stepped appearance: /3, 2/3, 1.0, 2/3, 1/3. The
parabolic array is similar to the stepped array, except the
amplitudes follow a parabolic shape.

After the spatial excitation is generated, the two

dimensional Fast Fourier Transform is taken using the IMSL
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routines FFT3D and FFTCC. The routine FFT3D computes the
FFT of a complex-valued two-dimensional array by passing
first the columns and then the rows as individual vectors to
the routine FFTCC which computes the FFT of the vector argu-
. ment. The array returned by FFT3D is complex and has its
peak information located at the outer four corners of the
array, with the largest value in PULSE(i,1). The array is
shifted to bring éhis peak information to the center using
the subroutine SHIFT. This subroutine swaps quadrant I with
quadrant III and quadrant II with quadrant IV, thus trans-
ferring the largest value from element PULSE(1l,1) to element
PULSE(33,33). This is why it is so important to.arranqe all
arrays so their central value is in element (33,33).
5. Filter §,, for lossless media
From this poiht the program branches based on the
filter type selected. The algorithm for the lossless case,
using filter Ebl, is to take a value of ZPRIME, multiply the
RHO2 array by this value and pass each product as the
argument to the IMSL subroutine MMBSJN, where MMBSJN
calculates the Bessel function of the first kind of order
zero for a real number argument. The result returned from
the Bessel function is multiplied by the respective element
in array PULSE and stored in array WORK. The next value of
ZPRIME is selected and the calculations again performed.
As this portion of the program is the most time

consuming, two specific actions were taken to optimize the
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code. As previously explained, the number of rows

identified by STEP are zeroed in the final array. Because
of this, calculations start at row (STEP+1), thus saving the
calculation of 4 rows for each iteration. Also, since the
arrays RHO2 and PULSE are symmetrical in all four quadrants
about element (33,33), only quadrant II needs ¢to be
calculated. With the default 64 x 64 array size and STEP =
4, only 59 (64-STEP-1) subarrays of size 33 x 33 must be
calculated for a total of 64,251 array elements. This
éompares favorably with the 262,144 array elements that
would require calculation if the entire 64 x 64 array was
calculated 64 times. It is important to note that the
single most time-consuming process is the calculation of the
Bessel function.

After'each 33 x 33 subarray is calculated, inline
code is used to fill the entire WORK array. Quadrant II is
flipped to fill quadrant III, then the entire left side is
flipped to fill the right side.

At this point the inverse two-dimensional Fast
Fourier Transform of the WORK array needs to be taken. But
instead of passing the entire array as an argument to a two
dimensional inverse FFT subroutine, the array is processed
one column at a time. Using the IMSL subroutine FFT2C,
which computes the inverse FFT (or FFT) of a complex-valued

vector, each of the 64 columns are passed individually as a

vector. After all the columns are transformed, only one




row, row 33, is passed as an argument. Assuming a symmetri-
cal transducer, row 33 contains information from the central
line across one axis of the observation plane. The inverse
transform of this row represents the field values along this
- line for the specific value of ZPRIME, and it is this
| information that is used to sequentially build the final
array called RESULT. The 59 iterations completed by the

above algorithm will each supply one row, corresponding to

an instant of time, in array RESULT. Specifically, with the’
default value of STEP, rows 5 (STEP+1l) through 64 (NROWS)
are filled.

After completing row 64, the number .of . rows
identified by STEP are set to zero as they do not contain e
any information. The entire RESULT array is then saved to
disk, and the program terminates normally.

6. FEilter d,, for lossy media |

In the second case, using filter sz for media with
linear loss coefficient, the algorithm has two additional
steps. The program implements Equation 17 and therefore
must test each argument for RHO greater than AC/2. For
RHO > AC/2, the argument is paséed to the IMSL Bessel
function subroutine MMBSIN as in the lossless case. But, if
RHO < AC/2, the argument is instead passed to the IMSL
subroutine MMBSIN which calculates the modified Bessel
function of the first kind of order zero. The result

returned from either Bessel function is multiplied by the
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respective element of PULSE. Then, as shown in Equation 17,
the product is multiplied by an exponential term prior to
storing in array WORK. This is the second difference in the
lossy case.

The algorithm loops, as in the lossless case, to
£ill the entire RESULT array. After saving the RESULT array

on disk, the program terminates normally.

[$]
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IV. NUMERICAL SIMULATION

After careful debugging and testing on a point by point
basis, the program was used to calculate the spatial impulse
response for various source excitations. For each excita-
tion shape, both the lossless and lossy case were calculated
and the results plotted. The plots show the amplitude of
the wave plotted against cross-direction and time at an ob-
servation plane located above the X,Y plane. In all calcu-
lations the height of the observation plane, 2, is 10 cm
above the source plane. . The value of A used for the lossy
cases was 8.0E-3. This value was selected as a compromise
and arrived at using triél and error. Smaller values of A
caused only minor variations in’shape while larger values
caused gross distortipn}. All problems, unless noted other-
wise, are calculated for a MAXTIME of 1.5E-4 seconds. Thus,
with a Z value of 10 cm, each result runs from a starting
time = Z/C = 6.666667E-5 seconds to 1.5E-4 seconds, a dura-
tion of 8.333333E-5 seconds.

As previously explained, all plots were obtained using
the MATLAB MESH command. Two limitations exist with the
MESH routine that require further explanation. The first
limitation is the way MATLAB sizes the plot. MATLAB uses
input array values to fill a window of pre~-determined si:ze.

This fixes the height of the plot so an excitation with
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amplitude equal to 1.0 will plot identically to an

excitation with amplitude other than 1.0. The second
limjtation builds on the first: MATLAB does not show
numerically scaled axes when plotting an array of data. If
it did, the different amplitudes for identically shaped
plots would be apparent.

An alternative way to obtain numerical information was
found. Using the PLOT command, MATLAB has the ability to
plot a vector in the X,Y domain with numerically scaled
axes. Putting an array of data into PLOT creates a side
view, plotting successive "slices" of the array with time
increasing in the positive X direction. Using this tech-
nique, amplitude values could be obtained for a given plot.
Since shape is the primary interest, amplitude information
obtained in this manner was adequate. Three plotted arrays
(Figures 9, 11, and 15) are included for illustration.

Execution times were all less than the stated goal of
thirty minutes, with an average of twenty-five minutes.
These times were obtained using an AT&T 6300 micro-computer
operating at 8 MHz. An 8087 numerical co-processor chip was
installed and used to increase performance. Similar
performance can be obtained with fast IBM XT compatibles or
AT class micro-computers. The next Ggeneration of
micro-computers utilizing the Intel 80386 microprocessor are

the logical choice for continued program development.
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A. CLASSICAL EXAMPLES

The first two source shapes presented are the square

piston and circular piston.

- Figure 7. Square piston spatial excitation.

Figure 7 shows graphically the source excitation shape
for a square transducer of width 11 and amplitude 1.0. The
excitation is centered over the base array's central ele-
ment, PULSE(33,33). In Figure 8 the calculated spatial im-
pulse response for the square transducer in lossless media

is shown, as is the array's orientation with time and space.
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This orientation of time aﬂd space applies to all spatial
impulse response plots. The origin of the time axis starts
at Z/C where the potential is known to be a replica of the
excitation source shape for 1lossless media. As time
progresses, the potential is reduced until it forms two out-

ward traveling "tails". As expected, the "tails" are square

o
r’!ff//f’ffffi"

I
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ihﬁaﬂd’(J#“

time

Figure 8. Field for square transducer (lossless case).

to match the spatial excitation shape, and slowly attenuate
with time in the lossless case. Numerical information can

be obtained from Figure 9 which is the side view of the
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plot in Figure 8. The step function is clearly visible as

is the jump in potential to 1.0 in row 5. From this point
the potential peaks at a value slightly greater than 1.0 and
then drops rapidly. At infinity the tails should reduce to

: Z@ro.
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Figure 9. Side view for lossless case.

In Figure 10 the same excitation has been analyzed for
the lossy case. Comparing the shapes in Figures 8 and 10
reveals two distinct differences. The "tails" are no longer

square but have taken on a triangular appearance. Larger
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values of A will produce a sharper triangular shape. The

second major difference concerns the region between the

tails. In the lossless case this region was at zero poten-
tial. 1In the 1lossy case, the region does not approach zero

but instead fills in, developing a shape of its own. )

. - W

' Figure 10. Field for square transducer (lossy case).

Another major difference is discovered when comparing
Figures 9 and 11. Where the initial amplitude for the loss-
less case was 1.0, the amplitude of the spatial excitation,

\ the initial amplitude for the lossy case has been reduced to
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approximately 0.30. This reduction in amplitude was ob-
served for all test cases with a linear loss coefficient.
The results obtained using a circular transducer are
similar to those obtained with the square transducer. The-
spatial excitation for a circular transducer of width 15 and

amplitude 1.0 is shown in Figure 12. Here a width of 15 was

0.3}

o
o -
ra Py
1 |

mMoC—H—rov<>»
| s

0 10 20 30 40 50 60
RELATIVE TIME

Figure 11. Side view for lossy case.

used to improve the resolution of the circular excitation.
The spatial impulse response using this source is shown in

Figure 13. Comparison of Figures 8 and 13 illustrates the
37
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‘ differences between the spatial excitation shapes. The ma-
jor difference is the tails, which now have a circular
cross-sectional shape. Some minor variations can also be
observed in the large initial response early in time.
Figure 14 shows the spatial impulse response, using the :
circular excitation of Figure 12, for the lossy case. The

previous comments for the square transducer concerning the

Figure 12. Circular piston spatial excitation.

difference in amplitudes and shape of the "tails" for the

lossless and 1lossy cases also apply to the circular




transducer. Figure 15 is a side view plot of Fiqure 14

showing the reduction in amplitude is also present with the

circular transducer.

The results obtained when using the square-piston and

circular-piston spatial excitation for both lossless and

lossy media compare favorably with those obtained by Guyomar

and Powers [Refs. 1-3,9]. Based on these results, it was

determined that the program correctly implemented the

propagation models, and therefore could be used to compute

the spatial impulse response using new types of excitation.
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Figure 13. Field for circular transducer (lossless case).
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B. NEW EXCITATION SHAPES

The program has to ability to analyze any excitation
source shape that will fit on the 64 x 64 base array. Two
new single excitation shapes and four multiple element exci-

tation shapes are in the program. The results for three of .

Figure 14. Field for circular transducer (lossy case).

these, the pyramid, the 5 element linear array with constant
amplitude, and the 5 element linear array with stepped am-

plitude are included.




A pyramid shaped spatial excitation of width 11 and am-
plitude 1.0 is shown in Figure 16. The computed spatial im-
pulse response for this excitation in lossless media is

shown in Figure 17.

Since this particular waveshape has a
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Figure 15. Side view for lossy case.

low spatial frequency content, the shape of the wave stays
much the same for small values of time. Figure 18 shows the
spatial impulse response for the same pyramid excitation in

lossy media.
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Figure 19 shows the S-element linear array configura-
tion. PFor this array the elements are each 5 x 5 with their

centers positioned 10 units apart. This produces a space of

5 units between each element. The calculated spatial im-

pulse response for this excitation is shown in Figure 20.

Figure 16. Pyramid shaped spatial excitation.

The shape for each individual excitation is similar to the
single excitation response in Figure 8 until the tails start

to spread out and interfere with each other. 1In the lossy
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case, Figure 21, the pattern is similar but with increased

interference in the region between the individual responses.

v }!"’ /““ (‘““' ;’ &
I
I

!
I

s

Figure 17. Field for pyramid excitation (lossless case).

The spatial excitation for the last test case presented
is shown in Figure 22. This is a 5-element linear array
similar to Figure 19 but with stepped amplitude. The center
element has amplitude of 1.0 as before. The two elements .
adjacent to the center have amplitudes of 2/3, and the outer )
two elements have amplitudes of 1/3. This particular case t

is presented to show the flexibility of the program. Figure !
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Figure 19. Excitation for five element linear array.
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Figure 20. Field for five element linear array
(lossless case).
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Figure 21. Field for five element linear array
(lossy case).
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Figure 22. Excitation for five element linear array
with stepped amplitude.




*'t f' (’-‘r" t‘,‘T-:::"
““] f; fm i

! ‘ "’) by fl;,’ 5 VV...
" Ili{) ! ’? »-))V o jjﬁ‘? :, ;:;/{ % S

:' :‘;":”2,-" & “!}/ :,,’:9(-"; ', ‘-" :'-v"‘ P17
liii: .t! il
"‘ / (2% 'r -"/)

J),«a.
l s _ﬂ

Figure 23. Field of five element linear array with
stepped amplitude (lossless case).
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Figure 24. Field for five element linear array with
stepped amplitude (lossy case).
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V. SUMMARY

This thesis has investigated the ability to perform
complex simulations of scalar wave propagation through loss-
less media and media with a loss coefficient linear in fre- '
quency on a micro-computer. A program was written in
Microsoft Fortran V3;31 which allows the user to select or
specify the initial conditions and media type, then calcu-
lates the resulting spatial impulse response. The set goal ]
of thirty minutes for each simulation was achieved through
code optimization and partial array calculation perpitted by

éymmetry. .

S -

After initial program verification, the spatial impulse

responses for both squareriston and circular-piston spatial

- gt

excitation were computed. The resuité obtained agreed with ]
previously accepted results. The spatial impulse response
was then calculated for three new spatial excitation
sources, a pyramid-shaped excitation, a five element linear
array excitation with ccnstant amplitude, and a five element
linear array excitation with stepped amplitude. The
computed spatial impulse response for all simulations have
been plotted and are presented for visual interpretation.
Future development should concentrate in two areas.
First, the third model for media with a loss coefficient

which is quadratic in frequency must be added to the

AR ]
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progranm. This will provide all the tools necessary for

analysis of wave propagation through air, liquid, gas, and
biological tissue. Second, the base array size must be in-
creased beyond the present 64 x 64. An array size of 64 x
64 proved adequate for program development and testing but
increased size, and therefore increased resolution, is nec-
essary for serious analysis and evaluation. The limitation
in all prese'ntly available micro-computers which restricts
array size is processing speed. For example, increasing ar-
ray size to 128 x 128 would increase execution time by a
factor of four, requiring almost two hours for each simula-
tion run. Transferring program developme_nt to one of the
newer micro-computers. utilizing the Intel 80386 micro-
processor will allow larger array sizes while maintaining

reasonable execution times.
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APPENDIX: FORTRAN SOURCE CODE

This appendix contains the FORTRAN source code for the
program developed in the thesis. This program was compiled

and run using Microsoft Fortran Version 3.31.

SLARGE
SNOFLOAICALLS

AERERAAEARAN AN AT ANONE AR N AN AT AN AN NN AN SO NN IR ENE IS AN A OC RN N NN Y

COMMENTS :
THIS PROGRAM WAS WRITTEN BY LT. TIMOTHY MERRILL, USN

IT IS WRITTEN IN MICROSOFT FORTRAN V3.3i AND IS CAPABLE OF RUNNING
ON ANY IBM OR COMPATIBLE MICRO-COMPUTER WITH LITTLE OR NO
MODIFICATION. THE USE OF A 8087 NUMERICAL CO-PROCESSOR IS HIGHLY
RECOMMENDED TO REDUCE EXECUTION TIME.

TO REDUCE EXECUTION TIME THE PROGRAM IS WRITTEN TO USE A 84 X 84
BASE ARRAY SIZE, AND IS WRITTEN AS SINGLE PRECISISON. FUTURE
MODIFICATION TO A 128 X 128 (OR LARGER) ARRAY SIZE AND/OR DOUBLE
PRECISION IS VERY EASY.

THE PROGRAM CALLS THE FOLLOWING SUBROUTINES WHOSE SOURCE CODE IS
NOT INCLUDED HERE:

FFT2C IMSL ROUTINE TO COMPUTE FFT OF A COMPLEX
VALUED SEQUENCE OF LENGTH EQUAL TO POWER
OF TWO '

FFT3D IMSL ROUTINE TO COMPUTE THE FFT OF A COMPLEX
VALUED 1,2, OR 3 DIMENSIONAL ARRAY

FFTCC IMSL ROUTINE CALLED BY FFT3D

MMBSJN IMSL ROUTINE TO CALCULATE BESSEL FUNCTION OF
THE FIRST KIND OF ZERO ORDER WITH REAL ARGUMENT

MMBSIN IMSL ROUTINE TO CALCULATE MODIFIED BESSEL

FUNCTION OF THE FIRST KIND OF ZERO ORDER WITH
REAL ARGUMENT

T.D.M. 20 JANUARY 1987

LA d AL d S b2 dd 22 S e 2 D D2 g Iy 2 gl g T T T T T g

OO0 00000 a0a00qa0a0aa0aaq0a0aqaaqa0aqa0g-aaoaoanoqaqaonaananaoanonnnan

REAL A,A2,B,B1,BASE,BI,BR,C,C2,CENTER
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L . PRI BRI IR T AT AT AT N AT \ NABT A RN ANF AT I REA

BWIDTH, INC,MAXTIME, MEANX, PI
R123,RESULT,RHO1,RHO2,RWK, SIGMA, SIGMA2
TEMP1, TEMP2, TEMP3, TEMPA , TEMPS

TIME, TS, TWOPI X, Y, 2, 22, ZFRIME, TVECTR

C123,CwWK,CTEMP1, CTEMP2,, CTEMP3
PULSE, WORK

COL,FTIYFE,H,I,IER,IJOB, IWK, IWK1,J -
M, N, NAMLEN,NCOLS , NROWS ,R1,R2
ROW,RHO, SHAPE, STEP,WIDTH, XPOS, YPOS

DIMENSION CWK(64),IWK(534),IWK1(7),RHO1(64) ,RWHK(534)
DIMENSION PULSE(84,64) ,RESULT(64,64),RBO2(64,64)
DIMENSION TIME(84),WORK(64A,64),ZPRIME(64)

CHARACTER FN*8,FNAME*8,T1,T2
CHARACTER EXT1%4 ,EXT2%4 ,EXT3%4 ,EXT4%4
CHARACTER FNAME1*12, FNAME2#%12, FNAME3%12, FNAME4*12

ARRRNARRRARAAAAAAARTANRARRARANAARNRERARNAARRTNREARNNA AT AAN AR R AR

CONSTANTS
AARBERANARRARRANEAR NIRRT RANLAN AR AARNRRRRAANNNNNRARRAN AR A
c SPEED OF SOUND IN VACUUM (1500 METERS/SEC)
c2 SPEED OF SOUND SQUARED (METERS%*2/SEC**2) e
g HALF OF NROWS (OR NCOLS) FLUS 1 -
M INTEGER USED TO SPECIFY SIZE OF VECTOR SENT TO
FFT2C (REFER TO IMSL SOURCE CODE FOR FFTZC)
MEANX USED FOR GAUSSIAN IMPULSE FUNCTION .
N USED ON BESSEL FUNCTION CALLS TO SIGNIFY ZERO ORDER
NCOLS DEFAULT NUMBER OF COLUMNS
NROWS DEFAULT NUMBER OF ROWS
"SIGMA  USED FOR GAUSSIAN IMPULSE FUNCTION
SIGMA2 SIGMA SQUARED
STEP  NUMBER OF ROWS SET TO ZERO - SIMULATES STEP FUNCTION
TWOPT 2 * PI '
"Qﬁ"..*"ﬁ"ﬁ'ﬁtﬁ'#ﬁt‘ﬁ.ﬁ"*".'ﬁﬁ'*iﬁ""'ﬁﬂt*tﬁ'**ﬁ'*‘iiﬁﬁ".‘_
C = 1500.0 ’ '
K=1
M=8
STEP = &
NROWS = 64
NCOLS = 64
PI = 3.14159265
SIGMA = 1.0
MEANX = 0.0
C2=C*cC .
H = NROWS/2 + 1
TWOPT = 2.0 * PI
SIGMA2 = SIGMA * SIGMA -

aaoaoao0a0aa0ao0a0a0a0a000o0a0aa0
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e

c WAV AR AN AR TN AAR AR AR A AN AR A AR AN R A AR AR RN ORI NORA A
c GEY USER INPUT
c AT TRA RN RN A AR E VAN AN AR AR AR A AN AN AR AN ISR RO RN PR T TR AR
XFOS = 1
YPOS = 2
’ CALL CLRSCR

CALL GOTOXY(1,1)
WRITE(*,*) 'ENTER REQUESTED VALUES. RECOMMENDED VALUES IN ( )’
- CALL GOTOXY(YFPOS,XPOS)
WRITE(*,*) ’ENTER FILENAME (8 CHAR M/ ¥): °*
CALL GOTOXY(YPOS,XPOS+32)
READ(*,* (A)*) PN
CALL GOTOXY(YPOS+1,XPOS)
WRITE(%,*) ’SELECT FILTER TYPE'
CALL GOTOXY(YPOS+2,XPOS+8)
WRITE(%,#) ’'<1> GP1 (LOSSLESS MEDIA)’
CALL GOTOXY(YPOS+3,XPOS+8)
WRITE(*,%) '<2> GP2 (LOSSY MEDIA)’
CALL GOTOXY(YPOS+4,XPOS)
WRITE(*,9) ' ENTER 1 GR 2: '
READ(*,%) FTYPE
CALL GOTOXY(YPOS+S,XPOS)
WRITE(*,*) 'SELECT SOURCE SHAPE'’
CALL GOTOXY(YPOS+6,XPOS+4)
WRITE(%,*) ’<1> SQUARE’
.« CALL GOTOXY(YPOS+7,XPOS+4)
WRITE(*,*) '<2> CIRCLE'
CALL GOTOXY(YPOS+8,XPOS+4)
WRITE(*, %) '<3> GAUSSIAN’
CALL GOTOXY(YPOS+9,XPOS+4)
WRITE(®,*) ‘<4> PFYRAMID’
CALL GOTOXY (YPOS+10,XPOS+4)
WRITE(®,*) '<5> TRUNCATED PYRAMID'
CALL GOTOXY(YPOS+11,XPOS+4)
WRITE(®,*) '<8> 5 PULSE LINEAR ARRAY (SQ.)°
CALL GOTOXY(YPOS+12,XPOS+4)
WRITE(*,*) '<7> 5 PULSE LINEAR ARRAY (GAUSS.)'
CALL GOTOXY(YPOS+8,XPOS+40)
WRITE(*,%) * <8> S PULSE LINEAR ARRAY (STEFPED)’
CALL GOTOXY (YPOS+7,XPOS+40)
WRITE(*,*) ' <9> S PULSE LINEAR ARRAY (PARABOLA)’
CALL GOTOXY(YPOS+8,XPOS+40)
WRITE(*,*) '<10> RESERVED FOR FUTURE USE’
CALL GOTOXY(YPOS+9,XPOS+40)
WRITE(® %) *<11> RESERVED FOR PUTURE USE’
CALL GOTOXY(YPOS+10,XPOS+40)
- WRITE(*,*) ’<12> RESERVED FOR FUTURE USE'
CALL GOTOXY(YPOS+11,XPOS+A0)
WRITE(*, %) ’<13> RESERVED FOR FUTURE USE’
‘ CALL GOTOXY(YPOS+12,XPOS+40)
WRITE(*,+) ’<14> RESERVED FOR FUTURE USE’
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CALL GOTOXY(YPOS+13,XPOS)
WRITE(*,8) ' ENTER SELECTION: *
READ(*,*) SHAPE
IF (SBAPE .LT. 6) THEN
CALL GOTOXY(YPOS+14,XPOS)
WRITE(*,9) ' ENTER SOURCE SIZE (ODD INTEGER <= 63) (11): '
READ(*,*) WIDTH
noIr
CALL GOTOXY(YPOS+1S,XPOS)
WRITE(*,*) 'ENTER RHO (200): '
CALL GOTOXY(YPOS+15,XPOS+26)
READ(*,*) REO
CALL GOTOXY(YPOS+16,XPOS)
WRITE(*,*) 'ENTER Z (METERS) (0.1): ’
CALL GOTOXY(YPOS+16,XPOS+26)
READ(*,*) 2
CALL GOTOXY(YPOS+17,XPOS)
WRITE(*,7) Z/C
CALL GOTOXY(YPOS+17,XPOS+44)
READ(*,*) MAXTIME
IP (FTYPE .EQ. 2) THEN
CALL GOTOXY(YPOS+18,XPOS)
WRITE(*,*) 'ENTER VALUE FOR A (0.008): '
CALL GOTOXY(YPOS+18,XPOS+26)
READ(*,*) A ,
A2 = A » A . -
EpIr :

FORMAT(’ ENTER MAXTIME (REAL > ’,1PE14.8,'):’) .
FORMAT(A\) ‘

BWIDTE = REAL(WIDTH)/2

2=z

18 = Z/C

CALL CLRSCR

CALL GOTOXY(1,1)

WRITE(*,%) 'CALCULATING...’

o N O

B T L e
INITIALIZE ARRAYS AND VECTORS TO ZERO
L I S TP TP R T s
DO 5 ROW = 1,NROWS
TIME(ROW) = 0.0
RBOL(ROW) = 0.0
DO 3 COL = 1,NCOLS
PULSE(COL,ROW) = (0.0,0.0)
WORK (COL,ROW) = (0.0,0.0)
RESULT(COL,ROW) = 0.0
RHBO2(COL ,ROW) = 0.0
S CONTINUE
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AAVIASRAAAAAN AR AR A RN ACARTR AR AR NN ANEAA NN NN R RN AT AN AN IANAAANAN

(+
c OPEN OUTPUT FILES
c RERRRRAERN e e S T T ARRANARARERRANAARRNRD
c PROGRAM GETS NAME OF PROBLEM <FN> FROM USER AND FORMS:
c PILENAME . EXT FILE DESCRIPTION
c
c <FN>, IMP ARRAY OF INPUT IMPULSE FUNCTION
c <FN>.TXT SUMMARY INFORMATION FOR THIS PROBLEM
c <FN>.DAT FINAL RESULTS ARRAY
c
c NOTE 1: ALL FILES ARE IN ASCII TEXT FORMAT
[ o4 ARNERERANRARARAARTEEANAARANAAAAANRAAANRARAANTACARRARAAERANVRAA NS
EXT1 = ' . IMP’
EXT2 = ' . IXT’
EXT3 = ’ DAT’
RAMLEN = 0
Il ="'’
DO 10 I=1,8
T2 = FN(I:I)

IF (T2 .NE. T1) THEN
FNAME(I:I) = FN(I:I)
NAMLEN = NAMLEN + 1
ENDIF
10  CONTINUE
FRAME1(1:NAMLEN) = FNAME
FNAMEL(NAMLEN+1:NAMLEN+A) = EXT1
FNAME2(1:NAMLEN) = FNAME
FRAME2 (NAMLEN+1: NAMLEN+4) = EXT2
FNAME3 (1:NAMLEN) = FNAME
FNAME3 (MAMLEN+1: NAMLEN+4) ~ EXT3
IF (NAMLEW .LT. 8) THEN
FNAMEL(NAMLEN+5:12) = ° '

FRAME2 (NAMLEN+5:12) = ' '
FNAME3 (NAMLEN+5:12) = ’
ENDIP

OPEN(1,FILE=FNAME], STATUS='NEW')
- OPEN(2,FILE=FNAME2,STATUS='NEW')
OPEN(3,FILE=FNAME3,STATUS="'NEW')

REARRRRANTARRENAARAAAARAAAARRAARANAAIAANRAAANAAAAARAARRANNRAN RO

WRITE HEADER INFORMATION TO <FN>.TXT

B S L T L T T e
WRITE(2,11) FN
IF (FIYPE .EQ. 1) THEN
WRITE(2,*) ' FILTER IS GP1 FOR LOSSLESS MEDIA’
ELSEIF (FTYPE .EQ. 2) THEN
WRITE(2,*) ' FILTER IS GP2Z FOR LOSSY (LINEAR) MEDIA'
ENDIF
IF (SHAPE .EQ. 1) THEN
WRITE(2,12) WIDTH,NCOLS, NROWS

O 000
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11
12

13

14

111

P . .

112
113
¢ 114
N 115
118
l 13
16

17

19

ELSRIF (SHAFE .BQ. 2) THEN

WRITE(2,13) WIDTH,NCOLS, XROWS

ELSKIF (SHAFE .BQ. 3) THEN

WRITE(2,14) WIDTH,NCOLS, NROWS

KLSEIF (SHAPE .EQ. 4) THEN

WRITE(2,111) WIDTH,NCOLS,

ELSEIF (SEAPE .BEQ. 5) THEN

WRITE(2,112) WIDTH,NCOLS,

ELSEIF (SHAPE .BEQ. 8) THEM
WRITE(2,113)

ELSEIF (SHAPE .RXQ. 7) THEN
WRITE(2,114)

ELSEIF (SHAPE .EQ. 8) THEN
WRITE(2,115)

ELSEIF (SHAPE .BEQ. 9) THEN
WRITE(2,116)

ENDIF

WRITE(2,15) STEP

WRITE(2,16) Z

WRITE(2,17) RHO

WRITE(2,18) MAXTIME

IF (FIYPE .EQ. 2) THEN
WRITE(2,19) A

ENDIF

FORMAT (' SUMMARY INFPORMATION FOR ‘,A/)

FORMAT(*  IMPULSE FUNCTION
+E oF' ,I13,’ X’ ,1I3)
FORMAT(®*  IMPULSE FUNCTIION

+BASE OF’,I3,’ X',I3)
FORMAT(*  IMPULSE FURCTION
+BASE OF’,13,' X’,1I3)

FORMAT(’  IMPULSE FUNCTION
+8 0r,13,' X',13)
FORMAT(’  IMPULSE FUNCTION

+ON A BASE OF’,I3,’ X',I3)

IS A SQUARE WITH WIDTH ’',I2,' ON A BAS
IS A CIRCLE WITH DIAMETER ’,I2,’ ON A
IS GAUSSIAN WITH DIAMETER ’,I2,” OM A
IS PYRAMID WITH WIDTH ’,I2,’ ON A BAS
IS TRUNCATED PYRAMID WITH WIDIH ’,I2,’
IS 5 PULSE LINEAR ARRAY WITH SQUARE PU
IS 5 PULSE LINEAR ARRAY WITH GAUSSIAN
IS 5 PULSE LINEAR ARRAY WITH STEPPED A

IS 5 PULSE LINEAR ARRAY WITH PARABOLIC

FORMAT('  IMPULSE PUNCTION
+LSES")

FORMAT(®  IMPULSE FUNCTION
+PULSES’)

FORMAT(’  IMPULSE FUNCTION
+MPLITUDE’ )

FORMAT(’  IMPULSE FUNCTION

+ AMPLITUDE’)

FORMAT(’  STEPSIZE = *,I2)
FORMAT(’' Z = ', 1PE14.7,’ METERS')
PORMAT(' RHO = ', I3)

PORMAT (' MAXTIME = ' ,1PE14.7,' SECONDS’)
FORMAT(’ A = ', 1PE14.7)
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c D e T s et T e
c INITIALIZE TIME VECTOR
c T e T T T L P T e p s

INC = (MAXTIME-TS)/REAL (NROWS-STEP-1)
DO 20 I = (STEP+1),NROWS
TIME(I) = TS + (I-STEP-1) * INC
20 CONTINUE

o L Ty T T Py
OUTPUT TIME SUMMARY TO <FN> TXT
b L S L Sy T Ty S
WRITE(2,*)
WRITE(2,9) 'TIME SUMMARY:'
WRITE(2,21) T8, STEP+1
WRITE(2,22) INC
21 FORMAT(’  ZERO TIME STARTS AT T=Z/C =’ ,1PE14.7,’ SECONDS IN ROW(’
+,12,')") .
FORMAT ('’ AND INCREMENTS BY ' ,1PE14.7,’ SECONDS PER ROW’/)

aaoaa0n

22
c
c i T P T o e ey
c CREATE Z-PRIME VECTOR: SQUARE EACH VALUE OF TIME,
c MULTIPLY BY C SQUARED AND SUBTRACT Z SQUARED. THEN
c TAKE SQUARE ROOT.
c N ey B T e vy
DO 30 I = (STEP+2),NROWS
ZPRIME(I) = SQRT((TIME(I) * TIME(I) * C2) - Z2)
30 CONTINUE

ARRRAEEAR AN AANEAANA RN RN RAAANA AR A AN A RAAAARRAAARANAAAAARANEAAANNNAN

c
c
c INITIALIZE REO VECTOR AND GENERATE 33 X 64 RHO MATRIX
c ONLY ONE BALF OF THE MATRIX HAS T0 BE CALCULATED SINCE
c THE OTHER SIDE IS SYMMETRICAL
c .m‘“.*".i“'ﬁ'“t'ﬁ'ﬁ"..tti"'*tﬁ*tt"t""*ﬁ"*..iﬁﬁ.'t't

INC = REAL(RBO)/REAL(NCOLS/2-1)

BASE = REAL(-RHO) - INC

RHO1(1) = BASE

DO 50 I = 1,NCOLS-1

RBO1(I+1) = BASE + I * INC

30  CONTINUE

DO 60 I = 1,NROWS

RBO2(H,I) = RHO1(I)

RHOZ(I,H) = RHOL(I) '
80  CONTINUE

DO 70 ROW = 1,NROWS
DO 70 COL = 1,H .
RHO2(COL,ROW) = SQRT(RHO2(COL,H)**2 + RHO2(H,ROW)**2) '
70 CONTINUE
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WRITE(2,9) °'RBO SUMMARY:'
WRITE(2,44) H,NCOLS/2+1
WRITE(2,41) BASE
WRITE(2,42) INC
WRITE(2,43) RBO2(1,1)

4l FORMAT(’ BASE VALUE = (-RHO - INC) = ’,1PE14.7)
42 FORMAT(’ INCREMENT = RHO/(84/2 -~ 1) = ' ,1PEl4.7)
43 FPORMAT(’ MAXIMUM VALUE IS AT RBO2(1,1) = ’',1PE14.7)

L1 PORMAT(’  ARRAY IS CENTERED ABOUT (’,I3,’,’,I3,')’)

AEANARARAAANANAAARARRNAARARAANARAARARAAARRAANRAARRRAAANRAAA TR bw

GENERATE EXCITATION - CENTER POINT MUST BE AT (33,33)
B T L 2

oOn0o0o0aqaa0n

*%+  GENERATE SQUARE EXCITATION  #ww
IF (SHAPE .EQ. 1) THEN
DO 1200 ROW = (NROWS/2+1-WIDTH/2), (NROWS/2+1+WIDTH/2)
DO 1200 COL = (NCOLS/2+1-WIDTH/2), (NCOLS/2+1+WIDTH/2)
PULSE(COL,ROW) = (1.0,0.0)
1200 CONTINUE
c-
1+ #%¢  GENERATE CIRCULAR PULSE  ***
ELSEIF (SEAPE .EQ. 2) THEN
DO 1300 ROW = (NROWS/2+1-WIDTH/2), (NROWS/2+14WIDTH/2)
DO 1300 COL = (NCOLS/2+1-WIDTH/2), (NCOLS/2+14WIDTB/2) )
IF (SQRT(REAL(COL-H)**2+REAL(ROW-H)**2) .LT. HWIDTH) THEN
PULSE(COL,ROW) = (1.0,0.0)

END IF :
1300 CONTINUE
c .
C e*%  GENERATE CIRCULAR EXCITATION WITH GAUSSIAN AMPLITUDE  *#+

ELSEIF (SHAPE .EQ. 3) THEN
TEMP1 = 1/SQRT(TWOPI*SIGMA2)
TEMPZ = 1/(2*SIGMA2)
DO 1400 ROW = (NROWS/2+1-WIDTH/2), (NROWS/2+1+WIDTH/2)
DO 1400 COL = (NCOLS/2+1-WIDTH/2), (NCOLS/2+1+WIDTH/2)
TEMP3 = SQRT(REAL (COL-H)**Z+REAL(ROW-H)**2)
IF (TEMP3 .LT. BWIDTH) THEN
PULSE(COL ,ROW) = TEMP1*EXP(-TEMP2*(TEMP3-MEANX)**2)

ENDIF
1400 CONTINUE
c
c w&%*  GENERATE PYRAMID EXCITATION  #w»
ELSEIF (SHAPE .EQ. 4) THEN

R1 = (NROWS/2) - (WIDTH/2)

R2 = (NROWS/2 + 2) + (WIDTH/2)

INC = 1.0/(WIDTH/2 + 1)




DO 1300 I = 1,WIDTH/2
DO 1500 ROW = R1+I,R2-1
DO 1500 COL = R1+I,R2-I
PULSE(COL,ROW) = INC * I
1500 CONTINUE
PULSE(H,R) = 1.0

c **%  GENERATE TRUNCATED PYRAMID EXCITATION  #ww
ELSEIF (SHAPE .EQ. 3) THEN
Rl = (NROWS/2) - (WIDTH/2)
R2 = (NROWS/2 + 2) + (WIDTH/2)
INC = 1.0/(NCOLS/2)
BASE = (NCOLS/2 - WIDTH/2 + 1) * INC
Imc - 1.0/8
DO 1600 I = 1 ,WIDTH/2
DO 1600 ROW = R1+I,R2-I
DO 1800 COL = R1+I,R2-I
PULSE(COL,ROW) = BASE + INC * I
1800 CONTINUE
PULSE(H,H) = 1.0

c *%®*  GENERATE S5 ELEMENT LINEAR ARRAY - SQUARE  #ww
ELSEIF (SHAPE .EQ. 8) THEN
WIDTH = 3
DO 1700 I = 1,WIDTH
COL =1I+* 10
DO 1700 J = 1,WIDTH
COL = COL + 1
DO 1700 ROW = (H - WIDTH/2),(H + WIDTH/2)
PULSE(COL,ROW) = (1.0,0.0)
1700 CONTINUE
c .
c ##%*  GENERATE 5 ELEMENT LINEAR ARRAY - GAUSSIAN  #w#
ELSEIF (SHAPE .EQ. 7) THEN
WIDTH = S
TEMP1 = 1/SQRT(TWOPI*SIGMA2)
TEMP2 = 1/(2*SIGMA2)
DO 1800 ROW = (NROWS/2+1-WIDTH/2), (NROWS/2+1+WIDTH/2)
DO 1800 COL = (NCOLS/2+1-WIDTH/2), (NCOLS/2+14WIDTH/2)
TEMP3 = SQRT(REAL(COL-H)**24REAL(ROW-H)**2)
IF (TEMP .LT. REAL(WIDTH/2)) THEN
TEMP4 = TEMP1*EXP(-TEMP2*(TEMP3-MEANX)**2)
PULSE(COL-20,ROW) = TEMPA
PULSE(COL-10,ROW) = TEMP4
PULSE (COL , ROW) = TEMP4
PULSE(COL+10,ROW) = TEMP4
PULSE(COL+20,ROW) = TEMP4
ENDIF
CONTINUE




c we¢ GENERATE 5 ELDMENT LINEAR ARRAY - STEPPED ***
ELSRIF (SERAFE .3Q. 8) THEN
WIDTH = S
TEMPL = 1.0/3.0
TEMP2 = 2.0/3.0
TEMP3 = 1.0
DO 1900 COL =~ 1,WIDTH
DO 1800 ROW = (H-WIDTH/2), (B+WIDTH/2)
PULSE(COL+10,ROW) = TEMP1
PULSE(COL+20,ROW) = TEMP2
PULSE(COL+30,ROW) = TEMP3
PULSE(COL+40,RON) = TEMP2
PULSE(COL+30,ROW) = TEMP1
1900 CONTINUE

*w» LINEAR ARRAY OF 5 ELEMENTS - PARABOLIC AMPLITUDE  #+

IMPLEMENTS THE FOLLOWING FORMULA:

(X ~ H)**2 = -4 * P » (Y - K)
WITB

BE=0

P = 2568

K = 258
TO GIVE A DOWNWARD OPENING PARABOLA THAT HAS A PEAK OF 1.0
AND IS EQUAL TO ZERO AT X = -32, 32 (ROWS 2 AND 64).
EQUATION IS EVALUATED AT X = 0, 10 AND 20.

anoaooao0oao0aaoan0oan

5 ELSEIF (SHAPE .EQ. 9) THEN

WIDTE = 5

TEMPL = (4.%256. - 20%%2)/(4.*256.)

TEMP2 = (4.%256. - 10%%2)/(4.%256.)

4 : TEMP3 = (4.4258. - 0%%2)/(4.%256.)

N : DO 2000 COL = 1,WIDTH

P DO 2000 ROW = (H-WIDTH/2), (B+WIDTH/2)
PULSE(COL+10,ROW) = TEMP1

0 PULSE(COL+20,ROW) = TEMP2

& PULSE(COL+30,ROW) = TEMP3

PULSE(COL+40,ROW) = TEMP2

0 PULSE(COL+50,ROW) = TEMP1

2 2000  CONTINUE

3 ENDIF

ARNAARNANRBRASAAREAARANRNTRRARN RSN AAIAAAATIANANARR AN A AT AANAAN
OUTPUT IMPULSE FUNCTION ARRAY TO <FN>.IME
AERRARRANBANAERARAAARANSAN RN AARBANRANAARA AT RN AANANRAR TN AN NN

DO 3000 I = 1,NROWS

‘ WRITE(1,102) (REAL(PULSE(J,I)),J = 1,NCOLS)
4 3000 CONTINUE

K CLOSE(1)

aOaooa
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PASS PULSE TO 2-D FFT SUBROUTINE. IJOB = 1 MEANS TAKE FFT ;

c L L T T P T e
IJOB = 1
CALL FFT3ID(PULSE,NCOLS, NROWS , NCOLS,NROWS, 1, IJOB, IWK, RWK, CWK)

Q

L L L T e T L P e T T e
SHIFT RESULTS - IE: SWITCE QUADRANTS 1 AND 3, 2 AND 4 IN THE
COL,ROW PLANE
L L L e T L

CALL SHIFT (PULSE,NROWS,NCGLS)

O0n00o0

RN ACRNRAANARRITEAARNEARAAAARAARANANNAARAAANENAARRIRTRARAA N AACRNTNN
MAIN PROGRAM STARTS :
CALCULATIONS START AT ROW = STEP+1.
NOTE THAT ONLY ONE QUARTER OF THE WORK MATRIX HAS TO
BE CALCULATED. THE REMAINING THREE QUARTERS IS FORMED BY
FOLDING AND FLIPPING. THIS IS POSSIBLE DUE TO SYMMETRY. ¢
".""'*'.‘*.ﬁ.ﬁ"""t'ﬁﬁ.ﬁ'ﬁ.."**'tt*"i.’?'*iiti*tt.'tﬁiﬁﬁ.*
CALL GOTOXY(1,1)
WRITE(*,*) ’'CALCULATING ROW °
IF (FTYPE .EQ. 1) THEN
DO 200 T = STEP+1,NROWS
CALL GOTOXY(1,18)
: . WRITE(*,101) I .
- DO 210 ROW = 1,H
DO 210 COL = 1,8
Bl = ZPRIME(I) * RHO2(COL,ROW)
CALL MYBSJN(B1,N,TEMP1,IER)
WORK(COL,ROW) = TEMP1 * PULSE(COL,ROW)
210 “CONTINUE

aoaoaoaoaoaa

L P 2 NPy
FLIP QUADRANT 2 TO QUADRANT 3
e L L T T S J
J=0 ;
DO 220 ROW = H+1,NROWS
JeJ+2
DO 220 COL = 1.H
WORK(COL,ROW) = WORK(COL,ROW-J)
220 CONTINUE

O 00a

LA A Al 2l d g DD ULl 2L DT T 2 T A S I PR ey ¢
FLIP LEFT SIDE TO RIGHT SIDE !
ARRANAAANAAAANNAAR AR AAAARAARNNRRNANR AR AANANARARANAEAR NN AT AN AN w
I=0 \
DO 215 COL = H+1,NCOLS :
J=J+2
DO 215 ROW = 1,NROWS ]
WORK(COL ,ROW) = WORK(COL-J,ROW) ‘
215 CONTINUE

aoOo0oaa
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c
c HARENAAARE AR RNAARE RN A RO EARR ANV AORARN AR RA AR AR ONRA AN R RS
c TAXE INVERSE FFT OF EACH COLUMN. THEN TAKE INVERSE FFT OF
c ROW 33 OMLY, SINCE THIS IS THE ROW CONTAINING CENTRAL
c INFORMATION. ROW 33 BECOMES TEE NEXT ROW OF THE FINAL
c OUTPUT MATRIX. ’
c BRIV ARRAERANAANO I AT RANRRAARAAAAN AR NNAAARAAAAAATR RSO ANT OIS
DO 415 COL = 1,MCOLS
: DO 405 ROW = 1,NROWS ’
CWK(ROW) = CONJG(WORK(COL,ROW))
o 405 COMTINUE
I CALL FFT2C (CWK,M,IWK1)
) DO 410 ROW = 1,NROWS
N WORK(COL,ROW) = CWK(ROW)
, 410 CONTINVE
a1s CONTINUE
3 ¢
s DO 440 COL = 1,NCOLS
- CWK(COL) = WORK(COL,H) .
440 CONTINUE
CALL FPT2C (CWK,M,IWK1)
_ c
,;: R123 = NROWS * NCOLS
i €123 = CMPLX(R123,0.0)
! DO 450 COL = 1,NCOLS .
" RESULT(COL,I) = ABS(REAL((CONJG(CWK(COL))/C123))) .
: As0 CONTINUE
c
At 200 CONTINUE .
i c
Dt : ELSEIP(FTYPE .2Q. 2) THEN
.: TEMPL = A% C / 2
t TEMP2 = A2 * C2 / &
, CALL GOTOXY(1,1)
N WRITE(*,*) ’CALCULATING ROW °
f,: DO 300 I = STEP+1,NROWS
K CALL GOTOXY(1,18)
,, WRITE(*,101) I
; DO 310 ROW = 1,H
" DO 310 COL = 1,H
R TEMP3 = ZPRIME(I) * SQRT(ABS(RHO2(COL,ROW)**2-TEMP2))
o IF (ABS(REO2(COL,ROW)) .GT. TEMP1) THEN
i CALL MMBSJN(TEMP3,N,TEMP4, IER)
i ELSE
- CALL MMBSIN(TEMP3,N, TEMP4,IER)
B ENDIF
f; WORK(COL ,ROW) = TEMP4 * EXP(-AWC2+TIME(I)) * ‘
;: & PULSE (COL , ROW)
¢ 310 CONTINUE
o c -
!
g
, 64
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320

aooao

a1s

aaogoaaaan

805

610
815

840

650

300

“f“"ﬁ"dh-l"d ) 'J’b:".‘l‘e‘\\..n....g‘...ﬂ .g's.u'! (\8 .‘!'g'. ) ,.t %8, V%8, v l.:.\.n

ROV EAER SV AN A AN ORI AN A AR R R AN A AN AAN AN AR AAANAAAARR A AN TR T NAAN

FLIP QUADRANT 2 TO QUADRANT 3
B L e e T

J=0
DO 320 ROW = A+1,NROWS

JmJ+2

DO 320 COL = 1,H

WORK(COL,ROW) = WORK(COL,ROW-J)

CONTINUE

FRAVBARARBANANAARARAARRARAREARANREAAAAAANNAIASRARANARAREN AT AN TR

FLIP LEFT SIDE TO RIGHT SIDE
NIRRT RANANRERARRENRTAANNAAANATRRAARRAARENARRRAAAATARRARATRAAN NN
J=0
DO 315 COL = H+1,NCOLS
T Im=J+2
DO 315 ROW = 1,NROWS
WORK(COL ,ROW) = WORK(COL-J,ROW)

CONTINUE

RENAANBATRRANREEARINRAARAAARAAARR RPN ARAANRANRRARANRNTNCRANN TR N AR b

TAKE INVERSE FFT OF EACH COLUMN. THEN TAKE INVERSE FFT OF
ROW 33 ONLY, SINCE THIS IS THE ROW CONTAINING CENTRAL
INFORMATION. ROW 33 BECOMES THE NEXT ROW OF THE FINAL
OUTPUT MATRIX.
AR ENAANENAA AR RTINS AAARIIRANERAARA AR NANEAAT AN RONEAARAAN AN AR
DO 615 COL = 1,NRCOLS
DO 605 ROW = 1, NROWS
CWK(ROW) = CONJG(WORK(COL,ROW))
CONTINUE
CALL FFT2C (CWK,M,IWK1)
"DO 610 ROW = 1,NROWS
WORK(COL ,ROW) = CWK(ROW)
CONTINUE
CONTINUE

DO 640 COL = 1,NCOLS
CWK(COL) = WORK(COL,H)

CONTINUE

CALL FFT2C (CWK,M,IWK1)

R123 = NROWS * NCOLS
C123 = CMPLX(R123,0.0)
DO 650 COL = 1,NCOLS
RESULT(COL,I) = ABS(REAL({(CONJG(CWK(COL))/C123)))
CONTINUE
CONTINUE

ENDIFP
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Q

500

aooan

510

- - - "

101
102

O n0o0a0aqag0

-

Qaaoaan

- -

W W
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T T A T e T e L T e L
SET ROWS 1 TO STEP TO ZERO TO SIMULATE STEP FUNCTION
B T e T S L

DO 500 ROW = 1, STEP
DO 500 COL = 1,NCOLS
RESULT(COL,ROW) = 0.0
CONTINUE

B L e e P e S S e 2 2
OUTPUT FINAL ARRAY TO DISK
B Ty e T R e
DO 510 I = 1,NROWS
WRITE(3,102) (RESULT(J,I),J = 1,NCOLS)
CONTINUE

FORMAT (I2)
FORMAT (64F16.7)

RERNRRR TN REN R RN AT T R Iy S e o Vo T A o A o o s A T et S Aol e o S e S ol S o e o s o o o o

CLOSE REMAINING OPEN FILES

RARAARARNAREAAARAARRNARRAAAAAAAAARRRNAARAAARNARNAAAAAAAARSNANAA A ANR

CLOSE(2)
CLOSE(3)

B L T T T T T e P e e
REMIND USER OF DATA FILES CREATED

IR AT A 0

CALL CLRSCR

WRITE(*,*) 'FINISHED.'’

WRITE(*,*)

WRITE(*,*) ' THE FOLLOWING ASCII TEXT FILES ARE IN THE DEFAULT'
WRITE(*,*) ' DIRECTORY:’

WRITE(*,*)

WRITE(*,*) ' FILENAME DESCRIPTION’

WRITE(*,*) ' et cmcmmmmem—emm—meme—mm——m—ce—cmmn
WRITE(*,*) ' ", FRAME1, ’ INPUT IMPULSE FUNCTION’
WRITE(*,*) ' ' FNAME2,'  SUMMARY INFORMATION’

WRITE(*,*) ' ' FNAME3,'  OUTPUT ARRAY'’

WRITE(*,*)

WRITE(*,*)

STOP

END
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AR AR NN AR RN AR R AR CAAARAAR RN TNAAAAANIARRIANAAAARRAAAAAAN R AR RN

. "
* SUBROUTINE GOTOXY *
* MOVES CURSOR TO LINE X, COLUMN Y hod
* CALL: CALL GOTOXY(X,Y) *
» "

AUANAAR AR EA A AN ARA TN AR AT RN ANRAAARAAARNSAAARAARRRARRAAAARRANTRNEARANN

SUBROUTINE GOTOXY(X,Y)

CHARACTER*1 C1,C2,C5,C8,LC(S)

CHARACTER*S CBUFF

INTEGER*2 IC(4),.L.X.Y

EQUIVALENCE (C1,IC(1)),(C2,IC(2)),(C5,1C(3)),(C8,IC(4)),

+(CBUFF,LC(1))

L L2

hA

whw

L 2 2]

DATA IC/1641B,1645B,1643B, 16466/
L = 10000+100*X+Y

WRITE ESCAPE CODES TO CHARACTER BUFFER
WRITE(CBUFF,2) L
FORMAT(IS)

WRITE ESCAPE CODES TO THE DISPLAY
WRITE(*,1) €1,C2,LC(2),LC(3),CS,LC(4),LC(5),C8
FORMAT(1X, 8A1,\)

END OF SUBROUTINE
RETURN
END

ARAAAANAAAAARAANAAAAARARAARANRRA RN AR NN AN AARNARANAARNNRN NN NNAR

* *
*  SUBROUTINE CLRSCR »
hd SUBROUTINE TO CLEAR THE DISFLAY *
o CALL: CALL CLRSCR hod
* -

BARRANRANAAANAARAAARAARRARAANTARNATAANEARRANRRANRRANA N RA AR N RN

SUBROUTINE CLRSCR

CHARACTER*1 C1,C2,C3,C4

INTEGER*2 IC(4)

EQUIVALENCE (C1,IC(1)),(C2,IC(2)),(C3,IC(3)),(C4,IC(4))
DATA IC/18#1B,1645B, 16432, 16444/

WRITE ESCAPE CODE TO DISPLAY
WRITE(*,1) C1,C2,C3,C4
FORMAT(1X, 4A1)

C #*+* END OF SUBROUTINE

RETURN
END
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* SUBROUTINE TO SHIFT A SQUARE MATRIX - EXCHANGES QUADRANTS ONE *

* AND THREE, AND TWO AND FOUR. .
* USE: CALL SHIFT(X,MROWS,KNCOLS) *
" WHERE X IS A SQUARE ARRAY - REAL OR COMPLEX - -
» NROWS,NCOLS IS THE ARRAY SIZE "
» *

oOaao0o0a00a00n0n

LA d il A i d it e a g aaad st e bt ddd 2 da g 2t a2l dd et Tl il DT e .

SUBROUTINE SHIFT (X, NROWS,NCOLS)

(2]

INTEGER NROWS,NCOLS,ROW,COL,R2,C2
COMPLEX X(NCOLS,NROWS), T1,T2

R2 = NROWS/2
C2 = KCOLS/2

DO 10 ROW = 1,R2
DO 10 COL = 1,C2

T1 = X(COL,ROW)

X(COL,ROW) = X(COL+C2,ROW+R2)

X(COL+C2,ROW+R2) = T1

T2 = X(COL+C2,ROW)

X(COL+C2,ROW) = X(COL,ROW+R2)

X(COL,ROWHR2) = T2 : .
" 10  CONTINUE )

RETURN

END
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