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SUMMARY

) Generalized additive model(i -d lii,-I9S6St-atdeti-Sieee) extend the

cawn of generalized linear models by allowing an arbitrary smooth function for any or all of the

covariates. The functions are estimated by the local scoring procedure, using a smoother as a

building block in an iterative algorithm. Ar this papevie utillzea cubic spline smoother in the

algorithm and show how the resultant procedure can be viewed as a method for automatically

smoothing a suitably defined Lartial residual.Cnd more formally, a method for maximizing

a penalized likelihood. We also examine convergence of the inner ('backfitting") loop in this

case and illustrate these ideas with some binary response data.

C Key words -Generaized diti ve model, spline smoothing, non-parametric regression

partial residual, penalized likelihood.

1. Introduction.

This paper describes a technique for non-parametrically estimating covariate effects in any

generalized linear model. In order to motivate the technique we'll consider an example. Risch,

Weiss, Lyon, Daling and Liff (1983) analyzed a case-control study of ovarian cancer. Their

data consists of 987 observations on the incidence (y) of ovarian cancer (1=case O=control),

and 17 covariates. For illustration here we will focus on two covariates: ovulatory age (OA),

..................................... .... f
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an estimate of the number of yam that a w has ovulated, n her life and age at end of

ovulatory if (AZO). We s it a number of log models to them data, with iog[P(Y =

1 IOA, AZO)I(I-P(Y = I IOA A, O))] = c+IA(OA)+th(AEO) for some functions fi(OA)

and fl(AO). A linear logistic it (that fi(OA) = AIOAh(AEO) = $AEO) gave & = zz,

= .09 and A = . - 07 both effects being highly significant. Denote the fitted probabilities

by p. In order to investigate the adequacy of the linear forms for fl(.) and f2(.), Landwehr,

Pregibon and Shoemaker (1984) suggested smoothing the partial residual

Z, = & +/),OA + (- )

against OA, and similarly for f2(.). Thia is justified by the fact that if in reality log[P(Y =

1 OA, AEO)/(I - P(Y = 1 JOA,AEO))] - a+ 1 2AEO + fl(OA), and i(OA) is orthogonal

to AEO, then E(Z OA) m f1(OA) and likewise for f2(AEO). A smooth of ZI versus OA is

shown in Figure 1 and shows some non-linearity. This smooth and all smooths is this paper

were computed using a cubic spline smoother, described in the next section.

A shortcoming of this technique is that E(ZI I OA) s f1 (OA) only if a linear function for

AEO is appropriate, and similarly for f 2(AEO). What is needed is simultaneous estimation

of fa(.) and f2(.). This can be achieved as follows. We start with initial guesses i(.) and 12(.)

(for example i 1OA and A2AEO) and corresponding fitted value ^, then construct the quantity

Z = & + /I(OA) + h2(AEO) + 1- (2)

Fixing Z, we alternately smooth Z- 2 (AEO) on OA, Z-i (OA) on AEO, obtaining new

!I(.) and 12(.)s, until the smooths don't change much. As a further refinement we can update

Z, replacing the old ,(.)'s with the new ones (and updating P), then repeat the first step, and

so on until convergence. Note that if this procedure converges, the smooth of Z - 12 (AEO)

on OA is 11(OA) and similarly for 12(AEO), which is analagous to the use of Z1 in (1). The

resulting function for OA is shown in Figure 2. Notice that the smooth looks quite different

from Figure I- this is due to the fact that the smooth for AEO (not shown) is also non-linear.

These data are analyzed more fully in Section 4.

This idea is the heart of the local scoring algorithm, described in this paper. The local

~.. ~ .~ e.m
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scoring technique is used to It what we call generalized additive models. In the exponential

family-, these take the form #(p) = a + E? fi(xi), where the response Y has EY =/s, the zi's

are covariate, and the fi(.)'s are unspecified smooth functions. These models are an extension

d genmeralised linear model@ (Nelder and Wedderburn 1972) which assume g(p) = a+ E ciA.

(In generalized linear model terminology, 1(p) is called the Ilink function' ). The local scoring

algorithm estimates the 14(.)'e by repeated smoothing of a suitably defined partial residual.

The resulting estimates can be used to suggest transformations of the x's or a. a predictive

model. One can allow a mooth estimate for all of the covariates or force a linear fit for some

of them. Such a semi-parametric model would naturally arise if some of the covariates were

categorical in nature but would also be useful if, for reasons specific to the data at hand, a

linear fit was desirable for certain specified covariates.

This paper presents an expository view of generalized additive models and the local scoring

algorithm, with an emphasis on the use of splines for smoothing. In section 2 we describe the

local scoring algorithm for generalized additive models in the exponential family, showing its

close relation to the Fisher scoring technique for generalized linear models. Section 3 briefly

describes the cubic spline smoother. The ovarian cancer data is analyzed more fully in Section

4, illustrating the use of degrees of freedom and confidence bands for model assessment. In

Section 5 we give a justification for the local scoring procedure based on the notion of penalized

likelihood. Finally, Section 6 discusses extension of the methods and their relation to other

work in the literature.

2. The Local Scoring Method in the Exponential family.

In order to define the local scoring algorithm, it is convenient to first describe the process

of repeated smoothing, called backfitting (Friedman and Stuetzle, 1981). Suppose we have data

((Z',zil,. •. • i,),.. . (z.,,, , .- z,,)) and we wish to fit a model of the form E(Z I X,,... X,) =

a + FP 'j (Xi). Let S(Z Iz) represent some estimate of E(Z Ix), for example a cubic spline

smoother. We can estimate the fj(.)'s by repeated smoothing:



Dachfitthig Algorithm

Cysh: j w to2j... 9p Is,29... s,2,...p

Ig(go)M S(r I ujd =Is-.a

Until ASS = iLN- A - E I s)) convergs.

Some theoretical results are available for the backfitting algorithm. Breiman and Fried-

man (1965) show that the theoretical version of backfitting (iLe. with conditional expectations

instead of smoothers) converghs to the beat (in L2 norm) additive approximation to Z in terms

of X 112X2 .... X,. Furthermore, if S(Z Is) represents a leasnt squares fit of Z on x, then the

backfitting algorithm can be shown to converge to the least squares fit of Z on Z1 ..Z--p. in

the Appendix, we prove convergence of backfitting with two cubic spline smoothers and discuss

the general (p > 2) case.

Now consider the class of generalized additive models in the exponential family. We

assume that for a fixed value of the scale parameter, Y has a density h4p, p) in the exponential

family, with BY = is, Var(Y) = V# and q = 9(pa) =a + E~ f (XI). The deviance of a model

jsis defined by r9(1#, i) = 2[E log h(s,1, ya) - log(ya, p)]. The local scoring algorithm uses

iterated backftting of a partial residual to estimate f() .1()

The Local Scoring Algorithm

Initialization 40( 0= Oj = 1, . P p, & = g(average(y)).

Loop over outer iteration counter m

Z= f ,, + (V, - pr) (dq1, / dpr,), W = (j, p,

Obtain r 1. = 1 .... p by applying the backfitting algorithm to z, with weights wi.

Until dew(y, p) fails to decrease
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Nt08 thee am 1lly two nested loops in the algorithm. In the inner (backfitting)

loop in bld fixed ad the fj are re-estimated, while in the outer loop, fl, A, a and tw are

updated. The weights are appropriate because s has variance proportional to (d.7/dp) 2V .

The quantity s is a general form of Landwehr, Pregibon and Shoemaker's partial residual and

is called the adjusted dependent variable or working variate in the generalized linear model

literature. In fact, if the smooths in the backflitting algorithm are global least squares fits,

then the local scoring algorithm reduces to adjusted dependent variable regression, the GLIM

package implementation of maximum likelihood estimation by Fisher scoring (see Nelder and

Wedderburn 1972). This would of course be an inefficient implementation because backfitting

is an inefficient way to find the least squares fit of Z on X1, X2,... Xp. Note also that if h is

the normal density then si = 14 then the algorithm consists only of the inner loop, a backfit of

San SlI 3 ... p.

As in generalized linear modelling, one can define degrees of freedom for generalized ad-

ditive models and obtain an estimate of it. Briefly, the degrees of freedom is defined as the

expected decrease in the deviance and is computed from the trace of an appropriate matrix

(related to the smoother). The theoretical support for this calculation, however, is not sub-

stantial and it is meant to be used only as a rule of thumb. In a similar fashion, pointwise

confidence bands can be estimated for the functions. More details on degrees of freedom and

confidence bands may be found in Hastie and Tibehirani (1986), and Hastie and Tibehirani

(1985a).

3. The Cubic spline smoother.

The local scoring algorithm requires an estimate of a conditional expectation in the back-

fitting loop. In this paper, we will discuss the use of cubic spline smoothers, which we will

review briefly here. Note however that any other reasonable estimate of conditional expecta-

tion could be used. In Hastie and Tibehirani (1986) we used running lines smoothers; other

candidate smoothers include a kernel smoother (see e.g. Cleveland 1979) , or a smoother such

as McDonald and Owen's (1984) * split linear smoother' designed to reproduce discontinu-

ities. One could also use different smoothers for each covariate- for example a "wrap around"
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smoother would be appropriate for a periodic variable like month of the year.

Given data (zi, st),... (z, Q,), consider the followng minimization problem. Find h(c)

to minimize

-,h( 1 ))+h +o (.)I'd (3)

where A is a fixed tuning constant. As shown in Reinach (1967) (Silverman 1985) the solution

h(x) is a cubic spline with knots at some of the z,'s, that is, a piecewise cubic function with

pieces joined at the zx's. The parameter A trades off variance and bias of the solution. When

A = 0, the solution is any interpolating function, while if A = +0o, the solution is the least

squares line. If we consider the value of h(z) only at Z1,22, ... zn, an equivalent form of

this problem is the following. Let h = (h(zx),... h(z.)), z = ... a) and K be an n x n

"penalty' matrix constructed as follows. Let qi = Zi+ I - Z,i = 1,... n- 1, A be a tri-diagonal

(n-2)xnmatrixwith Aii = 1/hi, 45+1 = -(1/h, + 1/hi+1),=ii+ = 1/hj+i, and letW be a

symmetric tri-diagonal matrix of order n - 2 with Wi-i. = Wii-I = hi/6,Wi, = (q, + q,+1)/3.

Finally, let K = AW-A. Then the minimizer of (3) also minimizes

(z-h)'(z- h) + Ah'Kh (4)

Furthermore, one can express the solution A as Ss where S = (I+ AK)-', I being the n x n

identity matrix. This representation is useful analytically but not very stable computationally.

For the latter, an algorithm based on Cholesky decomposition is preferred (see e.g. Yandell

1986).

The parameter A can either be chosen on subjective grounds, or by cross-validation, gen-

eralized cross-validation (Craven and Wahba 1979) or asymptotic generalized cros-validation

(Silverman 1985). In automatic' mode, the local scoring algorithm uses generalized cross-

validation to pick A each time a smooth is computed.

4. Analysis of the ovarian cancer data.

We now analyze the ovarian cancer data discussed in Section 1. Risch and co-workers

analyzed a case control study of 987 women in Washington and Utah. They interviewed 284

women with ovarian cancer and 703 controls, and recorded the following covariates: number

~I 1



of children, number of miscarriages, number of months of lactation, obesity (FAT), oral con-

traceptive usage and ap at end of ovulatory period (AEO). The women were also frequency

matched by age category and state of residence. An estimate of ovulatory age (OA) was con-

stuced using all the variables except AEO and the main hypothesis was that OA would be

related to the incidence of ovarian cancer.

Table 1 shows an analysis of deviance for a number of logistic models fit to these data

(me Breslow and Day 1980 for more details on using logistic regression models in case control

studies). All models in the table include dummy variable to account for the matching. The

first 3 lines of the table indicate that OA is an extremely important factor, after adjusting

for the matching variables and obesity. Figure 3 shows the smooth estimate for OA. The risk

increases with ovulatory age but levels off at about 35 years. Comparison of lines 2 and 3 of

the table confirm that there is a non-linear effect of OA. The upper and lower curves in Figure

3 represent 95% confidence bands mentioned in Section 2.

The middle section of Table 1 shows that even when an adjustment is made for AEO, OA

is still extremely important. However, the adjustment for AEO removes the plateau behaviour

of OA: the smooth (not shown) looks much like that in Figure 2. The smooth for AEO (Figure

4) is also non-linear. The downturn at about age 45 may be due to the fact that some women

who stop ovulating at an early age do so because they have ovarian cancer. The last section of

the table examines the effect of entering the remaining variables into the model. The deviance

decrease (compared to the second line) is significant indicating that OA may not fully capture

the effects of the other variables.

Note that simple interactions can be modelled bJ taking products of variables and treating

the product as a new covariate. Alternatively, we can fit models to subgroups of the data. This

might be useful here, for example, in examining a possible interaction between OA and FAT.

A more extensive analysis of these data, with an emphasis on the medical aspects, will appear

elsewhere.

e V
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5. Justification of local scoring through penalized likelihood.

In Hastie and Tibehirani (1986) we viewed the local scoring procedure as an empirical

method for minimizing the expected log-likelihood of the data. When a linear smoother such as

a cubic spUne smoother is used in the algorithm an alternative motivation based on penalized

likelihood can be derived.

Let I(#) be the log-likelihood, where 0 = a + E, fi(z ,), and let & = average(y). Let K,

be the n x n symmetric penalty matrix defined in Section 3, and fi = (fi(Zii),.. f,(zi)),j =

1,2,... p and consider the following problem. Find ft,... fp to maximize

() - ij 'Kf (5)
2

Letting A = E(-dlI/d*, a diagonal matrix with diagonal elements a,, we show that a

Fisher scoring step is achieved by .applying the backfitting algorithm to appropriate adjusted

dependent variables. Rather straightforward calculations show that the Fisher scoring step to

go from f'1I, f,8,..., g ld to fle, f ",..., fn" is

A + IKI A Afl- - fis" ( - AiKfd
A A+A 2K2  ... A nRu. -,Old u -A 2 K 2 J"i 6

(AA~l AA+AKJ f~j l JI J K
i ! = i(6)

AA .. + u,, IA/ K~ld/
where u =a. Carrying the fia terms to the right hand side we get p equations (A +

AyKi) + A' i ,j I" = Az, j = 1,p where Z = 0d + A- 1 u. These can then be written

as

= S(Z - (jo) iriw
AM IZ j- (7)

where Si = (A + AKy)-A. As noted by Green and Yandell (1985), Si computes a weighted

cubic spline smooth, with weights ai. The backfitting algorithm is a iterative method for

solving this system of linear equations. In fact, the backfitting step (7) is exactly a Gauss-

Las
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Seidel method solving a linear system. The linear system that it solves can be written as

2 1 S iS (8)

S, Si S, r so'

which is just (7) rearranged.

The preceding analysis holds for any penalty matrices Ki; each matrix determines a

corresponding smoother by A = (A-+ AK)-IA. Conversely, given a smoother matrix Si, the

corresponding penalty matrix is given by Ki = (1/Ag)A(S- 1 - 1). Following Reinsch (1967),

one can also show the the local scoring procedure maximizes 1(f) - (1/2) E PI f+'["(s)]2ds,

analogous to the the cubic spline problem (3).

6. Discussion.

Local scoring for generalized additive models provides a flexible method for identifying

non-linear covariate effects in a variety of modelling situations; notably the very situations

in which it has become popular to use the generalized linear or GLIM models. The additive

models can be used in a data analytic fashion to understand the effect of covariates, and to

test hypothesis about effects. A more conservative approach is to allow the non-parametric

functions to suggest parametric transformations, and then proceed with the usual linear anal-

ysis on the transformed variables. The local scoring idea is a very general one, and can be

applied in any situation in which the criterion being optimized depends on one or more smooth

functions (see Hastie and Tibehirani 1986 for details).

When cubic spline smoothers are utilized, local scoring is closely related to recent work

by O'Sullivan, Yandell and Raynor (1986),'Green (1985) and Green and Yandell (1985). In the

first paper, a multidimensional 'thin plate spline" is used in a generalized linear model setting.

The last two papers describe more general procedures, with an emphasis on semi-parametric

models, i.e. models involving a linear component and a single smooth component. In fact,

Green derives backfitting equations analogous to (7) in a special case of a model with one

smooth. In this special case, the only difference between Green's method and local scoring
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with cubic splines is the method for choosing A. Green uses a quadratic approximation to the

generalized cross-validation score, of the form deviance/i", where s, is the estimated degrees

of freedom of the model. Since the linearization step in the local scoring is tantamount to a

quadratic approximation to the deviance, the two methods ae not likely to differ by much

However, the degrees of freedom Y is quite difficult to compute when more than one smooth

is present in the model. More generally, the generalized additive models framework (with

local scoring) differs from these approaches in that a) it emphasizes additive model* b) it

can incorporate multiple smooths through the use of backfitting, and c) it can incorporate

non-linear smoothers.

A certain amount of theory already exists for these models, notably uniqueness of the best

additive approximation at the model and rates of convergence for parametric sub-models(Stone

1985). More theoretical work is needed to refine the degrees of freedom and confidence band

computations as well as to understand the effects of collinearity.

SOFTWARE

All the computations in this paper were performed by the Fortran program GAIM (Gen-

eralized Additive Interactive Modelling), a package available from the authors upon request.

An IBM PC version of GAIM is also available.
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Appendix

Convergence of backfitting with two cubic spline smoothers

The cubic spline smoother is constant preserving, i.e. S1 = 1. For definitiveness, then,

we work with the centered version of each smoother

s; = (I ---- )s, (9)
n
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In addition we assume that the components of each x are in the same order as the components

of z. Hence S* will really denote P-$1 SPj where P is the permutation matrix that sorts z

in the order of z. (This is fine since P;1S*P, has the same principal value decomposition as

8i'). Noting that Si1 = 0, the backfitting process consists simply of the alternating steps

Ai = s5(z- 12)

2 = s2*( - 11) 
(10)

Starting with initial values r, and )0, if 11 and 2"" denote the estimates at the mth stage of

the backfitting algorithm, then it is straightforward to show that

"' =Z- *j(s;s;)i(I - S)2

i=0

Let IlCll = eupa[o'C'Ca]/o', the natural norm of the matrix C. Then i and 12' will

converge if IISS2ll < 1 and IIStSIl < 1. If this is the case, we have

ho =(I - (I - sOs;)-I(I- s0)
V - (12)

If S* and S* have principal values values < 1, the conditions IlS*S11 < 1 and IIS2S1ll < 1

say that the spaces of of vectors whose length is preserved under each mapping are disjoint.

We now show that a cubic spline smoother matrix has real positive eigenvalues less than or

equal to one and furthermore, IISzII < Jf=IJ unless z is a linear function of x. We can verify

this through the representation S = (I + A1W- 1 A) - I where W and A are defined in Section

3. First note that W is positive definite since it is diagonal dominant (i.e. the sum of each row

is < the diagonal element in that row). Thus W exists, AtW- 1 A is non-negative definite

and hence (I + A'tW-A)- 1 has eigenvalues < 1. Now suppose (I + A'W-'A)-z = z. Then

A'W-Az = 0 , ztAW-lAz = 0 and thus Az = 0 (since W and hence W 1 are positive

definite). Now A takes second differences and hence z hence must be a linear function of z.

Since we have removed the eigenspace corresponding to the constant eigenvector, we see

that backfitting will only fail to converge if xi = CIZ2 + C2 for some cl and c2.

In a backfitting algorithm involving p cubic spline smoothers, we have have been unable
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to prove convergence. However, we wre able to prove convergence for a modified (and more

efficient) version of backlitting. Details awe in Buja, Haiti. and Tibehirani (1986).

Note that one can, in theory, avoid iteration in the backfitting loop through use of formula

(12). Unfortunately, thesn expressions are formidable to compute, requiring the inversion of

ni x ns matrix. However, Green and Yandell (1985) show than in the special cas in which S1

represents a cubic splin. smooth and S2 a least squares projection, one can compute these

expressions explicitly in only 0(n) operations.

- V V f
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Table 1

Analysis of deviance for ovarian cancer data

Model Residual Degrees of
deviance Freedom

FAT 11448 977.0
FAT, OA(A-+ 1 .25) 1129.0 9747
FAT, OA0ltnear) 11348 976.0

*FAT, AE0(A-4.65) 1133.7 973.2
FAT, AE0(;k-4.65), OA(A-i 1.25) 1115.3 970.9

*all covarlates Including OA 11043 967.3
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