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SUMMARY
Y s SO
Generalized additive modelsj{Hastiz and Tibshirani, 1988 Statistical-Scienee) extend the

class of generalized linear models by allowing an arbitrary smooth function for any or all of the
covariates. The functions are estimated by the local scoring procedure, using a smoother as a
building block in an iterative algorithm.‘?l;?hia papenwe utiliusAa cubic spline smoother in the
algorithm and show how the resultant procedure can be viewed as a method for automatically
smoothing a suitably defined ?;;a.mal resxdua.l'j:nd more formally, 8 method for maximizing
a penalized likelih W: Ssk; 'esxamme convergence of the inner ("backﬁttmg’?/ ) loop in this

case and illustrate these ideas with some binary response data.“,\.f

Key words: " Generalized addmve model aphne smoothing; non-parametric regression, e
partial tesndual, penalized likelihood.

1. Introduction.

This paper describes a technique for non-parametrically estimating covariate effects in any
generalized linear model. In order to motivate the technique we’ll consider an example. Risch,
Weiss, Lyon, Daling and Liff (1983) analyzed a case-control study of ovarian cancer. Their

data consists of 987 observations on the incidence (y) of ovarian cancer (1=case O=control),

and 17 covariates. For illustration here we will focus on two covariates: ovulatory age (OA),




an estimate of the number of years that a woman has ovulated in her life and age at end of
ovulatory life (AEO). We shall it & number of logistic models to these data, with log[P(Y =
1|0A, AEO)/(1-P(Y = 1|0A, AEO))] = a+ f1(OA)+ f2(AEO) for some functions f,(0A)
and f3(AEO) . A linear logistic it (that is £,(0A) = J10A4, f3(AEO) = B, AEO) gave & = zz,
p1 = .00 and B3 = . — 07 both effects being highly significant. Denote the fitted probabilities
by p. In order to investigate the adequacy of the linear forms for f1(.) and f3(.), Landwehr,
Pregibon and Shoemaker (1984) suggested smoothing the partial residual

y-#$
2 =&+ 5H0A+ o= 1

1 ﬂl ﬁ(l . p) ( )
against OA, and similarly for f3(.). This is justified by the fact that if in reality log[P(Y =
1|OA, AEO)/(1 - P(Y =1|0A,AEO))] = a+ p3AEO + f1(0OA), and f,(OA) is orthogonal
to AEO, then E(Z |OA) s f,(OA) and likewise for f3(AEO). A smooth of Z; versus OA is

shown in Figure 1 and shows some non-linearity. This smooth and all smooths is this paper

were computed using a cubic spline smoother, described in the next section.

A shortcoming of this technique is that E(Z; |OA) s f1(OA) only if a linear function for
AEO is appropriate, and similarly for f(AFO). What is needed is simultaneous estimation
of f1(.) and f3(.). This can be achieved as follows. We start with initial guesses f1(.) and f3(.)
(for example 5104 and 33AEO) and corresponding fitted value p, then construct the quantity

Z =&+ fi(04) + f2(AEO) + ;',E’T% 2)

Fixing Z, we alternately smooth Z — f(AEO) on OA, Z - f1(OA) on AEO, obtaining new
f1(.) and f3(.)’s, until the smooths don’t change much. As a further refinement we can update
Z, replacing the old fi(.)’s with the new ones (and updating $), then repeat the first step, and
so on until convergence. Note that if this procedure converges, the smooth of Z — fz(AEO)
on OA is fi(OA) and similarly for f(AEO), which is analagous to the use of Z; in (1). The
resulting function for OA is shown in Figure 2. Notice that the smooth looks quite different
from Figure 1- this is due to the fact that the smooth for AEO (not shown) is also non-linear.

These data are analyzed more fully in Section 4.

This idea is the heart of the local scoring algorithm, described in this paper. The local




scoring technique is used to fit what we call generalised additive models. In the exponential
family, these take the form g(p) = a + -1 fi(2:), where the response Y has EY = u, the z;’s
are covariates, and the f;(.)’s are unspecified smooth functions. These models are an extension
of generalised linear models (Nelder and Wedderburn 1972) which assume g(u) = a+ 3} z:4;.
(In generalized linear model terminology, g(u) is called the * link function® ). The local scoring
algorithm estimates the f;(.)’s by repeated smoothing of a suitably defined partial residual.
The resulting estimates can be used to suggest transformations of the z’s or as a predictive
model. One can allow a smooth estimate for all of the covariates or force a linear fit for some
of them. Such a semi-parametric model would naturally arise if some of the covariates were
categorical in nature but would also be useful if, for reasons specific to the data at hand, a
linear fit was desirable for certain specified covariates. '

This paper presents an expository view of generalizsed additive models and the local scoring
algorithm, with an emphasis on the use of splines for smoothing. In section 2 we describe the
local scoring algorithm for generalised additive models in the exponential family, showing its
close relation to the Fisher scoring technique for generalized linear models. Section 3 briefly
describes the cubic spline smoother. The ovarian cancer data is analyzed more fully in Section
4, illustrating the use of degrees of freedom and confidence bands for model assessment. In
Section 5 we give a justification for the local scoring procedure based on the notion of penalized
likelihood. Finally, Section 6 discusses extension of the methods and their relation to other
work in the literature.

2. The Local Scoring Method in the Exponential family.

In order to define the local scoring algorithm, it is convenient to first describe the process
of repeated smoothing, called backfitting (Friedman and Stuetzle, 1981). Suppose we have data
((21,211,..-%1p),.. . (Zn) Zn1 - - - Znp)) and we wish to fit a model of the form E(Z | X;,... X,) =
a+ 31 1i(X;). Let S(Z |z) represent some estimate of E(Z |z), for example a cubic spline

smoother. We can estimate the f;(.)’s by repeated smoothing:




Backfitting Algorithm
Initlalisation: {f;(.) =0,5=1,...p} , & = average(s;).
Oycle: §=1,3,...,5,1,3,...9,1,3,...9

nmn-&- hisw)i=1,...n

fi(=g) = S(ri |24),6 =1,...n

Until RSS = T7.,(x - & - T /u(2x))? converges.

Some theoretical results are available for the backfitting algorithm. Breiman and Fried-
man (1985) show that the theorstical version of backfitting (i.e. with conditional expectations
instead o( smoothers) converges to the best (in L? norm) additive approximation to Z in terms
of X1,X3,...Xy. Furthermore, if S(Z |z) represents a least squares fit of Z on z, then the
backfitting algorithm can be shown to converge to the least squares fit of Z on z,,z,,...zp. In

the Appendix, we prove convergence of backfitting with two cubic spline smoothers and discuss
the general (p > 2) case.

Now consider the class of generalized additive models in the exponential family. We
assume that for a fixed value of the scale parameter ¢, Y has a density A(y, u) in the exponential
family, with EY = p, Var(Y) = V¢ and n = g(u) = a + L} f(X;). The deviance of a model
u is defined by dev(y, u) = 2(3° log A(s, ) — 3" log A(w, m:)]. The local scoring algorithm uses
iterated backfitting of a partial residual to estimate f;(.),...f,(.).

The Local Scoring Algorithm
Initialisation f,"() =0,5=1,...p, &= g(average(y)).
Loop over outer iteration counter m
=&+ ] [Pzi) =97 (n])
=0+ (% - u7)(dn/dul), w; = (dul/du])PV !

Obtain f{™*!),j = 1,...p by applying the backfitting algorithm to z with weights w;.

Until dev(y, u) fails to decrease




Notice that there are really two nested loops in the algorithm. In the inner (backfitting)
loop s is held fixed and the f; are re-estimated, while in the outer loop, n, s, # and w are
updated. The weights are appropriate because s has variance proportional to (dn/du)3V .
‘The quantity s is a general form of Landwehr, Pregibon and Shoemaker’s partial residual and
is called the adjusted dependent variable or working variate in the generalised linear model
literature. In fact, if the smooths in the backfitting algorithm are global least squares fits,
then the local scoring algorithm reduces to adjusted dependent variable regression, the GLIM
package implementation of maximum likelihood estimation by Fisher scoring (see Nelder and
Wedderburn 1972). This would of course be an inefficient implementation because backfitting
is an inefficient way to find the least squares fit of Z on Xj, X3,...X,. Note also that if A is
the normal density then s; = g then the algorithm consists only of the inner loop, a backfit of

zon 21,23,...%.

As in generalised linear modelling, one can define degrees of freedom for generalized ad-
ditive models and obtain an estimate of it. Briefly, the degrees of freedom is defined as the
expected decrease in the deviance and is computed from the trace of an appropriate matrix
(related to the smoother). The theoretical support for this calculation, however, is not sub-
stantial and it is meant to be used only as a rule of thumb. In a similar fashion, pointwise
confidence bands can be estimated for the functions. More details on degrees of freedom and
confidence bands may be found in Hastie and Tibshirani (1986), and Hastie and Tibshirani
(1985a).

3. The Cubic spline smoother. . .

The local scoring algorithm requires an estimate of a conditional expectation in the back-
fitting loop. In this paper, we will discuss the use of cubic spline smoothers, which we will
review briefly here. Note however that any other reasonable estimate of conditional expecta-
tion could be used. In Hastie and Tibshirani (1986) we used running lines smoothers; other
candidate smoothers include a kernel smoother (see e.g. Cleveland 1979) , or a smoother such
as McDonald and Owen’s (1984) * split linear smoother” designed to reproduce discontinu-

ities. One could also use different smoothers for each covariate— for example a “ wrap around”




smoother would be appropriate for a periodic variable like month of the year.

Given data (z1,31),...(2Zn, %), consider the following minimization problem. Find A(z)

to minimi ] -

3 (s - M) 42 [ W (o) ®
where A is a fixed tuning eonl:a.nt. As shown in Reinsch (1967) (Silverman 1985) the solution
R(z) is a cubic spline with knots at some of the z;’s, that is, a piecewise cubic function with
pieces joined at the z;’s. The parameter ) trades off variance and bias of the solution. When
A = 0, the solution is any interpolating function, while if A = 400, the solution is the least
squares line. If we consider the value of h(z) only at z;,z3,...2,, an equivalent form of
this problem is the following. Let h = (h(z1),...h(zn)), 3 = (21,...2n) and K beann x n
“penalty” matrix constructed as follows. Let ¢; = z;4+1 —zi,s =1,...n—1, A be a tri-diagonal
(n—2) x n matrix with Ay = 1/h;, Ajie1 = —(1/hi+1/hiy1), Aiia = 1/hi41, and let W be a
symmetric tri-diagonal matrix of order n — 2 with Wi_y 5 = Wiy = ki /8, W;; = (¢i + ¢i+1)/3.
Finally, let K = A'W ~'A. Then the minimizer of (3) also minimizes

(- B)!(z — B) + AR KA (4)

Furthermore, one can express the solution h as Sz where § = (I + AK)~1, I being the n x n
identity matrix. This representation is useful analytically but not very stable computationally.
For the latter, an algorithm based on Cholesky decomposition is preferred (see e.g. Yandell
1986).

The parameter A can either be chosen on subjective grounds, or by cross-validation, gen-
eralized cross-validation (Craven and Wahba 1979) or asymptotic generalized cross-validation
(Silverman 1985). In “automatic® mode, the local scoring algorithm uses generalized cross-

validation to pick A each time a smooth is computed.

4. Analysis of the ovarian cancer data.

We now analyze the ovarian cancer data discussed in Section 1. Risch and co-workers
analyzed a case control study of 987 women in Washington and Utah. They interviewed 284

women with ovarian cancer and 703 controls, and recorded the following covariates: number
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of children, number of miscarriages, number of months of lactation, obesity (FAT), oral con-
traceptive usage and age at end of ovulatory period (AEO). The women were also frequency
matched by age category and state of residence. An estimate of ovulatory age (OA) was con-
structed using all the variables except AEO and the main hypothesis was that OA would be
related to the incidence of ovarian cancer.

Table 1 shows an analysis of deviance for a number of logistic models fit to these data
(see Breslow and Day 1980 for more details on using logistic regression models in case control
studies). All models in the table include dummy variable to account for the matching. The
first 3 lines of the table indicate that OA is an extremely important factor, after adjusting
for the matching variables and obesity. Figure 3 shows the smooth estimate for OA. The risk
increases with ovulatory age but levels off at about 35 years. Comparison of lines 2 and 3 of
the table confirm that there is a non-linear effect of OA. The upper and lower curves in Figure
3 represent 95% confidence bands mentioned in Section 2.

The middle section of Table 1 shows that even when an adjustment is made for AEO, OA
is still extremely important. However, the adjustment for AEO removes the plateau behaviour
of OA: the smooth (not shown) looks much like that in Figure 2. The smooth for AEO (Figure
4) is also non-linear. The downturn at about age 45 may be due to the fact that some women
who stop ovulating at an early age do so because they have ovarian cancer. The last section of
the table examines the effect of entering the remaining variables into the model. The deviance
decrease (compared to the second line) is significant indicating that OA may not fully capture
the effects of the other variables.

Note that simple interactiors can be modelled by taking products of variables and treating
the product as a new covariate. Alternatively, we can fit models to subgroups of the data. This

might be useful here, for example, in examining a possible interaction between OA and FAT.

A more extensive analysis of these data, with an emphasis on the medical aspects, will appear

elsewhere.




5. Justification of local scoring through penalized likelihood.

In Hastie and Tibshirani (1986) we viewed the local scoring procedure as an empirical
method for minimizing the expected log-likelihood of the data. When a linear smoother such as
a cubic spline smoother is used in the algorithm an alternative motivation based on penalized
likelihood can be derived.

Let I(0) be the log-likelihood, where # = a + 3% f;j(zj), and let & = average(y). Let K;
be the n X n symmetric penalty matrix defined in Section 3, and f; = (fj(zj1),. .. fi(zjn)),d =

1,2,...p and consider the following problem. Find fj, ... f, to maximize
1,
100) - 5 D NILKS; (s)
1

Letting A = E(—d?!/d66*), a diagonal matrix with diagonal elements a;, we show that a
" Fisher scoring step is achieved by applying the backfitting algorithm to appropriate adjusted
dependent variables. Rather straightforward calculations show that the Fisher scoring step to

go from f{t4, 1544, . fold to fpev, 1o, ... I1ev is
A+ 0K, A A fpee — fitd u — A K, fd
A A+ XK ... A 1o — f3td u— A Ky
. . ) . . = . (6)
A A .. A+ MK, new _ fold u— K, fot

where u = 4. Carrying the f*9 terms to the right hand side we get p equations (A +
I ;

KT + Ay 1Y = Az, j=1,pwheres= 0%9 + A~'u. These can then be written

as
pev S1(z - 2500 174%)
| [z ;
i Sp(2 = Ljup 17°%)

where S; = (A + A K;)"1A. As noted by Green and Yandell (1985), S; computes a weighted

cubic spline smooth, with weights a;. The backfitting algorithm is a iterative method for

solving this system of linear equations. In fact, the backfitting step (7) is exactly a Gauss-




Seide] method solving a linear system. The linear system that it solves can be written as

I 8 & - & ,{.‘. oY)
$ 1 5 - ||| |ss
. . . ‘e . H = . (8)
S, S 8§ - 1] \p= Ss

which is just (7) rearranged.

The preceding analysis holds for any penalty matrices K;; each matrix determines a
corresponding smoother by S; = (A + A;K)~! A. Conversely, given a smoother matrix S;, the
corresponding penalty matrix is given by K; = (1/X)A(S;! - I). Following Reinsch (1967),
one can also show the the local scoring procedure maximizes 1(0) — (1/2) 35 X [72°(1" (s)]2ds,
analogous to the the cubic spline problem (3).

6. Discussion.

Local scoring for generalized additive models provides a flexible method for identifying
non-linear covariate effects in a va.ri;ety of modelling situations; notably the very situations
in which it has become popular to use the generalized linear or GLIM models. The additive
models can be used in a data analytic fashion to understand the effect of covariates, and to
test hypothesis about effects. A more conservative approach is to allow the non-parametric
functions to suggest parametric transformations, and then proceed with the usual linear anal-
ysis on the transformed variables. The local scoring idea is a very general one, and can be
applied in any situation in which the criterion being optimized depends on one or more smooth

functions (see Hastie and Tibshirani 1986 for details).

When cubic spline smoothers are utilized, local scoring is closely related to recent work
by O’Sullivan, Yandell and Raynor (1986), Green (1985) and Green and Yandell (1985). In the
first paper, a multidimensional “thin plate spline” is used in a generalized linear model setting.
The last two papers describe more general procedures, with an emphasis on semi-parametric
models, i.e. models involving a linear component and a single smooth component. In fact,

Green derives backfitting equations analogous to (7) in a special case of a model with one

smooth. In this special case, the only difference between Green’s method and local scoring
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with cubic splines is the method for choosing A. Green uses s quadratic approximation to the
generalised cross-validation score, of the form deviance/s?, where v is the estimated degrees
of freedom of the model. Since the linearization step in the local scoring is tantamount to a

T TR LT

quadratic approximation to the deviance, the two methods are not likely to differ by much.
! However, the degrees of freedom v ia quite difficult to compute when more than one smooth
is present in the model. More generally, the generalized additive models framework (with
local scoring) differs from these approaches in that a) it emphasizes additive model« b) it
can incorporate multiple smooths through the use of backfitting, and ¢) it can incorporate

non-linear smoothers.

A certain amount of theory already exists for these models, notably uniqueness of the best
additive approximation at the model and rates of convergence for parametric sub-models(Stone
1985). More theoretical work is needed to refine the degrees of freedom and confidence band

computations as well as to understand the effects of collinearity.

SOFTWARE

All the computations in this paper were performed by the Fortran program GAIM (Gen- .
eralized Additive Interactive Modelling), a package available from the authors upon request.
An IBM PC version of GAIM is also available.
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Appendix

Convergence of backfitting with two cubic spline smoothers

The cubic spline smoother is constant preserving, i.e. S1 = 1. For definitiveness, then,

we work with the centered version of each smoother

N ™ ¥ ¥
[N

11¢
S; = (I - _n—)SJ (9)

hJ
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In addition we assume that the components of each z; are in the same order as the components
of 3. Hence S; will really denote P“'ls“P; where P; is the permutation matrix that sorts 2
in the order of z;. (This is fine since P,"! S} P; has the same principal value decomposition as

S?). Noting that S; 21 = 0, the backfitting process consists simply of the alternating steps
Hh=S5i(s-1h)
h=83s-h)

Starting with initial values 0 and 79, if i and #J* denote the estimates at the mth stage of

the backfitting algorithm, then it is straightforward to show that

(10)

m—1
It =3-) (S:S3)(I-8})2

i (11)
I =2- (Si81Y(I-83)z - (S387)™7%

§=0

Let ||C|| = supa[a’C*Ca]/ata, the natural norm of the matrix C. Then #* and f* will

converge if ||S}S;]| < 1 and ||S3S7]| < 1. If this is the case, we have

I =(1-(1-5{85) (I - 8)= "

I =(I-(I-5;5))(I-87)= )
If S; and S; have principal values values < 1, the conditions [|S;S3]| < 1 and ||S3S]|| < 1
say that the spaces of of vectors whose length is preserved under each mapping are disjoint.
We now show that a cubic spline smoother matrix has real positive eigenvalues less than or
equal to one and furthermore, ||Sz|| < ||z|| unless z is a linear function of z. We can verify
.this through the representation § = (I + A'W ~1A)~! where W and A are defined in Section
3. First note that W is positive definite since it is diagonal dominant (i.e. the sum of each row
is < the diagonal element in that row). Thus W~! exists, A'W 1A is non-negative definite
and hence (I + A'W~1A)"1 has eigenvalues < 1. Now suppose (I + A'W~1A)~1z = z. Then
A'W-lAz =0, ! A'W~1Az = 0 and thus Az = O (since W and hence W™! are positive

definite). Now A takes second differences and hence 2 hence must be a linear function of z.

Since we have removed the eigenspace corresponding to the constant eigenvector, we see

that backfitting will only fail to converge if z; = ¢123 + c3 for some ¢; and ¢3.

In a backfitting algorithm involving p cubic spline smoothers, we have have been unable
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to prove convergence. However, we are able to prove convergence for a modified (and more
efficient) version of backfitting. Details are in Buja, Hastie and Tibshirani (1986).

Note that one can, in theory, avoid iteration in the backfitting loop through use of formula
(12). Unfortunately, these expressions are formidable to compute, requiring the inversion of
n X n matrix. However, Green and Yandell (1985) show than in the special case in which S,

represents a cubic spline smooth and S; a least squares projection, one can compute these

expressions explicitly in only O(n) operations.
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Table 1

Analysis of deviance for ovarian cancer data

Model Residual Degrees of
deviance Freedom
FAT 11448 9770
FAT, OA(A=+1.25) 11290 9747
FAT, OA(linear) 11348 976.0
FAT, AEO(A=4.65) 11337 9732

FAT, AEO(A=4.65), OA(A=41.25) 11153  970.9

all covariates including OA 11043 9673
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Figure 3.  Partial residual smooth for OA, adjusting for FAT.
Broken curves are 95% confidence bands
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