
D-ll744 THE USE OF OBSERVED DATA FOR THE INITIAL VALUE PROBLEM 1/
IN NUMERICAL WEATHER PREDICTION(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA R FRANKE ET AL. APR 87

UNMIFIED NPS- 3-7-992 F/G 4/2 N

Monsonhhmm

mhhhhhhmmAh



11-

MICROCOPY RESOLUTIMt TEST CHART
MATIO#AL BUREAU OF STANDOARDS- 1963-A

16

-V w W -: .- J ,W, OW =W ZW



FILE copjy

NP3-53-87-00

NAVAL POSTGRADUATE SCHOOL
Monterey, California

S E ECTE

(nrA

THE USE OIF OBSERVED DATA FOR THE
INITIAL VALUE PROBLEM

IN NUMERICAL WEATHER PREDICTION

by

Richard Franks
Edward Barker
James IGoeres

Technical Report for Period
August 1986 - March 1997

Approved for public releaue; distribution unlimited

Prepared for% office of Naval Research
Applied Research and Technology

Directorate
Arlington, VA 22217-5000

87 6 29 046



NAVAL POTBRADUATE SCHOOL
MONTEREY CALIFORNIA 93943

R. C. ALSTIN D. A. SCHRADY
Raw Admiral, U.S. Navy Provost
Superintendent

This work was funded by the Office of Naval Research, Arlington,
VA, under Program Element 61153N, Project No. BRO33-02-H.

Reproduction of all or part of this report Is authorized.

Proesor of Mathematics Naval Environmental Predic-
tion Research Facility

Evironmental Predic-
tion Research Facility

Reviewed by.

HAROLD M. FREDRICKEiN KNEALE T.
Chairman Dean of Informat a d
Department of Mathematics Policy Sciencs



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.



UNCLASSIFIED
UCUMTV CLAmuCAnemt OP Ti P"9 Mm Data &*e* ______________REA INTRCTON

REPORT DOCUMEMTATIO PAGE BEFORE COMPLETING FORS
I PIKUQNT XWO-1 IGOVT ACCS" M . R1CIPIENTSI CATALOG NUMIIBER

111 TiTLE Mt I. TYPE OF REPORT 6 PEROO COVEREO

The use 04 observed data far the Technical Report
initial value problem in numerical
mather prediction /. P Xllr1 ING OVt. PORT NUMleR

7* AUTNWOS 8. CONMRACT OR GRANT NUMSewe)

Richard Franks

9. ERP 0 MGANIZATION NAME AND ADORE8 10. PROGRAM EtEMENT. PROJECT TASK
ARA WokX( UNIT NUMER

Naval Postgraduate School Program Element 61153N
Monterey, CA 93943 N0001487WR22049
II. CONTROLLING OFFICE NAME AND AORES$ IfltpflRTlg~
Office of Naval Research
Arlington, VA 22217-5000 IS4UNBER* O! PAGES

14. MONITONINO AGENCY MANE 6 ADORESI(fI difent Iam CIntimithnd Offles) IS. SECURITY CLASS. (of tis report)

Unclassified

ISO. OEC. ASI ICATIONi OOWNGRAOINGSCME OULE

14. 6TRIBUTION STATEMENT (. til ) *Ret)

Approved for public release; distribution unlimited

17. DS'RIUIUTION STATEMENT (of Me l4 &0s# eaterod Inllo D g , It dIieftet hm Retf)

IS- SUPP1.EMENTARY NOTES

to. KEY WOrD" (Cmtbu.s do rme . If a.oinyO r a Id trlle, bp lk umbne)

objective analysis, Interpolation, statistical Interpolation,
optimum interpolation, covariance functions, isotropy,
correlation functions

B ISTRACT (Cbain Mese side Ift Poeor 4011 #dMt ble k muiMAo)

-The problem of combining observed and predicted values of
meteorological variables, all with error, to obtain currentweather conditions is considered. Statistical interpolation is
in common use for thts problem. Properties of isotropic spatial
covariance functions are developed. The performance of several
failles of covariance functions in fitting published data Is

IN'MS 14n EITIOON O I NOV II OBS OLETEDD I JAN 7

S/N 0102- L r- 
014- 6601 SECURITY CLAS01ICATION of Tit PAGE (1.m Doe Entered)

I CU TY~- € IFf~O VTt ~l D~ m,,l



myv ~iu~caym " Ph" f"Ift lm m.*

(20. continnd)"
- - . investigated. Thesecond ardow autaorgrmsive coevriance

- - *,ctin is idmntified a having suitable theoretical and
eucolldnt appromimation properties. Uwmnitivity.of the- -
errors in statistical interpolation to misupecification of
the statistical parameters is emplared, showing that the
proces is quite stable to much perturbations. -.--

•F Por

6v llabil t 'e S

Dist spbota1

SN 0102- LP- 04- 6601 UOCLA UIFIED

IICUIlTY CLASSIFICATION OF TNIS PAGZ(IWMh Does aImnoeQ



The physical processes of the eartho. atmosphere can be

mo-1led by a system of hydrodynamic equations. This system of

equations cannot be solved directly unless many simplifying as-

mumptions are made, severely limiting how realistically the

actual atmoepheric processes are simulated. In order to produce

accurate weather forecasts the full system of equations must be

solved in four dimensions. In practice global weather forecasts

are produced at various meteorological centers around the world

by treating these equations as an initial value problem and

integrating forward in time to produce forecasts. The solution

of this problem requires the use of advanced vector processors as

the number of computations involved is staggering. The forecast-

ing problem was formulated quite succinctly by the Norwegian

pioneer in weather forecasting, V. Djerknes C13, when he defined

the necessary and sufficient conditions for a successful system

in an article written in 1922 to be

i) A mufficiently accurate knowledge of the state of the
atmosphere at the initial time.

ii) A sufficiently accurate knowledge of the laws according
to which one state of the atmosphere develops from another.

BJrknes" discoveries of the hydrodynamical nature of the

weather problem led several European nations, especially the

Scandinavian countri"s, to begin collecting observations of the

state of the atmosphere. This data collection led L. F.

Richardson C21 to try describing initial conditions from a hand

analysis and projecting the state of the atmosphere to the future

from the hydrodynamical equations. The task was monumental as
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Ridumhrdon estimated that a warehouse of 64,O00 people using the

mechanical calculator of the day could Just forecast the state of

the atmosphere at the rate that it was actually evolving. Unfor-

tunately, many factors, discovered later in the 1940.s, kept

Richardson from making a successful forecast.

The magnitude of the weather forecasting problem required

the development of electronic computers for even simple

solutions. The Electronic Numerical Integrator and Computer

(ENIAC) developed in the late 1940's allowed Charney, Fjortoft,

and Von Neumann E33 to succeed in making a reasonable 24 hour

forecast. Their hydrodynamical model was simplified to filter

gravity waves while allowing weather patterns to develop in a

manner similar to that observed in the atmosphere. Their initial

conditions of pressure heights were derived by hand and the

result gridded and typed into the computer.

With the rapid development of computers over the past thirty

years, it has become possible to use numerical techniques to

integrate the full set of hydrodynamic equations forward in time

to produce improved weather forecasts. As V. BJerknes predicted,

accurate foree-asts require more than just accurate treatment of

the physical processes of the atmosphere, they also require

accurate specifications of the initial state from non-uniformly

located observations. Panosky E43, Bergthorsson and ns E53,

and Cressman E&3 pioneered methods to use the computer to obtain

a weather analysis from observational data. This process of

combining observation values with a background field is called

objective analysis. For the most part, these original objective

analysis techniques were weighted average schemes that depended

2
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wnm praopr specification of several parameters, usually obtained

on m ad hoc way. Today, most of the world's weather cantors use

statistical Jective analysis techniques based an the work of

andin C73 to provide Initial conditions for their atmospheric

forecast models.

In practice two sources of information arm combined to

produce an objective analysis. observations of atmospheric

variables and a forecast made by the atmospheric model from a

previous analysis. The forecast is commonly called the 'first

guess' to the analysis or the 'background'. Because the forecast

is hardly'a guess, the term 'forecast background' is used in this

paper to emphasize that the background to the analysis was

derived from a forecast made earlier. The observations of

temperature, wind, and moisture are made by in situ instruments

attached to balloons, aircrafts and ships or from remote instru-

ments aboard satellites or on the earth's surface. The result is

a collection of observations of varying degrees of accuracy taken

at various times. The statistical analysis schemes have been

designed to 'optimally' combine these observations with the fore-

cast background to produce the initial conditions required by the

numerical forecast model.- The optimality of these schemes

directly depends upon how well the statistical properties of the

errors of the forecast background and the observations are

defined. In practice, the schemes are multivariate in the sense

that they are used to simultaneously analyze multiple related

dependent variables from measured values.

In this paper we will deal with the representation of the

statistics of the forecast background error. In particular, the
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mdelling of the spatial autocovariance of the error for the

primary variable is examined. Early versions of andin's method

used a simple exponential function to model the autocovariance.

Although this model Is simple, it failed to be sufficiently

flexible to describe details of the statistics derived from

actual data. A search of the literature revealed that many

models are available, but tests of their abilities in fitting

background statistics for an actual forecast model have not been

conducted. The mathematical and precision limitations of various

models have been determined and are described in this paper.

Optimum interpolation (O!), which is sometimes more prac-

tically referred to as statistical interpolation (SI), is applied

to compute the corrections to the background field. This is done

by first interpolating the background to the non-uniformly lo-

cated observation locations, and then computing the difference

between the observed and background value. If observations were

exact, this would be the background error measured at discrete

locations. These measurements of background error are then used

by 01 to conffute a correction field on a uniform grid, which is

added to the background to produce the analysis.

The full development of the equations for a multivariate

application of O is given in several papers, including

Rutherford [83, Schlatter C93, Schlatter, at. al. (103, Bergman

CII], Lorenc (12], Thifbaux E133, and Thi~baux and Padder [14].

A brief outline of the method is given in the following. For a

collection of estimates of the error at scattered points, it is

desired to estimate the value of the error at the grid points.

01 approximates these values by a linear combination of the known
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values d41ned m that the expected men squared error over some

ensemble of relizations in minimized. This requires that the

statistical properties (covariances between variables) be known.

Btationarity (independence of the particular grid point) of the

statistical parameters Is required for a tractable problem. The

weights used in the linear combination are obtained from the

solution of a certain system of linear equations, the coefficient

matrix being the matrix of covariances between the background

plus observed errors at the observation points. The positive

definiteness of this matrix plays an important role, both the-

oretically and computationally.

A discussion of multivariate covariance functions, proper-

ties they must satisfy, and methods of obtaining such functions

are discussed in section 2. Experiments with several families of

covariance functions in fitting background error statistics and

the resulting performance in a statistical interpolation scheme

are described in section 3. Section 4 summarizes the results

and suggests some future work.

2.0 Multivariate Covariance Functions

2.1 General Development

The theory of covariance functions and that of positive

definite functions go hand-in-hand. Positive definiteness of

matrices such as occur in our application are equivalent to the

spatial covariance function for the background errors being posi-

tive definite. Positive definite functions are characterized by

Bochner's Theorem E153, which states that a function is positive

(semi)dfinite if and only if its Fourier transform i.

5
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nomegaive. Alternatively, the covariance function is the

Fowleur (cosine) transf orm of a probability densIty (nonnegative)

function. Because of the application, our Interest is In posi-

tive definite functions that are smooth in the sense that certain

partial derivatives exist. An excellent ref erence for positive

definite functions is Stewart C163.

For completeness, a derivation of the covariance functions

for variables related through diffurentiation is given hers.

Suppose that it is wished to analyze three related dependent

variables, requiring that the corrections obtained via DI Cor

more correctly, 81) will not upset the relationship between the

predicted value* of the variables. Let the error in the predic-

ted variables be denoted by Z(xy), X(x~y), and Y(xy),p where

(x~y) gives the spatial location and it is assumed that

X(x,y) - k IZ, x y) and Y(xgy) - k 2 y(x~y). The subscripts x and

y denote partial differentiation with respect to x and y

respectively. Assume that the errors in the predicted values are

stationary (that is, the statistics do not depend on (x.;y)), and

have zero mean. Using EL.] to denote the expected value, or

ensemble average, the spatial covariance function for Z9 as a

function of Nlags" s and t. Is

R(sgt) - ECZ(xgy)Z(x+s,y+t)3 - ECZ~x-sgy-t)Zx~y)3

The latter equality follows from stationarity. Under the assump-

tion that the order of partial differentiation and the expected

value can be interchanged, the cross covariance functions and the

covariance functions for the derived variables are found in the

manner Illustrated here. Of course, it Is assumed throughout

this paper that the necessary derivatives exist.



EKZ(*jy)X~s4syt)3 a ICZ(xqy)k Zix(x+SIy+)]-

ECZ(xuy)kIZ(x4'sy4t)] a kIECZ(xly)Z(x4.sly+t)]n - ki R6Cut) ,

whi Ie

ffXC~y)Y(x+sy+t)] - ECX(xgy)k 2 Zy(x+sy+t)] -

ECXfxy)k 2 Zt Cx+sy+t)3 = k 2 EX(xp)Z(x+sy+t)]t -

k2EkIZ (x-sy-t)Z(xy)]t k 2 EE-kIZ(x-sy-t)Z(xy)]t -

-k 1k2EZ(x'y)Z(x+svy+t)t, - _kl k2 Rts(ut) .

Note that while the covariance functions are symmetric, the

cross covariance functions are antisymmetric, which accounts for

the sign change that comes from changing the order of the product

in the expected value. This means, among other things, that the

cross covariance must be zero at zero lag values. This behavior

can be seen in the fonction plots in Bergman C113 and Schlatter,

et. al. C103.

2.2 Som Necessary Properties

In order for the covariances of the derived functions and

the cross covariance functions to exist, certain conditions must

be satisfied by the function R(s,t). These have been alluded to

by Buell C173, and are given in Julian and Thi~baux [183, where

R (a) R (s)
lim is finite, and lim Rs(a) 3 - 0
s9O S*O

a in this equation represents the lag distance (lag in the above

was (a2 + t2 ) 1/2), and R(s) is an isotropic covariance function.

When one considers that R (0) must be zero, the first limit is

the definition of the second derivative at s-O, hence existence

of the limit means that the covariance function must be twice
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differentiable at w@O. The second limit then says that the

second derivative is continuous at wwO. Thus the theorem given

by Julian and Thiibaux can be simplifleds

Theorem 1 If R(s) is an isotropic covariance function for Z in
two dimensions, then the covariance functions for the
partial derivatives of Z exist at swO if and only if R(s) is
twice continuously differentiable at smO.

2.3 Anisotropic Functions

It has been contended that isotropic covariance functions do

not adequately model the forecast error statistics and that gains

can be made by using anisotropic functions. Oee Thi~baux

E133,C19],C20], and Thifbaux, at. al. E213 for development and

discussion of product forms of covariance functions. Use of

products of single dimensional functions has the advantage of

carrying over desirable properties to higher dimensions, as well

as being able to use essentially one dimensional structures and

techniques. On the other hand, perusal of contour plots of

product functions show that zero crossings of the functions occur

along grid lines, and it is easy to see this will always happen.

This may be undesirable behavior, and almost certainly it is not

the kind of behavior seen in the error statistics.

Another form of anisotropy is possible, one which results

from scaling differently in two orthogonal directions, then using

an isotropic functions in the scaled variables. This would

result in the zero crossings in the contour plots of the function

being ellipses with axes in the two directions, and all contours

having the same shape. The eccentricity of the ellipse is a

measure of the anisotropy of the error statistics. It wouLd be

8



easy to allow rotation along with the scaling to obtain ellipses

of constant "distance" with any axis orientation. For a discus-

sion of this type of anisotrapic correlations, sm Seaman C2239

and uell and Seaman C233. The properties of any much functions

ar those of isotropic functions, of course, since the anisotropy

arises purely from a rotation and scaling.

2.4 Isotropic Functions

The use of isotropic functions in two or more dimensions

that have been derived from one dimensional considerations can

possibly lead to nonpositive definite functions. For example,

Ripley C243(p 11) quotes a result of Matbrn C253, which gives a

lower bound for isotropic positive definite functions in several

dimensions. The result means that positive definite functions in

two dimensions are necessarily bounded below by -0.403 (the

minimum value of J 0 (a) ),9 while in three dimensions the bound is

-0.218 . Thus any oscillatory positive definite function in one

dimension that takes-on values less than -0.403 cannot be an

isotropic positive definite function in two dimensions. A posi-

tive definite function with parameters to separately control the

oscillation frequency and the decay can probably be made into a

nonpositive definite isotropic function in two dimensions. For

example, an exponentially damped cosine function, f(s) - cos(as)

sxp(-bs), can be made nonpositive definite by suitable choice of

parameters, say a - 5 and b - .1 . This result also applies to

other candidates for Isotropic correlation function models, as

will be shown later.

There is a one-to-one correspondence between covariance

9



4unctions in one dimension and isotropic covariance functions in

twr dimnsions. Using the so called Oturning band" method

RMtheurn E263 gives a way of generating an isotropic d-dime-

s1onal cuvari nce function from a one dimensional cavariance

function. The relation is
1

Cd(s) w KfC1(vs)(1- v2)(d
- 3)/2 dv,

0

where K to a constant that is unimportant for our purposes. In

tw dimensions, this gives[1
C2 (s) - K 1 (Vs) 11-v2)- 1/ 2 dv.

It is possible to invert Matheron's relation to show a one-to-one

relationship. A sketch of the inversion process follows.

Employing a change of variables in the previous expression gives
a

C2 (s) - Kf C1 (t) (s
2 -t2 )-1/2 dt.,

-0

then making further change of variables, s2  x and t2 - y, yields

C2 (xl/2 ) ,, KfCC 1 (Y1/2)(2y)-1/2](y-x)-1/2 dt
"0

This is Abel's equation for K C1 (y1/2)(2y)-1/2 , and the solution

is well known (see Hochstadt, 273), given by

C (x11 2 ) - K 1 /2 d C2(y1/2 )(x-Y)-1/2 dy

where K' is a different constant. Substitution for s and t once

again, gives

C(-s) K- s C2 (t)(s 2_t2)- 1/22t dtC1 2

The correspondence between covariances in one dimension and

10
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thrme dimensions is easier to invert, and in given by Ripley

t24]. There the relation Is

C3 (s) m dv,9 and C1 (a) m duCsC3 (s)]

While this characterization of multidimensional isotropic

covartance functions is interesting, and can in fact be used to

generate isotropic multidimensional covariance functions, it does

not easily answer the question as to whether or not a particular

one dimensional function Is an isotropic positive definite func-

tion in more dimensions. One way to answer such a question is to

use the characterization of positive definite functions as

Fourier transforms of probability density functions (or alterna-

tively, as functions whose Fourier transform is positive). The

Fourier transform of an isotropic function C(s) in two dimensions

becomes (essentially) the Hankel transform of s1 /2C(s). It may

be considerably easier to look at the one dimensional Fourier

transform. It would then be useful to have a sufficient condi-

tion on the Fourier transform of the function which would

guarantee it is an isotropic positive definite function in two

dimensions. Such a condition will now be derived. Let C (s) be

a positive definite function of one variable. From the charact-

erization in the previous section, it can be shown

(2.1) C1 (a) - f[o,(r,)h(r) dr,

0

for some probability density function h(r) (i.e., h(r)>O, with

Integral equal 1). The problem is then to determine the condi-

tions that will make C1 (s) the two dimensional Fourier transform

of an isotropic probability density function. Such a transform

11



is necessarily Isotropic. A function g(s) to sought so that

(2.2) C1 (r) = fJo(rs) a g(s) do

0

This expression is inverted using the Hankel transform, giving

(2.3) g(s) m f o(or) r C1 (r) dr.

0

Then, using (2.1) in (2.3), and interchanging the order of

integration, followed by integration by parts yields

g(s) mfjo(or) r ( coM(tr) h(t) dt)dr -

a 
00o fc

h(t) ( 1 0 (or) r cos(tr) dr) dt I

oo

h(t) (-tfo (or) sin(tr) dr) dt-

o o

fh'(t) f 30(or) sin(tr) dr ) dt
o Jo

and then,

(2.4) g(s) m - h'(t)/(t2_s2)1/2 dt

-1/

The last equality uses the Hankel transform of r- 2 sin(tr).

In order for g(s) to be a probability density function it

must be nonnegative with integral equal to one. It is easy to

show (again, Interchanging the order of integration) that the

integral is equal to one. It is more difficult to show necessary

and sufficient conditions for the nonnegativity of g(s). The

above relations summarized givess

Theorem 21 A sufficient condition for C (.) to be a valid iso-
tropic covariance function in two dimensions is that h(t) be
a monotone decreasing (h"(t)<O) function.

12



This condition seems unnecessarily restrictive, and diffi-

cult to use since the condition Is an the Fourier cosine

transform of C 1 (sn) rather than C1 I () Itself. Nonetheleen, the

condition can be used to show the following Interesting results.

1. Consider the exponentially damped cosine function,

C(s) M cos(ASseb5

The Fourier cosine transform of this function is

h (t) = F (C) (t) .- b( =b&~tm)
CbO+(A-t)inJEbi(+t)03

Inspection of W(t) shows that if b 2 2 3a2 9 It in nonpositive for

all t, and hence h(t) is monotone decreasing under that

constraint.

I .~ Consider the second order autoregressive (SOAR) cover-

iance function,

C(s) -Ccos(as) +~ (b/&)sin(as)2e&'

The Fouri~er cosine transform of this function is

h(t) w F(C)(t) w b2 2b(bl+&O)
Cb'+t-a)a32 ba+ (tea) 0J

Inspection of h'(t) reveals that If b 2 2 a 2, it Is nonpositive

for all t9 and thus h(t) is monotone decreasing under that

constraint. We see that each of the above C(s) Is an Isotropic

positive definite function, hence is a covariance function If the

appropriate Inequality on the parameters is satisfied.

111. Consider the special case of the damped cosine

function

C(s) - CA + (1-A)cos(as)3/C1 + Cbs) ~ /

The Fourier transform of this function is

h(t) F (C). (t)

(2b)- 1C(1-A)CK (It-aI/b) + K (It+al/b)3 + AK Ct/b)l

13



Because the modified Vmsel function K0 becomes unbounded as the

argument tends to zer., for A 0 1., the Fourier transform must be

increasing as t approaches a through values smaller than a. For

t greater than al and possibly for some values smallar than a,

the function is decreasing. Thus the sufficient conditions given

above are not met and It is easy to find configurations of (x,y)

points and parameter values A, a, and b for which the resulting

Ocovariance matrix is not positive definite. The two dimen-

sional Fourier transform of C(s) (the Hankel transfarm of

9 1 2C(s) ) has thus far gone unsolved so it is presently unknown

if there are parameter values (other than far A a 1) that will

yield a positive definite function.

IV. Consider the Bessel function J0 (am). The Fourier

transform of this function is

0 t•<a
h(t) - F(C)(t) i 12/(t2-&2) 1 / 2  t>.

This function is easily seen to be monotone decreasing for t>a,

and thus the Bessel function J 0 (as) is an isotropic covariance

function in two dimensions. Application of this relation

requires attention to some technical details because of the

infinite Jump discontinuity at tn.

The above results concerning several functions proposed for

use as isotropic covariance functions in two dimensions is

useful. The lack of results and empirical evidence against the

damped cosine being positive definite negate the results noted in

the next section where we see that the fitting power of the

function is very good. These aspects of the function will be

discussed further in the next section.

14



2. 5 bmwmry

The contents of this section contain mom useful information

for the construction of isotropic positive definite functions and

testing of functions for positive definiteness. When possible,

the two dimensional Fourier transform of C 1 (a) can be used to

decide whether or not the function Is positive definite. When

the two dimensional Fourier transform cannot be obtained in

closed form, Theorem 2 can give some information if the one

dimensional Fourier transform ts available in closed form. While

the sufficient condition given by Theorem 2 is not necessary, it

has been shown to be useful in investigating some functions which

have been proposed for use as isotropic covartiance functions in

two dimensions.

3.0 Some Experiments with Isotropic Covariance Functions

3.1 background

The work reported in this section is intended to help deter-

mine something about the overall fitting properties of various

suggested covariance functions. The term "overall fitting prop-

erties" is meant to include not only the ability of the function

to model a reasonably complicated true covariance function, but

also its performance when used in a statistical interpolation

scheme with several different observation patterns.

The approach for this project was to begin with published

data from an actual case, and then construct a covariance func-

tion using a least squares fit to the data from a certain class

of covariance functions. This model is used to define the

"truth" model. Functions from other classes were then fit to the

15



data, again in the least squares sense, and the performance

of these "aeued" covariance functions were measured against

that of the optimum model.* The results to be discussed give some

insight Into what classes of functions have adequate fitting

aility for modeling actual forecast error statistics, and also

shwhow much skill Is lost (in the idealized case) by use of

inaccurate covar lance functions.

The results given here consist of representative plots of

assuimed correlation functions together with the correlation

function defined as Ntruthq and contour plots of some of the

resulting expected errors. The tables show expected root-mean-

square (erms) errors (relative to the standard deviation of the

background error) over three grids of points and associated

observation locations. The expected errors were computed as in

Beaman (19W3). The results obtained with various assumed corre-

lation functions In the SI scheme are discussed in detail.

Adiditional plots are given In Franks C282.

3.2 The Model Correlation Function

The data for the covariance function was obtained (by hand)

from Lonnberg E293. The data taken was plotted points from a

covariance function of the type used by European Center for

Medium-Range Weather Forecasts, In this case a five term (i.e.,,

n-fl) Vessel series of the form

n

(3.1) EAijO~s*ki/R) + AO,

i-1

where ki IIs the I thzero of the Bessel function J aand R is

the radius of the region of Interest. This function Is positive



definite as an isotropic function in two dimensions provided the

coefficients A1 Ire all positive. In Lonnberg, R was 2000 km.

In this work, distance was measured in degrees, and the radius

was scaled to 300.

Least squares fits to the data by functions of thw type

(3.1) for four, five, and six-terms were computed. While the

original paper indicated a series with five terms generated the

data, it was found that six-terms yielded all positive couffi-

cients and a significant reduction in the residual over five

terms. Thus, it was decided to adopt the six term series am the

"truth* covariance function. This six term series would also be

marginally harder to approximate using other classes of

covariance functions. The data and the fits using four and six

terms are shown in Figure 1, and the coefficients are given in

Table 1, along with other data. The intercept values of the

approximations were 0.8270 and 0.8592 for four and six terms,

respectively. This occurs because the data represents the

spatial correlation of the background plus observation error,

thus the intercept is a function of the ratio of the standard

deviations of background and observation error. The effects of

this kind of discrepancy will be discussed in section 3.3. The

correlation function for background error is the approximation

normalized to have value one at s-0, of course.

3.3 The Grid and Observation Point Sets

Three grids and associated point sets were selected for

studying the expected errors of statistical interpolation schemes

based on various assumed covariance functions. All were based on

.17



the approximate locations of radiosonde data (from Wahba and

WNndelberger C303 and hil, et.al. E313) within the selected

grid. Each grid covered a region that was 300 in longitude and

200 in latitude, and the three were chosen to represent a dense

observation set, a partially dense observation set, and a sparse

observation set. The regions correspond to the middle United

States with 36 observations, the eastern United States and west-

ern Atlantic Ocean with 25 observations, and the middle Atlantic

Ocean with 3 observations. For reference purposes, the three

regions will be referred to as the MUS (Mid-US), EC (East Coast),

and MA (Mid-Atlantic) regions. The regions and the observation

locations can be seen in Figures 2-3, parts (b), (c), and (d),

respectively. The regions were gridded at 2.50 intervals for

purposes of computing expected errors, although the arms errors

given in Table 1 are only over the interior grid points to mini-

mize edge effects. Use of Interior grid points for this purpose

is valid since on a sphere it is not necessary to interpolate to

the boundary points. For contouring purposes the fields were

interpolated to finer grids using bicubic spline interpolation.

3.4 The Assumed Correlation Functions and Results

The families of assumed correlation functions fell into 5

classesm (I) Bessel function, (ii) negative squared

exponential (sometimes called Gaussian), (iII) autoregressive of

order two, (iv) autoregressive of order three, and (v) damped

cosine. They will be discussed in turn, along with the results.

Plots of the assumed correlation functions, along with the

"truth" correlation function, are shown in part (a) of Figs. 2-3.
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Far fitting purposes, each included a multiplicative parameter

that determined the s=O Intercept, and was subsequently dropped

to obtain the correlation function. The value of this parameter

Is of interest, however, because dropping it shifts the curve

(upward) to pass through the point (0,1), and thus different fits

may be shifted by differing amounts, which ultimately affects the

fit to the background error correlation function.

Recall that the rms errors given in Table 1 are given as a

fraction of standard deviation of the background error. The

ratio of the standard deviation of the observation errors to the

standard deviation of the background errors was 1/3.

(i) Bessel Function

The reference expected errors were computed using the actual

correlation function model, given by Eq. (3.1) with coefficients

as given in Table 1. The results are given in Table 1, and are

the smallest expected errors that can be obtained using a correc-

tion to background scheme, that is, they are truly optimum. The

correlation function is shown in part (a) of Fig. 2, while the

contour plots of the expected error for each of the three grid/

observation sets is shown in parts (b), (c), and d).

The results using a four term Bessel function are given in

Table 1. Because the Intercept of the fit to the data is 0.8270

versus 0.85929 normalization to value one produces a curve that

is predominately above that for the model correlation function,

especially forsmall distances. The result of the poor approxi-

mation for small distances is most pronounced over MUS. The

effect was small over the sparse part of EC and over MA.
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(ii) Negative Squared Exponential (NME)

The NIE has been recognized as inadequate for modeling error

covariances for some time, and the results obtained here confirm

that. The assumed form of the function was

(3.2) A + ( 1 -A)e (s/b)

This function is positive definite as an isotropic function in

two dimensions for O<A<I.

The initial fit was not obtained by least squares, but

simply by attempting to fit the model correlation reasonably well

for small distances, taking A-O. The fit is reasonably good up

to about 6, and quite poor at greater distances. The expected

errors are similar in magnitude to the expected errors for the

four term Bessel function, except over MA, where the errors are

larger. However, since the errors over MA tend to be large

anyway, the relative effect is not as great as one mig,t expect.

The second attempt was by least squares -or the parameters A

and b. Because the NSE is too flat near the origin, this process

yielded an intercept value of 0.8060, shifting the correlation

function so that it is entirely above the model correlation

curve. This results in even poorer performance over MUg and EC

than the previous model, due to the inaccurate representation for

small distances. The parformance over MA was better than the

above.

Due to the poor performance (compared to the above) obtained

by adding a constant to the basic NOE it was decided to attempt

to find a better fit by trial and error. No claim is made about

any optimality for this function. The results in Table 1 demon-

strate that it is probably not possible to obtain good results
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overall with a function from the NOE family, and certainly not

for the present model correlation function.

(iii) Autoregressive, Order Two (SOAR)

The SOAR model has been suggested as appropriate by Yudin

C323, Thibaux C133 and this is supported by simulations due to

Balgovind, et.al. C332. This is the model that is being incor-

porated into the U. S. Navy NWP models. The formula given here

includes a constant term which is not part of the SOAR model, but

which has been noted to improve performance considerably

(Thiebaux, st.al., E212), and those results are confirmed here.

The SOAR function with additive constant is

(3.3) A + (1-A)Ecos(as) + (b/a)sin(as)]e b  .

This function is positive definite (in two dimensions) whenever

a<b, and O<A<I. In all cases investigated here, and as has been

reported elsewhere, (e.g., Thifbaux, st.al., [213), the parameter

a tends to be essentially zero. In this case the function re-

duces to

(3.3a) A + (1-A)C1 + bse - b s

The initial attempt was a least squares fit to the data with

A-O. The intercept obtained was 0.7977, with the resulting

correlation curve then being considerably above the model corre-

lation curve between 00 and 150 . The performance was only

slightly better than with any of the previous correlation

functions. It was then decided to attempt a least squares fit

with the intercept constrained to be 0.8592, the same as obtained

for the model correlation function, but again with A-O. Table 1

shows marginal improvement for all three grid/observation
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patterns. A third attempt included A in the least squares fit,

with no constraint. This resulted in a much closer match to the

model correlation function, although the Intercept of 0.8441

moved the assumed correlation curve above the model curve for

much of the interval. The fit and resulting expected error

contours are shown in Figure 3. Table 1 shows there is consid-

erable improvement over all previous results, the most improve-

ment being for MUS, and the least for MA.

(iv) Autoregressive, Third Order (TOAR)

The use of the TOAR model has been investigated by Thifbaux,

et al. C213, including an additive constant. The formula is

--- b n - -c
(3.4) A + (1-A)C(acos(as) + bsin(as))e -b s + cm 3 ,

where the coefficients a, b, and c are functions of a, b, and c

given by

a - (3b 2 -a2 -c 2 )ac/D , b - (b 2 -3a 2 -c 2 )bc/D

- -2(b 2 +a 2 )ab/D , where D - (3b 2 -a 2 -c 2 )ac-2(b 2 +a 2 )ab

It is unknown what restrictions (beyond O<A<1) on the parameters

are required to ensure the function is positive definite as an

isotropic function in two dimensions.

The data was fit by least squares with the TOAR function

(3.4). The intercept was 0.8651, which resulted in the curve

being slightly below the model correlation curve over most of the

range. Overall, the fit was quite close and better than any of

the previously discussed functions. The results in Table 1 show

very close agreement with the optimum possible for all three of

the grid/observation sets.
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(v) Damped Cosine

The damped cosine function has been suggested by Thimfaux

19] and Beaman and Hutchinson E34]. The formula to

(3.5) [A + (1-A)cos(as)I/Ci + (bo)2

It is unknown whether the function is positive definite as an

isotropic function in two dimensions, but the evidence in section

2.4 (for c=0.5), while inconclusive, seems to indicate it is not.

In practice, of course, the function may be positive definite

when the observation paints are restricted to certain regions.

The data was fit with the function (3.5), under the restriction

c-O.5. The intercept was 0.856Z, which resulted in a very slight

raising of the curve relative to the model correlation function.

The resulting fit is excellent for small distances and very good

over the entire range. Table I shows that this function gives

the best results of all the functions tested.

(vi) Variations

The expected error computations for a number of variations

of the above functions were also performed. The principal

variation was to fit the data only over the first half of the

interval, (0 ,150). The effect of this was to generally (though

not always) increase the erms errors over MUS and EC, while not

affecting the results over MA. In the damped cosine, the

exponent c was chosen by least squares, along with the other

parameters, and resulted in a slightly better fit to the correla-

tion function, especially at larger distances. However, the

coefficient A was slightly greater than 1. Whatever the positive

definiteness properties of the function, having A>1 will certain-

ly make it non-positive definite. Although no graphical results
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are whon, the coefficients and erms errors are given in Table 1

for the additional assumed correlation functions.

3.5 Olnsitivity of the BOAR Model to Parameter Missptcification

In order to determine more completely the characteristics of

the BOAR model, some additional calculations were made to deter-

mine the effect of misspecification of the parameters in the

correlation function or the ratio of the standard deviations of

the observed and background error. The results can be summed up

rather quickly. The scheme is mostly insensitive to such

variations. Figure 4 shown a family of 4 correlation functions,

*4 being the SOAR plus constant discussed in the section 3.4,

with the others having smaller correlations at a given distance.

Figure 5 shows the expected RMS error for each of the four as the

"assumed" correlation, when the "true" correlation function is

*4. With the exception of the sparse MA grid, the expected

errors are relatively stable under significant perturbations.

Figure & shows the sensitivity to the assumed error ratio, and

once again, it is observed that the expected errors are quite

stable.

4.0 Conclusions

The principal conclusion to be drawn is that the correlation

family used in practical analysis should embody a sufficient

number of parameters to fit the forecast error statistics reason-

ably well. Further, it is most important that the data be fit

accurately for small distances. In order to ensure a better fit

for small distances, it may be worthwhile to enforce the inter-

cept of the correlation for the background plus observation
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errors i the ratio o4 standard deviations of the two errors is

known -rMgicalxa . The effect o4 scaling to obtain the correla-

tion function, and the apparent shift up or down can possibly be

compensated for by artificially varying the ratio of background.

to observation errors, as well, although it seems more desirable

to enforce this ratio in the correlation function fitting

proc s.

As noted above, clearly the most important region for the

fit to the correlation function to be accurate Is for small

distances. Over the sparsely observed region, MA, and to a

lesser extent over the EC region, the overall arms errors were

only slightly affected by the assumed correlation function. In

the case of the MA region it is noted that the error contours are

relatively unaffected except near the observations. Since the

errors in the remote part of the region dominate the overall

error, the choice of assumed correlation function has relatively

small influence. On the other hand, over the densely observed

region, an accurate fit at small distances was most important.

The NSE correlation function, while not performing well, illus-

trates the above nicely. For the first NSE entry in Table 1,

even though the fit is poor for distances of more than 60, the

erms errors over MUS and EC are smaller than the best fit (last

NOE entry) due to the more accurate fit for small distances by

the former function. Of course the arms errors over MA are

poorer for the first case due to the very bad fit at large

distances.

There appear to be several good candidates for use as two

dimensional isotropic correlation functions, including SOAR,
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TOARl and damped cosine, given by Eqs. (3.3), (3.4),p and (3.5),

respectively. While the fitting power for the latter two are

greater (there are a greater number of parameters for those two),

the choice of BOAR seems reasonable and adequate for anumber of

reasonsi (1) The BOAR (with the additive constant) embodies a

sufficient number of parameters to allow oscillation and decay

with distance. (2) The SOAR has some credibility as the spatial

correlation function of an innovation process. However, results

are for one dimension rather than two, except for the results

cited previously in Balgovind, et.al. E333. (3) The BOAR was

demonstrated here to be positive definite as an isotropic

function in two dimensions, under a mild restriction on the

parameters. (4) While the TOAR is also the spatial correlation

function (again in one dimension) for an innovation process,

based on this limited study it does not appear to be signifi-

cantly better than SOAR. (5) The positive definiteness

properties of the TOAR are not known, although it is certainly

positive definite as an isotropic function in two dimensions

under some restrictions on the parameters. (6) Although the

fitting ability of the damped cosine seems to be at least an good

as the TOAR, and it is positive definite in one dimension, evi-

dence indicates it may not be positive definite as an isotropic

function in two dimensions, regardless of parameter restrictions.

The availability of other acceptable alternatives seems to make

it prudent to preclude the use of the damped cosine in practical

situations.

It is pointed out that all of the functions except the four

term Dessel function and the NSE perform very well. Table 1
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shows, -for esample, that the SOAR is only a little more than 1%

of the standard deviation of the background error poorer than

optimal over MUS and EC, and less than .1% poorer over MA.

Finally, it is noted that within the W0AR family, 1 is

quite insensitive to misspecification of the correlation parame-

ters, even to an extent such that the correspondence would appear

to be much less between two members of the family than between it

and a fit by the NOE. Thus it could as important to choose the

correct family of correlation functions as well as to model

properly within that family. In addition, miespecification of

the ratio of standard deviations of the background and observa-

tion errors has a rather small effect on the skill of the method.

This work has focused only on the univariate problem,

whereas in practice such schemes are applied to the multivariate

one. Further work is necessary to determine whether the nice

results obtained here carry over to the multivariate case. A

further investigation of the effect of wind observations on the

analysis of pressure height and wind fields is anticipated.
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Parameter Values and er" Errors
Model Correlation is S1x Term Bessel

Assumed
Correlation Parameters eras
Function abc AAI MUS EC MA

6 T Bessel 0.2474 0.2667 0.3752 0.7483
0.3335
0.1844
0.1031
0.0362
0.0554
0.0400

4 T Bessel 0.2811 0.3046 0.4088 0.7503
0.3090
0.2213
0.0930
0.0956

NSE 10.0 0.0 0.3047 0.4184 0.7822
NSE 14.88 0.3200 0.3688 0.5282 0.7631
NSE 10.0 0.2500 0.3098 0.4158 0.7541
SOAR 0.0 0.0 0.3034 0.4022 0.7562

0.1215
SOAR 0.0 0.0 0.2931 0.3968 0.7562

0.1374
SOAR 0.0 0.2722 0.2780 0.3859 0.7491

0.2055
TOAR 0.4732 0.1974 0.2717 0.3794 0.7485

0.3828
0. 0914

Dmpd Cos 0.4749 0.9592 0.2686 0.3779 0.7486
0.1367
0.5000

NSE 15.0 0.0 0.3619 0.4414 0.7649
N9E* 12.31 0.3205 0.3474 0.4299 0.7593
SOIAR* 0.0 0.3758 0.2743 0.3825 0.7495

0.2654
TOAR 0.4468 -5.9965 0.2697 0.3801 0.7514

0.1482
0.0052

Dmpd Cos* 1.2236 1.0027 0.2749 0.3734 0.7491
0.1507
0.5000

Dmpd Cos 0.7009 1.0105 0.2692 0.3779 0.7484
0.2069
0.3753

Dmpd Cos 0.7987 1.0147 0.2706 0.3784 0.7485
0.2350
0.3317

Table 1

These correlation functions were obtained by least squares
fit over the interval (00,15 0)
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FISURE CAPTIONS

Figure 1 The data points and least squares fits by four and six
term Bessel functions.

Figure 2s (a) Six term Bessel correlation function (true and
assumed). (b) Expected root-mean-square error contours for the MUS
grid and observation point set for the correlation functions shown
in (a). (c) As in (b) for the EC grid and observation point set.
(d) As in (b) for the MA grid and observation point set.

Figure 3v (a) Six term Bessel correlation function (true) and
second order autoregressive plus constant correlation function
(assumed). (b), (), and (d) As in corresponding parts of Fig. 2
for the correlation functions shown in (a).

Figure 4: Four 2nd order autoregressive correlation functions,
as in Eq. 3.3a, with (b,A) valueso #1 - (0.5,0.0); 02 -
(0.3,0.0); #3 - (0.3-0.15); *4 - (0.205590.2722).

Figure 5: Expected RMS errors when the "true" correlation is
function #4 with various assumed correlation functions for each
of the three grid/observation sets.

Figure 6s Expected RMS errors when the assumed ratio of the
standard deviations of the observed to background error is
varied. Actual error ratio is 1/3.
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