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Foreword 

This collection of technical reports and technical memoranda deals with the 
following topics: spectral analysis via combined temporal and lag 
weighting; programs for and performance of multi-channel linear predictive 
spectral estimators; direct coherence estimation via a fast algorithm; 
windowing with a two-parameter class of Bessel weightings, with 
applications to arrays in any number of dimensions; performance of robust 
methods of estimating signal strengths in erratic environments; exact 
receiver operating characteristics for a nonlinear system with quantizers, or- 
ing, and accumulation; and characterization of the probability distribution 
of measured data. Graphs of the results are presented, as well as programs 
that enable a user to extend the results to his particular application. 

Some of the material presented here is based heavily on earlier work by the 
author, which can be found in the following volumes in addition to the 
referenced technical reports: 

Performance of Detection and Communication Systems, 
NUSC Scientific and Engineering Studies, 1974; 

Spectral Estimation, NUSC Scientific and Engineering Studies, 1977; 

Coherence Estimation, NUSC Scientific and Engineering Studies, 1979; 

Receiver Performance Evaluation and Spectral Analysis, 
NUSC Scientific and Engineering Studies, 1981. 

Dr. William A. Von Winkle 
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Spectral Analysis 
Via Quadratic Frequency- 

Smoothing of Fourier- 
Transformed, Overlapped, 
Weighted Data Segments 

A. H. Nuttall 
ABSTRACT 
A generalized framework for spectral analysis is presented, which 
includes as special cases the Blackman-Tukey technique and the 
weighted overlapped segment-averaging FFT technique. The general 
method is analyzed in terms of the mean and variancs of the spectral 
estimate, thereby revealing the fundamental dependence of its 
performance on the temporal weighting, lag weighting, amount of 
overlap, number of pieces, available data record length, and 
frequency resolution. To enable a fair tradeoff study and comparison 
between many different special cases of the technique, it is 
demanded that the spectral analysis technique achieve a specified 
frequency resolution with the given data record length. This 
necessitates a detailad investigation of the windowing capabilities of 
the temporal and lag weightings, their interaction, and the definition 
of an overall effective weighting and window. The possibility of using 
lag-reshaping to achieve desirable effective windows Is considered 
and found to be reasonable for a wide variety of windows with good 
side lobe behavior and decay rates. 

Results fer the variance of the spectral estimate for rectangular 
temporal weighting indicate that if the length of the temporal 
weighting is selected to be somewhat larger than the length of the lag 
weighting, the variance is at a near minimum. Furthermore, in this 
situation, the possibly deleterious side lobes of the temporal 
weighting can be compensated by proper choice of lag weighting, 
resulting in low side lobes and gopd decay of the overall effective 
spectral window. For Henning temporal weighting, the lengths of the 
temporal and lag weighting should be approximately equal for 
minimum variance of the spectral e&timate. 

Approved tor public release: distribution unlimited. 
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Spectral Analysis via Quadratic Frequency-Smoothing 
of Fourier-Transformed, Overlapped, Weighted Data Segments 

Introduction 

Spectral analysis techniques have received a great deal of attention in the past 
(references 1-12), ranging from the original autocorrelation approach of Blackman- 
Tukcy (reference 2) to the more recent weighted, overlapped, segment-averaging 
FFT approach (references 7-12). These two apparently disparate approaches are 
shown here to be limiting special cases of a generalized framework for spectral 
analysis; thus consideration of this general technique elucidates the fundamental 
behavior and performance of a rather wide variety of spectral approaches and their 
tradeoffs. This generalized framework has already been presented in references 13- 
13, where a brief summary of some of the main features has been mentioned. 
Additionally, some of the analytical results to be presented here were alluded to 
there; however, none of the detailed derivations or quantitative results in this report 
were given at that time. 

There are two fundamental parameters that critically affect the performance of 
any spectral estimation technique. They are the available record length, T, of the 
stationary random process under investigation, and the effective frequency 
resolution, Bc, of the technique under consideration. We would like to be able to 
attain fine resolution (small Bc) with short data lengths and storage (small T); 
however, stable results (small fluctuations) are achievable only if the product TBe is 
much larger than unity. The problems we address are how to make optimum use of 
a given limited amount of data in order to realize a specified desired resolution wi h 
maximum stability, and to determine what tradeoffs are available regarding win- 
dowing and weighting at different stages of the spectral analysis procedure. It is 
assumed that the reader is familiar with the tradeoffs presented in reference 9 for 
the weighted, overlapped, segment-averaging FFT procedure. 

The generalized framework for spectral analysis that is presented here is capable 
of a wide variety of forms in addition to the Blackman-Tukey and FFT approaches 
mentioned above. In order to compare these various forms with each other on a 
reasonable basis, it is required that each analysis technique realize the same effective 
resolution bandwidth, Be, and that they all utilize the same data record length T. 
Without these reasonable constraints, valid conclusions about relative per- 
formances of different techniques are tentative at best. This insistence upon equal 
effective frequency resolution necessitates a rather detailed investigation of the 
effects of the weightings and windows employed in the generalized framework and 
their allowed durations. The desirability of an overall effective window for spectral 
analysis with low side lobes and good decay is achievable only through careful 
choice of the combined weightings. The constraint upon the effective frequency 
resolution naturally also shows up in the analysis of the variance of the spectral 
estimation technique, as well as in its average value, leading to some numerical 
analysis complications; nevertheless, it is believed to be the proper basis of com- 
parison and is maintained throughout. 
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The two major statistical parts of this report deal with the mean and the variance 
of the spectral estimate. The .esult for the average value leads to the definition of 
the effective window of the generalized spectral analysis technique, in terms of the 
temporal and lag windows. The variance result incorporates, additionally, the 
amount of overlap, the number of data pieces, and the ambiguity functions of the 
temporal and lag windows; the complexity of the latter results debilitates easy in- 
terpretation and it has been found necessary to resort to numerical evaluation of the 
variance, for practical cases of interest. 
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Ultimate Stability Attainable From a Given Record Length 

Suppose a stationary (complex) data record x(t) of length T seconds is available, 
and that we wish to estimate its power density spectrum* G(f) with an effective 
frequency resolution of Be Hz, where W0(f) is the narrowband window through 
which the power density spectrum is to be observed. These two frtquency-domain 
quantities are related according tot 

J""; cf) (i) 

This bandwidth measure, Be, is called the statistical bandwidth of W0(f) in reference 
5, page 265. The relation of effective bandwidth Be to half-power bandwidth Bh is 
considered in appendix A; it is shown that for good windows, the ratio of the two 
bandwidths is relatively independent of the exact window shape. Thus it is possible 
to translate results to other bandwidth measures witho'it significantly affecting the 
essential quantitative aspects. 

If we take the original data record and pass it through a narrowband linear 
(complex) filter with power transfer function equal to the window, |H(f)|2 = W0(f), 
and which is centered at a frequency, f0, of interest, we will have lost no relevant 
information about the process in the frequency band of interest, because we have 
filtered out information of no use. We can now estimate the power in the 
narrowband filter output process and use it as a measure of the spectrum of the 
input process in the neighborhood of frequency f0. See figure 1. 

W0(f) 

Figure 1. Power Transfer Function of Narrowband Linear Flltc 

Let z(t) be the complex output process from the narrowband filter when excited 
by the available T seconds of data x(t). If we ignore a starting transient (i.e., 
assuming T » 1/Be), the filter output power estimate in the band of width Be is 

i   j"   dt   |z(t)|2 =    Jdt g(t)   |z(t)| 
(2) 

•For brevity, we use the term spectrum rather than autospectrum in this report. 
tlntegrals without limits are over the range of the nonzero integrands. 
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where gate function 

g(t) 
1/T for t c T 

0   otherwise 
(3) 

The measure of stability we adopt for this estimator, and for the others to follow, 
is the quality ratio defined as 2 

„ . VarCP) . P2 -^ 
T 
t (4) 

where Av(P) and Var(^) denote the average value and variance of P, respectively, 
and an overbar denotes an ensemble average. We have average value 

Av(P).- fdt g(t)   |z(t)|2 -  |z(t)|2 - Rz(0). Jdf G(f)   |H(f)|2 

»G(fo) Jdf  |H(f)|2     , (5) 

assuming that filter-input spectrum G(f) does not vary quickly with respect to Be, in 
the neighborhood of f0. RZ(T) is the correlation* of filter output process z(t). 

Also, we have mean square value 

"52 
P2 » // dt du g(t)  g(u)   |z(t)|2  |z(u)r (6) 

Now in the interval T, filter output z(t) will be approximately a stationary zero- 
mean, complex, analytic Gaussian process for small Be; filter H(f) has filtered out 
zero and all negative frequencies. Then fourth-order moment 

z(t)z*(t)z(u)z*(u)  ?R2(0)  *  |R ft - u)|2 

(7) 

There follows from (4) and (6), 

Var(P)   =   JJdt du g(t)g(u)   |Rz(t  - u)|2 =  fdz 4 (T)   |RZ(T)|2    . 

(8) 

where gate-correlation t of function g(t) is 

*    (T)     i     fdt   g(t)g(t    -   T)       . 
8 ) (9) 

•For brevity, we use the term correlation instead of autocorrelation in this report. 
tFor stationary processes, we let R denote the ensemble-average correlation, whereas for aperiodic 
nonrandom functions, we let ♦ denote the integral correlation; see (5) and (9). 
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Since the gate-correlation |g(T) extends over ±T, while process correlation RZ{T) 
extends only over approximately ±3/Be, we have, via Parseval's theorem and for 
TBe»l, 

VarA » *gi0) fdx\KziTTi2 « i   Jdf G^(f) 

• i Jdf |H(f)|4 G2(f) ffiG2(fo)   /df    |H(f)|4 

The quality-ratio measure of stability is then, from (4), (S), (10), and (1), 

1     /dflH(f)|4 i   /<* W2(f) ^^ 

[[df|H(f)|2J T[/dfWo(f)] e 

(10) 

Q.f 

(ID 

This is the limiting (smallest) value of Q for specified frequency resolution Be and 
available record length T when TBe» 1. No other spectral procedures can improve 
on it; they can merely approximate it. As such, (11) is the benchmark against which 
other procedures can be compared, under the condition that T and Be are equal to 
those values for the various procedures under consideration. 

The normalized quality ratio is defined as Q • TBe. Thus the normalized quality 
ratio can never be smaller than unity, which value can only be approached for large 
TBe through proper processing techniques. 



TR 6459 

Description of Spectral Analysis Technique 

We begin by defining a temporal weighting function w.d) of Finite duration L,; 
that is, 

WjCt) »' 0   only for    |t|  < Lj/2 
(12) 

As shown in figure 2, temporal weighting w,(t) is real, even, and peaked at the 
origin. Although this presentation is couched in terms of continuous functions, we 
shall show shortly that it includes discrete digital processing as a special case. 

w^) 

V2 o t 

Figure 2. Temporal Weighting w^t) 

L1/2 

The available data record is x(t) for 0 < t < T; this (complex) random process is 
presumed second-order stationary in that observation interval. We shift the tem- 
poral weighting by Ll/2 + pS and multiply it by x(t) to generate the p-th piece of 
weighted data: 

yp(t) x(t) w i^-T-P5) for 0 ^ p £ p _ i 
(13) 

Here p is an integer; if shift S < L,, then yp(t) and yp + |(t) will overlap on the t-axis. 

The first-stage power density spectral estimate at frequency f is obtained by 
averaging the magnitude-squared value of the Fourier transform of data piece yp(t), 
over a total of P pieces: 

P-l A 
G^f) i r     Jdt exp(-i2Trft)  y (t)        for 

p»0 ' 
any    f 

(14) 

This procedure is the same as that considered in reference 7 and in reference 9, eqs. 
(2) and (3). Since x(t) is available only for 0 < t < T, we prevent the weighting in (13) 
from extending beyond that interval; mathematically this means that we must have 

4 ♦  (P 1)   S <. T 
(15) 
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An alternative interpretation of (14) is very illuminating. We define the inverse 
Fourier transform of (14) as the first-stage (auto)correlation estimate; there follows 
immediately at delay t, 

RJCT)  ' fdf exp(i2ir£T)  fijCf) 

• y LQ i« XpCt) yjct - x)   for an x . (16) 

where we have allowed random processes x(t) and yp(t) to be complex. This is 
recognized as the average of the sample correlations that can be formed at delay T, 
from each of the P pieces of weighted data in (13). Since temporal weighting w,(t) is 
zero for |t| > Lj/Z according to (12), we see from (13) and (16) that 

RJCT) - 0    for  |T|  > Lj    . (17) 

The parameter, T, is called the lag domain variable, because of the way it appears as 
a delayed time in (16). Equation (16) (and those to follow) is true for all T. Both 
sides of (16) are zero over most of the range of T; nevertheless, it is mathematically 
convenient to employ the equality of both sides of (16) for all T in various trans- 
formations below. 

The second-stage power density spectral estimate is defined as a frequency- 
smoothed version of the first-stage result: 

G2(f)  - GjCf) 9 W2(f)  « Jdu SjClOWjCf - u) 
(18) 

where • denotes convolution. This is termed quadratic smoothing since it is done in 
terms of power quantities rather than voltages. Equation (18) is the desired output 
from the generalized spectral analysis technique considered here. W2(f) is called the 
lag window, for reasons to be given below. The equivalent statement to (18) in the 
lag domain is obtained by Fourier transforming (18); the second-stage correlation is 

R2(T)  «   Jdf exp(i2irfT)  G2(f)  »  R^T)  WJCT)     , (19) 

where we used (18) and (16) and defined the Fourier transform pair 

W2(T)  = /df expUZTTft) W2(f)    , 

W2(f)  =    Jdr  exp(-i2irfT)   W2(T)       . (20) 

W2(T) and W2(f) are both real, even, and peaked at their origins. Since W2(T) appears 
multiplicauvely in (19), it is called the lag weighting; its transform W2(0 is the lag 
window. The convention adopted throughout this report is that multiplication by a 
function in the t or T domains is called a weighting; the counterpart to this operation 
in the Fourier transform domain (frequency f domain) is convolution and is called 
windowing. 
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We shall let lag weighting W2(T) be of duration 2L2: that is, 

W2(T) - 0    for |T|  > L2 (21) 

A typical plot is shown in figure 3; the reason for the apparent notational 
discrepancy between the lengths in figures 2 and 3 will become clear when the lag- 
domain counterpart of temporal weighting w^t) is encountered later. 

Figure 3. Lag Weighting W2(T) 

We have already observed that ft ,(1) is zero for |T|>L, in (17), Therefore, it 
follows from (19) and (21) that 

A 
RJCT) « 0    for   Ixl  > min (L- ^ (22) 

However, although we must have temporal length L, < T (from (15) for P ■ 1), there 
is no restriction on L2. We could have L2 larger than L, and T; this would simply 
mean that we would be lag-weighting some zero estimates of ft^r) in (19) for the 
larger values of |T|. Also there are no constraints such as realizeability on the lag 
weighting or window. 

For example, the special case of no quadratic frequency-smoothing corresponds 
to 

w2(f) 6(f), W2(T) for no smoothing. 

(23) 

for which (18) yields 62(f) ■ 6,(0- Thus we have our standard first-stage spectral 
estimate (14) as a limiting case of the generalized spectral analysis technique. On the 
other hand, if lag window W2(f) were broad (small L2), there would be a significant 
amount of smoothing taking place in the band about u = f in (18) where window W2 

is non zero. 

There is no inherent limitation on the relative sizes of L, and L2 as yet: L2 can be 
chosen as large as desired, while L, is subject to the upper bound T. However, when 
we specify the overall effective frequency resolution of the generalized technique, a 
relation between L, and L2 will ensue. 
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Another important special case of the generalized spectral analysis technique is 
afforded by P »1, w^t)-1 for |t| < L/2, and L, « T. Then (16) and (13) indicate 
that A ,(-0 is simply the sample correlation of the available data x(t) of length T, 
while Ä2(T) in (19) is a weighted version of Ä^T) for |T| < L2. But this is precisely the 
Blackman-Tukey approach described in reference 2; the choice of lag weighting 
W2(T) and its length is fully discussed there. For example, if W2(T) « (T-kl)-' for 
|T| < L2 < T, then A2(T) is an unbiased estimator for |T| < L2; see reference 2, page 
11. 

For P>1 and general temporal weighting w^t), lag weighting W2(T), and overlap, 
a wide variety of processors is possible via the generalized framework set up above. 
How should the two weightings be traded off against each other? Can the 
deleterious effects of a poor or preselected temporal weighting be undone by proper 
choice of lag weighting? Recall that none of these techniques can hope to better the 
quality-ratio result (11), but hopefully, some can do as well, with less computational 
effort and storage. 

A related procedure to the one presented here has been given in references 16 and 
17. However, neither incorporate overlapping, and the fundamental tradeoffs 
between the temporal and lag weightings were not studied. Furthermore, the only 
frequency-smoothing case considered was a rectangular boxcar, which severely 
limits the potential of the technique; some advantages of the generalized technique 
considered here will become apparent at a later stage. For the time being, we ob- 
serve that side lobe control will be realized by a mixture of temporal weighting and 
lag weighting (frequency smoothing), while stability will be achieved by a com- 
bination of segment averaging and frequency smoothing (lag weighting). 

Discrete-Time Processing 

All the functions above have been tacitly assumed no worse than discontinuous; 
see figures 2 and 3 for example. However, there is nothing in the above mathematics 
which precludes impulsive behavior. For example, suppose the temporal weighting 
is a sum of N, equispaced impulses: 

1 tf     lm t (24) 

where {w|m} is a finite length, real sequence, symmetric about m = 0; this corres- 
ponds to discrete sampling of waveform x(t) at time spacing At. The p th piece of 
weighted data is, from (13), 

yp(t)  - x(t)  At  £   "u «(* -T-- PS -n.At 

lt I y?m 4 ■ T- ■pS ■ raAt) 
where weighted sample 

ypm E "imMT"* P0    *mM    • (26) 
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The first-stage correlation estimate, (16), becomes 

^(T) - At   T Rlk 6(T - kAt)    , 

where the area of each impulse is given by 

(27) 

and 

«r 

'*■*£>' (28) 

(29) 

The last quantity is the sample correlation of the p-th set of samples, and Rlk is their 
average over the total of P pieces. 

The first-stage spectral estimate is the Fourier transform of (27) as usual: 

G^f)   a At   L   Rlk exp(-i2irfkAt)     , 
k 

(30) 

which is finite for all f and is of period 1/At in f. An alternative expression is 
available by substitution of (25) in (14): 

P-l 

p«0 m      r 

(31) 

These two expressions hold for arbitrary f; either one can be used to obtain the 
first-stage spectral estimate. If we restrict our calculations of interest to multiples of 
some frequency increment AF, (31), for example, specializes to 

P-l 
VqV   S jt,       \   E   ym exp(-i27nnqAtAF) 

p=0 m      r 

(32) 

where q is an integer. Al this point, there needn't be any relation between A, and AF; 
we can calculate the S')ectral estimate at any frequencies we please. However, a 
favorite choice for COTI 7Utational purposes is to choose frequency increment 

A» ■ rj—    , N = power of 2 
(33) 

to get the special digital processing result 

P-l 

S TO = ' p?o A    2yni exP(-i2lTinq/N) 
(34) 

10 
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which is recognized as the familiar power average of N-point FFTs of weighted data 
sequences. Ail the impulsive functions in (24)-(27) have dropped out of first-stage 
spectral estimates (30)-(34). 

The temporal window associated with impulsive weighting (24) is its Fourier 
transform 

Vf) " At   ^  wim MP(-i2fffmAt)    . 
m (35) 

Having picked an impulsive temporal weighting w^t), we are still free to select the 
lag weighting or lag window as we please. For example, for any lag weighting 
function W2(T), (19) and (27) yield second-stage correlation estimate 

R2(T)  ' at  2-   V^t3 ^lk 4(T ' kV iAt   E   R2k ,S(T " kAt)    • 
k k (36) 

The corresponding second-stage spectral estimate is the Fourier transform 

^W " At   £ «2(kAt)  Rlk exp(-i2iTfkAt) - At  E   R2k exP(-i2lTfkV 

(37) 

which is everywhere finite and has period 1/A, in f. Evaluation of (37) can therefore 
be confined to |f | <(2At)-

1. 

These results apply for general lag weighting. A specific choice is the lag window 
with Nj equispaced nonzero impulses: 

*Vf)   ■  Af   E   W2n 5Cf  ■  "V      • 
n (38) 

Frequency spacing Af need not be related to time spacing A, in (24), nor to frequency 
increment AF used in the frequency and FFT calculations above in (32)-(34). Also 
there are no relations between the real symmetric sets of numbers {w|m} in (24) and 
{W2n} in (38). Substitution of (38) in (18) yields for the second-stage spectral 
estimate 

G2(f)-A£   £   W2n G^Cf - nAf)     , 
n (39) 

which is a local average (of the first-stage estimates) in the band about the 
frequency, f, of interest. Equation (39) is a discrete, quadratic, frequency- 
smoothing operation. In fact, (39) holds for lag window (38) and any temporal 
weighting w^t); it is not limited to the discrete-time form (24). 

If we limit our calculations of 0,(0 to multiples of frequency increment A, as in 
(32). then (39) yields 

GV^V   = Af   £   W2n V^F  " nV     ' (40) 

11 
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we can use (30) for 6, on the right-hand side. Finally, if we take frequency in- 
crement (33) and frequency spacing Af ■ (MA,)-', where integer M is a submultiple 
of N,and MA, is of the order of 2L,, the FFT results of (34) can be employed in (40). 
More will be said later on the choice of frequency spacing Af. 

The variety of forms available at different stages of the data processing illustrates 
a great deal of flexibility in exactly how the available data x(t) is processed. For 
example, one might first evaluate ^ via FFT procedure (34). Then, since (30) can be 
expressed as 

• *♦  £   Riv exp(-i2irkq/N)     , 
k      1K (41) 

it follows that the complete nonzero portion of correlation sequence {R^} is 
recoverable from the set of numbers {ö^-gj- J}^1 if N^N,-!, where N, is the 
number of nonzero weights {wlk} in (24) (see reference 18). On the other hand, for 
N<2Nrl, the inverse FFT of {G^-gj-)}^-' would yield ^ only for |k| < N-N, 
(reference 18, eq. (15)); thus the central values of R lk are recoverable from G,. Then 
second-stage correlation estimate 

R2k ' w2(kAt) Rlk ^ 

follows from (36), and the final spectral estimate follows from (37). The lag 
weighting samples in (42) are arbitrary; thus this is a very general procedure for 
obtaining estimate G2(f) at any f. 

The relations in this subsection hold for arbitrary values of T, f, and q. However, 
the functions of T are impulsive, and are zero outside limited ranges, while the 
functions of f and q are periodic. These properties should be utilized in any com- 
puter processing technique employing these forms. Some further useful properties 
and interrelationships of the sampled lag weightings and lag windows are presented 
in appendix B. 

12 
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Average Value of Spectral Estimate 

We now return to the general situation for both the temporal and the lag 
weightings; that is, we do not presume discrete sampling in time or discrete 
smoothing in frequency. From (16) and (13), the mean value of the first-stage 
correlation estimate is 

Avtt^T) > - j £    / dt x(t)x*(t - T) WJ (t - -1 - psj 

• wjt - T - -j- - psj - x(t)x*(t - T)  ^(T)  - R(T)  ^(T) 

where R(T) is the true correlation of stationary process x(t), and where 

♦l(T)  '  /dt -l^t) w^t - x) ^ 

will be called the correlation of real temporal weighting w^t); see the footnote to 
(9). We have not presumed process x(t) Gaussian; relation (43) holds for any 
stationary process x(t). 

Since the first-stage spectral estimate 6,(0 is a linear operation (Fourier trans- 
form) of R ^T), the mean value of 6,(0 is the Fourier transform of (43); that is, 

AvfGjtf)} «JdT exp(-i2irfT)  R(T)  ^(T) 

- G(f) • Wj(f)  . Jdu G^u)  W^(f - u)     ,      H5) 

where G(f) is the true spectrum of x(t), i.e., Fourier transform of R(T)> and we have 
Fourier transformed (44) by interchanging integrals and using temporal window 

W^f)  =  Jdt exp(-i21ift)  w^t) (46) 

The convolution result in (43) is a familiar one for the standard FFT processing of 
weighted, overlapped data segments; see reference 9, eq. (5), for example. Window 
W^f) is real and even about f = 0, since weighting w^t) is real and even about t = 0. 

The mean value of the second-stage correlation estimate follows immediately 
from (19) and (43): 

Av{R  (T)} = R(T)   <MT)  W-(T)  = R(T)  W (T)     , * i z e (47) 

where 

/ - 

13 
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We(T)    =    ♦jCl)    W2(T) (48) 

is called the effective (overall) weighting of the generalized spectral analysis 
technique. It incorporates the temporal weighting w^t) through its correlation ^,(T) 

defined in (44), and it involves lag weighting W2(T) directly. Reference to (44) and to 
figure 2, for a typical temporal weighting, shows that 1,(7) is as depicted in figure 4; 
ti(T) extends over (-L,, L,) and is zero for |T| > L,. Since the effective weighting 
we(T) in (48) involves ^{r) and W2(T), we now see the reason for the particular 
choices of L, and L2 in figures 2-4. Specifically, ±L, and ± L2 measure the non- 
zero extent, in the r-domain, of the functions that are relevant to the effective 
weighting. Although L, measures the nonzero extent of temporal weighting w^t) in 
the time domain in figure 2, and the nonzero extents of ^(T) and W2(T) are 2L, and 
2L2 in figures 4 and 3, respectively, we will nevertheless refer to L, and L2 as the 
"lengths" of |,(T) and W2(T), respectively, in the r-domain, for convenience. 

"1 ' -1 

Figure 4. Correlation ^(T) of Temporal Weighting w^t) 

In appendix C, ^,(T) is evaluated for the class of temporal weightings* 

WjCt)  »   £   ok expdZTrkt/Lj)    for   |t|   < Lj/2    , 
(49) 

which includes a wide variety of weightings such as rectangular, Hamming, 
Manning, Blackman, Harris, and the recent optimal weightings of Nuttall, reference 
19. Specializations to real symmetric {ak} and to a limited number of nonzero 
coefficients are also made in appendix C. 

Finally, since second-stage spectral estimate G2(f) is a Fourier transform of ^2(T), 

its mean value follows from (47) and (48) as 

Av{G2(f)} « G(f)« We(f)     . 
(50) 

where 

We(f)  =   j"dT exp(-i2irfT) we(T)  = Wj(f) e W2(f) 
(51) 

•For brevity, here and later, we omit the "0 otherwise" statement that applies for i  > L|/2, as was 
done in (3). 

14 
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is the effective (overall) window of the generalized spectral analysis technique of 
interest here. The result in (51) follows by Fourier transformation of the product in 
(48) and use of (44) Oust as done in (45)). Relation (50) is a simple and informative 
one for the average spectral estimate; it enables ready determination of the amount 
of spreading caused by particular choices of temporal and lag windows. It holds for 
any stationary process x(t) with spectrum G(f); thus x(t) needn't be a Gaussian 
process for (50) to hold true. 

As a special case of (50), consider lag weighting W2(T) to be 1 for all T. Then 
W2(f) = 6(f) and (50) reduces to the result in (45) as expected, since we are em- 
ploying no lag weighting at all in this case. 

As another special case, let temporal weighting w^t) be 1 for all |t| < L|/2 and let 
L, = T, Lj « T. This corresponds to Blackman-Tukey processing. Then W|(f) is 
proportional to sJnc2(Tf), which is much narrower in f than W2(f), meaning that 
We(f) s W2(f), the lag window alone. 

Interpretation of the response of the effective window, We(f), via convolution 
(51) can sometimes be deceiving, and it may be helpful and necessary to resort to 
(48). For example, suppose W2(T) is 1 for |T| < L2 and 0 otherwise, where L2 > L,. 
Then (51) says that we have to convolve sinc(L2f), which has -6.63 dB side lobes, 
with W|(f). Our first impression would be that We(f) is bound to have bad side lobes 
regardless of the temporal window. But recourse to (48) and figure 4 immediately 
reveals that we(T) ■ ^(T) for all T, and that W2(f) is totally irrelevant, provided that 
L2 > L,. The scaling of ^(T) by a constant in (48), over the range of nonzero ^(-r), 
obviously has no effect on the relative side lobes of We(f). Furthermore, the actual 
calculation of the effective window via (51) is often tedious, whereas a Fourier 
transformation of the product in (48) is a reasonable approach, even if only by an 
FFT. 

15 
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Constraint on Temporal and Lag Weighting Lengths 

The effective window We(f) was presented in (51). Its "width" is given ap- 
proximately bv the sum of the widths of the temporal and lag windows. As 
discussed earlier, we wish to constrain the effective bandwidth Be of We(f), so as to 
be able to fairly compare the performance of different spectral analysis techniques. 
The effective bandwidth is given by (1) and can be developed as 

[/dfW(f)]2 ,*(0) 

"    Jfdf W*(f) "    /dT   W*(T) 

♦J(0)  w*(0) 

fdT   ♦j(T)   W^CT) 

dx 
[♦jCt) 2 

W2(T)| 

[w2Co)J [^(o) 

-1 

(52) 

where we have used Parseval's theorem, the Fourier transform relationship in (51), 
and (48). Since Bc is to be considered fixed, (52) forces a relationship between 
lengths L, and L2 of ^;(T) and W2(T). 

For example, consider rectangular temporal and lag weightings (this is not a 
practical case and is presented only for illustration purposes): 

WjCt) »1    for  |t|  < Lj/2    , 

^(T)  » Lj IT I    for   T   < L-     , 

W2(T)  * 1    for  |T|  < L-    . (53) 

Then (52) yields 

.;^/>K)2 
(54) 

where 
■inCLj, L2) 

(55) 

Given a value of Be, (54) can be considered as an equation for L2 in terms of L,, or 
vice versa. Here we have fixed the shapes of the weightings and are varying the 
lengths so as to realize the specified frequency resolution Be. 

16 
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Generally, the qualitative character of the interrelationship between lengths is as 
depicted in figure 5, for fixed weighting shapes. The larger one of the lengths is 
made, the smaller the other length can get and still satisfy the specified bandwidth 
of the effective window. For a specified pair of shapes for w^t) and W2(T), a plot 
like figure 3 can be used in two different ways. If we pick a value for B^L,, this 
determines BeL2 and hence L2/Lv On the other hand, choice of a value for the ratio 
of lengths, Lj/L^puts a line through the origin of slope L-j/L,, and thereby 
determines BeL] and BeL2 where the line intersects the curve. We note therefore that 
knowledge of one of the following three quantities determines the other two: L2/L,, 
Bglq,  BjLj. 

The limiting parameter values on figure S are determined as follows: as L, -♦ <», 
then L2 -* L2(min), where now (from (32)) 

.-1 
/ 

dT 
W

2(T) 
« 2L2(min) c{w2) 

(56) 

Here, c{ } is a "shape factor" defined for any limited-duration function g as 

(57) 

where it is assumed that 

g(T) - 0    for    |T|  > L (58) 

■•s 

2c Jw 1*21 

BeL2(D 

*{U 
BeT BeL1 

Figure 5. Interrelationship of Lengths L, and L, for Fixed Shapes 
of the Temporal and Lag Weightings 
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that is, 2Lg is the nonzero extent of g(T). Shape factor c{g} is independent of the 
magnitude of g(T) and of its length on the r-scale. Thus (56) yields 
BeL2(min) = (2 c{w2})-lt which is entered on the ordinate in figure 5. However, 
since L, is limited by T, the dotted portion of the curve on the far right is not at- 
tainable. 

Conversely, if instead, L2 ■• ", then L, ■• L^min), where now (from (52)) 

2 

,;■. /*, ♦JCT) 

♦JTBT « 2L.(min) c{^.}    ; 
1 1 (59) 

that is, BjL^min) ■ (2 cf^,})-'. This value is attainable; it corresponds to no lag 
weighting. The ratio, Lj/L,, of weighting lengths can take values in the range 
L2(T)/T to •; for BeT » 1, this constitutes the range from almost zero to infinity. 

Since the shape factors c{w2} and eft,} are important limits on the weighting 
lengths, tables of thsir numerical values for a number of useful weight functions are 
given below. The weightings listed under C5, C3, Cl are those given in reference 19, 
figures 10,11,12, respectively; the notation means 

(60) 
C5: continuous fifth derivative of weighting 
C3: continuous third derivative of weighting 
Cl:    continuous first derivative of weighting 

For the class of lag weightings given by 

W,(T) -   £   a.   cos(irkT/Lj    for  |T|   < L,    , 
• 1^0    * ' * (61) 

the shape factor is 

This is evaluated for several weightings in table 1. 

Table 1. Shape Factor for Lag Weighting W2(T) 

W2(T) C{W2(T)} 

Rectangular 1.000 
Manning .3750 

Hamming .3964 
Blackman .3046 

C5 .2256 
C3 .2442 
Cl .2558 
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For the class of temporal weightings given by 

Mt) -EH cos(21*1/1,,)    for  |t|  < L-/2    , 
1 kiP   k 1 1 (63) 

the correlation |,(T) is evaluated in general in appendix C. The shape factor of f ,(T), 

2 

dx ,{*i} ■ 11711 jjn (64) 

can then be evaluated numerically and is given in table 2. 

Table 2. Shape Factor for Correlation 
1,(1) of Temporal Weighting w,(() 

w.W €{♦,} 

Rectangular .3333 - 1/3 
Manning .2405 - (8n2 + 35)/(48n2) 

Hamming .2628 
Blackman .2073 

C5 .1545 
C3 .1678 
Cl .1763 

Plots of the relationship between L, and L, dictated by (52) are given in figure 6 
for various combinations of temporal and lag weightings. For a rectangular lag 
weighting, the curve will actually reach BeL| ■ (2c{^l})'

1 when L; ■ L,; then the 
curve goes vertically up from this point for L2>Ll (see figure 6A). The procedure 
for the evaluation of figure 6 is as described under figure 5; namely, pick a value for 
Lj/L,,   compute  BeLl  via (52),   and  then  compute  BeL2   =   BeL,»(L2/L,). 

If the maximum segment length, L,, is specified (as for example, when the 
maximum FFT size and the time-sampling spacing A, are fixed), under what con- 
dition can a desired effective frequency resolution, Bd, be met? The answer to this 
question is available from figure 5; namely, we see that 

B L    >  (2c{«1»-1   ,    or    B, i. M,
1

.   „       . 
ell e      2c{*1}L1 (65) 

1 .us if desired resolution Bj is greater than or equal to the right-most term of (65), 
there exists a choice for lag length L2 that will yield the desired frequency resolution. 
The shape factor in (65) depends only on the temporal weighting w^t). 
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Figure 6. Allowed Lengths of Various Temporal and Lag Weighting Pairs 
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Normalization of Weightings 

The average of the first-stage correlation estimate was given in (43). For T = 0, it 
yields 

Av{R (0)} - R(0) ♦,(())    . 
1 1 (66) 

Since R(0) is the true power in the process x(t) under investigation, it is convenient 
to normalize according to 

1 - ♦1(0) - f dt wj(t)     . 
(67) 

Then £,(()) is an unbiased estimator of R(0). 

Additionally, from (47) and (48), we have, for the second-stage correlation 
estimate, 

Av{R2(0)} - R(0)  ♦ (0) w (0)   . 
(68) 

Therefore, in addition to (67), we also set lag weighting value 

w,(0) . 1    . 2 (69) 

making R2(0) an unbiased estimator of R(0). There follows, for the effective 
weighting, 

w CO) - 1    . 
(70) 

Since there is no significant loss of generality, the normalizations in (67), (69), and 
(70) will be used in the rest of this report. 

Discrete-Time Processing 

For the impulsive temporal weighting introduced in (24)-(29), the normalization 
(67) must be modified somewhat, since the integral of wf(t) in (24) would be infinite. 
We resort to (28) and require that the origin value of the sample correlation satisfy 
the unbiased requirement that 

Av{Rin} =  R(0)     . 
10 (71) 

Reference to (28), (29), (26), and (43) yields 

Av(RA
10)  - AV(RA'P>)  - *,   £    |y    |2  • 4,   £   .1 R(0)     ; ™ 

m * m 
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therefore the normalization is 

K  T.  *i    «1    • 1  V    lm (73) 

This is the discrete analog to the integral constraint in (67). 

The correlation ^(T) of temporal weighting w^t) in (24) is given by (44) as usual 
and is expressible as 

♦l^  " \  E   ♦ik 6(T  " ^t*     ' (74) 

where 

♦ik 5 At 2   wl,mwl,m-k    ' 
■ (75) 

Thus we see that (73) is tantamount to ^0=1. which replaces the constraint ^,(0) ■ 1 
in (67) for the continuous temporal weighting case. 

If we also require that second-stage correlation estimate (42) satisfy the unbiased 
requirement 

Av{R20} - R(0)     , 
(76) 

then, as before, we require 

w2(0)   «  1 
(77) 

Finally, the effective weighting becomes, upon use of (74), 

w (T) » ♦  (T) W (T) « A.   £   #,.   w (kA.)  ö(T - kAj    . e 12 tkiic2t t (7g) 

The normalizations adopted above make the area of the impulse at T = 0 equal to 

A    *      w  (0)   -  A       . 
l    w    t ^ (79) 
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Exampk * of Effective Windows 

We consider  first a  rectangular temporal weighting  w^t),  for which the 
correlation is triangular. 

^(T)  • 1 -  ITI/LJ    for  |T|   < Lj     , 

and the class of lag weightings as given earlier by (61): 

W-(T)  ■   S   av cos(TrlcT/L.)    for    |T|   < L. 

Then constraint (52) yields 

(80) 

(81) 

J    L, - |2 f      dx    £ e   2    ^0        Lkto 
for    L- < Lj 

(82) 

The effective weighting, we(T), is given by the product of (80) and (81); its Fourier 
transform is the effective window 

2L. 

ir       ]t>P 

where 

i _ -i. j   27rv 5^(2^) —T^—J 
Ll / Av    - k 

2       k2 

Ji [l   -   (-l)k  005(2^)1   /^*     r 
lL J   (4/ -  k2) 

for L2 < Lj     .   (83) 

v = Be L2 u    .    us f/Be 
(84) 

Although (82) and (83) could be extended to the case where L-, > L,, that range is not 
of practical interest, as will become apparent later. 

The numerical procedure for evaluation of the effective window is to first select 
the shape of the lag window by specifying coefficients {ak}. Then we choose a value 
for Lj/L, and compute BeL2 from (82). We can then employ (83) and (84) to 
determine We(f). Four examples are given in figure 7, where we have plotted 

dB S 10 log 
We(f) 

rröT vs 
(85) 
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-» 

dB 

7A. Effective Window for Rectangular Temporal Weighting 
and Hanning Lag Weighting 

7B. Effective Window for Rectangular Temporal Weighting 
and C5 Lag Weighting 

Figure 7. Examples of Effective Windows for Rectangular Temporal Weighting 
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7C. Effective Window for Rectangular Temporal Weighting and C3 Lag Weighting 

-10 

-30 

-40 

9 10 

7D. Effective Window for Rectangular Temporal Weighting and Cl Lag Weighting 

Figure 7. Examples of Effective Windows for Rectangular Temporal Weighting (Cont'd) 
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The curve corresponding to Lj/L, 
alone. 

0 (i.e., L, « «) is that for the lag window 

The overriding impression of the plots in figure 7 is that the effective window has 
poor side lobe behavior and decay unless l^/L, is chosen very small. That is, the 
poor side lobe behavior of temporal window Wf(f) enters the convolution (SI) for 
We(f), and is difficult to suppress, even by choice of good lag windows. It would be 
desirable to realize the bottom-most figures in each of these plots, since these latter 
curves have good side lobes and decay; a procedure for accomplishing this goal is 
presented in the next section. 

The situation is significantly improved when the temporal weighting is tapered. 
An example for Manning temporal and lag weightings is given in figure 8. The 
bottom-most curve has an eventual 18 dB/octave decay because <|»,(T) has a 
discontinuous fifth derivative at T = 0, which is not compensated by W2(T). (^(T) 

also has a discontinuous fifth derivative at r= ±Ll, but this is converted to a 
discontinuous seventh derivative for we(T) by means of W2(T) when L; ■ L,.) 

-10 

-20 

dB 

Figure 8. Effective Window for Manning Temporal Weighting and 
Manning Lag Weighting 
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Discrete-Time Processing 

The temporal weighting w^t) is given by (24), and its correlation 4I(T) by (74), 
where coefficients (f ,k} are given by (75). The Fourier transform of (24) leads to 
temporal window 

».(f)  • A    E   wlm CXP C-121^"^^ 
m (86) 

which has period 1/A, in f, and is real and even, since weight sequence {wlm} is real 
and even. 

For a general lag weighting W2(T), the effective weighting is given by (78). The 
effective window We(f) is given by (51) as the Fourier transformation of (78): 

Wc(f)  - At Z   *lk w2(^t)  expC-iZufkA^     . ^ 

which also has period 1/A, in f, and is real and even, since lag weighting W2(T) is real 
and even. This result holds for any lag weighting W2(T) and is a very useful form for 
computing We(f) for any value of frequency f. The convolutional form of (51) is not 
very useful for computing We(f) for general W2(f). 

As a special case, we can evaluate (87) at particular frequencies 
fn - nAF » nANA,)-', as in (33) and (34): 

\{M;)'\ E ♦ikw2CkV ^-i2^m (88) 

which can be accomplished as an N-point FFT. We should choose N large in order 
that (88) be capable of tracing the fine detail of We(f). This is an attractive and 
efficient way to evaluate the effective window. 

A Special Lag Window for Discrete-Time Processing 

The result in (87) applies for discrete time sampling and arbitrary lag weighting. 
We now specialize to the lag window given in (38): 

W2(f) - Af  I]  W2n 6(£ - nAf)    . 
(89) 

where sequence {W2n} is real and even, and frequency spacing At need not be related 
to time spacing A, in (24). Then, via inverse Fourier transformation (20), the 
corresponding lag weighting is 

w  (T)   » A.   V   W-    exp(i27mA.T)     , 
2 f    n      2n f (90) 

and, in particular, sample values 

w2(kAt)   = Af   V   w2n exp(i2TTnkAfAt)     , 
(91) 
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which can b€ used in (87) to evaluate We(f) for any frequency f whatsoever. 

An alternative form to (87) for calculation of We(f) for this special lag window 
(89) is afforded by substitution of (89) in the convolutional form of (31): 

W,(f) z 
n 

W2n Wl(f nAf) 
(92) 

The temporal window W,(f) is given here by (86). Equation (92) is an attractive 
form when the number, N2, of nonzero coefficients {W2n} is small and Wj(f) can be 
evaluated in closed form. In fact, (92) actually holds for any temporal weighting 
Wjft); it is not limited to the discrete-time forms (24) and (86). Equations (87) and 
(92) are duals in the sense that (87) applies to any W2(T) and an impulsive w^t), 
whereas (92) applies to any W,(0 and an impulsive W2(f). Either equation can be 
evaluated at any f of interest. 

Our first example is rectangular temporal weighting; from figure 2, (24), and 
(73), wlm - Lj"2, where L, » N,^. Then, from (86), 

irj(£) « Lj 
sinCirL.f) 

Nj  sinCirl^f/Nj) 
i 4 Q^Cl^f) 

(93) 

For the lag window, we take impulsive form (89); then (92) and (93) give 

wm LiAf n 
W2n VLlf nL1Af) 

(94) 

Two important choices yet to be made are I^Af, the relative frequency spacing used 
in frequency smoothing, and the set of coefficients {W2n}. For Hanning frequency 
smoothing, the latter is 

1/2    for n = 0 

W,    - -^-  ( 1/4    for n = ♦! Zn      A- 

0    otherwise 

N2 =  3     . 

(95) 

The effective windows for l^A, = 1/2 and 1 arc given in figure 9 for N, = 32. 
Window (94) is even about f=0 and has period 1/A, in f; hence only the region 
0, (2A,)-1 is plotted in f. The window in figure 9A has no deep notches since the 
frequency displacement (spacing) Af = (2L,)-1 causes the notches to be filled in; the 
window for Af = Lj1 in figure 9B reinforces the notches and has a significant 
shoulder near f ■ 1/L,. Both windows have slow decay with frequency and do not 
have significant rejection, even near Nyquist frequency. Closer spacings than 
(2L,)-1 do not improve the decay or rejection capabilities; wider spacings than Lj1 

generate humps in the effective window. The bad features of rectangular temporal 
weighting are not undone by Hanning frequency smoothing; see also figure 7A. 
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9A. L^ = 1/2, N, = 32 

16--i 

(NYQUIST) 

9B. L,Af = 1, N, = 32 

Figure 9. Effective Window for Discrete-Time Rectangular Temporal 
Weighting and Manning Frequency-Smoothing 

(NYQUIST) 
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The second example is rectangular temporal weighting with N, - 32 and rec- 
tangular frequency smoothing over five frequency samples; i.e., 

*2n      Af 

1/S    for  |n|   <. 2 

0   otherwise 

N2  x  5 

(96) 

The effective windows for L,Af = 1/2 and 1 are given in figure 10. The main lobe 
humps in figure 10B are caused by the displacements of Wf(f) according to (92). 
Both windows again have poor decay t id poor rejection; however, the main lobe is 
more box-like in shape than previously. 

The third example is identical to the previous one except that N2 ■ 11. The plots 
in figure 11 reveal that the main lobe is quite box-like, but the decay and rejection 
are no better than previous cases. According to (92), we are merely taking the poor 
side lobes and decay of Wf(f) and moving them about, but not improving them in 
any way. 

The last example in this subsection is Manning temporal weighting with no 
frequency smoothing at all. The effective window for N, ■ 32 is simply Wf(f) and is 
plotted in figure 12. It has the familiar -31.5 dB peak side lobe, a rapid decay, and 
significant rejection capability. 

32 



TR 6459 

10A. L,Af = 1/2, N, = 32 

10B. L,Af = 1, N, = 32 

Figure 10. Effective Window for Discrete-Time Rectangular Temporal Weighting 
and Rectangular Frequency-Smoothing with N2 = 5 
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Figure 12. Effective Window for Discrete-Time Manning Temporal Weighting 
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Lag Reshaping for Desired Effective Windows 

From (48), the effective weighting of the generalized spectral analysis technique is 
given by 

we(T) - ♦JCT) W2(T)    , 

(97) 

where ^(T) is the correlation of temporal weighting w^t); see (44). Now suppose 
that for a given temporal weighting w^t), with associated correlation ^(T), we 
choose lag weighting 

•jW'^RT ,or   MiL,^  . m 

where wd(T) is a desirable weighting with wd(0) ■ 1 (in keeping with (67) and (70)) 
and 

wd(T)  ■ 0    for     |T|   > L2 

(99) 

Notice that L2 > L, is disallowed in (98) since ^(T) = 0 for |T| > L,. Then sub- 
stitution of (98) in (97) yields 

we(T) - wd(T)   ,   We(f)  - Wd(f) 
(100) 

That is, the effective weighting and window are equal to the desired behavior. We 
have "undone" the effects of bad side lobes in temporal window W^f) by reshaping 
according to lag weighting W2(T) in (98). (The effect on the variance of the second- 
stage spectral estimate ü2(f) will be considered later.) 

To see how much can be accomplished by this approach, some attainable ef- 
fective windows that can be realized via lag reshaping, for continuous rectangular 
temporal weighting, are given in figure 13 for the largest possible value of L2, 
namely, L2 = L,. Superposed on the window Wf(f) for rectangular temporal 
weighting are the effective windows for four candidate lag reshapings, for L-, = L,. 
These are the narrowest possible effective windows for a given L,. The first one in 
figure 13A corresponds to an effective Manning weighting. The peak side lobe is 
only reduced from -13.3 dB to -15.7 dB, and the asymptotic decay is improved to 9 
dB/octave from 6 dB/octave. The main lobe width is only slightly broadened. 

Much greater improvements in side lobe behavior are possible with other lag 
weightings, and are illustrated in parts (B)-(D) of figure 13. They illustrate, 
respectively, peak side lobe levels and decays of: -30.5 dE, 21 dB/octave; -41.3 dB, 
15 dB/octave; and -46.7 dB, 9 dB/octave. The deeper peak side lobe is realized at 
the expense of a slower asymptotic decay. They all havr about the same main lobe 
width. TheC5, C3, Cl weightings were introduced and explained in (60). 
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dB 

Llf 

13A. Reshaping to Achieve Hanning Weighting 

S' 
13B. Reshaping to Achieve C5 Weighting 

Figure 13. Some Attainable Effective Windows via Lag Reshaping 
for Rectangular Temporal Weighting and L2 = L, 
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dB 
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13C. Reshaping to Achieve C3 Weighting 

4 5 6 7 8 9 10 

•v 
13D. Reshaping to Achieve Cl Weighting 

Figure 13. Some Attainable Effective Windows via Lag Reshaping for 
Rectangular Temporal Weighting and L2 = L, (Cont'd) 
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Figure 13 illustrates how advantageous the reshaping technique can be in terms of 
peak side lobe and asymptotic decay, although the main lobe width is significantly 
increased. In fact, the peak side lobe at f a 1.5/L, for the rectangular window is 
really not suppressed,so much as it is smeared out; however, the other peaks of 
Wf(f) for |f| > 2/L, are indeed significantly reduced. Thus reduction of leakage via 
lag reshaping is a very effective method, provided that we accept the nearest side 
lobe of the temporal window; this conclusion is in contrast to reference 20, page 57. 
These general conclusions on lag reshaping hold also for temporal weightings other 
than rectangular, although the exact degree of improvement will be different. 

If L2 is chosen less than Lp the effective windows in figure 13 are simply 
broadened according to the ratio L,/!^. The peak side lobe levels and asymptotic 
decay are unchanged, but the main lobe width is increased. Here we are presuming 
L, fixed and decreasing L2. 

If we insist that the combination of temporal weighting w^t) and lag reshaping 
W2(T) in (98) have effective bandwidth Be, then use of (52), (99H100), and (57)-(58) 
yields 

w^(0) wj(0) , 
Be " TTTXT " T»     277 ' 2L, c{w.} / dr w (T)       JdT W.(T) 2        d 

(101) 

where c{ wd} is the shape factor of wd(T) (see table 1). Thus 

the limits on L, in (102A) follow from (98) and (15). 

A plot of the interrelationship between L, and L2 (introduced in figure 5) is shown 
in figure 14 for the case of lag reshaping. The reason that the plot is flat, in contrast 
to figures 5 and 6, is that the shape of W2(T) now changes as L, changes. This 
behavior is discernible from (98), since the denominator varies while the numerator 
remains fixed according to the selection of wd(T) and its associated bandwidth- 
length factor (102A). 

If the maximum segment length, L,, is specified (as for example when the 
maximum FFT size and the time-sampling spacing At are fixed), the condition under 
which a desired effective frequency resolution, Bd, can be met is given by figure 14. 
Namely, we see that 

'.^TTR-n; • (,02B| 

Thus if desired resolution Bd is greater than or equal to the right-side of (1028), 
there exists a choice for segment length L, that will yield the desired frequency 
resolution. The shape factor in (102B) depends only on the desired weighting wd(T). 
(See (65) and the accompanying discussion for the case where lag reshaping is not 
employed.) 
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Figure 14. BfL2 vs BeL, Plot for Lag Reshaping to Desired Weighting wd(T) 
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Variance of Spectral Estimate 

Up to this point, we have presumed nothing about the process x(t) except that it 
be (second-order) stationary during the observation interval T. Now we make a 
couple of assumptions about the process in order to obtain manageable expressions 
for the variance of the second-stage spectral estimate UjCO» at frequency f. Our first 
assumption is that the true spectrum G of x(t) varies slowly in the neighborhood of 
the frequency of interest, f. More precisely, from (SO) and (70), we obtain, fix the 
mean spectral estimate, 

Av{G2(f)} -   jdu G(f - u)  We(u)   ■  G(f) j" du We(u)  - G(f)    , 
(103) 

where we assume that spectrum G is relatively constant in the frequency band 
(f-Bg/2, f+B/2); i.e., the only region where effective window We in (103) is 
substantially nonzero is in the range (-8/2, Be/2). 

Our second assumption is that x(t) is a complex Gaussian process. The variance of 
62(0 is developed under this assumption in appendix D, culminating in the exact 
result in (D-13): 

Var{G2(f)} « Jj da d8 G(o)  G(0)   |Y(£ - a,  f - ß)|2 Qp(S(a - 8))    . 

(104) 

where window convolution function 

Y(x, y)  = Jdu W2(u)  WjCx - u)  W*(y - u) 

and periodic function 

0 fui  = fiinCTPu) T 
Vu)  " [p sindru)] (106) 

The variance result in (104) does not require that spectrum G vary slowly in the 
neighbor of f; the result utilizes only the Gaussian assumption on the process x(t). 
The temporal and lag windows contribute through the window convolution func- 
tion y, while the shift S and number of pieces P appear through the periodic func- 
tion Qp. 

When the assumption regarding a slowly varying spectrum G in the neighborhood 
of frequency f of interest is also invoked, (104) simplifies to forms given in (D-20) 
and (D-24); the latter is a "weighting domain" version of the variance: 

P-l     / \ 
Var{G2(f)} = G2(f) if,      (l - ^j / dx W

2
(T)   ^(T,  pS)     , 

(107) 
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where 

■ Vi?" -u) (108) 

is a third-order correlation of temporal weighting w^t). The form (107) is very 
useful if <f 3 can be evaluated in closed form. An "ambiguity domain" version of the 
variance is given by (D-20). 
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Quality Ratio 

The quality ratio for spectral estimation was defined in (4). With the aid of (103) 
and (107), it is given by 

Var{£,Cf)} 
Q - 

Av^Cf)} 

(109) 

Since the smallest possible value of Q is (TB,.)-' (see (11) et seq.). the normalized 
quality ratio is 

= Q . TBe - -^    £     (l " -^ /dx wj(T)  ^(T, pS)     . 

(110) 

This quantity can never be smaller than unity. 

If we employ (52) and the normalizations (67) and (69), the convenient form 

r Spl1" ^ ^ w^) *5(T•pS, 
NQR » T      r j _ 

jdT WJ(T) ♦J(T3 (111) 

for the normalized quality ratio is obtained. We are interested in the behavior of the 
normalized quality ratio for different choices of P, S, w^t), and W2(T). The con- 
straint of a fixed effective bandwidth Be has been injected into the normalized 
quality ratio via the use of (52) in (111). The quantities ^ and ^ needed in (111) are 
given by (44) and (108) respectively. 

Before we embark on particular cases, some general observations on overlap 
(shift S) are in order. For a minimum normalized quality ratio (minimum variance) 
with each temporal weighting w^t), we should use approximately the optimum 
overlap as derived in reference 9. For example, Hanning temporal weighting should 
be employed with approximately 62 percent overlap, although there is only an 8 
percent loss in stability if 50 percent overlap is used for convenience (reference 9, 
tables 5 and 6). There is no point in considering excessive or inadequate overlap, 
since this leads to excessive computational effort or more variance, respectively. 
Inadequate temporal overlap cannot be made up, in terms of variance reduction, by 
any amount of quadratic smoothing. This can be seen by observing that poor first- 
stage correlation estimates K^T) are merely multiplied by lag weighting W2(T), and 
are not improved statistical!: in any way for |T| < L2; those estimates for |T| > L2 are 
discarded by the lag weighting. 

Some relater1 work on the effects of windowing on stability is given in references 
21 and 22. However, the present report is more thorough and detailed in its 
treatment of the problem and the inclusion of a bandwidth constraint. 
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Special Cases of Generalized Spectral Analysis Technique 

This section will consider several special cases of the normalized quality ratio and 
show how some earlier results are obtained as limiting cases. The next section will 
treat the generalized spectral analysis results. 

OnePlece, P»l 

When only one piece is used in the first-stage spectral estimate 6,(0 in (14), we 
have a generalized version of the Blackman-Tukey approach, in that the data x(t) 
are weighted by w^t) prior to computing the sample correlation; see (16) and (13). 
Also, we allow length L, < T (although we soon show that the best L, is equal to T, 
the available record length). From (111), 

[dx W^CT) ♦ (T) 
NQR    . T -i 1 2  

1 jdT   *2iT)    ♦J(T) (112) 

where (using (108)) 

♦2(T)   =  ♦JCT.O)   -   fdt Wj(t ♦ |) Wj(t  - l) -   Jdt  Wj(t)   Wj(t   -  T) 

(113) 

is the correlation of the squared temporal weight function wf(t). 

Now if L, » Lp w2 is much narrower than ^ or f 2. In that case, the exact shape 
of w2 is irrelevant, and (112), (113), (44), figure 2, and Schwarz's inequality yield 

♦2(0) fdt wj(t) T NQRj ■ T -^ « T -^ s-j > |j-     for    L    »  L 
♦J(0) jdt w*(t)J 1 (114) 

Equality in (114) results if and only if w|(t) is constant for |t| < L,/2; furthermore, 
the best value for L, is then its largest allowed value T (see (15)), in which case we 
have Blackman-Tukey processing and 

NQR, (rectangular w ) ■ 1    for    T » L,  » L.     . 
1 1 1 ^ (115) 

This result agrees with reference 2, section B.8. It should be noted that L, » L2 

implies BjL, » BJLJ > .5/c{w2} «v 1, according to figure 5 and table 1; thus stable 
estimates result in this case. 

Instead of rectangular temporal weighting, consider Manning weighting: 

h 
wi(t)=(3r7)  cos2(i7) for f^l <Li/2   • 

(116) 
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Then 

and (114) yields 

^o) - /dt *J(t) - i   ,    ^(0) - /dt »Jet) - ^    .    (i 
17) 

NQRj(Manning "j) • H ^       for      Lj » L2 

(118) 

The best L, is again T; however, the minimum value of the normalized quality ratio 
is then 35/18, which is twice tknJ value in (115) for rectangular temporal weighting. 
This is due to the squandering of the edges of the available data record by the small 
values there of Manning temporal weighting. 

Now instead of assuming L, » L2, let us reconsider, for general w,, L,, L2, the 
normalized quality ratio (112). Since w,(t) is zero for |t| > L,/2, we have from (44), 

bfr) 

MT)  -       /dt w^t)  w (t - T)    for    |T|  < L,     , 
1 ad) 1 1 1 (119) 

where 

a(T)  » inax(-L1/2,  - Lj/2 + T) 

b(T)   = min{L1/2,      Lj/2 ♦ T) 

Then by Schwarz's inequality, (113), and (120), 

for    |T|  < I- 

(120) 

2 /-MT) 2 2 /.b(T) 
♦J(T)  <.] dt Wj(t)  Wj(t  - TOJ dt  1 

a(T) ''ad) 

- ^(T)   (LJ -  |T|)    for    |T|  < Lj    . 
(121) 

Equality is realized in (121) if and only if w^t) is constant for |t| < L1/2; that is, the 
best temporal weighting for maximum stability is rectangular when P = 1. This 
conclusion holds regardless of the form of lag weighting W2(T) or the relative sizes of 
L, and L2. 

As an example, for rectangular temporal weighting, 

WjCt)  = Lj"55    for     jtl   < Lj/2      , 

♦JCT)  =  1 -  M/Lj      for      |T|  <    Lj 

♦2(T)  - jj-d  -   ITI/LJ)       for       |T|   <  L2    , (122) 
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and (112) yields for general W2(T), 

NQRjCrect.  Wj) ■ ^-   —^ 

f1' a, fa (. - M) 

1   'l-   *-*(i.itf <m, 1 dT   W2(T)   .. , 

The ratio of integrals is obviously greater than 1. For a monotonically decreasing 
lag weighting W2(T) of fixed shape, the ratio of integrals is minimized by choosing L, 
as large as possible. Since the leading factor also has the same behavior, the best 
value for the normalized quality ratio is 

/>"H-¥) 
NQR  (rect.  wj  « —— : -^     for    L.  « T 

We cannot give numerical values to this ratio of integrals until we select a lag 
weighting W2(T) and determine the specific value of L2(T); see figures 5 and 6. But if 
TBe » 1, which is the usual case for reasonably good spectral estimates, then 
^«L, ■ Tand 

NQRjCrect.  Wj)   •   1    for    Lj « T,        TB    » 1 
(125) 

This result holds independently of the exact shape of the lag weighting W2(T); thus 
we could choose W2(T) such that the effective weighting w .(T) in (48) has good side 
lobe behavior, as discussed in an earlier section. 

No Quadratic Frequency-Smoothing 

No quadratic smoothing corresponds to 

W2(f)  « 6(f). 

W2(T)  =  1    for all  T    . (126) 

Thus L2 = «, and (109) becomes 

Q ■ i pE p (i - ¥)/<* V^s' 

P-l 

p-l-P   > / (127) 
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since 

jdx ^(T.U) ■   /dT    jdu WjCujWjCu - ji)w1(u ♦ T) WJCU ♦ T - y) 

J du WjCu)  w1(u - y)   ♦jCy)  ■ (^(y) (128) 

by use of (108). The result in (127) is identical to reference 9, equation 8, when we 
recall definition (109) and normalization (67). 

Non-Overlapping Segments 

Let us choose time shift S in (13) equal to the segment length L,; this leads to 
abutting time segments. From (15), we have 

PLj ■ T    , (129) 

where we have chosen to use up all of the available data length. (This is different 
from the earlier subsection for P»l where we allowed L, < T.) The general 
normalized quality ratio in (111) reduces to 

jdx w^Cx)  ^(T) 
i —? 2 2—   » 

jdt W2(T)  ^(T) (130) 
NQRP ■ Li r.   r : .2 

where we used (129), the fact that w^t) is of length L,, and (113). 

Once again, we refer to bound (121) and the fact that equality is realized only for 
a flat weighting w^t). Thus, from (130) and (122). 

NQRp(rect. Wj)  «        L 

(131) 

for any (real symmeti' ; lag weighting W2(T). The ratio of integrals is obviously 
always greater than L. ity; therefore, for a monotonically decreasing lag weighting 
W2(T) of fixed shape, values of L, large in comparison with L2 are preferred. 
However, L, » L2 means that 

IB    -  PL    B    » PL    B    X    j^H    "   P       ' e i    e ^    e        ic^^ (I32) 

according to (129) and figure S. Thus large time-bandwidth products, TBe, are 
required; also P must be kept small enough to realize L, » L2. In this case, we have 

NQRp(rect.  Wj)   -   1    for    TBe »1,    Lj  » L2       , (133) 
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regardless of lag weighting W2(T). Qualitatively, when L, » L2, the edge effects of 
segmenting the data x(t) are negligible, since only a small fraction of the utilized 
correlation values that can be calculated from a record of length T are neglected 
when using segments of length L,. Stated alternatively, all the first-stage correlation 
estimates that are used, namely R^T) for |T| < L2, have the same quality (stability) 
whenLj«!,,. 

An example of the exact normalized quality ratio for Manning lag weighting and 
rectangular temporal weighting is afforded by substituting the equation 

H) W2(T) » cos    (jif-)     for    M <  L2 
(134) 

into (131) (see figure 7A for the effective window): 

NQR_(rect.  w,, Hann. wj -  ^      , 

f**          *     L      2 L2   \ f    dx cos    xll T— x) 
J0 \       ^ Li   / 

where 

(135) 

(136) 

Equation (135) is plotted* as the top curve in figure 15A. As expected, the 
normalized quality ratio tends to 1 as L2/L, tends to zero. But even for as large a 
value as Lo/L, ■ .5, the normalized quality ratio has increased only by 12 percent. 
Thus the penalty in increased variance,for not realizing a small ratio for L2/L1,is not 
severe. 

Also plotted in figure 15A is the normalized quality ratio for the three lag 
weightings introduced in (60) et seq. They all lead to smaller values of the 
normalized quality ratio, for the same value of L2/L,; in fact, lag weighting C5 

incurs only a 7 percent increase in variance when I^/L, = .5, in relation to the ideal 
value 1. The reason that the normalized quality ratio is lower is due to the fact that 
the lag weightings drop to zero faster within their length L2. 

Non-Overlapping Segments; Lag Reshaping 

The possibilities of lag reshaping have been discussed earlier with regard to the 
mean of the spectral estimate and the effective window. We now want to see what 
effect lag reshaping has on the normalized quality ratio in (130). Substitution of (98) 
in (130) yields 

/C 

2, .   VT) 
dT WJ(T) -J. 

NQRp(lag reshaping) = Lj -j 5    for  L2 < L. 
jdx  wd(T) 

♦JCT) 

(137) 
•The quantity TBe is not involved in figure 15; some related computational considerations are 
discussed in appendix E. 
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The special case of rectangular temporal weighting is obtained by employing (122) 
in (137): 

i * •*" i1 • ^r 
NQR (rect. w, , lag reshaping) ■  r ' '—  for  L- <. L. 

/ * dt w2(Tj 
0 (138) 

The division by ^(T) in reshaping (98) increases the variance (for a specified L2/L| 
and for wd(T) ■ W2(T)) above that in (131), because wc are more heavily weighting 
regions where the denominator in (138) is smaller. 

Equation (138) is plotted in figure 15B for desired effective weightings of Man- 
ning, Cl, C3, and C5. Notice that the abscissa is now limited to U/L, < 1. As 
expected, the normalized quality ratio tends to 1 as L^/L, tends to zero; that is, we 
can do lag reshaping for good side lobe behavior and lose little in terms of stability, 
provided that L, is chosen sufficiently larger than L2. Of course, the normalized 
quality ratio values in figure 15B are larger than those in figure 15A, for the same 
value of Lj/L,. As an example, for desired effective weighting C,, if we take 
L, ■ 2L2, the increase in variance over the ideal value is only 9 percent. Thus lag 
reshaping is an attractive procedure for spectral estimation; recall from figure 14 
that L2 is set by the specified Be and the shape of w^-r). 
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General Results on Stability 

We now return to the general normalized quality ratio in (111) and recall con- 
straint (15). We will select time shift S according to 

S - qLj    . (^9) 

where q ■ q{ w,} is a fraction specified to be in the range (0,1] and is dependent on 
the particular temporal weighting w^t) employed. The observations made in the 
paragraph following (111) are relevant in this regard. For example, with no 
quadratic frequency smoothing and with Hanning temporal weighting, q ■ .39 (61 
percent overlap) is virtually optimum, although q = 1/2 loses only 8 percent in 
variance-reduction capability (reference 9, tables 4-7). We also select equality in (15) 
so as to make maximum use of the available record length, i.e., minimum variance 
of the spectral estimate. Then we have 

'l • 1 ♦  9- \h 0,-1)     • (,40) 

Thus for a given T and specified shift fraction q, L, can take on only a uiscrete set 
of values. 

Arbitrarily large values of P are not allowed in (140), because this would result in 
such small values of L, that the bandwidth constraint, Be, could not be met. From 
figure 5, the lower bound on B^L, limits 

2c{*1} B T -  1 
P       . i +  i 2    . 

max q (141) 

(Actually, P^ must be the integer part of the right-hand side.) Thus Pmax depends 
on the temporal weighting w^t) directly through its shape factor c{^,} and in- 
directly via the selected shift fraction q ■ qfw,}. For q = 1, no overlap, (141) 
reduces to (E-l). 

When P s Pmax, L, is at its minimum value, and L-, must be greater than T; it can 
be w (see figures 5 and 6A). In this case, there is no quadratic frequency smoothing, 
and we have the situation studied in detail in references 9 and 12, and mentioned 
earlier in (126)-(128). At the other extreme, when P = 1, we have Blackman-Tukey 
processing with the generalization that the temporal weighting need not be 
rectangular; this case was considered in the previous section. The range of values of 
Lj/L, is shown in (E-2) and (E-3) to be very wide when BeT » 1, which is a usual 
practical case. 

More generally, for P in the range [1, PmiU], we can investigate the tradeoff 
between the amounts of temporal- and lag-weighting, for specified resolution Be 

and for specified weighting shapes of interest. Below, we consider the two cases of 
rectangular temporal weighting and Hanning temporal weighting. 

51 



TR 6459 

Rectangular Temporal Weighting 

It was shown earlier in figure 15 that rectangular temporal weighting with no 
overlap results in small values for the normalized quality ratio, whether the lag 
weighting is reshaped or not, provided that L2 is chosen somewhat smaller than L,. 
Now the question arises as to whether one should use any overlap, such as 50 
percent, with rectangular temporal weighting. 

We presume BeT » I. For no overlap, the estimate of first-stage correlation 
R^T) at T = LX/2 has only half the degrees of freedom as the estimate at T = 0. But 
with 50 percent overlap, the degrees of freedom for estimation at T = L1/2 are about 
the same as at T - 0. This is why 50 percent overlap for rectangular temporal 
weighting appears attractive. 

However, for estimation of R|(T) at T > L1/2, we still do not get as many degrees 
of freedom as for Blackman-Tukey processing, because some data points never 
interact. For example, although at T = 3L,/4 we have doubled the degrees of 
freedom by using 50 percent overlap, we still have only about half of the number 
that are available at this T value via Blackman-Tukey processing. 

In order to ascertain quantitatively the merit of overlapping for rectangular 
temporal weighting, we have evaluated the normalized quality ratio (111) for lag 
reshaping to realize a desired effective weighting equal to Cl as given in (60) and 
(61) (reference 19, figure 12). That is, in (111), we use 

W.(T) 

W
2
(T)

  ' ♦TTT     
f0r      |T|

   " L2iLi       ' 
(142) '1' 

where ^(T) is given by (122). In addition, we need the third-order correlation (108), 
which is 

♦SCT.W) = f f1 " |T|
I/ 

|U|
)  

for    H + N < h 
(143) 

for rectangular temporal weighting. 

For the two cases of BeT ■ 100 and BeT = 1000, the normalized quality ratio has 
been evaluated for q ■ 1, .75, and .5, and plotted in figure 16. The explanation of 
the behavior of the curves is as follows: - 

q « 1     No Overlap 

If P = 1, then Lj « L, and it follows that for all |T| < L2, R^T) is estimated with 
virtually the same degrees of freedom as at T = 0, where we have the maximum 
degrees of freedom possible to estimate R^O). As P increases toward P^, then L, 
tends to L2. Now R^O) is still estimated with the full degrees of freedom, but R^T) 
for T # 0 is estimated with fewer degrees of freedom. For T near L2, the loss in 
degrees of freedom in estimation of R^T) is significant, and the variance increases. 
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Figure 16. Normalized Quality-Ratio for Overlapped Rectangular 
Temporal Weighting and Lag Reshaping to Cl 
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q = .5    50 Percent Overlap 

For Pal, there is no overlap and conditions are identical to those described 
above. For P = 2. the sudden increase in variance can be explained as follows: from 
(16), the first-stage estimate is 

VT) " I [/dt yoCOxJCt - T) *  fdt jrjCt) yj(t - T)J (144) 

In particular. 

^(0) |yo(t) /dt  l/jU)!2] 

dt x (t) 0(t) (145) 

where the overall weighting O(t) of x2(t) is depicted in figure 17. As shown, the 
overall weighting is very uneven, causing loss in stability. As P increases above 2, 
the uneveness of the overall weighting (for q ■ .5) occurs only towards the edges of 
the (0, T) interval, yielding a decrease of variance, since more data points tend to get 
the same overall weighting, insofar as their effect upon the estimation of R,(T) is 
concerned. However, at the same time, the effect of fewer degrees of freedom in 
estimation of R^T), for T values near Lg, becomes more pronounced as P increases 
and L, decreases; this is true even for the 50 percent overlap case being considered 
here. Eventually, this effect dominates, and the variance increases with P. 

3/2 

3/4 

O(t) 

x 
T 
3 

2T 
3 

Figure 17. Overall Weighting of x2(t) for q = .5, P = 2, Rectangular *,(!) 
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q * .75    25 Percent Overlap 

For any value of P > 1, the overall weighting O(t) is very jagged (as above), and 
the jaggedness does not decrease or concentrate near the edges as P increases. This is 
true for any overlap greater than 0 and less than 50 percent. 

In summary, for rectangular temporal weighting, the smallest values for the 
normalized quality ratio are realized by choosing q -1, no overlap, and making L, 
several times larger than L^ This conclusion about the ratio L^/L, is consistent with 
those reached earlier. 

Hanning Temporal Weighting 

The temporal weighting and associated correlation for this case are given by 
(116),(C-9),and(C-10): 

V" ■ (itj "s?(t7)       *>r    |t|  4     . 

(146) 

Evaluation of third-order correlation ^(T, \I) in (108) is rather tedious; the end 
result is given in (F-l) and (F-2). The procedure and program for the evaluation of 
the normalized quality ratio is given in appendix F. 

The normalized quality ratio for Hanning lag weighting and BeT = 100 is plotted 
in Figure 18 for several values of the shift fraction q. When q= 1, no overlap, the 
small values of the Hanning temporal weighting at its edges cannot be compensated 
for, by any choice of Lo/L,, and the variance remains at approximately twice the 
ideal value. For 50 percent overlap of the Hanning temporal weighting, q = 1/2, the 
situation is markedly improved, there being a value, L2/L, ■ .4, at which the excess 
variance is only 8 percent above ideal; this is reminiscent of the variance ratio for 
the case of no quadratic smoothing in reference 9, tables 5-7. When q is decreased to 
3/8 or 1/4 (62.5 and 75 percent overlap, respectively), virtually the ideal variance 
reduction can be achieved by choosing L2 ~ L,. 

In figure 19, the shift fraction q is kept at 3/8, while BeT is taken at both 100 and 
32. The smaller value of BeT leads to a slightly larger loss in performance because of 
more significant edge effects. However, even so, the normalized quality ratio does 
reach a very desirable level only 4 percent above ideal when L2 ~ 2L,. 
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Summary 

The possibilities and performance of a generalized spectral analysis technique 
employing temporal and lag weighting have been investigated in terms of the mean 
and variance of the spectral estimate. The only assumption required about the 
process under analysis, in so far as the mean is concerned, is that it be second-order 
stationary over the observation interval. We then were able to extract a simple 
expression for the effective window involving the temporal and lag windows. 

The possibility of doing lag reshaping to achieve desirable effective windows was 
considered in detail and found to be reasonable for a wide variety of windows with 
good side lobe behavior and decay rates. In particular, if rectangular temporal 
weighting is employed, its inherent poor side lobe structure can be corrected via 
proper lag weighting, in so far as the effective window is concerned. Strictly 
speaking, the closest side lobe cannot be eliminated; however, all the other side 
lobes can be suppressed. 

The effect of temporal and lag weighting on the variance of the spectral estimate 
was evaluated and compared with the ideal value for large BeT. For rectangular 
temporal weighting, it was found that small values of L/L, and no overlap led to 
values of the normalized quality ratio virtually equal to the best 
attainable by any spectral analysis technique. The comparison is made under the 
constraint that the effective frequency resolution Be is maintained the same for all 
techniques under consideration. On the other hand, if Manning temporal weighting 
is employed, overlapping must be used for maximum variance reduction and the 
length ratio L2/L, ought to be of the order of unity. 

Since Manning temporal weighting requires multiplication of each and every data 
segment (P pieces) and significant overlap (~ SO percent), whereas rectangular 
temporal weighting requires no multiplication and no overlap, the latter approach is 
a strong candidate for spectral analysis, particularly since excellent effective 
windows (low side lobes and rapid decay) and virtually ideal variance reduction can 
be achieved by proper lag weighting and choice of ratio U/L,. Investigation of 
other cases than those evaluated here can be achieved by appropriate modification 
of the program in appendix F. A major analytical task will be the evaluation of the 
third-order correlation (108), if temporal weighting w^t) is taken other than rec- 
tangular or Manning. 
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Comparison of Two Bandwidth Measures 

The effective bandwidth of narrowband window W0(f) was defined in (1) as 

e    jaf w^(f) (A-i) 

The half-power bandwidth, Bh, is defined as the solution of 

Wo(fo4Bh)      1 
VV (A.2) 

where it is assumed that window W0(f) is real, even about f0, and peaked at f0. Wr 
let WeVf) » W0(f + g; thus We(0 is even about f=0. 

The inverse Fourier transform of lowpass window We(f) is called the weighting 

we(T)  -  Jdf exp(i21ifT) We(f)    . 

We consider here the class of weightings given by 

(A-3) 

w (T) 
k>0 

cos HL.) for      T|  < L 

(A4) 

and zero otherwise, where {ak} are real and non-negative. This class includes 
rectangular, Hanning, Hamming, Blackman, and the optimal windows of Nuttall, 
reference 19. The Fourier transform of (A-4) yields lowpass window 

2Le ^       (-1)k % 
e e e      k>.0  (2L f)    - k e 

%(t 
2a0    for    n » 0 

a|   I  for    n / 0 
(A-3) 

A table of bandwidths Be and Bh and their ratio is given below for the window in 
(A-5). Although these bandwidths vary significantly for the different weightings, 
their ratio is much more stable. In fact, for the last four weightings listed, the ratio 
is constant within ± 1 percent. The weightings listed under C5, C3, Cl are those 
given in reference 19, figures 10,11, 12; the notation means 
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C5 

C3 

Cl 

continuous fifth derivative of weighting 

continuous third derivative of weighting 

continuous first derivative of weighting        fA-ö) 

Table A-l. Bandwidths for Various Weightings 

Weighting BeL. BhLe Be/Bh 

Rectangular 0.5000 0.6034 0.8287 
Manning 1.3333 1.0000 1.3333 

Hamming 1.2614 0.9109 1.3848 
Blackman 1.6415 1.1494 1.4281 

C5 2.2165 1.5371 1.4420 
C3 2.0478 1.4139 1.4483 
Cl 1.9544 1.3444 1.4537 
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Appendix B 

Some Lag Weighting and Lag Windowing Considerations 
For Discrete-Time Processing 

It is convenient here to define an equispaced unit-impulse train by the notation 

«.(b) -  E 6(b " na5    » a n (B-l) 

where the summation on n extends over ± <*>. 

For discrete time sampling at spacing At, it has been observed in (30) that 6,(0 
has period 1/At in f. Therefore lag window W2(f) could be confined to |f| < (2A,)-1 

with no loss in generality, in so far as its effects on G2(f) by means of (18) are 
concerned. In fact, for a general lag window W2(f) specified arbitrarily, the 
equivalent band limited lag window is 

W2(f) ' rect(Atf) w2(f) «1(f) 

(B-2) 

where we will utilize definitions 

1    for    |x|  <  1/2 

rect(x) 

0    otherwise 

,      Sinc(x) - lÜLtel   . 
irx 

(B-3) 

and where & denotes convolution. That is, W2(f) i* aliased into the band 
|f| < (2A,)-1, and only this band-limited portion is retained for tö^f). 

A way to demonstrate this mathematically ir  o note that the only values of lag 
weighting W2(T) that can affect R2(T) are the samples 

!(qAt)  »  Jdf exp(i2iTfqAt)   W2(f)     . (B-4) 

The band-limited lag weighting function that passes through all these specified 
values, for all q, is 

W2(T) » Ew2(q V sinc(r" ■q 

q \ t •(B-5) 

with corresponding Fourier transform 
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W2(f)  - At rect(&tf)   2  w2(qV  exP(-l2irfqA
t) (B-6) 

■ At rect(A f)   2  exp(-i2TrfqA )  J du exp(i2TruqAt)  W2(u) 
c "        q 

r-ct(Atf)     f du W2(u) At   £   expf-iZTrCf - u)qAtj 

* rect (Atf)    / du W2(u) 6 j (f - u) 

rect(Atf) w2(f) «! (f) (B-7) 

Relation (B-4) indicates how an arbitrarily specified W;(f) fixes the lag weights at 
the sample points. For the reverse problem, where sampled lag weights {w2(qAt)} 
are specified for all q, relation (B-6) gives an equivalent lag window, in particular 
the band-limited spectral window, which results in the same estimates K2(T) and 
G2(0- Notice that W2(f) is not uniquely specified by samples {w2(qAt)}; however, 
the band-limited W2(f), which realizes weights {w2(qA()} for all q, is unique and is 
given by (B-6). 

As a special case of the above, consider discrete frequency smoothing with 
frequency spacing Af = (MA,)-', where MA, is of the order of 2L,; i.e., from (38), 

w2(f) MA 1^ MA ^n 6  f - 
(B-8) 

where we set W2n = 0 for |n| > M/2 without loss of generality, in accordance with 
the observation above (B-2). Then lag weights (B-4), given now by 

w2(qAt)  * MA. 
2        W,    exp(i2Trnq/M) 

ln|<M/2      2n (B-9) 

will equivalently accomplish the same purpose. This last relation can be 
accomplished by an M-point FFT, where W2 tWi receive the same complex 
e> ponemial weighting in (B-9). 

't should be noted that the discrete function w2(qA,) in (B-9) has period M in q; 
this means that w^qA,) in (B-9) will increase in magnitude for M/2 < q < M. If Ä, 
is nonzero for |q{ > M/2, this lag weighting may cause a problem. One guaranteed 
way to avoid the problem is to choose M/2 larger than the nonzero extent, N,, of 
R,q. Physically, this means that the frequency spacing Af = (MA,)-', used in 
frequency smoothing (B-8), must be small enough so as not to miss any information 
in 0,(0- Coarse frequency spacing gives spurious results for G:(f). (It will also yield 
poor effective windows.) 

B-2 



TR 6459 

Since from (24), ft lq = 0 for q > N,, where N, is the number of time samples per 
segment, only a finite number of the general weights {w2(qAt)} in (B-4) affect K2q. 
Thus in example (B-8), although (B-9) has period M in q, only the values for 
|q| < N, are relevant to the effect on Rj«,; more generally, the values yielded by (B-4) 
for a general W2(f) are relevant only for |q| < N,, and only these need be evaluated 
and retained if we choose to process via the lag domain. 

Now let us consider the reverse problem, where lag weights {w2(qAt)} are 
specified for all q, and we wish to determine some allowable lag windows W2(f) that 
will realize the same estimates R2(T) and G2(f). but which take advantage of the fact 
that only w^qA,) foi |q| < N, must be realized. One obvious candidate is the band- 
limited lag weighting version 

W2(T)  -      Li     w2(qAt)   sinc/j^ - q 
Iql^j Vt        / (B-10) 

notice the limitation on q employed. The corresponding lag window is 

HI-, 

A second candidate is 

t 
W2(T)  . C2(T)   •     &m  (T) 

provided  that   M   >   IN,-!;   this  provision  guarantees   non-overlap  of  the 
displacements of ^2(T). Then 

Ä 
W2(f)  = ft2<« JUT   &li£)B   Z  W2n 6(f ■ «ET t       777— n \ t 

where 

MAt 

(B-13) 

W2n E Mr:Ä2 (filrH'«*(*),   ?M    
W2(<»At3  ^PC-iZimq/M) 

t \    t/ | q{<N1 

(B-14) 

from (B-ll). Notice that (B-13) has the form of discrete frequency smoothing in 
(B-8): {,B-\4) gives the area of each impulse needed in (B-13). Also notice from 
(B-14) that all these areas are zero for |n| > M/2; thus we have a finite sequence to 
apply in the frequency domain, which is equivalent to a specified finite set of lag 
weights. 

Equations (B-14) and (B-9) are complementary to each other. In fact, we can 
derive (B-9) from (B-14) as follows: from (B-14), 

W-    = rr rectf .7)   V   v    exp(-i27Tnq/M)     , 2n   M     \MI L  q   *■ (B.15) 

•/i 
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where 

w    = 
q 

w2(qAt)     for     |q|  < Mj 

0    otherwise 
(B-16) 

Then 

£     W2n exp(i2irnp/M)  «       V      exp(i2Trnp/M) i rect(j)2   w    exp(-i2irnq/M) 
a JI/2 \n\sM/2 

H^h       E      Tect(vi) exp(i2Trn(p - q)/M) 
Q    q M   na/2       w 

where 

(M) 

T:   r(M) _r rw i^ - w • i 
Y ^ P_<*    p     p 

1    for   p ■ 0, ^ M, ^ 2M, 

0   otherwise 

(M) 

Nowif M>2N,-1 (as assumed above (B-13)), then 

T,     W7TI exp(i21Tnp/M)   » w-CqA )    for     |q|   < N 
|n|<M/2    *n z      z i 

This is (B-9) for |q| < N,, which is the only range that affects R2q. 

(B-17) 

(B-18) 

(B-19) 
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Appendix C 

Correlation ^(T) of a General Class of 
Temporal Weightings 

The class of temporal weightings of interest here is given by a sum of complex 
exponentials: 

Mt)  -5Z   öL   exp( 12711071-)      for    |t|   < L./2    , 
1 k      K (C-l) 

and zero otherwise. We assume that the coefficient sequence has conjugate sym- 
metry 

a .   ■ ot*      for all k    ; 

then w.d) is real, and it follows that the (aperiodic) correlation 

(C-2) 

♦JCT)  »    fit w^t)  w^t - T) (C-3) 

is also real, in addition to being even about T = 0. 

Substitution of (C-l) in (C-3) yields 

L1/2 

♦JCT)  = S    ak am     / dt exp^irkt/Lj  -  i2inn(t - T)/L11 
km 

T-LJ/2 

for    0 <_ T  <. Lj (C-4) 

This can be evaluated and then extended to T < 0 by the use of the even character of 
1,(7); there follows 

VT)   s   (L1   -   M^   K +  2   ^    lak|2 005(2^/1^ 

m>k \ / 
for    |T|   < L1    ,        (C.5) 

and zero otherv :se. This is the general result for the correlation of weighting (C-l). 

We now specialize (C-5) to the case of real symmetric coefficients in (C-l): 

a      real , Ql v = ak     ' k -k        k (C6) 
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For all coefficients zero except for a , we have 

WjCt) » o0 for  |t|   < Lj/2    . 

^(T)  -  (t, -  |T|) OL20     for    |T|   < Lj    . K^ 

For all cotificients zero except for ag, a,, we have 

WjCt)  - a0 ♦ 2a1  cos^TTt/Lj)       for       |t|   <    1^2    , (C-9) 

♦JCT)   -  (Lj  -   |T|)  [OQ + 2aj COSCZTTT/LJ)] 

Ll 
*V   al(2a0 " "l5   sinCZTrltl/Lj)       for     |T|   < LJ    .   (C_10) 

For all coefficients zero except for a0. or,, a» we have 

w^t)   » a0 + 2ai cos(2Trt/L1)  + 2a2 cos(4Trt/L1)     for   |t |   < Lj/2     , 

(C-ll) 

♦JCT)  =   (Lj  -   |T|)|aJ ♦ 2a2 cosCrirt/LjD   ♦ 2«^ COSC^T/LJ)! 

+  67 [2al(6a0  - 3al  - *a2)   sinC27r|T|/L1) 

- o2(6o0 - Kxx^ * 3o2)   sin(4TT|T|/L1) 

for |T|  < Lj    . (c.12) 

For all coefficients zero except for a0,ax, a2, aj, we have 

w^t)   =  QIQ +  2a1 €05(2^1/1^   *  2a2 cos^nt/Lj   +  2a3 cos(6irt/L ) 

for     |t|   < Lj/2     . (C-13) 
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♦JCT) * (Lj -  |T|) 

[22 2 2 1 a0 ♦  2a.  cosiZitT/l.) + 2o2 cosHirx/L-)  +  2o_ COSCöTTT/LJ) 

Ll   r 
^j- ^SajC^QQ - öaj  - 8a2 + 3a3)  ■ill(2t|T|/L1) 

- o2(30a0 - SOa-  ♦  15a2 ♦ 48a_)  sin(4ir |T I/Lj) 

+ 0.(200- - 45a    ♦ 72o2 - 10a3)   sinCöir |T I/Lj) 

for    |T|  < Lj    . (C-M) 

This last case includes all the weightings considered in reference 19, with the 
identification of coefficients as 

(C-15) 
o0 ' a0    ' 0k * Tak     ror      k > 0    • 

Then we can express the temporal weighting as 

«.(t)   =   E   ak 005(211^/1,)      for     |t|   < 1/2     . 
1 k>0 (C-IO) 

C-3/C-4 
Reverse Blank 
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Appendix D 

Derivation of Variance of Spectral Estimate 

Our starting point is (14). The integral on t is a Fourier transform of the product 
in (13), and can therefore be expressed as a convolution: 

Yp(f)  - X(f) •    W^f)  expU27rf(-^. ♦ ps| 

-  jdu X(f - u)  W^u) expf-i2TruU. * psjj   , 

where we used (46) and defined 

X(f)  •   fdt x(t)  exp(-i2Tift). 
' (D-2) 

Although the relations to follow could be derived in the time domain, it is more 
convenient to develop them in the frequency domain because of the frequent and 
useful occurrence of delta functions. 

X(f) is complex Gaussian for all f, since (D-2) is a linear transformation and we 
have assumed x(t) to be a complex Gaussian process, for the variance calculation to 
follow. Furthermore covariance 

Av{X(f1)  X*(f2)} »    //dtj dt2 xCtp  x*(t2)  exp(-i21rf1t1  + i2Trf2t2) 

*   jjdtj dt2 R(t1  - t2)  exp(-i2Trf1t1  +  i2Trf2t2) 

»   fj du dt2 R(u)  exp(-i2irf1(u + tj  ■•• i2Trf2t2) 

G(f1)  «(fj  - f2)     , 
(D-3) 

upon use of (43) and (45). When x(t) is a single-sided (analytic) complex process, 
there then follows for the fourth-order average, which will be needed later 
(reference 23), 

»v{X(f1)  X*(f2)  X(f3)  X*(f4)} 

= GCfj)  G(f3)[ö(f1  - f2)   6(f3 - f4)  ♦  öCfj   -  f4)   ö(f2  - f3)]      . 

(D-4) 

D-l 
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(When x(t) is a real process, there would be a third term in addition. However, even 
then, this term contributes only near f = 0; see reference 9, equations (A-4) - (A-8).) 

Upon use of (D-l), (14) becomes* 

A i P"1    er 
G.Cf)  - i r     //du dv X(f - u)  X*(f - v) 

p-0   ** 

. WjCu)  WJM   exp(-i21r(u - v)^ * pSJJ     . 

Then the average of the product of the first-stage spectral estimates is 
P-1 

Av^Cfj)   GjCf^}  « -7    £ ////dU dV dw dv 

XCfj - u)  X*(f1  - v)  X(f2 -  y)  X*(f2  - v>)  KjOO  W^Cv)  WjCu)  W*(v) 

.exp(-i2ir(u - v) (-^ ♦ pSJJ  exp(-i2Ti(u  - v)!-^- * qSJ)    . 

(D-7) 

Reference to (D-4) enables us to express the fourth-order average as 
G(fi  - u)  G(f2 - u) 

[«5 (u - v) 6(u -  v)  ♦  «(fj  - f2 ♦ v - Q)   «(fj  - f2 ♦ w - V)J 

Use of the first term    of (D-7) in (D-6) yields 

P-l T ■? 
4    £       f/du dp GCfj  - u) G(f2 - y)   IWjCu)!     IWjCOl 
P    p,q=0 

=   Jdu GCfj  - u)   IW^u)!2  •   /dp G(f2  -  u)   IW^M)!2 

- AvlGjCfj)}   • AvCGjC^)}     , (D,8) 

where we employed (45) in the last line. Moving this term to the left side of (D-6), 
and using the second term of (D-7), we obtain, for the covariance of the first-stage 
spectral estimates. 

•For more generality, we allow temporal weight W| and window W, 10 be complex in ihis appendix. 
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Cov{G  (f ). J (f )) - X      f     f [du dv G(f    - u)  G(f    - V) 
111 P      p.q-O'"' 

•WjCu)  W*(v) WjCv ♦ f2 - fj) W|(u ♦ f2 - fj)  expC-iZtrCu - v)   (p - q)S) 

- -7   23      / j da dß G(a)  6(0) WjCfj - a) ^(fj - B) 
P    p,q-0 

•   WjC^  -  B)  W|(f2 - a) exp(-i2ir(ß - a) (p - q)S) 

" "T    E /do G(o)  Wi(fl  _ a) Wl(f2 " a)  exP(i27ra(P " OS) 
P    p,q»0    I ' 

• ^    E     f1 " -y")     /d<» G(a)  WjCfj  - o)  W*(f2 - a)   exp(i2TTopS) 

=/j"da dB G(o)G(B)   ^(fj  - a)  W^fj  -  ß) WjC^ -  ß)  W|(f2  - o) 

[sin(TrPS(a -  ß))   j 
P sin(TrS(a -  ß))J (D-9) 

Here we have used the identities 

P-l 
exp(i2w(p . q)u)   » i    T     h  . l|ij exp(i2Trpu) 

1 

P      p,q=0 r p=i.p 

■[ 
sin(TrPu) 

12 

P  sin(7ru) QP 
Cu) (D-10) 

For f, * f2, (D-9) checks with reference 9, equation (A-9); more generally, it is 
equation D-2 of reference 9. We observe that if |f: - f,! is greater than the effective 
bandwidth of temporal window W,, (D-9) will be small since W^f, - cr) and 
W;(f2 - a) will then not overlap significantly on the a-scale. Also notice that 
spectrum G is still left under the integral sign; i.e., there are no assumptions yet on 
the character of the spectrum. 

We are now prepared to consider the second-stage spectral estimate u2(f) as given 
by (18): 

G2Cf)   = /df1 GjCfj)  W2(f - fj)     . (cu) 

Then 
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(f)   - AvJG2(f)j   •  /dfjjäjCfj)  - AvJGjCf^jj W2(f - fj)     , 
(D-12) 

and therefore (recall that W2 is real) the variance of the second-stage spectral 
estimate is 

Var|G2(f)j »  //dfj d^ Cov[^£i^ V^)! W2(f " fi) W2Cf " f2) 

^    r     f 1  - tyj jjda dß 6(«0  G(0)  exp(i21T(a -  B)pS) |T(£ - a.   f - ß) 

- JJda dß G(a)  G(ß). |Y(£ - a,  f - ß) |2 Qp(S(a  -  ß)) ,    ^.,3) 

where we used (D-9) and (D-10), interchanged integrals, and defined window 
convolution function 

Y(x,y)   =  fdu W,(u)  W.U - u) W*(y - u)     . 

Relation (D-13) is exact; it makes no presumption about the relative widths of the 
spectrum G and the windows W,, W2. The compact expression (D-13) involves the 
windows W,, W2 through the convolution function jr, and involves the shift S and 
number of pieces P through the periodic function Qp defined in (D-10). 

The window convolution function y in (D-14) realizes its peak value at x = 0, y = 0, 
and is rather small everywhere else, since the windows are virtually unimodal and 
rather narrow. In fact, a special case is the diagonal slice 

Y(x,x)  - Jdu WjOOlWjCx - u)|2 «   IW^x)!2   9   W2(x)  = We(x) 

(D-15) 

by reference to (51). Generally, y(x, y) is substantially nonzero only in the region 
Be, Be at the origin of x, y space. 

We now employ the assumption discussed in connection with approximation 
(103), namely, that spectrum G is relatively constant in the band of width Be about 
the frequency f of interest. Then the major contribution to the variance, (D-13), 
comes from the region near a = /J = f in o, /J space. There follows the approximation 
for the variance of the second -stage spectral estimate. 
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G2 

. JfdodB exp(i2Tr(o - ß)pS)|Y(f - o, f - P)|2 

(« j t,  i1 '?) //dx ** expCi2lTfy - X)PS) IYU. y) I2 

« G2(f)   ffdx dy |Y(X. y)|2 Qp(S(y - x))     , (D-16) 

where we used (D-10) again. 

We now simplify the double integral in (D-16); from the second line of (D-16) and 
from (D-14), 

D = ffdx dy exp(i2ir(y - x)pS) 1 j" du W2(u)  W^x - u)  W* (y - u)   2 

= ffdu dv W2(u)  W2(v)  Jdx exp(-i2TrxpS)  W^x - u)  W*(x - v)   2 

= JJdu dv W2(u)  W2(v)    IxjCpS, u - v)|2       t (D-17) 

where the complex ambiguity function of the temporal weight and window is 
defined as 

XJCT. v)  = fdf expUZTTft)  W^f * y)    W*(f - ^ 

. fdt exp(.i2nvt)  w^t ♦ 1) w*(t - 1)    .        (D 18) 

Now let v = u - v in (D-17), and obtain a single integral for D: 

D"    Jdvlx^pS.  v)|2    Jdu W2(u)  W2(u - v) 

=   jdvlxjCpS.   v)|2 x2(0, v)     . (D.19) 

in terms of the ambiguity function X2 of the lag window and weight. Substitution of 
(D-I9) in the second line of (D-16) yields for the variance, 

Var{G2(f)} = G2(f) i    £    (l  . Mj fdvlx^pS, v) |2 x2(0.   v)     . 
P=1-pV / (D-20) 

An alternative, and perhaps more useful form, to (D-20) is attained as follows; 
the integral in (D-20) is expressible (by use of the definition (D-18) of the ambiguity 
function) as 

D-5 



TR 6459 

JdvlxjCpS.  v)|2   Jdt exp(-i2iTvt) w2(t) 

-  jdt w^Ct)    Jdv exp(-i2ffvt)|x1(pS,   v) 2 

(D-21) 

j(t + tj  - t2) 

Now we have the general result that 

jdv exp(-i21rvt)   [XJCT.   V)|2 

=    j dv exp(-i2Trvt)jjdt1 dt2 exp(-i2irv (tj  - t2)) 

//dti dt2 -i^i+1) l^i - i) l^ * l) «i^ -1) 

■ /dti -ifi+1) »l^i -1) «if * ^ +1) "if + ^ " i) 

a /du w^u ♦ l^j w|(u ♦ ^j^j w^u ♦ l^lj w^u + ^lj 

= ♦jf*.  T)     • (D-22) 

This is a third-order correlation of temporal weighting w,; see the footnote to (9). 
Thus (D-21) becomes 

[dt wht) Mt, pS)   , 
•^ 2 3 (D-23) 

and the variance in (D-20) becomes 

Var{G2(f)} - G2(f)  i    E      (1 - ty) {& w2(t)   ^(t,  pS) 
2 P p=l-P   V P /■' 2 3 (D-24) 

This "weighting-domain" version of the variance is very useful if third-order 
correlation ^ can be evaluated in closed form. 
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Appendix E 

Computational Considerations for Non-Overlapping Segments 

The curves in figure 15 for non-overlapping time segments are drawn over a 
continuum of values of I^/L,. However, if we were given a value of TBe, all values 
of Lj/L, may not be allowed. To develop this point, suppose that we pick an integer 
value for the number of pieces, P, and solve for L,Be ■ TBC/P according to (129). 
From figures 5 and 6, this dictates the value for L2BC, and hence a discrete value for 
Lj/L, is specified for each value of P. The number of pieces, P, can range from 1 to 

(E-l) 
B^Onin) .   f- * ^^-y    .     P^ - 2^^} Be T     , 

nsix l 

from figure 5. For BeT » 1, we have, for 

1 L2 1 P =   1.     I^j -  Be T.   BeL2  - j^-j . r   u 2c{     }B    T «  1 
2 1 2    e 

(E-2) 

and for 

P ■ Pmax'    BeLl ' 2^ •    B
e4 ^ Be T'    if ^ 2cUl}Be T ^ 1     " 

(E-3) 

Thus a very wide range of discrete values of Lj/L, is allowed when BeT » 1. 

The problem with this approach is that when BeL, is calculated, BeL2 must be 
solved for from the integral relation (52) (or approxir uely from figure 6). This 
tedious procedure can be circumvented by specifying L/L, instead; if desired, we 
could then use (52) to determine BgL,, and solve for P = BeT/(BeLl). However, P 
will not necessarily turn out to be an integer for a given fixed T; thus only a set of 
discrete values of Lj/L, are strictly legal. But if NQRpin (130) does not vary 
radically with L2/L,, this is not a significant limitation. And since it is simpler, we 
adopt it. In Appendix F, w« cannot avoid the calculation of BeL2 from a given BjL,. 

t-l/H-2 
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Appendix F 

Computational Considerations for Overlapping With 
Hanning Temporal Weighting 

The temporal weighting is given by (146). Substitution in (108) and evaluation of 
the integral yields 

VT' u)  " öA"   V0(,r " 0 " ^  *  E   ("I)11"1 v
k sin(k(a * 8)) 

1 j k=l 
for   a + ß i ir    , (F-l) 

where 

Li 4 

C    « cos (a)  » cos{^-j  ,    C    « cos(ß)  * cosh~) 

3        2 2 2     2 4        4 

Vl  = Ca Cß'4C    +  4C-  "   ^ 

V3 3 3Ca Cß'      V4S 12    • (F-2) 

The procedure for the evaluation of the normalized quality ratio follows. We 
specify a value for BeT and select a temporal weighting w^t) and a lag weighting 
W2(T). We then evaluate shape factor c{f,} from (64) or table 2, and select a shift 
fraction q = q {w,} according to (139). We then solve (141) for Pmax, and allow P to 
take integer values in the range 1 < P < Pmax. B(.Ll can then be evaluated from 
(140)as 

B    T 
B L    = 
el       IMP-Dq ^ 

for each integer value of P. We then solve (52) in the form 

^-i- = T-    fdT 4 W ♦?  ^   '   fdx «JCLiX)   ^(L.x)     . BeLl      Ll    J 2 1 J 2    111 (F.4) 

for the ratio Lj/L,. w^I^x) is a function of Lj/L,, while ^(LjX) is independent of 
L, and L2. Next we compute quality ratio (109) in the form 
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Q ■ 7    t     (l - tyj** W2(L1X5  Li*3CLix. Pq Li) (F-5) 

where we let T ■ l^x and used (139). The quantity w^x) is a function of only 
I^/L,, while the remaining quantity in the integrand of (F-5) is independent of L, 
and L2. Finally, we multiply (F-5) by BeT according to (110) in order to determine 
the normalized quality ratio. 

To reduce computation time, we take advantage of various properties of the 
functions involved. First, since ^(T, H) is even in T and M (see (108)), and w2 is even, 
we express (F-5) as 

Q - T ^ ek(l - J) /^ dx w^^x)   l^ilf,  qk 4) 
P-l 

«kl1 " f) J      ^ W2(L1X)   Ll*3aiX'  * h5      ' 
(F-6* 

where 

ek 

!l/2    for    k » O'J 

1        for    k >. 1) (F-7) 

Also, from (F-l) and (F-2), we have normalized form 

J^CLJ   a,   Ljb)  . i- V Tr(l  - a - b)   *   T    t-D*'1 V^ sinCkTrCa ♦ b)] > 

for 0 <. a,      0 <. b,       a ♦ b <. 1    , (F-8) 

where now 

C    » cos(iTa),    C„  ■ cos{irb) 

(F-9) 

and {Vk}^ are still as given in (F-2). 

Since L^l^x, pqL,) in (F-6) is zero if x + qk > 1, we can limit the sum on k in 
(F-6) to k,,, = min (P-l, 1/q), and we need to evaluate the integral on x in (F-6) 
only up to Xm = min (Lj/L,, 1 - qk). The number of x intervals needed in (F-6) is 
about 16 with the Trapezoidal rule for integration. These features are incorporated 
in the program listing below. 
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1 ! 
Id 
20 
30 
40 
50 
60 
70 
80 
90 
100 
lie 
120 
130 
140 
150 
160 
179 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
328 
330 
340 
350 
360 
370 
380 
390 
400 

29 ft.    H.    NUTTFILL MfiY   1981, 
B*   T 
HflNNIHG   TEM»OftflL-WElGHTING   Ml;    TftBLE   2 
62.5r;  OVERLAP   FOR   Wi;   O'QIOl 
Ptn*x;   EC.    141 

q < w 1 >   » " ; Q1 

LI; 
LI; 

EQ. 140 
SOLUTION OF EQ. 5i 

NUSC TECHNICfiL REPORT 6459, 
Bet»100 
Cl-1/6+35' <48*PIA2> 
Ql«3/8 
Pm«l-»-";2»Cl*B»t-l>/'Ql 
PRINT "Bt T ■";B«t,"q 
PRINT 
COM T1,T2,T3,T4 
T2»2»PI 
T3-1/3 
T4-1/T2 
FOR P«l TO Pi» 
B»l l»Btt''<l + (P-l)*Ql>      ! B« 
L211=FHL211■B«ll,Ci ■       ! L2. 
T5».5*PI/L211 
Ki»»MIN<P-l, 1/Q1) 
S».5»FNInt<a,L211,T5) 
FOR K-l TO Km 
S»S-Kl-K/P>«FNIrU(Ql*K,L21 l,T5) 
NEXT K 
Q-4/'P*S 
PRINT P,L21l,Q»B«t 
NEXT P 
END 

DEF FNL21 KBe) 1,C1>        ! SOLVE EQ. 52 FOR L2'L1 
Eps»B«U-.5'Cl 
Xl-4/'C3»B»l l> 
IF B«11<10 THEN Xl".603246'SQRvEp$>-EpS''<6*12*Eps ' 
X2»X1»1.037 
F1»FNF<X1,B«1l> 
F2«FNF^X2,B«l1) 
IF   flBS<F2-Fn<lE-6   THEN   330 
T-X2 
X2»<F2»X1-F1*X2>.'<F2-F1) 
X1»T 
F1-F2 
GOTO 310 
RETURN X2 
FNEND 
! 
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410 DEF   FNF(L211,B«1l>        !   RIGHT   SIDE   -   LEFT   SIDE   OF  EQ.    F-4 
429 COM Tl 
430 Xtn«MINCllL2n) 
440 T1«.5*PI/L2U 
450 N-16 
460 D»l=Xm-N 
470 F-.5 
480 FOR K«l TO N-l 
490 F»F*FNG(K»D»1) 
500 NEXT K 
510 RETURN 2*D#1»F-l/B«ll 
520 FNEND 
530 ! 
540 DEF FNG<X) ! (M2<Ll«X>»Phi 1<LI#X> >''2 
550 COM T1,T2,T3,T4 
560 P-T2»X 
570 G"<1-X)*<2+C0S<P))«T3+T4*SIN<P> 
580 U2«C0S<T1#X>Ä2 I   HflNNINi:   LAG-WEIGHTIHG   W2 
590 RETURN   <U2*G>A2 
600 FNEND 
610 ! 
620 DEF FNIm<Qk,L21 1,T5;'       ! INTEGRAL OF EQ. F-5 
630 . Xm=MIN<L211,1-Qk; 
640 D«l=Xm/16 
650 S-.5*FNPhi3<0lQk) 
660 FOR J-l TO 15 
670 X-D«1*J 
680 S»S+C0S<T5*X)'4*FHPhi3<X,Qk) 
690 NEXT J 
700 RETURN 0*1*S 
710 FNEND 
720 ! 
730 DEF FNPhiSffl.B)  ! Ll*PHI3'r LI *fl, L1 *B> for fl>«0, E *0: EQ. F-3 
740 IF fl+B>»l THEN RETURN 0 
750 flb-PI*<fi*B) 
760 C»»COS<PI*fl) 
770 Cb»COS<:?I*B> 
780 C«2-C«~2 
790 Cb2-Cb^2 
800 S-C«24-Cb2 
810 V0».375-S*4#Ci2*Cb2+C*2-2+Cb2'2 
820 Vl»C*»Cb*<4»S-l> 
830 V2—.25+.5*S+C*2»Cb2 
840 V3-C«*Cb/3 
850 S»Vl»SIN<flb)-V2»SIN<:2»flb>+V3*SIN<3*l:ib ' -. 03125*SIr,' 4-rMb^ 
860 Llphi3«4/<9»PI>*<.V0»<PI-flb>+S; 
870 RETURN Llphi3 
880 FNEND 
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Two-Channel Linear- 
Predictive Spectral 
Analysis; Program 

For the HP 9845 
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Two-Channel Linear-Predictive Spectral Analysis; 
Program for the HP 9845 Desk Calculator 

Introduction 

Spectral analysis of short data segments by the standard FFT procedure is not a 
viable approach; unstable and/or coarse estimates of the spectra result. An at- 
tractive technique in this case is linear-predictive spectral analysis, both for the 
single-channel as well as the multiple-channel cases. See references 1-9, particularly 
references 7-9 which derive and give Fortran programs for a multiple-channel 
linear-predictive spectral analysis technique that is a generalization of Burg's 
technique for the single-channel case (reference 1). 

The purpose of this report is twofold: first, we translate the Fortran program in 
reference 9 into Basic for use on the Hewlett-Packard HP 9845 Desk Calculator, 
and in the process, also make some minor improvements and modifications to the 
format and printout statements. We also limit consideration to the two-channel case 
and thereby take advantage of some simplifications in computing possible for this 
special case. Second, we apply the program to a pair of stationary processes, one of 
which has pure tones that are not present in the other process. In this manner, we 
point out a possibly deleterious effect on the auto-spectral estimates and the 
coherence estimate, and indicate a method for circumventing some of the difficulty. 
As a byproduct, a philosophy for multichannel spectral analysis is suggested for 
further consideration. 
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Use of Program For Spectral Analysis 

In appendix A, the listing for the two-channel linear-predictive spectral analysis 
technique is presented. Inputs required of the user are the following: 

N Number of data points in each process 
Pmax      Maximum order of predictive filter to be considered 
Nfft       Size of FFT to be used in spectral computation. (1) 

In addition to these integer inputs, the user must modify the subroutine 
SUB Data (N,X(*)) to accommodate and read in his particular two-channel data. 
All data are presumed real. 

The program computes the (sample) means of each of the two processes and 
subtracts the means from the data. (Some possible ramifications of this procedure 
are considered in reference 6, appendix B; in addition, the effect of choosing too 
small an FFT size, Nfft, is discussed in reference 6.) Next, the covariance matrix (at 
zero delay) of the input data is computed, and the Akaike Information Criterion 
(AIC, reference 8, pages 42-44) is evaluated and used to select the integer 

Pbest       Best order of predictive filter to use. (2) 

The forward and backward partial correlation coefficients (references 7-9) are 
evaluated through order Pmax, as well as the forward predictive filter coefficients 
for Pbest. The normalized correlation matrices are computed through Pmax (ex- 
trapolated values beyond Pbest) and the spectral density matrix is computed (via an 
FFT) from zero to Nyquist frequency, fN ■ (2A)-1, where A is the time-sampling 
increment of the processes. A partial check on the adequacy of the FFT size, Nfft, is 
afforded by a printout of the areas under the spectral estimates and comparison 
with the (sample) covariances of the input data. Finally, the inverse FFT of the 
spectral estimate gives the aliased normalized correlation matrices; the motivation 
and equations for this approach are given in reference 9. 

A sample printout for a short data sequence (20 data points in each process) is 
given after the program listing in appendix A, as a test or check case on a user- 
written program. Also, plots of the corresponding auto-spectral estimates and the 
coherence estimates are given there for completeness, although this example has no 
real physical significance. 

Timing Results 

Execution times for the five major subroutines. 

Pec Partial correlation coefficients 
Pfc Predictive filter coefficients 

Peftf Predictive error filter transfer function 
Sdm Spectral density matrix 
Acm Aliased correlation matrices, (3) 



are given in tables 1-5 below, for the HP 9845B Desk Calculator equipped with the 
Fast Processor Upgrade Kit. Only those variables utilized in each subroutine are 
considered in these tables, since execution time is independent of the other 
variables; for example, the execution time of subroutine Pec does not depend on 
Pbest. 

Table 1. Execution Times for Subroutine Pec 

N Pmax Seconds 
20 6 1.9 
50 10 5.4 

100 5 4.7 
100 10 9.5 
100 15 14.1 

1000 47 404.2 

Table 2. Execution Times for Subroutine Pfc 

Pmax Pbest Seconds 
5 1 .09 

10 1 .15 
6 4 .24 

15 5 .62 
15 11 1.41 
47 12 4.06 

Table 3. Execution Times for Subroutine Peftf 

Pbest Nfft Seconds 
4 256 17.5 

11 256 17.8 
1 512 32.0 
5 512 32.8 
1 1024 63.9 

11 1024 66.6 

Table 4. Execution Times for Subroutine Sdm 

Nfft      Seconds 

256 
512 

1024 

8.9 
17.7 
35.3 



Table 5. Execution Times for Subroutine Acm 

Nfft Seconds 
256 9.8 
512 18.6 

1024 37.7 

From these tables, we are able to extract the following fairly accurate rules of 
thumb: the execution time of 

Pec is linearly dependent on N and Pmax 
Pfc is linearly dependent on Pmax and Pbest 
Peftf is linearly dependent on Nfft, but is essentially independent of Pbest 
Sdm is linearly dependent on Nfft 
Acm is linearly dependent on Nfft. (4) 

These rules allow extrapolation to other cases of interest to the user. The execution 
times of the FFT itself are given in table 6. 

Table 6. Execution Times for Subroutine FftlO 

Nfft Seconds 
128 2.6 
256 4.5 
512 8.4 

1024 17.1 

If the user is intcested only in obtaining the predictive niter coefficients (for 
example, to do time domain prediction and signal processing), these results are 
available immediately after execution of subroutine Pfc. There is then no need to 
resort to the frequency domain routines that follow Pfc; in this manner, execution 
time and storage can be significantly reduced. An additional reduction in execution 
time is available by declaring all the loop counters in a subroutine to be INTEGER. 
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Application to Processes With Tones 

Our first example is the two-channel case given numerically by the sample values 
in reference 7, page 17; reference 8, page K-12; and in reference 9, page D-18. The 
analytic expression for the autoregression is 

x,(k) - .85 x,(k-l) - .75 x2(k-l) + w^k) 
x2(k) « .65 x,(k-l) + .55 XjCk-l) + w2(k) (5) 

where {w^k)} and {w2(k)} are uniformly distributed, independent white noise 
processes with zero means and variances 1/12. General filter and spectral relations 
for moving-average and autoregressive processes are given in appendix B; these 
general relations are then specialized to this particular numerical example. It is 
shown in (B-31) et seq. that the auto spectrum of process {x^k)} has/our poles and 
three zeros in the finite z-plane, even though the two-channel recursion, (5), is only 
first-order regressive. 

Generally, for a two-channel P-th order regression and independent white ex- 
citations (i.e., Ek « 0 for k > P, Fk - I <5kof and Q(z) « AI in (B-18)), the auto- and 
cross-spectra of the processes each possess 4P poles and 3P zeros in the finite z- 
plane (of which P zeros occur at the origin). This is in contrast 'o the single-channel 
case, where IP poles (and a P-th order zero only at the origin) can occur. This in- 
creased generality can be anticipated by the observation that whereas a single- 
channel approximation requires estimation of only P parameters, an M-channel 
approximation requires estimation of M2P parameters (4P for the two-channel case 
M = 2). Of course, for a fixed number, N, of data points from each process, the 
estimation of an increased number of parameters can only be done with increased 
variance; this is a manifestation of the tradeoff between resolution and stability that 
accompanies all spectral analysis techniques. 

The first-order forward partial correlation coefficient for two-channel process (5) 
is 

Aj'^tn») 
.85 -.75 

.65 .55 
(6) 

and all other higher-order coefficients are zero. The exact auto spectrum of the first 
process, (x^k)}, is shown (in dB) in figure 1A; the auto spectrum of the second 
process, {x2(k)}, is shown in figure IB; the magnitude-squared coherence is 
displayed in figure 1C; and the argument of the complex coherence or cross spec- 
trum is depicted in figure ID. There is seen to be a strong narrowband component at 
approximately one-fourth of the Nyquist frequency fN ■ (2A)-1, where A is the time- 
sampling increment for the two-channel process (5). This leads to a peak magnitude- 
squared coherence value of .999013 at 2fA = .2459. 

The results of applying the two-channel spectral analysis program in appendix A 
to the numerical data cited above, with N= 100, are shown in figure 2, where the 
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four parts of this figure correspond directly to those of figure 1. Pbest turns out to 
be equal to the correct value 1, and the spectral estimates are all quite good. In fact, 
the estimated magnitude-squared coherence reaches a peak value of .999745 versus 
the true value of .999013. 

The covariance matrix of the process generated by (5) is (reference 8, page 18, 
after scaling by variance l/W) 

R0(true) 
2.095      0.405 

0.405      1.804 J 
(7) 

The corresponding matrix estimate yielded by the program here, based on the 
particular N = 100 data values cited above, is 

4.62 

..916 

.916 

3.80 
forN - 100; (8) 

these values are approximately 2.2 times larger than (7), due to the fact that (5) is a 
narrowband process and the particular 100 pairs of samples used in the spectral 
estimates happen to lie on a local peak of the instantaneous waveforms. Although 
the local estimates of the absolute power levels are off considerably, the estimate of 
the forward partial correlation coefficient is very good; we find, instead of (6), 

Aj" 
r.872        -.770 

634 .560 
forN-100. (9) 

Next we add a pure tone only to the second process {x2(k)} at a frequency equal to 
0.6 of the Nyquist frequency, i.e., at 0.6fN. The power in the tone is 1/512, i.e., 32.9 
dB below the average power, 3.80, in this panicular segment of autoregressive 
process {x2(k)}; see (8). The resultant spectral estimates are shown in figure 3; they 
are virtually identical to figure 2. The only inadequacy of figure 3 is that the 
autospectral estimate in figure 3B gives no indication of the added tone; of course, 
there should ideally be no indication of the tone in figure 3 A for the auto spectrum 
of {XjCk)}. The value of Pbest was again 1, as determined by the AIC. 

When the tonal power in the second process is increased to -26.9 dB, Pbest in- 
creases to 4 (see figure 4) and there are humps in both auto-spectral estimates near 
the tone frequency 0.6fN. The coherence estimates (magnitude and argument) are 
significantly perturbed in a considerable neighborhood of 0.6fN; this broad 
frequency-perturbation width is due to a small value of Pbest having been selected 
by the AIC. 

Increasing the tonal power to -20.8 dB results in the estimates depicted in figure 
5. Now there is a considerable indication of the tonal power in figure 5B; however, 
there is also an undesirable indication in figure 5A at frequency 0.6fN in the auto- 
spectral estimate for process (x^k)}. This "feed-across" is due to the fact that we 
are working with only N = 100 data samples of each process; with this small a data 
set, the "best" two-channel linear-prediction is misled into an erroneous indication. 
It is important to observe at this point that any auto-spectral estimate based on 
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samples of process {x^k)} alone would not give this tonal indication, since the tone 
is not present in this process. 

The coherence estimates in figure 5 fare no better, even though Pbest ■ 8 now. A 
large magnitude-squared coherence value of 0.85 is yielded at frequency 0.6fN. The 
progression towards poorer behavior is also present in figure 6, which employs a 
tonal power of -14.8 dB relative to the sample power in {x2(k)}. Now the undesired 
peak magnitude-squared coherence estimate is 0.9. A tonal power of -8.8 dB (figure 
7) yields a near-unity magnitude-squared coherence estimate at 0.6fN, and a very 
substantial tonal indication in the auto spectrum of {x,(k)}, figure 7A. 

The situation is markedly improved if more data samples are available. When N 
is increased to 1000, and data are generated via (5) as before, the sample covariance 
for the particular data set generated is 

Ro 

2.60 .514 

.514      2.27 J 
for N-1000. (10) 

for no tone present. When a tone is added to process {x2(k)}, with strength -24.6 dB 
relative to the sample power, 2.27, of the second process, the resultant spectral 
estimates are as displayed in figure 8. There is a slight hump at 0.6fN in figure 8B, 
and a near-zero coherence estimate at this frequency. Recall that the ideal 
characteristics would be identical to figure 1 except for an impulse in figure 8B at 
0.6fN and a very sharp null in the magnitude-squared coherence at 0.6fN. 

The results in figure 8 were achieved by taking Pmax « 8, for which the AIC 
indicated Pbest = 8 for this particular data set. However, the AIC is a very flat 
function of filter order P in this range, and it is difficult to justify a particular value 
of P as "best". Some additional information about the autoregressive portion of 
the observed process, such as a limit on P, could be useful; for example, when we 
specified Pmax as 1, the results were very similar to figure 1. There was virtually no 
indication of the tone in any of the spectral estimates, even though it was in the 
{x2(k)} data at a relative level of -24.6 dB with respect to the sample power, 2.27, of 
the second autoregressive component. In fact, the estimated first partial correlation 
coefficient was 

A«1» 
.8543    -.7394 

.6578       .5415 
for N= 1000, (11) 

which is very close to the true value, (6). 

Results for the spectral estimates when the tonal power is increased to -18.6 dB, 
-12.6 dB, -6.6 dB, and -0.6 dB are given in figures 9, 10, 11, and 12, respectively, 
all corresponding to Pmax ■ 8 and Pbest - 8. Even for the nearly 0 dB case in 
figure 12, there is virtually no indication in auto-spectral estimate 12A of the 
strong tonal in process {x2(k)}, figure 12B. The magnitude-squared coherence 
estimate in figure 12C appears to have developed a couple of zeros and poles near 
the frequency f = 0.6fN, where the strong tone is located; recall that we have 
4P = 32 poles available in the approximation for Pbest = 8. Typically, it has been 
observed that a strong tonal present in only one process manifests itself in the 

12 
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coherence estimate as a sharp spike at the tone frequency. The change in argument 
in figure 12D in the neighborhood of this frequency can serve as an indicator of the 
number of poles and zeros clustered there. 

When Pmax was increased to 47, the AIC yielded Pbest - 25 for these last four 
figures. However, the spectral estimates for Pbest ■ 25 proved to be too spiky and 
erratic. Also the selection of Pbest at 25 is rather tenuous, as figure 13 indicates; this 
is a plot of the AIC versus filter order P in the range (1,47). Although the absolute 
minimum occurs at P = 25, there are significant drops in the curve at P = 4, 6, and 
8. Selection of P at one of these significant drops appears to be a promising ap- 
proach, instead of using the absolute minimum of the curve. In addition, the 
flatness of the curve is brought out by observing that the range of values of AIC is 
limited to (-4.80, -4.73) for P in the wide range from 10 to 47. Thus, the local minor 
drops and rises in the AIC curves are not significant; selection of values of P 
corresponding to significant decreases seems to be a viable approach. 
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Figure 13. Akaike Information Criterion for N ■ 1000, Tone Power = -12.6 dB 

The last example we consider is a two-channel process of N = 64 data points, 
composed of several tones, some of which are at common frequencies, and some of 
which are not; this example was supplied by S. L. Marple (reference 10). In par- 
ticular, process {x^k)} has two strong tones at f = 0.4fN and 0.5fN, and a weaker 
tone (-20 dB) at f * 0.2fN, in addition to some low level, colored background noise. 
The other process has two strong tones at f « 0.4fN and 0.8fN, and a weaker tone 
(-20 dB) at f a 0.2fN. Thus the tonal frequencies common to both processes are 
0.2fN and 0.4fN, whereas the uncommon frequencies are 0.5fN and 0.8fN. The two 
auto-spectral estimates of each process (obtained via the single-channel, forward- 
backward averaging technique of reference 4) are displayed in figure 14 for 
prediction length P = 12 (24 poles for each spectral estimate). There is, of course, 
no cross-feed at frequencies 0.5fN and 0.8fN. 

The spectral estimates of the same two-channel data (obtained via the program in 
appendix A which includes coherence estimation) are given in figure 15. The value 
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of P used was 6, which allows for 24 poles in each spectral estimate. The low 
number of data points, N * 64, now allows some undesired cross-feed in figures 
15A and 15B at f ■ 0.<JfN and 0.5fN, respectively. This also shows up in the 
magnitude-squared coherence estimate as two very sharp spikes at these two 
frequencies, whereas the true coherence is zero at these two frequencies. This 
limited capability of the multi-channel linear predictive technique can be improved 
by utilizing larger data sets; N = 64 is too small a data size to accomplish a high 
quality result for a data set such as this with strong interfering tones. 

Fraquancy 

14A. Auto Spectrum of First Process 

i 
lOdB 

♦ 

I    / 
i 

\    / 

1 
Ff»qu«tncy N 

14B. Auto Spectrum of Second Process 

Figure 14. Auto-Spectral Estimates for Muititone Example, N = 64, P = 12 
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15A. Auto Spectrum of First Process 

15B. Auto Spectrum of Second Process 

15C. Magnitude-Squared Coherence 

^rMuancv "N 

15D. Argument of Complex Coherence 

Figure IS. Spectral Estimates for Multitone Example. N = 64, P = 6 
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Discussion and Conclusions 

A program for two-channel auto- and cross-spectral estimation has been 
presented and illustrated for cases including interfering tones. If the number of 
available points, N, is too small, some misleading estimates may be obtained 
because of cross-feed between the finite lengths of data from each channel. This 
cross-feed manifests itself as narrow spurious spikes in the spectral and coherence 
estimates. Choice of the appropriate value of filter order, P, is possible by ob- 
serving where the AIC undergoes significant negative jumps, rather than by using 
the absolute minimum of the curve. It can also be illuminating to overlay plots made 
with two (or more) different values of P, thereby obtaining different degrees of 
resolution and stability from the same data set. The recursive nature of the linear- 
predictive approach makes this practice easy to achieve. 

A more fundamental observation about spectral estimation in general is now 
developed. Suppose we are given finite data records of three stationary processes 
x(t), y(t), and z(t), and we wish tc estimate all the auto spectra and cross spectra 
involved. The Blackman and Tukey and weighted-FFT approaches evaluate the 
auto spectrum of each process separately. Thus, the spectrum of x(t) is estimated 
without interference from y(t) and z(t); the availability of the data records for y(t) 
and z(t) plays no part in the eventual auto-spectral estimate for x(t). Additionally, 
the cross-spectral estimate for processes x(t) and y(t) is independent of the available 
data on the z(t) process. Finally, the coherence estimate between two processes is 
independent of any additional data records for other (statistically related) processes. 

On the other hand, the generalization (in references 7-9) of Burg's single-channel 
linear-predictive spectral analysis approach to the multichannel case gives auto- 
spectral estimates of the x(t) process that are dependent on the available values of 
y(t) and z(t). Also, the cross-spectral estimate between x(t) and y(t) is dependent on 
the particular z(t) data available. This procedure can be poor for short data lengths 
if, for example, y(t) contains a strong tone at f0 that is not present in x(t) or z(t). 
Thus, estimates of spectra Gxx(f), Gxy(f), and Gu(f) all contain tonal indications at 
f0 that should not be there. These spurious tonal indications are due to cross-feed 
between the available finite data segments of the various processes. 

This raises the following questions: 

• Should the estimate of 0^,(0 be determined only from the available x(t) 
data record ? 

• Should the estimate of Gxy(f) be determined only from the available x(t) 
and y(t) data records ? 

• If coherence Cxy(f0) = 0, why use y(t) to estimate Gxx(f0) ? 

• If coherence C^f,,) = 1, why use the completely statistically dependent 
y(t) data to estimate GXJ((f()) ? 

This philosophy of discarding "irrelevant" data would be consistent with the 
Blackman and Tukey and FFT approaches. Carrying this philosophy on, we are led 
to the following: estimate G^Cf) solely from the x(t) data by some good single- 
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Channel linear-predictive technique, such as forward-and-backward averaging, 
coupled with an efficient way of inverting the relevant matrices (e.g., references 4 
and 5). Then estimate cross spectrum Gxy(0 or coherence C(f) directly, by some (yet 
unknown) linear predictive technique whose sole goal is linear prediction of x(t) 
from y(t) and vice versa, with no interest in or diversion from simultaneous 
estimation of Gxx(f) or Gyy(f)- By this means, we can concentrate on extracting all 
the relevant cross-spectral information with maximum stability and resolution. 
Other cross spectra of interest between particular pairs of available processes can be 
similarly obtained, one at a time. This procedure is currently under investigation. 
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Appendix A 

Program For Two-Channel Linear-Predictive Spectral Analysis 

The program listing below in Basic for the HP 9845B Desk Calculator is a 
translation and update of that given in references 7-9. A complete breakdown and 
explanation of the components and subroutines of the program are given in 
reference 8, and in reference 9, appendix D. 

Inputs required of the user are the integers listed in lines 20, 30,40; they are 

N Number of data points in each process; 
Pmax      Maximum order of predictive filter to be considered; 
Nfft        Size of FFT to be used in spectral analysis. 

In addition, the user must modify subroutine SUB Data(N,X(*)) in lines 5430-5490 
at the end of the program to read in his own particular two-channel data sets. Pbest 
can be forced to equal Pmax by setting Fac * 0 in SUB Pec. 

An explanation of the program output is given under equation (1) of the main text 
of this report. A sample printout for a short (N = 20) data sequence that can be 
used as a check case on the program is presented following the listing below. Sample 
plots of the auto-spectral estimates and the coherence estimates conclude the ap- 
pendix. 
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1* I 
2t 
M 
40 
50 
M 
70 
SO 
M 
100 
no 

130 
140 
150 

ire 
160 
190 
290 
210 
220 
230 
240 
250 
260 
270 
280 
2?0 
<*>,& 
300 
310 
320 
330 
340 
350 
360 
370 
300 
390 
400 
410 
420 
430 
440 
4*0 
460 
np(2 

470 
430 
490 
500 

PREDICTIVE SPECTPflL ^NftUSIS. TP 5501 
NUMBER OF DftTfl POINT: IN EUCH PROCESS 
MAXIMUM ORDER OF PREDICTIVE FILTEF 
SIZE OF FFT 

TMO-CHANNEL LINEAR 
N>20 • 
P(»I*A"4 ! 
Nfft."25c        ( 
OPTION BASE 1 
RED IM V i 2, N > , 2 ^ 2, N •, Ap (Pm » , 2, 2 ) , Bp : Pt>.* 
RED IM Rn(Pt»*x,2,£),ft'<:<e:Pii.*x >,X|l<Nfrt 

5729 

, VU'.Nff f 
RED IM Y12<Nfft •,X21'Nfft >,Y21<Nfrt>,X22<Nfft 

'. v 12 
N»ft 

►if f t) 

DIM y(2,ieee>.z<2, ieee>lAp(.23,2,2>.Bp' 25,2.2 ' 
DIM Rn<25,2,2>,A«c<e:25:','<ll<1024>,YIl< 1024>f;<l2' 1024' 
DIM Y12(1024),X2K1024),Y21<1024>,X22>1024;.r22'1024> 
DIM Av««2>,Ub«st<2,2),U<2.2;,V(2l2>,Ui ' 2, 2',Vi'^,2',A<2,2' 
DIM B(2,2>,P<2,2;',M«<2,2>,Mb^2.2>.Uc<2.2),Ud' 2.2 >.l>i«(2,2> 
PRINT "NUHBEP OF DATA POINTS IN EACH PROCESS H *";H 
PRINT "MAXIMUM ORDER OF PREDICTIVE FILTER Pi»»- •";Pr1.*> 
PRINT -SIZE OF FFT Nfft »"{Nffl 
PRINT 
CALL D»t»<N,Y<«)> 
PRINT "PROCESS NUMBER 1" 
FOR I«l TO N 
PRINT Y(1,I>; 
NEXT I 
PRINT LINO) 
PRINT "PROCESS NUMBER 2" 
FOR I-l TO N 
PRINT Y<:2, l>; 
NEXT I 
PRINT LlN(2) 
CALL Pec (N, P»*^, Y» «> l2<*>|Avt< ♦>, W*^ ♦ ' ,».b • ■, Wc ■» '. Wd1 • ', W« 
ic^*>,Pb»»t ,Ub«*t < «^Ui <*). Vi ■ ♦ ■. A' » •, B' ♦ >, Ap' ♦ . tp' » ■ ' 
PRINT "MEANS OF INPUT DATA (A^tv:" 
PRINT Aw«<l> 
PRINT Aw«<2> ' 
PRINT LINO) 
PRINT "COVARIANCE MATRIX OF INPUT DATA <*)•.*,*•:•) 
PRINT "AKAIKE INFORMATION CRITERION!" 
PRINT "  P        Aie<P>" 
IMAGE 3D,4<4X,M. 9DE> 
FOR P-0 TO Pm** 
PRINT USING 370;P,Aic(P) 
NEXT P 
PRINT LINU) 
PRINT "Pbtit 
PRINT LINU) 
PRINT "Ubt»t:" 
PRINT "FORWARD 
PRINT "  P        Ap«.l,l) Ap<2,l< Ap', 1,2> 
,2>" 
FOR P"l TO Pi»»x 
PRINT USING 370;P,Ap<P,l, l>p,Ap'P,2, l-'.Ap'P. 1.2 .Ap P.:.2' 
NEXT P 
PRINT LIN(l) 

♦ /, R ' » ) , U ■. » >, V 

•";Pb«»t 

",ub««t<») 
PARTIAL CORRELATION CüEFrIClfNTS! 

Apt.1, 1) Ap<2, 1 > 

Reproduced  from 
be" available „py 
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TR 6533 

910 PRINT "BflCKWflRD PflPTIflL COPPELftTlOM COEFP IC lEH'S:'• ■ 
5i0 PRINT "  P        Bp<ltl> Bp'i,!) Bp 1,2) 
Bp(2,2>" 

538 FOP P"l TO P«*x 
540 PRINT USING 370;P,Bp(P,I,I>,Bp>P, 2, 1>.Bp'P,1.2 ■,ßp'P,£,i> 
550 NEXT P 
360 PRINT LIN<J> 
370 IF Pb*it«ö THEN 890 
580 CALL Pfc<Pi»*x,Pb#*t ,R».*),RpO^,Bp<:* », W** ♦ »,Wb* *.', Wc ' ♦). Wd' ♦-', Rn( ♦ >, R 11, R22 
.R12> 
590 PRINT "FORWARD PREDICTIVE FILTER COEFFICIENT? FOR Pb#«t;" 
$00 PRINT ■  P        ftpU,!) ftp'2,t> Ap<l,2) 
Ap(2l2>

,' 
«10 FOR P-l TO Pbtit 
«20 PRINT   USING   370; P , flpCP, 1, 1 > , flp<P, 2. 1 > , Apt P, 1, 2,-, ft»'P, 2, 2) 
«30 NEXT  P . . 
640 PRINT  LINO) 
650 PRINT   "MORMftLIZED   CORRELATION  MATRICES   <Rrw:" 
660 PRINT   "DELAY AUTOU CR0S$21 C»0$812 

flUT022" 
670 PRINT   USING   370;0,P<1,I),R(2,1>,R<1, 2).R<2,2> 
680 FOR  P>1   TO  PMAX 
690 PRINT  USING  370; P, Rn<P, 1, 1 >, Rn<P, 2, 1 •, Rrv P, 1, 2 >, Rrv P, 2, 2;' 
700 NEXT  P 
710 PRINT   LINO) 
720 CALL   Ptftf (Pb«»t,Nfft,Ap<*),Xll<»),Yll(.#.,!<12^* ■.V12' ♦ ». X21 v ♦ •, Y21 ( ♦;, X22' 
♦),Y22<»)) 
730 CALL   SdnKNfft , Ubtst .♦), M*< ♦), Wb'»), Wc ♦'■, Wd< ♦.', W« ■♦•, Xl 1 >:♦-', .1 K#), X 12< •), 
Y12 (• >, X21 > ♦ ) , Y21« # ) , X22 <.*>, Y22 ■ ♦ <, S11, S22, S 12 > 
740 PRINT   "SPECTRAL   DENSITY  MATRi::  AND  COHERENCE,   FFCM   ZfKO   FREQUENCY   'BIN   I): 
M 

750 PRINT " BIN   AUTOU       AUT022    RE'CR0SS12>  IM<CR0SS12>   MAG SO COH 
ARGUMENT" 

760 IMAGE 3D,5(M.6DE, 1X>,I1.6DE 
770 FOR I"l TO 30 
7S0 L-I 
790 IF K16 THEN 840 
300 IF I>16 THEN. 838 
810 PRINT "»*#" 
820 GOTO 850 
830 L"I>Nfft-'2-29 
840 PRINT USING 760; L, XI UL) , X22a >, X12'L •,'''12> L> , v U < L ', V22<:L> 
850 NEXT I 
360 PRINT LINU) 
870 PRINT "TRAPECOIDAL SUMS OF SPECTRA:" 
860 PRINT Stl,S22,S12 
890 PRINT 
900 PRINT "COVARIANCES OF INPUT DATA:" 
910 PRINT R11,R22,R12 
920 PRINT LINU) 
930 CALL AcuKNfft ,Xllf*),X12<»\Y12<»),X21<»>, V21< •>,X22' - '. XI 1*1, >!22nil, X 1 ImO, 
X22M0/ 
940 Nl»Nfft*l 
950 N2»Nfft^2 
960 N22-N2«2 
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TR 6533 

?70 PRINT "«LlflSED NORMALIZED CORRELATION MATRICES:" 
986 PRINT "DELAY      AUTOll CROSSZl CR0SS12 
AUT022" 

9?0 PRINT USING 370; 0, XU <N22 >, X21 ■ I •, K21 • 1 *,'<22'^12 • 
1000 FOR l»l TO ?.7 
1010 L-I 
1020 IF K16 THEN 1070 
1030 IF I-16 THEN 1060 
1040 PRINT "»♦♦" 
10SO GOTO 1080 
1060 L-I«N2-29 
1070 PRINT USIHC 370; L, XI UN22*L:', X2KN1-L •, X2 1 a+L > . y22'.N2;*L ) 
1080 NEXT I 
1090 PRINT USING 370; H2-1, XI IMI , X2KH22> , X2UMW <, X22M1 
1100 PRINT USING 370;N2IX11M0,X2UN2>1>,X21':N£4-1 '.^^mO 
1110 PRINT LIN(2> 
1120 PRINTER IS 0 
1130 PRINT -AUTO SPECTRAL DENSITIES IN DB:" 
1140 PLOTTER IS "GRAPHICS" 
1130 GRAPHICS 
1160 SCALE 0,N2,-5,0 
1170 GRID N2/4, 1 
1180 PENUP 
1190 FOR 1-0 TO N2 
1200 PLOT I,LGT(X11<I*1)) 
1210 NEXT I 
1220 PENUP 
1230 FOR 1-0 TO N2 
1240 PLOT I,LGT<X22(I*1)) 
1290 NEXT I 
1260 PENUP 
1270 DUMP GRAPHICS 
1280 PRINT LINO) 
1290 PRINT "MAGNITUDE SQUARED COHERENCE AND ARGUMENT" 
1300 PLOTTER IS "GRAPHICS" 
1310 SCALE 0,N2.0,1 
1320 GRID N2-4,.25 
1330 PENUP 
1340 FOR 1-0 TO N2 
1350 PLOT I.YIKIM) 
1360 NEXT I 
1370 PENUP 
1380 SCALE 0,N2>-PI,PI 
1390 FOR 1-0 TO N2 
1400 PLOT I,V22CI*1) 
1410 NEXT I 
1420 PENUP 
1430 DUMP GRAPHICS 
1440 PRINT LIN(4> 
1430 PRINTER IS 16 
1460 END 
1470 ! 
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14Ö0 sUB   Pcc< N,Pt«4x,Y': # ), 2t »>, «M* • * '. W«' *>,!**<•*,Ui'*'> ,U4 
»'■,fli':<'»),Pb««t ,Ubttt (HOfUl <#), vl<»>,ftc»),B<*> ,H>p  * ■, Bp1'* ■ 
14510 I4-INT(1.9«S(3R(H>> 
ISdO IF  PM«X<-I«  THEN   1320 
1510 PRINT   "Put*;;   •"; P***; " IS   TOO  LrtPGE  FOR  N   -";N; 
1520 I*>I1IN(I*, Piitax) 
1530 F4C>3''N    i FAC>0  WOULD FORCE Pbtst EQUAt TO Pr,,» 
1540 MAT ftwt*ttUM<Y> 
1550 MftT flw»»flw«^<N) 
1560 Al-AutU) 
1570 H2*Av*<2> 
1580 FOR 1-1 TO N 
1590 Y<1,I)«Y<1,I)-fll 
1600 Y(2,I>-Y<2,I>-fl2 
1610 NEXT I 
1620 MAT Z-Y 
1630 CALL ftuto<:2,N-l,Y<#),Mc<»>) 
1640 CftLL fluto' 1, I, Vc«.,Wd'.* ■; 
1690 CALL Auto<N,NlY<*>,U*<«>> 
1660 NAT U««Uc*W* 
1670 HAT Ub»Uc*Wd 
1680 HAT R"Wb*U» 
1690 HAT R«ft'fN) 
1700 HAT U»R 
1710 HAT V-R 
4720 CALL Crp»»C2,N,Yt#),2<#),Wc<«)) 
1730 A1e(0)*LOC(DET<U>> 
1740 A1CM<n«Aic<0> 
1730 Pbtst>0 
1760 HAT Ub«tt-U 
1770 FOR P-l TO I» 
1780 HAT V("INV<V) 
1790 HAT Ud>V1*Ub 
1800 HAT Ub-Ud 
1810 HAT U<«INV(U> 
1820 HAT Ud-W* 
1030 HAT U*»Ud*Ui 
1840 HAT Uc»Wc»<.2) 
1850 CALL Sotv«<U*<*>lMb<*),Uc<*>,Ud<t sU«'*1» < 
1860 HAT A>Uc*V< 
1870 HAT Ud*TRN<Mc) 
1880 HAT B-Ud*Ui 
1890 Ap(P,l, 1>>AU, 1) 
1900 Ap(P,l,2>>A<l,2> 
1910 Ap<P,2ll)«A(2, 1> 
1920 Ap<P,2,2>-A(2,2) 
1930 Bp(P, 1, D-BU, 1) 
1940 Bp<P,l,2>-B(1.2> 
1950 Bp<P,2, t>>B<2,1) 
1960 Bp(Pl2,2)>Bf2,2) 
1970 HAT Ut-A*Ud 
1980 HAT U«U-W# 
1990 HAT Ut"B*Uc 
2000 HAT V-V-U« 

*> , W«'* >,R'* > ,U* •■ •, V< 

SEARCH LIMITED TO P •";I* 
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2010 R)c(P>"l,OGtDET(U.>)*F»c»P 
2020 IF Mc<^>>«Alc*<n THEN 20ä0 
2030 AiCMinaflic(P> 
2040 Pbf»t"P 
2090 MAT Ub«st-U 
2060 IF  P-I«   THEN  2220 
2070 L"P*1 
2080 FOR K«N TO L STEP -1 
2090 A1>V<1,K> 
2100 A2*y(2,K> 
2110 B1-ZC1.K-1> 
2120 B2«Z<2,K-1) 
2130 2(l,K)"Bl-B<l,l>«fll-BU,2)«fl2 
2140 Z(2,K)>B2-B(2, n»Al-B<2l 2 >«A2 
2150 Ya,k)"fll-fl<l,l>*Bl-fl<,l,2^B2 
2108 Y<2,K>-A2-A<2,1>*B1-A(2,2)*B2 
2170 NEXT K 
21S0 CALL fluio(P + 2,N,Y(*.,«*■:♦' ■ 
2190 CftLL fiutofP*l,N-lI2<»>,Wb(»)) 
2200 CALL Cro»»<P*2,NIY<»>,2<«>,We<»'> 
2210 NEXT P 
2220 Al>.S*^Ub«st( l,2)+Ub«*i'-2. 1>> 
2230 Ubttta,2>>Ub«st(2. 1>-At 
2240 3UBEN0 

2S<t 
R12> 
2270 
2280 
2290 
2300 
2310 
2320 
2330 
2340 
23S0 
2360 
2370 
2380 
2390 
2400 
2410 
2420 
2430 
2440 
2470 

SUB Pfc '. P«*.ilPbt«t ,R<* >, flpt ■♦>, B0< ♦-■ ,tJk * , kb' * . u.: ■ ♦ • ,Udi*>.Rn<*>lftl 1,1122, 

Pnd.l 
Rn(l, 1 
Rn<l,2 
Rna,2 
FOR P» 
Ucd, 1 
Uc(l,2 
Uc(2,1 
Uc(2,2 
FOR L 
Ib-P-L 
W»(l,i 
U4(l,2 
U«(2,1 
U«(2,2 
M«(l,1 
U«M,2 
U«(2,1 
U«<2.2 

l, n"flp<i,i, 
l^^-ApCl.l, 
2,l>"Ap<l,2, 
2,2)-ftpa,2, 
>2 TO Pbtst 
)"flptP,1,1 
!>>Ap(P,1,1 
>-Ap(P,2,1 
>-Ap<P,2,l 
1 TO P-l 

)»«p<P,l,l 
>««p(:P, 1,1 
)»flp^P,2,l 
^■flp''P,2,l 
>"flp<L,l,l 
'-flp' L. 1,2 
)"flp<L,2,1 
>«flp<:L,2,2 

n^Ap'. , 
2)*flp<P, 1,2  ~BfJ-    4U, 
1 )*Ap< P,2,2 >«Bp<ID, 
2>*«p''P,2,2 •♦Bpab, 

Bp lb. 
•p<lb, 

< ID, 

2,1 

2. 1 

d Irom Reproduced   jom 

best   available__c2£I 
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24iSe Wb< 1, l)"Bp(P. I, l>»«p<L, I, 1 '♦■p>P, l,Z'*fip'.L.2, 1 ■ 
2479 Wb<l,2)»Bp(P, 1, l>*flp<L, l,2)*BpiP, l,2>*ftp<>.,2,£ > 
2488 Wb<.2,l;-Bp<P,2, l>»flpa, I, n*Bp''P,2,2>»Hp' L,2, 1' 
2490 Mb<2,2>-Bp>;P,2, 1 ^RpCL, 1,2>*Bp(P,2,2>«*p* L. 2,2> 
2see Bp< ib, i, i )-BpUb. i, i )-ubc i, n 
2510 Bp<Ib.l,2>-Bp(Ib>l,2>-Ub(1.2) 
2S20 Bp< Ib.i, 1)«Bp< Zb,2,1>-Ubc2,1> 
2530 Bp(Ib,2.2>-Bp<Ib,2,2)-Ub(2.2> 
2540 Ap<L,l,l>-U«<l, 1) 
2530 Ap<L>l,2>>M«<l,2> 
2560 flp<L,2, 1)-W*<2, 1-' 
2570 flp<L,2,2>-U«<2,2) 
2580 Uda,n"U*(l( 1 )*Rn. Ib, 1, 1 >^U«< 1, 2>*Pn' Ib,2. 1> 
2590 Wd(l,2)«tU(l, l)*Rnab,l,2>-»UAa,2)*Rn' lb, 2, 2^ 
2680 Ud<2,l>*U4(2l l)»Pn(lb,1,t>*U«<al2}*Rn<Ibi2f1■ 
2610 Ud(2,2)«U«<2l n*Rn(Ib,l,2^U«<;2,2'>-*Pn<Ib,2,2' 
2620 HAT Uc-Wc+Ud 
2630 NEXT L 
2640 Rr)(P,l, l .-McU, U 
2650 RncP, l,2;-UcU,2' 
2660 Rn<P,2,1>-Wc(2,1> 
2670 Rn<P,2.2>>Uc<2.2; 
2680 NEXT P 
2690 FOR P>Pb«st*t TO PIUAA 
2700 MAT U4-2ER 
2710 POR L"l TO Pb*si 
2720 Ib-P-L 
2730 Ub(lll>"Ap<Ll 1,l)*Rn(Ib,lt1>«Ap<L,1,2 «Rn«Id,2,1 ' 
2740 Ub<l,2)"Bp(L, I, l)»Rn<Ibt i,2^flp'L, 1,2 ^Rnf lb, 2.2 • 
2750 UbC2, l>«flp<Ll2l l)*Pr^ lb, t , 1 >4'Ap<L, 2, 2>*Rn> lb. 2, 1 > 
2760 Mb(2>2>-np<Ll2, l>*Rn<Ib, l,2>*'Rp<L,2,2  «Rn' Ib.2.2' 
2770 HAT   U*>tU+Ub 
2780 NEXT  L 
2790 Rn(P,t,l>aUa<l,1) 
2800 Rn(P,1,2)"M*<1,2) 
2810 Rn<P,2,1)-W*(2, 1) 
2820 RruP,2,2)-W*(2,2) 
2830 NEXT P 
2840 RU-RU.n 
2850 R22"R(2,2) 
2860 R12>R(1,2) 
2870 T>SQR(R11*R22> 
2880 R(l,1>-R<2,2)-1 
2890 R(l,2>-R<2,l>-R12/T 
2900 FOR P«l TO P««x 
2910 RnkP,l,l>-Rn<P,1,U'Rll 
2920 Rn<P,l,2)"Rn<P,ll2)^T 
2930 Rr»<P,2,l)-Rn<P,2, D^T 
2940 Rn(P.2,2)>Rn<P,2,2^R22 
2950 NEXT P 
2960 SUBENO 
2970 ! 

^«Produced fro» 

^^•'^ToPy    Huf 
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2980     SUB  P»flft-Pb«it ,Hfft,flpC*'.Xll<*),yil' 
),Y22'.*)) 
2990     X1U1)-X22< t>*l 

FOR  L"l   TO  Pb«»t 
xna*i>"-flpa,i,i> 
X12<L*l>"-«pvL,l,2> 
x2ia*n"-flp<L,2, i) 
X22<L*l>"-flp<L,2,2) 

'l*'. ♦ ■,'' I** ♦ ■ »X211»-1, Y2J>*),X22« # 

3000 
3010 
3020 
3030 
3040 
3090 
3060 
3070 
3030 
3090 
3100 
3110 

NEXT 
CALL 
CALL 
CALL 
CALL 

Ffr, l0(Nfft,Xll<*),Yll<t)> 
FftlO<Nfft,Xl2t»>,Y12<»>^ 
FftlO<,N<'fl,X21(.»), Y2U»>) 
FftlO<Nffl,X22<»),Y22<*)> 

SUBENO 
! 

3120 SUB Sdi»'Nfft,Ub»»t<:«),M«<:#sMb<*NWC'♦'.Wd 
12t»>fX21<»:>,Y21<.*>,X22<*),Y22f#>,Sll,S22,312' 
3130 T«2'Nfft 
3140 S11-S22-312-0 
3150 J«Nfft/2*l 
3150 FOR L"l TO J 
3170 U«<1,1>-X22(L> 
3130 U«(l,2>—X12a> 
3190 U«<2<1>—X21(L> 
3200 U«<2I2>>X11(LJ 
3210 Uball>-y22(L> 
3220 Ub<:i,2>>-Y12(L) 
3230 Ub(2,n>-Y21(L> 
3240 Ub(2,2)-Y11(L> 
3290 TA-DET<U«>-DET(Ub) 
3260 Tb»W*<l, p*ub 1-2.2 )+W»< 2,2 ^ ♦lib' 1, 1 )-«*■ 1,2 ■ 
3270 TÄ-Tz-CTitTa^Tb^Tb) 
3280 MAT Uc-TRN(U«> 
3290 HAT Ud-Ubttt«Uc 
3300 MAT Uc-Ub*Wd 
3310 Tb>Mc(l,2>-Uc<2,1> 
3320 MAT uc»u«*Wd 
3330 MAT Ud-TRN(Ub) 
3340 MAT Ut-Ubtst*Ud 
3390 HAT Ud«Wb»U« 
3360 MAT Wc-Wc+Ud 
3370 Yll<L)»<We<l,2>Ä2*Tb«Tb>^<Wc(1.l)»«€'2,2" 
3380 Y22(L>»FNArg(Wc<l,2),Tb) 
3390 Xll^L)»T«*Uccl,1) 
3400 X22<L>>T«*Uc(2,2) 
3410 X12(L>>T4*Uc<l,2> 
3420 Y12<L)-T«*Tb 
3430 S11>S11>X11<L> 
3440 S22»$22*X22<L) 
3490 S12«S12«X12(L> 
3460 NEXT L 
3470 Sll-Sll-.9*<Xll(n*Xllf J>) 
3480 S22>S22-.9*<X22<1>*X22(J>> 
3490 S12>S12-.9*<X12<1>'*'X12(J>> 
3500 SUBEND 
3510 I 

» •. W« •. »), X11 > « > , Y1 1 < • ', X12 ^ »>, Y 

Mb' 1 '-W*'2,1>*Wb' 1,2> 

1 ^y^Subte copy. 
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3529 SUB   Rci»<Nfft ,X1U#>,X12<»),Y12<»S,X2U*>, rit..*), 
22*0) 
3530 N2>Nfft^2 
3540 N21-N2+1 
3530 N22*N2«2 
3560 FOR  L>1   TO  N2 
3570 X2ja>".5*Xll<L) 
3580 Y21(L>>.5*X22<L> 
3590 X2t<N2*L)«.5*Xll<N22-L> 
3600 Y21(N2>L)-.5*X22(N22-L> 
3610 NEXT  L 
3620 CAUL   PftlOCNfft,X21<#>lY21<*)> 
3630 T*>l/X2ia> 
3640 Tb«UY2t(t> 
3650 T-3QR<Ta*Tb> 
3660 XU<N22>*X22(N22>>1 
3670 FOR  L«2   TO  N2-1 
3600 Xll>H21+L)-X2UL •♦T* 
3690 X22(H21>L>>Y21(L>*Tb 
3700 NEXT  L 
3710 XllMt-X21(N2>*T« 
3720 X22Ml>Y21<N2>*Tb 
37i0 X11M0-X21(N21>*T« 
3740 X22M0«Y21(N21>*Tb 
3750 X21C1)-.S«X12<1>*T 
3760 Y21<1)«-.5»Y12<1>»T 
3770 FOR  L-2   TO  N2 
3780 X2ia>>X12a)*T 
3790 Y21(L)—Y12(L)»T 
3000 X21<N24-L>-Y21(N2«l.>>0 
3810 NEXT  L 
3020 X21(N21'-.S*X12(N21)*T 
3830» Y2UN21>"-.5*Y12(N21>*T 
3840 CAUL  FftlO<Nfrt,X2l<*>ly21(«>> 
3850 SUBENO 
3060 I 

. • ',^1 lMl,X22ml,Xl lmi3,X 
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3870 SUB Crot»<m,H2,fl<*.>,Bc),C'*>> 
3880 Sll-312>S21>S22-e 
3890 FOR K-Nl TO N2 
3908 rtl-flU.Kj 
3918 A2>A(2,K) 
3928 B1>B(1,K-1) 
3938 B2-B'2,K-r. 
3948 SU"SU*fll*Bl       ^ 
3950 S12-S12^A1«B2 
3968 S21-S2UA^*B1 
3970 S22-322+R2*B2 
3988 NEXT K 
3990 CU,l)-$tl 
4080 C<1,2)"S12 
4010 C(2I1>>S21 
4020 C<2,2>-S22 
4030 SUBEND 
4040 I 

4050 SUB fluto>'Nl,N2,A(*>,B(*>> 
4060 S11-S12-S22-0 
4070 FOR K-Mi TO N2 
4888 ftl-ti(l,K> 
4090 A2>fl<2,K> 
4100 SU"Sn+rtl*ftl 
4110 S12-S12>At*fl2 
4120 S22-S22*A2*A2 
4130 NEXT K 
4140 BC1,1>»SU 
4150 B<1,2>-B(2,1}«S12 
4160 B<2,2>-S22 
4170 SUBEND 
4130 ( 

4190 SUB •olw«(U«<*>lMb<*}lMc<*>fHd<*>|U«(*; 
4200 T*-U«<lll>«'U«(2,2>^Ub(l,l)>Ub(2,2> 
4210 Tb>OET(U«>-DET(Ub> 
4220 MAT Ud>Uc*Ub 
4230 U*(l,l>-U*<2,2> 
4240 U«<1,2>—U«(l,2> 
4250 ll«<all>«-U«<2,l> 
4260 U«<2,2>«U«a,l) 
4270 NAT W*-W»*Uc 
4280 NAT Ud>Ud*U« 
4290 HAT Ub-Ub*<T4> 
4300 Wbv1,1 )«Ub'1,l)*Tb 
4310 Ub(2,2v-Ub(2,2^Tb 
4320 NAT U«-lNV<Ub> 
4330 NAT Uc>Md*U« 
4340 SUBEND 
4350 > 
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4368  SUB Ffil0(N,X(:»),Y<*))    ! M <■ 210 ■ lOi-», N«i IHTEGER 
437» BIM C<i:257> 
4388     BflTi»   |, .999981175233, . 999924701839, . «•?'?8305l:7?iS. . ?99b"?8S1369«J, .9995294175 
8J,.999322384588,.999877727753,.998795456285,.9*3475530573. . 998113112908 
4398     BRTfi   .997723866644. . 997298456€79,.99-»3;0299£9l,.996312612183,.9957674 I 4463 
,.995184726672,.994564578734,.993986978882,.9932119492J?. . 992479534599 
4488     BflTft   .991789753669,.990902635428,.999053210262,.939176589965,.983257567731 
,.987381418158,.986388897245,.985277642389,.934210892^37, .933105437431 
4418     BWTfl   .981963869118,.988785238483,.979569^65635..973317370720,.977828142653 
,.975702130039,.974339382786,.972939952286,.971503890986, .970031253195 
4428     BftTfl   .968522094274, .966976471045,.965394441698,.963776065795,.962121404269 
,.960430519416,.958783474896,.956948335732,.955141163306, .953306040354 
4430     BftTfl   .951435020969,.949523188593,.947^35591013,.945607325381,.943593458162 
,.941544063183,,939459223602,.937339011913,.935133509939,.932992798835 
4440     BATA   .938766961079,.928506030473,.926210242138,.923379532511,.921514039342 
,.919113851698,.916679859921,.914209755704,.?11706032007, .909167983091 
4450     BATA   .906595704515,.903989293123,.901343347046..898674465694,.395966249756 
,.893224381196,.898448723245,.837639628483,.334797098431, .331921264343 
4460     BATA   .879012226429,.876070094195,.873094973413,.370886991189,.867846245516 
,.863972856122,.868866938638,.857728618888,.354557988365, .851395193185 
4470     BATA   .348120344883,.844893565258,.841554977437,.338224709555,.834362874936 
,.831469612303,.828045045298,.824589382785,.321102514991,. 817534813152 
4480     BATA   .814836329706,. 810497198253, .306347553544,.803207531481,.799537269108 
,.795336904609,.792106577300, . 788346427627,.734556597156, . 738737223572 
4490     BATA   .776888469673,. 773010493363,.769103337646,.765167269622,.761282389434 
,.797208846906,.793186799044,.749136394523,.745057785441, . 748991125355 
4^1     BATA   .736816563877, . 732694271672", . 728464398443. . 724247082951,. 720002507961 
, .715730825284,.711432199749, .707106781187,.702754744457,.698376249489 
518     BATA   .693971468898, . 689948944737,.685033667773,.680600997795,.676092703575 

,.671598994847,.666999922304,.662415777590,.657806693297, .653172842954 
4528     BATA   .648914401022,.643831542890,.639124444364,.634393284164,.629638238915 
..624399488142,.620057211763,.615231590581,.618382306276, .605511841404 
4930     BATA   .600616479384,.999699304492,.990759781359,.535797857456,.988313958096 
,.579388191418,.970780745887,.969731818784,.560661576197,.555570233020 
4540     BATA   .990497972937,. 949324988422,.540171472730..534997619887,.529383624636 
,.524589682678,.919399998166,.914182744193,.583838142543, .583538383726 
4958     BATA   .498227666973, . 492898192230,.487550160143,.432133772079,.476799230063 
,.471396736826,.465976499768,.460538718958,.455833587126, . 449611329655 
4560     BATA   .444122144570,.433616238539,.433093313353,.427595893438,.422800270300 
,.416429560098,.418843171858,.405241314085,.399624199346. .393992040061 
4570     BATA   .388345046699,.382683432365,.377007410216,.371317193952,.365612997305 
,.359395036539,.394163525420,.348418680249,.342660717312, .336889853392 
4580     BATA   .331106305768,.325318292162,.319902030316,.313681740399,.307849640042 
,.302005949319,.296150888244,.290284677294,.284407537211,   278519689385 
4598     BATA   .272621355458, . 266712757475,.260794117915,.254865659605,.243927605746 
,.242988179903,.237023605994,. 231058103231,.225083911360, .219101240157 
4600     BATA   .21 3110319916,. 207111 376192,. 201104634842, . 1 •'50903220 16, . 189063664150 
,.183039887995,.177004220412,.170961338760,. 164913120490, . 158858143334 
4610     BATA   .192797189258,.146730474459,.140653239333,.134530708307,.128493110794 
,.122418675199,.116316638912,.110222207294,. 104121633872, . 9801714d3296E-l 
4620     BATA   .919089564971E-1,.897973123444E-1,.796324379714E-1, . 735645635997E-1,. 
674439195637E-1,.613287363022E-1,.551952443497E-1.,490676743274«-» 
4630     BATA   .429382569349E-1,.363872229414E-1,.306743051766E-1, . 2454122S5229E-1,. 
184067299O58E-1,.122713382857E-1,.613538464915E-2,0 
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4646 READ C<«> 
4658 n>1024/'N 
4669 FOR 1-0 TO N/4 
4679 C<I*l)"Ct«*I*l) 
4688 NEXT I 
4690 N1-N/-4 
4700 H2-HI+1 
4710 N3-N2+1 
4720 N4«Nlt-N3 
4730 Log2n"INTcl.4427»L0C<N)*.5 ■ 
4740 FOR M«l TO Login 
4730 I2"2*<Log2n-Il> 
4760 13-2*12 
4770 I4»N^r3 
4780 FOR 15-1 TO 12 
4790 I6"a5-l>»I4*l 
4600 IF I6<-H2 THEN 4040 
4010 N6—C(N4-I6> 
4820 N7>-C(I6-N1> 
4830 GOTO 4860 
4840 N6-C<16) 
4850 N7—C(N3-I6> 
4860 FOR 17-0 TO N-I3 STEP 13 
4870 I8-I7+IS 
4880 I9-I8>12 
4890 N8-X(I8>-X<I9> 
4900 N9"Y<I8>-Y<19) 
4910 X<Id>-X(I8;*X(I9> 
4920 Y<I8>«Y<I8>*Y<I9> 
4930 X<I9)-N6»N8-N7»N9 
4940 Y<I9)"N6»N9-»'N7*N8 
4950 NEXT 17 
4960 NEXT IS 
4970 NEXT II 
4980 Il-Log2n«l 
4990 FOR 12-1 TO 10 
5800 C(I2>-1 
5010 IF I2>Log2n THEN 5830 
5020 C(I2>-2'<I1-I2) 
5030 NEXT 12 

i 2A10-1O24 
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5049 K-l 
sese FOR ii-i TO c>ie> 
5060 FOR   12-11   TO  C(9>   STEP  Cdd) 
3979 FOR   13-12   TO  C   •)   STEP  C<9) 
S089 FOR   14-13  TO  C<7>   STEP C<8) 
5999 FOR   15-14   TO  C<6;   STEP  C<7) 
5199 FOR   1«-I5   TO  C<5)   STEP  C<6) 
5119 FC'R   17-16   TO  C(4)   STEP  C<5) 
5129 FOR   18-17   TO  CO)   STEP  C(4) 
5139 FOR   19-18  TO  C<2)   ■TEP  C<3) 
5149 FOR   119-19   TO  C(l>   STEP  C<2> 
5159 J-119 
5169 IF  K>J  THEN  5239 
5179 A-X<K; 
5189 XOO-XU> 
5199 X<J>-A 
5299 A-Y<K> 
5219 Y<K)-Y<J> 
5229 Y<J)-« 
5239 K-K+l 
5240 NEXT 119 
5259 NEXT 19 
5269 NEXT 18 
5279 .NEXT 17 
5289 NEXT 16 
5299 NEXT 15 
5399 NEXT 14 
5319 NEXT 13 
5329 NEXT 12 
5339 NEXT 11 
5349 SUBEND 
5359 I 

5369 DEF FNflrgtX.Y) I PRINClPftL ARG^S) 
5379 IF X-9 THEN fl-.5*P1»SCN<Y) 
5389 IF X<>9 THEN R-ATNCY/X) 
5399 IF X^9 THEN «-«♦PI^Cl-2»<Y<9)) 
5499 RETURN A 
5419 FNENO 
5429 I 

5439 SUB D*t*(N,X<*J> 
5449 OPTION BASE 1 
5459 REDIM X<2,N> 
5469 DATA 1,2,6,3,1,1,2,1,4,5,3,2,1,5,6,1,2,4,5,? 
5479 DATA 2,1,9,1,5,3,0,1,2,6,2,2,4,2,3,5.6,9,8,2 
5489 READ Xi*> 
5499 SUBEND 
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NUMBEl?   OF   DAT*   POINTS   IH   EACH   FPOCE-sS   H   ■   iO 
MftXlMiJM  ORDEP   Of   PREDICTIVE  FILTER   Pm*x   •   6 
äI2E  OF  FFT  Nfft   ■  256 

PROCESS NUMBER 1 
12  6  3  11 

PROCESS   NUMBER  2 
2     10     15     3 

2     14     5     3     2     15     6 

01262242     3 

MEANS   OF   INPUT   DftTfl   <flwt,>: 
3.35 
3.2 

COVARIANCE   MATRIX   OF   INPUT   DATA   .'R -: 
5.7275 .83 

.83 6.16 

AKAIKE   INFORMATION  CRITERION: 
P flic<P) 
e .35436369eE>01 
1 .32414734dE*dl 
2 .3132O9543E*01 
3 .342425965E«ei 
4 .235777553E*91 
5 .2485d9498E>ei 
6 .266117185E+81 

Pb«»t   ■  4 

ubvst: 
.545 93344383 

.226987553923 

.226987553923 

4.88248888163 

FORWARD  PARTIAL   CORRELATION  COEFFICIENTS: 
P Ap<l.l> 
1 .326847861E^08 
2 -.497er94l2E»«e 
3 -.172e83146E«88 
4 -.t4363l6S3E«88 
5 -.5l6644665E-ai 
6 .9813e6862E-01 

Ap(2,l> 
,296e5582SE-01 
,85ie55338E-01 
. 237335358E*d0 
, 110686655E^88 
,44034e7ö2E*0e 
,736öl63e4E-ei 

Aov 1, 2 :• 
,4 3350S958E^00 
,l7r974i?OE*80 
.;i6121O47E-01 
, r34743>s2>E*0ö 
,19332?03?E+Oe 
,2563;?0ir:;Ef0ö 

492296101E+Ö0 
2750175l2E*'3e 
154S03723E*O0 
124715363E+Ö0 
333560r?4E+e0 
73475273rE+Ö0 

BACKWARD PARTIAL CORRELATION COEFFICIENTS: 
P BpU.D 
1 .39t694481E"30 
2 -.657848877E*00 
3 -.218767381E+00 
4 -.128639908E«00 
5 -.257137623E-01 
6 . 182731463E+00 

Bp'2,n 
.431665?94E*0ö 
. 173422353E*O0 
.685350177E-01 
.10O617477E+01 
.1J4l24206E*0e 

■.284463163E«00 

Bp1 1.2-' 
13'?7l7S14E-öl 
r714iö22lOE-C'l 

865$»47591-81 
2192843OSE»00 
6£6220r3tE-dl 

lp<2l2) 
42744J4i51E + 03 
192143512Ef0ö 
129759954E*Ö0 
944141836E-ÖI 
117920510E*^Ö 
1614J1679E+O0 
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1 R OJJJ 

FüRWftRD   PREDICTIVE   FILTEP   COEFFICIENTS   FOR   Pbttt 
P Ap(l,l> 
1 .23972ä249E^0e 
2 -.65O483360E+O0 
3 -.40436O?3:E*öO 
4 -. 14363168SE + 00 

Ap(2f1' 
.174118149E*00 

-.1649367r2E*ee 
.34i089409E*öÖ 

-.U0£8£6S9E+de 

ftp *: l, 2 • 
^•aissrö^r^E+eo 
,4l2€994?n*99 

-. 23574 3«;42E*eO 
. 734r43'-:i«E*0ö 

ftp12, 2 
.<57ei7e572E*0a 

-.442413930E*00 
.25144?573E*00 

-. 124715363E*00 

NOPMflLlZEII   CORRELATION 
DELAY AUTOU 

0 .10O000000E+01 
1 .3f9669762E+0O 
2 -.2347513O3E+O0 
3 -.372945922E*©0 
4 -.2239417O1E-01 
5 . 3966'r'7360E*00 
6 .3303S84OÖE+O0 

MATRICES (Rrt): 
CR0SS21 

. 13973499OF*00 

.4Ö2437203E-O1 

.912480910E-01 

.19S2e8143E>de 

.876238663E-01 
-.896791O9aE-01 
-.836262322E-01 

CR0SS12 
, l39734996E*e0 
l4992;094frE-»dd 
lSU090<S(»0E>e6 
, 1171«7113E*00 
, I9a792716E*0O 
. 11270l3e3E>e0 
19?l?69t27E-01 

AUT022 
.i00eo0OöüE**i 
.4833ö704rE*üO 
.640872368E-O1 
.66303Ö633E-O1 
. 10O975458E + OÖ 
.122691975E+00 
. 13838c;731E-01 

SPECTRAL DENSITY 
BIN   AUTOU 

1 .,563234E-01 
2 .•5624.S2E-01 
3 .?«eiS2E-ei 
4 .156327E-Ö1 
5 .•551025E-01 
6 .■544301E-01 
7 .'536226E-01 
3 .'526890E-91 
9 .,516400E-01 

10 .■504882E-Ö1 
11 .492476E-01 
12 .479335E-01 
13 .4«S«23E-01 
14 .431507E-01 
15 .4371S8E-01 

••• 
11< .49S6S4E-02 
117 .464126E-02 
118 .436922E-02 
119 .413S22E-02 
120 .393482E-02 
121 .37b'422E-02 
122 .362025E-02 
123 .350e27E-d2 
124 .340211E-02 
125 .332403E-O2 
126 .326465E-02 
127 .322295E-02 
128 .319821E-02 
129 .3190eiE-02 

MATRIX AND 
AUT022 

.13O48dE>O0 

.130295E+O0 

.129740E+0O 

.128822E*0O 

.127349E+00 

.125934E+00 

.123994E+O0 

.121751E«O0 

. U9230E + 00 

. U64b0E*J0 

. 113474E*00 

.110309E+0O 

.1070O2E+00 

. 1O3593E-»0O 

. 100121E+00 

.527756E-02 

.492382E-02 

.461992E-02 

.43595SE-02 

.413733E-02 

.394377E-02 

.379007E-02 

.3€5814E-02 

.355042E-02 

.34€487E-02 

.339991E-02 

.339433E-02 

.332731E-02 

.331836E-02 

COHERENCE, 
RECCROSS 
.343704E 
.•471191 
.d42359E 
.934493E 
.823«03E 
.80981 IE 
.793277E 
.774195E 
.752793E 
.729330E 
.704OS8E 
.677369E 
.«49485E 
.6207S1E 
.591473E 

FROM ZERO FR 
12)  IM*CROSS 
-01  .dOOOOOE 
01 -.254«07E 
01 -.50«959E 

-01 -.754840E 
01 -.996105E 

-01 -.122873E 
01 -.145083E 
01 -.166075E 
01 -.185704E 
01 -.203357E 

-01 -:220443E 
-01 -.235426E 
-01 -.248774E 
-ei -.scastu 
-01 -.270676E 

IQUfNCY <BIN 1): 
12) MAG SO COM 
♦01 .980U7E*00 
-02 .9seo'54E*a0 
-02 .979904E*00 
-02 .979634E*00 
-02 .979250E*00 
-01 .973746Ef00 
-01 .978113EfO0 
-01 .977342E+00 
-01 .976419E*00 
-01 .975331E*00 
-01 .974059E*00 
-01 .972584E*00 
-01 .9708:?3E*00 
-01 .968928E^00 
-01 .9'ii.6öZE*QQ 

. 180088E-O2 

.190282E-O2 

.198172E-02 

.204244E-02 

.208889E-02 

.21241«E-02 

.21Se73E-02 

.217053E-02 

.21d509E-02 

.219558E-02 

.2202Ö9E-02 

.220767E-O2 

.221037E-O2 

.221125E-02 

.366375E-02 

.323453E-92 

.234179E-02 

.2484J1E-02 

.215898E-02 

.185943E-02 

. l532 5'sE-02 

.132398E-02 

.1981041-02 

.350527E-03 

.<29<79E-e3 

.4139191-03 

. 2M809K-03 

.000000E*O1 

.6SS32?E+0e 

.ele259E«O0 

.53'46:;4E+00 

.573915E*00 

.554351E+00 

.;Sisl76E*00 

.519i»05E-»00 

.3O433SE+O0 

.492C3äE*00 

.4913S9I«90 

.472923E*00 

.4<:-|S$28E + 00 

.463144E*00 

.4«1911E-»O0 

ARGUMENT 
.0O00O0E+01 
-.300463E-O1 
-.bOUOSE-Ol 
-.902094E-O1 
-. 1203€0E'»'00 
-.150531E*00 
-.130892E>00 
•.211311E*0O 
-.24183SE+Ö0 
•.272557E*00 
•.3O3429E>0O 
•.334499E+O0 
•.365795E*00 
•.397345E+00 
•.429181E*00 

. 1 U448E*01 
. 1O3904E4'01 
.9Ö18S1E*00 
.882822E>00 
.801897E1-O0 
.719053E*00 
.«>34308E*O0 
.547727E-f00 
.459427E*O0 
.3e9582E*00 
.2734ieE*00 
.13£214E«00 
.932912E-01 
.0O0000E*01 

TRftPE20IDAL SUMS OF SPECTRA: 
5.72>>782ä0464       «.15993370582 

COVAPIftNCES OF INPUT DATA: 
5.7275 «.16 

S30232954125 

.83 
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ALIASED 
DELAY 

Z 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
II 
12 
13 
14 
13 

*•* 
116 
117 
118 
119 
128 
121 
122 
123 
124 
123 
126 
127 
128 

HOPMftLIZED COPPELflTION MATRICES: 
ftUTOll 

.idoeooeoeE+ei 

.3d96«2823E«8e 
-.2847n875E*ee 
-.372868877E*08 
-.223€2d911E-dl 
.39«6S2316E>00 
. J3e318>i3lE*öü 

-.34Se262«9E-ei 
-.38886e.l93E>88 
-.262499136E+öe 
.795873936E-81 
.310323231E+00 
.19249ei28E*ee 

-.123431193E+Ö0 
-.294362eilC>08 
•.1281S4922E>ee 

-.244194112E-d2 
.27O3706!lE-0i 
.411244193E-82 
.8«/9212ei8E-e3 
•.280736944E-82 
•.2«4788177E-e2 
.448106816E-83 
.238535013E-82 
.112686187E-82 
•.12188267SE-82 
•.1317378e4E-02 
.3865365e8E-83 
.148247837E-82 

CR03S21 
.139783721E 
.4e24d3863E 
.91213789dE 
.1991d3513E 
.87638O084E 

-.d9648d926E 
-.d36012969E 
.689€9d818E 
.824831238E 
.629998336E 

-.238734308E 
-.669643776E 
-.429332422E 
.241d37936'E 
.«38641473E 
.382603973E 

♦ 00 
01 

-01 
♦ 00 
-01 
-81 
-01 
-82 
-0: 
0i 
01 
01 
01 
01 
01 
01 

.9132973ieE-03 

.7e3065771E-83 
•.122243230E-03 
•.344466436E-03 
-.822383928E-03 
•.1792698S1E-84 
.889991232E-83 
.10t284639E-02 
.992673477E-04 
•.109363279E-82 
•.124026330E-O2 
•.866418380E-84 
.133Ö38383E-82 

CF05S12 
. 139733721E*00 
.493316301E+00 
.311114131E>00 
.117074400E+00 
.190731341E*00 
.112729049E>00 

-.95133012lE-0i 
-.999179326E-01 

. 131798148E-01 

.176921946E400 

.106767436E*00 
-.976l7l22dE-0l 
•. 1433ddl«;3E+0O 
•.432258345E-01 
.104637932E>00 
. 123723501E+00 

.313869734E-0r 

.135635926E-02 
•.167993100E-02 
■.263389723E-02 
•.76492070<»E-03 
. 172870237E-02 
.21'S96976lE-02 
.329164623E-03 

'. l'£4236260E-02 
•.171669733E-02 
•.491074135E-O4 
.14b4«O6e«E-02 
. l33(>30333E-02 

ftUT022 
. 100000000E<-01 
.4d3307dlOE4-00 
.€4094962(;E-01 
.663147971E-01 
. 100979179E+00 
. 122634113E>00 
.138794710E-01 
-.796893320E-02 
.197442248E-01 

-. 191il3963E-01 
•.2118l97e3E-01 
.386843393E-02 
.298497237E-81 
.212691423E-01 
•.219343987E-W1 
•.313103389E-01 

•.78279458SE-03 
■.6204d9604E-03 
.177338396E-03 
.738318242E-03 
.319836852E-03 
•.239248236E-03 
■.719997787E-03 
•.439326431E-03 
.2d6993480E-03 
.698618330E-03 
.378392473E-03 
•.338374132E-03 
■.69e972382E-03 
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A-1A. Auto Spectrum of First Process 
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A-1B. Auto Spectrum of Second Process 

A-1C. Magnitude-Squared Coherence 
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A-1D. Argument of Complex Coherence 

Figure A-l. Spectral Estimates for N = 20, Pmax ■ 6, Pbest - 4 
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Appendix B 

General Filter and Spectral Relations 

For each integer k, let Hk be a rectangular matrix of (complex) constants, to be 
called the filter impulse response at delay kA, where A is the time sampling in- 
crement. The number of filter outputs need not equal the number of filter inputs. 
For multichannel filter excitation Wn at time nA, the filter output at time nA is given 
by the discrete convolution 

x« • 5 «k Vk   . 
(B-l) 

where the summation extends over all nonzero summands. 

For a stationary excitation, let the correlation matrix of complex input process 
{WJ at delay £Abe 

W   w"      ■ P        (non-diagonal matrix), 
(3-2) 

where the overbar denotes an ensemble average, and the superscripc H denotes a 
conjugate transpose. The z-transform of input correlation sequence {P» } is 

£(2) = A^z"1 P0    . 
I » (B-3) 

and the spectrum of input process {Wn} is, for real frequency f, 

Q(f)  • £(exp(i2irfA))  - A  £  exp(-i2TrfAZ)  P0 

t _ 
- AE   exp(-iui) P.    , (B-4) 

where we let 

u = 27rfA    . (8-5) 

The correlation matrix of the filter output process {XJ, at delay £A, is given by 
using (B-l) and (B-2): 

R.   i  X    XH  .   »£   H    w    .   »^   .      H" »y*   H,   Pn      .   ^     . 
\       n   n-s,    j-    k    n-k    n-»!,-m   m   ^     K    l+ra-k    ra K, m k , m 

(B-6) 

The z-transform of output correlation sequence {R. }is, by use of (B-6), 

B-l 
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.1 
G(z) EAT; « VAE 2"4 2 «ic p

Ä+m.k «11 

Now define the z-transform of filter sequence {Hk} by 

Kit) - L   z     H, 
k k (B-8) 

and define the quantity 

H H M   (z) 5 [H(z)]      ,    includir^ conjugation of z. (B-9) 

Then 

We now employ (B-8), (B-3), and (B-10) in (B-7) to obtain 

G(z) - H(z) id) «" (i)       . 

The spectrum of output process {Xn} is then, at real frequency f, 

G(f)  « G(exp(i2TrfA))  ■ A  J3   exp(-i27rfAÄ)  R» 

- H(f) Q(f) iPif)    , 

where we employed (B-l 1), (B-4), and set 

10) 

(B-ll) 

(B-I2) 

H(f) » H(exp(i?rrfA))-  J3 exP(-i2irfAk)  ^    • (B*13) 
k * 

We also employed the property that 

HV)   -  [H(f)]H -   £  exp(i2TrfAk)   H^       . (B_i4) 

B-2 
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^(expC-i^A)) " «"(«PCi^Ä))  - H^f)     .      (B. 15) 

Finally, from convolution (B-l), we obtain the z-transform of output data 
sequence {Xn} as 

X(z) 2   Z  z     x„ ' wCz) W(z)    , 
n (B-16) 

where we used (B-8) and defined 

»(«) - E 2"n wn 
(B-17) 

The major results thus far are given by (B-l), (B-16), (B-ll), and (B-12) for a 
general filter and excitation. 

ARMA Process 

For a multichannel, autoregressive, moving-average process, the recursion is 
given by 

<„ -  I!  E
k 

Xn.k +  £  Fk Wn-k      ' 
(B-l 8) 

The z-transform of this equation is 

X(z) • E(z) X(z) * F(z) a/(z)    , (B.I9) 

where 

£(z) i  E   2'k Ev    ,    F(z) =  2   z"k Ft _ -k    '       ^       *£   ~        k (B.20) 

Then we can solve (B-19) for  X (z) as 

X(z) - [I - ECz)]'1 F(z) ö/(z) - Hit) W(z)     , (B-21) 

where the transfer function from input to output is 

Hit) 2  [I - EU)]"1 F(z) (B-22) 

in terms of the parameters of recursion (B-18). But now (B-22) is in the framework 
of the presentation above; namely, the spectrum of output process {Xn} is, from 
(B-12), 

G(f)  » H(f)  Q(f) ^(f)     . (B-23) 

B-3 
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where 
H(f) - [I - ECf)!'1 F(f)    , 

E(f) • E(exp(i27rfA)) -  J] exp(-i2Tr£Ak) E. 
k K 

F(f) • F(exp(i2TrfA)) -    2  exp(-i2TrfAk) F. 
k * (B-24) 

Example 

As an example of (B-18), consider the multichannel first-order recursion 

X    - E,  X   ,  ♦ W„ n       1   n-1       n 

with the input spectrum for {Wn}, 

Q(f) «AI     for all    f    . 

This is a white process, uncorrclated from channel to channel. Then 

-1 

(B-25) 

(B-26) 

E(z)  - z x E,    ,    F(z) - I    . 

H(z)  - (I - z"1 Ej)'1 

G(f)  - A H(f3 H^f)    . 

{B-27) 

Specialization to Two-Channel Process 

We further specialize example (B-25) to the two-input, two-output channel 
process characterized by coefficient matrix 

El- 

a      b 

c      d 
(complex coefficients) 

(B-28) 

Then (B-27) and (B-22) yield transfer function 

B-» 
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H(2) 

1 - z'1 a -z"1 b 

■z"1 c 1 - z"1 d 

-1 

 TT ^  
1 - z ^  (a ♦ d) ♦ z    (ad - bc) 

1 - z * d 

t-
lc 

z^b 

1 - z     a 
(B-29) 

There follows 

HH(l/z*)  • [H(l/z*)]H 

1 - z(a ♦ d)* ♦ z  (ad - bc) 

1 - zd*        zc' 

zb« 1 - za* 
(B-30) 

and 

G(z) ■ A H(z) «"(l/z*) i 

gll(z) g12(z) 

g21(z) g22(z) 

1 
D 

2        -1 -1 1 ♦  |b|    ♦ \d\* - z"    d - zd*        -a* b - c*d ♦ z'    b ♦ zc 

•ab* - cd* •♦• z'    c + zb 1 * M2 *  Icl2 - z-1 a - za* 

(B-31) 

*here 

D » fl z'^a ♦ d)  ♦ z'2(ad - bc)] [l - z(a * d)* * z2(ad - bc 

(B-32) 

Inspection of denominator D in (B-32) reveals that   G(z) has poles (i.e., all the 
elements of matrix G (z) have poles) at 

B-5 
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> 2 (B-33) 

and at 

■T" 17-p exp(i argCzJ) 
00 

(B-34) 

That is, even though recursion (B-25) is limited to first-order regressive and white 
independent excitations (see (B-26)), G (z) has four poles in the finite z-plane. 
Generally, if H(z) has a pole at zm, then   //(1/z*) has a pole at 1/z*; so if 

z« " ' exp(ie),        then 1/z* « exp(ie)/r 
" " (B-35) 

has the same argument. 

In addition, element g||(z) in (B-31) has a zero at «> and three zeros in the finite 
z-plane, at 

_ 1  ♦   lb|2 *  |d|2±V(l  ♦   |b|2  *   |d|2)2-4[d[2 
zo " 0  ^  zo u 

(B-36) 

The product of the latter two zero locations is d/d* ■ exp(i2arg(d)). Thus, the auto 
spectrum of process 1 has three zeros and four poles, even though the multichannel 
recursion, (B-25), is first-order regressive. Similar behavior is true of the auto 
spectrum of the second process, as well as the cross spectrum between the two 
processes. 

The magnitude-squared coherence for this example is, from (B-31) and (B-5), 
g12(exp(iu))  g21(exp(iu)) 

gjjCexpCiu))  g22(exp(iu)) 

[- a*b - c*d ♦ b exp(-iu)  * c* exp(iu)| 

[|l - d exp(-iu)|2 *  |b|2]   [|l - a exp(. iu)|2 *  |c|ZJ 

(B-37) 

This has four zeros and four poles in the finite z-plane. 

B-6 



Numerical Example 

We now specialize (B-28) to example (6) in the main text: 

El" 

a     b 

c     d 

.85       -.75 

.65 .55 

The four poles of the spectrum  G(z) are located at 

2    « .7 ♦ i  .6819 ,        l/z* » .7330 ♦ i .7140    , 

and the zeros of g, ,(z) are at 

z    ■ 0  ,     3.0646,     .3263, ■    . 

The zeros of gl2(z) are located instead at 

z0 ■ 0  ,   .8802,     -1.3109.    "    . 

The magnitude-squared coherence simplifies to 

1.0634 -  .056 cos(u)  - .975 C08f2u) 
[1.865 - 1.1 cos(u)]   [2.145  -  1.7 CJS(U)]     * 

TR 6533 

(B-38) 

(B-39) 

(B-40) 

(B-41) 

(B-42) 

This example was used frequently in the main body of this report. The peak value is 
.9990128 at u - .772564, or 2fA - .245915. 
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ABSTRACT 
Single-channel spectral estimators based on linear prediction 
techniques, such as the maximum-entropy method, have been shown 
to often provide better spectral stability and resolution than standard 
FFT procedures for short data sequences. Based on this Improved 
performance, a multitude of multichannel linear prediction 
techniques have been promoted for processing multichannel data 
sequences. Three of these are examined In the paper: a multichannel 
generalization of the single-channel Burg algorithm by Nuttall, a 
maximum-entropy type of algorithm by Motf, Vieira, Lee and Kai lath, 
and a multichannel extension of the covariance method of linear 
prediction Implemented by Marple. For purposes of experimental 
comparison, various two-channel data sets were processed by the 
three methods to produce the two autospectra, the magnitude- 
squared coherence and the coherence phase associated with each 
data set. A possible deleterious effect of signal 'feed-across' be- 
tween autospectra and in the coherence has been discovered in all 
three methods. The phenomenon, due to Inexact pole-zero can- 
cellation. Is especially prominent for short data sequences. Based on 
the multichannel results given here, the Nuttall method generally 
produced the best spectral estimates. 
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PARAMETRIC SPECTRAL ANAL YSIS 

Experimental comparison of three multichannel 
linear prediction spectral estimators 

S. Lawrence Marple Jr. and Albert H. Nuttall 

Indexing term:     Signal processing 

Abitnct: Single-chunel spectral emmitori bised on linear prediction techniques, such u the maximum- 
entropy method, have been shown to often provide better spectral stability and resolution than standard 
FFT procedures for short data sequence!. Bated on this improved perlormance. a multitude of multichannel 
linear prediction techniques have been promoted for procesung multichannel data sequences. Three of these 
are examined in the paper: a multichannel generalisation of the single-channel Burg algorithm by Nuttall, 
a maximum-entropy type of algorithm by Morf, Vieira, Lee and Kadath, and a multichannel extension 
of the covariance method of linear prediction implemented by Marple. For purposes of experimental com- 
panion, various two-channel data sets were processed by the three methods to produce the two autospectra, 
the nugnituda-equared coherence and the coherence phase associated with each data set. A possible deleteri- 
ous effect of signal 'feed-ecroo' between autospectra and in the coherence has been discovered in ail three 
methods. The phenomenon, due to inexact pole-zero cancellation, is especially prominent for short data 
sequences. Based on the multichannel results given here, the Nuttall method generally produced the best 
spectral estimate!. 

1       Introduction 

Multichannel digital signal processing is being used in an 
increasing number of application areas, particularly in the 
sonar and geoteismic communities. Until recently, most 
multichannel digital signal processing was based on fast 
Fourier transform (FFT) methods. The success of unichannel 
high-resolution spectral estimation techniques, like the auto- 
regressive or so-called maximum-entropy methods, has 
encouraged researchers to develop multichannel extensions 
in hope of obtaining performance Improvements for multi- 
channel applications comparable with that seen in unichannel 
applications. The multichannel extensions are ail based on 
linear prediction concepts, since a linear prediction filter 
whitens an auto regressive process. 

Three multichannel linear prediction spectrum analysis 
algorithms are examined in this paper. They are the multi- 
channel generalisation of the Burg algorithm developed by 
Nuttall [ 1 —4], a multichannel maxim um-em ropy spectral 
estimate by Morf, Vieira, Lee and Kailath [S,6|, and a multi- 
channel generalisation of the covariance method of linear 
prediction as implemented by Marple [7]. All three algorithms 
make estimates of the multichannel linear prediction coef- 
ficients, from which the multichannel autoregressive auto- 
spectra and cross-spectra may be computed. From the cross- 
spectra, the magnitude-squared coherence and coherence 
phase may be computed. 

There has been no previous attempt in the literature to 
compare and characterise the various multichannel linear- 
predktion/autoregtessive spectral estimators. An experimental 
approach is used in this paper to empirically characterise 
performance with respect to two signal classes. One class is 
an actual two-channel autoregressive process. The other 
class is a set of tones (sinusoids) imbedded In a coloured 
noise process. An analytic approach for calculating multi- 
channel algorithm performance was felt to be mathematically 
intractable, given the very complex analysis that was required 
to characterise the single-channel autoregressive spectral 
estimate [8,9]. 

Paper ]4*IF, flnt received 1st April I9S] and in revised form 4th 
January I9B3 

Or. Marple wet formerly with The Analytic Sciences Corporation. 
8301 Graenpboro Dnve. Suite 1200. McLean, VA 2210]. USA. and is 
now with Schlumberger Well Servicet-Engintennt, PO Bo« 4 59«, 
Houston. TX 772I0-4S94. USA. Dr. Nullall is with the Naval Under- 
water Systems Canier, New London Laboratory. New London. CT 
06.320. USA 

Relative to the particular multichannel results reported 
here, the Nuttall algorithm generally produced the best results. 
Best in this case means with less frequency estimation bias 
and variance than the other methods when tested against 
auto regressive and tonal processes. During the testing, a 
'feed-across' effect was discovered that was common to 
all techniques. Narrowband components that should be 
present in only one channel's autospectra were found coupled 
into another channel's autospectral estimate. This is shown to 
be due to inexact pole-zero cancellation in the autospectra! 
estimate. Conditions that would cause spectral line splitting m 
the single-channel case were found to also cause splitting in 
two of the three linear prediction techniques considered here. 

2        Summary of techniques 

This Section provides an overview of the three multichannel 
linear prediction methods considered. If we define Xn as 
the vector o(M channel samples at time index n 

*n(t) 

Xn 

xmm 

from a stationary zero-mean multichannel process, then the 
covariance function at tune lag * is given by 

The symbol H denotes Hermitian transpose, and £° denotes 
statistical expectation. Define the forward linear prediction 
error for prediction order p as 

n -o 

and the backward linear prediction error as 

A = I flip,v, k-p*n 

where Uifff and IBfY! are, respectively, the forward and 
backward linear prediction coefficient matrices of dimension 
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MxM. Note that /«V" - Äip) - / (the identity matrix) by 
convention. 

Minimisation of the forward and backward linear predic- 
tion mean square errors U {E[Y,,¥£']]'* u {Up] and 
tr {ElZkZ*\ } = tr [V,,], respectively, (tr denotes the matrix 
trace) will yield coefficient matrices that satisfy the block- 
Toeplitz normal equation 

is the power spectral density matrix in the two-channel case. 
Here £],(/) and J-aif) are the autospectra of channel 1 and 
channel 2, respectively, and the magnitude-squared coherence 
(MSC) is given by 

MSC - ICCOIMC(/)(;„(/■)} 

i    AV* ^J.'-,. 
si"  ajßt BP    I 

Ro *?-, 

Rp-i Ro 

Uo 0. 

0. 

The solution to this normal equation, when the covariance 
matrices (Ak )f are known, is provided by the multichannel 
(vector) Levinson-Wiggtns-Robinson (LWR) algorithm. Briefly, 
this algorithm relates the order p solution to the order p — I 
solution according to the recursions 

A, -   l' Ai'-^Rp-* 

Si" - -A?((/,.,)-' 
Vp - (/-^'fli")^.. 

V, - (/-Äi'UJ,")^,., 

-41" - Ar^+wj/ü?   fof i <*</»-1 
si" - flf*"+if**!fc0     for  i < * < p -1 

with initial conditions 

(/, - K0 - Ä, 

Ap m Bf* ~ I for    0 < * < p 

The M x W matrix ^p is often called the reflection coefflcient 
matrix. 

Based on the linear prediction coefficients, the multi- 
channel auto regressive power spectral density matrix estimate 
may be shown to be [ 1 j 

CA(z) - AtlAiz^UplAdlz')]-" 

- ^[B(z)\-lyplB(llz,)]-H 

- GB(z) 

where A/ is the sample interval, —H denotes the Hermitian 
transpose of the inverse, the asterisk denotes complex conju- 
gate, and 

A(z) -   f   AW 
n «0 

P 

B(z) I «4P»«- 
The substitution z »exp(/2jr/Ar) is made, and GA is 
evaluated as a function of the frequency /. With this substi- 
tution having been made, then 

G(f) 
Gn(f)    C12(/) 

Gn(f)    C:J(A 

The coherence phase spectrum (CPS) is simply 

CPS - arg (CO)! 

3       Unknown eovarianea: Measured data 

The three linear prediction algorithms examined in this paper 
are concerned with the situation in which there are data 
samples available, but no covariance values are known at 
any lags. Assuming .V vectors XH of channel samples have 
been collected, then the following squared-error and cross- 
error covariance estimates may be formed: 

'.-;rbJ r*Y* r»—p *.»*! 

The Nuttall extension of the Burg algorithm to the multi- 
channel case makes use of the LWR algorithm, with the 
exception of how the reflection coefficient \ is computed, 
since covariance values are now unavailable. Using the error 
covariance estimates. A, is obtained as the solution of the 
bilinear equation 

(^..r'fp^ + A, ({/,., r'f, = -:GP 

in order to satisfy a weighted arithmetic mean criterion 
between the forward and backward squared errors £„ and 
?,- 

The so-called maximum entropy algorithm of Morf et al. 
also uses the LWR algorithm, but the reflection coefficient 
A, is computed as the weighted geometric mean of the for- 
ward and backward squared errors: 

A, -  [EpV^G^F?]-" 

The superscript notation — 1/2 means the square-root matrix 
of the inverse, since a normalised form of the LWR algorithm 
is used by the authors of this linear prediction method. 

Instead of forcing the LWR recursions to hold in the 
given data case, as in the two previous algorithms one could 
separately minimise the forward and backward squared errors 

Try' 
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2,   ^ii-i^n-l 

in the least-squares sense. This yields the normal equation 

RM> RoV 7       Ar A*\   At 
Bf> a*].... a^     i 

R#\ D(J») 

u, o. 
0     0 

0   0 

o  v,\ 

where 

Rf I Xn-iX*., forO </,/</> 

and the matrix of A**' terms is no longer block-Toeplitz. 
However, a fut recursive algorithm similar in structure to the 
LWR algorithm can solve the above least-squares normal 
equation; see Reference 7 for deuJs. The fast algorithm is a 
multichannel extension of the single-channel covariance linear 
prediction algorithm used in speech processing [I0|. Since 
the block-Toeplitz property is lost in the least-squares minimis- 
ation of this method, the estimated power spectral densities 
GA(z) and Ga(z) do not, in general, yield mathematically 
identical values, although the plotted spectra are often of 
comparable shapes. 

4       Experimental comperitons 

Plots of autospectra, MSC and CPS from various two-channel 
test cases are used here to examine relative experimental 
performance differences among the three linear prediction 
spectrum analysis techniques. The discussion is restricted 
to real-valued data and filters. 

In the first test, a first-order (p= 1) two-channel auto- 
regressive process was used to generate data ensembles. Data 
were generated according to the recursion 

[0.85       -0.75 
Ay   - 

10.65 0.55 

(1) 

where Ifn is a white process, uncorrelated from channel to 
channel and of unit variance in both channels. The exact 
autospectra for each of the two channels are shown in Figs, 
la and b, while the MSC and phase of the complex coherence 
(cross-spectrum) are shown in Figs. Ic and d. There is seen 
to be a strong narrowband component at approximately 1/8 
of the sampling frequency; the peak magnitude of the squared 
coherence is 0.999013 at this point. 20 sequences, each of 
100 sample points, were processed by each of the three 
algorithms, with the order p restricted to be 1. The 20 spectral 
plots were overlapped, as shown in Figs. 2-5. All plots are 
made to the same reference values established In Fig. I. Of 
the four sets of plots, clearly the Nuttall linear prediction 
algorithm has less variance and bias (location of the spectral 

lOOr 

0 1 0.2 0.3 0.4 

traction of sample frequency 

01 02 03 04 

fraction of samoi* frequency 

-20 

•40 

-10 

-8 0 

05 0 01 0.2 0 3 04 

" fraction of sample frequency 

Flf. 1     Trut auiotptctra and coherence of the AR 111 procest 

a Gn autoiptcirum 
b C/j, autosptctrum 
c M«|niiude«qu»t«d coherenct 
J Cohvtnct phue 

l«0 

90 

t 
Si 

■a 

I 
-90 

-180 
01 0 2 0 3 04 

fraction of sample frequency 

05 

220 IEEPROC.. lol 130 h F Vo j. APRIL 1983 



- !V■".-".r^.- vT•■■ -T—r7'.^-*^~\rvyT^rni'T'-'r-£r'J7^wV*'l.'wVAW 

01 02 0J 04 
frocuan a) nmpl* »MUKICY 

0.1 0.2 03 04 OS 
fraction o« »ompi» tr»qu*ncy 

01 02 01 04 

»raclion of lantol* tr*au«ncy 

01 02 03 04 0 9 

Iraciion of tampi* lr»qu«ncy 

Fif. 2   Auiosptctn and coherence of 20 o verlapped data sets. NutuU- Burg aitohlhm feneniisation 

« (/,, •ulotpwtrum 
b C,, lutoiptctrum 
e Mitnitudt-tquarcd cohmnc« 
ä Ciihtrtnc* phu* 

0 01 02 02 04 OS 

0 fraction of samplo frrquoncy 

0 01 02 03 04 05 

a traction of samcMt troquoncy 

Fif. 3   Autoipecm and coherence of 20 overtopped data un  Morf et al maximum-entropy generalisanon 

t C,, luiotptctrum 
b '' - autospccirum 

c \Ufniiude-tqutreu cohoronc« 
J Cohcrcnct phuo 

IEEPROC.. Vol. 130. ft F. So. 3. APRIL I9S3 221 



0 Jß^^ 
^^^^^fc. 

-20 ^*"^^^^^^Bii^ 

1 
a 
i -*o 
1 
I.« 

-80 

1.00 r 

01 0.2 0) 04 
traction ot tampt* ir»qu»nc» 

05 

0 OJ 02 0L3 0 4 0$ 

0 frotiion o< samgl« irtou«ncy 

HO 

0 1 0.2 01 04 
tracnen el samol* trtqucncy 

0 01 0.2 03 04 0.5 

d iracnon oi tamu» frequency 

Fif. 4    Auiospectrt and cohtrtnet of 20 ovtrlapped data sets Mtrplt covarunc: generalisation ifonvardi 

a G,, luioipectrum 
ft Gu iuioipeclrum 
e MagnHude-equvcd coherence 
J Coherence phaee 

-40 

01 0.2 01 04 
'faction ol sample irequency 

Oi oi        0.2        oj 04        as 
troclion ol I ample  Irequency 

01 0.2 03 04 

*. ■> tioo ol sample frequency 

0 OJ 02 03 04 

3 fractional sample frequency 

Fid. S    -luioiptctrtt and coherence of 20 ovtrlcpped data sen Marple covarunce generaliunon (backward) 

a (7,, auiospeclrum 
b Gu lutospectrum 
c Magnitude'squared coherence 
d Coherence ph» c 

m IEE PROC. Vol. 130 h F  Vo }, .)/>«//. !<)83 



peak) than the other methods. In fact, 18 out of 20 of the 
phase estimates were close to the truth for the Nuttall algor- 
ithm, whereas none of those given by the other techniques 
was correct at ail. Note that the four plots of Fig. 4, based on 
the forward linear prediction estimate, differ little from those 
in Fig. S, based on the backward linear prediction estimate, 
even though the covariance method does not guarantee that 
the two cases will yield the same result. 

This first test has very important implications. All three 
techniques should work well against a simple first-order 
autoregressve process, since this is the data model appropriate 
for linear prediction spectral estimators. Clearly, however, 
the Nuttall technique works best, at least for short data 
records. The other two techniques exhibit more variance 
than is typically found in single-channel versions of these 
methods. For a multichannel pth-order regression and indepen- 
dent white excitations, it may easily be shown that the auto- 
and cross-spectra of the processes each possess 4p poles and 
3p zeros in the finite z-plane (of which p zeros occur at the 
origin). This is in contrast to the single-channel case, where 
only Ip poles (and a pth-order zero only at the origin) can 
occur. Thus, while a single-channel linear prediction requires 
estimation of only p parameters, an itf-channel approximation 
requires estimation of M2p parameters per channel. For a 
fixed number .V of data points from each process, the esti- 
mation of an increased number of parameters can only be 
done with increased variance since the total number of data 
points is only MN. This is a partial explanation of the results 

seen in Figs. 2-5. 
The next test consisted of data sequences with three 

sinusoids in a coloured noise process. In channel 1, sinusoids 
with fractions of sampling frequency of 0.1, 0.2 and 0.24 
were used. The respective amplitudes were 0.1, I and 1, 
while the respective initial phases were 0, 90 and 235°. The 
coloured noise process, which had most of Its power above 
the frequencies of the siiusoids, was generated by passing 
white noise of 0.05 variance through a digital filter with a 
raised-cosine spectral response between 0.2 and 0.5 of the 
sampling rate. In channel 2, sinusoids of fractional frequencies 
0.1, 0.2 and 0.4, amplitudes of 0.1,1 and 1, and initial phases 
of 0, 210 and 25" were generated. A coloureu noise process 
similar to channel 1, but independently generated, was added 
to the sinusoids. Note that the sinusoid components at frac- 
tional frequencies 0.1 and 0.2 are common to both channels. 
A data sequence of 64 points was generated for each channel. 
Figs. 6-8 depict the autospectra and coherence magnitude 
and phase for order p = 12 estimates by the three linear 
prediction methods. Note that in all plots, some energy of 
the 0.24 fractional frequency sinusoid, present only in channel 
1. has coupled into the (7n estimate for channel 2, and. 
conversely, the 0.4 fractional frequency sinusoid, present only 
in channel 2, has coupled into the G,, estimate for channel 
I. The MSC plots also show spikes at the tone frequencies 
of 0.24 and 0.4, where ideally the coherence should be zero. 
This 'feed-across' artifact is an undesirable effect: however, 
it   appears   unavoidable   whenever   processing   short   data 
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sequences with multichannel algorithms. If the data sequences 
from etch channel are processed separately by the single- 
channel Burg linear prediction algorithm, the autospectra 
shown in Fig. 9 are the result. Note that those spectra do 
not give a false tonal indication. By increasing the data 
sequence length to 500 samples, there is an improvement in 
the feed-across effect in the multichannel autospectra in Fig. 
10, although the coherence still has strong sharp spikes. Thus 
it seems that the attractive properties of single-channel linear 
prediction spectrum analysi» relative to periodogram spectrum 
analysis when processing short data records do not extend to 
the multichannel case without problems. The feed-across 
effect leads to false indications of narrowband components, 
especially when processing short data sequences. A detailed 
analysis of the cause of the feed-across effect is presented in 
the following Section. 

The final test case examined the spectral line splitting pheno- 
menon that has been reported in the literature for single- 
channel linear prediction spectrum analysis. A data sequence 
of 101 samples of a single tone a» 0.0725 fractior of sampling 
frequency, unit amplitude and 43s initial phase, added to the 
same coloured noise process (variance 10'4) as in the last 
test, was generated for channel 1. A comparable 101-sample 
sequence was generated fot channel 2. but the tone was placed 
at a fractional frequency of 0.2175. Both cases are known to 
cause tine splitting in the single-channel Burg algorithm. 
Figs. 11-13 show the autospectra generated by the three 
multichannel linear prediction methods for order p ■ 15. 
Line splitting is present in the Nuttall and Morf methods, 
but not in the covariance method. Thus line splitting be- 
haviour carries over into some of the multichannel techniques. 

3       Properties of linear predictive spectral analysis 
tachniquM 

The behaviour of the linear predictive techniques in the 
presence of tonals is of importance to anyone using these 
spectral analysis procedures. Wt now present some of the 
important properties of multichannel linear prediction 
techniques and illustrate these properties by an example 
from the Nuttall algorithm for the two-channel auto- 
regressive process in eqn. 1, with a tone added solely to the 
channel-2 process. The tone strength is - 6.6 dB relative to 
the sample power in the second component of Xn, and the 
tone is located at fractional frequency /,. * OJ; this is basically 
the example considered in Fig. 11 of Reference 4. 

The autospectra and coherence estimates for a data run 
with .V = 1000 data points and p - 8 are given in Fig. 14. 
There is the desired strong tonal indication at /e in (/jj, 
but, in addition, there is a weak undesired contribution 
at /e in (7||. Since this tone was never added to process 1. 
this indication in Gu has 'leaked across' in the mathematical 
data manipulations of the linear predictive algorithm. This 
leakage is unavoidable and will be present in all multichannel 
linear predictive procedures; it is due to the fact that we 
must work with finite data sets, thereby resulting in slightly 
inaccurate filter coefficients. The effects on the poles and 
zeros of the autospectral and coherence estimates are discussed 
below. The MSC estimate in Fig. 14c has developed two 
notches and a sharp spike near frequency /„, while the phase 
in Fig. 14J has gone through an abrupt lit change m that 
neighbourhood. 

In order to explain the various behaviours of the spectral 
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estimates in Fig.   14. we need to develop, in more detail, 
the matrix spectral estimate (see eqn. F-16 of Reference 1) 

GW- [A(z)]-lUp[A{llz-)]-H (2) 

where 

Ä(t) -/+   I  z-'AP 
P t (3) 

For real data and filters. Up and {AIf") are real. For a two- 
channel application, eqn. 3 can be expressed as 

01 0.2 03 0 4 

froctionof »ample   requency 
A{z) 

hud)   *»(«). 

where {hkl(z))iTC scalar] of the form 

p 

*«(«) -  I ^""«»iC» 
nmo 

ere follows for eqn. 2 

CU) -            ' 
-Aii(x) 

-A«(i) 
"v*'       £»(r)0(l/r) hniz) 
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D(z) 

/i2i(l/r)   -A„{l/Z) 

AHUJAMU)-*,^!)*,,!;) (7) 
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We denote 

hn(Uz) - rub)   I 

where 4*1(2) and rhl(:) are polynomials of degree p in z 
with real coefficients. Then 

(8) 

D(2) - f'^ÖWj 

D(llz) - /?(*)     ) 
(9) 

where Q(z) and Ä(r) are polynomials of degree 2p in zh 
follows that 

0(0) - «n(p)flMO»)-«ii(p)«ii(p) 

Ä(0) - 1 

neither of which is zero; thus Q(z) and A(z) have no zeros 
at the origin of the z-plane. The spectral estimate can now 
be expressed as 

G(z) 

where the 2 x 2 matrix in eqn. 10 is given by 

(10) 

<fii(z)   -<7n(») 

-<?JI(2)    «JuU) 

"u     "12 /■JIW   -'MW 

-/nC)   'u(«). 

(11) 

All the functions in eqn. 10 and expr. II are polynomials 
inz. 

For the real data and filters employed here. the. 2p zeros 
of Q{z) occur in conjugate pairs (or in real pairs). Furthermore, 
they are all inside the unit circle C, in the complex z-plane: 
this property was proved In eqn. 33 of Reference 3. Thus we 
only need to search the interior of the unit hemisphere in the 
upper-half z-plane for p zeros of Q(z). 

Furthermore, if Qiz) has a zero at z0, then ÄU) has a zero 
at l/z0; thus O(z) in eqn. 10 has 4p poles in the z-plane. 
2p in the upper halfplane, of which p are inside the unit 
hemisphere. A typical 4-tuple of poles in G(z) is given by 
Zo, zj, 1/Zo, I/zJ; there are p such 4-tuples. These poles are 
common to all the auto- and cross-spectral estimates in eqn. 
10. 

Similarly, a typical term, yVkl (z), in the numerator of G(z) 
in eqn. 10 is a polynomial of degree 2p in z, of which p 
zeros will be located in the upper-half z-plane. Thus eqn. 10 
shows that (every term of) G(z) has p zeros at 0, p zeros at 
00 and 2p zeros in the finite plane. We need only search for 
thepzerosof/V%|(z)in the upper-half plane, for*./» 1, 2. 

In order to explain the behaviour of the coherence estimates 
given by the linear predictive techniques, we start with the 
complex coherence at frequency /as given (for At = I) by 

an . ;V12(exp(/2ir/))  
M/'       l^., (expOlir/M^exp^*/))!"1 

The squared coherence, generalised to the entire z-plane, is 

Af.j (z) L     Nti(*)Nn(t) r'iz) 
Ar„(z)iVa(z) 

not 
NutoWnW 

(13) 
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The following are general properties of the Nkt{z) polynomials: 
(a) If /V,, (i) hts a zero at r, exp 091). 't »1» ha» a zero at 

(I/Mexp (/»,). 
(*) !f ^„(z) has a zero atr, exp (/9J). B al» has a zero at 

(l/ra)expOflj)- 
(c) If iVuU) has a zero at /•„ exp C/#»)i/Vj, (r) has a zero at 

(l/r0)exp(/flo)- 
In fact, property (c) is a special case of the genetal rule that 

yv31(z) - ^"^„(l/i)       foraUr (14) 

Now we return to the example of Fig. 14, where a tone was 
present only in the channel-2 data, at frequency fe. Since 
process 1 ha»notoneat/e,iVll(i)developsrwo zeros nearze « 
exp (y2ir/e) ■ exp (/»0.6), one inside the unit circle C, 
and one outside C,, tending to cancel the one zero of D{z) 
inside C, and the one zero o( D{\lz) outside C|, which are 
near zc, so that the autospectral estimate C,, (/) is well 
behaved near fe. However, the cancellation is not perfect, 
and the small spike at/c in Fig. 14J remains. For this example, 
the pole location inside C, is 0.993591 exp (/f 0.600104), 
whereas the zero location inside C, is 0.992697 exp (/t 
0.60001S). Since the pole is closer to C,, a positive-going 
perturbation occurs in Fig. 14a at fe. 

Similarly, the cross-spectrum of C(r) ideally should have 
no indication at fe smes there is no tone in process 1 In order 
to counter the zeros of D(z) and 0(1/z) near ze, -V,, (z) 
develops nvo zeros near zc. For the same example, they are 
at 0.996958 exp (/»0-592593) and 0.983192 exp (jn 
0.615533), both of which happen to be inside C,. Other 

examples have shown that these two zeros can both be o side 
C|, or one can be inside and one outside C, 

Finally, since process 2 does have a tone at /„, .VJJ (/) does 
not develop any zeros near ((I Thus the zeros of D(z) and 
D(llz) dominate near ze, and the estimate Gn(J') in Fig. 146 
develops a large value near/,., as desired. 

The squared coherence estimate in eqn. 13 is independent 
of D(z) or Q(z). However, iccording to the discussion above, 
it has two double-zeros mar ze, owing to the /V,2,^) term. 
These four zeros can lie either all inside C,, all outside C,, 
or two inside and two outside Ci .4C,(^) also has two poles 
near ftl owing to the two zeros of ,Vn (z) near ze: one pole 
lies inside Cl; the other lies outside C,. Since there are no 
poles and zeros near ze that cancel exactly, some very fine 
detail can develop in the coherence estimate in the neighbour- 
hood of ze. Sharp notches and spikes are the rule, not the 
exception, in the MSC evaluated on C, in the neighbourhood 
of a tonal frequency c wing to this imperfect cancellation of 
poles and zeros. The phase variations can be so rapid that 
large FFT sizes are required to track it accurately. The two 
double-zeros of N^(z) cause this rapid variation, especially 
if they are all located on the same side of C,; the two zeros 
of V,, (z) are always located on opposite sides of C, and so 
do not themselves lead to a very rapid phase change near ff, 
although they greatly influence the MSC in that region. In 
general, the squared coherence ^2(z) has 2p double-zeros 
and 4p poles in the complex J plane, none restricted to be 
inside or outside of C,; however, they all occur in conjugate 
pairs. 

Since order p  = 8 used in this example is larger than 
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necessary to account for a single tone and a narrowband 
spectral component, the extra poles [zeros of Q(z)\ are 
distributed fairly uniformly inside C,, with radii in the range 
0.5 to 0.7. The extra zeros of polynomials Nkl{z) can lie 
anywhere, either inside or outside of C,. 

6       Discussion and conclusions 

Experimental results for two-channel linear prediction auto- 
and cross-spectral estimation have been presented for a 
first-order autoregressive process and for cases with inter- 
fering tones. It has been shown that some misleading estimates 
may be obtained because of feed-across in the mathematical 
manipulations of the finite lengths of data from each channel. 
This feed-across manifests itself as narrow spurious spikes 
in the spectral and coherence estimates. In order to circumvent 
this problem, while maintaining the high-resolution properties 
of linear prediction techniques, the following philosophy 
for multichannel spectrum analysis is suggested. 

Suppose we are given finite data records ot three station- 
ary processes Kit). ,v(f) and z(r), and we wish to estimate 
all the autospectra and cross-spectra involved. The Blackman 
and Tukey and weighted-FFT approaches evaluate the auto- 
spectrum of each process separately. Thus the spectrum of 
x(t) is estimated without interference from y{t) and z(t)\ 
the availability of the data records tor wn and z(t) plays no 
part in the eventual autospectral estimate for x(t). Ad- 
ditionally, the cross-spectral estimate for processes .mi and 
y{t) is independent of the available data on the z(r) process. 
Finally, the coherence estimate between two processes is 
independent of any additional data records for other (statisti- 
cally related) processes. 
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On the other hand, the three multichannel linear predictive 
spectral analysis approaches give autospectral estimates of the 
x(t) process that are dependent on the available values o(y(t) 
and z{t). Also, the cross-spectral estimate between x(t) and 
yit) is dependent on the particular :{i) data available. This 
procedure can be poor for short data lengths if, for example, 
y(t) contains a strong tone at /„ that is not present in x{t) 
or 2(t). Thus estimates of spectra C„(/), GXy(/) and C„(/) 
ail contain tonal indications at /„ that should not be there. 
These spurious tonal indications are due to feed-across 
between the available finite data segments of the various 
processes. 

This raises the following questions: 
(i) Should the estimate of Cxx(f) be determined only from 

the available x{i) data record? 
(ii) Should the estimate of Gxy(/) be determined only from 

the available x(t) and v(r) data records? 
(iü)If coherence C,y(/o) ■ 0, why use >(.) to estimate 

(iv)If coherence CXy(f0) ■  I, why use the completely 
statistically dependent y(t) data to estimate GMX(f0)1 

This philosophy of discarding irrelevant' data would be 
consistent with the Blackman and Tukey and FFT approaches. 
Carrying this philosophy on, we are led to the following: 
estimate GIX(f) solely from the x{t) data by some single- 
channel linear predictive technique. Then estimate cross- 
spectrum (/„(/) or coherence C(/) directly, by some linear 
predictive technique whose sole goal is linear prediction 
of x{r) from y(t) and vice versa, with no interest in or diver- 
sion from simultaneous estimation of Gxx(f) or Gy,(/). 
By this means, we can concentrate on extracting all the 
relevant cross-spectral information with maximum stability 

and resolution. Other cross-spectra of interest between particu- 
lar pairs of available processes can be similarly obtained, 
one at a time. 
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ABSTRACT 

Estimation of multi-channel auto-spectra, cross-spectra, and coherences 
via linear-predictive techniques suffers from cross-feed between the limited 
number of data points available of each channel process.    Here, the coherence 
between two channels Is estimated directly, without diversion from auto- 
spectra estimation, so as to minimize only the valid computable linear- 
predictive errors that can be formed from given finite data records. 
Furthermore, the least-squares minimization procedure Is constrained so as to 
yield physically-consistent magnitude-squared coherence estimates, and can be 
accomplished by a fast algorithm In a recursive fashion.    The resulting non- 
linear programming problem that Is encountered Is solvable via a recursion em- 
ploying the Hessian of an unconstrained error measure.    Examples of applica- 
tion of the technique to short data records yields good coherence estimates. 

INTRODUCTION 

Estimation of the magnitude-squared coherence (MSC) between two stationary 
processes x and y has usually been accomplished by estimating the auto-spectra 
and cross-spectrum of the two processes and forming the ratio 

cw * ZM 
&„w^tf) Eq.  1 

Here, f Is frequency, Gxx(f) and Gyy(f) are the auto spectral estimates, 
and tjXy(f) is the cross spectrum estimate. 

Recently, a more direct method of estimating the MSC was presented (1,2), 
whereby two filters are used to linearly estimate y from x and also x from y. 
The product of the two filter transfer functions Is then used as an estimate 
of the MSC.    In this way,  no denominator estimates (as In Eq.  1) are ever re- 
quired.    Some related work Is given in (3). 

Hov/ever, there are some limitations in this past work that need further 
consideration.    In (1, Eq. 4), the squared errors were not confined to the 
valid errors that can be computed from given finite data records of x and y. 
This results in the claim (1, page 647) that the matrix that must be inverted 
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1s Toeplitz.    Although this is true, the use of invalid error terms and 
Toeplitz matrices has been found in (4) to yield poorer auto-spectral esti- 
mates, and probably does so for MSC estimation as well.    The adaptive approach 
in (2, Eq. 6) uses only available data, but does not make optimum use of given 
limited data segments, in terms of variance reduction. 

In addition, in both (1) and (2), since no constraints are imposed on the 
two filters that do the linear predictions of y from x, and x from y,  respec- 
tively, the product of the transfer functions need not be real, although the 
true (unknown) MSC is always real.    Thus, in (1, Eq. 14), the magnitude of the 
product is taken, whereas in (2, Eq. 7a),  no mention is made of the complex 
nature of the right-hand side.    The reason for this behavior is the independ- 
ent calculation of the two linear-predictive filters from finite data records. 

Finally,  in both (1,  Eqs. 4 and 13) and  (2, Eq. 2), the number of forward 
weights is set equal to the number of backward weights.    This unnecessary lim- 
itation should be eliminated, as may be readily seen by considering the case 
where one process is a (noisy) time-delayed version of the other.    Insistence 
on an equal number of forward and backv/ard weights can result in the unneces- 
sary computation of many near-zero weights. 

In this paper, we limit the least-squares calculation solely to the valid 
errors that can be formed from finite data records; we constrain the two fil- 
ters that do the linear predictions so as to yield a real MSC estimate; and we 
allow the number of forward and backward weights to be arbitrary«    We also use 
a fast recursive algorithm to solve for the filter coefficients. 

BASIS OF TECHNIQUE 

For continuous-time stationary processes x and y,  the linear non-causal 
filter with input x, that minimizes the mean-square error in predicting the 
value of y at the same time instant, has a transfer function given by 
Gyx(f)/Cxx^)'    Conversely, linear prediction of x, based upon data record 
y, is accomplished by a linear filter with transfer function GXy(f)/Cyy(f). 
The product of these two transfer functions is then precisely trie MSCbetween 
x and y. 

For discrete-time stationary processes x and y, exactly the same relations 
ensue, except that the spectra are discrete Fourier transforms of discrete 
correlation functions.    Again,  the two filters are allowed to be non-causal 
and of infinite extent in the impulse response domain. 

In the practical case,  the  various required auto- and cross-correlations 
and spectra above are not known, only finite data records are available, and 
the filters must have limited impulse response durations.    Also, the mean- 

square (ensemble average) error must be replaced by a measurable physically- 
meaningful  sum of squared errors and then minimized by choice of the free 
parameters.    The details of such a procedure to accomplish MSC estimation are 
presented below. 

.    ••_    --    "W 
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FORMATION OF VALID ERRORS 

Suppose that data records of x(in) for Mj £ m < M2 and of y(n) for Nj 
£ n < No are available.    We Hnearly estimate y(nT fron the available data 
record (x(m)}  according to 

Eq. 2 

where p and q are arbitrary Integers.    We select -q £ p without loss of gener- 
ality; I.e., p+q >^ 0.    These Integers should be chosen so that the region of 
{x(mft , on which y(n) Is statistically dependent. Is covered by (non-causal) 
Impulse response TaU)} .    Similarly, estimation of x(m) Is accomplished 
according to the linear filtering operation 

Eq. 3 

Eqs. 2 and 3 are consistent In their selection of the extents of the non- 
zero coefficients In Impulse responses ta(k)) and [b(k)) , In that the statis- 
tically dependent portions of x and y are covered equally well, regardless of 
which process Is predicted fron the other. 

In order to compare y(n) with y(n), and x{m) with x(m), and thereby form 
valid errors, we must restrict n and m according to 

Nj S H s J^.,   uoWe  M3 • *w5c(N,/W),  N+a m*[%K'%)t    Eq. 4 

where It Is presumed that N3 £ N4 and M3 £ M4.    The sums of squared 
errors are then 

*j*   1 J I2 M4 i2 

Eq.  6 

Eq.  7 

The data points required on the right-hand sides of Eqs. 6 and 7 are all 
available in the given records; i.e., these equations involve only valid 
errors. 
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UNCONSTRAINED LEAST-SQUARES SOLUTIONS 

The set of optimum filter weights [a0(k)}  that minimize error Ey is 
given by the solution of 

£RWM^) • 1?3xW   W -^^ ^ 

where 

Eq. 8 constitutes p+q+l linear equations in the p+q+l unknowns  faofk)]^. 
Furthermore, with an appropriate shift of time origin, a recursive fast algo- 
rithm (5) exists for the minimization of Ey in Eq. 6, i.e., the solution of 
Eq. 8.    Similarly, the independent minimization of Ex in Eq. 7, by choice of 
optimum filter weights  ty>0(k)3 , can be realized by a second call to that 
same fast algorithm.    Thus, we have an efficient procedure for determining the 
optimum unconstrained filter weights that separately minimize Ex and Ey; 
these are called the unconstrained least-squares filters. 

We can now evaluate transfer functions, and form the product AoCfjBoff), 

Eq.  11 

as an approximation to the MSC for  |f|  < 1/2.    An example of the result for 
1000 coranon data points in each sequence and for p * q « 6 is given 1n Fig. 
1.    The actual data points were generated by a two-channel first-order 
auto-regressive process according to (6, pages 5-6) 

xOd- jrxfk-i) -.13-jM + uOc), 

uCtt'.^XÜt-l) -K5TljM*vto, Eq.  12 

where  {u(k)} and  iv(k)]   are independent white uniformly-distributed random 
processes. 

The real and imaginary parts of A0(f)B0(f) are plotted as solid curves 
in Fig.  1, while the true MSC for Eq.  12 is plotted as a dashed curve.    Since 
errors Ex and Ey were independently minimized,  the imaginary part of 
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Ao(f)Bo(f) is not zero, which Is not consistent with a MSC which must be 
real.    However, 1t Is conceivable that the size of the Imaginary part of 
Ao(f)Bo(f) could serve as an Indicator of the statistical accuracy of the 
real part as an estimator of the MSC, If p and q are large enough; this possi- 
bility has not been pursued. 

CONSTRAINED LEAST-SQUARES SOLUTIONS 

In order that the transfer functions In Eq. 11 have a real product for all 
f, It nay be shown (for real filter weights) that the convolution of filter 
weight sequences (a(kA  and lb(k)}   must be even.    Explicitly, this means that 
we must have (for p+q >^ 1) 

This equation constitutes p+q quadratic equality constraints on the 2{p+q+l) 
unknov/n filter coefficients. 

We now must form a single physically-meaningful error quantity and ninl- 
mlze 1t subject to the p+q quadratic constraints In Eq. 13.    We select the 
average of the two-squared errors defined In Eqs. 6 and 7; this seems reason- 
able when the two available sequences are normalized to have the same energy. 
Mathematically, this translates Into determining the stationary points (not 
minima) of the quantity 

0 ■ ±[ts ^+%^ ^ b^) - ^"^X Eq.  14 

where (xU^ are Lagrange multipliers; we set [a(k)]   and  {b(k)]   equal to zero 
except for the ranges utilized above In Eqs. 2 and 3. 

The solution for the stationary points of Eq.  14, obtained by setting all 
the partial derivatives of Q with respect to   {a(k)] ,   Ib(k)] , and   [xin)]   equal 
to zero,  results In 3{p+q)+2 non-linear equations.    Ordinarily, the numerical 
solution to these equations would be very difficult;  in fact, there are 
generally many solutions.    However, we already have a good approximation (at 
least for many data points)  to these solutions, in the form of the solutions 
to the unconstrained least-squares approach of the previous section.    Further- 
more,  recall that the unconstrained least-squares filters can be determined by 
a fast algorithm.    Thus,  if we use a recursive technique and employ the 
Hessian (7) of the quantity Q in Eq.  14,  along with the starting values from 
the unconstrained solutions and zero starting values for the Lagrange multi- 
pliers, we will have an efficient recursive method of getting the desired 
result,  namely a purely real MSC estimate via minimization of a physically- 
meaningful error criterion. 

The results of this constrained procedure for the same pair of 1000 
data-point sequences as above, and for p a q s 6,  is shown in Fig.  2, after 
the recursion for the stationary point of Q has reached its final  values.    The 

,' 
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Imaginary part Is zero, and the real part Is substantially the same as Fig. 1, 
except for a slightly better behavior for the small MSC values near the 
Myqulst frequency. 

01SCUSSI ON 

If p and q are not chosen large enough to encompass the regions of linear 
dependence of processes x and y, poor estimates of the MSC can result, even 
though the number of data points gets large.    On the other hand, too large 
values of p and q results In excessive statistical fluctuations In the MSC 
estimate.    Thus, the familiar trade-off between frequency resolution and sta- 
bility must be faced. 

For many cases, the real part of A0(f)Bp(f) for the unconstrained 
approach may suffice as the MSC estimate, without bothering to resort to the 
recursive approach for a zero Imaginary part.    This would also avoid the need 
for Inverting a large non-Toeplltz matrix of size 3(p+q)+2 In the case when 
p+q Is large.    If so, use of a fast algorithm, as Indicated here, affords a 
very efficient procedure for getting good MSC estimates via mlnlmlzaUcn of 
valid errors only. 
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ABSTRACT 

A two-parameter :lass of Bessel weightings is prejented whose 

patterns have controllable sidelobe decay and mainlobe-to-peak- 

sidelobe ratio, for ono-, two-, and three^jimensional arrays. In the 

one-dimensional application, the class of weightings subsumes the 

Kaiser-Bessel weighting as a special case, and extends to the ideal 

van der Maas weighting as a limiting case. In the two- and three- 

dimensional applications, all the results are new; the ideal patterns in 

these latter cases are also derived and found to require weightings 

with generalized functions that are more singular than the delta 

functions required for one dimension. Approximations to the 

generalized functions are presented. 
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A TWO-PARAMETER CLASS OF BESSEL WEIGHTINGS WITH CONTROLLABLE 
SIDELOBE BEHAVIOR FOR LINEAR, PLANAR-CIRCULAR, AND VOLUMETRIC- 
SPHERICAL ARRAYS; THE IDEAL WEIGHTING-PATTERN PAIRS 

INTRODUCTION 

A wide variety of time-domain weightings for spectral analysis,  whose 

frequency-domain windows have very good sidelobe behavior, have been presented 

In [1,2].    Since the basic mathematics descrioing the response of a weighted 

linear array can also be written as a Fourier transform, these 

weighting-window pairs have immediate application to one-dimensional array 

processing as well as spectral analysis. 

Most of the weighting-window pairs in [1,2] have no parameters In their 

design equations; that is, the windows are fixed and cannot be altered,  as for 

example,  in the Hanning and Hamming windows.    A few windows,   such as the 

Oolph-Chebyshev and Kai ser-Bessel [3,4], do have a single parameter in their 

desiin equations that allows for a tradeoff between the mainlooe width and tue 

ratio of mainlobe to peak sidelobe.    However,  neither have any control over 

the rate of decay of the sldelobes,  the Dolph-Chebyshev case having no decay, 

and the Kai ser-8essel case a 6 dB/octave decay.    It is obvious that in order 

to control both the sidelobe decay and the malnlobe-to-oeak-sidelobe ratio,  a 

two-parameter family of weightings is necessary.    And it is desirable 

(although not necessary)  for the window to possess a  simple analytical fonn 

that can be easily understood and evaluated for a range of parameter values. 

Such a class of Bessel  weightings is presented in this report. 

For the array application, the weighting is applied as a multiplicative 

factor in the  spatial domain; the response to plane wave arrivals from various 

directions is called the pattern, rather than the window.    Here we wi 11 give a 

tv*)-parameter family of weighting-pattern pairs for use with arrays in one, 

two, or three dimensions, and shall indicate the ideal  weightings and 

corre^onding oatterns In all cases.    Special cases of this family will  be 

shown to Include  some of the weightings that are currently employed in array 
ani signal processing. 
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RESPONSES OF ONE-, TWO-, AND THREE-DIMENSIONAL ARRAYS 

LINEAR ARRAY 

We consider a continuous line array located on the x-axls in the range 

(-R,R) and subject to symnetric weighting w^x) for  \*\  < R.    For a 

single-frequency plane wave of wavelength x, arriving at angle ela relative 

to the normal to the line array, the array voltage re?»onse, by use of 

time-delay steering to look-angle ^ .  "• s 

R 
g(u)  »    f dx expt-i2»Y(s1n^a-sin^ )J  w^x). (1) 

-R 

By letting  s ■ x/R and by using the  symmetry of weighting w,    ^ can express 

response (1) as 

1 .£ 

g(u)  =    (   dsf-jcos(us)  w( s), U) 

0 

where normalized weighting 

w(s)  = [ZIPR w^Rs). (3) 

and dimensionless parameter 

u = 2^ sind -sin^i ) (4) 
x a        ^ 

incorporates the relevant features of array geometry,  look angle,  and the 

arrival wavelength and angle. 

Thus the response (2)  of a line array is a cosine transform of the 

normalized weighting.    As an example,  rectangular weighting yields response 

g(u) pronortional to sin u/u,  which has its first few nulls at u = IT,   2*,  in. 
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R.ANAR ARRAY 

The voltage response of a continuous planar-circular array of radius R,  to 

a plane wave of wavelength x arriving at (polar, azlmuthal) angles Ua> ^ )> 

and subject to weighting which depends only on the distance from the center of 

the array, Is derived In appendix A, culminating In the result (A-ll).    It Is 

1 

g{u) -   J   ds s J(us) w(s), (b) 
0 0 

where w( s) 1 s the nonnallzed weighting and 

R  f     2 2 /        \11/2 

u » 2iA [sln^  + sin 6^- 2s1n^sinia COS(8L-ej       . (6) 

Here ((!•, & )  are the (polar, azlmuthal)  look angles; that Is, the response 
* b»sie»l|u 

(5) of a planar-circular array 1 sAa zero-th order Bessel transfom of the 

normalized weighting.    As an example, rectangular weighting w yields response 

g(u) oroportional to J^uj/u,  which has its first few nulls at u = 3.83, 
7.02,  10.17. 

VOLUMETRIC ARRAY 

The voltage response of a continuous volumetric-spherical array of radius 

R, with weighting dependent only on the distance from the center of the array, 

Is derived in appendix B.    The result is given by (8-lü)  in the form 

0 

y*)ere now 

1/2 
u = 2*- 2-2cos/^cos^   - 2sind»sin^a cos(&-ea)l 

The other parameters are as explained in the previous subsection. 

(8) 
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Equation (7) has the basic form of a sine transform.    As an example, 
rectangular weighting w yields response g(u) proportional to 

sin u-u cos u 
 "I  (9) 

which has Its first few nulls at u » 4.49, 7.73,  10.90. 

UNIFIED FORM FOR ARRAY RESPONSES  IN DIFFERENT DIMENSIONS 

The results In (2),  (5), and (7) for the array voltage response in one, 

tv*o, and three dimensions,  respectively, appear to be quite different. 

However, they can all be written In the basic form 

1 

g{u)  »     Ids K(u,s)  w(s). (10) 

where the kernel 

K(u, s)  = s/ij J(us) 

for u 72\* H cos(us) 

s tlj(us)      for u  = 0 (ID 

Here "^ 1 s a Sessel function of order  i, and we have used [5; 10.1.1, 

10.1.11, 10.1.12],    Thus all  the re^onses are basically Bessel transforms of 

the normalized weighting  w,  with the correspondences given in the following 

table. 

Table 1.    Identification of Values of w  in (11) 

Nunber of Dimensions     Value of u 

1 -1/2 
2 U 

3 1/2 
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If we substitute (11) in (10),  we have the explicit result for the 
response pattern: 

g(u)  =   J ds sffj J(us) w(s). (12) 

Inspection of the properties of the Bessel function reveals that g(u) as given 
by (12) Is even In u;  see [5; 9.1.10].    Thus we only need to investigate g(u) 
for u > 0. 
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HAMKEL TRANSFORM PAIRS 

The Hankel transform pair of order u Is given by [6; page 136] 

f(U)        = [ ds (us)  J (us) F(s) for u > 0, 

F(s)  »     j   du (su)?4 J(su) f(u) for s > 0. (13) 

Thus knowledqe of either function f or F for positive arguments enables 

detennlnation of the other function by an Integral transform.    Under the 

Identification 

F{s)  « sr    w(s),       f(u) » u     g(u), (14) 

(13) takes the form 

g(u)   =    J     dS   s/^)   J,!^)   VA -:)   for   u    • M,3l UJ     ^ 

w(s)  »    J   du ugj  J(su) g(u) for s > 0. (16) 

Equation (15)  1 s ^ore general than (12) in that it allows for weighting 

w( s) to be nonzero for s > 1.    Equation (16) 1s complementary in that, given a 

desired pattern g(u).  It indicates what weighting  w( s)   is required for s > U. 

However, If we attempt to specify some desirable pattern g(u), and then solve 

(16)  for the required weighting w( s),  it will generally turn out that the 

resultant w( s) will be nonzero for s > 1.    Thus not any pattern g(u) can be 

selected If we insist on a finite-support weighting w( s);  rather,  desirable 

candidate patterns can be substituted in (16) and the corresponding weighting 

K< s) evaluated to see If it Is zero for    s > 1.    If not, the candidate pattern 

is disallowed and must be modified or discarded.    We will use precisely this 

procedure in a later section when we determine the weightings tnat realize tne 

ideal patterns in various nunbers of dimensions. 

If pattern g(u) yields w( s)  =0 for s > a,  the  scaled pattern jiu/a) yields 

a "lodified weighting  a        v^as),  which is zero for s >  1,  as desired. 
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DEFINITION OF TWO BESSEL FUNCTION RATIOS 

It will be very convenient notatlonally In the following to employ the 

shorthand notations 

J"(z)        ,     *   ,    2/ lc 

ftU,   , VIL.J:   S:  ^ 'V        > (17) 
(7° z

a 2°   fc5 klria+l+k) 

({ (z) , iaii!.. J. S"  !z2/4)    • ^^ a z
a        2

a   J^ klr(a+l+k) 

for these two Bessel function ratios; these types of functions have already 

been encountered In (11),  (12),  (15), (16).    They are extensions of the 

"^(z) functions discussed in [7; page 56].    Both functions, (^(z)  and 

^(z), are single-valued and are entire in z for any a, as well as being 
entire in a for any z [5; 6.1.3, 9.1.1].    Special cases of these functions 

that are useful here are given by [5; 9.6.6, lü.1.1,  10.1.11,  10.1.12, 

10.2.13,  10.2.14] 

d5a(0)  -^.{0) ■ u!  " ~z  
2ar(a+l) 

(ü0(z)  « I0(z),(J?1(z)  s~— .4i(z)  = z1!^). 

dmU) .(l^coshz-slnhz ( ^3/2(z) =^(z sinh 2 . cosh 2) | 

tf5/2(z) M <3+z \sinh j-3zcosh z 

-5/2(z)   =(7)2[(3+z2, cosh z " 3z S1'nh ZJ- (19) 

A useful prooerty,  which  is obvious from (17)  and (18)   and whicii will find 

frequent application here,  is 
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D (±12)   'dliz),      d (±12)  -^(X). (20) 

These relations hold true for all values of z, real or complex.    Properties 

similar to (19) can be obtained for the &-a(z) functions;  for example, 

jkl/2(z)  'ß.i/2{±u) -/ijcoiMiU) =[|)cos(2). 

Other useful properties follow from the use of [5; 9.1.30 and 9.6.28], 

il<z> a-zJU<2>.  ^ ^O2*' (21) 

and from [5; 9.1.27 and 9.6.26], 

(^(Z,   =     7k-2(2) - 2(-l^a-i(z)} 

h{z) ■-7[^.2(z,-2(a-1)^-i(2}- 
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A CLASS OF BESSEL WEIGHTINGS 

The class of Bessel weightings that we are suggesting, regardless of the 

number of dimensions of the array, Is given by 

vrfs)  -P&j^j it   pTs^Jfor 0 <  s < 1,      where v > -1, B > Ü,        (22) 

and w( s)  » 0 for s > 1.    There are two real parameters In this class, namely, 

v and B.    For the ^eclal case of v » 0, this weighting Is already known as 

Kaiser-Bessel [3,4]; Its pattern has nearly the optimum energy content within 

a specified bandwidth in the one-dimensional application to ^ectral analysis. 

Substitution of (22)  in (12) or (15) yields the closed form for the 

pattern [6; page 30, fourth integral, and 5; 9.6.3] 

0 \        ' N 
(23A) 

for all u, if u > -1 and v > -1.    (23B) 

Here we have employed definitions (17)  and (18) and used (20).    The condition 
on M guarantees convergence of Integral  (12) at s s 0,  whereas the condition 

on v guarantees convergence of Integral (12)  at s s 1.    The first fom of 

(23B) is more convenient computationally for u 2 3, whereas the second form is 

more convenient for B ^ u. 

Weightinq-pattern pair (22)-(23)  are the fundamental  results for the class 

of Bessel  wpightings under consideration.    They apply to one-, two-,  or 

three-dimensional arrays v^ien u is specialized to -7, 0,  or-*, reqsectively, 

and \rfien u is Interpreted as (4), (6),  or (8), respectively.    The parameter B 

is nornegatlve and will be  snown to control tue ratio of mainlooe to peak 

sidelobe.    For the case of one dimension, u  s "f, the kernel  of transform (23A) 

1 s a cosine (see the top 1 ine of (11));  in thi s special case, 

tne patternjl^.f yu -B J was also independently and simultaneously discovered 

by Roy Streit [8]. 
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WEIGHTING CHARACTERISTICS 

Weighting (22) Is positive for 0 <  s < 1 since v > -1 and B 2 0;   see 

[5; 9.6.10].    In addition.  It Is zero and therefore continuous at s = 1 If 

v > 0.    In fact [5; 9.6.7], 

w(s)~ j^}y     as s-1-. (24J 

For v ^ 0, weighting w( s)  1 s monotonlcally decreasing In son (0,1);   see 

appendix C.    However, for -1 < v < 0,  w( s) possesses an Integrable singularity 

at s ■ 1. 

Examples of weighting  (22) are plotted In figures 1-6 for v = 2,  1.5,  1, 

.5, 0, -.5,  re^ectively.    Figure 5, for v » 0, corresponds to the 

Kaiser-Bessel weighting [3].    For the larger values of v, the weighting blends 

snoothly to zero at s * 1,  but for the snail er values of v, the behavior of 

^ s)  1 s more Irregular at  s s 1, being discontinuous for v » 0 and infinite 

for v < 0.    The larger values of B lead to snoother functions that are 

Gaussian-like; in fact, for s < 1 [5; 9./.1J, 

vrfs)« JtiE^expf-W)     «B-*-. (25) 
(2.B/*BV V    2"     / 

More generally. 

w(s)«(21r)"V
2v(B>lfsV    expfBJl^Tj    as B^^?-»». (26) 

The opposite limit for snail B is 

w( s)  » fi^L.yf^«)for B  = 0, (27) 

10 
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W(8) 

w(0) 

Figure 1. Normalized Weighting for v = 2 
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Figure 2. Normalized Weighting for v = 1.5 

11 
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Figure 3.    Normalized Weighting for v = 1 

w(s) 
w(0) 

Figure 4. Normalized Weighting for v = .5 
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W(8) 
w(0) 

Figure 5. Normalized Weighting for v = 0 
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Figure 6. Normalized Weighting for v = -.5 
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RESPONSE   fÄTTERN CHARACTERISTICS 

The pattern was given by (23) as 

,(«).^PP,).^(V^. (28) 

where the composite order of the Bessel function Is 

o * u + v + i . (2y) 

The asymptotic behavior of the pattern (28) for large u Is available from (17) 

and [5; 9.2.1]: 

asu—• (30) 

Since g Is proportional to the array voltage response, (30) corresponds to a 

decays 6a + 3 dB/octave    as u -• *»• (31) 

Expressed In terms of the original dimension-parameter u  and weighting- 

parameter v, this Is,  from (29), 

decays Su + 6v + 9 dB/octave   as u —» •»0 

[6v + 6 dB/octave for one dimension     ~~^ 

•' J6v + 9 dB/octave for two dimensions       >. (32) 

(_6v + 12 dB/octave for three dimensionsj 

Thus the greater the number of dimensions,  the faster is the rate of decay of 

the sidelobes of the response, for a common value of weighting-parameter v. 

Each additional dimension adds a 3 dB/octave decay, for a fixed v. 

14 
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Special cases of the pattern (28)  are available upon use of (19) and (20); 

for example. 

g(u) 
< 

.0(^).#?) 

fu2-B 

VJ v?^ v^ FT 

(33) 

All of these relations are valid for all u,  whether u is larger or smaller 

than B; of course, the fonner form in each line is more convenient for u f B, 

while the latter i s more convenient for u 2 3.    The third result in (J3), for 

a = •», includes the pattern in one dimension (u s - "jj, v x 0) for the 

Kaiser-Bessel weighting  IQWI-S2') for 0 <  s < 1. 

The  special case of a s - -^ in (33) deserves extra attention; thi s case 

will be called the ideal pattern: 

for 1 
7 (34) 

The plot in figure 7 reveals that the sidelobes are all equal,  and that the 

15 
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»-r» B^Tr. »■".»".» -^ -jr rTr+jmnrsmrjwjwJ • «■ » ^r 

(J.)/2C08h (B) 

voltage ratio 

Figure 7.    Ideal  Pattern gi(u) 

mainlobe level _ „nf.*ia\ 
si de lobe ffyr  "COStiCB). (35) 

The mainlobe width, as measured to the point where the mainlobe first decays 

to the eventual  sidelobe level, is 

mainlobe width = B. (36) 

The abscissa u is given by (4), (6), or (8) for one, two, or three dimensions, 

respectively.    Detennination of the required weighting to realize the ideal 

pattern (34) in different numbers of dimensions is taken up in a later section. 

16 



TR 6761 

If a < - 2» the Pattern (28)  nas Increasing  sldelobes as u Increases;   see 

(30).    Therefore,  a i - -j are the only cases of practical interest for pattern 

(28). 

Plots of pattern (28)  are given in dB in figures 8-13 for a = 2, 1.5,  1, 

.5, 0, -.5,  respectively, for various values of B.    The program is listed in 

appendix D.    The larger values of a realize the more rapid decay of sidelobes, 

but, on the other hand, have wider mainlobes.    Figures 8-13 indicate the 

necessary tradeoffs between mainlobe width,   sidelobe decay, and 

mainlobe-to-sidelobe ratio that must be considered in any weighting selection. 

A small chart in the upper right (juadrant of each figure indicates some 

allowable values of u and v that app'y to that figure.    For example, in figure 

8, the pattern for a = 2 applies to all the following: 

1 3 u  = - i (one dimension)    with v = -^ » 

or 

w  = 0 (two dimensions)      with v = 1, 

or 

u  =-i (three dimensions)  with v = ■*    . (37) 

When we come to figure 11, for a = .5, however,  the case of n ■ -w, v ■ -1 has 

an asterisk next to the v ■ -1 entry.    The reason for this is that the 

integral (23)  leading to pattern g(u)  was convergent only for v > -1, and now 

we are trying to violate that condition.    A  similar cautionary note is 

indicated in figures 12 and 13; in fact, all three cases in figure 1J violate 

the condition v > -1.    Dehnte this preclusion,   we shall find later that the 

required weighting does,  in fact, have the form (22) for the corresponding  v 

values given in figures 11 - 13, but requires generalized functions with a 

singularity     at the endpoint s = 1 of the interval.    Tni s extension to v < -1 

is desirable and important because realization of the ideal pattern (figures 7 

and 13)  requires values for v in this region,  regardless of the number of 

dimensions. 

17 
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Figure 8. Pattern in dB for a = 2 

18 
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Figure 9. Pattern in dB for a = 1.5 

19 
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Figure 10.    Pattern in dB for a =  1 
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Figure 11.    Pattern  in dB for a =  .5 
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Figure 12.    Pattern in dB for a = 0 
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Pattern in dB for a = 



FIRST NULL LOCATION 

Let z
0 be the smallest nonzero null location of Ja(z); I.e., 

Ja(Za)   =0. (30) 

A short Hst of fza] iS given below in table 2.    Tuen, by use of (17), the 

Table 2.    First Zero of ir(z) 

a z 
a 

-0.5 1.5708 

0.0 2.4048 

0.5 3.1416 

1.0 3.8317 

1.5 4.4934 

2.0 5.1356 

2.5 5.7635 

3.0 6.3802 

3.5 6.9879 

4.0 7.5883 

4.5 8.1826 

first null  location of pattern g(u)  in (28)  is at u0>  where 

(u2-B2)*=za. U^BV)'   . (39) 

The results in figure 14 display the first null location as a function of 
1 2 B, for various values of a.    For large B, u   behaves as B + -izVB.    3y the 

identification of a as u + v + 1,  this curve applies to any nunber of 

dimensions and to whatever value of v is selected in weighting w( s)  of (22). 

The curves indicate that the first null  location u0 is monotonically 

increasing in both B and a. 

24 
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LOCATION OF  PEAK OF FIRST SIDEL03E 

By use of (28) and (21), we obtain derivative 

u* .yxi^l^.-»jjitt).      (40, 

Therefore,  reference to (38)  reveals that the location of the peak of the 

first sldelobe of g(u) occurs where g'(u_)  = o; I.e. 

(UP-B2/- vi«      UP"(B2+ZJJä        <41) 

If we employ more explicit notation In (3y)  and (4i),  we can express the first 

peak location In terms of the first null location according to 

u  (B.a)  - U0(8,a+1). (42) 

Thus all the results in figure 14 can be applied directly to the first peak 

location.    For example,  (42) yields 

1^,(8, -?) » u0(B, \); (43) 

thus the third curve from the bottom in figure 14 gives the location of the 

peak of the first sldelobe when a s - i» 

PEAK SIDELOBE LEVEL 

The value of voltage pattern g(u)  at location (41) gives the level of the 

peak sldelobe: 

s<v iJfP) -^M- '«' 
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Since the origin value of the pattern Is 

9^ ■«^(3), (45) 

tne voltage ratio of peak sidelobe level to malnlobe height Is 

*& .^. (4.) 
a 

Relation (46) Is plotted In dB In figure 15 as a function of 3,  for various 
values of a; I.e., 

dB - 10 logf'^i  Riirj (47) 

The peak sidelobe level decreases monotonlcally with Increasing a, but has no 

simple behavior versus a except for very snail B or very large B. 

The results of these last two figures are combined In figure 16,  where we 

plot the peak sidelobe level In dB versus the first null location u0.    Tnese 

latter curves are virtually linear over a wide range.    If we disregard the 

sidelobe decay rate, the most desirable rejion of this figure is in the lower 

left quadrant. I.e.,  snail u0 and very negative dB.    However, the closest we 

can get (from our family) Is the a ■ -.5 curve,  which Is, in fact,  the ideal 

pattern;  see (34)  and figure 7.    Furthermore,  the sidelobe decay rate is tuen 

0 dB/octave.    Higher sidelobe decay rates are attained by moving toward the 

upoer right quadrant of the figure; for example, the a = 3.5 curve has a üa+3 

= 24 dB/octave sidelobe decay rate.    This figure furnishes a very compact 

di<play of the important interrelationships that occur between the fundamental 
features of peak sidelobe level, mainlobe width,  and sidelobe decay rate, and 

allows for a quick tradeoff comparison of alternatives. 
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IDEAL WEIGHTING AND PATTERW 

It was shown In figure 7, In the previous section, that the pattern g(u) for 

a * - -* takes on a particularly desirable behavior,  namely, a narrow main!obe 

width and a large ratio of malnlobe-to-peak-sidelobe.    However, figures 11 - 13 

Indicated that realization of some patterns was apparently not possible in 

certain dimensions because we were violating the condition on parameter v in 

weighting (22)  that allowed for convergence of Integral  (23).    Here ne will 

address the more general problem of how to realize pattern (23), 

^^^(P^for all u. (48) 

for any p > -1, but without the current restriction of v > -1 in weighting 

(22).    This procedure will of course require a different and more general 

weighting than (22), and will furnish solutions to tiie asterisked cases in 

figures 11 - 13. 

The solution for the required weightings to realize {4d) for any y > -1 is 

conducted in appendix E.    All the weightings are zero for s > 1, as desired; 

their values for 0 i s i 1 are listed below.    From (£-14), 

*s) 'Jj^hi*^)*!^-" 
from (E-33), 

^   B   /     A '        /    2vr(v+l) 2T(v+l) 

for v = -1; (49) 

for -2 < v <  -1;  (50) 

and from (E-39), 

wU)   .J^i^fT^,^.  iWi)   -£'(s-l)      f or v  = -*. (51) 

The extended range for v < -2 i s given in (E-35)  and (E-3o).    Weighting  (4y) 

requires a generalized function,  namely,   a delta function,  with its 

singularity  located at  s = 1.    Weighting   (51)   requires,   in addition,  the 
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derivative of a delta function, located at s ■ 1.   The Intermediate cases In 
weighting  (50) require a generalized function with Its singularity located at 
s ■ 1; Interpretation and approximation of this generalized function Is given 
In appendix F. 

It can be observed frocn (49)-(51) that the leading term of w( s)  Is exactly 

what would have been obtained from Initial weighting (22) by substituting the 

appropriate value of v; here we are using I_n(z)  « In(z)  [5; 9.u.6j. 

However, the price of crossing the "natural boundary" at v » -1, which was 
originally required for (23), Is a generalized function with Its singularity 

located at s ■ 1.   And the further we go below v ■ -1, the more singular 
becomes the required generalized function; these points are elaborated upon In 
appendix F, 

The explicit assignment of v values In (48)-(51)  leads to table 3 for the 
weighting-pattern pairs.    With regard to application of (48)-(51) to the array 

Table 3.    Weighting-Pattern Fairs; u > -1 

Weighting  Pattern 

(50) with v » - I 

(51) 

processing application in various nunbers of dimensions, we have table 4 for 
the required weightings,   where we have  specialized tue values of u.     In all 
cases, the pattern realized is the ideal one of (34): 

g^u)  -jLiQlP-a7)* (|)cos^u2-B2j     for all u. (52) 
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Table 4.    Required Weighting for Ideal Pattern 

Number of Dimensions Value of u Required Weighting 

1 - j (49) 

2 0 (50) with v » - y 

3 -2 (51) 

The weighting given by (49) for one dimension, namely, u    ■ -1/2, has 
already been presented by van der Maas C9J.    However,  the application of (4y) 
to the realization of (48) for any u > -1 1 s new.   Additionally, all  the 
results In (50) and (51)  for any u > -1, and their application to two- and 

three-dimensional array processing in table 4, are new.    An approximation to 

the Ideal pattern in two dimensions,  namely, weighting (50) with v = -1.5, is 
treated in detail in appendix F. 
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SOME OTHER WEIGHTINGS 

Another candidate class of weightings for consideration Is 

« S)  . L±JVV I^B^T?) - B2V^V(B]57?)   for 0 <  s < 1,        (53) 

of which (49)  and (51) are representative examples, exclusive of the 

grnerallzed functions.    This class Is somewhat similar In form to the earlier 

case In (22).    Substitution of (53) In (15) yields pattern 

g(u) -   J* ds |Ä)   J{us) i^tlfffcT). (54) 
0 

Thl s Integral converges at s « U for u > -1, but needs no restriction on v 
whatsoever. 

To our knowledge, evaluation of (54)  is not possible.in closed form for 

general v; however, the following cases are evaluated in appendix G: 

g(u) 4u*l(P^) ■dCl(*-^) for v s 0; iSS) 

g(u).^(V^)-/,(") 

■(^VB2-U2)-|U(U) for v = 1; (bb) 

g(") iu-iSp-**)'}^ -¥%{ll)    forv- 2- {*7) 

Numerous ^ecial cases for one, two, or three dimensions are available from 

(55)-(57)  by  setting u  s - -j, 0,  or-j,  re?)ect1vely. 
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As an example, 1f we take (54)  and (56) for v » 1, we have 

Jdss^^s,-^.^).}^)^^,. («. 
0 f? 

Addition of a J function Immediately yields, for M > -1, 

1 

J ds s^)UJu(us) 
B 

f? I (sf?)4i*-u\ jJ!f (59) 

which has already been presented In (49)  and table 3.    A similar combination of 

(54) and (57) yields the results of (51) and the bottom entry of table 3. 

Additional results for v « 3, 4,  ... are possible via the metnod of appendix ü. 

One other two-parameter family of weightings that affords a closed form 

pattern is available from [10; 6.68Ö 1],  by identifying u = 1,  x = u,  z = 18, 

cos t » s, and by using [5; 9.6.3 and 9.1.35]: 

J   ds^costus)-^-^     Jv 

0 Vl-sZ "2 

u+iv 
JV|

U"^ "B /for 1     (ou) T 

This result is restricted to the line array.    The weighting is continuous at 

s * 1 if v > 1,  and the pattern (60) decays at 3+Jv drf/octave.     How good thi s 

pattern is has not been pursued. 

All the above results have been aimed at getting closed form results for 

the pattern; however, this is by no means necessary. One could consider the 

class of weightings (53) for any v, or the class 

exp(-32s2)  (l-sV    for 0 <   s < 1 (bl) 

for example,  numerically by substitution in (12) or (15) and use of some 

integration rule like Simpson's.    Once the patterns have been nuiierically 

evaluated and plotted for a sufficiently broad range of values of 8 and v, 

qood candidates can be  selected at will and the correspondinj  weijnti.og,  (ol) 

or (53) for example, easily evaluated.    For the line array,  this numerical 

approach is readily accomplished by use of an KKT. 
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DISCUSSION 

The ideal pattern was defined In (34)  as (ZAr cos(^u2-B2j, and the 

cor re ponding weightings were given In (49)-(51).    Now In the one-dimensional 

application,  u  ■ -1/2, van der Maas [9] has Indeed shown, by taking the limit 

of a Dolph-Chebyshev discrete array design,  that there Is no pattern with a 

narrower malnlobe for a specified sldelobe level (and vice versa) than (34). 

However,  strictly peaking, we have not proven that same result for the other 

values of u.  I.e., other numbers of dimensions.    Instead, we have adopted (34) 

as an ideal pattern and shown that it can be realized by finite-support 

weighting functions with a generalized function whose singularity 1 s centered 

at the edge of the array.    Conceivably, there might be a different weighting 

that would realize a pattern that gets further into the left-lower quadrant of 

figure 16.    However, we conjecture that this is not possible and that the 

leftmost curve in figure 16 is the ultimate attainable region for any 

weighting in any number of dimensions. 

SUrfMArtY 

We have presented a two-parameter class of Bessel weighting functions that 

have a closed form pattern with controllable mainlobe width, mainlooe-to- 

peak-sidelobe ratio, and sldelobe decay rate.    These results rave application 

to arrays in one, tvn, or three dimensions.     In addition, the ideal pattern 

and the corresponding weightings required in various numbers of dimensions 

have been derived and presented.    Where a generalized function is required, a 

method of approximating it has been presented and illustrated by a numerical 

example.    Various weightings already extant in the literature were shown to üe 

special cases or limiting cases of the general results given here. 
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Appendix A 

DERIVATION OF RESPONSE OF   PLANAR ARRAY 

Let the receiving array He In the x-y plane, and let a plane wave of 

wavelength x arrive at polar angle ^a and azlmuthal angle ea;  see figure 

A-l.    Then If the time of arrival of the plane wave at the origin Is denoted 

Figure A-l.    Geometry for Planar Array 

as 0, the time of arrival at a general point x,y In the plane of the array Is 

._ x cos e   + y  sin e. 
ra'-s1n<ia "• ^ 

where \ = c/fQt c is ^he speed of propagation,  and f0 is the frequency of 
the plane-wave arrival. 

To look in direction ^, e^, the receiving  array should einploy 

steeri ng-delay 

T.   - -sin J x cos e,   + y   sin ei (A-2) 

37 



at the general point x,y.    If, also,  weighting Wo^y) iS USed in the 
receiving array, the array output voltage response at frequency f    jS 

g -   JJdx dy w2(x,y) exp [-12wfo(Ta+t^)] 

•   Jj dx dy w2(x,y) exp[-12ir X ^1 * «» ^ M . <A-3) 

where we define angle functions 

P. *  slnAcose^   sln^cos^j,   P» *   si nA si n* - si nd si ne , (A-4) 

and vi4iere the Integration Is carried out over all x,y where weighting W2 ^ 0. 
Thus the planar array can have arbitrary geometry In the x,y plane: equations 
(A-3) and (A-4)  are general results for the array response. 

If weighting Wg contains an impulse at x0, y0,  then we have 

w2(x,y) ^(x-x0)f(y-y0), (A-5) 

with array reqionse 

x y      T 
-12»-2 P1.12» -2 pj  , (A-Öj g ■ exp 

which never decays In amplitude with Increasing angle. 

SPECIALIZATION TO CIRCULAR ARRAY 

As a special case of the above, consider a planar-circular array of radius 
R with weighting Independent of angle;  I.e., 

*2(x,y) = <^(r +y /for x +y'"< R*i- (A-7) 

0 otherwi se 
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Then response (A-3) becomes 

■ 2»   \    dr r w 

0 

And from (A-4),  we have 

R ' T 1 
f dr r   f   de w^r) exp    -^2»^^ cose + P2 sine) 

^r~2      21     [    2 2 1'^ 
VP1 +P2    *    s1n %  + Sln ^a ' 2s1n,i s1"^005 ^'•aM 

si nie     - sin0ae 

Now let 

(A-8) 

(A-9) 

r = Rs (A-U) 

In (A-8).    There follows, for   re^onse (A-8), 

g(u) i d s s Jo( u s)  w( s), (A-li) 

where 

and 

u «   2^ 
ieb ie. .   ,      3^ a 

si nA e     - si n/) e (A-i^) 

w($)  ■ 2irR w,(Rs)      for 0  <   s <  i. (A-U) 
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Thus the voltage response g(u) Is given by a zero-tn order bessel 
transform over (0,1) of normalized weighting w(s).    Dlmenslonless parameter u 

Incorporates the received wavelength x, the array radius R, and the various 
look and arrival angles. 
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Appendix B 
DERIVATION OF RESPONSE OF VOLUMETRIC ARRAY 

Consider a plane wave of wavelength \ arriving at angles 4d( e ■   see 

figure A-l.   The time of arrival (relative to the origin) at a general point 

x,y,z In the volumetric array Is [11; eq. 3J 

T   « —x cose   s1ni6   + y  sine    sin il   + z cosib,. .        (B-l) d c L 3 a a a aj 

To look In direction (k t ty. the delay used at location x.y.z snoul 1 be 

"5     * c L   C0S^    ,1n,i   + y   Sin^    Sin 4   +  Z C0S'iJ' (Ö_2) 

The response of a weighted array, at frequency f-    is then 

g ■ 33) dx dy dz W3(x,y,z) exp [-i2'f0^a
+"^)j 

'IIIdx dy dz w3(x'y'z) exp [-1-T(xPi+yf'2+zPj)J'       (J'3) 

where W3 iS the weighting and 

Pj ■ cos e^ sin ^ - cos ea sin <)a, 

P2 = sin ^ sin ^ - sin ea sin ^a, 

P3 = cos ^  - cos ^a. (ß-4) 

The Integration In (3-3)  Is over all x.y.z where Wj / j.    (Ö-3)  Is tne 

general result for any time-delay steered volumetric array. 
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SPECIALIZATION TO SPHERICAL ARRAY 

Let weighting W3 depend only on the distance from the array center; that 

Is, 

*j{x,y,z) » wJ^ +y +z j 
I   I   Z\ 2   2    2       2 
+y +z   / for x +y +z   < R , (3-5) 

where R is the sphere radius.    Then the voltage response of the array is, from 

(8-3) and (B-5), 

9 » [\\ dx dy dz w^xWjexp [-^(xP^P^zP^ 

R « w 

«      (    dr r    (   d^ siniö    j    de w^r) exp -i2ir-/P1cose sin^HgSinesin^+P^cosiOj 

» 2» ^ dr r2i^(r)  f d«j sin^ txpMZtj P^orfJ  Jof2^ ri^2   sin,5)'     (:i'6, 

where we have changed to polar coordinates. 

In the integral on t%  let t - cos 4; the inner integral in (d-6) becomes, 

by use of [10; 6.677 6], 

1 

[ ^texp^^t) ^(^f^s2^ 

= 2 

1  , ^ 

sin (2^) 

2irl0 
(B-7) 
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where we define 

\f? Mi   \t?\Z+*Z**z' • (B-8) 

Then the response Is, upon substitution of (B-7) In (8-6), 

R 
2 5' rfr   r     w. ^ ri — 

zJfi 

Now let r » Rs;  then the response can be written as 

f 2 l1n(2,XQ) g « 4, J   dr r^ w^r)        \       . (B-9) 

where 

g(ü). f   ds^sil^wis), (B-1Ü) 

W(S)5    (2ir)3/2 R3Wl(R$), (d-ii) 

and dlmensionless parameter 

u »  2II|Q. (a-12) 

The quantity Q,  Involving the look and arrival angles, can be expressed as 

r f 0 =    2-2 cos^cosiJg-^sln^   s1n«5a cos(e^-ea)L (3-13) 

Thus the general  result,  (B-10), for the volumetric array Is given by a sine 

transform of the normalized weighting w. 
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Appendix C 

MONOTONICITY OF BESSEL WEIGHTING 

We Investigate here the behavior of weighting (22): 

M 5'   = j-—g- 

Let y ■ 3^/1-s2; then (C-l) becomes 

S)  . P/k|!T lJQjf^)    'or 0 < f < I. (C-l) 

w(s)  »B'2v yv IJy). (C-2) 
V 

Now [5; 9.6.28] 

^[yviv(y)] =y\.1(y). (c-3) 

which Is positive for v > 0, y > ü;  see, for example,  [5; 9.6.lüj.    THUS (C-Ü) 

1 s monotonlcally increasing In y If v i 0; therefore (C-I)  1 s monotonically 

decreasing in s if v i 0. 
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Appendix 0 

PROGRAM FOR CALCULATION OF  »TTERN  (28) 

It fll phi»-.5 
26 PLOTTER   IS   "98?2fl" 
SO LIMIT   25,175,35.245 
46 OUTPUT   705;"V35" 
se 3CRLE   0,6*PI,-70,0 
ct GRID   PI,lO 
ro PENUP 
30 FOP   M2   TO   8   3TEF1   2 
99 B2=B*B 
100 psFNInuxnuCFll pha, B> 
110 FOR   U«0   TO   B   STEP   .05 
120 V«FHInuxnu'fl1ph*,SQR<B2- 
130 PLOT   U,20*LC;T'.flBS;<Y/F)) 
140 NEXT   U 
isa FOR   U-B   TO   6»PI   S.TEP   .05 
t€9 Y«FNJnuxnu<A1ph«,9QR<U*U 
I7i PLOT   IJ,20*LGT<FlBL:;(Y-'F)) 
1S0 ME XT   U 
199 PENUP 
2ti0 NEXT   B 
210 
220 
230 

END 
) 

DEF   FNGMMAOO    !      CftHHA< 
240 N=INT':X> 
250 R-X-N 
260 IF   '. N.0.'   OP   <R<>tr)   THEN 
270 PRINT   "FMCMUHACX:    IS   NOT 
250 STOP 
299 IF   R   O   THEN   320 
500 G itf fn 3i2 = 1 
310 GOTO   360 
320 P»3. 36954359131 ♦(::*•• 1.098 
33if P = 43. 9410209lS9-t-P*■'22.96 
34 0 Q«43. 94 102091 91 ♦*:*<4. 390 
350 GMIM%2"P^Q 
3t"0 IF   N   2   THEN   400 
3 70 IF   N   2   THEN   450 
3:30 G ärii tu äsGäriiriü2 
399 GOTO   500 
4U0 G ähirn ä=G äOihi ä2 
41Ö FOR   (-»I   TO   N-2 
420 G äfnrii is G äfutu i* •' X -K ': 
4 3Ö NEXT   ► 
440 GOTO   500 
450 R"l 
4ii.O FOR   K«e   TO   1-N 
4 7 O P=P ». ,.:+K > 
4:30 tJE::T K 
A?* G bMnft*C4Miki42' R 
500 RETURN   Gitiitiiä 
510 FHEHD 
520 1 

U»U)) 

-B2 

<■>} i   HART,   p4g<    21 

DEFIfiED   FO« 

»5i31 

506 
303 
504 

304 
003 
745 
•    G 

9 g 
HM 

i+ki 
;+R* 
•R< 
MH' 

.14. 
.12.:- 
7. i; 

>+Rj 

2830 •''? 
21-^9.3! 
75©632 
0''     •-' 

4 9 ♦• R * ; 
I:*R*P 
99-P i • 

R 1 

9 30134 6 418 6 E ■ 
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83t 
540 
556 
560 
576 
5S0 
590 
600 
610 
620 
630 
640 
650 
660 
670 
660 
690 
700 
710 
720 
730 
740 
750 
760 
770 
7S0 
790 
800 
310 
3 20 
330 
8*8 
850 
360 
87ö 
3S0 
390 
900 
910 
920 
930 
940 
950 
960 
970 
930 
990 
1000 
1010 
1020 
1838 
104 0 
1050 
1060 
1070 
1030 
1090 
1 1 00 
1110 
l I2y 
1 1 iÜ 
1140 
1 150 
48 

DEF FNJKuKnu<NU|X> I     Jnu<x>/'xAi,>u 
IF   ftif<X><t   THEN   650 
Fl«. 797834560803 
IF   Nu»0   THEN   RETURN   FNJe(X) 
IF   Nu». 5   THEN   RETURN   fl*SINC:>/X 
IF   Nu—.5   THEN   REiTURN   fl#C0S<X> 
IF   Nu«l   THEN   RETURN   FNJICX.^/X 
IF   Nu«-1   THEN  RETURN   -FN.J1<X>*X 
IF   Nu»1.5   THEN   RETURN   A#<8IN<X>-X#C08<X>> 'XA3 
IF   Nu«-1.5   THEN   FlETURN   -ft* < X*S IN<:X)+CüS<X ) :■ 
IF   Nu«2   THEN  RETURN   <2*FNJl(X>-X*FNJo'XJ> ■ X -3 
IF   Nu«-2  THEN  RETURN   (2»FHJ1<X)-X»FNJo<X)>»X 
^«Nu 
IF CINTCfliOfl) Of.   (:fl> = 0> THEN 630 
K>fl»-Nu 
S"T» 1/•:2A(:t*FNGimrH4(fl+1)) 
R«-.25»X»X 
Big«RBS<S> 
FOR N-l TO 100 
T=T*R/(N»(N+fl>> 
8»S + T 
Bi g»MflX';Bi g, flB3<S. > > 
IF FlBS^TX-lE-ll+flBSCS.^ THEN 790 
NEXT N 
PRINT "100 TERMS IN FNJnuxnu'.Nu, X > AT ";Nu;X 
PAUSE 
D-12-LGT<flBS<:Big-S.'>  ! NO. OF SIGN IF  DIGITS 
IF K:>0 THEN S«S-'<4*R)AK 
RETURN S 
FNEND 

DEF FNJo<X>    ! Jo<X> via 9.4.1 t, 9.4.3 of flMS 55 
Y«ABS<X> 
IF r>3 THEN 910 
T«Y*Y/9 
Jo=.0444479-T*' . 0039444-T*.00021) 
J0=l-T*(2.2499997

,-T*( 1.265«288-T*<. 216 ?3S6-T*Jo ■ 
GOTO 970 
T«3'Y 
J0«9.512C-5-T*< . OO137237-T*':. 00072305-Tr.OCnj: 4476 ' ■ 
Jo«. 79733456-T*'T'. 7E-7 + T*'::. 00552740>T*.f1:- ■ 
3 = . 00262573-T*' . 00054125 + T*''. 0002933::.- :*. 0001 ?558 ■ 
T»Y-. 7353931 ij-T* ■■. 04166397 + T*'S. 954t-5-T*S' :■ 
J o * J O * C 0 S '■ T > S Q R' Y > 
RETURN Jo 
FNEND 
j 

DEF FMJIOO    i JKH)   via 9.4.4 & 9.4.6 it Mfiv 15 
Y"8BS<X> 
IF > ;: 3 THEN 1070 
T=V*Y 9 
Jl*.00443319-T*1 . 00031761-T*.00001109■ 
J1«X#<:.5-T»' .562-9985-T*' , 21893573-T«,. 0i.95428c'-T ♦Jl 
GOTO 1130 
T«3 ^ 
Jis. ö0017105-T*1:. 0024951 1-T*' . 001 i 365 5-T*. 0JO200 ? I ■ 
' 1 = .79733456 + T*' 1.56E-6 + T-" .01659667 + 1-Jl ■ 
S-. 00637379-T» ■ , (18874348*T* <  • 00079824-T ♦, 0002^ i f.6 
T = Y-2. J5619449*T*< . 12499611 + T« 
J1»SGN■.: ■♦Jl*C0S' T) SQRC> • 
RETURN Jl 
FNEND 
i 

65E-C-T^f. 

Reproduced  (rom 
best   available  copy. 



160 DEF FNIrioxnu<Nu, X)       !  lnu<x>/'xAnu 
170 IF RBSOOU THEN 1290 
130 fl*.398942280401 
190 E«fXf<K) 
200 IF Nu-0 .THEN RETURN FNIO<X) 
210 IF Nu«. 5 THEN RETURN finKE-l'-E)''X 
220 IF Nu»-.5 THEN REITURN fl*<E+l/'E:> 
230 IF Nu«l THEN RETURN FNIl<X>/X 
,240 IF Nu—I THEN RETURN FNIUX)«X 
.*.;0 IF Hu»1.5 THEN RETURN fl«< CX-1 )*£+<:X+l ' E.>-X-S 
.260 IF Nu»-1.5 THEN FlETURN fl*( <X-1 > »E-CX+i ■ E> 
;70 IF Nu«2 THEN RETURN <X*FNIo(X >-2*FHI 1 < l;; J/X -S 
SS0 IF Nu»-2 THEN RETURN <X«FNl0<X)-2»FNII(X>)#X 

.290 fl»Nu 
300 IF <INT<fl><>fl) OF: (fl>»0) THEN 1320 
310 K»fl»-Nu 
.320 S»T«l/<2Afl*FNG*mni*(fl*l>) 
330 R».25*X#X 
340 Big»flBS(S> 
350 FOR N»l TO 100 
.360 T»T*R/<N*<N+fl>> 
.370 S»S+T 
.380 B1 i3»MAX<Big,fiBS<$;>> 
,390 IF   flBSmoiE-lP-flBSCS:»   THEN   1430 
.400 NEXT   N 
.410 PRINT   "100   TERMS   IN   FNInuxnuCNu, X>   FIT    ":M..;;: 
.420 PAUSE 
.430 D»12-LGT<flBS<:Big/S •>      !   NO.    OF   SIC.;! IF.    DIGITS 
.440 IF   K>0   THEN   S»S*<4*R>AK 
.450 RETURN   S 
460 FNEHD 

.470 ! 

.480 DEF FNIo^-O     ! Io<.X.> ui 4 9.8.1 H,   9.3.2 

.490 Y=ABS<X> 
500 IF V>3.75 THEN 1558 
510 T»Y*Y.'14.0625 
520 Io».2659732 + T*': . fi360763*T*. 8045313 .' 
538 Io»l+T-»<:3.515622^ + T*'::3. 8899424 +T*' 1. 2<J©"49i + T« I ; 
548 GOTO 1590 
550 T«3.75.''r 
560 Io».009162Sl-T*':.02057706-T*'. 026355 :r-T-- 
578 I o».39S9422S + T*(.01328592 + T*'::. 802253 Ir-T* 
580 [oBIo*EXP<¥ ' SQRiV) 
590 RETURN lo 
1608 FNEND 
:i0 i 

,620 DEF FN1KX)    ! IKX) ^i a 9.8.3 S, 9.8.4 
.638 ,i'»flBS<X) 
.640 IF •■ :3.75 THEN lt.90 
,650 T = Y*Y '14.0625 
,660 I1=.02658733+T*'.80301532>T*.0003241l■ 

70 I !»,;*< .5 + T*' . 8781'0!94*T»<. 51498S69 + T* ■ . :'.. 
6S0 GOTO 1730 
690 T=3.75'Y 
700 11 = . 010315T5-T«' . 02232967-T«1 . 02395312-T-*' 
710 I 1 = .39894228-T*'.83988824*T#^.00362018-T*1 

720 Il«SCH<  :. • ♦ I 1»EXP'Y' SQR <Y > 
730 RETURN II 
748 FNEHD 

01647 6 3 3 - T *. ö 0 ; 91 
CnJ15"5t5-T-*Ic ■ ■' ■ 

- T -» - T - . 0 0 4 2 0 0 
3 0 1 - ■r * I 1 • ■ ■ 
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Appendix E 
DERIVATION OF WEIGHTING FOR  IDEAL  PATTERN 

We want to realize pattern (23), 

W'^JP-**)    fora11 "• (E-l) 

for any u > -1, but without the restriction v > -1, which was required for 

convergence of Integral (22).   Ö   (z)  was defined In (17) et seq. 

We begin the derivation for the required weighting to realize (E-l)  by 

substituting (E-l) In (16): 

-i- J-""(-JV-'^.J^) for s > 0. (£-2) 

It Is Imoortant to observe that we Must allow all  s > 0 In (E-2); nopefully, 

when we evaluate w( s) from (E-2),  It will be zero for s > 1. 

Now we already know fron (22)  and (23)  that (E-2) yields 

w(s) t 
feUR)   .0. 0 < s < 

if u > -1,  v >  -I.   (£-3) 

for 1 <  s 

Letting a a u+v+1 in (£-?)  and (E-3), and eliminating v, we have the useful 

integral identity 

[- <$' J (su)ll  f7u2-B2' = 
cr -u-1 o-u 

I^.^Blfl-sVfor ü <   s <  1/ 

for 1 <  s 
(E-4) 

For convergence of this integral  at u = 0,   we require u > -1,  whereas for 

convergence at u =<*>,  we nust have a > y;  i .e.,  -1 < a < a. 
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Now ws have the relation [5; 9.1.3ÜJ 

u^J (su) . - ^[u(i)U'lju-l(su)]    for s > 0- (e-5j 

Thus (E-2) can be expressed as 

-•'■-U   (-"»(rVi'^.aW for s > ü.  (E-6) 

Appeal to (E-4) now reveals that 

w(s)   -  < 

:^fWUBR?-o<- 
IE-/) 

0 for 1 <  s 

provided that u > 0, v > -2. 

We have succeeded in extending the range of v fran v > -1 to v > -Ü,  as 
desired, but have apparently altered and restricted the range of u from u > -1 

to u > 0.    However,  this last restriction is due solely to the .nethod of 
derivation, and may be restored to u > -1,  by observing that the right-hand 
side of (E-7)  is analytic in u (in fact, constant), and that the function w( s) 
defined by (E-2)  is analytic* in u for M > -I.    Thus {E-7) gives the required 
weighting to realize pattern (E-l), provided that 

u  > -1, v > -2. (E-8) 

However, care must be taken,  in the evaluation of the derivative in (t-7j, to 
account for any generalized functions that may be generated. 

We are using the fact that j)a(z)  is an entire function of a,  regardless 
of the value of z;  see (17) et  seq. 
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In (E-7), define the function 

1 ' 0 for 1 < s 
(e-9i 

Then there follows 

w(s) « - | j| w1(s) for all s. If i» > -1, v > -2.   (t-U) 

We now break the region v > -2 Into the three subcases (1) v > -1, 

(11) v « -1,    (111) -2 < v < -1. 

(1)  v > -1 

As s-*l-, w1(s) in (E-g) approaches 0, since v+1 > 0. Tnus wi( s) in 

(E-9) Is continuous for all s, and vie find, by the use of [5; 9.6.28J In 

(E-7), that 

0   Ki'W 
w(s)   »    ^ > , (t-li) 

which checks (22), as It must of course, for v > -1. 

We observe that 

*<s)- jt^fy     as $^1-. (t-lk) 

Thus for -1 < v < 0, there Is an Integrable  singularity in w( s)   at s = 1.    For 

v > 0,  w( s) 1 s continuous at s = 1, while for v =0,  w( s) has a di scontinuous 

step of value -1 at s = 1. 
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(11)   v   - -1 

Now, from {E-9), 

^(s) 
for 0 <  s < 1 

for 1 <  s 
(£-13) 

This function has a discontinuous step of value -1 at s » 1.    Thus,  from 

(E-10) and [5; 9.6.28 and 9.6.6], 

w(s)  * 

.^B^H (s-1)    for ü <  s < 1 

0        for 1 <  s 

.(Bf-«   /♦i(8-l)    for 0 <  s < 1 

0      for 1 <  s 
(£-14) 

The Sessel function portion of this weighting approaches the finite value 

8^/2 as s-»l-.    The Integrable singularity at  s s 1 of the previous subcase 

for v > -1 has evolved here Into a S-function for v = -1 at s = 1. 

This weighting  w( s)  in (E-14)  realizes the desired pattern in (£-1) for 

v a -1, namely. 

W^) for M > -1. (£-1») 

The  special case of a linear array, u  ■ -1/2, yields the ideal pattern 

U^) #cos(^ oWl (£-lo) 

This weighting-pattern pair,  (£-14)   and (£-16),  is already known for tne line 

array under the name of van der Maas [9]. 

54 



An alternative way of obtaining the result {E-14) Is by taking the limit 

of (E-ll)  as v-»-1.    First we observe that 

-,^)V«.('P)-^-^ for s < 1, (£-17) 

s1nce ^(z)  Is an entire function of v wnen z ^ 0 [5; 9.6.1J.    We then 
define a difference or remainder function (for v > -1) as 

«v< ..($?] ^.p^sf?) for s <  1,      (£-18) 

where we used [5; 9.6.6].    The area under the remainder function s Rv( s)  in 

a small  region near s » 1 Is 

(Zz-t) 

1- 
J ds sRv(s)  =        f     dt t^|j  Iv(Bt) - B  I^Bt) 

.   [l^jX^fT).^]^)^     eor.,-.. 
where we used [5; 9.6.28].    Therefore, 

(£-19) 

11m 
v-»-l ds s Rv( s)  ■ 1,    regardless of e (>0). (t-20) 

Thus since factor s 1 s 1 at the upper limit of integration. 

IT-I   Rv(s)   =S(S-1). 
lim 
V 

(E-Ül) 
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Therefore, combining (E-17)  and (E-21),  we obtain 

inn    l^s   '  '   '"1^    -': '■ D       '   '-^   -  ' •  ^s-l)      for si 1, (E-22) 

in agreement with (E-14). 

An alternative and simpler equivalent fom of (E-22) Is 

a —Ann     + vl!-i WK^) - -V+ *s)  for s 2 0- u-n) 

The derivation of (E-23)  Is similar to that given above in (E-18)-(t-21). 

(Ill) -2 < v < -1 

We return to (£-7)  and {E-9).    Observe that [5; 9.6.7J 

M +l 

nUs) —,—*      as s-^1-. (E-24) 1 Z^VM) 

Since we now have 

-1 <  v+1 < 0, (£-25) 

there Is an Integrable singularity In w^ s)  at s = 1.    Thus the derivative 
In (E-10)  will generate a generalized function with a singularity located at 

l ■ 1.    We handle this case by defining an auxiliary function 

^f^        for 0 <   s <  1 
2v-rT(v-»-2) 

0       for 1 <  s 
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Then using (£-9), the difference 

» 
KV+1 

I 

^1 S)  - A( s)  • 

Is a continuous function of  s; In fact. 

v+1l     '   2v+1r(v+j 
for 0 < s < 1/ 

+2) 

0 for 1 < s 

(E-27) 

J 

B M *2 

«.(s)  - A(s)/v u   V  3/ 
^ 2v+3r{v+3) 

as s-*l-, (E-2b) 

vrfilch approaches zero since v > -2.    Therefore, the required weighting w( s) In 

(E-10) can be expressed as 

w(s)  « -^dffw^s) - A(s) + A(s)] 

s Ts 

s D{s) + G(s), (E-29) 

where both D(s)  and G( s)  are zero for 1 <  s.    The difference function J( s) 

possesses an Integrable singularity at s = 1;  In fact (recall (E-25)), 

Dls)- 
:6-s2) 

v+l 

2v+2r(v+2) 
as s-*l-. (E-30) 

The last term In w( s)  in (E-29)  is a generalized function; from (E-2b), 
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G(S) ..^AU) 

Fte^f6-.rlü(w2)] 

2vP(v+l) ^^      ; 
for s > 0, 

where the sub G denotes a generalized function.    Here step function 

U(t)i 
0 for t < 0 

1 for t > Oi 

Combining (E-29)  and (E-31), the required weighting Is 

(£-31) 

(£-32) 

^ B /   vv '    /   2vr(v+i)    2vr( v+l) 
for U <   s <  1/ 

w(s) 
Ü      for 1 <   s__ 

(E-33J 

We have now completed the consideration of the three subcases delineated 

under (E-10).    Me now wish to extend v to values that are equal to and less 

than -2,  so that we can handle the volumetric array discussed In (37) et seq. 

We return to (E-6)  and employ (E-5) again: 

w(s) 

1    d 
"sTi 

- ^ {[4 ^(cv^]^^) 
for s > J. 

U-3H) 
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Recourse to (E-4) yields 

w(s) 

1   d 
s Ts s 3s ^J\J^] for 0 <  s < li 

for 1 <  s 
(£-35) 

J 

provided   that v > -3, u > 1.    However, the last restriction on u may be 

restored to u > -1, by the argument under (£-7).    Thus (£-30) gives the 

required weighting to realize pattern (E-l), provided that 

u > -1, v > -3. 

The only subcase of (E-35) that we consider in detail is: 

(iv) v » -2 

We now can write (£-35) as 

^•-I4^4I°(B^)ü(I-S'}}- 
Then [5; 9.6.27] 

•^ ^MA-TjB ±(l-s2) (-2s)\J(l-s)  -^Io(0)[-J($-l)] 

^ 

- iJsVl-s^Ud-s) +^(s-l). 

Therefore [5; 9.6.28], 

(£-36) 

(£-37) 

(£-38) 
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M(S) 

JföTbi't) +/| -ijj(s-i) - ^($-1). 
(£-3^) 

1-s 

Here Me have used (21) and 

ifd-l) -i(s-l) ♦i'(s-l}. 

which follows from 

f(x)j'(x-a) - [f(a) + f (a)(x-a) + of(x-a)2]] ^(x-a) 

- fUlj'U-a) - f (a)J{x-i). 

This required weighting, (E-39) for v « -2,has both a  ^function and a S' 

function at s = 1. 

Sunwnary 

The required weightings to realize pattern (£-1)  are given by 

(E-4Ü) 

U-4i) 

n 

< 

(E-U) for v > -1 

(E-14) for v = -1 

(E-33) for -2 < v < -1 

(E-39) for v = -2 

(E-35) for -3 < v < -2 
V 

for ü >  -1. (E-42) 
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Appendix F 

APPROXIMATION OF A GENERALIZED FUNCTION 

Equation (50) or (E-33) gives the required weighting, for -2 < v < -1, to 

realize pattern (48) In terms of a generalized function which Is difficult to 

Interpret. Here we address this Intrepretatlon by means of an approximation 

to the generalized function (E-31). We begin by approximating the (singular) 

auxiliary function A(s) defined in (£-26) by an ordinary function Ae(s)) in^ 

then derive an approximation to generalized function 6( s) of (E-31) according 

to the  same rule, namely. 

Ge(s)   3-7dK(s)- {K-1' 

In particular, consider Ae(s) as shown 1n figure F_I; that is, Ae( s) 

Is still given by (E-26) for 0 i s i 1-e, but then tapers linearly to zero at 

s = 1 In order to be everywhere continuous.    The height H of A (s)  at  s = 1-e 

is,  from (E-26), 

v+1,.      /o\V-t-l 
H se     r!/"!^  (> 0). (F-2) r(v^) 

For snail  e,  we have 

v+1 
H ^ rrar   as E",0+' (,■'-J, 

which tends to +00  as e->0+,   since we have, fro-n (E-2b), 

-1 < v+1 < 0. (F-4) 

The result of applying  (F-l)  to figure F-l is shown in figure F-2.    Tue 

large positive pulse in (1-E, 1) has height proportional  to 

H=£(1-e/2) e ase-0+, (F-S) 7 "   r(v+2) fT^T 
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H 

Ae(8), 

" (1 - sa)^1 

2^+1 r(iH-2) 

y-A 1 

Figure F-l. Approximation to Auxiliary Function A(s) 

Ge(8): 

• 

'AnPAr*'  

r^ 
H 

AnCA Wr^ 

ff' l-^il |1j 

7~~- -4 
2vr(vH-i) 

\ 

\ 

\ 
\ 

Figure F-2. Approximation to Generalized Function G(s) 
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which is tending to Infinity since -2 < v < -1.   The area of this positive 

pu1 se Is 

1 «I 
C   J „sJl.-HinU-.)- ij-^.     asc-O*. 

^ 

(F-6) 

This area Is also tending to +* as e-»0+; recall (F-4).    The rate of Increase 

of C Is greater, the closer v 1 s to -2.    (For v-*-l, H-*l, C-* - In(l-c); thus 

area C~l as e-»0+.    This Is the unit area Impulse presented In (49) for 

v - -1.) 

Figure F-2 Is one approximation to generalized function ü( s) defined In 

(E-31).    Its most Important feature Is the Impulsive-like positive pulse near 

I ■ 1.    An alternative approximation Is afforded In figure F-3, where the area 

C of the Impul se at s » 1 1 s given by (recall (F-6)) 

CsrTOr {f-7) 

The notation used In (E-31)  for the generalized function, 

(l-s2)' G(s) 
2vr(v+i) 

(F-BJ 

conceals the positive impulsive behavior at s » 1 that the series of 

approximations in figures F-l through F-3 indicate must be present.    In fact, 

(F-8) is negative for 0 <  s < 1, by reference to (F-4). 

The alternative approximation we obtain to weighting  (50)  is tuen, froo 

(E-29) and figure F-3. 
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2e(8) 

AREA   C 

1-e 1 

2vr(v+i) 

Figure F-3.    An Alternative Approximation to Generalized Function G(s) 

We(8) 
TRANSITION PORTION" 

(^"I^B^TT") AREAC 

fl 

Figure F-4. An Approximation to Weighting (50) 
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i r\    v i vi 

w€( s)  « D{ s) + Ge( s) 

M'-W-M 
f or 0 <  s < 1M 

+C;(S-1J.        (K-9) 

-        for 1-e <  s < 1 
v+1) 

The plot In figure F-4 Illustrates this approximation.    The "transition 

Dortlon" In (1-c,  1), which Is the bottom line of (F-9), Is singular at s = 1-; 

however, this Is an integrable singularity, as may be seen by reference to 

(E-29)  and (E-30).    The Impulse at s » 1 1 s of finite area C given by (C-7). 

As e-*0+, area C of the Impulse tends to Infinity;  see (F-7) and (F-4). 

However, the area under the main portion of the approximation w (s) 

precisely cancel s this singular behavior; that Is, as e-*0+, 

1- 

a        ^ a 

which Is -C.    Since the area under the transition portion is 

1 1 ^2,,    ^v+1     „2 v+2 
ds   ^ 

1-r 1-e 

which tends to 0 as E-»0+, the area under approxi'nation w (s)  regains finite 

as e-»0+.    Indeed It must remain finite, because Hankel transform (12) or (16) 

nust rema<,- finite in order to realize pattern (4b),  which is entire in a,  v, 

u,  and 6. 
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Thus our final approximation to w( s)  Is simply 

fcjlv(Bir7)forO< s<l-e") 
Äe(s)  -A I    +cX(s-l), (f-12) 

I 0        for 1-e <   s < 1 

and Is shown In figure F-5.    It Is very Important to observe that the simple 

expedient of approximating w( s) by 

feWRKo 
(F-13) 

Is totally inadequate because, as e-*0+, the area under tne cusp at s = 1-e 

tends to Infinity, and cannot possibly yield an entire function for the 

pattern.    The Impulse 1 s necessary to compensate for the singular behavior of 

{F-13) near s » 1; it allows us to realize the "finite part" of the Hankel 

transform of (F-13) for e » 0. 

(As v-»-l, the value of C in (F-7) tends to the finite value 1,  whicn is 

the Impulse in (49).    And as v-»-2,  the doublet of (51) could probably be 

extracted as a limit from (F-12); this procedure nas not been pursued.) 

The result of using approximation (F-12) with (F-7), for v ■ -1.5 and 

B » 4,  is displayed as the patterns In figures F-6 through F-ö for e ■ .1, 

.01,  .001, respectively.    We have selected u  = 0, that is, two dimensions, and 

are approximating the ideal pattern for 8=4  shown in figure 13.     It is seen 

that the approximations become progressively better as e decreases, and that 

the result in figure F-8 is indeed very close f. figure 13. 

The approximation we( s) in (F-12) and figure F-5 used, for the impulse 

area,  the value C given by (F-7)  as a limit of (F-6)  for snail  e.    A better 

approach is not to use the limiting value, but to use the actual  value of the 

pertinent function,   since we would li*e good approximations for moderate 

values of c, not just very snail  c.    This procedure is considered in detail  in 

[12],   with the result 

66 



TR 6/61 

we(s)  - i^fj   Iv(B^7)u(l-e-s) 

(F-14) 

The patterns for this appraxlmatlon are depicted In figures F-9 through K-ll. 
The result In figure F-U for e ■ .1 Is now better than the result for 

e ■ .001 In figure F-8: and all we have done Is to modify the area of the 

Impulse at s » 1.    The result for e ■ .15 In figure F-10 Indicates a modest 

change from the Ideal and would be acceptable In some cases.    The program for 

the pattern evaluation Is listed at the end of this appendix. 

Another possibility Is to relocate the Impulse In (1-e, 1) to best 

approximate the Ideal pattern In figure 13.    More generally, a shaped narrow 

oulse,  if^ilch Is concentrated toward the boundary at s s 1, could be used; 

these possibilities are discussed further In [12]. 

Sone additional results Involving delta functions and liessel transforms 

are given here In appendix H. 

(V) \ (a^) 
-AREA C 

Figure F-5.    Final Approximation to Weighting (50) 
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IK  O/Oi 

2n 3n 4n 5n 6n 
u 

Figure F-6.    Pattern of Approximation (F-12)  for e =  .1 
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TR 6761 

Figure F-7.    Pattern of Approximation  (F-12)  for e =  .01 
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5TT 2TT 3n 
u 

Figure F-8.    Pattern of Approximation (F-12)  for e =  .001 

6n 
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IK   O/Dl 

■10 

-20 

-30 

dB 

-40 

•50 

-60 

-70 

\ 

M = 0 

V=-1.5 

8=4 

^ 

\ 

, A / ̂ \^ 'M '\/ 

Al 

0                 r r 2 n 3 n 4 n 5 TT Bn 
u 

Figure F-9.     Pattern of Approximation (F-14) for c =  .2 
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TR 6761 

0 " 2n 3n 4n 5n 
u 

Figure F-10.    Pattern of Approximation (F-14)  for E ■ .15 

6n 
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TR 6761 

•10 

-20 

-30 

dB 

-40 

-50 

-60 

-70 

M=0 
V = -1.5 
8=4 

\ 

A r\ 

!\ 

r\! h/ h 

0 n 2n 3n 4n 5n 
u 

Figure F-ll.    Pattern of Approximation (F-14)  for e =   .1 

6n 
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TR 6761 

PROGRAM FOR PATTERN EVALUATION 

19 t|0£ = . 1     ! Pitt^rn for Weighting '.F-i4) 
20 Mu»0 
It Hu«=-1,5 
46 Bc-4 
5G DIM 6<tt24t> 
66 COM U,Bc>Mu,Nu,M21 
70 M21»Mu*2+l 
M T=2*Ep£-Ep»A2 
90 F1 *«T• (MM*I ■ *FNIr.uxriu<. Nu+1, lc«SQR< T>) 
100 Fi-0 
110 B-l-Epi 
120 FOR lu»0 TO 240 
130 U»Iu*PI-40 
140 t"(FNS<A>*FN8<l>;*.5 
150 N»2 
160 «■<!-«>#.5 
170 F»<B-Fi>'-3 
1*0 Vo«9C99 
199 T»0 
2Ö0 FOR K«l TO N-l STEP 2 
210 T-T + FNS' FI + H*K) 
220 NEXT K 
236 S»S + T 
240 V"<S*T)»F 
25G IF R18<V-Vo><"MS<V)»lE-4 THEN 310 
260 Vo»V 
270 N»H#2 
2 So H-H*.5 
299 F»F*.5 
300 GOTO 190 
31 0 C<Iu)"Flt»FNJnuxriu<>Mu,U)*V   ! Volt»g« P«if. r-jr 

320 PRIHT IutG(lu) 
330 HEXT lu 
540 PLOTTER IS "3S72fl" 
350 LIMIT 25,175,35,245 
360 OUTPUT 705r,VS5" 
370 SCftLE 0,240,-70,0 
330 GRID 40.10 
i*0 PENUP 
400 FOR I'.J-0 TO 240 
410 PLOT I u, 20*LGT •. liI:S < G (I u > ■ G < 0 > > > 
420 NEXT lu 
4 30 PEHUP 
440 END 
450 i 

460 DEF FNS'S) 
4 70 COM IJ,Bc,Mu,Nu,M21 
430 T»l-S*3 
490 Tl"FNJnu nu': Mu, U* S ■ 
500 T 2 = F MI n i.( n >.< ■ N u, B •: * S Q R < T > > 
510 RETURN S M21»T Nu*Tl»T2 
520 FNEND 
5:0 i 

74 



TR 6/Ö1 

Appendix G 
EVALUATION OF A SESSEL  INTEGRAL VIA RECURSION 

The Integral of Interest Is 

gv(u.B)  .    f ds K(u,f)LS-jY 1,(8^), (6-1) 

where the kernel K Is the Bessel function as given In (11).    ite have, via 

[5; 9.6.28], 

« 3 gv_1(u,3). (Ü-2) 

(This relation actually holds for any kernel K, not just (11).)    Since,  froin 

(G-l), 

9v(u.O) «0      if v > 0. 

we have the integral recursion 

B 

gv(u,a) »    I    dt t gv.1(u,t)      for v > J. (ü-3) 

0 

We already know the starting case of 

1 

g0(u,B)  -   Cds s(i)WJ(us) I0(B^=JM + 1(V^;       (G-4) 

see (23).    Substitution in (G-3) yields 
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B 

gi(u.B)  -   J   dtt)      pi?)-    T   *xl+l(«l 

i(v^)^.u.. 
where Me employed (21). 

Now we enploy (G-3)  and (G-5): 

(G-5) 

g2(u.B)-   J8
dtt[}u(^)^(u)] 

the integral evaluation follows from direct comparison with (G-5). 

The last case for v » 3 follows in similar fashion: 

93(".B)  ^u.2^) -^..zCl  - ^^,.,(-1  - ^""- ,G-7, 
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Appendix H 
TWO BESSEL INTEGRALS THAT YIELD GENERALIZED FUNCTIONS 

The starting point Is the Hankel transform pair In (15)  and (16).    If we 

let w(s)  » J(s-a)   (where a > o) In (15), we get 

g(u)  - a^j J (au)    for u > J   . (H-l) 

Substituting (H-l) In (16) then yields the useful relation 

du u J(su) J(au)  « 7 J(s-a). (H-2) 
J II M a 

On the other hand. If we let the weighting be a doublet. 

w(s) »is'(s-a),    then   g(u)  =-ugjj ^(au). (H-3) 

The Inverse relation (16) yields 

'fa)   \ i'(s'a)  =  J   du u2 Julsu)  ^-l13^* (rt"4, 

However,   since 

f(s)J'(s-a) - [f(a) + f'(a)(s-a) + ...]j'($-a) 

= f(a)J'(s-a) - f,(a)^(s-a), (H-5) 

then 

J du u2 JM($u) J.^au) = - |S'(s-a) ^^ ^(s-a)- (H"6) 

Equations (H-2)  and (H-6) are tne desired results. 
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INTRODUCTION 

Evaluation of integrals involving generalized functions is often 

accomplished via an integration by parts, without regard to an interpretation 

of the behavior of the function at its singular points. See, for example, 

ref. 1, eqs. (1-17), (1-18), and (1-32); thus, there follows an integral such 

as 

I toCoiM   ..„^i i (1) 

X 

It is difficult to interpret and attach physical significance to this 

integral;  in fact, the major contribution to the integral  in (1) comes from 

the neighborhood of x ■ 0, where the integrand appears to be positive and not 

integrable, yet the right-hand side of (1)  is negative and finite.    We would 

like to approximate the generalized function l/xc in (1) and get a physical 

interpretation that is consistent with the result given by (1). 

In a recent study of the ideal patterns for arrays in one, two, and three 

dimensions,  it was found that the required weightings were impulsive or more 

singular than an impulse, depending on the dimensionality of the application; 

see ref. 2.    In order to make these results of practical utility, it is 

necessary to approximate these singular weightings  (generalized functions)  by 

finite-valued functions and thereby realize approximations to the ideal 

patterns.    This approximation procedure and its performance will be detailed 

here. 
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APPROXIMATION PROCEDURE 

We take as given the possibility of approximating a delta function i"(x) 

by finite-valued functions;  see, for example, ref. 1, page 279, where a 

one-sided rectangular pulse and a two-sided Gaussian pulse are used for 

illustration purposes.    Also, on page 280, a one-sided approximation to the 

doublet ^'(x)  is given.    Alternative approximations are presented in ref.  3, 

pages 11-12. 

Let us suppose that f(x)  is an ordinary function which is integrable at 

x • a+, but that generalized function (ref. 3, page 30) 

g(x) sf'(x) (2) 

is not integrable at x » a+. For example, with a = 0, 

-2x"^ for x > 0 

for x < 0 

x    for x > 0 

for x < 0 . 

(3) 

(4) 

is such a pair; see ref. 3, definition 8. Yet integration by parts yields 

oO •« 

dx g(x) h(x) =   - dx f{x) h'(x) = 2 J dx x",/& h'(x) , (5) 

which is integrable for any good function h(x). 

To make sense of this situation, we approximate function f(x) by function 

^(x) as shown in figure 1; that is, fE(x) has constant value f(a+e) in 

the neighborhood c of a. The approximation to generalized function g(x) that 

we adopt is 
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ge{x) - f;(x) - f(a+e) J(x-i) ♦ f(x) U(x-a-c) , (6) 

as depicted in figure 2, where U(x) is the unit step function; that is, 

gc(x) has an impulse of area f(a+e) at x ■ a, and is equal to f'(x) for 
x > a+e. (We can approximate the impulse as discussed at the beginning of 

this section.) 
Mx) 

\ 

\ 

\ c > 0 

\ 

\ 

f(a+c) \ 

iV \f(x) 

a a+e 

Figure 1. Approximation f (x) to f(x) 

gE(x) 

area ■ f{a+G) 

a+e 

f(a+e) 

/ 

/ 

/ 

Figure 2. Approximation g (x) to g(x) 

. x 
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It is important to observe that if f(x) is singular (ref. 3, definition 

21) at x » a, as for example (3), the area f{a+e) of the impulse at x = a 

becomes progressively larger as c-»0. However, the area under the remaining 

portion of gE(x) also becomes larger, but in such a fashion that the total 

area under gc(x) remains finite as c-»0; this will be shown below in (11). 

To see the effect of this approximation on an integral of a generalized 

function g(x), consider integral 

I » f dx g(x) h(x) . (7) 
a 

The approximation to I is: 

I€ s I dx gc(x) h(x) 

b 

. f(a+c) h(a) + f dx f'(x) h(x) , (8) 

a+c 

where we employed (6). Integration by parts on (8) yields two alternative 

forms: 

I, = f(a+e)[h(a) - h(a*ej] ♦ f(b) h(b) - f dx f(x) h'(x)       (9A) 

a+e 

a-t-e 

f(a+c)[h(a) - h(a4cj) ♦  f dx f(x) h'{x) 

a 

b 

♦ f(b) h(b) - C dx f(x) h'(x) . (9B) 
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Since f(x) is integrable it x ■ ftf, the leading term in {9A) and the two 
leading terms in (9B) both approach zero as c-*0, yielding the limit 

b 

I - lim Ic . f(b) h(b) - f dx f(x) h'{x)  . (10) 

e-»0 a 

This is the value of (7) expressed in terms of integrable functions. 

The area under approximation ge(x), for e > 0, is available by 

substituting h(x) - 1 in (8) and (9): 

J dx gc(x) - f(b) , (11) 
a 

which is finite and independent of c.    Thus, the impulse in figure 2  is 

necessary in order to compensate for the increasing area that develops under 

f^x) near x « a, when c approaches zero. 

SINGULARITY AT x . b- 

Suppose, instead, that f(x)  is integrable at x » b-, but that generalized 

function (2)  is not.    By employing a procedure similar to that above, we have 

approximation 

gc(x)  - -f(b-c) ^(x-b) ♦ f'(x)  U(b-c-x) (12) 

to g(x).    The integral  IE can then be expressed as 
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b 

I€ ^ J dx gc(x) h(x) 
a 

b-e 

. -f(b-c) h(b) + f dx f(x) h(x) 

a 

b-e 

-f(b-e)[h(b) - h(b-eJ] - f(a) h(a) - ^ dx f(x) h'(x) .  (13) 

There follows 

fdx g(x) h(x) - I . lim Ic - -f(a) h(a) - C dx f(x) h'Cx) ,      (14) 

a e-»0 a 

in tenns of integrable functions. 

The area under approximation ge(x)  is finite and independent of e: 

let h(x) - 1 in (13) and get directly 

f dx gc(x) = -f(a)  . (15) 

RELATION TO "FINITE PART" OF  INTEGRAL 

If we start with integral  (7)  and integrate by parts,  there follows 

f(x)  h(x)      -      f 
•' "Ja a 

b b 

i   =■ iHx)  hfxij     -     [a    r(xj  h'i. ,. i Loi 

a a 
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Now if f(x) is singular at x - a, the finite part (ref. 3, page 32) of (16) is 

obtained by dropping the term involving f(a), thereby obtaining identically 

(10). Conversely, if f(x) is singular at x - b, the finite part of (16) is 

just (14). Thus, the limit of the approximation procedure developed here is 

exactly what is yielded by the finite part procedure. 
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EXAMPLES 

EXAMPLE 1 

f(x) 
^1 

for x > 0   where -2 < v < -1 .    (17) 

This function is singular but integrable at x = 0. In figure 1, we identify 

a = 0 (18) 

and get 

f'(x) « xv for x > 0 . (19) 

Then, from (6), the approximation to the generalized function xv u(x) is 

v+1 
gc(x) -^ J(x)+ xv U(x-£) (20) 

and is depicted in figure 3. 

ge(
x) 

Figure 3.    Approximation to Genpralized Function xv u(x) 
8 



TR 6767 

The result of applying (20) to a good function h(x) is available from 

(8) and (17), 

P dx ge(x) h(x) 
v+1 
V+J I h(0) +   dx xv h(x) , (21) 

or from either form in (9). The limit follows from (10) and (7): 

L.V+1 r V+l p 
I-^-Mb)- [   dx^j-h'Cx)- I dx xv h(x) . (22) 

The following examples are derived in similar fashion; just the results 

are listed. 

EXAMPLE 2 

f(x) » In x for x  > 0 

a - 0 

f (x) 

ge(x) 

-       for x > 0 

1 
In c 5(x) ♦iU(x-c) 

In b h(b) -     f dx In x h^x) 

0 

D 

■i dx i h(x)   . (23) 
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EXAMPLE 3 

f(x) - ^(ln x)2     for x > 0 

a - 0 

f (x) - 
In x for x > 0 

ge(x) -^(ln e)2^(x)+ -^U{x-c) 

u u 

I -|(ln b)2 h(b) -   f   dx ^(1n x)2 h'(x) .    J dxifi.h(x)  .  (24) 

EXAMPLE 4 

In x - -ip x^1 1 
f(x)  ' ^T l1" x " ^T '    for x > O ; v > -2 

a = 0 

f'(x)  - xv In x for x > 0 

g (x) - i- j. [,„ t. ^j SM + xv In x U(x-e) 

' - 4 ['^ - ^>)-1^ ;£ [> - ikU'W 

1     dx xv In x h(x)   . (25) 

10 
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EXAMPLE 5 

Here we consider the result for the generalized function 1/x2 as 

presented in the integral  (1).    Consider the ordinary function 

f (x) 
- 1/x for   lx|  > c 

I- j sgn(x)    for   |x|  < c 

(26) 

and its derivative 

gc(x) - r(x) 
1/x^     for   |x|   > c 

-f J(x)    for   Jx|  < c 

(27) 

see figure 4.    The function g (x)  is an approximation to generalized functi on 

f.(x) 

Figure 4. Approximation to Generalized Function — 

11 
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l/x^; it contains an impulse of area -2/c (at x « 0) that tends to -««as 

e-*0. 

Thp approximation to integral (7) is as defined in (8); namely, for a = -<», 

b - +o». 

+0» -HO 

Ic . f dx g€(x) cos(wx) - 2 j dx cos(^x) -i 

..j«! _ 2 1 - COe
S(Wc) 4 2w Si(wc). (28) 

where Si is the sine integral (ref. 4, eq. 5.2.1). The limit as c-^0 gives 

the result for the generalized function 1/x2, namely. 

f dx -^ cos(wx) . -irlwj . (29) 

This result is in agreement with ref. 1, eq. 1-32, and with ref. 3, page 43, 

for x"m with m = 2. 

An alternative approximation to generalized function 1/x' that uses 

finite functions is 

!l/x2 for lx| > rj /  2\ 

0 for lx| < c J 

There follows 

12 
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Ie - ( dx gc(x) cos(wx) 

-«» 

" "'M + 7[cos(we) - exp^ ^2€2)] + 2w Si(we) .  (31) 

The limit as c->0 is again exactly (29). The essential feature of 
approximations (27) and (30) is the large, sharp negative pulse of area -2/e 
that develops about x > 0 as c gets small. 

13 



TR 6767 

APPLICATION TO ARRAY WEIGHTING 

This example relies heavily on material presented in ref. 2 on array 

weighting for good voltage response patterns in one, two, and three 

dimensions. In particular, from ref. 2, eq. E-7: for -2 < v < -1, we have, 

for the required array weighting w{x) to realize pattern  0   ,(j(u -B ),  in 

one, two, or three dimensions (w ■ - 7. 0. or 7)» the relation 

-x w(x) . ^ /V* /  Iv+l(B^/U(1"X)f  for 0 < x '     (32) 

and zero otherwise. To match (2), we identify 

g(x) - -x w(x) , (33) 

and 

f(x) -I-'T-)  I^^ßfl^/Ud-x) for 0 < x .        (34) 

The function f(x)   is singular but integrable at x = 1-,  since -1 < v+l < 0; 

thus the derivative in (32) will generate a generalized function (ref.  3,  page 30) 

for the weighting w(x). 

We now identify b = 1  in (12) and obtain,  via (34)  and ref. 4, eq. 

9.6.28, the approximation 

gc(x) = 

-M), (BR) UU- -c-x)    for 0 <  x  .       (35) 

Then there follows  from (33), the approximate weighting 

14 
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v+1 

l^ffiZ?) S{*-1) 

+ (^F-J   ^plN^J U(l-€-x)    for 0 < x . (36) 

This is the result presented in ref. 2, eq. F-14.    It is an approximation to 
the generalized function 

w(x) - fc-j   Iv^lI7)u(l-x) U(x)  . (37) 

which is the required array weighting according to ref. 2, eq. E-7. 

We will carry this example further than the previous ones, by determining 

the voltage response pattern that is actually realized by an array employing 

approximation weighting (36) rather than (37). The array voltage response 

pattern is given by ref. 2, eqs. 1-12, for any y, as 

■ 

1 

v(u) » J dx xß^ J^ux) w(x) , (38) 

0 

where the parameter u determines the array dimensionality, and u contains the 

array geometry, the plane-wave arrival wavelength, and the various look and 

steering angles.    Substitution of generalized function (37)  in (38) yields 

pattern (ref. 2, eq. E-l) 

V(u)  'fr^JP-r)   for all  u  , (39) 

where we define entire function (ref. 2, eqs.  17-21) 

^UU^-    . (40) 

15 
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The particular case of u-t-w » -1.5 In (39) yields ideal voltage pattern 

This relation is true for all u, whether larger or smaller than B.    It 
/2\54 

indicates a mainlobe at u ■ 0 of amplitude (-) cosh(B), and sidelobes for u > B, 

/2V* W 
all of equal amplitude *[-) .    Plots of this ideal pattern are available in 

ref. 2, figures 13-16. 

When approximation WE(X)  in (36)  is substituted, instead,in (38), we get 

several equivalent expressions for the corresponding pattern v (u), as given 

in appendix A.    Plots of typical results are presented in figures 5 and 6 for 

v ■ -1.5.    In both figures, the curve labeled c » 0 is the desired pattern 

(39).    Figure 5 corresponds to a volumetric-spherical  array (u = .5), and the 

desired pattern is,  from (39), 

which decays at a 3 dB/octave rate for large u.    Figure 6 corresponds to a 

planar-circular array (u » 0) with desired pattern equal to ideal pattern 

(41).    The approximations in both of these figures for c = .1 are quite good, 

but those for E » .2 have undergone significant degradation.    The possibility 

of replacing the delta function in (36) by a narrow pulse is considered in the 

next section. 

Figure 5 furnishes an approximation to the bottom asterisked case in 

ref. 2, figure 12; figure 6 does the same for the middle asterisked case in 

ref. 2, figure 13.    The three asterisked cases for v = -1  in ref. 2, figures 

11-13, merely require delta functions at x = 1 and are considered solved.    The 

last remaining asterisked case is the bottom one in ref. 2,  figure 13, for 

v ■ -2.    But this has already been shown in ref. 2, eqs. E-37 - E-39, to 

involve a delta function and its derivative, both of which are easily 

approximated; see, for example, ref. 1, pages 279-280,  or ref. 2, pages 11-12. 

16 
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Figure 5.    Pattern of Spherical Array for Weighting  (36) 

1/ 
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Figure 6.    Pattern of Circular Array for Weighting  (36) 

18 
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USE OF NEUTRALIZERS 

An alternative smoother approximation to f(x) and g(x) than afforded by 

figures 1 and 2 is by the use of neutralizers; see ref. 5, section 3.3. 

Consider the neutralizer nc(x)  and its derivative shown in figure 7; the 

neutralizer is 0 at x - a, and 1 at x - b.    Furthermore,  it has derivatives 

nE(x) 

1 i 

i i. 

a+^ 
a+' 

!"i(«) 

Figure 7A.    Function n (x) 

V^area ■ 1 

i. 
a+ ■ 

Figure 7B. Function n'(x) 

Figure 7. Neutralizer n (x) and its Derivative 

19 
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of all orders, all of which are zero at end points a and b. The positive 

parameter c characterizes the critical point, xc , af|, where the neutralizer 

is 1/2; this point xc will approach a as e-»0+. The neutralizer has 

completed its transition to 1 by the value x ■ a-j-c. n (x) will approach 1 

for all x > a, as c-»0. 

The approximation we take to f(x) is the product 

fe(x) » f(x) nc(x) , ,43j 

and the corresponding approximation to generalized function (2) is the smooth 

function 

ge(x) - fc'(x) . f'(x) nc(x) ♦ f(x) nc'(x) .      (44) 

This approach is similar to the regular sequence of good functions used to 

define a generalized function in ref. 3, pages 16-17. A representative 

example is depicted in figure 8. As before, the area under approximation 

ge(x) is independent of c: 

b b 

J dx gc{x) ■p^xH - fE(b) = f(b) . (45) 
a ^    a 

The result of applying gE(x)  to function h(x)  is now 

20 
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Figure 8A. Function f£{x) 

Figure 8B. Function ge:(x) 

Figure 8. Approximation to Generalized Function via Neutralizer 

21 
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b * 

Ic - 1 dx gc(x) h(x) -   jdx fc'(x) h(x) 

.b b 

fe(x) h(x)j   -    J dx fc(x) h'(x) 
a  ■    a 

D 

f(b) h{b) -   \     dx f(x) nc(x) h'(x)  , (46) 

where we have utilized the properties of the neutralizer.    Equation (46) now 

replaces  (8).    In the limit of e-»0,  (46) yields 

I - Hi Ic - f(b) h(b) -    J dx f(x) h'(x)  , (47) 
e-»0 a 

in agreement with (10). 

A limiting case of figure 7 is a step-function at x = d*-|; i.e., 

ne(x) - U(x-a- J) . (48) 

Then 

n£'(x) = i(x-a-f) (49) 

and (44) yields 

ge(x) . f (x) u(x-a- f) ♦ f(af|) $(x-a- f) . (50) 

This is almost identical to (6), which has its impulse located at x = a 

rather than at x » a+4. 

22 
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APPLICATION TO ARRAY 

The starting point is (32), again, for the required weighting.    The 

function f(x)  is identified as in (34), and we get, from (33) and (44), 

-xwc(x) - ge(x)  - f'(x) nt(x) ♦ f(x) ne(x). (51) 

There follows,  from (34) and ref. 4, eq. 9.6.28, 

f'(x) - -x fe-j    IV(BYI-X y   for 0 < x < 1  , (52) 

Substitution of (34) and (52)  in (51) yields,  for the approximate weighting. 

..(«)-(^Ji,(«R)-.(«) 

(x)      for 0 <  x <  1  .     (53) 

However, the neutralizer in this case must be chosen to be 1 at x = 0, 

and 0 at x ■ 1; that is, it is a reflected version of figure 7A. For our 

purposes, it is not necessary for the neutralizer to have derivatives of all 

orders. Rather, we select n (x) so that n"(x) is continuous for all x, 
•      ii 

and such that n (x) and n (x) are zero at the edges of the transition 

region (1-e, 1); see figure 9. Here, letting 

a * -'^  . (T.) 
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ne(x) n;(x) 

1-e 1 

we take 

Figure 9.    Neutralizer (55) and its Derivatives 

nc(x) - j - i(l5y - 40y3 * ASy5)    for 1-e < x <  1, (55) 

and 1 for 0 i x ^  1-c.    Then 

nt(x)  " " sK1-^2*1^4)    for l-^i x ^ 1. (56) 

and zero otherwise.    Also, 

nc
M(x) =^^-4y3) for 1- £    $    X   i    1, (5/) 

24 
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and zero otherwise.    From (55)-(57), there follows 

n.(x)~^(l-x): 

as x-»l- . (58) 

«>). ^(l-x) 

Combining this with the behavior of the Bessel function near zero 

argument (ref. 4, eq. 9.6.7), we find that both terms of the approximate 

weighting we(x)  in (53)  are proportional to (l-x)3^ as x approaches 1. 

Thus if v ^ -2» the approximate weighting will  approach zero at least linearly 

at x » 1.    An example of wc(x) for v « -1.5 and B . 4 is given in figure 10 

we(x) 

E   =   .1 

Figure 10.    Approximate Weighting w-(x)  for v ■ -1.5, B = 4 

25 
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for two different selections of e.    The large positive spike near x « 1 is 
very pronounced for small e. 

The array voltage response corresponding to approximate weighting w (x) 

in (53)  is given by (38) as 

1 
/c(u) -     f dx xf^y Jw(ux) wc(x) 

1 

J 
0 

1 

I dx x2"*1   fc(ux) wc(x)   . (59) 

where we used (40).    A program for the evaluation of (59)  (along with 

(53)-(56)) is presented in appendix B.    Sample responses are plotted in figure 

11 for a spherical array and in figure 12 for a circular array.    Comparison 

with the corresponding results in figures 5 and 6 reveals that the impulsive 

weighting of (36) yields a better approximation to the ideal pattern (e = 0) 
than the smoother weighting of (53).    That is,  e must be chosen smaller in 

(53)  than in (36),  in order to realize approximately the same voltage response 
pattern in the first few sidelobes. 
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Figure 11.    Pattern of Spherical Array for Weighting (53) 

27 



TR 6767 

Figure 12.    Pattern of Circular Array for Weighting (53) 
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SUMMARY 

We have indicated how approximations to some generalized functions 

generated by the process of differentiation may be realized, and then have 

applied the procedure to the approximation of the weighting required to 

realize the ideal response patterns of arrays in several dimensions.    Two 

examples, one impulsive and the other smooth, were used for circular and 

spherical arrays,  and the resultant approximate patterns were plotted for 

different choices of the parameter E governing the transition region near the 

singularity of the generalized function.    How small E must be chosen depends 

on the form of the approximate weighting and the desired closeness to the 

specified pattern. 

29/30 
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Appendix A 

VOLTAGE RESPONSE PATTERN FOR WEIGHTING (36) 

With the shorthand notation 

ftf(x)l (%-) K^f-*7)     'or O < x < 1 , (A-l) 

approximate weighting (36) takes the form 

we(x) " fv+l
(1-e) ^X-1) + fv(x) Ut1"6-^  for 0 < x .  (A-2) 

Substitution of (A-2) in (38) yields, upon use of  (40), the corresponding 

voltage response 

1- € 

ve(u) -f^d-OJ^u) ♦   f   dx x2,,+1^(ux) fv(x) (A-3) 

0 

for any g: this is the relation programmed in ref.  2, appendix F. 

For small c (the case of most interest), the cusp of f (x)  in (A-3) at 

x * 1 causes numerical integration problems.    We can alleviate this problem by 

integrating by parts on (A-3), using 

U « x2u^(ux),    V- - fv+1(x)   , (A-4) 

to get 

v€(u)=fv+1(l-E)[}y(u)-(l-c)^(u(l-e)j] 

l-£ 

♦ r 
0 
r   dx t2"'1 j ^(ux)  fv+1(x)    for u  > 0  .      (A-5) 
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The function fv+1(x) is integrable at x « 1 if v > -2. 

The completed integral over (0,1) in (A-S) can be evaluated in closed 

form (ref. 2), leading to 

* '«l» 

1 

i 
1 

"  5 dX x2U'1iu-l{ux) fvl(x) ' (A"6) 

which is advantageous because the interval (l-c,l) is small for small e. 

Finally, the cusp at x » 1 can be eliminated for v i -3/2, by changing the 

variable of integration according to x » sin t, getting 

v+1(l-c)[^(u) - (l-e)
27u(u(l-e)j] 

- j dt (sin t)2""1 (cos t)2^3 D j(u sin t) cJ^+1 (B cos t) ,   (A-7) 

where A = arc sln(l-c), and 

I (z) 
(jpjz).^— . (A-8) 

2° 

Form (A-7) is good numerically for small e and any value of u. There is no 

cusp at t = it/2 if v 2 -3/2. A program for (A-7) follows, where E, M« V. and 

B are arbitrary U > 0, v > -3/2, B > 0). 

32 



TR 676/ 

If" Eps-.l € I   Pattern   Vt'H'   vi*   (ft-?) 

39 Nu«-1.5 * 
40 Ec=4 3 I   1   (n   (2C) 
50 OUTPUT 0;"Ef5s -";Eps;"    Mu '  ";Mu;"    N'j  =  ";Nu;"     BC   =,;EC 

€0 DIM   V*(0:430> 
70 CO''.   U,Bc,t11,Nl,M2,N2 
80 Ml=Mu-l 
90 N1=NIJ+1 

10ö M2»2»Mu-l 
110 N2«2*Nu+3 
120 ftlpha«Mu+Nu+l 
130 T"2*Ep»-Ep»A2 
140 IF Eps^ö THEN 160 
ISO Flt*TANl»PNInuxnu(Nl,Bc*SQR(T>>   ' •or H n« 2  i. •' Cft-7;1 

160 El*l-Ep4 
170 T»»ElM2*t"lu> 
180 fl«flSN<;El> 
190 B»PI/2 
200 FOR lu«0 TO 480 
210 U»Iu*PI.40 
228 Sq«SÜR<:ftBSvU*U-Bc*Bc ^ > 
230 IF UOBc THEN Tl"FNInuxnu<fll|Bf:»,Sq)     \ini   : et  fl-r ■ 
240 IF U)Bc THEN Tl>PNJnuxnu<ft1ph4lSq) 
250 IF Ep»>0 THEN 290 
260 T3"T1 
270 V"i 
280 GOTO 480 
290 T2»FNJnuxnu<Mu,U>-Tä*FN Jnuxriu'Mu, U*E1 '    '    for    I i r.*    2    ;t    (.rt-l 
300 T3«T1+F1«*T2 
310 S«<FN8<Fl>-»-FNS<i) >«. 5 
320 N»2 
330 H«<i-ft>#.5 
340 F»(B-fl>.'3 
350 Vo*9E99 
360 T=0 
370 FOR   K"l   Tu   N-l   STEP   2 
360 T»T-rFNS''Fi*H*K> 
390 NEXT   K 
400 S-S+T 
410 V»<S*T)»F !    Ii»H    I   ..)    ■ n-T ■ 
420 IF   rtlS<V-Vo)<»ftBS<V)#lE-5   THEN   480 
4 30 Vo"V 
440 N«N*2 
450 H=H*.5 
460 F»F*.5 
470 GOTO   360 
480 Vt<Iu)»T3-V !   Voltag*   fitif: :rii-.      n-'- 
490 PRINT lu.V^Uu) 
500 NEXT lu 
510 PLOTTER IS "GRflFHICS" 
520 GRAPHICS 
330 SCFiLE 0,430,-70,0 
540 GRID 40, 10 
550 PENUP 
560 FOR Ii.i = G TO 430 
570 PLOT lu, 2Ö*LGT' MES1 Vi ( lu  Vt' £''■.' 
530 HEXT In 
590 PENUP 
600 END 33 
610 i 
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626 DEF FNS'T;1 ! i nt «grand of    <fl-7) 
636 COM lJ,B.:,Ml,Nl,Mi:,N2 
©40 St«8IN<T) 
650 Ct=COSfT> 
660 Tl»FNJnu.;<nu<Ml,U«St, > 
670 T2«FNInuxnu<Nl,Bc»Ct) 
6S0 RETURN St-M2*Ct-N2*T1*T£ 
6*Q FHEND 
700 ! 
710 DEF FNCM»A(X> !  G4nai«(X)  via HART, pags 279, #5231 
720 N«IHT<X> 
730 R»X-N 
740 IF <N>0> OR <R<>Ö) THEN 770 
750 PRINT "FNCMHAOO IS NOT DEFINED FOi* X   -    '; : 
760 STOP 
770 IF R>0 THEN 800 
780 G«(niA«2Bl 
790 GOTO 840 
300 P«3. 3695435913l+R*-; 1. 09850630453 + P*':. 142928007:49»R*:«. 93013464186E' 
810 P»43.9410£09139 + R*<22.9680S00S36 + R«' 12. 3021698U2*R«P •' > 
820 Q»43.9410209191+R*<4.39050474596-K:*' 7. 15075863299-«^) 
830 G4mriia2*P/Q ! Gamm*':2 + P ■ for P   R <    1 
840 IF N>2 THEN 880 
850 IF N.:2 THEN 930 
860 G am rn as G am rn ä2 
870 GOTO 980 
880 Gariirrtü*Gainnia2 
390 FOR K»l TO N-2 
900 G am m a= G am m a* •'-. X - K) 
910 NEXT K 
920 GOTO 980 
930 R*l 
940 FOR K«0 TO 1-N 
950 R»R*<,X*K> 
960 NEXT K 
970 G amm i= G amma2 R 
980 RETURN Gamma 
990 FNEND 
1888 I 
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leiö DEF FNJnuxnuCNu.JO       I  Jnu<x)/,xAr»u 
1Ö20 IF ftlt<X><l THEN 1130 
103t fl«.797384568803 
1040 IF Nu'ö THEN RETURN FNJo<X> 
1050 IF Ni.4«.5 THEN RETURN fl*8IN<X)/'X 
1060 IF Nu»-. 5 THEN RETURN MC08<X) 
1070 IF Nu»l THEN RETURN FNJKXVX 
1030 IF Nu«-1 THEN RETURN -FHJl<X)»X 
lf..90 IF Nu-1.5 THEN RE.TURN Fl*C S INC X >-X#COS'!0 ) X'-3 
1100 IF Nu«-1.5 THEN RETURN -«•<X»8IN<X>*C0S<X)) 
1110 IF Nu-2 THEN RETURN ^«FN Jl <.X)-X*FNJö'; ,<' '-X'3 
1120 IF Nu»-2 THEN RETURN C2*FNJ1 <X>-X*FNJo«.X,':'*X 
1130 fl-Nu 
1140 IF (INT(fl><>fl) OR '::fl>»0) THEN 1163 
1150 K»fi«-Nu 
1160 S»T»l/<2*ft*FNGatnm4(Fl+l)> 
1170 R«-.25»X»X 
1180 Big^ABSCS) 
1190 FOR N«l TO 100 
1200 T«T*«/,<N»<N*fl>> 
1210 S»S+T 
1220 l1g>HAX<11g,RB8(S>) 
1230 IF FIBS<T><»lE-ll«flES'.3> THEN 1270 
1240 NEXT N 
1250 PRINT "100 TERMS IN FN Jnuxnu< Nu, X .:• AT  iNu;:: 
1260 PFIUSE 
1270 D«12-LGT<tM8(Big/S>>  ! NO. OF 3 ION IF, DIGIT1:. 
1280 IF K>0 THEN S«3*< 4*R > ■'K 
1290 RETURN 3 
1300 FNEND 
1310 ! 
1320 DEF FNJo<X)    ! Jo(.X:>   '.'i* 9.4.1 t.   9.4.3 
1330 Y=ftBS<X> 
1340 IF Y>3 THEN 1390 
1350 T«Y*Y-9 
1360 Jo«.0444479-T**.O03?444-T*.00021 ' 
1370 Jo«l-T*'.2.2499997-T*<1.265620S-T*' . ilt i;?6i:'-T-.l:. J ■ 
1380 GOTO 1450 
1390 T«3. Y 
1400 Jo = 9.512E-5-T*': .C!0137237-T*'. 00Ö723O5-T*. 000144•"-• . . 
1410 Jo». 797S8456-T*<7. 7E-7 + T*v. 00552740 + T^ Jo ;• • 
1420 3*.08262973-T*( .(i86S4125-*-T*< .d6029333-T*.000] i^'fS 
1430 TaY-.7S539316-T*C.04166397 + T*<3.954E-=-T*3 ' ■ 
1440 Jo"Jo«C0S<T> SQRCY> 
1450 RETURN Jo 
1460 FNEND 
1470 i 
1430 DEF FNJ1<X>    I JKX) wi« 9.4.4 ;; 1.4.6 
1490 Y»flBS<X) 
1500 IF Y>3 THEN 1550 
1510 T»V>Y 9 
15 2 0 J 1 = . O O 4 4 5 319 - T * 'v. 0 0 0 3 1 7 6 1 - T ■*•. 0 0 6 O 1 » O ? 
1530 J1"X*<.5-T»<. 56249985-1» <. 2109357 S-T«' .m'S-iLi ;--r. ■* n    ■ ■ ■ 
1540 GOTO 1610 
1550 T-3'Y 
1560 J 1 = . Ö00 1 ri05-T-■ . 0024951 1-T-( . 001 1 365 i-T*. 000iöC i ;' ' ' 
1570 Jl = .79rS345*+T*' 1.56E-6 + T*' .0l65966- + l> Jl ■ 
1 580 S = . 0O€3737'r1 -T* ■ , tiO074343 + T••■ ■: . Ü00"'9!:-;4-T«, 00029. -'• ■- 
1590 T«Y-2, S5619449+T*» . 124996 1 2*T-^. 5. 65E-5-T-.': ■ 
1 6 0y JI ■ 3 GN ■ :' ■ * J 1 * C 0 i •', T ■ 3 QP ' 'r ■ 
1610 RETURN Jl 35 
1620 FMENIi 
16 3Ö ! 
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1640 
1650 
1660 
1670 
1630 
1690 
1700 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
1730 
1790 
1300 
1S10 
1320 
1830 
1340 
1850 
I860 
1870 
1380 
1890 
1900 
1910 
1920 
1*3* 
1940 
1950 
I960 
1970 
1930 
1990 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
20 70 
2030 
2090 
2100 
2110 
2120 
2130 
2140 
2150 
2160 
2170 
2130 
2190 
2200 
2210 
22^0 

DEF   FNInuxriuCNu, X> !      InuC x) ■:■; mj 
IF   flBSOmi   THEN   1770 
fl".398942280401 
E»EXP<:X> 
IF Nu-0 THEN RETURN FNIoOO 
IF Nu». 5 THEN RETURN fl^E-l 'E^X 
IF Nu«-.5 THEN REITURN fl*CE+l/E) 
IF Nu-1 THEN RETURN FNI1<X>/X 
IF Nu»-1 THEN RETURN FNIl<X)*X 
IF Nu-1. 5 THEN REiTURN fl#< (X-n*E+<X+l ^ E - X"S 
IF Nu--1.5 THEN RETURN *•<<X-l>«C-<X+lVE) 
IF Nu»2 THEN RETURN (X*FNIo<X)-2»FNl1<X)>/XÄ3 
IF Nu«-2 THEN RETURN (X»FNlo<X>-2»FNIl<X)>»X 
fl»Nu 
IF <INT<«><>fl) OR (fl>"e> THEN ISOO 
Ksfl»-Nu 
S = T«l/<2' fl*FNG»mm4':fl+l > > 
R".25*X#X 
Big-flBS<S) 
FOR N-l TO 100 
T»T*R' (:N»<N + l:l>) 
S-S + T 
B)g«MflXc:Big,flBS';S)) 
IF fli8<T><»lE-ll*«iS<S) THEN 1910 
NEXT N 
PRINT "100 TERMS IN FNInuxnuCNu, X> RT •'iHulX 
PAUSE 
D*12-LGT<AlS<11g/'S>)  ' NO. OF SICN1F. DIGITS 
IF K>0 THEN 8>S*<4«R}AK 
RETURN S 
FNEHD 
j 

DEF FNIo<:X>     I lo<X)   MI i 9.3.1 & 9.3.2 
VaABS(X) 
IF Y>3.75 THEN 2030 
T«Y*VV14.0625 
lo». 2659732 + T*':. 0360763 + T*. 0045313) 
Io=l+T»':: 3. 5156229 + T*<3. 0S?9424 + T#': 1. iü©74-.12+V*io 
GOTO 2070 
T«3.75/Y 
Io=. 009 16231-T*": . 020577a6-T*' . 026355 3" -T* . 0 1 c-J "- " J1 - r' , ÜO :"?2 37 
lO". 39394223 +T*<:. 01 323592 +T*':. . 00225 3 1 9-7^ ■ . 001 3 7>: T-T-Io ... ,:. ■ 
Io»IO»EXP<Y).'SQR<Y) 
RETURN lo 
FNEHD 
i 

DEF FNI1'.X:>    ! II'X> wi* 9.3.3 & 9.3.4 
Y"flBS<X) 
IF V 3.75 THEN 2170 
T^V+Y-14.0625 
I 1 = .02658733 + T*(. 00301532 +T+.000:24 1 1 ■ 
I l"X»( . 5 + T+1. . 373'D0594 + T*':. . 51493369 + T- ■ , 1 f ü04 ?■ I - + ^ - ' ! ■ ' ) 
GOTO 2210 
T»3.75.-'Y 
II = . 01031555-T*<. 0223 2967-T + '. , 0239531 2-* - . 0. "•; .: 4--; -. 0y42öü5' 
I 1 = . 39 3 9 4 2 2 3 - T * ' . O 3 9 3 3 0 2 4 ■» T ■♦ < , 0 0 3 6 2 0 1 i - 'r - . O 0 ". - 3 i 01 - T ► I i • ' ) 
I 1 = :.GN ( X ■ ♦ I 1 »EXP ( Y > ■ z-QP < V > 
RETURN II 
FNEND 
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Appendix B 

PROGRAM FOR THE EVALUATION OF  (59) 

The integral of interest is,  from (59), 

,.(„) .   J   dxj) (ux) x2"*1 H (x)   . (B-l) 
JJ 6 

We approximate this integral by sampling at increment A ■ -JT   and using 
x 

Simpson's rule.    There follows 

Nx 

Ve(u) "f 3[   ^n/u(nUA)  (nA)2U+1 Wc(nA)   • (B-2) 
n-0 

where 

'      {wn]  - 1, 4, 2,  4 4, 2, 4,   1  . (B-3) 

The program below evaluates (8-2).    Values of x2ll+1 w (x) are stored in 

array Xmuwe. 
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If 
2 ei 
N 
4 ei 
N 
M 
76 
8 Ci 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
27Ö 
2SÖ 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
4 30 
440 
450 
460 
470 
480 
490 
500 
510 
520 
5 30 

1 Eps> 
Mu*0 
Nu«-1.5 
Bc-4 
Nx«2A8 
Niu-240 

TF:flNSITION  PflRftMETEP  € 
DIMENSIONALITY   PFlRflMETEft  /* 
WEIGHTING  PriRRMETER   V 
WEIGHTING  PMRRMETER   B 
NUMBER  OF   INCREMENTS   IN   X 
NUMBER   OF   INCREMENTS   IN   U 

DIM   Xmuu«C0:1024>,V«<0:240) 
RED IM   Xmuwe<:0:Nx),Ve<0:Niu> 
Mu21-Mu*2+1 
Nul«Nu+l 
D«l»l'Nx 
Xmuwe<N^>»0 
FOR   1-0   TO   Nx-1 
X«I*Del 
R2«1-X*X 
Rs-SQR';R2> 
Br»Bc*R» 
Iv»R2'Nu*FNInuxnu <Nu,Br) 
IF   XM-Eps   THEN   220 
Xrnuw*1 I )«X'>Mu21*Iv 
GOTO   260 
lMl«R2^Nul*FNInuxnu(Ni.il,Br:' 
Ne-FNNeut-^EpSjX) 
N«p=FNN*utp<Eps,X) 
Xmuw««: I >»X'sMu21*< lM*Ne-Ivl*N#p.'X:> 
NEXT   I 
FOR   lu«0   TO   Niu 
U»lL4/Niu*6*PI 
Ud»lJ*Del 
T»Xmuw» <0>*PNJnuxnu<Mu, U)»XMUW« (Nx :> 
So»Se=0 
FOR   N»«l   TO   Nx-1   STEP   2 
So^So + FNJnuxnuCMo,Nt*Ud>ftKMUWt Ni > 
NEXT Ns 
FOR Ns«2 TO Nx-2 STEP 2 
8«"8«*FNJnuxnu'Mu,N»*Ud)»X(i»uwt<N» 
NEXT N» 
V«^ Iu::'»T + 4*So + 2*Se 
PRINT Iu,Vt<Iu> 
NEXT lu 
PLOTTER IS "GRAPHICS" 
GRRPHICS 
SCRLE 0,Niu,-70,0 
GRID Niu--6, 10 
PENUP 
T»20*LGT(Ve':0:)) 
FOR lu«0 TO Niu 
Y«20*LGT ■ ABS< SV: Iu :■) >-T 
PLOT Iu,Y 
NEXT lu 
PENUP 
END 
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548 DEF FNNeut<,E,X) 
SSO IF X<-l-E THEN RETURN 1 
560 Y"<X-l+.5*E)/E 
570 T»Y»Y 
580 T»15-T»<40--T*43> 
590 RETURN .5-.l25*Y*T 
b00 FNENO 
610 ! 
620 DEF FNN*utp<E,X) 
630 IF X<«l-E THEN REiTURN 0 
640 Y»(X-l+.5*E)/E 
650 T»Y»Y 
660 T»1-T*<3-16»T) 
670 RETURN -1.875*T/'E 
630 FNEND 
690 ! 

ALL OTHER FUNCTIONS FIRE: LISTED IM APPENDIX R. 

3y/40 
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PERFORMANCE OF THREE AVERAGING METHODS, 
FOR VARIOUS DISTRIBUTIONS 

by 

Albert H. Nuttall 
Naval Underwater Systems Center 

New London, CT   06320    USA 

ABSTRACT 

The performance of three averaging methods,  namely the sample median, the 
sample arithmetic mean, and the sample geometric mean, are analyzed In terms 
of their bias, variance, and mean square error.    The bias and variance are 
numerically evaluated for various parent distributions and plotted versus the 
number, N, of data points employed in the sample statistics.    Also, the 
limiting behaviors, as N Increases without limit, are derived.    It is found 
that the best averaging method is very dependent upon the distribution of the 
data, with the sample median being favored for data with occasional large 
out-1 iers. 

INTRODUCTION 

Estimation of average properties,  such as the average power in a particular 
angular sector and/or frequency bin is often accomplished by taking N 
independent measurements of such data and calculating a simple arithmetic 
average.    However, when the desired process is subject to random fade-outs or 
occasional large out-1 iers, this sample arithmetic mean (SAM) is severely 
perturbed, and alternative averaging methods should be considered.    Two 
possible candidates are the sample median (SMD) and the sample geometric mean 
(SGM); these nonlinear processors of the available data have the potential  of 
suppressing the deleterious effects mentioned above.    Here we investigate* the 
performance of all three of these averaging methods in terms of the number, N, 
of independent data points employed in the pertinent average, and the parent 
distribution of the data.   A wide variety of distributions are considered, 
some with parameters which allow for significantly different character and 
shapes of the governing probability functions. 

*The basic analysis, derivations,  and programs are given in Ref.  1. 



DtFIHlTIüNS 

We have available N statistic ally-Independent Identically-distributed samples 
(random variables) xi, x?, ...( XM from some parent population with 
cunulatlve distribution function P(u) ■ Prob{x<u> and probability density 
function, PDF, p(u)  a P'(u).    The SAM of the available measurements Is 

a(N) "i (*! "•" x2 
+ ••• + xN); (1) 

the SMÜ Is 

qlN) • middle value of {x^, X2,  •••• xN], for N odd; (2) 

and the SUM IS (for non-negative random variables) 

9,N, . (x1,2... x.r. Mp Z1"^----1"^ 

K   A Ugifrj)* »». ♦A loggfr^ 

m aV H J for any base B > 0 /,» 
0 and scaling A. K'i) 

The last form In (3) for base B a 10 goes under the name of dB averaging. 

As N tends to Infinity, the sample quantities above tend to definite 
(non-random) limits.    In particular, as N—»«», 

a(N)~* arithmetic mean aJdu u p(u); 

q(N)-» median • u^ . where Pf^wg^ ' "2 ' 

g(N)-» geometric mean ■ exp Mdu ln(u) p(u)J; (4) 

where we drop the prefix 'sample'  for these deterministic quantities.    The 
last result In (4) follows from the exponential  form of the SGM In (3).    If 
the 1/2 In the median definition Is replaced by r, we have for q(N) the sample 
quantlle of order r (Ref.  2, page 181). 

The three limiting quantities In (4) will  generally not be equal.    For 
example, for an exponential parent PDF 

p(u)   -^ exp^- ^)for u > 0, (5) 



we have 

arithmetic mean ■ m; 
median > m 1n(2) > m .693; (6) 
geometric mean    » me~y ■ m .562. 

Thus we define the bias of each of the sample statistics (l)-(3) as the 
difference between their mean value and their asymptotic value: 

bias (SAM]  -KW) - mean; 

bias {SMD") - qTTJT - median; 

bias {SUM]  ■ g(N) - geometric mean. (7) 

By virtue of tills definition, all  three biases will tend to zero as N-»-o ; 
that Is, all three estimators, (1M3), are asymptotically unbiased, each with 
respect to its desired value as given by (4), respectively. 

It is then convenient to define a normalized bias, NB, for each sample 
statistic as 

NB(N)  -N -^ , (8) 
o 

where o is the standard deviation of parent PDF p(u).   The scale factor of N 
leads to a non-zero value of the normalized bias for large N, while the scale 
factor of o is convenient in that it eliminates the dependence of the 
normalized bias on the absolute scale of the input data.   For large N,  (8) 
yields 

bias - o NB|^OB ) as N-*-; (9) 

thus NB(<») is an Important measure of quality of the particular sample 
statistic under consideration. 

The variances of sample statistics (l)-(3) are defined as 

 2 

varfeAM)   •     aZ(N) -   a(N)   ; 

varfSMD]   -     q^N) -   q(N)   ; 

 2 

varfcwfl   -     g2(N) -    g(N)   . (10) 



Again,  since these quantities tend to zero for large N, It Is more convenient 
to define a normalized variance, NV, as 

NV{N) , N varUnce   i (11) 

a 

Then we can state that 

variance - a2  i^HasN-*«; (12) 

thus NV(oo ) is also an Important measure of the quality of a particular sample 
statistic. 

We present results here for NB(N) and NY(N)t along with their asymptotic 
values at N a* , for a variety of parent distributions P(u).    Additional 
results for the sample quantlle with r ■ .75 and .9, and for the PDF, 
cumulative distribution function, characteristic function, cumulants, and 
moments of the various sample statistics are available In Ref. 1. 

RESULTS 

The first case we consider Is the Gaussian PDF with mean m and variance o2. 
Since this random variable can go negative, the SGM Is undefined.    The SAM and 
SMD are unbiased for all N; thus NB(N) > 0 for all N, for this example. 
Results for the normalized variance are presented In Fig. 1 for the number of 
samples, N, between 1 and 51, for both the SAM and the SMD.    The normalized 
variance for the SMD Is computed only at odd values of N, Indicated by an X, 
and straight lines drawn between these points for ease of association of 
values.    It Is seen that the variance of the SMD Is always greater than that 
for the SAM, the limiting value, NVf« ), being T/2 for the SMD; see also Ref. 
2, page 369.   Observe that the parameters m and o of this PDF have dropped out 
of thls normal 1 zed pi ot. 

It Is worth pointing out here, and for similar results to follow, that 
although the curve for the SMD Increases with N, that does not mean that the 
variance Increases with N; rather, the normalizing factor of N in definition 
(11) causes this behavior.    The actual  (unnormal 1 zed) variance decreases 
monotonlcally with N, eventually being of order 1/N. 

For a Rayleiyh random variable, the results for the normalized bias are given 
in Fig.  2.    The SAM Is unbiased for all N, whereas the SGM and SMD are, of 
course, only asymptotically unbiased.    The limiting values, NB(°o), for both 
of these latter sample statistics are given by analytically complicated 
expressions and are not repeated here, for the sake of brevity; they are 
indicated numerically by horizontal  lines at the right edge of the figure. 
The corresponding results for the normalized variance are given in Fig. 3. 
They Indicate that whereas the SGM has about the same stability as the SAM, 
the variance for the SMD is about 65%greater. 

For an exponential PDF (as given by (5)), the normalized bias and variance 
results are presented in Figs. 4 and 5 respectively.    The biases of the SGM 
and SMD are comparable, but we observe that the variance for the SGM is twice 
as small  as that for the SAM and the SMD. 



For a 1og-norraal  PDF, 

fanlu)  - i_ 
p(u) ^=^ exp 

a. 

(ln(u) -m)2 

IT7" 
y 

for u > 0 , (13) 

the Nb(N) and NV(N) results are Independent of location parameter my, but 
they do depend on spread factor oy.    This may be anticipated by plotting the 
PDF (13) for various values of oy and observing that the shape changes as 
ay does.    Since NB(N) and NV(N) depend upon the shape of the PDF (rather 
than upon absolute location and scale), results will depend on the particular 
value of ay selected.    An example of NB(N) and NV(N) for ay a 1 Is 
presented In Figs. 6 and 7.    Now we observe that the variance of the SMD Is 3 
times better, and that of the SGM 4.6 times better, than for the SAM, at least 
for larger values of H.    However, as ay-»o, the log-normal PDF In (13) 
approaches a Gaussian PDF about the point u ■ exp(m), and the behaviors would 
revert back to Fig. 1 then. 

The next example Is the Rice PDF; physically, this corresponds to the 
squared-envelope of the sum* of a sine wave and a centered narrowband Gaussian 
noise process.    That Is, the PDF Is 

m p(u)  --i,   exp(--^—3-|   l0\~YZ-}for u > Q    , (H) 

where A Is the sine wave amplitude and q   Is the noise standard deviation. 
Once again, the shape of the PDF depends on a parameter, namely A/V, .    Results 
for A/<r,   ■ 1 are given In Figs. 8 and 9.    The SMD has 14^ greater variance 
than the SAM, but the SGM has about 60^ of the SAM variance.    As A/oj-»0, the 
exponential  PDF results are obtained, whereas as A/^-»«*, the Gaussian case Is 
realized.    Thus (14) represents a transition case between these extremes. 

The last example we consider here Is an exponential  PDF with out-llers.    That 
Is, each sample or measurement j/^ In (l)-(3) Is given by 

xk " «a + xbf (15) 

where xa has an exponential  PDF, 

pa(u)  "nrexP (" m")   for u > 0' (16) 

*If each of the observed random variables xi, X2,  ..., XN In (l)-(3)  is 
obtained by first summing up the envelope-squared outputs of M narrowband 
filters,  as for example in diversity reception,  the PDF in (14)  is replaced by 
the % distribution.    Results for this case are available in Ref.  1,  but are 
not given here, for sake of brevity. 



and disturbance X5 is a random variable which Is zero most of the time,  but 
occasionally takes on a large value (out-lier) L.    That Is, Its PDF is 

pb(u)  - (1 - Q)  i(u) + Q X(u - L) (17) 

where Q Is the probability of an out-lier.    Then the parent PDF of observation 
(sample) x^ is the convolution of (16) and (17): 

p(u) - i-ll eirp (-j*-)  U(u) ♦J-wp^iLLi)   U(u-L). (18) 

where unit step 

U(t)  - S h (19) 
Cl for t > (P) 

to for t < Oj 

The Important parameter now Is L/ma, which obviously affects the shape of 
PDF (18). 

Now however, before we get Into the detailed bias and variance results, 
another consideration Is of paramount Importance.   Our sample statistics, 
(1M3), will no longer extract (estimate) the arithmetic mean, median,  and 
geometric mean, respectively, of the (disturbance-free) exponential PDF (16), 
but perforce, the corresponding statistics of the measurement PDF (18).    If, 
however, we are really Interested In the parameters of (16), then we must 
Inquire Into the quantitative disturbance caused by the out-llers described In 
(17).   Here we merely cite the results for one numerical case; additional 
results are given In Ref. 1. 

For probability Q ■ .05, and out-lier value L/ma « 6, we find that the ratio 
of means, for (18) with respect to (16), Is 1.3.    The corresponding ratio of 
medians Is only 1.08, whereas the ratio of geometric means Is 1.13.   Thus the 
SMD and SGM are more resistant to the presence of Infrequent out-llers. 
Insofar as their effects on the particular parameters of median and geometric 
mean. 

The results for the normalized bias and variance are given in Figs. 10 and 
11.   The variances of the SMD and SGM are again smaller than that for the 
SAM.   The bias of the SMD and SUM are comparable. 

If we define a mean-square error as the average value of tne squared 
difference between a sample statistic s and a desired parameter da of the 
disturbance-free PDF, we can develop It as follows: 

MSE fTTtf -(.-i*!- <iay 

(s - s)2 *  (s-^2  ■ la) 



But the first term Is the variance of the sample statistic, and the second 
term can be expressed as 

s - da ■ (s - d) + (d - da) ■ bias + deflection In desired parameter, (21) 

where d Is the modified value of the desired parameter da, due to the 
disturbance. Thus 

MSE » variance ♦ (bias + deflection)2 . (22) 

Now the bias and variance are O(N'l) for large N, whereas the deflection of 
the desired parameter does not decay with N at all; In fact. It Is Independent 
of N.   Thus the considerations above, whether for the ratio of means or 
medians or geometric means, are very Important,  since they dominate the 
magnitude of the mean-square error for very many samples available. 

DISCUSSION 

The ability of the SMD and SGM to suppress deleterious effects due to 
occasional large Interferences Is very pronounced for some probability density 
functions.   Not only Is the deflection of the desired parameter (mean or 
median or geometric mean) decreased, but the bias and variance of the estimate 
can be markedly reduced In some cases.   The exact amounts depend on the 
magnitude and frequency of the Interference. 

Another possible approach to alleviate the effects of additive large out-llers 
Is to subject the available samples xi, X2,  ..., x^ to a nonlinear 
transformation such as saturation. In order to suppress the large contri- 
butions, prior to evaluating the SAM or SGM or SMD.    Knowledge of relative 
levels (such as L/ma for the above example) would be required for optimal 
adjustment of the saturation level, but performance could be markedly Improved. 
The nonlinear transformation would reduce the deflection, while the averaging 
of N samples would reduce the bias and variance.    This possibility has not yet 
been pursued. 
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Detection Performance 
Characteristics For a System 

With Quantizers, Or-ing, 
And Accumulator 

A. H. Nuttall 
ABSTRACT 

The false alarm and detection probabilities of an N-channel system 

subject to L+1 level quantization, or-ing, and accumulation of M time 

samples, are evaluated exactly, with no Gaussian assumptions, for 

arbitrary values of N, L, M, and for a quantizer with arbitrary break- 

point locations. The channel noises are independent but can have 

arbitrary statistics. The signal occupies one unknown (possibly 

changing) channel, if present. Two FFTs suffice to sweep out a 

complete detection probability vs. threshold curve. The optimum 

placement of quantizer breakpoints, for a fixed total number of levels, 

L + 1, is a subtle one and is shown to depend on N, M, and the desired 

level of performance; a simple ruie-of-thumb is presented which 

yields near-optimum capability over the useful range of the operating 

characteristics. A brief comparison with the optimum processor is 

made. 

Approved for public release, distribution unlimited. 
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DETECTION PERFORMANCE CHARACTERISTICS FOR A 

SYSTEM WITH QUANTIZERS, OR-ING, AND ACCUMULATOR 

INTRODUCTION 

Practical realizations of desired systems often incorporate approximations 

to the ideal processor or devices, for the sake of reduced expense and 

equipment complexity. In particular, quantization is frequently employed, 

since it facilitates data handling and processing in terms of storage and 

execution time. In addition, tne large number of alternatives for signal 

presence and location that must be considered often dictates that data 

reduction procedures, sucn as or-ing, be adopted. Both of these suboptimum 

approaches, quantization and or-ing, degrade system performance, and it is 

important to know tne extent of the degradation. Alternatively, it is 

desirable to know how much the received signal strength must be increased in 

order to maintain a specified level of performance. 

The effects of or-ing by itself were analyzed in ref. 1, where the 

required input signal-to-noise ratio for specified false alarm and detection 

probabilities was evaluated as a function of tne number of input channels and 

tne observation time. In ref. 2, the additional degradation caused by the 

inclusion of quantization was derived, where the number of levels and 

breakpoint locations of tne quantizer were completely arbitrary. Both of 

these analyses, however, were limited to second-order moments of the decision 

variable, and were tnerefore most appropriate to the situation of large 

observation time and moderate false alarm probabilities. That is, the 

Gaussian presumption played a prevalent role in the analysis. A cursory study 

of good quantizer breakpoint locations was also given in ref. 2. 

Numerical evaluation of tne or-ing losses, based upon the derivations in 

refs. 1 and 2  , were given in refs. 3 and 4, and a more extensive investiga- 

tion of quantizer characteristics was conducted in ref. 5, which corroborated 

the results given in ref. 2. But again, all results were based on a second- 

order moment approacn. 
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Here we will derive exact results for the fai;>e alarm and detection 
probabilities of a system with quantization, or-ing, and accumulation-in-time, 

for arbitrary input signal and noise statistics.    Surprisingly, it turns out 

that inclusion of the additional nonlinearity (quantization) actually 

simplifies tne analysis, and the judicious use of FFTs (fast Fourier 

transforms) makes tne numerical evaluation of the probabilities an efficient 

and accurate procedure. 
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SYSTEM DESCRIPTION AND ASSUMPTIONS 

The system of interest is depicted in figure 1.    There are N input 

channels, each of which is subject to noise statistically independent of the 

other channel noises.    A signal is either present on one (and only one) 

unknown input channel or it is not present at all; we wish to make a decision 

on presence versus absence with good quality.    The input signal (if present) 

need not be additive to the input noise; all that is required is knowledge of 

the probability density function of the input channel random variable x (m) 

(at sample time m) for signal present.    By setting the signal strength to 

zero, we ootain the probability density function for noise-only, of course. 

It is presumed that the signal, if present, remains so for all M discrete 

time samples accumulated at the or-ing output.    However, tne signal could 

remain in one channel, or it could wander over any number of channels in a 

deterministic or random manner, from time sample to time sample. 

The prooability density functions of inputs {x (mj)   are arbitrary except 

that they must be identical  for all the noise-only channels.    Extension to 

non-identically distributed channel noises appears possible but nas not been 

pursued.    No Gaussian assumptions are mide at any point of the system of 

figure 1, for the general  analysis to follow.    However, tne numerical example 

that we eventually pursue is for Gaussian inputs, although this could easily 

be replaced oy a different case of interest;  in fact,  some candidate examples 

are listed later in an appendix. 

Each channel  input xn(m)  is subject to memoryless quantization, where 

t« quantizer output q{xn(m))   nas a total of L+l  levels,  and the L quantizer 

cfiscissa breakpoints are arbitrary; see figure  2.    A general analysis for this 

iiost-general  quantizer  is possible and will oe outlined  later.    We confine our 

attention here to the less-general quantizer depicted in figure 3, where the 

ordinate (output)   levels are limited to tne equi-spaced values 0, 1,  2,   ..., L, 

but the abscissa (input) breakpoints fo]   are arbitrary, except that 

b* - DX+1 ^or ^ ^ ^ - '-"^' without loss of generality. 
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This limitation on the possible quantizer output levels is not as 

restrictive as first appears. Reference to figure 1 quickly reveals that if 

the quantizer output levels were at equi-spaced values h +^Ah, for 

0 i J?. < L, the operating characteristics, namely detection probability versus 

false alarm probability, would be completely independent of h and 

An (> Ü). Tnat is, h0 and Ah affect the absolute scale of y(m) and z, but 

they can be absorbed in a modified threshold at the system output. In fact, 

if one wants to approximate a given nonlinearity (such as tanh(x), for example) 

by a quantizer, L can be selected large enough, h and ah chosen without 

restriction, and the {bujo selected for a good fit. Then the analysis, as con- 

tained here for the quantizer of figure 3, applies directly, where h and &h 

(determined from tne nonlinear fit) are discarded, h and ah are 

temporarily used for the fitting procedure, but are not fundamental to the 

system operating cnaracteristies. 

An example of a fit to tann(x) is given in figure 4 for L = 7, where the 

Figure 4. A Quantizer Fit to tanh(x) for L = 7 



i r\   UOJ. J 

maximum ordinate error has been minimized and equalized at all the steps, and 

both functions approach *1 as x tends to *».    The best locations of the 

breakpoints are at 

forl<^iL      , (1) 

for this example.    We also have h0 ■ -1, Ah ■ 2/L. 

The or-ing device in figure 1 is subject to N inputs at each discrete time 

sample m.    It selects the largest of these N random variables at each m and 

emits it to the accumulator as variable y(m). 

The accumulator adds up M input time samples to yield the decision variaole 

M 

z -   ^ydn)      . (2) 

ml 
This output z is compared with a threshold.    If the threshold is exceeded, a 

signal  is declared present at the input to the system; otherwise, no signal is 

declared.    For present analysis purposes,  it is presumed that the discrete 

time samples (which can actually take place on the input channels) are 

sufficiently separated in time that the M random variables entering the 

accumulator are statistically independent. 

When quantizer q in figure 1 is monotonically nondecreasing, the non- 
linear system in figure 1 is equivalent (for all inputs) to that shown in 

figure 5, where the quantization and or-ing operations have been interchanged.* 

The random variable y(m)  in figure 5 is identical to that in figure 1.    We have 

added another random variable, w(m),  in figure 5 that has no counterpart in 

figure 1, for purposes of analysis.    This interchange of operations is valid 

whether the quantizer of figures 2 or 3 is used. 

Extensions of the above assumptions to more general situations, such as 

statistically dependent inputs or dependent accumulator samples,  are discussed 

in ref. 2.    However,  the analysis there is limited to second-order moments, 

not threshold-crossing probabilities as considered here. 

*See refs.  2 and 4 for two different proofs. 
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ANALYSIS OF PERFORMANCE 

In this section, we evaluate tne false alarm and detection probabilities 

of the system in figure 5. The cumulative distribution function of an 

individual channel input, for signal absent, is P x . where 

P^(u) » Probability (x < ulsignal aosent)  .      (3) 

Tne cumulative distribution function of the channel input with signal-present 

is P i • Both of these cumulative distribution functions are presumed known. 

The superscript will denote either hypothesis H0 {no signal present) or 

hypothesis H^ (signal present on,that channel). Notice there is no 

restriction on the forms of P* ' or P x , thus arbitrary input statistics 

(including nonadditive signals) are allowed. However, the noise-only channels 

are identically distributed. 

Since the or-ing output in figure 5 is 

w(m) « max[x,{m), ..., xN(m)^  for 1 < m ^ M  , (4) 

tne cumulative distribution function of w(m) is, for any time instant m, 

I. for Hn 
w    IT /n\  1 n i    /i \ 

for H1 

since the signal (if present) is in only one (arbitrary) input channel. In 

fact, tne occupied channel can change from sample m to m+l, in a random or 

deterministic fashion, and (5) is still applicable. 

The output y(m) of the quantizer in figure 5 is limited to the L+l values 

j^ = 0, 1, 2, ..., L; see figure 3. Therefore the probability density function 

of random variable y(m) is impulsive, as shown in figure 6, where the area a- 

of the impulse at/ is given by 
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Pw(b1) for  JlmQ 

** 
Pw(Vl)    'Pwfe)      'orl^iL-l^      . (6) 

l-Pw(bL) for^.L 

Here Wl    are the L abscissa breakpoints of the quantizer, and P    is the cumu- 

lative distribution function of w, given by (5). 

The output of the accumulator in figure 5 is called the decision variable 

and is given oy the sum of M statistically independent random variables 

according to 
M 

z - I>   y(m)      . (7) 

Since y(m) can only take on the values 0, 1, 2, .... L, the decision variable 

z can only take on the values 0, 1, 2, .... ML. Thus the probability density 

function of z is also impulsive, as depicted in figure 7; the area of the 
impulse at n is denoted oy 8-. 

Me now need to relate the {en] of figure 7 to the foJ of figure 6. To 

accomplish this, we resort to the characteristic functions of y(m) and z. 

Using the statistical independence of the [y(m)] , the characteristic function 

of z is 

M        M 

fz(?) = exp(i5z) = [expUTy)"] . [fy (5)]   , (8) 

where f is the characteristic function of random variable y(m). But by use 

of figures 6 and 7, we have 

•o L 

fy(|J - Jdu py(u) exp(ifu) = 2.^ exp(i5i)  ,       (9) 

Jl-0 

and 

00 ML 

f2(£) = J du p2(u) exp(i^u) = ^_ ön exp(i]Fn) (10) 

—o n=0 

10 
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Substitution of (9) and (10)  in (8) yields 

ML 

f2Cf) - 2 ßn «rtW -   ^> ^ ^P^1») 
n=0 

(11) 

f"  ^ Ml 

Now the results of appendix A indicate that the set of numbers ^ßl  c an 

be recovered directly oy an iMf-point OFT (discrete Fourier transform) of the 

set of characteristic function samples 

provided that 

f2(2in/Nf)      for 0 < n i Nf-1      , 

Nf 2 ML+1 

(12) 

(13) 

And from (11), we have the required characteristic function samples as 

-L I« 

f2(2*n/Nf) -       ^>    ^  exp(i2iTn^/Nf) . (14) 

The sum on X nere is the conjugate of an Nf-point OFT of the L+l real 

nonzero numbers fa/l    augmented by zeros.    When this OFT is raised to the M-th 

power, it constitutes the required Nf samples of the cnaracteristic function 

f2 that are needed for the OFT that leads to [en]. 

To summarize,  (5) yields the cumulative distribution function of w, and 

(6) gives the impulse areas |a.JQ  .    An Nr-point OFT of this sequence 

(augmented witn zeros)  is taken,  tnen conjugated and raised to the M-th 

power.    Anotner Nf-point OFT is tnen taken and the results divided Dy N^. 

Tne end result is impulse areas  [0n].  The values retu.-ned (by the second OFT) 
for ^L+l'  •"♦ BN -1 s,10u^ a^ be zer0» as should all  the imaginary parts. 

Although any value for Nf that satisfies (13)  is permissible, the smallest 

power of  2 is most reasonable since then we can employ two FFTs above;  this 

time-saving feature is employed here. 

11 
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The proDability that decision variable z equals or exceeds integer value J 

is, from figure 7, 

ML 

Probability [z > j] - 3*n  for 0 < Ji ML  . (15) 

n-J 

Tne above analysis for the exceedance probability in (15) is exact. When 

signal is present, (15) is the detection probability, whereas when signal is 

absent, (15) is the false alarm probability. The fundamental input statistics, 

P^' and p'*J required in (5), are arbitrary. 

12 
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QUANTIZER BREAKPOINT LOCATIONS 

For a given number, L+l, of quantizer output levels, the selection of the 

L breakpoints {b^ should be done so as to optimize the performance of the 

system, that is, maximum detection probability for a specified false alarm 

probability. The equivalence of the two processors in figures 1 and 5 is the 

guide to good selection of the breakpoints; namely [bg] should lead to a 

maximum difference in outputs y(m) for hypothesis H, vs. H«. However, as 

figure 5 shows, this selection of [b.] is governed by the probability density 

functions of quantizer input w, not x; that is, the quantizer should take 

account of the or-ing nonlinearity and the number of input channels, N. 

A problem arises here, however, in that tne probability density functions 

of w under H^ and HQ depend on tne particular value of input signal-to- 

noise ratio that obtains. Thus, the quantizer design should take the input 

signal-to-noise ratio into account. This situation is frequently encountered 

in likelihood ratio processing, in which the optimum processor often requires 

knowledge of absolute levels of input signal and noise. Since this knowledge 

is almost always lacking, a design that is good for representative values of 

input signal-to-noise ratio, that is, which correspond to adequate levels of 

performance, should oe adopted. If the input signal-to-noise ratio is larger 

tnan tnese representative values, improved performance will result; if 

smaller, inadequate performance is expected anyway, regardless of quantizer 

breakpoint placements. 

To get at tne quantizer design, consider the probability density functions 

in figure 8 for random variable w under H, and HQ. WQ is a point beyond 

whicn tnere is a small cnance of w ever reaching under H0; w, is a point 

oelow wnich w nardly ever reaches under H,. Generally w, < w,. for cases 

of practical importance; otherwise near-perfect performance is possible at 

tnis signal-to-noise ratio. Under HQ, We would like to locate the first 

breakpoint b^ greater than WQ; then tne false alarm probability would be 

substantially zero, regardless of the remaining fb.|. On the other hand, 

under H^, we would like to locate the last breakpoint b, less than wi; 

then the detection probability would be essentially 1. 

13 



TR 6815 
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Figure 8.    Probability Density Functionsof w in figure 5 
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Figure 10.    Compromise Quantizer Characteristic 
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These desirable quantizer characteristics, under HQ and H^ are depicted 

in figure 9. It is immediately seen that the desired features of both cases 

can be realized for w < v^ and w > WQ; that is, choose q-0 for w < v^, 

and choose q«L for w > w0. However there is an inherent conflict in the 

intermediate region w^ < w < HQ. The only way to strike a reasonable 

compromise is to make q small near w1 and make q large near WQ. That is, 

locate the breakpoints in w^ w0 , as indicated in figure 10. We shall 

make tnem equally spaced on the input w, that is, tit+^ -  tv independent of^; 

nonuniform abscissa spacings, such as in figure 4, are possible and could give 

slightly oetter performance. However, sample computer runs have demonstrated 

that for L > 4, essentially optimum performance is attained via uniform 

breakpoint spacing. Also, for the larger values of input signal-to- 

noise ratio, it will be shown that the optimum processor of the available 

inputs takes precisely the form of figure 5, where the quantizer is replaced 

by a linear gain. 

The best quantizer placements in figure 10 obviously depend on the number, 

N, of input channels and the input signal-to-noise ratio, since the 

probability density functions of w displayed in figure 8 depend on these 

quantities. But there is an additional less-obvious dependence on M, the 

number of samples accumulated at the quantizer output. For larger M, the 

separation of tne prooability density functions of z under H0 and H, will 

become better, if the input signal-to-noise ratio is held fixed. But often, 

tne larger values of M are employed so that lower input signal-to-noise ratios 

can be tolerated and yet realize adequate performance levels; thus, the 

probaoility density functions of w in figure 8 generally overlap more for the 

larger values of M. This means that Wj^ will be smaller and therefore the 

breakpoints should be relocated. Further discussion of quantizer breakpoints 

is deferred until the numerical investigation is undertaken. 

15/16 
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INPUT STATISTICS 

Up to now, the statistics of inputs [x^in figures 1 and 5 have been 

arbitrary. We now specialize to the case of Gaussian noises; some other 

candidate statistics arj given in appendix B. In particular, the cumulative 

distribution functions under HQ and H-,  are 

respectively, where $ is the Gaussian cumulative distribution function 

A A, 

{(x) - jdt (2ir)-1/2exp(-t2/2)5 Jdt+(t). 
—•o —•* 

Tne means of xn are IDQ and m, under HQ and H,, respectively, while the 

standard deviation is the common value o in both cases. For later use, 

we define tne deflection statistic of the inputs as 

(16) 

(17) 

m1-m0 
(18) 

Reference to (5) and (6)  indicates that we need the quantities 

^)-i(^).IW   1 
►for 1 < ^ < L, 

.(1) p7 OiM ^ -"i^ IC^i) 
y 

(19) 

wnere we nave used (16),  (17), and defined tne normalized breakpoints of the 

quantizer as 

v,   > ±-Z       for 1 ^ <; L (20) 

Then (5)  and (19) yield 

17 
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'wW 
ft  (0 for H0"| 

for 1 i X i L 

r^Wife-^i)   ^HI 
(21) 

Tnese are tne quantities needed in (6) for tne areas fa-] in figure 6. 

(If the noise standard deviations were a0 and a-,  under HQ and H,, 
instead of tne common a in (16), the only changes would be to replace v. -di 

in the second line of (19) and (21) by — (^-«Oj •   The results in the 

next section are based upon this Gaussian noise example. 

18 
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RESULTS 

By combining the general result for the cumulative distribution function 

of w in (5) with the Gaussian example in (16), we obtain 

p,i«).f N-l (^)i po 
■N-l -$n'L  (v) f (v-d^  , 

where we define normalized variable 

v 2 
a 

and have used (18). The probability density function of w under H, is 

Pw<u>-^>-;M*N"1(v,s(v-di)] 
- 7 [(N-l) Kv-d^v) ♦ f (vHHi)] ?N"2(V)  • 

(22) 

(23) 

(24) 

where we used (17). This probability density function is plotted in figure 11 
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Figure 11. Probability Density Function of w for N = 3 
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for N«3 and several values of d^ if we select, for example, d^S, the 

points Wj and WQ in figure 8 correspond approximately to v » 1.4 and 4.1 

in figure 11. Tne curve for d.«o is tne probability density function of w 

under H0. 

Tne false alarm probability, as given by (15) et seq., is plotted in 

figure 12 for an example with 

N=3 input channels, 

M=5 time samples accumulated, 

L-7 quantizer breakpoints, 

1.4(.45)4.1, normalized breakpoints.* (25) h) 
(Since L+l«8 here, this is called a 3-bit quantizer.) Since threshold J can 

only take on integer values, the false alarm probability is only defined at 

those values, and is so indicated by crosses in figure 12. The detection 

probability PD is plotted vs. the false alarm probability Pp , in figure 13, 

by eliminating tne parametric dependence of botn on J. Again, both P~ and 

Pp are only defined at discrete points, as indicated by crosses; straight 

lines have been drawn between these points for ease of association of values. 

(In tne curves to follow, tnese crosses are suppressed.) Tne program for the 

generation of figures 12 and 13 is given in appendix C. 

The cnoice of oreakpoints in (25) has realized near-optimum performance 

for L=7 and d^zS, in the upper-left corner of the plot. The curves for the 

smaller values of input signal-to-noise ratio, tnat is small d,, are more 

crowded together; this reflects the usual small-signal suppression that is 

cnaracteristic of nonlinear processors. 

To demonstrate the effects of a bad choice of quantizer breakpoints, the 

previous example in (25) is rerun, with normalized breakpoints 

fa)  = 1,1.1,1,1.1,2, (26) 

instead of the uniform spacing.    Tne results in figure 14 illustrate much 

poorer performance  ü.an figure 13.  in addition  to a very erratic appearance. 

*    The notation a(D)c denotes tne sequence a,  a+b, a-^b,  .... c-b, c. 

2U 
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The curves for constant d^ must have a nonnegative slope, and never cross, 
but can have a wide variety of shapes.    A similar bad placement for a 2-bit 

(L»3) quantizer is given in figure 15.    This jagged behavior of the operating 

characteristic is typical when the breakpoints are bunched together instead of 

being uniformly spaced. 

The next example is for 

N-3, M-16,  L-7,   fy]   - 0(1/3) 2      , (27) 

and is displayed in figure 16. This can be compared directly with the results 

of ref. 2, figure 5. Both require d^l.22 for PF-lü"
3,P0-.5, and both 

require about d^l.75 for Pp«10"6, P0-.5. Thus the simplified analysis 

in ref. 2 is very reliable for large M, where it is reasonable to expect 

Gaussian statistics to hold. 

In order to see if better performance is attainable by modifying the break- 

points, we return to the probability density function in figure 11 (for N»3) 

and observe that if we want to optimize for d^.3 (i.e., top left corner of 

figure 16), we should choose w^O, W2«4. However, the narrowing effect 

on the decision-variable probability density function, due to the averaging 

caused by large M, indicated (by trial and error) that the best normalized 

breakpoints were 

fa]  = .5(.5)3.5  . (28) 

The corresponding operating characteristic is displayed in figure 17;  it is 

slightly L>tter than figure 16.    Thus the significant modification in 

normalized breakpoints from figure 16 to figure 17 did not yield significantly 

better performance, for this example with L=7. 

The next example is run for comparison with ref. 2, figure 8.    Namely we 

have 

N-3, M=32,  L=7      , (29) 

and three different quantizer breakpoint sets: 
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h] 
0(1/3)2 in figure 18 ] 
0(.5)3 in figure 19 

0(.7)4.2 in figure  20 

(30) 

L-7. y   - 1.4(.45)4.1 in figure 21 

L-3, ftj   -  2(.75)3.5 in figure 22 

L-1, *     "  2-75 in figure 23 

The results in figures 18 through 20 are in almost perfect agreement with the 

simplified analysis in ref. 2. The normalized breakpoints in figure 19 are 

best in the intermediate range of detection probabilities; figure 18 is just 

sligntly better for the hign performance region of d.,2.2. 

We now present a series of comparisons where some of the parameters are 

held constant, while tne remainder are varied in order to determine the effect 

upon the operating characteristics. The first comparison is for Ma5, N=10, 

and tne quantizer varied as follows: 

(3i: 

These correspond to 3-bit, 2-bit, and 1-bit quantizers respectively, where the 

normalized breakpoints have been chosen in eacn case so as to optimize the 

performance for d^=4. Increasing L beyond 7, and changing the breakpoints, 

failed to improve the operating characteristic noticeably above that of figure 

21. The increase in the input deflection, d^, needed to maintain the same 

performance at Ppai-Pr,« lü"3,5 is approximately 4.5/4 for L=l vs L=7. 

If inputs (xn} are interpreted as voltages, this corresponds approximately 

to a 1 dB degradation for the hard clipper, L=l. 

Tne next series is for M=5 and tne quantizer fixed at the 3-bit 

characteristic in the first line of (31). N is varied over the values 1, 5, 

lü, 2d,  40 in figures 24-28, respectively. The slight Improvement in 

performance, that might ensue from modifying the breakpoints at each N, was 

not investigated in tnis comparison. Tne effect of increasing N is to degrade 

the performance, since the or-ing must select one of the input channels for 

accumulation, and it will not always pick the signal-bearing cnannel.  The 

increase in d. required to maintain PC^I-PQ» 10      is approximately 
5.25/4 = 2.35 dB for N=40 vs N=l. 
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Tne last series investigates the effect of varying M.    In figures 29 

through 33, M takes on the values 1,   2, 5, 10, and 20, respectively.    The 

effect of increasing M is to realize better performance with smaller input 

signal-to-noise ratios.    The decrease in di allowed, in order to maintain 

Pp-l-PDÄlO"3,  is approximately 2.4/6.8 - -9 dB for M«20 vs N-l.    When M 

is made large, the approximate analysis in ref.  2 can be used with confidence; 

this is fortunate, since in the case of very large M, the OFT size, Hf % 

ML+1, required here may not be easily attainable on some computer setups. 
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DISCUSSION 

Tne large number of possible combinations of values of N, M, L, and [v^j, 

precludes an exhaustive compilation of results. Instead we have presented 

some representative examples and give a program in appendix C by which the 

user can investigate his particular situation and alternatives. This program 

gives exact results for any quantizer, provided only that ML is not too large 

and that round-off errors do not get out of hand. For extremely large M, a 

Gaussian approximation for the decision variable is justified and the analysis 

of ref. 2 is applicable. 

If the quantizer is not specialized to the equal ordinate spacings of 

figure 3, but is of the general form depicted in figure 2, the performance 

analysis is more difficult. However, the characteristic function of the 

decision variable is still capable of a closed form expression; see appendix 

0. Evaluation of tne cumulative distribution function of the decision 

variable is possible via one FFT, according to the methods given in refs. 6 

and 7. No numerical investigation nas been undertaken of this case. 

In appendix E, the form of the optimum processor operating on N input 

cnannels, of whicn only one may contain a signal, is derived and then 

specialized to the Gaussian input example of (16). This optimum processor, in 

general, requires knowledge of the absolute levels of the input signal and 

noise. However, for d. > 2, tne form of tne optimum processor approacnes 

that of figures 1 or 5, where the quantizer is replaced by a linear device, 

and tne absolute level knowledge is no longer required. Tnus the performance 

of the system considered here should be nearly optimum for large L and well- 

placed oreaxpoints. 

Exact analysis of tne system of figures 1 or 5, with a linear gain instead 
of a quantizer, is more difficult than that given here. A simplified second- 

moment analysis was presented in ref. 1; an exact analysis is possible and 

will be presented by the author in a future report. 
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A detailed comparison of the exact performance results obtainable via this 
report, with the second-moment results given in refs.  1-5, has revealed 

excellent agreement over a wide range of parameter values.    However, until an 

extensive thorough investigation of the two approaches is made for a wide 

range of values of N, M, L,  {v^}, PF, and P0, it is difficult to state 

exactly where the earlier approximate analyses can be used with full 

confidence.    This time-consuming investigation has not been undertaken; 

however, the program in appendix C affords the mechanism whereby this 

comparison can be conducted.    The statements here regarding large M and 

moderate Pp can only be made quantitative after this study is completed. 
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Appendix A 

INTERRELATIONS BETWEEN CHARACTERISTIC FUNCTIONS AND 

PKÜBA8ILITY DENSITY FUNCTIONS OF DISCRETE RANDOM VARIABLES 

Suppose random variable x is limited to the integer values 0, 1, .... N, 

and that the probability of taking on value n is a   That is, the 

probability density function o? x is 

N 

px(u) - ^«n J(u-n)  • (A-l) 
n-0 

The characterisic function of x is then 

o* N 

fx{F) - Jdu exp(iFu) px(u) » ^ an exp(i5n)  ;      (A-2) 

"• n-0 

this function has period 2« in J. 

Now let integer M be selected such that 

M > N+l  . (A-3) 

Tnen consider M samples of characteristic function f at increment 2it/M; 

that is, consider the set of samples 

^x(m2WM)  for 0 < m < M-l  . (A-4) 

Now let us take an M-point DFT of these samples, and scale by 1/M; that is, 

for 0 i k i H-l 
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M-l 

g 5    exp(-i2irink/M)fx{m2ir/M) 

m-O 

M-l N 

* R 2. exPH2irmk/M)  2 an exP(i2irnnfl/M) 
m-O n=0 

N M-l 

* 5 an ^   5 exp(i2ir(n-k)(n/M) 

n=0 m-O 

n-0 / Ü       for N < k < M-l^ 

Here, in the second line, we used expression (A-2) for the characteristic 

function, and in the last line, we used (A-3). 

Expression (A-5) states that the scaled M-point DFT of the set of 

cnaracteristic function samples, (A-4), yields precisely the areas 

/a/l of the impulses in probability density function p , provided tnat 

M > N+l. Tne values returned by the DFT for aN+1, ..., aM_1 should all be 

zero. 

More generally, if random variable x is limited to the values 

ho. V4h ho+N An» (A-6^ 

the characteristic function takes the form 
N 

%{?) = exp(ifh0)   \ an expOfn Ah)       . (A-7) 

n=0 

In this case,  tne sample set that must be subjected to an M-point OFT is not 

(A-4), but rather 

'«(l^W- Si>o)     'orOäl»S«-l      • (A-8) 

Wnen scaled Dy 1/H, tnis DFT yields areas [a "I directly. 
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Appendix B 

ALTERNATIVE INPUT STATISTICS 

Here we give the equations for two other typical random processes that 

could serve as candidates for inputs to the nonlinear system of interest. No 

numerical results have been evaluated for either of the following. 

CHI-SQUARED RANDOM VARIABLES 

Tnis case could correspond to Gaussian noise with additive Gaussian 

signal, after passage through a square-law device and summation. That is, 

under Hi,  consider tne signal-bearing channel input to be the sum 

x(m) -^ ^k(m) ♦ nk(m)]   , (B-l) 

where ^(«n and ^(mjj are independent zero-mean Gaussian random 

2    2 variables with variances o and o for the signal and noise, respectively. 

x is a Chi-squared variate with 2Ü degrees of freedom. 

2       2       2 
Letting ai  = a

s 
+ 0

n  » tne probability density function of x is given by 

p(i)(ü) = Vlsff   expf^")     for u > 0      • (B-2) 
(D-D! (fef) 

Tne cumulative distribution function of x is, via repeated integration by 

parts, given by 

(^K'fe) P^Cu) • 1 -expf--^ €„_,/-% )    for u > 0      , (ü-J) 

where (ref. 8, 6.5.11) 

D-l 

n=ü 

eD-i(t) = S^rtn (ß-4) 
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is tne first D terms of exp(t). 

Tne cumulative distribution function of x under HQ follows immediately 

2 2       2 
from (B-3) Dy setting o^ « 0 and identifying OQ - o    : 

{-^•-6 P^u) . 1 - exp^- 7^Vü-l I "^ )    for u > 0      • (B-5) 

In fact, (B-3) and (B-5) could be  used as input statistics for the analysis 

contained here in the main body of the report, without the need for 

interpretation (B-l); (B-l) merely lends the physical interpretation of x as 

the sum of a number of diversity inputs. 

According to (5) and (6), we need the quantities 

,(0) P' W-1- expW eo-i (**)     I 
Uor 1 <^ iL  , 

P^.l-expf-^je^v, 

(B-6) 

where now tne normalized breakpoints are defined as 

b, 
v^ - -^   for 1 <,;< L  . (B-7) 

2o0 

Of course, we should always select b. > 0, since x is never negative. 

NONCENTRAL CHI-SQUARED RANDOM VARIABLES 

This case corresponds to Gaussian noise with additive deterministic 

signal, after passage througn a squarer and summation. Under H, let the 

input be composed as follows: 

20 

x(m) =^Jk(ni) + nk(mj] 2  , (B-8) 

k>I 

wnere jcK(m)j are constants, and noises [n. (m)] are independent zero-mean 
2 

Gaussian random variables with variance o . For example, x(m) corresponds to 
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the sum of D squared-envelopes of the output of a narrowband filter subjected 

to a sinewave and Gaussian noise.    Tne probability density function of x in 

(B-8)  is 

,2 
p(*)(u)"17 k (c -( u I, avir 

where 

a5i- 
0n 

20 

T"PJ^\'n 
1/2 

for u > 0, (B-9) 

^  c
k

2(m) (B-10) 

Lk-1 
is a measure of the total signal-to-noise ratio of random variable x(ni). 

(a is generally a function of m.)    The cumulative distribution function is 

P^Cu) -1-Q0 e?) for u > 0 (B-ll) 

where tne Q-function is (ref. 9) 

gD(a.b)  r   Jdt t(|)    '    ,xpU i-p-j 1^ (at)      . (8-12) 

Tne probability density function and cumulative distribution function 

under HQ follow from (8-9) and (8-11) by setting 3.0, where we presume that 

{^(m)] represent the signal components in (8-8); tnere results 

and 

P(>) 

,(0), 

D-l 

(D-D! fä) 
exp iii for u > 0 

P^^.l.expl-^jt^.-^ 

According to (5)  and (6), we need 

;,v:;W -i-^^^) 
where normalized breakpoints 

b 
\L   = -L*      for I <_X < i 
*       2a: 

for u > 0 

for 1 < ^ < L 

(8-13) 

(8-14) 

(8-15) 

(8-16) 

Again o > ü since x in (6-8) can never be negative. 
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Appendix C 

PROGRAM FOR DETECTION AND FALSE ALARM PROBABILITIES 

30 

5G 

70 
88 
99 
106 
110 
120 
136 
140 
150 
160 
ir© 
100 
190 
200 
210 
220 
230 
240 
250 
260 
270 
200 
290 
300 
310 
320 
3 30 
340 
350 
3t'0 
370 
300 
3 9 0 
400 
410 
420 
4 30 
440 
450 
4 € 0 
4 70 
»80 
4 9 0 
5 ö 0 

DETECTION 
QUFlNTIZER 
QUANTIZER 
M»5 
N"3        ! NUMÜER 
L"7        ! NUMHER 
NORMALIZED FlBSCI^Sfl 
DftTR 1.4, 1.85,2.;i,2 
D1 mix»4.5 
Di step».5 
Np=6 
DIM XU 
DIM va 

CHHRflCTERISTICS FOR QURNTI2ERS, GREflTEST-OF, RND ACCUMULflTOR 
OUTPUT CORDINFlTE;' LEVELS RRE :'ET RT 0,1,...,L;  L+l LEVELS 
RBSCISSifl BREAKPOINTS RRE RRBITRRRY; L BREAKPOINTS 

! NUMÜER OF TIME SAMPLES RCCUMuLRTED: M =1 
OF INPUT CHANNELS SUIJECT 10 OR-IMG: N>«1 
OF NON-ZERO QUANTIZER OUTPUT LEVELS: L =1 

:ER BREAKPOINTS OF QURHTi; 
75,3.2,3.65.4.1 

MAXIMUM VALUE OF Di OF INTEREST 
INCREMENTS IN Di OF INTEREST 
SMALLEST PROBABILITY OF INTEREST 

1024), Yd: 1024),flxU<l:l9) 
10),0<1; i0>lPw<i: i0>,Pf i.(i 

NUMBERS: 

ie -Nf: 

1024' 
RED IM V<1:L>,8<1 
READ V<*> 
PRINTER IS Ö 
PRINT "NUMBER 

'NUMBER 
'NUMBER 

L>,PU<IrL)lPf*<I:M*L 

TIME SAMPLES ACCUMULATED: 
PRINT "NUMBER OF INPUT CHANNELS SUSJECT TO 
PRINT "NUMBER OF NON-ZERO QUANTIZER OU'-'.T 
PRINT "    QUANTIZER OUTPUT (ORDINATE: L£ 
PRINT "    QUANTIZER NORMALIZED •: ABSCISSA 
FOR J«l TO L 
PRINT v<J>; 
NEXT .J 
PRINT 

INPUT VOLTAGE-SNR Di VARIES FROM 

Of-ING: 
LEVELü 

ELi hRE 
ERERrP1: 

M = 
N * 
u. - 

SET 
INTS 

" ;M 
' ;N 
JL 

AT 0, 
ARE 

ALARM' 
EQUAL 

"THE INPUT SIGNAL-TO-NOISE RATIO IS ZERO 

'THE GRAPH BELOW GIVES THE '.FALSE 
"STEM OUTPUT IS GREATER THAN OF 5 1 

TO 10 

THEN 42* 

PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
M0=M*L 
M1=M0+1 
M2«M 2 
N1=N-1 
FOR J=2 
Nf«2AJ 
IF Nf>M0 
NEST J 
PRINT 
PRINT 
STOP 
RED IM X' l:Nf >, 
FOR J»l TO L 
S<J)«FNPhi t.V<J 
NEXT J 
FOR   Di^O   TO   Difhi     STEP   Diit-sf:' 
FOR   J«l    TO   L 
Pw J »»S1 J >*FNPhi 
NEXT   J 
MAT    : = ZER 

9   T 0 ; JJ i ni a. ; N   STEPS   :iF";In=tep 

s-ROBftf ILITY   THAT   THE" 
FOR 

THIS 
J   =   1 
GRAPH 

TO   ML. 

'ARRAYS •,Pf 

1 :Ht" 

Nl 

APE   NOT   DIMENilONEI -> K u i ENOUGH" 

J '-Di :   AND   2: 
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510 MAT Y«ZER 
Jl-e X<l>«Pw'.l)       !     EQUATION 6;  fllph«<T> u, X<J+1) 
550 FOR J«2 TO L 
540 XCJ;)»?«^)-?!^^-! ) 
550 NEXT J 
560 X<L+l>«l-Pw<L> 
570 CfiLL Fft<Nf,X<*>,Y(»>> 
580 FOR J»l TO Nf I     fX-iY)^M 
590 T«<X<J)^2*Y<J> 2.^M2 
€00 ft»M»FNFIrg<X<;J)(Y< J)> 
610 X(J>«T*COS<fl• 
620 Y(J>»-T»SIN(fl) 
630 NEXT J 
640 CALL FftCNf ,X<:*>, YC»)) 
650 FOR J»l TO Ml 
660 X<J;'«X(.J>/Nf ' EETi1!   OF   FIGURE 
670 NEXT   J 
680 IF Di >0 THEN 1220 
690 PLOTTER IS "GRflPHiCS" 
700 GRAPHICS 
710 Npl-Np-rl 
720 Mp2«Np«2+l 
730 AxisvNpl^o 
740 FOR J»l TO Np 
750 T«FMInMphi <. 1AJ;> 
760 flxis<Npl-.j::'»T 
770 Axis<Npl*J>=-T 
780 NEXT J 
7,?0 SCflLE 0, MO, Ax i» < 1 ) , Ax i i <■. Np2 ' 
800 FOR J»0 TO MÖ STEP 5 
310 MOVE J.AxisOJpIO 
320 DRAW .J,Axi»<l> 
330 NEXT J 
340 FOR J*l TO Np2 
350 MOVE O,Axis«J) 
3*0 DRAW MO.Axii'. j;. 
870 NEXT J 
3SÖ PENUP 
830 T=»ö 
900 FOR J»M1 TO 2   STEP -I 
910 T « T +;:f J :■ 
920 I»J-1 
930 IF 'T 1E-11> AND 'T 1-lE-ll' THEM 960 
940 Ft i' I ' = 100 
950 GOTO 1050 
960 fl'FNInwphi ':T> 
970 Pf4'I.>*A 
980 PLOT I,A 
990    ! GOTO   1050 ! TO   ELIMINATE   CROSSES,    H'SEPT   T-.:    In; "FUCTI ON 
1 000 MOVE   I , A-A   i j ■ NpS: • # . 908 
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.010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
.090 
100 
1 10 
120 
130 
140 
150 
160 
170 
1S0 
190 
200 
.210 
.220 
:'30 
:40 

,250 
260 
270 
i280 
1290 
300 
310 
320 
330 
340 
350 
360 
370 
3S0 
:;90 

.400 
10 

.420 
,4 30 
,4 40 
.450 
,460 
.470 
.4 30 
.4 90 
i =00 

I.fl + flxi s<Np£>*.008 
I-.004*M0,f:l 
I + .004*ri0,fl 

J 

DIMM 
MOVE 
DRftW 
PLOT 
NEXT 
PEHUP 
DUMP   GRAPHICS 
PRINT   LINU) 
PRINT "THE GRAPH BELOW IS fl PLOT OF 
PRINT 'TALSE ALARM PROBABILiTY, FOR 
GCLEAR 
SCALE Axis(1>,Axi»« Np2),Axl»<l)tflx1i<r 
FOR J«l TO Np2 
MOVE Axi»<l),flxii <J) 
DRAM Axi^(Np2>,A>:is(J> 
NEXT J 
FOR J»l TO Np2 
MOVE Axi»<J),Axii ;Np2;» 
DRAW flxi»<J),flxii(l> 
NEXT J 
PENUP 
T»0 
FOR J-Ml TO 2 STEiP -1 
T«T*X<J) 
IF <T<lI-ll) OR <TM-1E-11' THEN 1360 
B»Pf »< J-l '.> 
IF ABS<;B;>7 THEN 1360 
A = FNinvphi <T) 
PLOT B.A 

DETECTION PROSflBILlTY 
THE '••'ALUES OF Di GIVEN 

VERSUS" 
ABOVE. 

! GOTO 1360 
B, A-Axi t<Np«: 
B,A + Axi j <Np2 
B-A> 
B + AJ 

B,A 

•::Np2)* 
vNp2^ 

TO ELIMINATE 
>».008 
)*.098 
.003,A 
.008,A 

CROSSES. INSERT IMIS INSTRUCT I ON 
MOVE 
DRAW 
MOVE 
DRAW 
PLOT 
NEXT T 
PENUP 
NEXT Di 
DUMP GRAPHICS 
PRINT LIN»6' 
PRINTER IS 16 
END 

DEF FNArg'X,Y.) 
IF :>0 THEN A».5'PI*SCN<.Y 
IF X< 0 THEN R"flTN<Y/X) 
IF ;; 0 THEN A-A + F-I*'. l-2*< 

A 

i PRINCIPAL -PG'-OtnT  Or .t-i 

RETURN 
FNEND 
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1510 DEF FNPhiOO ! CUMULATIVE GflUSSIflN DISTPIfUTION 
1520 IF AES<;X)>5.14 TUEN 1780 
1530 fl«.282842712475*>; 
1540 c«cos<:«) 
1550 S«SIN<fl> 
1560 B»2*C 
1570 fl»B*C-l 
1580 C»fl*< 1.253675lE-18-t-B*7. 10i?05E-2e + rt*7. 451 7E-21 ■ 
1590 C-i:i*a.533423425E:-16fB»l.öl649277E-17 + c> 
1600 C«ft*a.367604447!i7E-14-t-B*1.0601o64636E-15+C ' 
1610 C»fl*<8.89786526722E-13^E*8.0606SS38945E-14-t-C:> 
1620 C«fl*' 4. 2261614431 8E-11 *B*4. 4696822924.^E-^*!:' 
1630 C«fi*' 1.466606142:!4E-9 + B»1.3084S537810E-lö*C> 
1640 C»fl*<3. 72252349369E-8*B*5. 34275027t'03E-9-t-C ' 
1650 C«fl*'..6.919275203i:5E-7 + B*l. 15330990944E-7 + i: > 
1660 C»fl*<9. 43281169838E-6-t-B*1.320663163fc:4E-i:'*C ■ 
1670 C-l:l*'::9,44909268810E-5*B»2. 104045S3Ö73E-5*C 
1680 C*fl»<6.97183792408E-4 + B*1.78228016255E-4t-i: 
1690 C»fl*<3.80150767985E-3+B*l.10860645342E-J+C 
1700 C-fi*-: .0153985726J57 + B*.00507966961220 + 1: < 
1710 Ofi»-: . 0467755234325 + B*. 0172439625887-C • 
1720 C«ft*v.108630245023 + B*. 0439773331941*0 
1730 C«fl*'' .201339747265 + B*. 0869S94549959 + i: ■ 
1740 C»R*v.3305015219)7 + B*. 144227226362 + 0 
1750 C». 703225002744 + 1;*. 247255168140 + C 
1760 PhJ«.5+.0450l5Si;:8079#X + .5*S*C 
1770 GOTO 1920 
1780 IF IC7 THEN 1910 
1790 H"MflX<€, INI ':69'AI:SO<;> ', INT<525/X^2^ + 1 
1300 fl»l 
1810 S«l 
1820 B-l/X 
1330 C-B*B 
1340 FOR J»l TO N 
1350 ff  l-2»J>*ii*C 
1360 3-3+A 
1370 HEXT J 
1830 Phi =. 39394223040 J^EXP'-.S^^X'+FtEi E ■ - i 
1390 IF X 0 THEN Phi»J-Phi 
1900 GOTO 1920 
1910 Phi=l 
1920 RETURN Phi 
1930 FNENO 
1940 ! 
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r?50 DEF   FNInwphi<Z) !    INVERSE   Cü!iULftTI7E  GflUSSIflN   DISTRIBUTION 

r?70 DIM T(0:2e>lA<0;«:e) 
190t DFiTR   .992005370(19, . 120467516143, .0163781993421, .90268670443716 
1990 DflTfi   .4996347302'E-3,.9889321S6E-4,.2e39181276E-4, . 4327271S2E-5 
2Ö00 DFiTFI   .93808141E-t., . 20673472E-6, .461597E-7, . lt-lc6:5£-7, .23715E-8 
2010 DrtTFI   .54393E-9, . 12555E-9, .2914E-10, .679E-11, . 159E-11, . 37E-12 
2020 DftTfl   ,912158303418,-.0162662813677, .43355647295E-3, . 21443857O07E-3 
2030 DflTfl   .262575108E-5,-.302109105E-5,-. 1240636E-7,.6240661E-7, -.54012E-9 
2040 DflTH   -.142321E-8,.3438E-10, .3358E-10,-. 146E-11,-.81E-12, . 5E-13, .2E-13 
2050 DftTfl   .956679709020,-.0231070043091. -. O8437423S09',5l, -. 57650342265E-3 
2060 DflTFI   -.1096102231E-4,.2510354702E-4, . 1056233687E-4, . 275441233E-5 
2070 DFITFI   .43248450E-«;,-.2053034E-7,-.4389154E-7,-. 1 76340 1 £-7 , - . 399 1 29E-3 
2030 DflTrt   -.18693E-9,.27292E-9, . 13282E-9,.3l83E-ie,.167E-11 .-.204E-11 
2090 DflTFi   -.965E-12,-.22E-12 
2100 B-FIBS<X> 
2110 IF   F(BS':x>>«.8   ThEIH  l«SQR<-LOG< < 1-X>»< 1+X> • • 
2120 IF   RBS<XK.0   THEM   2220 
2130 IF   ABS''X;<. 9975   THEN   2180 
2140 NmAx-20 
2150 RESTORE 2850 
2160 Y«-.559457631330*B+2.28791571626 
2170 GOTO 2250 
2130 Niri*x*15 
2190 RESTORE   2020 
2200 Y«-l.54881304237'B+2.56549012315 
2210 GOTO   2258 
2220 Nm4x«18 
2230 RESTORE 1988 
2240 Y*X*X*3.125~1 
2250 REDIM A<0;Nm«x) 
2260 READ fi<») 
2270 Y2"Y#2 
2230 T»0^»1 
2298 T' 1 »«Y 
2300 FOR N»2 TO Mmi: 
2310 T<N)"Y2*T<N-1)-T«N-2> 
2320 HEXT N 
2i;30 R»0 
2:40 FOR M»Mni4... TO O S:TEP -l 
2350 R»R*hKN '»T'H ' 
2360 NEXT N 
2370 Im-phi ■SGN<;X)*B*f:* 1.41421356237 
2330 RETURN Irwphi 
2390 FNEND 
2400 i 
2410 iUE Fd • U,:<'■*:>, :<*• > !    FFT SOBRC'.TIME HEFE 
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Appendix 0 

ANALYSIS FOR GENERAL QUANTIZER 

The characteristic function of decision variable z is still given by (8) 

ten 

and 2, 

in terms of f  tne cnaracteristic function of y. But now, from figures 5 

fy(J) - exp(i?y) - exp(ifqjwi) . Jdu pw(u) exp(i?qfu} 
m 

- exp(ijh0) J du pw(u) ♦ ... ♦ exp(ifhL) J du pw(u) 

-00 bL 

L-l 

- exp(iTho) Pw(b1) ♦ ^exp(iy^) [Pw(b|+l) - Pw(^)] 

1-1 

+ exp(i7nL) [l - Pw(bL)]  , (0-1) 

wnere P is tne cumulative distribution function of random variable w, as 

given by (5). Tne inputs for tnis calculation of cnaracteristic function f 

are i4f N, L, [h.]  and hy\    . Again, input cumulative distribution funct ions 

P^J and P^  in (5) are arbitrary. 

One problem with tnis quantizer is tnat PD and Pp are stepwise functions 

of the decision threshold (which need not be integer now) at irregular points. 

A large OFT size would be necessary to track this benavior.    However, operating 

characteristic plots of P0 vs. Pp would be smoother functions. 

61/51 
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Appendix E 

DERIVATION OF OPTIMUM PROCESSOR 

We allow tne signal,  if present, to jump randomly and independently 

between input channels on each time sample.    Let 

Y(m) - |xn(m)) for 1 < m i M      . (E-l) 
i n    J n-1 

Under H^, tne probability density function of N-vector Y(m) is 

P(1)(Y(m)) ■ J [p'1'^«.))  P(0)(x2(«.))   ... P(0)(xN(«.)) 

♦ P10'^.)) p'1»^«)}   ... P(0)(xN(™))  * ...] 

-Tr{p(o)MHi$ä -'-^ •   ^ 
n»l   • n»I ' 

Tnerefore the joint probability density function is 

M     N T    M     r     N    P^ 

m»l n»l ' m«l   /     n=l K     V nv  v 

Tne likelinood ratio follows immediately as the last product in (E-3); tne 

log-likelihood ratio is therefore 

k, di p(1'(SH ^n likelihood ratio = ^ ^n U ^    IM)   —\ (E-4) 
m=l ^p^K^ 

Tnis result holds for arbitrary inputs with probability density functions 

p(J) and p(l). 

Wnen we employ tne Gaussian example in (16),  (E-4)  simplifies to 
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5 in (W ^ ,XP (o^ xn^))   >       threshold     , (E-5) 
m-1        \   n-1 V I 

where data-independent scale factors have been absorbed in the threshold. 

Exact analysis of (E-5) is conceivable, but is exceedingly tedious. Also 

&\ and o must be known in order to realize {E-5). 

Por di > 2,  it may be shown, to a good approximation, that 

^ exp(7L xn(m)) * ^P^1 roaxfx^miH      . (E-6) 

Substitution in (E-5) yields the approximate likelihood ratio test 

J> max {xn(m)}   * threshold      . (E-7j 

m-1    n 

Knowledge of di and o is now not required.    Processor (E-7j  is just figure 

1 or 5, with the quantizer replaced by a linear gain.    This special case of 

(E-5)  is very important, because decent performance can be obtained for 
d^ > 2, and this is exactly where (E-7)  is virtually optimum.    A good 

approximation to the performance of (E-7) is afforded by the results contained 

herein,  if L is chosen large and the breakpoints are well-placed.    Some 

approximate results via second-moment approaches are given in refs.  1,  10, 11, 

12. 
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LIST OF SYMBOLS 

N number of data points 

g_ model sequence value at time m m 
n number of complex exponentials 

C. strength of k-th resonance 

uk location of k-th resonance 

a. linear prediction coefficient 

f measured data value m 

f_ predicted data value m 

e« prediction error m 
E total squared prediction error 

w„.w„    weights mm 
f_ model data value m 

e„ data error m 

E- total squared data error 

Q,F data matrix 

D. strength of k-th resonance for double pole 

ß. auxiliary linear predictive coefficient 

c. constraint coefficient 

C constraint vector 

A coefficient vector 

d„ error m 

D error matrix 

X Lagrange multiplier 

A0 optimum coefficient vector 

S correlation matrix 
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ON RESONANCE EXTRACTION AND WAVEFORM FITTING 
FOR TRANSIENT DATA; PRONY'S METHOD 

INTRODUCTION 

The estimation of the resonances (natural frequencies) of a system, from 
observation of a noisy response, is an important problem of frequent occurrence 
in practical situations.    Usually, the number of observations is considerably 
greater than the number of resonances, and the task of utilizing these "extra" 
data to reduce the errors of estimation must be accomplished without an exces- 
sive amount of computational effort or trial-and-error.   Accordingly, the 
original exact-fit procedure by Prony has to be generalized to a least-squares 
approach.    In this manner, the amount of data processing is minimized, with 
all the nonlinear processing being concentrated in the solution for the roots 
of a polynomial. 

The purpose of this report is to develop and explain this least-squares 
solution and to show its close connection to linear prediction.    The first 
section, on Mathematical Details, sets up the problem definition and intro- 
duces the terms necessary to interpret recent work by Auton and Van Blaricum [1] 
described in the next section.    Some important points about the waveform- 
fitting technique are explained, and some possible alternative approaches are 
mentioned.    A more general model  is considered in appendix A, and a generaliza- 
tion to linear prediction is developed in appendix B, which subsumes forward 
prediction, backward prediction, and a weighted linear combination in general. 
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MATHEMATICAL DETAILS 

IDEAL EXPONENTIAL MODEL 

Suppose a sequence {g^n'" of N points is given exactly by the model* 

9™ = ^ ci. expCaL"«) 5 Z C. MJ for 0 S ;n ^ N-l.     (1) 
m  k_1 K    K   k^i K K 

That is, sequence {gm}o     is a sum of n complex exponentials.    Without loss 
of generality, we presume that all the {C^} are nonzero for 1 < k < n. 

Consider the error (in linear prediction) of attempting to represent gm 
in terms of its past n values; that is, for n < m < N-l, consider linear 
prediction error (where a    = -1) 

mi 

(2) 

where we substituted (1) and interchanged sumnations.    Now we choose the n 
linear coefficients {o^}? such that 

n i— 1 
Pk - Ofjp^     -...   - <*n.iVt ' a

n- 0   for    1 ^ k ^ n. (3) 

This requires solution of n linear equations for the n unknowns (oj}],, 
presuming that the n quantities (uiJ? are known. In fact, the general 
solution is 

a. = (-1)J      {sum of all  possible products of j different u's} 

for 1 < j < n; (4a) 

m .   «    m 
*This can be generalized to  include terms  like Cu    + Dmu   ;    see appendix A 
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that Is, 

al =iil + p2 +...♦ \in 

«2   l:-(M1M2+PlM3+- • •+PlMnn'2M3+P2M4+- ' ' ^„-iM,,) 

• 

an= (-l)n"1MiM2.-.Mn- (4b) 

With this choice of taj}J, (2) and (3) yield 

n 
g» '   *   "j Vj = 0    for   n s » ^ N"1« 

(5a) 

or 
n 

giii =   I   ai 9.B-i-    for    " ^ " ^ N-l, (5b) 
M J '">-J 

That is, when sequence {gm}o      *• generated as a sum of n complex exponentials 
according to (1), the sequence value gm can be determined exactly as a forward 
linear combination of the previous n values, provided that n < m < N-l.    The 
restriction of m to this range is due to the fact that gm is presumed unknown 
for m < 0 and for m > N-l;    thus only the "valid," or available, data are 
employed in (2) and (5b). 

It is important to observe that the n linear predictive coefficients (a.)? 
in (4b) depend on {; ](}? but are completely independent of the values of the J 

exponential strengths, or "residues," iC^ in (1).    Also, if the (a,-}? were 

known instead of the {li^}]1, then (3) can be solved for the W)? as the n roots 
of an n-th order polynomial. 

A more general approach to linear prediction is developed in appendix B. 
It subsumes the forward prediction (given above), backward prediction, and a 
weighted linear combination in general. 

ACTUAL MEASURED DATA 

N-l No»   euppose that some arbitrary data sequence {fm}n      has been measured 
or is available, and we want to choose the 2n parameters in the exponential 

N-l 
model  (1) such that the error of representing data  {f k      by this model  is 

minimized in some sense.    Guided by (5b), we first let linearly predicted 
value 
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n 
f- 5   i   «N^. <      for      n S m S N-l, (6) 

j=l   J        ^ 

where the linear coefficients iaA-, are to be selected.    In particular, we 

define the prediction error sequence (called the equation error in [1]) 

e    sf   -f   =f    -    I   o^f,    for    n*m$ N-l. (7) 

This is also called Prony's difference equation.   We then define the total 
squared prediction error as* 

-      N-l N-l / n \2 
E" -L;- ^" in *■ (fm" i-i ajf^)' (8) 

»Fn m=n \ j-1   "       "/ 

- N-l 
where (w }   are a set of N-n positive weights. E is called the quadratic 

error in [1], 

Minimization of total squared prediction error E by choice of coefficients 
{ a.}!? is accomplished by setting 

P = 0 for 1 ^ k S n. (9) 

This results in n linear equations in the n unknowns {a.}?.    We solve these 

equations for the (o.}? that minimize prediction error t. 

We must point out an alternative approach to the minimization of E. 
One could instead minimize the Chebyshev error; that is, we could choose the 
{a.}!? in (7)  so as to minimize the quantity 

max 
n<mSN-l 

n                  i 
f«. - j*! "i  Vj (10) 

That is, the maximum error in prediction is minimized.    Although this approach 
yields nonlinear equations  in the (a.}?, efficient linear programming techni- 

ques exist for this problem.    How well  this minimax »rror criterion compares 
with the total  squared error criterion is not known. 

*We are presuming real data sequences here; generalization to complex data is 
possible. 
4 
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Given the values for (aJ?. whether obtained via (9) or (10), we can now 

solve (3) for the (ukh- ^ome 0^ these latter values may be complex, even 
though all the (a. }!? are real for real data tf }« ; this situation is 

treated in [2], p. 380. 

Guided now by (1), we next let model data value* 

n 

fm s I Ck MJ| for 0 S m * N-l. (11) 

Then we define data error sequence (called the true error in [1]) 

•■"V'.-V ^Vk for OSiiM-1.     (i?) 

In a similar fashion to (8), we also define the total squared data error as 

N"1    /      "      m \2 
m m  m=0 m \ •"  k=l k k / 

.  N-l      N-l 
E H Z 

m=0 

- N-l 
where {w^}«  are a set of N positive weights. To minimize total error E, 
we set   m 0 

^--0    for  lij in, (14) 

thereby obtaining n linear equations in the n unknowis (C.}?.    (The quantities 

(u. },  are already known at this point; see the discussion preceding (11)). 

We solve these n equations for the (C-K  that minimize E. 

An alternative approach to the minimization of E is to minimize the 
Chebyshev error; that is, choose the (C. }!? in (12) so as to minimize the 
quantity i 

max 
OintfN-l m      k=1    K    K 

n 

(15) 

*This presumes  that all  the roots  {uk}i  are distinct;  if on the other hand, 

we had,  for example, u,  ■ Uo« then we need CjUi  + C^^v-,  rather than 
r   m      r   m 
C1u1 * C2V 
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Again, the performance quality of (10) and (15) is not known. 

At this point, we have a "fitted" waveform, 

n 
Z C. MJ  for  0 S m S N-l, (16) 
k=l K * 

N-l 
to the original given data sequence (fJn . However, it should be observed 

that the fit was obtained via a two-staqe sequential procedure. Namely, we 
first minimized total prediction error t  to find the linear coefficients 

{o. },, and from them, solved the polynomial of (3) for its roots IUIJ,. 

(These latter quantities are called the resonances in [1]). Then, with 

these known values for (uiJ?, total data error E was minimized, thereby 

determining the strengths (residues) (C.}? of each of the known exponential 

components (»pjLi- 

Both error definitions, (7)-(8) and (12)-(13), utilize and "fit" the 
N-l 

available data sequence (^JQ I but in two different senses, the first via 
linear prediction, and the second via an exponential model. The worst non- 
linear data processing encountered in this two-stage procedure is the 
solution of an n-th order polynomial, (3), for all its roots {u^.    This 
sequential procedure will not realize as small an error as direct minimiza- 
tion of 

lo^-l^)* <"> 
via simultaneous choice of {C^K and (vtiJi.    However, this latter approach 

is highly nonlinear in the tuj}!?, and no direct (nonrecursive)  solution is 

known.    Of course, a gradient search on (17) could be employed, using as 
starting values, those obtained above via the two-stage sequential  procedure. 
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SOME RECENT WORK 

The source of the following results and comments is the work by Auton 
and Van Blaricum [1].    The solution for the coefficients (a.}^ in (9)  is 

called the reduced or inhomogeneous solution; see [1], vol. I, p. 2-5. 
This traditional solution, unfortunately, tends to zero as the white 
(independent) noise component in {Og       gets larger.    A remedy to this 

undesired behavior   is   furnished by employing instead, the weakest eigen- 
vector of the matrix QTQ, where Q is the data matrix formed by arranging 

the given data {fm}n"    in columns in a particular fashion; see [1], vol.  I, 
p. 2-2.    (An equivalent interpretation is that Q^ or Q are approximated by 
matrices of lower rank, i.e.. singular matrices.)    It has been found that 
the weakest eigenvector of Q'Q is less dependent on the absolute noise level 
and can furnish more useful values for the resonances {ui^i than can the 
inhomogeneous solution.    Physically, the "best" linear prediction of a noisy 
waveform tends to zero, whereas an eigenvector can maintain all its compo- 
nents   nonzero,   regardless of the absolute noise level.    At present, the 
weakest eigenvector solution is judged to be the best of all iterative and 
noniterative methods for estimating the resonances (ui,}?; see [1], vol.  I, 
p. 2-28. K 1 

When the number of resonances, n,  in (1)  is unknown,  its determination 
or estimation must be made from the available data {f_}ö"*.    If k is the m u 
true (unknown) number of resonances, and n is the hypothesized number, 
there are n-k extraneous resonance estimates produced. A maximum likelihood 
procedure developed in [1] and applied to the «.smallest eigenvalues (for 
various values of i)  has been found to give reasonable estimates of k. An 
alternative approach, employing time reversal of the data sequence, seems 
to separate extraneous resonances, but more study is suggested; see [1], vol. I, 
p. 3-26. 
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CONCLUSIONS 

The usual problems associated with Prony's method, regarding sensitivity 
to noise, have been attributed to dense sampling and bias. If both of these 
problems are treated properly and the weakest eigenvector is employed, 
Prony's method produces excellent estimates of the resonances, even from data 
with high noise levels; see [1], vol. I, p. 4-8. 

Studies on some of these still-unanswered questions about alternative 
procedures for order selection and resonance estimation will continue. 
Certainly, further improvements in the procedures and performance will ensue. 
Applications to real measured data have yet to be made, however; see [1], 
vol. I, pp. 5-2 and 5-3. 
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Appendix A 

A MORE GENERAL MODEL 

Instead of (1) of the main text, suppose that sequence value 

n        p 

9ni = I Ck ^k + .!, Dk mMk for   0 ^ m ^ N-l. ^'^ 
k=i       k=i 

where p can be larger or smaller than n.    Then for n+p < m < N-l, consider 
linear prediction error 

Ti     j.j^   J    ni-j      jsl 
rj "m-n-j 

(«0 ^ -1) 
j=o  JLk=i   K   K       ic=i   K J 

i ßJz c. Mr'n"j+ * v^-j^r""^ 
j=l   JLk=l    K   K k=l   K R       J 

Jx ^ ^ [Jo •> ^ * j. ^ ^"1 
^   Dlc ^ [ ^   a.(m-J)M[J +   2   ß.dn-n-j^M'"^']. (A.2) 

k=l    K    K Lj=0    J K       j=i    J K     J 

The quantities in brackets can be made zero for n+p < m < N-l, by setting 
both 

n •        P 
1   a. M:

J +    I    ß; P^'3   = 0    for      1 S k < n (A.3) 
j=0   J    k       j=l   J    K 

and 

j=0    J "        j=l    J 

')^n 3 = 0    for     1 S  k <  p. (A.4) 

A-l 



TR 6639 

This combination constitutes n+p linear equations In the n+p unknowns {a.}? 

and {ß.}?; a s -1. These equations can be put In the form 
J  X    u 

ao Mk+P + a^rP^ +'--+ Vk + P^k1 +---+ ßD = 0 ^r 1 ^ k S n, 
(A.5) 

aiMp*'1 +...+ annpj + ßiCn+Dp^"1 +...+ ßp(n+p) = 0 for    1 S k S p. 

(A.6) 

So sequence value g^  can be determined exactly as a linear combination of 
Its previous n+p values, for n+p < m < N-l. Notice that coefficients (o^K 

DO J    ^ 
and {ß.-}^ depend on (ui,}; (where q ■ max(n,p)), but not on strengths {C^C1 

or {Dk}P.    See also [31, pp. 174-175. 

A-2 
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Appendix B 

EIGENVECTOR GENERALIZATION OF LINEAR PREDICTION 

IDEAL MODEL 

The starting point is again (1) of the main text.    We now generalize (2) 
of the main text to the form 

ems   1   ai 9m *      for     n S m i N-l, (B.l) m     j-Q   J    m-J 

where all the {OJ}O   are arbitrary for the moment.    It follows, from substitu- 
tion oTTD of the main text in (B-l), that 

e   =   Z   a.    I   Ck MJ J =   I   Ck MJ   Z   ai ^ 
1     j=0    J  k=l   K    K k=l   K   K j=0    J    K 

n n . 
=   Z    C.   MJ""   Z   a. MJ'J    for     n S m i N-l. (B.2) 'k Hk i Kk 

k=l K      j=0    J 

Now let us set 

1   aj Cj = ao Mk +---+ Vl Mk + % = 0    for    1 s k s "•      (B.3) 
J    v 

by choice of {a^Q.    Since there are only n equations  in (B.3), but n+1 
unknowns, we will not get a unique   solution   for the ta^Q unless we restrict 
them somehow.    Also, we must disallow the zero solution. 

Observe that if we had used only n coefficients {aj}o'    in (B.l), we 
would have obtained, instead of (B.3), n equations  in n unknowns.    However, 
the only solution to these equations is  the zero solution a. = 0 for all j, 
which is useless. J 

Before we consider the restriction on (a-ln, observe that substituting 
(B.3)  in (B.2) yields J u 

B-l 
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'm 

n 
= 1 

j=0 
a. g 
J Mtn- 

=0  for  n S m i N-l. (B.4) 

ifinite number of linear combinations of n+1 adja- 
J^Q     generated via (1) of the main text, 

That is, we can find an infini 
cent values of sequence fg 

which are identically zero for all possible locations of the (n+l)-long 
average within the record of length N. 

Now to get back to the solution of (B.3) for the coefficients to.}0, we 
observe that the linear predictive approach considered in (2) et seq.J 

of the main text amounts to choosing ag 3 -1; this results in a unique 
solution for the n linear equations (B.3) in the remaining n unknowns {ai}i, 
and is called forward prediction by virtue of form (5b) of the main text. 
An obvious alternative would be to select an ',"1» in which case (B.3) and 
(B.4) would yield a unique solution for to-}!)"1, and 

VnSao9m+-"+Vl<Wl for n S m S N-l, (B.5) 

That is, we are doing backward linear prediction to obtain the sequence 
values. But observe that both of these cases are specializations of the 
linear constraint 

CTA = 1 (B.6) 

on the coefficients (a^n» where 

C = A = (B.7) 

are column matrices. Constraint (B,6) prevents the zero solution, and when 
combined with (B.3), gives a unique solution for A. We can normalize the 
matrix of constants, C, such that 

cTc (or K if desired), (B.8) 

without loss of generality. Forward or backward prediction, respectively, cor- 
responds to choosing all the { 
c0 or 
combination. 

cn, respectively, equal  to 
C.}Q equal  to zero except for edge elements 
o-l.  So, generally, we can realize the linear 

B-2 
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I a. g  . = 0  for  n S m $ N-l, 
j=0 J m-j 

(B.9) 

subject to {OOQ satisfying the linear constraint (B.6), which guarantees a 
nonzero solution. C is an^ vector satisfying (B.8). 

ACTUAL MEASURED DATA 

.N-l Now consider that measured data {fm}o     are available.    Instead of 
linear prediction (6) of the main text, consider the more general  linear 
combination (as in (B.l)) 

d- ^   ^   a^«.<      for     n S m S N-l, (B.10) 

where set ia^n is not yet specified.    Define error and data matrices 

D = Vl 

JN-1 

F = 

fn     Vl-   f0 

n+1 "• 

fN-l ••' N-l-n 

(N-n)x(n+l),      (B.ll) 

Then (B.10) can be expressed as 

D = FA (B.12) 

where we used (B.7). 

Now we want to minimize the total quadratic error of (B.10), namely. 

N"1     T    T T 
i d2 = O'D = ATTA 

m=n " 
(B.13) 

by selection of A, but subject to linear constraint (8.6) on A, which guar- 
antees a nonzero solution.    C is an arbitrary, yet-unspecified matrix. 
Accordingly, we use a Lagrange multiplier 2\ and look for an extremum of 

ATS A - 2A CTA, (B.14) 

B-3 
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where we have defined 

S - FTF (n+l)x(n+l) matrix. (B.15) 

S is easily seen to be a nonnegative definite matrix; it generally has full 
rank when N > 2n. Completing the square in (B.14), we rewrite it as 

(A - XS^C)1 S(A - XS^C) - AVS'1
C. (B.16) 

The extremum is then obviously realized for coefficient matrix 

Ao » XS    C. (B.17) 

To evaluate x, we have to satisfy the linear constraint (B.6) 

T -1 1 
AC'S    C ■ 1,      A = ^r- 

c's' C 
(B.18) 

The best coefficient set is then, from (B.17), 

A    - S" C. 
0        T -1       * u    c's   C 

(B.19) 

.-1 (Thus the best coefficients are proportional  to the first column of S'    for 
forward linear prediction, or to the last column for backward linear prediction.) 
The corresponding minimum value of the total quadratic error.   (B.13),  is 

T   -1       -1 
T c's   SS   C 

A0 SA0 =      T -1—J- 
u    u     (c's   C) 

T   -1 
c's  c 

(B.20) 

(This denominator reduces to the 0,0 element of S" for forward linear 
prediction, or to the n,n element of S"^ for backward linear prediction.) 

But this result, (B.20), obviously depends on the particular values 
assigned to the constraint vector C in (B.6). The question then arises as 
to what constraint vector would yield further reduction of error (B.20). To 
determine this, let matrix S, defined in (B.15), have eigenvalue matrix 

A 

B-4 

'I 0 

0 
.  A0 < A1 <...< An .   (B.21) 
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E = e0      el 

Then 

SE » EA 

(B.22) 

(B.23) 

or 

Se. Xkek for     0 < k < n. (B.24) 

By taking the inverse of (B.23), and pre- and post-multiplying by E, we 
obtain 

S"1 E - EA"1 (B.25) 

or 
.1 .i 

S   ek = \k    e^    for    0 i k S n , 
(B.26) 

which we will need below. The inverse matrix has the same eigenvectors but 
the inverse eigenvalues of S. 

Now any n+1 column matrix can be expressed in terms of the eigenvectors 
of S. In particular, suppose we let 

n 
C = Z b. e. . (B.27) 

k=0 

Recalling normalization (B.8), we have the constraint on the tb. }0: 

n      T    n  2 

k,£=0 ^ Ä K £  k=0 K 

since the eigenvectors (e^g are orthonormal. If we substitute (B.27) in 
(B.20), the denominator is given by 

T .i n T    -i n T   -1 

C'S    C =     I     b.b    e'  S    e    =      1     ^b   e   \    e 
k.£=0    k £    k £      k.A=0    K £    K   ^    z 

n .i n 
S      2      bkb£ kSL    ök£ =    Z    bkAk' k,£=0    K £    *       "       k=0     K     K 

(8.29) 

B-5 

1-.Lr«u-»u-*.y«^v^,v.v..^ _^V^IX_-.UV\-'V J^USl.>VV^"Vk.'V^-V _> »". .'» .W"« w'N VS L.\ VV-V\ 
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where we employed (B.26) and the orthonormality of the eigenvectors. Now 
since we want to minimize (B.20), we must maximize (B.29), but subject to 
(8.28). Obviously the best choice of {b.}g is given by 

b0 = ± 1,    bk = 0 for 1 i k S n, (B.30) 

where x is the smallest eigenvalue of S; see (B.21). Thus 

Minimum total quadratic error = _ mi nKSAo}= (B.31) 

which is the smallest eigenvalue of S defined in {B.15). 

Now we can employ result (8.30) in (8.27) and (8.19) to find the best 
coefficient set AQ.    We have C » + e0, and (8.19) becomes 

±S 

0 0 

+ 
T -1 

0     0  0 

± e 
0 ' (8.32) 

where we used (B.26). Thus both the constraint vector and the best linear 
weighting of the data in (8.10) are equal to the weakest eigenvector of the 
matrix S s FTF, where F is the data matrix defined in (8.11). 

We can now return to (8.3) to solve for the (ui,;}?. where we use the 
components of the weakest eigenvector of S for the ta.}5; that is, we use 

= ± 

•00 

!01 

r0n 

(B.33) 

What we have done is to find the best linear constraint such that the total 
quadratic error (B.13) is minimized. The end result is the same as if we 
had minimized (B.13) directly, subject only to constraint 

A'A = I   a2=l 
j=0 J 

(B.34) 

This latter interpretation corresponds to the best A vector in (n+l)-space, 
with its tip on the unit sphere,  that minimizes the total  quadratic error. 

8-6 
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ON GENERATION OF RANDOM NUMBERS WITH SPECIFIED 

DISTRIBUTIONS OR DENSITIES 

INTRODUCTION 

The generation of random numbers with a specified probaoility density 

function or a specified cumulative distribution function is a frequent 

occurrence in the simulation of signal processing techniques that are 

difficult or impossible to evaluate analytically.    Accordingly, it is of 

interest to be able to generate easily and efficiently such random numbers. 

It is assumed that a uniform random number generator is already available; 

that is,  independent random variables with a probability density function 

equal to unity over the range (0,1) can be generated.    Validation of this 

assumption for a particular random number generator must be confirmeo by 

numerical tests, several of which are tested herein.    This report is an 

extension and elaboration of [1]. 
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NONLINEAR DISTORTION OF A SINGLE UNIFORM RANDOM VARIABLE 

Suppose that random variable x is uniformly distributed on (0,1). 

nonlinear distortion of x yield the random variable y given by 

Let the 

where 

9j( ) is a monotonically increasing function of its argument, 

9{i( ) is a monotonically decreasing function of its argument. 

(1) 

(2) 

This restriction of the nonlinear distortion to be monotonic (either 

increasing or decreasing) is not necessary;  it is done here only for 

simplicity.    Then since random variable x is uniformly distributed on (0,1), 

for a fixed (nonrandom) t in the range (0,1), 

t - Prob {«<«} Prob V 

g^x) < g^t) 

or 

Prob 

y < 9i(t) 

or 

y > gd(t) 

gd(x) > gd(t) 

"V9i(t))     1 
or 

i -Py(gd(tn 

(3) 

where we used (2), (1), and denoted the cumulative distribution function of 

random variable y by P (   ),    we rewrite (3) as 

t - PJg^t)) 

1 - t - 

y 
or (4) 

and observe that cumulative distribution function P (   )  is a monotonically 

increasing function of its argument. 

2 
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Now, for arbitrary monotonic function h(  ), we denote its inverse function 

by h{  ); that is,* 

h(h(u)) - u,       h(K(v)) - v      . (5) 

Applying monotonic function P {  )  to both sides of (4), and using (5), there 

follows 

gi(t)-?
f
y{t) 

or (6) 

gd(t) - ^(1 - t)  . 

Employing (6)  in (1) finally yields the random variable 

y . g(x) «^ or ' (/) 

[gd(x) - Py(l - x) j 

as the desired result of this nonlinear transformation of random variaole x. 

If cumulative distribution function P (  ) of random variable y is specified 

and desired, and if random variable x is uniformly distributed on (Ü,l), 

(7) tells us that we must evaluate the inverse of the given cumulative 

distribution function and use it as the nonlinear transformation of either 

random variable x or random variable 1-x, depending on wnether we want a 

monotonical 1y increasing or monotonically decreasing transformation, 

respectively.    The key element to this approach is the ease with wnich the 

inverse function Py(   ) can be computed. 

* Some additional relationships among functions and their inverses are 

presented in appendix A. 



TR 6343 

EXAMPLES OF SINGLE-VARIATE DISTORTION 

The following examples have been adjusted to a convenient scale, such as 

zero mean or unit variance.    By addition of a constant and/or multiplication 

by a scale factor, alternative desired ranges can be realized.    The times of 

execution given below were obtained for the Hewlett-Packard 9845B Desk 

Calculator equipped with the Fast Processor Upgrade Kit; they include the time 

required to generate the uniform random variable x.    Results were ootained by 

averaging over 1000 independent trials.    Loop counters were declared INTEGER 

for maximum speed. 

EXPONENTIAL DENSITY 

The desired probability density function of random variable y is 

exponential*: 

Py(u) - exp(-u)      for     u > 0      . (8) 

The corresponding cumulative distribution function is 

t 
Py(t) =   j" du py(u) = 1 - exp(-t)      for     t > 0     . (y) 

The characteristic function of random variable y is (for future reference) 

fy {f) =   J   du expliju) py{u) =  (1 - i?)"1      . (10) 

In order to find the inverse function to (9), we let 

u = Py(t) = 1 - exp(-t)      . (11) 

Solving the left relation for t, and then solving the outside relation for t, 

we get, respectively, 

* The probability density functionsand cumulative distribution functions are 

4 

zero in the unspecified regions;  for example, p  (u)  = 0 tor u < 0, 



t-Py(u),  t - -JMl - u)  • 
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(12) 

Combining these two, there follows for the inverse function 

^y(u) - -Jln(l-u)  ^or  0 < u < 1 

The nonlinear transformation, by reference to (7), is then 

(13) 

(14) 

The time of execution for generation of a random variable y via (14) is 

1.9 msec. 

RAYLEIGH DENSITY 

p (u) ■ u exp(-u 12) for  u > 0  , 

P (u) « 1 - exp(-u 12)      for  u > 0 (lb) 

Via a procedure similar to (11)  and (12), there follows 

Py(u) - ^-2 jNl-u)'    for     0 < u < 1      . (16) 

The nonlinear transformation that yields Rayleigh random variables is 

|V-2JMi-xM 
y »< or f ' 

^-2 inx   " 

The time of execution of (17) is 2.5 msec. 

(17) 
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GAUSSIAN DENSITY 

py(u) - (21t)"
1/2 exp(-u2/2)     for all u, 

Py(u) -   j[ dt (2w)-1/2 exp(-t2/2) a $(u)      , (18) 
-00 

fy(f) - exp (-f
2/2)  . 

The inverse function is [2; 26.2, 26.2.22, 26.2.23] 

Py(u) - |(u) - -fC
1-") for 0 < u < 1  . (19) 

The nonlinear transformation that yields Gaussian random variables from 

uniformly distributed ones is then, from (7) and (19), 

[' fix) 
or    \    . (zu) 

-|(x) 

The time of execution of (20) is 13.2 msec. 

A much better approach, for this particular case of generation of Gaussian 

random variables,  is as follows:    let x1 and X2 be two independent random 

variables, uniformly distributed on (0,1).    Then according to the previous 

example, the two independent random variables 

r -V-2 ^n 'V   .  e = 2» x2      , (21) 

have, respectively, the probability density functions 

Pr(u) = u exp(-u /2)      for     u > 0 

Pe(u)  =  (2n)"1 for     0 < u < 2IT      . (22) 
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Now define two new random variables by the nonlinear transformations 

y, ■ r cos ©,      ^2 m r sin 9     * ^23^ 

The joint characteristic function of yj and y2 is [2; y.1.21 ana 11.4.29] 

E{exp(ify1 ♦ iuy2)}  - E{exp(i5r cos e ♦ iyr sin ©)] 

fm 
■ 11 du dv p (u) p (v) exp (ifu cos v ♦ i^u sin v) 

-oo 

+• 2« 
■ \ du u exp(-u 12)       d    dv 77 exp(iu (J cos v + u sin v)) 

- Jdu u exp(-u2/2) J^lfc2 ♦ »n 

.exp(-i52 -iw
2)        . (24) 

Thus y^ and y2 are independent Gaussian random variables, each with 

zero-mean and unit variance.    The time of execution of (21) and (23) is 

5.4 msec per random variable (actually 10.7 msec for a pair of independent 

Gaussian random variables.)    This 5.4 msec is considerably less than the 

13.2 msec required of (20), which also requires a special function 

definition.    A more general distortion than (21}-(23) is considered in 

appendix B. 

Another alternative for the generation of approximately Gaussian ranaom 

variables is to sum N independent random variables, uniformly distributed over 

(0,1).    By subtraction of the constant N/2 and scaling by ^12IH\  a zero-mean 

unit-variance random variable can be generated which, however,  is limited to 

the finite range (-VSN*, "Y^N* ).    A table of execution times and range values is 

given below. 
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Table 1.    Execution Times for Sum of N Independent Random Variables 

N Execution Time (msec) Range of Values 

2.8 -3.46,  3.46 
3.3 -3.87, 3.87 

3.9 -4.24, 4.24 

4.4 -4.58, 4.58 

4.9 -4.90, 4.90 

5.4 -5.20,  5.20 
10 5.9 -5.48, 5.48 

20 11.0 -7.75,  7.75 
30 16.2 -9.49, y.<»y 

The characteristic function of this random variable is [sin(Rf)/(Rf)]N where 

R « Y3/N', and the normalized fourth-cumulant of the random variable generated 

by this summation procedure is -1.2/N.    If the non-Gaussianness can be 

tolerated, this summation procedure is then a viable alternative to (21) and 

(23)  in terms of execution time, for N < 9. 

CAUCriY DENSITY 

PJu) » 7 ^r      for all u, 
y ' 1 + u*1 

P (u) - 2 + ± arc tan(u) 

y?) - exp (-|f|)      . (25) 

This is the probability density function of the ratio of two zero-mean 

independent Gaussian random variables.    The inverse function to the cumulative 

distribution function is 

? (u) - tan L/u - y I       for     0 < u < 1 (26) 

and the nonlinear transformation is 

8 
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tan 

-tan 

(27) 

The execution time of (27) is 2.8 msec. Equivalently, the transformation 

tan(irx) would realize the desired probability density function, although it is 

not monotonic in x over (0,1). 

RECTIFIED CAUCHY DENSITY 

y    * 1 -"V 
for u > 0 

P (u) ■ - arc tan(u)  for u > 0  , y     n 

Py(u) - tan (j u) for 0 < u < 1 

tan If xj 
1 

y «<        or • 

[cot (1 x) _ 

The execution time of (28) is 2.7 msec 

(28) 
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REALIZATION OF DISTRIBUTION VIA COMBINATION OF SEVERAL RANDOM VARIABLES 

If several independent random variables are added, their characteristic 

functions multiply. So if a specified probability density function or 

cumulative distribution function has a characteristic function which can be 

broken down into easily realizable terms, this observation can be utilized to 

generate complicated distributions with relative ease. For example, consider 

the following. 

CHI-SQUARED DENSITY WITH 2N DEGREES OF FREEDOM 

This variate is normally thought of as being generated by summing the 

squares of 2N zero-mean unit-variance independent Gaussian random variables. 

One half of this sum has the probability density function 

vu) = uN(Li)!("u) for u >o • w 
The cumulative distribution function is 

N-l 
P (u) x 1 - exp(-u) 5 u /n!  ^or u > 0  . (30) 

n.O 

The inverse function, Py(   )f to (30)  is not available in closed form for 

N 2 2, so that recourse to (7) is not reasonable. 

However,  the characteristic function corresponding to (29)   is 

fyiV - (1 - i?rN      • (31) 

But this is (10) multiplied by itself N times. Then (14) reveals that we can 

generate y according to a sum of N independent variates: 

N 

I 
n=l " fn-1 

N N y=2HnXn) = -> "TPn (32; 

The  latter form in (32)   is preferable computationally;   it  involves N-l 

multiplies and only one logarithm,  and is obviously much quicker than 

10 
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generating 2N Gaussian random variables and summing their squares. The time 

of execution of (32) is given below. 

Table 2. Execution Times for Chi-Squared Variate of 2N Degrees of Freedom 

Execution Time (msec) 

10 8.0 

20 14.1 

30 20.2 

If we were to use the nonlinear distortion procedure in (20) for generating 

Gaussian random variables, and square and add 2N such numbers to generate a 

Chi-squared variate, the time of execution would be 2N (13.2) msec. For the 

examples in table 2, these times are 264, 528, and 792 msec respectively, 

which are far greater than the execution times for (32). 

A closely related random variable to (32) is 

f7 N 

nal Jm 

«g(y) (33) 

The probability density function of random variable r is 

Pr(u) .py(1(u)) ^3(u) = py(u2/2)  u 

»— e*P<-"2'2)      for      u>0 

2N"1(N-l)., 

(34) 

The cumulative distribution function of r is 

Pr(u) » 1 -exp(-u2/2) j> -^4f^ 

n^O 

for  u > 0 (3b) 

U 
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The time of execution of (33) is given in table 3. 

Table 3.    Execution Times for Square Root of Chi-Squared Variate 

N Execution Time (msec) 

10 8.6 
20 14.7 
30 20.8 

Another example of this combination of variates is furnished by the 

following. 

Q DISTRIBUTION AND RICE DENSITY 

Suppose that y^ and ^2 are tw0 independent zero-mean unit-variance 

Gaussian random variables, as generated via (21) and (23). Then for a 

constant d, the random variable 

z = ^y^d)2^^].!   [d2
+2dy1+y^y2] 

[d2 ♦ 2dr cos e + r2] (3D) 

has characteristic function [2; 9.1.21 and 11.4.29] 

1 L2 

12 

f2(r) - E[exp(irz))   = Ejexphf (|- * dr cos e * f-jjj 

** r -\   2lT 

-   f du u exp(-u2/2) exp ^- (d    + u2)     J dv 2T exP(i' d lJ cos v) 

= exp(ifd2/2)    f du u expj- ^-(l-i?)J J0(f d u) 

= (l-iF)"1 exp^-^AL^j     . (37) 
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The corresponding probability density function is 

Pz(u) - expL- f- - uj l0(<ipP)     for     u > 0      , (38) 

as may be confirmed by direct Fourier transformation (according to (10)) of 

(38); see [2; 11.4.29].    The cumulative distribution function of z is 

Pz(u) * I - Q{(i,föp )      for      u>0      , (39) 

where Marcum's Q function is defined as 

4» /     2       2\ 
Q(a.b) -   Jdx x exp f- a   g x ) I0(ax) (40) 

The time of execution of (36) and (21)  is 7.2 msec; there is no need to employ 

(23). 

A closely related random variable to (36)   is 

y M^TZM (t2 * 2dr cos e ♦ r2)   . (41) 

The probability density function of y is the Rice density 

Py(u) - P2(u
2/2) u 

= u expf- d   g u   1 I0(du)      for      u > 0      , (42) 

and the cumulative distribution function of y is 

P (u) = 1 - Q(d,u)  for u > 0  . (43) 

The time of execution of (41) and (21) is 7.5 msec; there is no need to employ 

(23). 

13 
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These two examples, (36) and (41), would again be analytically very 

difficult to realize by use of (7), because the inverse functions to 

cumulative distribution functions (39) and (43) are not available in closed 

form. Furthermore, different values of d are easily accommodated in (36) and 

(41), whereas the inverses to (39) and (43) would necessarily involve d as a 

parameter. 

A more general situation is encountered for the following. 

%  DISTRIBUTION 

This example is a combination of the last two. Let, as in (36) and (21), 

v - ; [(y! + d)2 ♦ y^ . ^[d2 ♦ 2dr cos e ♦ r2]  ,       (44) 

where 

r -^-2 in Xj1 ,  e - 2n x2  . (46) 

And as in (32), let 

fM+l  ") 

[ ITte3   J 

r iM+1 
All the randotr variables, j xl  , are independent and uniformly distributed 

on (0,1). Then let random variable z be the sum of the above two: 

i ? 7     rM+i   1 
z = v-^w = ^[d' + 2dr cos © + rc] - in< TT x,^ >  .       (47) 

The characteristic function of random variable z follows upon use of 

(37) and (31): 

14 
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(48) 

The corresponding probability density function and cumulative d^strioution 

function for z are 

M-l 

r~)      exp(-|-- u) Vl^^)     for    u>0      , 

P2(u) - 1 - QM(d,V?i?)      for u > 0      , {4y) 

Pz(u) 

where the QM function is defined by [3] 

QM(a.b) . ^dx(f)  xexp^-^-f^I^lax)  . (50) 

The execution time of (45) and (47) is given in table 4 for several values of 

M.    The use of (7) would have required the inverse of (49), a rather 

formidable analytical task involving the two parameters d and M. 

Table 1.    Execution Times for QM variate 

Execution Time (msec) 

10 14.6 

20 20.6 

30 26.7 

A closely related random variable to (47) is 

y -yftT ? ?      ri,i+i 
dc + 2dr cos © + r    - 2 jM If x 

[iri-3    " 

1/2 

(51) 

15 
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There follows 

Py(u) - u(|j      exp(- —j—y I^^du) for u > 0 

P (u) - 1 - QM{d,u)      for u > 0      . (52) 

The execution times for (45) and (51) were 0.4 msec larger than those given in 

table 4. 

ID 
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PRODUCTS OF RANDOM VARIABLES 

We can now take products of some of the random variables above and 

generate additional cases of complicated probability density functions. For 

example, if we take the product of two random variables as given by {32), 

N 1 
n 

,(1)1 

n.l 

2 (2)1 2-^2-^ Trxn;MnTrxni ' (53) 
n-1 

where fx!'  '[and jx^ '|   are uniformly distributed, the probability density 

function of the product random variable is, from (29)  and [4; 3.471 yj. 

+•        f^-Ng-l    N2-l 
dt (VD! (iLi): ^(-^ 0 

Nl+N2    , 
—2 1 

-T^=ir (N2-i)i 
KN1-

N2(2Vr)   for   u>0   ' (54) 

Here Kv(  )  iS a modified Bessel function of the second kind and order v 

[2; section 9.6]; it is even in v [2; 9.6.6].    Execution times for (53) can be 

determined from (32) and table 2. 

The random variable w . 2z^, where z  is given by (b3), has the 

probability density function 

PW(U)'(N;-I): (N2-1):   KNr
N2(u)    f0r    U>Ü    - (5b) 

The product of two independent zero-mean Gaussian random variables, as 

given by (£1)  and (23),  is given more simply by 

1/ 
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2 12 z ■ y.y- - r    sin 9 cos a . j r   sin (2o) ■ -in{x,) sin(4uX2)      .        (56) 

The probability density function of z can be determined exactly as in (b4), 

with the result 

P2(u) -7K0(|u|)     for all u      . (57) 

The 4ir sweep of the sin argument in (56)  is unnecessary; the following will 

accomplish the same probability density function: 

z «JJn(x1) cos(irx2)      , (58) 

where x^ an(j xg are uniform over (0,1). The time of execution of (58) is 
6.0 msec. 

18 
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GENERATION FROM A NON UNIFORMLY DISTRIBUTED RANDOM VARIABLE 

Suppose that it is possible to generate a random variaole x with 

cumulative distribution function Px( ), and that the cumulative distribution 
function of 

y - g(x) (59) 

is desired to be P (  ).    Then for g « g,, a monotonically increasing 
function, the cumulative distribution function of x is 

Px(u) - Prob {x < u] - Probfg.(x) < g^u)} 

- Probfy < g^ujj  -P^g^u))      . (60) 

Applying inverse function Py to both sides cf (60), the desired nonlinearity 
is 

9i(u) • Vpx(u))      * (6i) 

Equation (7) is obviously the special case of this when x is uniformly 
distributed.    Alternative expressions to (61) are available by use of some of 
the relations in appendix A. 

If we want to use distortion g » gd, a monotonically decreasing 
function, to generate y, we have 

Px(u) - Prob {x < u} - Prob fgd(x)  > gd(u)} 

- Probfy > gd(u)}   = 1 - Py(gd(u))      . (bZ) 

Inverting this relation, 

gd(u) . P  (j . px(uj)       . m 

iy 
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This also reduces to (7) for a uniformly distributed random variable x. 

In either case, (61) or (63), the inverse function of the desired cumulative 

distribution function, Py, must be realized. Then a cascade operation as 

dictated by (61) or (63) must be employed. The desired random variable is 

given by 

(64) 

20 
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•     TESTS OF UNIFORM RANDOM NUMBER GENERATOR 

A critical component of the procedures described above is the generator of 

random variables, {xn}t With a first-order probability density function that 

is flat over (0,1), and with statistically independent samples.    Here we will 

investigate several tests of the random number generator, RND, of the 

Hewlett-Packard 9845 Desk Calculator.    Inherent in this investigation is the 

need to state the confidence associated with a particular measurement or 

estimate; for example, see [5]. 

CORRELATION TEST 

The sample correlation of a set of N measurements [y^^ is defined 

here as 

We presume that the {yn] are all  independent with a flat probaoility density 
function 

P» - ^-       for      |u| <VT     . (6b) 

These random variables can be obtained from uniform |xn}  according to the 

linear transformation 

they have the convenient normalized values 

E(yn) = 0      ,      E(yJ) « 1      . (6ä) 

More generally, from (66), 

21 
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Under these assumptions, it is readily shown, by use of (69), that R^ is 

unbiased, that is 

E(V {: 
for k - 0 

0 otherwise 

and that the standard deviation of R^ is 

(70) 

|(1.25N)"1/2     for     k - 0 
o(Rk) ^   | l? 

for     1 < k < N 
(71) 

Thus we expect \ to lie within 2 or 3 standard deviations, o(Rk), of 

t{\) most of the time; that is, the normalized random variable 

rk   • 

Rk - E(Rk) 

W (72) 

should be between ± 2 most of the time, with rare excursions to i 3, if tne 

{Xp} are truly independent [5]. In table 5, the results of sample runs for 

N»100, 1000, and 10000 are listed.    They furnish no reason for rejecting the 

hypothesis that [xA are independent.    Runs for other sets of random numoers 

yielded results very similar to table 5.    An alternative test on the wniteness 

of lxnJ is given in appendix C. 

Table 5.    Sample Correlation Results for (72) 

Delay k rk for N - 100 

1.64 

rk for N » 

0.78 

1000 rk for N = 10000 

0 0.65 

1 -1.04 -0.91 0.2b 

2 -0.26 -0.68 -0.02 

3 -0.10 1.39 -O.lJ 

4 1.44 0.31 0.27 

5 -2.31 -0.30 0.47 

6 -0.49 -1.2Ü -0.20 

7 0.83 0.81 -1.40 

8 0.17 0.61 -1.47 

9 -0.61 -0.77 -0.91 

10 -1.43 -0.45 0.48 

22 • 
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MOMENT TEST 

The sample moment of order k for a set of N measurements {yn] is 

1   4       k tTt\ 
"k'iS   n       * 

The mean and variance of u^ are 

E(h.)-£(»B
k).      »«"(«I,)-!     V"-()'nk)     • (74) 

and can be obtained from (66) and (69).    The random variable 

uk " E^uk^ 
\ *   Std. Dev.(uk) (75) 

should therefore lie mostly in the range i 2.    A sample result is given in 

table 6, which again confirms the flat probability density function hypothesis 

in (66).    (Although these particular runs all resulted in positive numbers, 

other sample runs resulted in a preponderance of negative values for m.   ) 

Table 6.    Sample Moment Results for  (75) 

Moment k 
\ 

for N « 

1.07 

100 mk for N « 

1.37 

1000 \ for N = lüüüü 

1 0.52 

2 1.64 0.78 0.65 

3 1.08 1.09 0.42 

4 1.49 0.67 0.89 

5 0.95 1.11 0.30 

6 1.21 0.51 0.94 

^ 
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FIRST-ORDER DISTRIBUTION TEST 

Let l^  be an interval of the line segment (0,1). Then let cn be a 

counting variable given by 

f1 if xn c lk\ 
cn-< " >      forl<n<N      . (76) 

/ 0 otherwise J 

Then an estimate of the probability Pk, that xn e Ik, is given by the 

quantity 

1  N 

qk " Ji   2 cn  • (77) 

This random variable has mean and variance 

E(qk) - Pk.  Var(qk) - Pk(l-Pk)/N  . (7a) 

Thus the random variable 

qk " pk 

k  [Pk(l-Pk)/Nf 

should lie most often in the region + 2 if xn truly does have probability 

Pk of lying in Ik.    In table 7  is displayed tne results of sample runs for 
the case where interval (0,1) is broken into 10 equal  parts;  that is. 

("Iff ' Iff) ^"l-Tn.Tn)     for        1 <. k < 10      . {30} 

Once again, tnere is no reason to reject the hypothesis that tne random nutnoer 

generator is uniformly distributed over (0,1). 

24 



TR 6843 

Table 7.    Sample Probability Results for (79) 

Interval k vk for N . 1000 

-0.74 

vk for N - 10000 

0.67 

vk for N ■ 100000 

0.50 

1.16 -0.57 0.67 

-1.26 -1.13 -1.02 

-1.37 0.03 -0.96 

-0.32 0.90 -1.26 

-0.32 -0.73 -0.64 

1.48 -0.27 0.53 

-0.53 -0.13 -0.32 
9 0.32 -0.07 1.87 

10 1.58 1.30 0.64 

^b 
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SUMMARY 

Several methods of generating random variables with specified cumulative 

distribution functions have been presented and evaluated in terms of their 

time of execution and efficiency of generation.    They include nonlinear 

distortion of a single (uniformly distributed) random variable or through 

combinations of simply generated random variables.    The former approach 

requires the ability to realize the inverse function to the desirea cumulative 

distribution function, whereas the latter approach is very fruitful if the 

characteristic function corresponding to the specified cumulative distrioution 

function can be broken down into a product of simpler components.    Which 

approach to adopt depends on the particular example and the exact way that any 

parameters enter into the cumulative distribution function.    Of course, the 

inverse to a cumulative distribution function can always be evaluated 

numerically and used as a table look-up, in order to generate transformed 

random variables; however, this numerical procedure would have to be repeatea 

if any parameter of the cumulative distribution function were desired changed. 

The ability to generate uniformly distributee random variables is a key 

component of this procedure.    Several statistical tests on the Hewlett-Packard 

9845 random number generator have confirmed it to have a flat probability 

density function and independent samples. 

These techniques are useful for generating sets of random variables of 

size N with a specified cumulative distribution function, and then plotting 

the sample cumulative distribution functiomas described in [6],   in order to 

ascertain the amount of fluctuation which is typical for that set size N and 

in different regions of probability.    Then by comparing the amount of 

fluctuation of a measured data set  (of unknown statistics) with typical  sample 

cumulative distribution functions of the same size and with a known specified 

cumulative distribution function, decisions on acceptance or rejection of a 

hypothesized cumulative distribution function can be made witn confidence. 

See [6, figures 6 and 7] for illustrations of this procedure. 

26 



TR oö43 

APPENDIX A. SOME INVERSE FUNCTION RELATIONS 

In this appendix, x and y are real (non random) variables. Let g(x) be a 

monotonic function for x in a given range, and let 

y - g(x) . (A-i) 

The inverse relation to (A-l) is, for y in the appropriate range, 

x - g(y)  . (A-2) 

Now suppose that we cascade nonlinearities: let 

z - h(y) - h(g(x))2 f(x)  , (A-3) 

to yield overall nonlinearity f. Then the outer equality in (A-3) yields 

x - f(2)  , (A-4) 

whereas the first and third terms in (A-3) yield 

h(z) - g(x),  and  g(h(z)) . x  . (A-5) 

Combining (A-4) and (A-5), there follows for the inverse function of the 

cascade, (A-3), 

?(z) - g(h(z))      , (A-6) 

in terms of the inverses of the individual transformations. 

If we combine (A-l) and (A-2), we get 

y-g(g(y))    . (A-7) 

Taking a derivative with respect to y, we find 

27 
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i - g'^y)) g'(y)     ; 

r(y)"gWT    * ^ 
That is, the derivative of the inverse, g, can be found in terms of the 

inverse function and the derivative of the original function g. 

Suppose that y is given in terms of x via transformation 

y-g(7(x))     . (A-9) 

but the inverse function f is impossible or very difficult to obtain from 

given function f.    A simple way of evaluating y vs x, then,  is parametrically 

by letting 

t - f(x), to get x « f(t), y ■ g(t)      . (A-lü) 

Now, as t is varied, f and g can be evaluated to determine y vs x.    This 

transformation also allows evaluation of an integral involving an inverse 

function: 

b pb 
J dx g(F(x)) -   ^   dt f (t) g(t)      , (A-li) 

where 

ta a f(a).     tb = ?(b)      . {A-U) 

Another use of inverse functions in integral evaluation is afforded by the 

example 

b 
I  =   J dx g(x) w(x)      , (A-U) 
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where function w(x) need not be monotonic or possess an inverse.    g(x) is 

assumed monotonic in (a,b).   Letting 

y- g(x). x - g(y), dx - dy g^y)      , (A-14) 

there follows, for the integral in terms of inverse function 5. 

g(b) 

I - J dyyg'(y) w(g(y))  . (A-lb) 

g(a) 

Integrating by parts, using identification 

u-yw(g(y)),  v - g(y)  , (A-16) 

we get the alternative form 

g(b) 
I  - b g(b)  w(b) - a g(a) w(a) -    j    dy g(y) ^ {y w(g(y))}       . (A-17) 

g(a) 

The special case of w(x) » 1 in (A-13) and (A-17), namely 

b g(b) 
^dx g(x) - b g(b) - a g(a) -    j    dy g(y)      , 

a g(a) 

(A-18) 

has the geometrical interpretation in figure A-l.    Equation (A-13)  is tne 

statement that Aj + A2 + A3 = total area b g(D). 

As an example of the application of (A-13) and (A-15), consider 

g(x)  . arc sin(x),      g(y)  = sin y      . (A-ly) 

There follows 

b arc sin(b) 
C dx arc Sin(x) w(x)  = f dy y cos(y) w(sin y).       (A-20) 

a arc sin(a) 

29 
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So if w is a polynomial, the integral on the right side of (A-20) can be 

evaluated in closed form. 

Figure A-l.    Geometrical Interpretation of (A-18) 

30 
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APPENDIX B.    A MORE GENERAL DISTORTION 

In (21), a random variable r with a Rayleigh probability density function 
and a random variable © with a uniform probability density function were 

generated.    These were then used in nonlinear transformation (23) to generate 

two independent Gaussian random variables y^ and yp.    Here we will 

generalize the probability density function pr of r in (22), and allow pr 

to be arbitrary,    e is still uniform over Zu. 

The two new random variables generated are again as in (23): 

yi - r cos ©,      yg - r sin o      . (B-l) 

Because of the uniform distribution of e over 2ir, the joint probability 

density function of yj and ^ is of the symmetric form 

P(y1. y2) » h^ ♦ yH   for all y^ y2      . (B-2) 

To determine h, observe that, for t > 0, 

P i Probfjt|*yf < tj -  \\öyl dy2 p(y1, y2) 
ct 

IT 

(o) = 2™   \dp p n(p)  ,    (B-3) ' j[   dyl dy2 h (pi  + yf) =   j ^ p  f d^ h(p) = 2,  J 

where Ct iS a circle of radius t centered at the origin.    But also, from 

(B-l), 

P - Prob fr < t] =   Cdu pJu)      . (0-4) 
o 

Equating (B-3) and (B-4) and taking a derivative with respect to t, there 

follows 

Pr(t) 
h(t) = j^—     for t > 0  . (B-5) 
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Reference to (B-2) then yields for the joint probability density function of 

n. 1*. 

Piyv y2) -     y ar   ^or all y^ y2     . (B-6) 
2ty^ * yl 

yi and y2 are statistically dependent in general. 

EXAWLE 1. 

Our first case is the probability density function in (34), for random 

variable r as generated by (33): 

Pr(u)--u
N

2N:leXP('u2/2)     for      u>0      . (b-7) 

Substitution in (B-6) yields the joint prooability density function 

fyZ * /V      ( y\ * yV\ 
P(y1. y2) -  ^(N-l).]-1 (   1 2   

2 I      exp f-       2    
2 )   for all y^ y2 .      (8-8) 

The special case of N»l reduces to the pair of Gaussian ranoom variaoles 

already considered in (21)-(24).    For N«2,  (B-7) and (B-8) yield 

Pr(u) - 7 u3 exp(-u2/2)      . 

2 + y2 /  y2 + y2\ 

P(y1. y2) -   1 4l, 
2expf-   1 2    

2J    . (8-9) 

EXANPLE 2. 

Here random variable r is generated according to (32), and nas the 

probability density function given by (29): 

N-l ,     . 
Pr(u)=-y (N!iP."Uj        for      u>0      . (8-10) 

32 
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Substitution of (B-10) in (B-6) yields 

N . l   

P(y1. y2) - C2i (N-DJ]'1 U * yfj txpH/yf ♦ $J   for all yv y2.  (B-U) 

Special cases for N equal to 1 and 2 are respectively 

P(yr y2) - (Zw)-1 (y* * y^        txp^yj * yf\ (8-12) 

and 

P(y1. y2) - (Zw)"1 MP^^yf)  • (B-13) 

33/34 
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APPENDIX C.    A TEST FOR WHITENESS OF A SEQUENCE 

.ion Suppose data points [x k]o' 'are availa 

estimate at delay n accord ing to* 

V  kJ\ Vn , for all n (C-l) 

where summations without limits are over the range of nonzero summanas. 
A , 

Rn is nonzero only for  |n| < K.    If process jxnj were white, we would 

expect to have 

\K\ << ^o      ^or all    n ^ 0     . (C-2) 

Therefore a measure of nonwhiteness is afforded by the ratio E/ß , where error 

measure E is defined as the sum of squares for n ^ 0, 

E ■ SN2 • W - •• • ^ n#0 n 

However,  (C-3)  is very time-consuming to calculate via (C-l), because of all 

the multiplications and additions required.    A much more practical evaluation 

o' (C-3)  is afforded by the following procedure (the derivation is presented 

later in this appendix). 

Define an M-point DFT of the K data points: 

K-l 
X    = ^ xu exp(-i2itkm/M)     for     ü < m < M-l      . (C-4) 

m     k=ü _     " 

Then it follows that if M ^ 2K-1, 

IK12 '4-11W4 ■ («) 
m=0 

*    The following mathematical  development is very similar to that  in [7J. 

35 
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and our whiteness measure can be expressed as 

W?) 
r-l      . (C-6) 

A threshold test of (C-6) is equivalent to 

M-l   .    |4 
X non-white 

/M-i   .    .pV       < 

(1 W) whne 
Threshold      . (C-7) 

The distribution of Q could be computed from white-noise simulations, and a 

threshold value selected for prescribed error probability.    By Schwarz's 

inequality, Q 2 1. with equality realized if and only if |Xmj2  is constant 

for all m. 

Evaluation of Q in {C-7) requires one M-point DFT of the data (M   " , 

where we must have 

M > 2K - 1      . (C-8) 

The subsequent calculations in (C-7) are quickly conducted. 

An alternative interpretation of error measure E in (C-3) is very 

illuminating and lends additional credence to (C-7) as an appropriate 

statistic.    If we define spectral estimate 

Gm =   -S. Rp exp(-i2itmn/M)      for al 1 m      , (C-y) 
n 

then we find 

Gm ' R- jxj2      for 0 < m < M-l      , (C-10) 
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and the error measure E in (C-3) becomes 

\ m-0 / 

But notice that if we define the sample mean of the set of spectral 

estimates (Si M"1 as 

*1K  • <c-12) 

o 

M-l 
n 

tn-0 

then the sample variance becomes 

M-l 
0 ! M ^ (Gm - v) 

1 ^ , 2 _ A « 
M^D m  VM m.0 m/ 

That is, error measure E is equal to the sample variance of the set of 

spectral estimates.    This latter quantity is a very natural measure for 

deducing whether a sequence is white, since o2 would be expected to be 

smaller for a truly white process. 

This also suggests that a meaningful measure, for determining whether a 

sequence is white over a limited band of the zero-to-Nyquist range, is the 

sample variance of the spectral estimates over that particular band in 

question. 

i^  I 

For a real sequence fxk] ' , the sums in (C-7) need only oe conducted over 
Jo 
K-l 
o 

half of the range, by virtue of the conjugate symmetry: 

XM-m " Xm   for      ! i m < M-l  if l\]  redl  .      (C-H) 

3/ 
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Thus then (for M even) 

- 1 
4        4 

X0 + XM 
2 ^ K\     1f   Kl real-     (c-15) m-1 

DERIVATIONS 

Define spectral estimate 

G^ - 5^n exp(-i2itnm/M)     for all m (C-16) 

The superscript specifically indicates the period in tne subscript variaole. 

Substituting (C-l) in (C-16), there follows 

GiM) « Iexp(-i2wnm/M) ^ xk xk_n* 

- ^ 5xk exp(-i2iTkm/M)    ^ xk_n exp(-i2iT(l<-n)m/M Ü 

1   |X(M)|2 
(C-17) 

where 

xiM^ " S xi, exp(-i2wkm/H)     for all m (C-lö) 

rtow the inverse DFT o' W i 
M-1 

Ri^i  M5 2I1M) exp(i2,mn/,v|) =      ... * R^ ♦ Rn * Rn+M * ...  (C-ly) 

for al1  n. 

wh ich is an infinitely-aliased version of [Rn]•    However,  if 

38 
M > 2K-1, (c-20; 



TR 0843 

there is no overlap of terms in (C-19).    Henceforth we presume (C-2Ü) to be 

true; that is, the size of the transform (C-18) must be at least twice as 

large as the number of data points.    Then there follows from (C-19), 

Rn - jif I> ^ e*p (i2irnm/M)     for  jn) < 
ISO 

(C-21) 

Therefore 

5KJ 
K-l 

n—K+l 

;(M) 
n:one period  | n 
of length M 

M-l       M-l M-l K-l 

2 ? I ^ 2™M) 5PM) "'J(i^•(^"'," - s I s, 
n«0       n^O p«0 

m 
m=0 

(C-22) 

Then from (C-3) and {C-19), 

M-l M-l 

E-Ä 
:{M)' 

nwC m M 
m (C-23) 

Although (C-18) is defined for all relative sizes of M and K, the relation 

(C-23) holds only if (C-20) holds. 

3y/40 
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Introduction 

The evaluation of contour integrals with analytic integrands is often ac- 
complished by moving the contour to an equivalent one, such that the integrand is 
better behaved or can be approximated more easily. In particular, movement of the 
original contour to one that takes advantage of saddle points of the integrand or 
paths of descent or steepest descent is a very fruitful procedure. It is presumed that 
the reader is familiar with this technique; see references 1-3, for example. However, 
one of the difficulties of this procedure is determining the locations of the steepest 
descent contours (reference 1, p. 263). For complicated integrands, especially those 
involving branches of multivalued functions, exact determination of steepest 
descent contours is virtually impossible analytically, and recourse to some type of 
computer aid is recommended. The procedure given here does not require solution 
of nonlinear equations, but does give a very good indication of steepest descents 
with a minimum of analytical and programming effort. 
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Explanation of Technique 

Suppose we wish to evaluate the contour integral 

Jdz gCz)   exp(Aw(z))     , m 

C 

where g(z) and w(z) are analytic functions of z, except for isolated singularities such 
as poles, essential singularities, and branch points; and C is a contour (finite or 
infinite) in the complex z-plane. The saddle points of the exponential in (1) occur 
where (reference 1, p. 258) 

«*'(«,)  = 0    . (2) 

For A real, the standard method of determining the paths of steepest descent out of a 
saddle point is to keep the imaginary part of w(z) constant and equal to its value at 
zs (reference 1, p. 253). This generally leads to difficult transcendental equations 
that must be analytically investigated approximately or solved numerically. 

An alternative procedure for finding the steepest descent directions at any point 
in the z-plane is as follows: Let 

z  = x +  iy    , 
,        .   . . (3) 

w(x +   ly)   =  u •♦•   iv 

Then the magnitude of the exponential in (I) is exp(Au), and its direction of steepest 
descent at x, y is proportional to the negative of the gradient (reference 1, p. 254): 

7 expUu)   =   X  exp(Xu)   Vu     , (4) 

where 

„ JU - 3u -* 
Vu = ir— a    + — a     , 5 

9x    x       3y    y   * x 

and"jfx and ä^ are unit vectors in the positive x- and y-directions, respectively. The 
explicit evaluation of (5) requires that one analytically evaluate u = Re{w(x + iy)} 
and then analytically derive 3u/3x and du/dy. This can be tedious and is liable to 
human error. 

An alternative simpler procedure is possible: By the Cauchy-Riemann conditions 
applied to a function analytic at z, the derivative 

',■   ,        3u 3v 
w   (:)   * rr- *   i  T— 

3x 3x 

}V        .    3u .,, 
■ T i —    . (6) 

3y >y 

That is, we can express the desired partial derivatives as 

— = Retw'U)},    — » - rm{w'(2)}    . (7) 
)X .y 
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Then the negative of the gradient in (5) can be written as 

-Vu = -Re{w'(z)} a    ♦ Im{w'(z)} a      . (8) x y 

So if we evaluate w '(z), the direction of steepest descent at any point z has 
components in the x, v directions proportional to 

.Re{w'(2)},   Ira{w'(z)} (9) 

for w '(z) # 0. The only analytical calculation necessary is that of derivative w '(z), a 
task generally easily accomplished, and indeed necessary for evaluation of saddle 
point locations anyway. A computer program can then be written to numerically 
evaluate w '(z) in terms of its components (9) at all points of interest in the z-plane. 
A program for this procedure is given in appendix A, along with the specific 
examples displayed later in this report. 

Presentation of this steepest descent information for human interpretation is 
accomplished here by drawing a short standard-size line through each point 
z = x + iy, centered on the point and with an arrowhead pointing in the direction 
of steepest descent. The magnitude of the rate of steepest descent is discarded; only 
the direction is preserved. How effective this procedure is will be demonstrated by 
the following examples. 
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Examples 

Airy Function 

The Airy function, Ai, is proportional to (I) when g(z) = I, 

W(2)    =   Z   -   J23       . (,0> 

and C is an infinite contour starting anywhere in the angular range -5n/6 < arg (z) 
<-n/2 and ending in n/2 < arg(z) <5Tt/6; see reference I, pp. 52 and 266. Then 

w'(z)  = 1  -  z2    . (11) 

A computer need only evaluate the complex product z*z and subtract it from 1 in 
order for (11) to be used in (9). An example of this procedure is given in figure 1. 
The arrows clearly indicate the steepest descent paths from any point in the z-plane. 
The two solutions of (11) equal to zero, namely, saddle points zs = ±1, have arrows 
pointing both inward and outward at these points, reflecting the very nature of a 
saddle point. Movement of the original contour C to the steepest descent contours 
(solid lines) out of the saddle point at zs = -1 is easily accomplished; no 
singularities of the integrand of (1) are crossed in the movement process. 

The Airy function for complex argument (reference 1, section 7.3) has, more 
generally, 

viz) = zexp(le)- iz3    . (12) 

Figure I corresponded to 6 = 0. For 9 # 0, the determination of steepest descent 
paths is analytically difficult (ibid.). However, since 

w'(:) = exp(i9)  - z2    , (13) 

computer evaluation of (13) and (9) is trivial. The steepest descent directions for 
9 = 3n/4, for example, are depicted in figure 2. The solid lines in the neighborhood 
of the saddle points were hand-drawn upon observation of the descent arrows. The 
interpretation of figure 2 is much easier than its counterpart in reference 1, figure 
7.3.3. Also the determination of an equivalent contour to C is easily achieved by 
reference to figure 2. First let the new contour come from o» exp(-i2n/3) along a 
steepest ascent to the saddle point at z, = exp(-i5n/8). Then let it continue in a 
northeasterly direction along the steepest descent direction out of this saddle point 
to the y-axis. Next proceed due north to a point near z = i and then follow a 
steepest descent path out to «exp(i2n/3). The vertical portion of this new contour is 
not a path of steepest descent, but it is obviously a path of descent because the 
projections of the arrows on this vertical section all point in the upward direction of 
travel. This discussion also points out that the other saddle point at z, = exp (i3n/8) 
does not enter into the asymptotic development of Ai, at least for this value of 9. 

An alternative equivalent contour to C is the pair of steepest descent contours 
passing through the saddle points and connecting 00e\p(-i2n/3) to + oo r.nd +00 to 
«exp (i2n/3), respectively; see figure 2. Observe that the movement of C to this new 
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pair of paths is not an approximation; it is an alternative exact representation of the 
original integral. If one now approximates these two path integrals by their con- 
tributions near their peaks at the saddle points, the saddle point at zs ■ exp(i3n/8) 
will yield exponentially small contributions relative to that at zs ■ exp(-i5n/8). 
This can be seen from Figure 2 by drawing a straight line between the two saddle 
points; all projections of arrows along this line point at the upper-right saddle point, 
meaning that the value of |exp(Aw(z))| is smaller there. 

Figure I. Steepest Descent Direclions lor Airy Kniuiion. 6 = 0 
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Figure 2. Slef pest Descent Directions for Airy Function, 6 = 3n/4 



TR 6433 

When we continue on to the case 0 = tt in (12), the character of steepest descents 
is as depicted in figure 3. Now the straight line connecting the two saddle points has 
ail arrows perpendicular to it; thus this vertical line is a contour of constant 
|exp(Aw(z))|. This means that both saddle points contribute equally to the value of 
integral (1). Again the pair of steepest descent contours through the saddle points 
(mentioned in the above paragraph) represent exactly the original integral; one 
could evaluate the original integral exactly by adding the total contributions of both 
of these paths, or an approximation can be achieved by computing the integrand 
near its peaks at the saddle points. 

• •*  m   mm ~r~ p   P   f—1    t   f   f—I—1 

Figure 3. Steepest Descent Directions for Airy Function. 9 = n 
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Hankel Function 

The Hankel function takes the form (reference 1, 7.2.23) 

W(Z)    =    i[C0S(2)    ♦   S(Z   -   y)]   , (14) 

where /? is a constant. There follows immediately 

w'(z)  = i[- sin(z)  ♦ 0]     . (15) 

Computer evaluation of (15) requires only a trigonometric sin of a complex number, 
followed by subtraction and multiplication. Sample descent direction plots for ß ■ 
0.5, I, and 1.5 are given in figures 4-6, respectively. (It is informative to compare 
these figures with figures 7.2.1-7.2.4 in reference 1.) Movement to equivalent 
contours is obvious from figures 4-6. Since (15) has period 2Tt in x, only a lit strip 
has been plotted in figures 4-6. The character of the steepest descents in figure 5 for 
/? = 1 is different, in that the saddle points have coalesced; however, there is no 
difficulty ascertaining from the plots what new contour to adopt. 

Klein-Gordon Equation 

This example is complicated by the presence of branch lines in the exponent 
function w(z). Specifically we have (reference 1, 7.5.9) 

w(zj  =  i[9(z2 - 1)*/2 -  z] . (16) 

where the branch of the square root is taken as positive real for z = x > 1, and with 
branch lines extending vertically downward from the branch points at z = ±1. The 
derivative of (16) is 

w'(z)   =   i 
9z J 

¥-i)l/2   J 
where the same square root branch must be taken as in (16). 

If one has available a computer program that evaluates the principal square root 
of a complex number, denoted here by z  , it can be used to evaluate (17) in the 
following manner. Observe first that the branch line of principal square root z 
occurs where z = -p for p > 0; i.e., p can take on all nonnegative real values. So 
consider the representation 

G: \1^2 If 1/2 
l)b      =  i(-iz ♦   i)1'-   (-iz  -  i)1^     . (18) 

For z real, positive, and large, the right-hand side of (18) approaches 
i[exp(-in/4)zl ) [exp(-iTr/4)z ] = z, as desired. Furthermore, the two branch lines 
of VI8) occur where the arguments of the two principal square roots have values 

-i:  +. i =  -p for p 2. ^    I 

i. c. = ^1  -   ip for p ^ Ü     . (19) 
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Figure 5. Steepest Descent Directions for Hankel Function, ß = I 
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Figure 6. Sleepesl Descent Directions lor Hankel Function. /]= 1.5 
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These are vertically downward from z = ±1, as desired. Thus (17) can be easily 
evaluated by taking the two complex principal square roots indicated in (18) and 
performing multiplication, division, and addition of complex numbers. The specific 
coding is illustrated in appendix A. 

The pole of g(z) at 2 « v0 for this example (reference 1, 7.5.8) has no effect on 
the steepest descent contours of w(z). The steepest descent directions for 8 = 0.8 
are depicted in figure 7. There are saddle points at z$ ■ ±5/3, and the steepest 
descent contours go vertically downward eventually. Th: steepest descent directions 
near the branch lines emanate from the branch lines themselves, but these branch 
lines have no effect on the steepest descent contours through the saddle points. 
However, if the branch line emanating from the branch point at z = 1 had been 
taken at angle -n/6, for example, it would have interfered with the steepest descent 
contours in the 4th quadrant of the z-plane. Such a choice of branch for the square 
root in (16) and (17) is undesirable and should be avoided, as was done in figure 7. 

Function with Essential Singularity 

This integrand is characterized by (reference 4) 

exp(w(z))   =  z exp (z"_ J   , (20) 

which function has a zero at z = 0 and an essential singularity at z = 1. Then 
K 

w(z)   =   ln(z)-  -  _   1    , 

,,  ,       1       K w  (z)   = - +   
'      (z - U1   ' 

The steepest descent contours for (21) are depicted in figure 8 for K = 3. The 
essential singularity generates a "dipole effect" about z = 1, i.e., 0 atz = l-f-,and 
<» at z = 1-, for K > 0. The zero of (20) at z = 0 manifests itself as a point toward 
which all the arrows point, since zero is the smallest magnitude that any complex 
function can take on. The saddle points (roots of (21)) occur at 

z    ■ exp(+i9),  where 9 = arc cosfl   - yj ,   for 0 ^ K ^ 4     .    (22) 

Utilizing the information in figure 8, we find it relatively easy to decide what the 
effect of moving an original contour around in the z-plane will do to integral (1). 
Movement across the essential singularity at z = 1 will necessitate consideration of 
the residue at this point. The zero and saddle points of (20) are not points of 
singularity. 

Cubic Function 

This example comes from  reference 3,  pp. 296-302; it  is characterized by 
g(z) =  '/: and (ibid., upper line of 6.6.25) 

> (4z2 -  iS: ♦  u3) . w(2)   =  -c        42" -   15:  *  iz  )  . (23) 
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FigureS. Sleepesl Descent Directions for e\p(w(z)) ■ zcxp &>- 

Also now the integral is a finite one, from z = -Itoz = + 1. This example exhibits 
a Stokes phenomenon at certain values of a, where we have represented A = |A|eia. 
We find 

W    (2)    = ■1' Uz  -   15 +   i5:2j   , (24) 

which has zeros (saddle points) at z   = land 15/3. 

A plot of steepest descent directions for o = 0 (positive real A) is given in figure 9. 
It indicates that the steepest descent contours out of the limits at z = -1, +1 tend to 
<»exp(-i5n/6) and «exp(-in/6), respectively. But these two valleys at « can be 
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Figure 9. Steepest Descent Directions for Cubic, a = 0 

joined by the saddle point contribution through the point zs = i. Thus the integral 
over (-1. 1) is exactly equal to the sum of these three steepest descent contours. The 
saddle point at zs - 15/3 need not be considered. The dominant contribution is 
obviously that at the saddle point zs ■ i, as may be seen by the arrow directions. 

For a = 5n/12, figure 10 indicates a similar behavior. Since the steepest descent 
contours out of -1, + 1 tends to -175° and -55°,respectively, t^e saddle point at 
zs = i must again be used to join them. The dominant contribution is seen to be due 
toz = -1, by making use of the arrows of descent in this figure. 

For o = 3n/4, however, we see from figure 11 that both of the deepest descent 
contours out of -I, + I tends to (»e\p(-i5n/12). Now there is no need to employ 
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either of the saddle points. The integral over (-1,1) is given exactly by the sum of the 
two steepest descent contributions. The dominant contribution is again due to 
z = -1, since we have to descend from z = -1 to near z = 0 to reach magnitude 
values comparable to those at z - +1. 

Figure 10. Steepest Descent Directions fur Cubic, a = 5rt/12 
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Gaussian Exponent 

The characteristic function of a particular type of impulsive noise is given in 
reference 5, equation (5), in the form 

fC.)   =  cxp 

/ 2      \ 

ni={) \ ' 
(25) 

for a purely Poisson process (no Gaussian background). This summation can be 
evaluated in the closed form 

I7 
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fU)  =  explA exp l-j   -j i 
(26) 

The corresponding probability density function of this impulsive noise is given by 
the Fourier transform 

7 
)(v)   = yjj- j   dC exp l-Uv + A expl- j ~T ^   j " A 

(27) 

By expanding f(|) in (26) in a power series, we note that the mean square value of 
the Poisson process is readily found to be AB2/2. Since we will be interested in 
values for the dimensionless parameter A of the order of 1 (e.g., A = 0.35 in 
reference 5, figure 3), we will normalize our random variable according to 
t = v/(B2/2)'/, « v/o0. Also, as, | -• ±00, f(4) in (26) tends to nonzero value 
exp(-A). Adding and subtracting this quantity and letting | = z/o0 enables (27) to 
be expressed as 

p(v)   = exp(-A)   6(v) 

+  expt-A)   f    dz  exp(.itz)j-exp(A exp(-z2/2))   -  l]    . 
o -« (28) 

Although there is no obvious parameter A in this form, it is shown in appendix B 
that we can still use steepest descent procedures on the logarithm of the integrand of 
(28); i.e., here we have 

w(z)  =  -itz +  ln(exp(a(z))   -   1]   , (29) 

where we have defined 

2 
a(z)   - A exp(-z  12)     . (30) 

Observe that as z -* <» with arg(z) in the two sectors within 7t/4 of the positive-real 
or negative-real axes, a(z) becomes very small and 

w(z)   ~   -itz + ln[a(z)]   =  -itz  +   In A  -  z2/2     ; (31) 

this means that Re w(z) -► -oo in these two sectors of the z-plane, and, therefore, the 
integrand of (28) tends to zero in these sectors as z -• <». 

The integrand of the integral of interest in (28) is zero in the finite z-plane only 
when 

(Ae-^2) - h(z )   E exp^Ae    0'   J - 1 ■ 0 

-> 
mZZ/2 

Ae  "0/"  =   iZTin  for n /  Ü     , 
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2 
Zo      ,    (.   2Trn\    .. ,   /2Tr|n|\       .«• ,  .       .. 
-y- » Inli —r~l* l27rra = ln(     i   ' ) + l-j sgn(n)   + i2inn    , 

ii   2 In (^4^) +  iir(4m * s8n(n^J o      ^|_-'"\     A     /      "»— •   -•■•v""j • (32) 

where A > 0, the square root is the principal branch, and n and m are arbitrary 
integers (negative, zero, or positive), except that n # 0. These zeros of h(z) are 
important because they will be locations toward which all the steepest descent 
arrows must point in their neighborhoods, since zero is the smallest magnitude that 
a complex function can take on. These zero locations, of which there are an infinite 
number, depend only on A, and not on normalized variable t = v/o0 in expression 
(28) for the probability density p(v). The locations of the zeros ^f h(z) in the third 
quadrant closest to the origin are depicted in figure 12 for A = 0.35. There is 
symmetry in the other quadrants since (from the first line of (32)) 

h(-z)  = h(z),   h(z*)  = h*(z)     . (33) 

For purposes of evaluating steepest descent directions and saddle point Iccations, 
■ we note that a(z) in (30) has the property 

a'(z)   = -za(2)      , (34) 

and so (29) yields 

w'(z)  = -it -, V(;\.,   . (35) 1 - exp(-a(z)j 

Thus the saddle points, z5, of which there are an infinite number, are solutions of 

2    a(2 ) 

1   -  exp(-a(:  ))   =   '^     ' 06) r s 

and obviously depend on both A and t. The most important saddle point is at 
zs = -i/?,/? positive real, where (using (30)), 

.A cxpU2/:)       . 

1   -  cxpf-A cxpC"/:)) (37) 

The steepest descent directions for A = 0.35, t = 2 are depicted for (35) in figure 
13. The saddle point at zs = -iß = -il.341 satisfies (37); there are five other saddle 
points indicated by X in the figure, in addition to the zeros carried over from figure 
12. The steepest descent contour out of the saddle point z5 = -i 1.341 is drawn as a 
solid line; it is asymptotic to y ■ -t as z -♦ « with arg(z) within n/4 of the positive- 
and negative-real axes. Movement of the original contour from the real axis in (28) 
to the steepest descent contour is easily justified. 
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To deduce the asymptotic nature of the steepest descent contours, recall (31); thus 
the imaginary part of w is 

v—tx - xy =  -x(y + t)  as  z -»• » (38) 

in the sectors under consideration. But, since from (29), 

w(-i„)   =  -gt  ♦  ln[exp(A  exp^2/2))   -  l] (39) 

is real, we require (38) to approach 0 as x -► ±<*>. Tlvs requires that y ■* -t. as 
claimed. 

We observe from figure 13 that no use is made of the saddle point at (-1.71, 
-2.38), nor of the infinite number of other saddle points. We also observe that the 
descent directions in the neighborhood of the closely spaced zeros and saddle points 
near the bottom of the figure is very detailed and complicated; however, none of 
that information is needed. 

When t is increased to 5, figure 14 applies. Now the steepest descent contour out 
of the saddle point at z, = -iß = -il.945 heads into the zero at (-0.632, -2.485). 
How to connect from this latter point to z = -00 is not clear. Instead, we consider a 
horizontal descent contour out of zs = -il.945 until we get in the neighborhood of 
(-2, -2), and then we resume a steepest descent contour heading tow aid 
y = -t = -5. The major contribution to this descent contour is given by the 
neighborhood of the saddle point at x = 0; the descent and steepest descent con- 
tours are tangent at this saddle point. 

The aid afforded by the steepest descent directions depicted in figures 13 and 14 is 
extremely worthwhile, since the exponential in (29) and (35) makes an analytical 
approach very difficult. The ability to discard or avoid certain regions of the z-plane 
in determining an appropriate descent contour is rather obvious from the figures 
when coupled with basic information about the integrand, like the asymptotic 
behavior of the steepest descent contour. 

The above results yield exact values for the original integral, since we have simply 
determined contours equivalent to those originally specified. Now we will derive an 
asymptotic expansion for the probability density in (28) for large t ■ v/o0, i.e., at 
values v much larger than the standard deviation of the Poisson process. 

To do this, we need 

w"(z)   = a(l  - e"aj z    -  1  + e"a  ^1   -   z~  -  i    aj M n 

where a = a(z) is defined in (30). Then we find 

./                 2          t    / 2 "> \ 
w  (z )   =  t    ♦ i—    1  - z -   z" a(z ) ) y  s'                   z    \ s s v  s  / (41) 

and, in particular, 

2       t 
w"(-iB)   =  t     - |(l   ♦  32 +  B2 A   exp(B2/:))     , (42) 
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for the saddle point at zs ~ -iß. Also w(-i/?) is given by (39). Then we have the 
approximation (reference 1, chapter 7) 

PM- ej*£r 
9t) exp(A exp(62/2)).  1 {jffaftfi as t > +o 

(43) 

One drawback with this solution is that ß depends on t through the solution of 
transcendental equation (37). For large t, we have, to first order, 

6 «[2 1n(t/A)]1/2  = L1/2 (44) 

For development of additional terms and the general philosophy of solution of 
these types of problems, see reference 6, pp. 11-16 and 83-84. We find, more 
generally. 

82 •• L L ♦  1 ln(L) (45) 

Even so, substitution into (43) yields a very complicated expression for the 
probability density function unless t is excessively large. It can be seen that (43) 
decays slightly faster than an exponential for large t. 
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Summary 

A technique for simple determination of the steepest descent direction at any 
point in the complex plane has been presented and illustrated with numerous 
examples. The movement of the original contour to an equivalent descent or 
steepest descent contour is an exact representation and can be deduced fairly easily 
from the descent information. At this point, two alternatives are available, either 
exact numerical evaluation of the integral or an approximation such as Laplace's 
method. Very difficult integrands can be handled very effectively via this approach. 
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Appendix A 

Computer Programs 

The major part of the calculations required for the six examples in the main text is 
that of w '(z). This is accomplished in the Subroutine Wderivative in the main 
program written in BASIC and listed at the end of this appendix. But, first, the six 
subroutines for the examples given are listed. They illustrate how little program- 
ming is actually needed to compute w '(z), provided that one has already written 
subroutines for the standard complex operations and functions like multiply, 
divide, exp(z), log(z), square root, arg(z), sin(z), cos(z), etc. These latter functions 
are listed for completeness as subroutines at the end of the enclosed program. 

410 SUB   Md#riw»t i ^«(X,Y,R»wl,Imwl> !   ftiry   function 
411 COM  Ct,St !   eet<th«t*>,   51 rv. t. fiat i, 
412 CALL   Mul<X,Y,X,Y,fl,B) 
420 Rcwl»Ct-fl 
430        Imwl"St-B 
440        SUBEHD 

410 SUB   Wden^it M'«< X, Y.Rtwl, Imwl > !   H*nk*1    function 
411 Bet«-.5 
412 CALL SJn<X,Y,A,B> 
420 Rtwl«B 
430 Imwl*B«t*-R 
440 SUBEHD 

410 SUB   Wd« r i "*t i \>* < X, Y, R*w 1, I fiiw 1 > i    K ' * M; - "3.:■ r .J•:■ r 
411 Th*tA-.d 
412 CALL  Sqr<Y,-X*l,ft,i) 
413 CALL   Sqr'V,-X-1,C,D> 
414 CALL   Mul«A,B,C,D.E,F > 
415 CALL  OlM<Thtt»»XfThtt*«Y,E,F,C>H) 
420 Rtutl'G 
430 Itt.wl«H-l 
440 SUBEND 

410 SUB l'ld«r i vit »MC •: X, Y, R*'.il , Irri-'l ■   ' E»»«rit,i4l i • r.g j 1 fc.'1 T v 
411 K«3 
412 CALL Mul • X-l,Y,:i-l,r, A.B • 
413 CALL DiM<K,e,fl,B,C,D) 
4 14 CALL Div<l,e,X,Y,E,F) 
4;:0 R«Mlmi>E 
430 I(rtMl=D*F 
44Ö SUBEHD 
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410 SUB   Wd»riv*tivt<X, Y,Rtwl,Imwl> !   cubic   function 
411 COM   Ci.Sa !   cos<«1ph«),    2in<a1phi> 
412 CALL   Mul<X,Y,X,Y,fl,B) 
413 CALL   Mul<C»,S*,8*X-3»B,8#Y-5+3*flJC,D) 
420 Rewl—C 
430 I(riwl»-D 
440 SU6END 

410 SUB   Wd«r i y»l iu«(X, Y, R«wl, Intwl > !   Giuüiin   t*pon«nt 
411 fl-.35 
412 T>2 
413 CALL Mul<X,Y,X,YfT1,T2) 
414 CALL Exp(-.5»T1,-.5»T2,T3,T4> 
415 Ar»A*T3 
416 Ai-A*T4 
417 CALL Exp'-Ar.-Ai.Er.Ei) 
418 CALL MuKX,Y,Ar,Ai ,T1,T2) 
419 CALL Diu<.Tl,T2, 1-Er,-Ei ,T3,T4> 
420 R«M1»-T3 

430 Iinwl»-T-T4 
440 SUBEND 
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"GRAPH ICS" 

1 ! St««p«ftt Dcsctnt MI« »'(s)] us« 
10 XI—3 
20 X2»3 
30 Yl—3 
40 Y2«3 
50 Dx«.2 
€0 By.2 \ 
70 PLOTTER IS 
80 GRAPHICS 
90 SCALE X1,X2,Y1,Y2 
100 LIHE TYPE 3 
110 GRID 1,1 
120 LINE TYPE 1 
130 F«.2»SQR<:Dx*Dx*Dv»Dy>       ! 
140 Q1«1-C0S<PI/12)».8 ! 
150 Q2-SIN(PI 12>».8 ! 
160 FOR X-Xl TO X2 STEP Dx 
170 FOR Y-Yl TO Y2 STEP Dy 
1Ö0 CALL MderivAt1v«(X,Y,R«wl, Imwl> 
190 CALL Dirtct ioruRtwl, Imwl, Cos, Sin) 
200 IF ABS<Cos>^ABS(Sin>>0 THEN 230 
210 OUTPUT 0;"SADLLE POINT AT ";X;Y 
220 GOTO 350 
230 Tl«F»Cos 
240 T2«F#Sin 
250 X»»X*T1»01 
260 Xb»T2»Q2 
270 Y*»Y*T2*Q1 
280 Yb«Tl*Q2 
290 MOVE X-T1,Y-T2 
300 DRAW X*T1,Y+T2 
310 MOVE X«*Xb,Y«-Yb 
320 DRAW X*Tl,Y*T2 
330 DRAW Xa-Xb,Y**Yb 
340 PENUP 
350 NEXT Y 
360 NEXT X 
370 PAUSE 
380 DUMP GRAPHICS 
390 END 
400 ! 
410 SUB Wider i •.»»t i u* (x, Y, F:«M I, ! uw 1 » 
420 R«wl»l-:><>V*Y 
430 Imi..il»-2*X*Y 
440 SUBEND 
450 ' 
460 SUE Dlrtct ion<R«wl, Iiiwl(CoS|Sin) 
470 T"SQR<R«wl »R«W1^IIIW1*IMW1 ) 
480 IF T;0 THEN 510 
49Ö Coi*Siti«0 
500 GOTO 530 
51 0 C.:.i«-ReMl   T 
520 Si n* IfiiwI   T 
538 SUBEND 
540 ! 

SUB Wderwati 
LEFT ABSCISSA 
RIGHT ABSCISSA 
BOTTOM ORDIHrtTE 
TOP ORDINATE 
X INCREMENT 
Y INCREMENT 

! GRID LINE SPACING 

• in line 410 

ARROW 
INFOR- 
MATION 

direct i on of   steepest   d«*c*nt. 

h i r 
w Z 

t i. fir. r 

1-2 

ch r t c ♦ i o n  o ♦* 
tt««p«St     d€i 
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550 SUB Mul<Xl,Yl,X2,Y2,fl,B> ! 2l#22 
560 fl»Xl»X2-Yl*Y2 
570 • B»X1*Y2+X2»Y1 
580 SUBEND 
590 ! 
600 SUB DiM<Xl,Yl,X2,Y2,fl,B) ! 21/22 
610 T«X2*X2+Y2#Y2 
620 fl«<Xl*X2+Yl*Y2)/'T 
630 B»(Yl»X2-Xl»Y2>''T 
640 SUBEND 
650 ! 
660 SUB Exp<X,Y,fl,B> ! EXP<2:) 
670 T«EXP<X) 
680 fl«T*COS<Y) 
690 B»T*SIN(Y) 
700 SUBEND 
710 I 
720 SUB Log<X,Y,fl,B)        ! PRINCIPAL L0C<2) 
730 fl«.5«L0G<X*X+Y»Y> 
?40 IF XO0 THEN 770 
750 B«.5*PI*SGN<Y) 
760 GOTO 790 
770 B«flTNOVX) 
780 IF X<0 THEN B-B*PI*<l-2*<Y<0) > 
790 SUBEND 
800 ! 
810 SUB Sqr<.X,Y,fl,B>        I PRINCIPAL S6ft(2) 
320 IF XO0 THEN 860 
838 fl»B»SQR<..5*flBS<Y>) 
840 IF Y<0 THEN B —B 
350 GOTO 970 
860 F«SQR<SQR<:X*»Y»Y>) 
870 T».5»flTN<Y/X:) 
880 fl^FH^COS^T) 
890 B«F*SINa> 
900 IF X>0 THEN 978 
910 T»H 
920 ft»-B 
930 B»T 
940 IF Y>«0 THEN 970 
950 fl»-Fl 
960 B»-B 
970 SUBEND 
980 ! 
^98 SUB flrg<X,Y,fl> ! PRINCIPftL MPG'Z' 
lÖOO IF X«e THEN fl».5»PI»SCN<Y^ 
1010 IF   XOÖ   THEN   l=|sflTN<Y/X> 
1020 IF   X<e   THEN   R"fl*PI*< l-2»<; Y^0> ) 
1030 SUBENO 
1040 ! 
1050 iUl   Pou»*r<X,Y,R,A,B>    I   PPIMCIFML   PüIJEF    1   P 
1060 F«EXP<.5«R»L0G<X*X*Y«Y)j 
1070 CALL flrg<X,Y,T> 
1030 fl»F«COS<R#T' 
lOr'O B«F*SIN<R»T) 
1100 SUBEND 
1 1 10 ! 
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1128 
113d 
1140 
iiüe 
1160 
1178 
use 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1458 
1460 
1470 
1430 
1490 
lf.00 
1510 
1520 
1530 
1540 

SUB Sin<X,Y,fl,B) 
E»EXP<Y) 
fl».5»SIN<X)*<E*l/E> 
IF flBS<Y)<.l THEN 1180 
S».5»<E-l/E) 
GOTO 1200 
S=Y#Y 
S«Y*<120*S#(20+S))''120 
B«C0S<X>«S 
•UtffNB 
I 

SUB Cos<X,Y,R,B> 
E-EXPCY) 
fl".5»C0S<X)#<E*l''E> 
IF ftBS<Y><.l THEN 1290 
S«.5*<E-1/E) 
GOTO 1310 
S«Y»Y 
S«Y#a20*S#<20+S))-'120 
B»-SIN<X)»S 
SUBENO 
! 
SUB   Sinh<X,Y,fi>B> 
E"EXP<X) 
B».5*SIN<1Y)*<E+1/E) 
IF   flBS^XX.l   THEN   1400 
S».5»<E-1/E) 
GOTO   1420 
S«X*X 
S»X*<120*S*<20-»-S:') '120 
fl"COS<Y)#S 
SUBEND 
I 
SUB   Co»h«;X,Y,fl,B> 
E-EXPOO 
ft».5*C0S<:Y>*<E*l''E> 
IF   flBS<X><.1   THEN   1510 
S».5*<:E-1/E) 
GOTO   1550 
s»x»x 
3"X*'. 120 + S*'.20 + S> > ■ 120 
B"SIN(Y .*S 
SUBEND 

81N < Z) 

!   COSvZ» 

!   SINK(Z) 

!    COSH-Z 

A-5/A-6 
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Appendix B 

Steepest Descent for General Analytic Function 

Here we do not force the integrand to be of the form in (1), but consider the 
general integral /c dz f(z). Let f(z) be analytic in a region in the complex plane. The 
magnitude-squared value is 

M «   |f(2)|2  -  f* * f2    . (B-l) 

The direction of steepest descent for M is opposite to the gradient of M, which is 

7M = — a + — a       . (B-2) 
ax   x    ay   y 

But, from (B-l), 

|M.2(f   ür>f    üi) 
3x \ r  3x        Ii   ax /    ' 

3M      J.    3fr       f     afi\ 
37* 2\fr —+  fi   37"/      • (B-3) 

Now if function f is analytic at z, then 

3f 3f.        3f. 3f 

So we can express 

4^=  2 Reff^z)   f'(z)}     , 

|i.  -2  Im{f*(z)   f'(z)}     • <B-5) 

Therefore, the steepest descent direction  for M  has components that are the 
negatives of (B-5) or, equivalently, are proportional to 

■Re f'U)(        r_if'(^ 
Hi) ,   Im TizT (B-6) 

The basic calculation for determination of steepest descent directions is thus seen to 
be 

f'(z)/f(z) =^lnf(z). 

Whenf'(zs) = 0, we have a saddle point of fat z = zv. Nearthc saddle point, 

f(2)   ~ f(2s)   * if"fis)(:  -  is):       fo ♦  \{^2  for  small  A     . (B-7) 

B-l 
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Then 

M?  (fo + lV2)(fo+lV    ) 

|fo|
2 ♦ Re |f* f2A2|    for small  A    . (B-8) 

Now let 

f*£, = aeia   . A = re16     . (B-9) 

Then (B-8) yields 

M =   |f   |2 + ar2.cos(ci ♦  29)     , (B-10) 

which has two peak;, and two valleys versus 0 in a 2TI interval (for a # 0); this is 
characteristic of a saddle point. The directions of steepest descent, 9d, at z = zs 

occur when 

. ♦  20d =  T or Sir ,   9d = 2-J-2    or 2Lj_2. ♦ n     . (B-l!) 

Notice, from (B-9), that 

.  = arg|f*f^ = arg|f*(:s)  f'Usj}= arg|f"(zs)/f(zs)}    .   (B-12) 

Now let us investigate the behavior of the complex function f(z) near zs, along the 
steepest descent contours. For 9^ as given by (B-l 1), A in (B-9) becomes 

A = tr exp(i^) ,    A2 =  .r2e-ia    ; (B-13) 

and there follows, from (B-7) and (B-9), for small r, 

2  f   | 1  o1 

on steepest descent contour near z (B-14) 

That is, since the term in parentheses is real and positive. 

arg f(z)  = arg f(z )  on steepest descent contour near  z  .    (B-15) 

More generally, it can be shown that 

arg f(z)   = arg f(zs) 

everywhere on  steepest descent  contour through z   . (8-16) 

Now let us apply these general results to the special case where t{z) = exp(w(z)). 
Then f'(z) = w '(z) exp(w(z)), and f (z) = 0 when w (z) ■ 0. Thus saddle point 
locations are as usually stated. Also, as needed in (B-6), 

B-2 
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/ 
1^1  .   i    (-) .B-D 

and then (B-6) agrees with (9). Furthermore, since 

f"(z)  =  [w"Cz) ♦ w,2{z)]  exp(w(z)) 

f"(zs)  . SitJ exp(w(zs))     . (B-18) 

then (B-12) yields 

a - arg w (z  )     . (B-19) 

When (B-19) is used in (B-l 1), the steepest descent directions corroborate reference 
1. (7.1.8) and (7.1.19). Finally, (B-16) yields 

arg f(z)  - arg{exp(w(z))} = arg{exp(u + iv)} - v    ,       (B-20) 

meaning that v is constant on steepest descent contours; this agrees with reference 1, 
Lemma 7.1. 

What this all demonstrates is that, for a general given integrand f(z), we can let 
w(z) = In f(z) and apply our usual techniques on w(z). This procedure was adopted 
in the Gaussian exponent example in the main text of this report. 

B-3/B-4 
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ABSTRACT 

A procedure for determining the probability density function or 

cumulative distribution function of measured data is considered, 

whereby the sample distribution is plotted on several types of 

transformed axes and compared with candidate distributions. The 

abscissa transformations considered are linear or logarithmic, while 

the ordinate transformations considered are Gaussian or logarithmic. 

The four different distributions which plot as straight lines on the 

appropriate combinations of transformations are displayed, as well 

as being cross-plotted on mismatched paper. Applications to 

random data are given. 
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INTRODUCTION 

In order to characterize the probability density function or cumulative 

distribution function (CDF) of measured data, the sample CDF is often 

displayed on a candidate type of graph paper, as for example, a linear 

abscissa with a Gai.ssianly-transformed ordinate.    If the underlying process is 

truly Gaussian, the resulting CDF plot will resemble a straight line, if the 

nuniber of independent Samples  is large.    However, other CDFs will  plot as 

curves on this type of paper. 

Two frequently-used abscissa transformations are linear and logarithmic 

(dB for example).   Anc two popular ordinate transformations are Gaussian and 

logarithmic.    Since there are four possible combinations of these two pairs of 

transformations, it would be worthwhile to have several common analytic CDFs 

plotted on all four types of paper,  to serve as comparisons for future 

measured data.    As comparisons, we select the four CDFs, each of which leads 

to a straight line plot on one of the four combinations.    In addition, we 

consider a more general CDF with several parameters,  the QM distribution, 

which occurs for narrowband processing, and illustrate a transition between 

two of the basic CDFs. 

In order to guarantee that the CDF graphs lie in a standard region of 

plotting space, the abscissas are normalized, by subtracting the mean of the 

random variable under consideration, and dividing by the standard deviation. 

This normalization realizes,  in some cases, a unique plot for the CDF, 

regardless of the values of the parameters of the CDF.    In other cases,   it 

reduces the dependence on the number of parameters.    This convenient behavior 

minimizes the number of plots and comparisons that have to be considered. 

Also,  for measured data,  the two required statistics,  namely the sample mean 

and sample variance, can be simply and easily computed. 
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LINEAR ABSCISSA 

Let random variable (RV) r have cumulative distribution function (CDF) 

TJOO-TV.^ro^ (i) 

probability density function (PDF) 

2 
mean mr,and variance or. 

For plotting purposes, define normalized abscissa 

lL-mr 

X -   —jr- (3) 

as a linear transformation.    Thus x measures the number of standard deviations 

that -the "RV is fro» its mean.    For the ordinate of the plot, define 

I]   •   J^W}, (4) 

where transformation g{ ] is as-yet unspecified. Substitution of (3) in (4) 

yields the characteristic of interest: 

Thus, for a given CDF Pr, y can be plotted vs x, as a function of any 

parameters of Pr that still remain in (5), after mr and or have been 

evaluated and used in (5). 
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For the examples below, the following definitions will be useful  (see Ref. 

1,  (26.2),  (26.2.22), and (26.2.23)): 

Example 1.    Gaussian 

The PDF and CDF are 

?r(u) - rM ^'" <• 

j/-jUW}    ^or all 

(7) 

The mean and standard deviation of RV r are 

nir « Q,   o; - b 3 ^M    X =    J>       ' (8) 

Substitution of (7) and (8) in (5) yields characteristic 

X. (9) 

This result is independent of parameters a and b of the Gaussian PDF, 

regardless of what ordinate transformation g{ J is employed. This convenient 

behavior is a result of the selection of linear transformation (3). Since no 

parameters remain in (9), a unique plot will result for (9), regardless of the 

gf | selected. 
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Example 2. Exponential 

|pf(u) = t e«CJ>(-b(u-«)) "fer W?«, 

There follows 

(10) 

Substitution of (10) and (11)  in (5) yields 

(j • jll- e,  X]   -for x> -I. 

This result is also independent of parameters a and b. 

Example 3.    Log-Normal 

Here, the natural  logarithm of RV r is Gaussianly distributed.    That is, 

the PDF and CDF of r are 

(ID 

(12) 

T»-^1^  ^ 

(13) 

0. 
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There follows ^     ^ ^    tt        pi 

ft     ^ 

U" e   e (14) 

Substitution of (13) and (14) in (5) yields 

This result is independent of a, but it does depend on parameter b of (13); 

thus (15) will yield a family of characteristics, regardless of the choice of 

ordinate transformation g{ ]. 

Example 4.    Power-Law 

|V(u) •  bft A       ftr   US 0, 

(16) 

Then for paramter b > 2, 

^ 

ai> 
U "   "b-i 

X  =    " 

Substitution of (16) and (17) in  (5) yields 

(17) 

riH^S1^] ^—^ (18) 

This result depends on b, but not on a. 
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LOGARITHMIC ABSCISSA 

The other abscissa transformation we are interested in is a logarithmic 

one, as employed for example in dB plots. We now develop the basic relations 

and normalization for this case. When RV r above is confined to positive 

values, let transformed RV 

tsi.r (19) 

have CDF and PDF 

^(v)-?^(t<v);  ^W.T;«, (20) 

respectively. And let the mean and standard deviation of RV t be denoted by 

m^ and o*.. 

We then have, by use of (20), (19), and (1), the CDF of t as 

The PDF follows as 

jPtW =T^M • £ frit). (22) 

Several alternative expressions are available for the n-moment of RV t: 

-t"-O«-)" -- .U/^w-JduCA-T/v^ '\iv*'*{'(*)■   [U) 

10 
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In particular, we have 

*t--b,^=t-i. (24) 

The normalized abscissa we adopt for plotting purposes is a linear 

transformation on v: 

V-v»u 
X «        r ' (25) 

t 

Here, x measures the number of standard deviations that -Hi«. KV is     from its 

mean. The ordinate is obtained according to 

J-I^WJ-J^OV-^X)], (26) 

where transformation g^ ] is as~yet unspecified. We can now plot y vs x, once 

a CDF, Pt( )t iS specified. 

Example 1. Gaussian 

The CDF for the RV r is given in (7). Since RV r can go negative, we 

cannot apply transformation (19), and this example is not applicable. 

11 
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Example 2.    Exponential 

We take the special case of a « 0 here; see (10).    (The case of a > 0 can 

be worked, but involves exponential integrals.)    We have 

"Pp (u) =•   | - ^(|>(- bu)    ftr   U 5 0, 

(27) 

By use of (21), we obtain the CLF of t as 

T>(v) «  I- ^rp(-tey)     for    all   V. (28) 

And from (23), 

7 = fdu(l.JUk"-f^(i5-ilJeS. (29) 

In particular. 

?.fbfi>-i§^ =^-+rV^jiw(it7,   (30, 

by use of Ref. 2, 4.331 1 and 4.335 1, respectively; V is Euler's constant. 

There follows - , ^_ 

X =    -rr/v/?     ' (31) 

12 
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Substitution of (28) and (31) in (26) yields 

This result is independent of b; a was set to 0 here. 

Example 3.    Log-Normal 

From (13) and (21), the two relevant CDFs are 

There follows immediately 

(32) 

p ^. J (liA^     for   all V. 03) 

Substitution of (33) and (34)  in (26) yields 

Ü   -  jH rW]      for   c(l)    X. (35) 

This result is independent of a and b; contrast this with the linear abscissa 

result in (15). Thus the COF for a log-normal RV will plot as a unique curve 

on a logarithmic abscissa, regardless of the ordinate transformation gf ^ . 

13 
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Example 4. Power-Law 

From (16)  and (21), 

P^W » I- a e     -fir v>J,a 

Then 

A.W- ake,      -fer   V *<*<*, 

and there follows for the n-th moment of t. 

Y ' fdv v" ak 1, eVv = -^-j^ (5 + ^a)" 
-s 

In particular. 

and therefore 

X = ]>v' l>jla - I. 

Substitution of (36) and (40) in (26) yields 

r3{l-e"'"]  i< 

(36) 

(37) 

Jfa 

(39) 

(40) 

or    XS -|. (41) 

This result is independent of a and b,  in contrast with the linear abscissa 

result in (18). 

14 
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ORDINATE TRANSFORMATIONS 

Thus far, ordinate transformation g{}  in (5) or (26) has been arbitrary. 

The particular two transformations we are interested in are 

ftfp]   -   $(T) Gaussian ordinate. (42) 

and 

qj-pl = - JL v" W lcadrithmic ordinate. (43) 

The transformation in (42) is the inverse CDF for a normalized Gaussian RV, as 

introduced in (6). 

We now consider the possible combinations of (42)  and (43) with the 

results above for the linear abscissa and the logarithmic abscissa.    The first 

case is 

1.    Linear Abscissa and Gaussian Ordinate 

We employ (42) on (9),  (12),  (15) and (18), to get 

1-2 M- tfl-e'  J   -for   x >- I 
J N (44) 

,-3       y-t^^^U^-rlf 

-* U =   £[\- iT^llr";   T-T"-!    )    +OV-   x >-- '■2 

15 
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2. Linear Abscissa and Logarithmic Ordinate 

In this case, we use ordinate tranformation (43) on (9), (12), (15) and 

(18), to obtain 

M     ip-J.(l-fW)   "for «II  x 

2-2     i|*H-X    -for    X2-I 

2-3 r.jl(i-i(-t-i(xi/?C7+^))) 
-kr     X > - e (45) 

r^feVff^)^ ?-f    M-t^VTTVrr ^rr; ^ ^-v^r 

3.    Logarithmic Abscissa and Gaussian Ordinate 

Here we apply (42) to (32),  (35), and (4|);  the Gaussian example is not 

applicable. 

3-\ NJo^    ctoplic<»fc»)e 

3-2 M s 1(1- exp(- i     ' ))    -fiy ojll   x 
J        \        ' v // (46) 

3-3 u - X     -h>r  all   X 

J-4 J = I (l- 6     j   -&r   y >- 

16 
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4.    Logarithmic Abscissa and Logarithmic Ordinate 

In this case, we employ (43) on (32),  (35), and (41). 

4-1 Mot   <Wj>)ic«tle 

f_9 u - -Jii(l-fW)        "Tor   «11    X 

^..f u=|4\      for    X>-| 

(47) 

17 
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GRAPHICAL RESULTS FOR THE FOUR PDF EXAMPLES 

In figure 1 are collected the results for a linear abscissa and Gaussian 

ordinate. In particular, figure 1A contains the plots for RVs with a Gaussian 

PDF (case 1-1 of (44)) and an exponential PDF (case 1-2 of (44)). The 

abscissa limits correspond to +3 standard deviations from the mean, while the 

ordinate limits are for probability values .001 and .999. This is the type of 

paper on which a Gaussian CDF plots as the unique straight line indicated. 

Figure IB gives the situation for a log-normal PDF (case 1-3 of (44)), for 

various values of parameter b. The curve labelled b » 0+ is the limit of 1-3 

in (44) as b—*0+, namely 

y -ftr a|) V   *5 l-^ 0+. (48) 

Thus as the spread of the log-normal RV (see (14)) tends to zero, the plot 

tends to the straight line for a Gaussian RV; see figure 1A. 

Figure 1C contains the power-law PDF (case 1-4 of (44)) for various values 

of b. The curve labelled b = •»•«e is the limit of 1-4 in (44) as b-» + oö , 

namely 

u-• t(l-e j -kr x>-l   to   b-»+oo. 

This is the exponential PDF plotted in figure 1A. 

(49) 

18 
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t 

WM&EK      OF    5TA/\,PAfü>     OE-VIAT/evS     FROM   Mf4A/ 

19 
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-I -2 -I 0 I z 
NüWOEn   OF    ST^Mt>AWt>    DEVI*TirK;S     FROM     MMv 

Ftqur*    I  D.     Log- Niorv^al      fpF 

piqurr   I.    ?ltr4s  -Tor   Li/iefl*"    AWfssa     and    6rauS5)ar,    Or^j^a^i 

20 
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The results for a linear abscissa and a logarithmic ordinate are given in 

parts A, B, and C of figure 2. Now the exponential PDF plots as a straight 

line; see figure 2A. The log-normal PDF is displayed in figure 28. The curve 

labelled b - 0+ is the limit of 2-3 in (45): 

y — -Jt (l - f (*)) ^ all V    03 !> - Of.        (50) 

This is also the Gaussian plot in figure 2A.    The power-law PDF is given in 

figure 2C.    The curve labelled b - +<« is the limit of 2-4 in (45): 

u-M-t-*   -for X>-| 03   b-^+00- (51) 

This is also the exponential plot in figure 2A. 

For a logarithmic abscissa and Gaussian ordinate, the equations in (46) 

are plotted on figure 3. Here, the log-normal PDF yields a straight line. 

There are no parameters that have to be investigated on this type of plotting 

paper, if the PDF is exponential, log-normal, or power-law; see (46). Other 

PDFs could, of course, still involve parameters that are not suppressed. 

The analogous results for a logarithmic abscissa and logarithmic ordinate 

are displayed in figure 4. This time, the power-law PDF yields the straight 

line. Again, no parameters of these particular PDFs are involved, as they 

have disappeared in (47). 

22 
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-2-10 1 2 
Nv>M3E^   OF  5T/WVD/4WD   PEV|ATlOW5   FROM   MEAM 

FiCjUre    2A.     (xQ^SSia*     One)     £xi>e..e.--tia)      FT>Fs 

Figure   2.   Vloh    ^v     l\v\ta\r    A\)^>S5a     QnJ    LoqQr.H»f/c     Or^nafe 

23 
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-2 -I o I i 
NUM?en    OF    JTAWPA^P    DeviAT'ON/S    FROM   ***N 

Figure   2J.   Log- Nirma\   PI>F 
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3-2-1 0| 2 
NUMBER    OF   5TAhiX>Am>   PEVMTIOAJS    F^OM    HEASJ 

FiavAvt 2.    Pfois for  Linear    AWfi5/«    QMC1   Lo^aritUic   O^^i^it 
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NJuM&cn   OF    yTAUÜ>*no    PEVMT/ÖW5   FROM   MEAN» 

Fi'aure 3-   P!«"b   ^r   LoacxriH^iV   /41>5ci^a    and   (xaujjr«^   O^cjuoate 
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-t 0 I ^2 

MvJMPeR   op 5TANl>AKV>   DEVIATION^    fftoM M£*H 
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PLOTS FOR qM DISTRIBUTION 

The last analytical example we consider is the QM distribution with a 

CDF given by (Ref. 3) 

TJ(tt)-   I- Qjn(a,/2i7)    Ar   l^O, (52) 

and PDF 

frW Ä  a(d|)     «p(-£- ^rm.i (^) ^r u ^ o.       (53) 

For M - 1, (53) is closely related to the Rice PDF. On the other hand, for 

d - 0, it reduces to 

a(au) exp{-au)   r 
  / C.r\    <       4x)r 14> 0, (54) 

tM-l)! 

which is the chi-squared PDF with 2M degrees of freedom.    Thus,  (53)  is a 

general form which subsumes several common cases. 

The characteristic function of RV r is (Ref. 2, 6.631 4) 

^ (?) -U  < V I")  -  (I" -?/«)'" ^ (-£-   MF)  • <«) 

Therefore 

J,iW.-Nj(l-Jf)*Jf-Ä 

-MiiffiT-f^ f" 
(56) 

28 
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The cumulants of RV r are immediately available: 

VW*    -^-(M-H^IT)      for    Kl>/. (57) 

In particular, v /        ja\ 

(58) 

Then from (3) (on a linear abscissa), 

-H-4- 
(59) 

while from (5) and (52), 

2Aif d* 
rjp-^^&M+H+2/557^] )j   for   x2-17=r (6Ü) 

This result is independent of scaling parameter a in (52) and (53); however, 

it depends on both M and d as indicated. 

Equation (60) is plotted on a linear abscissa and Gaussian ordinate for 

N ■ 1, 2, 4, 10 in the four parts of figure 5, as parameter d takes on the 

values 0, 1, 2, 4, 8. The curve labelled d « +«o is the same as that for a 

Gaussian PDF. As d varies fr»m 0 to +0o , the CDF sweeps out the region 

between the chi-squared PDF (given in (54)) and the Gaussian PDF. Also, for a 

given value of d, larger M values result in a PDF curve that is more nearly 

Gaussian. 

29 
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RAYLEI6H PDF 

The PDF and CDF for a Rayleigh RV r are 

f'M - f «r(- if) *°r ** o. 

The n-th moment of r is 

k"2*r(^'), 

leading to (for a linear abscissa) 

Then (61) and (5) yield 

U-W^F 
i/2-? 

r^he.?(-f(K^xy)j     ^   x.-^ 

(61) 

(62) 

(63) 

(64) 

This result is independent of scaling parameter b in  (61). 

If g[] is taken as the logarithmic transformation given by (43), then (64) 

takes the special form 

That is, the Rayleigh PDF plots as a parabola on a linear abscissa and 

logarithmic ordinate. 

(65) 
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For a logarithmic abscissa,  (19),  (21), and (61) yield the CDF for RV t as 

T*(y)- I- exp^^Ve2")   ftr .11 

The n-th moment of RV t is, according to (23) and (61), 

(66) 

J^e-fi^+i^J. <67' 
There follows (in a fashion similar to (30)) 

*,-iH-±*, ^i7r>   ^ 
2/r 

(68) 

Then (26) and (66) yield 

JJ»jj|-e*r(-t )/      for  all   x, (69) 

which is independent of b. 

But this result is identical to (32) for an exponential PDF on a 

logarithmic abscissa. The reason for this is that the Rayleigh RV r here is 

related to the exponential RV ? in (27) according to (using parameter t for 

(27)) 

r - ß/r Jd^c  /} = H2~h   - (70) 
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Thus 

-t^r-^i^ -J^ + it (71) 

That is, logarithmically-transformed variates t and'? are linearly related to 

each other, and the normalization in (25) will treat these two quantities 

equally. 

More generally, for a RV ? with an arbitrary PDF, consider the 

non-1inearly related RV 

r = * r   . (72) 

Then the logarithmically-transformed RVs are related according to 

-t^Mr'Jk^ + vJkr «J^-h^i. (73) 

But transformation (25) will  result in exactly the same plot for CDF Pt(  ) 

as for P^(  ).    This holds for a logarithmic abscissa,  regardless of what 

ordinate transformation g{ j is employed.    (The analoguous situation for a 

linear abscissa is for the RVs to be related according to r » e< *Af). 
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SIMULATION RESULTS 

N Independent Gaussian RVs frjj1 with an arbitrary mean and 

standard deviation were generated (Ref. 4). The sample mean ft and sample 

standard deviation <r of the set was computed, and each RV was modified 

according to 

r, =-V—   ^ lil<sN> (74) 

giving a new set with zero sample mean and unit sample standard deviation. 

Then the new set [r^i was ordered according to size, from most-negative 

to most-positive, giving set {MJ.    The sample CDF was then realized 

by setting it to value (k --j-j/N at abscissa rk, for 1 i k £ N,  and drawing 

straight lines between these points.    The results for a linear abscissa and 

Gaussian ordinate are given as the jagged curves in figure 6, with N - 100 in 

figure 6A, and N » 1000 in figure 6B.    The straight line overlaid on the plots 

is the Gaussian PDF result. 

When scaled and shifted exponential RVs are generated and subjected to the 

same procedure, the results in figure 7 are obtained.    The smooth curve 

overlaid on the jagged sample CDF plots is the exponential PDF as given in 

figure 1A.    The results in figures 6 and 1 allow for ready confirmation of the 

character of the sample CDF.    A sample program for the procedure is given in 

the appendix. 
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DISCUSSION 

Additional candidate PDFs or CDFs can be added to those given herein, 

thereby building up a catalog of comparison cases.    Also, other ordinate 

transformations,  like the arc tanh {ffi) function utilized in coherence 

transformation (Ref. 5), can be included.    In this way, an experimental sample 

CDF can be readily compared with several ideal analytical forms,  in an attempt 

to easily find a reasonable characterization for the statistics. 
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APPENDIX 

PROGRAM FOR SIMULATION RESULTS 

10 KMMLOMIZE   SQR^.b) !    RANDOM   NUMBER   SEES 
20 N-lOO !   NUMBER   OF   SfiMPLES 
30 DIM  Y'l: 10O0>,B', 1:1O90> 
40 RED IM v<;i:N>,Ba:M> 
50 FOP   I »I   TO   H 
60 Y(I>»-L0G<RND>*3. 1 + .57   I EXPONENTIAL PDF, 
70 NEXT I ! SCALED AND ■ihIFTED 
30 FOR I«l TO N 
30 Sl-SlfY-: I.) 
100 82"82+Y(I)A2 
110 NEXT I 
120 Meir.»Sl-'N 
130 V«r«<82-$l»Sl/N>/<N-l) 
140 Stdd«^*SQR<: V*r > 
ISO FOR I«l TO N 
1*0 y(I>«<Y<I>-nt«n>/StddtV  I NORMALIZE 
170 NEXT I 
ISO FOR K=l TO N ! SORT INTO B ASPti, 
130 A»1E30 
200 J'O 
210 FOR 1*1 TO N 
220 IF Y'l'.A THEN 250 
230 ft«Y<n 
240 J»I 
250 NEXT I 
2c'0 B<:K:'»A 
270 Y<J'»3E33 
230 NEXT K 
230 PLOTTER IS "GRftPHICS" 
300 GRAPHICS 
310 XI»-3 
320 X2=3 
336 Yl»FNIrvf:.hi • . OOl ■        ' GAUSSIAN ORil'I^T^ 
340 Y2»FNIrv.phi ' .999) 
350 SCALE X1,X2,V1,Y2 
StO FOR X»X1 TO X2 
370 MOVE X,V1 
330 DRAW X.Y2 
330 NEXT X 
400 PENUP 
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416 DFlTft   .601, . 002, . f'05, .01 , . Öc, . Ö5, . 1, , 2, . i. . 4, . 5 
420 DflTfi   .S,.?,.!, .9,.»9,.98,.99,.995,.99B, .99? 
430 DIM  0U:21> 
440 READ   0<») 
450 FOR   I«l   TO  21 
460 T-FNInuphi <:0<I.:'> 
470 MOVE XI,T 
4S0 DRAW X2,T 
490 NEXT I 
500 PENUP 
510 FOR X--.99 TO X2+.03 STÜP .03 
520 Y-FNInwphKl-EXPC-l-X))  ' EXPONENTIfti Ilr 
530 PLOT X,V 
540 NEXT X 
550 PENUP 
560 FOR 1=1 TO N 
570 Y»FNInvph1<<I-.5>^N) !   SRMPLE  CDF  ORDlMflTE 
530 PLOT B<I),Y 
590 NEXT I 
ö0O PENUP 
610 END 
620 ! 
630 DEF FNInvphKX) ! INVERSE Phi   fuhU f. I'D 
640 IF <:X>»e) AND (X<"1) THEN 670 
650 PRINT 'flRGUMENT '^X^IS DISALLOWED" 
660 STOP 
670 IF <X>8) AND <X<1) THEN 700 
680 P»9.99999999999E99»<2*X-1 ) 
690 GOTO 760 
700 P«X 
710 IF X>.5 THEN P«.5-<:X-.5) 
720 P»SQR< -2*L0C<P > ■' 
71.0 Tal+P*' 1. 4:327S3 + P*', . 189269+P». 601303 ' ■ 
740 P = F'-' 2. 515517 + P*':. 302355 + P*. 010323 ' ' T 

750 IF X<.5 THEM P=-P 
760 RETURN P 
770 FNEND 
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ABSTRACT 

Th« probability distribution of a cnl-squared variate tends toward 

normality as the number of degrees of freedom increases. However, 

some powers of the chl-squared variate tend to normality much 

faster. For example, the 1/3 power of a chl-squared variate of just 4 

degrees of freedom is virtually normal over the whole range (.001, 

.999) of probabilities. Inspection of the cumulants reveals that the 1/3 

power is best for minimizing the third and fifth cumulants, and nearly 

optimum for the fourth cumulant. 
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INTRODUCTION 

The approach of a chi-squared variate, z, to normality as the number of 

degrees of freedom, K, increases is well known. However, it has been observed 

that the square-root of z tends to normality faster; see [1, p. 79, par. 4], 

[2, pp. 251 and 420], and [3, pp. 371-2]. Furthermore, the cube root of z 

tends even faster to normality, based on consideration of the low order 

cumulants; see [3, pp. 371-4] and [4]. Here we will look at the cumulative 

distribution function and cumulants of zv for various values of power v and 

degrees of freedom K, and furnish a quantitative measure of the discrepancy 

from the Gaussian distribution. 

1-4 
Reverse Blank 



TM No. 831059 

CHI-SQUARED VARIATE OF K DEGREES OF FREEDOM 

Let x^, for 1 £ k £ K, be K independent Gaussian random variables with 
zero mean and unit variance. Then 

zi %2« *l* 4* '"  + XK (1) 

is called a chi-squared variate of K degrees of freedom.    The characteristic 
function of z is 

f2(f) - exp(ifz) , (l-iZy)^2     ; (2) 

the probability density function of z is* 

K _ l 

■     Pz(u)-UL      exp(-u/2)      foru>0      ; (3) 

and the cumulative distribution function of z is [7, eq. 6.5.5 ä«J 2C.4.Q 

u   K  , 
t7 

?/iP(K/2) 
Pz(u) - Prob {z < u} =. dt ^y^ n/

e^!"t/2) » p(ulK)  for  u > 0'    (4) 

The cumulative distribution function is also expressable in terms of the 
incomplete gamma function and confluent hypergeometric function (for 
non-integer K) as [7, eq. 6.5.2] 

PZ(U)  = y !• $)M 

(!)   "->(- 7)t ('= 1 * ¥ 7)/4 * ') • (5' 

* Tne probability density functions and cumulative distribution functions 

encountered here are zero for negative arguments,  except for § in  (8). 
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The general v-th moment of chi-squared variate z is 

z
v . 2V '^  ^Z for     v > -^      , (6) 

and the cumulants are 

xz{r\) - K Zn~l{n-l)l     for  n » 1, 2         (7) 

Special cases of (4) are 

t 

P(u|l) . 2$(Yir)-l,  f(t) - (21r)-
1/f Jdx exp(-x2/2), 

P(u|2) - l-exp(-u/2), (8) 

and more generally, we have recursion 

7-1 

P(u|K) - P(u|K-2) - ^)    exp{-u/2)/r(K/2)  for  K > 3.   (9) 

The function §  in (8) is the cumulative distribution function for a zero-mean 

unit-variance Gaussian random variable. 
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v-TH POWER OF A CHI-SQUARED VARIATE 

Let random variable v be the v-th power of the chi-squared variate: 

v-zv-^C2)V  , (10) 

where v > 0. The cumulative distribution function of v is, upon use of (4), 

Pv(u) - Prob{v < u] « Prob{z
v < u] - Prob[z < u1/v} 

- Pz(u1/v) - P(U1/V)K)  . (11) 

in terms of the cumulative distribution function of a chi-squared variate. 

The moments of v are, using (10) and (6), 

„n » v
n . znv . 2!lilJ  ^A, 

/    . il.M 

In particular,  the mean and standard deviation of v are 

P-vjL   («jj-uf) mv «  v - up      av » (v   - v y»  (u, - u! )   . 

On a normalized abscissa x, we therefore have to consider the distribution 
[5, eq. 5] 

pvK > v) ■ p(mv+ v)1/vJK); (14) 

here we used (11). 

Plots of cumulative distribution functions 

For v = 1, v in (10) is simply the chi-squared variate of K degrees of 
freedom; its cumulative distribution function (14) Is plotted in figure 1. 

7 
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The curve labelled K»* is the Gaussian cumulative distribution function and is 

a straight line on this paper with a normal ordinate. The approach to this 

Gaussian curve progresses rather slowly with K, especially on the tails. 

Plots of the cumulative distribution function of v for v a 1/2, 1/3, 1/4, 

1/5, as given by (14), are presented in figures 2-5, respectively. The 

improvement in approach to normality for v ■ 1/2 in figure 2 over that for v = 

1 in figure 1 is significant. However, that for v = 1/3 in figure 3 is 

remarkably good; in fact, the cumulative distribution functions for K >_ 8  in 

figure 3 are virtually on top of the Gaussian curve in the entire range of 

probabilities (.001, .999). 

When we continue with the trend toward smaller v values in figures 4 and 

5, the cumulative distribution functions begin to deviate further from the 

Gaussian curve, at both ends of the probability scale. For example, for 

v ■ 1/5 in figure 5, the cumulative distribution functions are all above the 

Gaussian result, whereas for v ■ 1/3, they were all below. All the cumulative 

distribution functions approach the Gaussian curve as K increases, but the 

approach is not monotonic with K. 

Finally, for a v value larger than 1, namely v = 5/4, the plot in figure 

6 reveals even greater discrepancy from the Gaussian curve than for the 

chi-squared variate itself, i.e., v = 1 in figure 1. 

Cumulants 

Another measure of the non-Gaussian character of a random variable are 

the normalized cumulants. The cumulants of v [3, p. 70] are, in terms of (12), 

—"N* 
Xv(2) = u2-uj * (V-v) 

— 3 3 
Xv(3) = (v-v) = u3 -3u2u1 

+ 2u1 

Xv(4) = (v-v)4 - 3x^(2) = u4 - 4u3u1 - 3^ + 12u2u^ - 6uJ 

2    2       3    5 
x (5) = Uj. - Bu^ui - IGu-iUp + 20UTU, + 30^1^ - öüuoui + 24ui   .      (15) 

9 
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The no/rnalized n-th cumulant of v is 

M20 

This quantity is plotted in figures 7, 8, 9 for n » 3, 4, 5 respectively. The 

normalized third cumulant in figure 7 is near 0 for v « 1/3 when K is large. 

Thus this particular measure of non-Gaussianness is minimized by choosing 

V91/3. 

The normalized fourth cumulant in figure 8 is smallest in the range 

(1/6, 1/2) for v, when K is large. It appears to be approaching zero for 

v « 1/2 and v » 1/4; however, it is still quite small for v«l/3. 

The normalized fifth cumulant in figure 9 approaches zero (as K 

increases) at v » 1/6, 1/3, 7/12, and is nearly zero over an extended range 

of V. 

Approximation to Cumulative Distribution Functions of v and z 

For v ■ 1/3, since random variable v is nearly normal, we have as an 
approximation to its cumulative distribution function. 

(u-m \ 
Pv(u)^$f—)  • 

where f is the Gaussian cumulative distribution function defined in (8). And 

from (12)-(13), we have 

mv . u1 = 2 

m 22/3 

i/3 p|: i) 
Tfir 

i   2f (18) 
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Then the cumulative distribution function of chi-squared variate z is, upon 

use of (10) (with v - 1/3) and (17), 

Pz(u) - Prob {z < u} - Prob (v3 < u} - Prob Jv < u1/3J 

This is similiar to the procedure in [6, p. 597, 19.3-2]. 

Asymptotic Behavior of Moments of v 

The n-th moment of v ■ zv ■ {')£)'* was given in (12).    By use of 

[7, eq. 6.1.47],  identifying z-»K/2, a-*nv, b-»0, we have, as K tends to-»-«« 

in all the following asymptotic relations, 

Un . ^fl - iij=ü ♦ a(a-l)(a-2)(3a-l)  , ^^3^ 
L 6K -* 

or 

Mn > (K-l+a)a [1+0(K-2)]; (20) 

here a is to be interpreted as nv.    See also [3, pp.  371-4]. 

Particular cases of (20)  are first moment 

Ul . Kv[l  * Zip! ♦ v(v-l)(Y)(3v-l)  + 0^-3)1 

or 

ul -  (K-l+v)V [1>0(K"2)]      , (21) 

and second moment 

m  K2v L   + 2v(2v-l) + 2v(2v-I)(2v-2)(6v-l) + 0{K-^ 

19 
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or 

w2 - (K-l+2v)2v [l-K)«"2)] 

There follows for the variance of v ■ zv, 

v2 

or 

"2 

2 

2 

K2v-1 2v2 ^ (v-1^3v-l)  , ^.2^ 

2v2 Kv(K-l+3v)v"1 [l+OdT2)] 

Particular cases of (21)  and (23) are: 

Wl.(K-iV/2 -^ 
V [1+0(K-C)] 

w, - u 2 " ul = 7 

for v = 

these generalize [1, p. 79, par. 4], where the variable treated is 

yFT rather than 'F. Also 

'1 " (K " l) [^(K-2)] 

2 - u2 «|K-1/3 C1*0(K-2)] 

for y = I  ' 

The approximation 

(22) 

(23) 

(24) 

(25; 

a/3 
u1 = /K - jj     for v = 1/3 

is within ll for K > 3, and the approximation 

u2 - u2 = | K~1/3  for v = 1/3 

(261 

[27) 

20 
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is within 17. for K > 5. The same errors hold for v ■ 1/2 also; i.e. 

for v - 1/2 

w2 * ul * 7 

(28) 

21 
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STATISTICS OF THE SAMPLE GEOMETRIC MEAN OF A SET 

OF MULTIPLES OF CHI-SQUARED VARIATES 

This section will deal with the product of a number of independent 

chi-squared variates, instead of the power of a chi-squared variate. This 

operation (of extracting the sample geometric mean of a set of random 

variables) is encountered in maximum likelihood estimation of unknown 

parameters of a candidate cumulative distribution function of chi-squared form. 

The probability density function of a multiple of a chi-squared variate, 

w, of K degrees of freedom, is from (3), 

K _ l 

p (U) . "    exp(-u/s)  for  u > 0 t (29) 
W    8K/^r(K/2) 

The cumulative distribution function is, upon use of (4), 

pw(u) ■ p(r|K)   • (30) 

Now let wn, for 1 £ n £ N, be a set of independent chi-squared 

variates, each with the probability density function in (29).    The sample 

geometric mean of the set |w } is 

1/N Ai «I  + .•• +ifi w\ 
g = (w1 w2 ... wN)

i/N = exp^-i ^ ^1      . (31) 

We are interested in the cumulative distribution function of g.    Define 

i  =in 9 =^Syn      .      (-*<^ < +•) (32) 
n=l 

where 

yn» Jtn wn        for      1 < n < N      . (33) 

22 
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The characteristic function of any one of the [yn] is, from (33) and (29), 

fy(f) - exp(i5y) - exp(i7>w) . T1 

if* i -1 
du 

'777r(K/2) 
exp(-u/B) , t1| tfjr *) 

Therefore the characteristic function of jf in (32) is 

N _ .1/ fjjCf) -exp(iW) » [^(f/M)]" » s Uni 
im 

(34) 

(35) 

Finally, the cumulative distribution function of the sample geometric mean g 

is, by use of (32), 

P.(u) « Prob [§ < uj » Prob J^ < ^n u] 

Pj Un u)  for  u > 0 (36) 

The only numerical  step required to find the cumulative distribution function 

of 5 is that from characteristic function ^   in (35) to its cumulative 

distribution function ^   required in (36); the techniques in [8, 9] are useful 

in this regard.    For N « 2,  a simpler approach for the cumulative distribution 

function of g  is available in [10, p.  17]. 

23 
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SUMMARY 

The near-Gaussian character of the one-third root of a chi-squared 

variate, with 4 degrees of freedom or more, leads to the simple approximation 

for the cumulative distribution function of a chi-squared variate as given by 

(19). The required parameters are given by (18) or approximations (25)-(27). 

24 
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INTRODUCTION 

Estimation of the time delay between two signals received at two sites in 

uncorrelated additive noises is often accomplished by filtering and cross- 

correlating the two received waveforms and locating the peak.    Extensive 

results on the performance of this technique are given in [1-10].    It is often 

observed that the correlator performance deviates rather abruptly from the 

Cramer-Rao lower bound, in terms of the variance of the time delay estimate, 

when the input signal-to-noise ratio is decreased below a threshold value. 

Here we derive an approximation to this threshold signal-to-noise ratio, which 

is valid over a wide range of TB and P, where T is the observation time,  B is 

the signal bandwidth, and P is the probability of an anomaly [4]. 

1-5 
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TECHNICAL CONSIDERATIONS 

The starting point is the variance of the time delay estimate as given in 

[4]: 

.2.PT2/3Ml-P)a2R.a2R+P(T2
o/3.a2R). (1) 

where 

P . 1 - [dx +(x-a) [f (ßx)]^1      . (2) 

Her-» P is the probability of an anomalous estimate, T is the segment length 
2 used in the correlation processing technique, and OQR is the Cramer-Rao 

lower bound on the variance of the time delay estimate. The functions in (2) 

are 

(^(x) - (2ir)-1/2 exp(-x2/2)      . 

x 

f(x) - r dt f(t) . (3) 

and we have parameters 

M - 4TB, a « YzfS -4=.  ß = V1+R      • (4) 

where 

S and N are the  input signal  and noise powers at the correlator inputs.    Thus 

S/N is the input signal-to-noise ratio on one element. 

Now if the probability of an anomaly, P,  is zero,  the variance of the 

time delay estimate in (1)  is simply a^.    However,  as P  increases 

2 2 slightly from zero,  the T  /3 term in (1)  rapidly takes over and a    increases 

^More   accitrattlj^   ■#,»  Starch   l*rUrva|   or|   -the   Ceyrclrtio«   «iiwate 

6 
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significantly.    Since this effect is controlled by P,  it is of interest to 

determine at what input signal-to-noise ratio, S/N, the probability P begins to 

deviate from zero.    Mathematically, given a small P > 0, we must solve (2) for 

S/N, where the parameters are listed in (4). 

From [10, figures 1-4], it is seen that for large TB, in order to realize 

a small value of P, the required input signal-to-noise ratio is much less than 
1.    In fact, 

I" -■==•   for     TB » 1 (6) 

is a ballpark figure, which we want to improve on.    Then 

o ~ 8, ß - 1     for     TB » 1      . (7) 

Since ^(x-a)  peaks at x«o, $(8x) in (2) takes its relevant argument values at 

Bx - Bo - 8. 

Now for oß large, we have 

CflBx)]"-1 . [1 -K-ßx)]""1 Z 1 -  (M-l)|t-|x)      . (8) 

Then from (2), 

Ps   1 -Jdx ^(x-a)[l-(M-l)|(-ßx)]  -  (M-l)Jdx #x-a) $(-3x) 

(M-l) fdt4(t) $(-ßt-aß)  -   (M-Df/^l. (9) 

Here we used the integral result 

dx exp(- lp2x2 ♦ ,x) f(ax^) . f exp^f/fii-^l       (10) 

for p ^ 0. 
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The approximation in (9)  is actually an upper bound; this follows from 

(8) and the observation that 

(l-u)^1 > l-(M-l)u     for     0<u<l      , (11) 

which is simply a statement that the left-hand side of (11) is greater than 

the tangent at u « 0.    Thus 

Pi,M-i,fte) 
with no approximations. 

By now employing the parameter definitions in (4), (9) becomes 

?z   (4T0B-1) gAT^   J! ,)    • (13) 

aß 

If we let I be the inverse function to f, and define 

yfr 

then (13) can be solved for R according to 

y--4ffc^V ' (14) 

(15) 

fTJT 
Then (5) yields the input signal-to-noise ratio required as 

$.&.—£-    -       . (16) 
]l-ydIZ - y 

in terms of the quantity defined in (14).    For large TB, y is small, and (16) 

and (14) yield approximation 

w o 
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This result is reminiscent of [9, eqs. 2 and 3], where we must note that 

SNR there is proportional to the square of S/N here;  see [9, eg. 1].    Also 

those results are independent of the probability of anomaly, by virtue of the 

choice of threshold variance as being twice the Cramer-Rao lower bound. 

The inverse function $ in (14) and (17) is a relatively weak function of 

its argument; thus the dominant behavior of the required threshold 
112 signal-to-noise ratio is according to (TB)       , i.e., -1.5 dB per doubling 

of the TB product. 

A short table of the required S/N as calculated from (14)  and (16)  is 

given in table 1 for B - 100 Hz, T   . 1/8 sec, and P - 10"6; similar 

results for P ■ 10"3 are listed in table 2.    Comparison of these tabular 

results with [10, figure 2] reveals that probability of anomaly P » 10 

marks the breakpoint between the Cramer-Rao lower bound and the correlator 

performance estimate. 

T (sec) S/N (dB) 

2 -1.70 
8 -6.13 

32 -9.68 
128 -12.92 
512 -16.05 

Table 1. Required Input Signal-to-Noise Ratio for P ■ 10-6 

T (sec) S/N (dB) 

2 -2.31 
8 -6.57 

32 -10.06 
128 -13.29 
512 -16.40 

Table 2.    Required Input Signal-to-Noise Ratio for P = lO-5 
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APPENDIX.    EVALUATION OF P IN  (2) 

We develop (2) as follows: 

P -1 - [dx <Kx-a) KUx)]^1 (A-l) 

-   j,dx4(x-a)[Hf(Bx)]M-1]-_:r*| 

dx ^x-alfl-C^Bx)]"-1} + Jdx ^(x-alfHl-g-öx)]^1}     .   (A-2) 

Form (A-l) is difficult to use, because it requires a final differencing from 

1. For small P (the case of interest), the integral in (A-l) requires many 

digits of significance, in order to yield accurate P. 

In (A-2), observe that since x £ 0 in the first integral, the $ function 

values there will be £ 1/2. Also, since x ^ 0 in the second integral, those § 

values will also be < 1/2. Now consider the two functions 

for 0 < u < 1      . (A-3) 

Then 

o ** 
P .  Cdx Mx-a) gWJW Jdx 4(x-a) hffC-txfl      . (A-4) 

The arguments of q^ } and h{ ) are always £ 1/2. For evaluation of g, we 

simply use the definition (A-3) directly, and get good accuracy. For 

evaluation of h, we must use a power series expansion about u = 0 when u is 

small. We have then 

hM-l-d-u^-^^C-l^V  . (A-5) 

A-l 
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For larger u  /say u > •ppr), we use the definition {A-3) directly.    So h can be 

accurately evaluated very easily.    Now Pisa sum of positive quantities, 

where all the quantities can be accurately evaluated. 

The direct definition of h yields the alternative 

hfrj] - l-d-u)"-1 - 1- exp[(M-l)jln(l-u)] 

1- exp f-(M-l) 2un/n (A-6) 

If the }r\ is not sufficiently accurate for small u (like 1/(M-1)), it may be 

necessary to resort to the power series expansion illustrated. For u > -ypr, 

accuracy is still retained in the difference from 1. 

A program for the evaluation of P and then a    via (1) is presented 

below. 

A-2 
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1 ! 
ie 
28 
36 
40 
59 
(0 
70 
SO 
96 

110 

130 
140 
150 
1€0 
170 
130 
190 
200 
210 
220 
230 
240 
250 
260 
270 
2S0 
290 
J00 
sie 
320 
3:-;0 
540 
350 
3fc'0 
■370 
SSO 
39''' 
40ö 
41Ü 
420 
4:30 
44ü 
450 
460 
470 
480 
490 
5 6 0 

TiECH.    MEMO 
Db»-16 
6c>100 
Tc-512 
To-1/8 
Mc'«4*Bc*To 
Sn«10'C l*Db> 
Bt *Bc»Tc 

S31065, APRIL 83 
10 LCT<9/N> 
BANDWIDTH F 
OBSERVfiTION TIME T 
SEGMENT LENGTH To 
M 
S/N 

.      . BT 
S2cr*.375*< l+2*Sn;/<PI*PI*Sn*Sri*Bt »Bc ^Bc > 
OUTPUT 0;"dB  ■   ";Db,"   B  «";Ec,"     T  ■H;Tc,"To  *";To 
OUTPUT   0; "LGTCSigrwACR)      »   " ; LGTvSOR'.: S2.:r • ■ . "      M   «"JM* 
COM   fll,B»,Ml 
Ra»Sn/(1+Sn) 
B**SQR<1+R4*R4> 
fll ■SQR(2#|t ')*R4/B« 
Ml«Mc-l 
Ll-ftl+FNInuphi aE-12> 
Ll«HIN(-5fLl} 
L2»FNPhi <-fll*B») 
L2»FNHa2,Ml> 
IF   L2>1E-12   THEN   230 
L2-5 
GOTO   240 
L2«A1-FNInMph1 • :1E:-12/L2> 
fl«Ll 
B«0 
Sa<FNSl<A>«FNSl<B>>*.S 
M«2 
H-CB-fl)*.5 
F«<B-fl>'3 
V1«9E99 
T-0 
FOP   K»l   TO   N-l   STEP   2 
T»T-t-FNSl':fl*H*K> 
NEXT   K 
S«S + T 
Vo«Vl 
V1«<S*T)»F 
PRINT   USING   "M.12DE.7D";Vl.N 
IF   flBS<Vl-Vo>   «1E-S   THEN   440 
N = N*2 
H«H*.5 
F«F*.3 
GOTO   310 
PRINT 
1=1 = 0 
E = L2 
S»< Fr(S2' fl)*FNS£' B ' '-.5 
N-2 
H»' B-A)*.5 .,—^.( 
F»'l-n>   3 

0171 c^' 

V* ,IÖ^V 
tuWN \  »'• 

perr' 
i,i -fVon 
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510 V2=*E?--< 
52« T-0 
336 FOP K«l TO J-l STEP 2 
540 T = T + FN32f fl*rl*K> 
550 NEXT K 
560 S»S + T 
570 Vo»V2 
580 V2"<8*T>*F 
590 PRINT USING "M.12DE,7D";V2,N 
6C.0 IF ftl8<V2-Vo)<"lC-8 THEN 650 
610 N«N«2 
620 H«H*.5 
630 F-F*.5 
_ >0 GOTO 520 
irt P-V1+V2 
660 32cp-:«P*To*To-'3+'ri-P ■■*-S2cr 
670 OUTPUT 0; "LGT<Sigm.aCPE> * ";LGT.: 
€66 END 
690 1 
700 DEF FNSUX) 
710 COM Fil ,B«,t11 
720 Tl«.398942288481 *EXP' -.5#< X-til >' 
?3e T2=FNPhi<1«*X) 
740 T2«l-T2 Ml 
750 RETURN Tl*T2l 
760 FNEND 
770 1 

• :0 DEF FHS " ■<> 
0 COM fll ,  .Ml 
0 '1=.398>42288481*EXP<-.5*<X-61 

•- 1 0 f2«FNPhi ■: -£:«*■•■ 
820 T2»FNH<T2lli 
S3ü RETURN T1*T 

•5 H.: PHEND 
850 
;::60 FNM' ,N) 
ire IF U 1 N THEN 39; 
868 RETURN 1-' 1-U ■ N 
698 Nl«N*l 
900 S--T = N*U 
910 FOR K«2 TO N 
920 T»-T*<N1-(0»U' K 
930 S»S*T 
940 IF flBS<T)<«lE-li*flBS':S' THEN 9:0 
950 tJE:: K 
968 RETURN S 
970 FNEND 
9f::jj i 

iic p».'    . '      r   ="; F 

Cop7 avaüable to DTIC do^«* 
permit tulW legale xeprod^a 
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9,?0 

ülö 

050 

070 
030 
090 
100 
110 
120 
150 
140 
150 
160 
170 
130 
198 
100 
218 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
330 
390 
400 
410 

DEF   FNPhUX) 
INTEGER  J 
IF   flBSOD/S. 14   THEN   1270 
fl».282842712475»>l 
C*C0t<f)) 
s«siN'.;fl> 
B-C + C 
fl=B«C-l 
C«fl*' 1. 2536751E-13 + B*7.10005E-20*ft*7.4 
C»fl*<:i.533423425E-16 + B*l.01649277E-17T 
C^Fi* (1. 367604447!:7E-14 + B* 1 . 060 1 364636F 
C»F)*<8. 39786526722E-13 + B*3. 06063838945 
C««*«^.22616144318E-ll+B*4.469e322?24> 
C»fl** 1.466606142:!4E-9 + B*l . 308485378 1 OE 
C*FI*<3.722523493*;9E-8 + B*5. 3427502760 ]£ 
C«Fl*':6.91927520325E-7 + B*l. 1 533Ö930944E 

4328116?338E-6+B*l 
44909268810E-5*B*2 
97183792408E-4+B*l 
301507679S:5E-3 + B*l 

C-FI-K9 
C=Fi*' 9 
CmH*<6 

CaR»( 

32066316364E. 
10404583073t 
78223016255E 
10860645342E 

51 
C ■ 

-l 

E- 
C - 

-1 

-4 

7E-21 

5 + C > 
14*C> 
12H:.:. 

0 ■• C ' 
+c 
+ '1 

*■ '-■ 

*c 

ö . - 3985:'261 57 + E*. 0050^906961220 + C 
046' 5234S25+B». Ol 72439625887 + i: 

, lO86302450i:3fB*. 04397733Sl941+i: 
12013397472t5 + E*.0369S94549959fi: 
,330501521917+E*.14422^226362+C■ 

C=.703225002744+B*.247255163140+C 
Phi ». 5+. 64S01581S8079*X'f. 5»S»C 
RETURN Phi 
IF ;::.7 THEN RETURN i 
N"MflX(. 6, I NT < 69 'ftBS (X) ■, I NT ( 525   C; :*v,) > 
AM 
S"l 
E=i   :: 
C«B 
FOR 
hl=i 
S s ':• 
NE?: 

Phi«. 39894228040 l*E>:F' -.Z*::*X   *ME; 

IF 
RET 
FNE 

+ 1 

.T=l   TU   N 
l-J-.T '«Fi»!: 

■••Fi 

T   .1 
». 39894228040 l*E>:F 
;■;  0  THEN   Phi"l-Phi 
URN  Phi 
NU 

permit i ;. od.«' moasa 
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42Q 
438 
440 
458 
460 
470 
4S0 
490 
500 
510 
520 
530 
540 
550 
560 
570 
5S0 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
81 0 
820 
SS0 
840 
850 
860 
870 

DEK FNInwpM <Z>     '  inwpMCl) vi« Sf- 
X*2*2-l 
DIM T<6:2O)lfl<O:20) 
INTEGER N 
DflTFI . 992885376619, . 120467516143, . 3160781 
DPlTfl .49963473e24E-3, . 9889S21S6E-4 , .20391 
DFlTFI .938e3141E-«, . 20673472E-6 , .461597E-r 
DflTR .54393E-9,.12555E-9,.2914E-10,.679E- 
DflTfl .912158803418,-.0162662818677,.43353 
DRTfl .262575108E-5,-.302109105E-5,-.12406 
DATA -.142321E-8,.3438E-10,.3358E-10,-.14 
DftTR .956679709020,-.0231070043091 , -..3043 
DATA -.1096102231E-4,.2510S54702E-4..1056 
DriTft .43243450E-6,-.2053034E-7.-. 43391 54E 
DFiTfl -. 13693E-9, .27292E-9, . 13232E-9. . ?1S3 
DATA -.965E-12,-.22E-12 

IF RIS<X>>< 
IF RIS<X><, 

fllS<X><. 

! 1 
»4 
ö ': 
eE 
"4 
I ö 

E- 

ck 

'•421, . 
27i:E-4 

10416t 
, . 1'J9E 
7i95£- 
E 7. . 6 
-11, -. 
2 ■ 3 £ Ö "r1 "^ 
360"c- 
. - . 1 7 f-" 

l O, . 16 

30263 
, . 432 
SE-?, 
-U. . 
-' ( ■ * A 

24066 
81E-1 
51,-. 
4, ,27 
:401F 
7E-11 

6 7 0 

.23 
37E 
443 
1E- 

54- 

443716 
162E-5 
715E-3 
-12 
857007E 
7,-.540 
5E-13,. 
5034226 
1233E-5 
-.39:12 
204E-11 

12E-9 
2E-13 
5E-3 

9E-8 

'.8 THEN l»SQR<- 
8 THEN 1700 
9975 THEN 1660 

•L0G<4*2*<1-; 

IF 
Nfriix»20 
RESTOFE 1530 
V=-.55945763153« 
GOTO 1730 
Nmi> =15 
RESTORE 1500 
V»-1.54881304 
GOTO 1730 
Nm4x=18 
RE8T0PE 1460 
Y»X*X*3.125-1 
RED IM   (=!• 0:Nftiix> 
PEfiD fl<») 
Yi-V»2 
T ( 0 ) « 1 
T^1>«Y 
FOR N"2 TO Nhii... 

■T<N^»Yv#T<H-l>-T<N-2) 
NEXT N 
R = 0 
FOR N»Nf..ä; TG 0 STEP -1 
RaR-tfUN >#T<N) 
NEXT N 
Invphi BSGN' JO»B*R»l .414 
RETURN Irvphi 
FNEMD 

^£+2.28791571626 

37^Bf2.56549012315 

:l 3562! 
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