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7 T 100 introduction
ce .. Tha physical processes of the sarth’'s atmosphere c‘n be

:-- . cacdelled by a system of hydrodynasic equations. Thtsysystca_of

equations cannot be solved directly unless sany simplifying as-
susptions are msade, severely limiting how realistically the )

. actual atmospheric processes are sismulated. In order to produce

accurate weather forecasts the full system of squations must be

solved in four dimssnsions. In practice global weathar forecasts

are produced at various setescorological centers arocund the world
by treating these equations as an initial value problea and
integrating forward in time to produce forecasts. The solution
of this problem requires the use of advanced vector processors as
the number of computations involved is stagqQering. The forecast-
ing problems was formulated quite succinctly by the Norwegian
plioneer in weather forecasting, V. Bjerknes (1], when he defined
the necessary and sufficient conditions for a successful system
in an article written in 1922 to bes

1) A sufficiently accurate knowladge of the state of the
atmosphere at the initial time.

ii) A sufficiently accurate knowledge of the laws according

to which one state of the atmosphere develops from another.

Bjerknes’ discoveries of the hydrodynamical nature of the
weather problem led several European nations, especially the
Scandinavian countries, to begin collecting observations of the
state of the atmosphere. This data collection led L. F.
Richardson (2] to try describing initial conditio:s from a hand
analysis and projecting the state of the atuosph;;:tfo the future

from the hydrodynamical -quationp. The task was monumantal as

.
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Richardson sstisated that a warshouse of 64,000 pecple using the
aschanical calculator of the day could just forscast the state of
the atmosphere at the rate that it was actually evolving. Unfor-
tunately, sany factors, discovered later in the 1940°‘s, kept
Richardson from making a successful forescast.

The magnitude of the weather forecasting problem required
the development of electronic computers for even simple
solutions. The Electronic Numerical Integrator and Computer
(ENIAC) developed in the late 1940’s allowed Charney, Fjortoft,
and Von Neusann (3] to succeed in making a reasonable 24 hour
forecast. Their hydrodynamical model was simplified to filter
gravity waves while allowing wesather pattarns to develop in a
manner similar to that abserved in the atmosphere. Their initial
conditions of pressure heights were derived by hand and the
reasult gridded and typed into the cﬁnput-r.

Nith the rapid development of computers over the past thirty
years, it has become possible to use numerical techniques to
integrate the full set of hydrodynamic equations forward in time
to produce improved weather forscasts. As V. Bjerknes predicted,
accurate forecasts require more than just accurate treatment of
the physical processes of the atmosphere, they also require
accurate specifications of the initial state froa non-uniforamly
located observations. Panofsky (4], Bergthorsson and DOds (3],
and Cressman (6] pionessred methods to use the computer to obtain
a uqath.r analysis from observational data. This process of
conélning cbservation values with a background field is called
objective analysis. éor the most part, these original ocbjective

analysis techniques were weighted average schemes that depended
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upean praoper specification of several parasesters, usually abtained
in an ad hoc way. Today, most of the world’s weather centers use
statistical abjective analysis techniques based on the work of
Sandin 7] to provide initial conditions for their atmospheric
forecast models.

In practice two sources of information are combined to
produce an objective analysis: ocbhservations of atmospheric
variables and a forscast made by the atmaospheric model from a
previous analysis. The forecast is commonly called the ‘first
guess’ to the analysis or the 'b#cquound'. Bacause the forescast
is hardly a guess, the term 'forncasi background’ is used in this
papar to esmphasize that the background to the analysis was
derived from a forecast nad; earlier. The ocbservations of
temperature, wind, and moisture are made by in situ instruments
attached to balloons, aircraft, and ships ar'from remote instru-
ments aboard satellites or on the earth’'s !ur#acn. The result is
a collection of cbservations of varying degrees of accuracy taken
at various times. The statistical analysis schemes have been
designed to ‘optimally’ combine these acbservations with the fore-
cast background to produce ih. initial conditions required by the
numerical forecast model.  The optimality of thease schemes
directly depends upon how well the statistical properties of the
errors of the forecast background and the observations are
defined. In practice, the schames are multivariate in the sense
that they are used to simultanecusly analyze multiple related
dependent variables from measured values.

In this paper we will deal with the representation of the

statistics of the forecast background error. In particular, the
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sodelling of the spatial autocovariance of the error for the

primary variable is examined. Early versions of Bandin’s sathod

used a simple axponantial function to model the autocovariance.
Although this model is simple, it failed to be sufficiently

flaxible to describe details of the statistics derived from

actual data. A search of the literature revealed that many .
models are available, but tests of their abilities in fitting
background statistics for an actual forecast model have not been
conducted. The nathnnagical and precision limitations of various
models have besn determined and are described in this paper.

Optimum interpolation (OI), which is sometimes more prac-
tically referred to as statistical interpolation (SI), is applied
to compute the corrections toc the background field. This is done
by first interpolating the background to the non—-uniformly lo-
cated aobservation locations, and th.p computing the difference
between the observed and background v;luc. If observations were
exact, this would be the background error measured at discrete
locations. These measuresments of background error are then used
by 01 to compute a correction field on a uniform grid, which is
added to the backgrﬁund to produce the analysis.

Thae full development of the egquations for a multivariate
application of OI is given in several papers, including
Rutherford [8], Schlatter (9], Schlatter, et. al. [10), Bnrgm;n
€11l, Lorenc [12], Thidébaux [13], and Thiébaux and Pedder [14].

A brief outline of the method is given in the following. For a
collection of estimates of the error at scattered points, it is
desired to estimate the value of the error at the grid points.

OI approximates these values by a linear combination of the known
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values defined so that the expected meen squared error over sose
ensamble of realizations is sinisized. This requires that the
statistical properties (covariances betwesn variables) be known.
Stationarity (independence of the particular grid point) of the
statistical parameters is required for a tractable problem. The
. waights used in the linear combination are obtained from the
solution of a certain system of linear equations, the cosfficient
matrix being the matrix of covariances between the background
plus observed errors at the cbservation points. The positive
definiteness of this matrix plays an important role, both the-
oretically and computationally.

A discussion of multivariate covariance functions, proper-
ties they must satisfy, and methods of obtaining such functions
are discussed in section 2. Experiments with -uvuril familiss of
covariané. functions in fitting background error statistics and
the resulting p.rfqrmaﬁc- 16 a.statistical interpolation scheme

are described in section 3. Section 4 summarizes the results

and suggests some future work.

2.0 Multivariate Covariance Functions

2.1 General Developsent

The theory of covariance functions and that of positive
definite functions go hand-in-hand. Positive definiteness of
matrices such as occur in our application are squivalent to the
spatial covariance function for the background errors being posi-
tive definite. Positive definite functions are characterized by
Bochner ‘s Theorem [15), which states that a function is positive

(semi)definite if and only if its Fourier transform is

---------------
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nonwnegative. Alternatively, the covariance functtcn is the
Fourier (cosine) transform of a probability density (nonnegative)
function. BDecause of the application, our interest is in posi-
tive definite functions that are smooth in the sanse that certain
partial derivatives exist. An axcellent reference for positive
definite functions is Stewart (161].

For completeness, a derivation of the covariance functions
for variables related through differentiation is given here.
Suppose that it is wishaed to analyze three related dependent
variables, requiring that the corrections cbtained via OI (or
more caorrectly, 8I) will not upset the relationship between the
predicted values of the variables. Let the error in the predic-
ted variables be denoted by Z(x,y}, X(x,y), and Y(x,y), where
(x,y) gives the spatial location and it is assumed that
‘X(x,y) = kll”(x,y) and Y(x,y) = kzzy(x,y). The subscripts x and
y denote partial differentiation with respect to x and y
respectively. Assume that the errors in the predicted values are
stationary (that is, the statistics do not depend on (x.y)), and
have zero mean. Using E[.] toc denote the expected value, or
ensemble average, the spatial covariance function for Z, as a
function of "lags”" s and t, is

R(s,t) = ELZ(x,y)Z{x+m,y+t)] = E[(Z(x-s,y-t)Z(x,y)] .

The latter equality follows from stationarity. Under the assump-
tion that the order of partial differentiation and the expected
value can be interchanged, the cross covariance functions and the
covariance functions for the derived variables are found in the
manner illustrated here. Of course, it is assumed throughout

" this paper that the necessary derivatives exist.




Bl (n,y)X(xea,y¢t)]l = ttl(u,y)klzn(xts,y+t)l -

Etl(x,y)l(x+|,y+t)1. - k,R_(s,t) ,

ELZin,y)k 1Re

Z.(x#.,y#t)] = K

| 1

while

ELX(xn,y)V(xen,y+t)] = EtX(u,y)kz

ECXtx,y) ko2, (x+m,y+t)] = K ELX(x,y) Zixtm,y+t) ], =

Zy(x+s,y+t)l -
y 4
27t
* kzﬁtk1zx(x—s,y-t)2(x,y)lt = kZEt-klz’(x—s,y—t)Z(x,y):It =

—k K ECZ(x,y) Zix+may+t) ], o = —k kR, (m,t) .

ts 172t

Note that while the covariance functions are symmetric, the

i cross covariance functions are antisymmetric, which accounts for

the sign change that comes from changing the order of the product
in the expected value. This means, among other things, that the
cross covariance must be zero at zero lag values. This behavior
can be seen in the function plots in Bergman (111 and Schlatter,

et. al. (101.

2.2 Somse ﬁ-cussary Properties
In order for the covariances of the derived functions and
the cross covariance functions to exist, certain conditions must
be satisfied by the function R(s,t). These have been alluded to
by Buell (171, and are given in Julian and Thiébaux ({81, where
R_(s) R_(s=)

1ie 2 is finite, and liml -2
>0 >0

- R..(I) l] =0 .

s in this equation represents the lag distance (lag in the above
was (l2 + tz)ilz), and R(s) is an isotropic covariance function.
When one considers that R-(O) must be zero, the first limit is
the definition of the second derivative at s=0, hence sxistence

of the limit means that the covariance function must be twice

. . .
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diffarentiable at s=0. The second limit then says that the

second derivative is continuous at s=0. Thus the theorem given

by Julian and Thidébaux can be simplified:

Theorem 13 If R(s) is an isotropic covariance function for Z in
two dimensions, then the covariance functions for the
partial derivatives of Z exist at s=0 if and only if R(s) is
twice continuously differantiable at s=0. .

2.3 Anisotropic Functions
It has been contendad that isotropic covariance functions do

not adequately model the forecast error statistics and that gains

can be made by using anisotropic functions. 8See Thi#baux
£131,0191,L20]1, and Thidébaux, et. al. [21] for development and
discussion of praduct forms of covariance functions. Use of
products of single dimensional functions has the advantage of
carrying aver desirable properties to higher dimensions, as well
as bming able to use oss-nfially one dimensional structures and
techniques. On the other hand, perusal of contour plots of
product functions show that zero crossings of the functions occur
along grid lines, and it is sasy to see this will always happen.

This may be undesirable behavior, and almost certainly it is not

the kind of behavior seen in the error statistics.

Anather form of anisotropy is possible, one which results
from scaling differently 1ﬁ two arthogonal directions, then using
an isotropic functions in the scaled variables. This would
rasult in the zero crossings in the contour plots of the function
being ellipses with axes in the two directions, and all contours

having the same shape. The eccentricity of the ellipse is a

measure of the anilotrbpy of the error statistics. It would be
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sasy to allow rotation along with the scaling to cbtain ellipses
of constant "distance® with any anis orientation. For a discus-
sion of this type of anisotropic correlations, see Seaman (221,
and Duell and Seaman [23]1. The properties of any such functions
are those of isotropic functions, of course, since the anisotropy

arises purely from a rotation and scaling.

2.4 lsotropic Functions

The use of isotropic functions in two or more dimensions
that have been derived from one dimensional considerations can
possibly lead to nonpositive definite functions. For axample,
Ripley (241(p 11) quotes a result of Matéarn [(25], which gives a
lower bound for isotropic positive definite functions in several

disesnsions. The result means that positive definite functions in

two dimensions are necessarily bounded below by -0.403 (the
sinisum value of Jots) ), while in three dimensions the bound is
=0.218 . Thus any oscillatory positive definite function in one
dimension that takes -on values less than -0.403 cannot be an
isotropic positive definite function in two dimensions. A posi-
tive definite function with parameters to ssparately control the
oscillation fraquency and the decay can probably be made into a
nonpositive definite isotropic function in two dimensions. For
exasple, an axponantially damped cosine function, f(s) = cos(as)
axp (~bs) , can be made nonpositive definite by suitable choice of
parameters, say a = S and b = .1 . This result also applies to
other candidates for isotropic correlation function models, as
will be shown later.

There is a one-to-one correspondence batwesn covariance

. ’ ]
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functions lp one dissnsion and isotropic covariance functions in
two dimensions. Using the so called "turning band” msethod,
Matheron [26] gives a way of generating an isotropic d-dieen-
sional coverianca function from a one dimsnsional covariance

function. The relation is

1
Cytw) = |</r.:1 (ve) (1-y2) (G /2 4
0

whoare K is a constant that is unimportant for our purposes. In

two dimensions, this gives

1
Cypte) = t</t:1 (ve) (1-v2)"1/2 4, |
o

It is possible to invert Matheron’'s relation to show a one-to-one
relationship. A sketch of the inversion process follows.

Esploying a change of variables in the previous expression gives

[ )
Cytm) = K/cttn (82-¢2)"12 4
o

then making further change of variables, 12 = %, and t2 =y, yields

cztx"z) - l(ftcl(yllz) (2y) 123 (ys)"1/2 4
0

172 172

This is Abel “s equation for K C,(y )(2y) *'“, and the solution

is well known (see Hochstadt, [27]), given by

X
c. (x1’2) = K'x}’2 g;fcz(yuz) n-y) 12 gy |
o

1
whera K’ is a different constant, Substitution for s and t once

again, gives
s

e 2_ .2 -1/2
Cytm) = K's grgmy [ Cptt) (a%tS) 2t dt .
0

The correspondence betwesn covariances in one dimension and

10
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thrae disensions is sasier to invert, and is given by Ripley

{24])]. There the relation is

1
03(-) -J{Cttvs{ dv, and Cl(l) = 3: tlcs(l)] .
L]

While this characterization of sultidimensional isotropic
covariance functions is interesting, and can in fact be used to
generate isotropic multidimensional covariance functions, it does
not sasily answer the question as to whether or not a particular
one dimensional function is an isotropic positive definite func-
tion in more dimensions. One way to answer such a question is to
use the characterization of positive definite functions as
Fourier tranasforms of probability density fun;tion- (or alterna-
tively, as functions whose Fourier transform is positive). The
Fourier transform of an isotropic function C(s) in two dimensions

2ciw). It may

. becomes (essentially) the Hankel transform of :1,
be consid.r;bly sasier to look at the one dimensional Fourier
transform. It would then be ussful to have a sufficient condi-
tion on the Fourier transform of thé function which would
guarantee it is an isotropic positive definite function in two
dimensions. Such a condition will now be derived. Let cl(') be
a positive definite function of one variable. From the charact-

‘arization in the previous section, it can be shown

-
(2.1) Ci(l) = /CDI(FI) h{(r) dr,
0

for some probability density function h(r) (i.e., h(r)>0, with
integral equal 1). The praoblem is then to determine the condi-

tions that will make Ct(l) the two dimensional Fourier transform

of an isotropic probability dnn;ity function. Such a transform .
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is neacessarily isaotropic. A function g(s) is sought so that

[ J
(2.2) Cltr) - j[Jo(rs) s gis) ds .
0o
This expression is inverted using the Hankel transform, giving
L}
(2.3) gi(s) = /Jotsr) r Citr) dr.
' 0

Then, using (2.1) in (2.3), and interchanging the order of

integration, followed by integration by parts yields

[ J -
gi(s) = j{Jo(sr) r )fcas(tr) h(t) dt)dr =
0 o]
[} [ J
/h(t) ( /Jo(sr) r cos(tr) dr) dt =
0 o] :
[ -«

dt o

/h(t) (-4- | 7 (mr) sin(tr) dr) dt =
0 0

[} [ ] ) i
}rh'(t) (j[Jo(sr) sin(tr) dr ) dt ,
‘0 o

and then,

[ J
(2.4) gis) = -fh'(t)/(tz—-2)1’2 dt .
s
The last squality uses the Hankel transform of r . /2gin(tr).

In order for g(s) to be a probability density function it
must be nonnegative with integral equal to one. It is easy to
show (again, interchanging the order of integration) that the
integral is equal to one. It is more difficult to show necessary
and sufficient conditions for the nonnegativity of g(s). The
above relations summarized gives:

Theoram 23 A sufficient condition for C,(s) to be a valid iso-

. tropic covariance function in two dln.nstonl is that h(t) b
a monotone decreasing (h’(t)<0) function. -

12
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This condition sesess unnecessarily restrictive, and di¢éi-
cult to use since the condition is on the Fourier cosine
transfora of c‘¢|) rather than 61(-) itself. Nonethelass, the
condition can be used to show the following interesting results.
I. Consider the exponentially damped cosine function,
bs

C(s) = costam)e .

The Fourier cosine transform of this function is
BpaBeb2

hit) = FICI(R) = i (a-t) 1D+ (att) =] .

Inspection of h’(t) shows that if b2 > 3a2

s it is nonpositive for
all t, and hance h(t) is sonaotone decreasing under that
constraint.

Il. Consider the second order autoregressive (S0AR) covar-
iance function,

Ci(s) = [coslas) + (bla)lin(a-)lc.b'.

The Fouriaf cosine transform of this function is
Rppd

hit) = FIC) (L) = oo ) 21 Lb2s (Eoa) =] .

Inspection of h’'(t) reveals that if bz 2 .2’ it is nonpositive
for alllt. and thus h(t) is monotone decreasing under that
constraint. We see that sach of the above C(s) is an isotropic
positive definite function, hence is a covariance function if the
appropriate inequality on the parameters is satisfied.

III. Consider the special case of the damped cosine
function

C(s) = LA + (1-A)cos(am)1/(1 + (bmy 212 |
The Fourier transform of this function is

hi(t) = F(CY(t) =

-1

(20) "C((1-A)IK (I1t—-al/b) + K (it+al/b)] + AK (/b)) .

0 0 o

13
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Because the modified Bessel function Ko becomes unbounded as the
arguasnt tands to zero, for A ¥ 1, the Fourier transfora sust be
increasing as t approaches a through values ssaller than a. For
t greater than a, and possibly for some values saaller than a,
the function is decreasing. Thus the sufficient conditions given
above are not met, and it is easy to find configurations of (x,y)
points and paraseter values A, a, and b for which the resulting
'covarianc;' matrin is not positive definite. The two dimen-
sional Fourier transform of C(s) (the Hankel transfora of
lllzc(l’ ) has thus far gone unsolved, so it is presently unknown
i¥ there are parameter values (other than for A = 1) that will
yvyield a positive definite function.

IV. Consider the Bessel function Jo(as). The Fourier
transform of this function is
o s t<a

172 2_.2,1/72

hit) = F(CYX(t) =
/7(t"=a™) s tOa .

t
This function is easily seen to be monotone decreasing for t)a,
and thus the Bessel function Jo(al) is an isotropic covariance
function in two dimensions. Application aof this relation
requires attention to some technical details because of the
infinite jump discontinuity at t=a.

The above results concerning several functions proposed for
use as isotropic covariance functions in two dimensions is
usaful. The lack of rasults and empirical evidence against the
damped cosine being positive definite negate the results noted in
the next section where we see that the fitting power of the

function is very good. These aspects of the function will be

discussed further in the next section.




2.3 Sussary

The contents of this section contain some usaful inforsation
for the construction of isotropic positive definite functions and
testing of functions for positive definitensss. When possible,
the two dimsnsional Fourier transform of Cltob can be used to
decide whether or not the function is positive definite. When
the two dimensional Fourier transform cannot be ocbtained in
closad form, Theorem 2 can give some information if the one
dimensional Fourier transform is available in closed form. While
the sufficient condition given by Theorem 2 is not necessary, it J
has been shown to be useful in investigating some functiona which )
have bheen proposed for use as isotropic covariance functions in

two dimensions.

3.0 Some Experimants with Isotropic Covariance Functions

3.1 Background
The work reported in this section is intended to help deter- :
mine something about the overall fitting properties of various
suggested covariance functions. The term “overall fitting prop-
erties” is meant to include not only the ability of the function ;
to model a reasonably complicated true covariance fuﬁction, but
also its performance when usad in a statistical int.rpolation !
scheme with saveral different ocbservation patterns.
The approach for this project was to begin with published
data from an actual case, and then construct a :oyarinncn func- )
tion using a least squares fit to the data from a certain class
of covariance functions. This model is unndlto define the

“trdth" model. Functions from other tlasses were then fit to the
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sane data, again in the least squares sanse, and the perforasance
of these "assuaed” covariance functions were asasured against
that of the optisum model. The results to be discussed give soae
insight into what classes of functions have adequate fitting
ability for modeling actual forecast error statistics, and also
show how auch skill i{s lost (in the idealized case) by use of
inaccurate covariance functions.

The results given here consist of repressntative plots of
assumed correlation functions together with the correlation
function definad as "truth®, and contour plots of some of the
resulting expected errors. The tables show expected robt-n.an—
square (sres) errors (relative to the standard deviation of the
background error) over three grids of points and associated
cbservation locations. The expected errors were computed as in
Seaman (1983). The results cbtained with various assumed corre-
lation functions in the SI scheme are discussed in detail.

Addi tional plots are given in Franke [28).

3.2 The Model Correlation Function

The data for the covariance function was obtained (by hand)
from Lonnberg [29]. The data taken was plotted points from a
covariance function of the type used by European Center for
Medium—Range Weather Forecasts, in this case a five term (i.e.,
n=3) Bessel series of the form

n
(3.1) E Atao(sik‘/R) + A
1=}

where k‘ is the § o

the radius of the region of interest. This function is positive

(o] ?

th

zero of the Bessel function J.(s), and R is
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definite as an isotropic function in two dimsensions provided the
cosfficients A‘ are all positive. In Lonnberg, R was 2000 kma. :
In this work, distance was mesasured in degrees, and the radius
was scaled to 30°.

Least squares fits to the data by functions of tha type
(3.1) for four, five, and six—~terms were computaed. While the
original paper indicated a series with five terms generated the
data, it was found that six—terms yielded all positive coeffi-
cients and a significant reduction in the residual over five
terms. Thus, it was decided to adopt the six term series as the
“truth” covariance function. This six term series would also be
marginally harder to approximate using other classes of
covariance functions. The data and the fits using four and six
terms are shown in Figure 1, and the coefficients are given in
Table 1, along with other data. The intercept values of the
approximations were 0.8270 and 0.83992 for fourAand l§x terms,
ruespectively. This occurs because the data represents the '
spatial correlation of the background plus observation error,
thus the intercept is a function of the ratio of the standard
deviations of background and observation error. The effects of
this kind of discrepancy will be discussed in section 3.3. The
correlation function for background error is the approximation

normalized to have value one at s=0, of course.

3.3 The 6rid and Observation Point Sets '
Three grids and associated point sets were selected for
studying the expected errors of statistical interpolation schemas

based on various assumaed covariance functions. All were based on
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the approximate locations of radiosonde data (from Wahba and

Wendelberger [(30] and Ghil, et.al. (311) within the selected
grid. Each grid coverad a region that was 30° in longitude and
20° in latitude, and the three were chosen to repressnt a dense
cbservation set, a partially dense cbservation set, and a sparse
observation set. The regions correspond to the middle United
States with 36 observations, the esastern United States and west-
ern Atlantic Ocean with 25 observations, and the middle Atlantic
Ocean with 3 cbservations. For reference purposes, the three
regions will be referred to as the MUS (Mid-U8), EC (East Coast),
and MA (Mid-Atlantic) regions. The regions and the cbservation
locations can be seen in Figures 2-3, parts (b)), (c), and (d),
respectively. The regions were gridded at 2.5° intervals for
purposes of computing expected errors, although the erms errors
given in Table 1 are only over the interior grid points to mini-
mize edge effects. Use of interior gfid points for this purpose
is valid since on a sphere it is not necessary to interpolate to
the boundary points. For contouring purposes the fields were

interpolated to finer grids using bicubic spline intirpolation.

3.4 The Assumed Correlation Functions and Results

The families of assumed correlation functions fell into S
classes: (i) Bessel function, (ii) negative squared
aexponantial (sometimes called Gaussian), (iii) autoregressive of
order two, (iv) autoregressive of order three, and (v) damped
cosine. They will be discussed in tdrn, along with the results.

Plots of the assumed correlation functions, along with the

"truth" correlation function, are shown in part (a) of Figs. 2-3.
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" Table 1. Because the intercept of the fit to the data is 0.8270

For fitting purposes, sach included a multiplicative parameter
that determined the s=0 intercept, and was subsequently dropped
to obtain the correlation function. The value of this parameter
is of interest, however, because dropping it shifts the curve
(upward) to pass through the point (0,1), and thus different fits
may be shifted by differing amounts, which ultimately affects the
fit to the background error correlation function.

Recall that the erms errors given in Table 1 are given as a
fraction of standard deviation of the background error. The
ratio of the standard deviation of the cbservation errors to the

standard deviation of the background errors was 1/3.

(i) DBessel Function

The reference expected errors were computed using the actual
correlation function maodel, given by Eq. (3.1) with coefficients
as given in Table 1. The results are given in Table 1, and are
the smallest expected errors that can be obtained using a correc-
tion to background scheme, that is, they are truly optimum. The
correlation function is shown in part (a) of Fig. 2, while the
contour plots of the expected error for each of the three grid/
aobservation sets is shown in parts (b)), (c), and (d).

The results using a four term Bessel function are given in

varsus 0.8392, normalization to value one produces a curve that
is predominately above that for the model correlation function,
especially for small distances. The result of the poor approxi-

mation for small distances is most pronounced over MUS. The

effect was small over the sparse part of EC and over MA.
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(ii) Negative Hquared Exponential (NSE)

The NBE has been recognized as inadequate for modeling error
covariances for some tise, and the results oﬁtatnnd here confira
that. The assumed form of the function was

(3.2) A+ (1-pra”W/B)%

This function is positive definite as an isotropic function in -
two dimensions for 0<A<1.

The initial fit was not obtained by least squares, but
siaply by attempting to fit the model correlation reasonably well
for seall distances, taking A=0. The fit is reasonably good up
to about 6°, and qﬁit- poor at gresater distances. The expectaed
errors are similar in magnitude to the expected errors for the
four term Bessel function, excespt over MA, where the errors are
larger. However, since the errors over MA tend to be large
anyway, the relative effect is not as great as one mig:t expect.

The sscond attempt was by least squares “or the parameters A
and b. Because the NSE is too flat near the origin, this process
yielded an intercept value of 0.8060, shifting the correlation
function so that it is entirely above the model correlation
curve. Thil results in even poorer performance over MUS and EC
than thl'pr.vious model, due to the inaccurate representation for
IllllAdlltIHCIl. The parformance ovar MA was better than the
above.

Due to the poor performance (compared to the above) obtained
by ndd}ng a constant to the basic NSE it was decided to attempt
to find a better fit by trial and error. No claim is made about
ﬁny optimality for this function. The results in Table 1 demon-

strate that it is probably not possible to obtain good results
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overall with a function from the NBE family, and certainly not

for the present model correlation function.

(ii1) Autoregressive, Order Two (SOAR)

The SOAR model has been suggested as appropriate by Yudin
(321, Thiébaux (131 and this is supported by simulations due to
Balgovind, et.al. [33]. This is the model that is being incor-
porated into the U. S. Navy NWP models. The formula given here
includes a constant term which is not part of the SOAR model, but
which has been noted to improve performance considerably
(Thisbaux, et.al., [21]1), and those results are confirmed here.
The SOAR function with additive constant is

(3.3) A + (1-A)(cos(as) + (b/a)sin(as)le >®
This function is paositive definite (in two dimensions) whenever
asb, and 0<A<1. In all cases investigated here, and as has been
reported elsewhere, (e.9., Thiebaux, et.al., [(21]1), the parameter
a tends to be essentially zero. In this case the function re-
duces to

(3.3a) A + (1-A)C1 + bsle 2%

The initial attempt was a least squares fit to the data with
A=0., The intercept obtained was 0.7977, with the resulting
correlation curve then being considerably above the model corre-
lation curve between 0° and 15°. The performance was only
slightly better than with any of the prdviouu correlation
functions. It was then decided to attempt a least squares fit
with the intercept constrained to be 0.8592, the same as obtained

for the model correlation function, but again with A=0. Table 1

shows marginal improvement for all three grid/cbservation
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patterns. A third attempt included A in the least squares fit,
with no constraint. This resulted in a much closer msatch to the
acodel carrelation function, although tha intercept of 0.8441
moved the assumed correlation curve above the model curve for
much of the interval. The fit and resulting expected error
contours are shown in Figure 3. Table 1 shows there is consid-
erable improvement over all previous results, the most improve-

ment being for MUS, and the least for MA.

(iv) Autorsgressive, Third Order (TOAR)
The use of the TOAR model has been investigated by Thiabaux,

et al. (211, including an additive constant. The formula is

(3.4) A + (1-A)C(acos(as) + bsin(am))e °% + Ce %3

,
whers the coefficients 2; 5, and c are functions of a, by, and c
given by

; = (3b2-a2-c2)aclb ’ b= (bz-Saz—cz)bc/D ’

S = -2(b%+a2)ab/D , where D = (3b2-aZ-c?)ac-2(b2+a2)ab .
It is unknown what restrictions (bayond 0{A<1) on the parameters
are required to ensure the function is positivc definite as an
isotropic function in two dimensions.

The data was fit by least squares with the TOAR function
(3.4). The intercept was 0.8651, which resulted in the curve
being slightly below the model correlation curve over most of the
range. Overall, the fit was quite close and better than any of
the previously discussed functions. The results in Table 1 show

very close agreament with the optimum possible for all three of

the grid/observation sets.
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(v) Daspad Cosine

The damped cosine function has besn suggested by Thiébaux
(191 and Seaman and Hutchinson [341. The forsula is

(3.5) (A + (1~A)cos(as)1/L1 + (bw)231S .
It is unknown whether the function is positive definite as an
isotropic function in two dimensions, but the evidence in section
2.4 (for ¢c=0.95), while incon:lu-ivi, seess to indicate it is not.
In practice, of éoursn. the function may be positive definite
whean the ocbservation paints are restricted to certain regions.
The data was fit with the function (3.5), under the restriction
c=0.3. The intercept was 0.8363, which resulted in a very slight
raising of the curve relative to the model correlation function.
The resulting fit is excellent for small distances and very good
over the entire range. Table I shows that this function gives
the best results of a;l the functions tested.
(vi) Variations

The expected error computations for a number of variations
of the above functions were also performed. The principal
variation was to fit the data only over the first half of the
interval, (O°,15°). The effect of this was to generally (though
not always) increase the erms errors over MUS and EC, while not
affecting the results over MA. In the damped cosine, the
exponent ¢ was chosen by least squares, along with the other
paramaters, and resulted in a slightly better fit to the correla-
tion function, especially at larger distances. However, the
coefficiant A was slightly greater than 1. Whatever the paositive

definiteness properties of the function, having A>1 will certain-

ly make it non-positive definite. Although no graphical results




are shown, the coefficients and erms errors are given in Table 1
for the additional assumsed correlation functions.

3.5 Sensitivity of the S0AR Modal to Parameter Misspecification
In order to determine more completely the characteristics of -
the S80AR model, some additional calculations ware made to deter-
mine the effect uf'nillp-cificatiun of the parameters in the
correlation function or the ratio of the standard deviations of
the aobserved and background error. The results can be summed up
rather quickly:s The scheme is mostly insensitive to such
variations. Figure 4 shows a family of 4 correlation functions,
#4 being the SOAR plus constant discussed in th‘ section 3.4,
with the others having smaller correlations at a given distance.
Figure 5 shows the expected RMS error for sach of the four as the
"assumed” correlation, when the "“true” correlation function is
#4. With the exception of the sparse MA grid, the nyp.ctnd
errors are relatively stable under significant perturbations.
Figure & shows the sensitivity to the assumed error ratio, and
once again, it is observed that the expected errors are quite

stable.

4.0 Conclusions

The principal conclusion to be drawn is that the correlation
family used in practical analysis should embody a sufficient
number of parameters to fit the forecast error statistics reason-
ably well. Further, it is most important that the data be fit
accurately for small distances. In order to ensure a better fit
for small distances, it may be worthwhile to enforce the inter-

cept of the correlation for the background plus observation
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errors i the ratio of standard deviations of the two errors is
known accurately. The effect of scaling to ocbtain the correla-
tion function, and the apparent shift up or down can possibly be
compensated for by artificially varying the ratio of background.
to cbservation errors, as well, although it seems more desirable

. to enforce this ratio in the correlation function fitting
process.

As noted above, clearly the most important region for the
fit to the correlation function to be accurate is for small
distances. Over the sparsely ocbserved region, MA, and to a
lesser axtent aover the EC region, the overall erms errors were
only slightly affected by the assumed correlation function. In
the case of the MA reqgion it is noted that the error contours aras

f relatively unaffected excapt near the observations. 8Since the
: errors in the remote part of the rng;on dominate the overall
1: error, the choice of assumed correlation function has relatively
small influence. On the other han&, over the densely observed
region, an accurate fit at small distances was most important.
g The NSE correlation function, while not performing well, illus-
trates the above nicely. For the first NSE entry in Table 1,
evan though the fit is poor for distances of more than 6°, the
eras errors over MUS and EC are smaller than the best fit (last
;; NSE entry) due to the more accurate fit for small distances by
. the former function. O0Of course the erms errors over MA are
;; ) poorer for the firat case due to the very bad fit at large
distances.

There appear to be several good candidates for use II.tNQ

dimensional isotropic correlation functions, 1nclﬁd1nq 80AR,
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TOAR, and damped cosine, given by Eqs. (3.3), (3.4), and (3.9,
respactively. While the fitting power for the latter two are
greater (there are a gresater number of parameaters for those two),
the choice of SOAR sesss reasonable and adequate for a number of
reasons: (1) The SO0AR (with the additive constant) embodies a
sufficient number of parameters to allow oscillation and decay
with distance. (2) The SOAR has some credibility as the spatial
correlation function of an innovation process. However, rasults
are for one dimension rather than two, except for the results
cited previously in Balgovind, et.al. (331, (3 The SOAR was
demonstrated here to be positive definite as an isotropic
function in two dimensions, under a mild restriction on the
paramesters. (4) While the TOAR is also the spatial correlation
function (again in one dimension) for an innovation process,
basaed on this limited study'it does not appear to be signifi-~
cantly better than SOAR. (S5) The positive definiteness
properties of the TOAR ar‘ not known, although it is certainly
positive definite as an isotropic function in two dimensions
under sémc restrictions on the parameters. (6) Although the
fitting ability of the dampad cosine seems to be at least as good
as the TOAR, and it is positive definite in one dimension, evi-~

. dence indicates it may not be positive definite as an isotropic
function in two dimensions, regardless of parameter r.st?i:tion:.
The availability of other acceptable alternatives ssems to make
it prudent to preclude the use of the damped cosine in practical

situations.

It is pointed aut that all of the functions except tha four

term Bessel function and the NSE perform very well. Table 1




shows, for axample, that the 80AR is only a little more than 1%
of thae standard daviation of tha background error poorer than
optimal over MUS and EC, and lass than .1% poorer aver MA.
Finally, it is noted that within the S0AR family, 81 is
quite insensitive to aisspecification of the correlation parame-
. ters, even to an extent such that the correspondence would appear
.tn bae much less between two members of the family than between it

and a fit by the NBE. Thus it could as important to chooses the

corract family of correlation functions as wall as to model
properly within that family. In addition, misspecification of
the ratia of standard deviations of the background and cbserva-
tion errors has a rather small effect on the skill of the method.
This work has focused only on the univariate problem,
whereas in practice such schemes are applied to the multivariate
one. Further work is necessary to determine whether the nice
results obtained here carry over to the multivariate case. A
further investigation of the effect of wind observations on the

analysis of pressure height and wind fields is anticipated.
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Parasater Values and erms Errors

Model Corrslation is 8ix Term Bessel
Assused
Correlation Paramaters arss
Function ay,b,c A,A1 Mus EC MA
6 T Basseal 0.2474 0.24647 0.3752 0.7483
0.3335
0.1844
0.1031
0.0362
0.0554
Q.0400
4 T Bessel 0.2811 0.30446 0. 4088 0.73503
0. 3090
0.2213
0.0930
0.0956
NSE 10.0 0.0 0.3047 0.4184 0.7822
NSE 14.86 0.3200 0.34688 0.5282 0.7631
NSE 10.0 0.25%00 0.3098 0.4158  0.7541
80AR 0.0 0.0 0.3034 0.4022 0.7562
0.121F
SOAR 0.0 0.0 0.2931 0.3968 0.7562
0.1374
S0AR 0.0 0.2722 0.2780 0.3859 0.7491
0.205S
TOAR 0.4732 0.1974 0.2717 0.3794 0.748%
0.3828
Dmpd Cos 0.4749 0.9992 0. 2686 0.3779 0.74864
0.13467
0.5000
NBE* 15.0 0.0 0.3619 0.4414 0.7649
NSE » 12.31 0.3205 0.3474 0.4299 0.,7%593
80AR 0.0 0.37358 0.2743 0.3825 0.7495
» 0.24654
TOAR 0.44468 -35.9965 0.2697 0.3801% 0.7514
0.1482
- 0.0052
Dmpd Cos 1.2236 1.0027 0.2749 0.3734 0.7491
0. 1507 '
0. 5000
Dmpd Cos 0.7009 1.010S5 0.2692 0.3779 0.7484
0.2049
- 0.3753
Dmpd Cos 0.7987 1.0147 0.27064 0.3784 0.7485%
0.2350
0.3317
Table 1

* These correlation 4unct:lonl were obtained by least squares

1t over the interval (0 © 159
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FIGURE CAPTIONS

Figure 1: The data points and least squares fits by four and six
term Bassal functions.

Figure 2: (a) 8ix term Bassel correlation function (true and
assumed). (b)) Expected root-mean—-square srror contours for the MUS
grid and observation point set for the correlation functions shown
in (a). (c) As in (b)) for the EC grid and observation point set.
(d) As in (b) for the MA grid and observation point set.

Figure 3: (a) Six term Bessel correlation function (true) and
second order autoregressive plus constant correlation function
{assumed) . (th), (c), and (d) Am in corresponding parts of Fig. 2
for the correlation functions shown in (a).

Figure 4: Four 2nd order autoregressive correlation functions,
as in Eq. 3.3a, with (b,A) values: #1 - (0.5,0.0);3 #2 -
(0.3,0.0)3 #3 - (0.3=0.15)3 #4 - (0.2085,0.2722).

Figure S5: Expected RMS errors when the "true" correlation is
function #4 with various assumed correlation functiaons for each
of the three grid/observation sets.

Figure 6: Expected RMS arrors when the assumed ratio of the
standard deviations of the observed to background error is
varied. Actual error ratio is 1/3.
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TRUE & ASSUMED CORR FTNS
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