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Foreword

This collection of technical reports and technical memoranda deals with the
following topics: spectrai analysis via combined temporal and lag
weighting; programs for and performance of multi-channel linear predictive
spectral estimators; direct coherence estimation via a fast algorithm;
windowing with a (wo-parameter class of Bessel weightings, with
applications to arrays in any number of dimensions; performance of robust
methods of estimating signal strengths in erratic environments; exact
receiver operating characteristics for a nonlinear system with quantizers, or-
ing, and accumulation; and characterization of the probability distribution
of measured data. Graphs of the results are presented, as well as programs
that enable a user to extend the results to his particular application.

Some of the material presented here is based heavily on earlier work by the
author, which can be found in the following volumes in addition to the
referenced technical reports:

Performance of Detection and Communication Systems,
NUSC Scientific and Engineering Studies, 1974;

Spectral Estimation, NUSC Scientific and Engineering Studies, 1977;
Coherence Estimation, NUSC Scientific and Engineering Studies, 1979;

Receiver Performance Evaluation and Spectral Analysis,
NUSC Scientific and Engineering Studies, 1981,

Dr. William A. Von Winkle
Associate Technical Director for Technology
NAVAL UNDERWATER SYSTEMS CENTER
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Spectral Analysis

Via Quadratic Frequency-
Smoothing of Fourier-
Transformed, Overlapped,
Weighted Data Segments

A. H. Nuttall

ABSTRACT

A generalized framework for spectral analysis is presented, which
includes as special cases the Blackman-Tukey technique and the
weighted overiapped segment-averaging FFT technique. The general
method is analyzed in terms of the mean and variance of the spectral
estimate, thereby revealing the fundamental dependence of its
performance on the temporal weighting, lag weighting, amount of
overiap, number of pieces, available data record length, and
frequency resolution. To enable a fair tradeoff study and comparison
between many different special cases of the technique, it is
demanded that the spectral analysis technique achieve a specified
frequency resolution with the given data record length. This
necessitates a detai'ad investigation of the windowing capabilities of
the temporal and lag weightings, their interaction, and the definition
of an overall effective weighting and window. The possibility of using
lag-reshaping to achieve desirable effective windows is considered
and found to be reasonable for a wide variety of windows with good
side lobe behavior and decay rates.

Results for the variance of the spectral estimate for rectangular
temporal weighting indicate that if the length of the temporal
weighting is selected to be somewhat larger than the length of the lag
weighting, the variance is at a near minimum. Furthermore, in this
situation, the possibly deleterious side lobes of the temporal
weighting can be compensated by proper choice of lag weighting,
resulting in low side lobes and gopd decay of the overall effective
spectral window. For Hanning temporal weighting, the lengths of the
temporal and lag weighting shouid be approximately equal for
minimum variance of the spectral estimate.

Approved for public release; distribution unlimited.
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Spectral Analysis via Quadratic Frequency-Smoothing
of Fourier-Transformed, Overlapped, Weighted Data Segments

Introduction

Spectral analysis techniques have received a great deal of attention in the past
(references 1-12), ranging from the original autocorrelation approach of Blackman-
Tukey (reference 2) to the more recent weighted, overlapped, segment-averaging
FFT approach (references 7-12). These two apparently disparate approaches are
shown here to be limiting special cases of a generalized framework for spectral
analysis; thus consideration of this general technique elucidates the fundamental
behavior and performance of a rather wide variety of spectral approaches and their
tradeoffs. This generalized framework has already been presented in references 13-
15, where a brief summary of some of the main features has been mentioned.
Additionally, some of the analytical results to be presented here were alluded to
there; however, none of the detailed derivations or quantitative results in this report
were given at that time.

There are two fundamental parameters that critically affect the performance of
any spectral estimation technique. They are the available record length, T, of the
stationary random process under investigation, and the effective frequency
resolution, B,, of the technique under consideration. We would like to be able to
attain fine resolution (small B,) with short data lengths and storage (small T);
however, stable results (small fluctuations) are achievable only if the product TB, is
much larger than unity. The problems we address are how to make optimum use of
a given limited amount of data in order to realize a specified desired resolution wi.h
maximum stability, and to determine what tradeoffs are available regarding win-
dowing and weighting at different stages of the spectral analysis procedure. It is
assumed that the reader is familiar with the tradeoffs presented in reference 9 for
the weighted, overlapped, segment-averaging FFT procedure.

The generalized framework for spectral analysis that is presented here is capable
of a wide variety of forms in addition to the Blackman-Tukey and FFT approaches
mentioned above. In order to compare these various forms with each other on a
reasonable basis, it is required that each analysis technique realize the same effective
resolution bandwidth, B, and that they all utilize the same data record length T.
Without these reasonable constraints, valid conclusions about relative per-
formances of different techniques are tentative at best. This insistence upon equal
effective frequency resolution necessitates a rather detailed investigation of the
effects of the weightings and windows employed in the generalized framework and
their allowed durations. The desirability of an overall effective window for spectral
analysis with low side lobes and good decay is achievable only through careful
choice of the combined weightings. The constraint upon the effective frequency
resolution naturally also shows up in the analysis of the variance of the spectral
estimation technique, as well as in its average value, leading to some numerical
analysis complications; nevertheless, it is believed to be the proper basis of com-
parison and is maintained throughout.

TR 6459
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The two major statistical parts of this report deal with the mean and the variance
of the spectral estimate. The .esult for the average value leads to the definition of
the effective window of the generalized spectral analysis technique, in terms of the
temporal and lag windows. The variance result incorporates, additionally, the
amount of overlap, the number of data pieces, and the ambiguity functions of the
temporal and lag windows; the complexity of the latter results debilitates easy in-
terpretation and it has been found necessary to resort to numerical evaluation of the
variaice, for practical cases of interest.
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Ultimate Stability Attainable From a Given Record Length

Suppose a stationary (complex) data record x(t) of length T seconds is available,
and that we wish to estimate its power density spectrum® G(f) with an effective
frequency resolution of B, Hz, where W (f) is the narrowband window through
which the power density spectrum is to be observed. These two frequency-domain
quantities are related according tot

] Lfdf W)

0y

This bandwidth measure, B,, is called the statistical bandwidth of W (f) in reference
5, page 265. The relation of effective bandwidth B, to half-power bandwidth B, is
considered in appendix A; it is shown that for good windows, the ratio of the two
bandwidths is relatively independent of the exact window shape. Thus it is possible
to translate results to other bandwidth measures without significantly affecting the
essential quantitative aspects.

If we take the original data record and pass it through a narrowband linear
(complex) filter with power transfer function equal to the window, [H(f)|2 = W (f),
and which is centered at a frequency, f,, of interest, we will have lost no relevant
information about the process in the frequency band of interest, because we have
filtered out information of no use. We can now estimate the power in the
narrowband filter output process and use it as a measure of the spectrum of the
input process in the neighborhocd of frequency f . See figure 1.

I = W

0 1:
Figure 1. Power Transfer Function of Narrowband Linear Filter
Let z(t) be the complex output process from the narrowband filter when excited

by the available T seconds of data x(t). If we ignore a starting transient (i.e.,
assuming T >> 1/B)), the filter output power estimate in the band of width B, is

Pez ]T dt |z(0)|% = fdt g(t) 20 (%, @)

*For brevity, we use the term spectrum rather than autospectrum in this report.
tintegrals without limits are over the range of the nonzero integrands.
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where gate function
1/T for t e T
g(t) = 6 otherui .
otherwise
! 3)
The measure of stability we adopt for this estimator, and for the others to follow,
is the quality ratio defined as 2
A A2 A
- Var(P) _ Pz - fi
=2 B 2 e
Av©(P) =
p )

where Av(ﬁ) and Var(ls') denote the average value and variance of ﬁ, respectively,
and an overbar denotes an ensemble average. We have average value

B fat ge) 12012 = 2] = R 0= [a£ 6(6) 1o |

7 G(f ) fdf HE) %, )

assuming that filter-input spectrum G(f) does not vary quickly with respect to B, in
the neighborhood of f,. R, (1) is the correlation® of filter output process z(t).

Also, we have mean square value

=
P - [[ at aug0) g 21?2 ©

Now in the interval T, filter output z(t) will be approximately a stationary zero-
mean, complex, analytic Gaussian process for small B,; filter H(f) has filtered out
zero and all negative frequencies. Then fourth-order moment

2(t)2* (t)2(u)z* () ¥ R2(0) + [R,(t - w)|? -

There follows from (4) and (6),
var(P) = ”dt du g(t)gw) [R(t - w|% = Idr (1) R (D%,

)

where gate-correlationt of function g(t) is

¢ (1) = Idt g(t)g(t - 1)
g
)

*For brevity, we use the term correlation instead of autocorrelation in this report.
tFor stationary processes, we let R denote the ensemble-average correlation, whereas for aperiodic
nonrandom functions, we let ¢ denote the integral correlation; see (5) and (9).



. Since the gate-correlation +.(r) extends over +T, while process correlation R, (1)
extends only over approximately +3/B,, we have, via Parseval’s theorem and for
TB,>> 1,

Var(s) ¥ ¢g(0) fdrle('r]z = -,%.- Idf G:(f)

1 .2 4
. % Idf NGIAGE FG6(£) Idf [H() | -

The quality-ratio measure of stability is then, from (4), (5), (10), and (1),

, Jasmen | [ag W) a
T 512 Tr 12 °“TB_
[fdflu(f)l ] ]

[fdf W (E) e

This is the limiting (smallest) value of Q for specified frequency resolution B, and
available record length T when TB, >> 1. No other spectral procedures can improve
on it; they can merely approximate it. As such, (11) is the benchmark against which
other procedures can be compared, under the condition that T and B, are equal to
those values for the various procedures under consideration.

=3] =

(1n

The normalized quality ratio is defined as Q ® TB,. Thus the normalized quality
ratio can never be smaller than unity, which value can only be approached for large
TB, through proper processing techniques.

o TR64%9
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Description of Spectral Analysis Technique
We begin by defining a temporal weighting function w,(t) of finite duration L;
that is,
w (t) # 0 only for |[t| <L,/2 e

As shown in figure 2, temporal weighting w,(t) is real, even, and peaked at the
origin. Although this presentation is couched in terms of continuous functions, we
shall show shortly that it includes discrete digital processing as a special case.

wyt)

- L1/2 0 t L,/2

Figure 2. Temporal Weighting w,(t)

The available data record is x(t) for 0 < t < T; this (complex) random process is
presumed second-order stationary in that observation interval. We shift the tem-
poral weighting by L,/2 + pS and multiply it by x(t) to generate the p-th piece of
weighted data:

L

1
y(t)sx(t)w(t-—-pS) for 0 < p -1
P 1 2 - iP (13)

Here p is an integer; if shift S<L,, then yp(t) and Yp+1(D) will overlap on the t-axis.

The first-stage power density spectral estimate at frequency f is obtained by
averaging the magnitude-squared value of the Fourier transform of data piece AUR
over a total of P pieces:

p-1
A 1
G (f) =5 )
p=0

2
for any f

fdt exp(-i2nft) y (t)

(14)

This procedure is the same as that considered in reference 7 and in reference 9, egs.
(2) and (3). Since x(t) is available only for 0 <t < T, we prevent the weighting in (13)
from extending beyond that interval; mathematically this means that we must have

L14(P-1)SiT
(15)



An alternative interpretation of (14) is very illuminating. We define the inverse
Fourier transform of (14) as the first-stage (auto)correlation estimate; there follows
immediately at delay T,

R, (2) = f af exp(12n£r) 8 (£)

P-1
1
IFZ

Z, Idt yp(t) y;(t -t) for all t, (16)

where we have allowed random processes x(t) and ¥p(t) to be complex. This is
recognized as the average of the sample correlations that can be formed at delay r,
from each of the P pieces of weighted data in (13). Since temporal weighting w (t) is
zero for |t| > L,/2 according to (12), we see from (13) and (16) that

A
Ry() = 0 for || > L, - a7

The parameter, 7, is called the lag domain variable, because of the way it appears as
a delayed time in (16). Equation (16) (and those to follow) is true for all . Both
sides of (16) are zero over most of the range of t; nevertheless, it is mathematically
convenient to employ the equality of both sides of (16) for all T in various trans-
formations below.

The second-stage power density spectral estimate is defined as a frequency-
smoothed version of the first-stage result:

A A A
&) =@ on® = faul wme-w | s

where @ denotes convolution. This is termed quadratic smoothing since it is done in
terms of power quantities rather than voltages. Equation (18) is the desired output
from the generalized spectral analysis technique considered here. W,(f) is called the
lag window, for reasons to be given below. The equivalent statement to (18) in the
lag domain is obtained by Fourier transforming (18); the second-stage correlation is

A ) A A
Rz(r) = fdf exp(i2nft) Gz(f) = Rl(r) Wz(r) ’ 19)

where we used (18) and (16) and defined the Fourier transform pair

wz(r) =z [df exp(i2nfr) Wz(f) ,

Wz(f) = fdr exp(-i2nft) wz(r) . (20)

w,(1) and W,(f) are both real, even, and peaked at their origins. Since w,(t) appears
multiplicatively in (19), it is called the lag weighting; its transform W,(f) is the lag
window. The convention adopted throughout this report is that multiplication by a
function in the t or r domains is called a weighting; the counterpart to this operation
in the Fourier transform domain (frequency f domain) is convolution and is called
windowing.

TR 6459
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We shall let lag weighting w,(7) bz of duration 2L,; that is,
wy(1) = 0 for || > L, . @1

A typical plot is shown in figure 3; the reason for the apparent notational
discrepancy between the lengths in figures 2 and 3 will become clear when the lag-
domain counterpart of temporal weighting w (t) is encountered later.

w,(r)

—L2 0 T L2

Figure 3. Lag Weighting w,(1)

We have already observed that R (1) is zero for [t|>L, in (17). Therefore, it
follows from (19) and (21) that

A »
R,(7) = 0 for |t| > min (L, L)) . 22)

However, although we must have temporal length L, < T {from (15) for P = 1), there
is no restriction on L,. We could have L, larger than L, and T; this would simply
mean that we would be lag-weighting some zero estimates of R (1) in (19) for the
larger values of |1|. Also there are no corstraints such as realizeability on the lag
weighting or window.

For example, the special case of no quadratic frequency-smoothing corresponds
to

Wz(f) = §(f), wz(r) =1, L2 = ® for no smoothing,

(23)

for which (18) yields Gz(f) = Gl(f). Thus we have our standard first-stage spectral
estimate (14) as a limiting case of the generalized spectral analysis technique. On the
other hand, if lag window W,(f) were broad (small L,), there would be a significant
amount of smoothing taking place in the band about u=f in (18) where window W,
is non zero.

There is no inherent limitation on the relative sizes of L, and L, as yet: L, can be
chosen as large as desired, while L, is subject to the upper bound T. However, when
we specify the overall effective frequency resolution of the generalized technique, a
relation between L, and L, will ensue.



Another important special case of the generalized spectral analysis technique is
afforded by P=1, w,(t)=1 for |t| <L,/2, and L, = T. Then (16) and (13) indicate
that R 1(7) is simply the sample correlation of the available data x(t) of length T,
while Rz(r) in (19) is a weighted version of ﬂ,(t) for || < L,. But this is precisely the
Blackman-Tukey approach described in reference 2; the choice of lag weighting
w,(7) and its length is fully discussed there. For example, if wy(1) = (T-|1|)-! for
|f| <L, <T, thea ﬂz(-r) is an unbiased estimator for |t| < L,; see reference 2, page
11.

For P>1 and general temporal weighting w,(t), lag weighting w,(t), and overlap,
a wide variety of processors is possible via the generalized framework set up above.
How should the iwo weightings be traded off against each other? Can the
deleterious effects of a poor or preselected temporal weighting be undone by proper
choice of lag weighting? Recall that none of these techniques can hope to better the
quality-ratio result (11), but hopefully, some can do as well, with less computational
effort and storage.

A related procedure to the one presented here has been given in references 16 and
17. However, neither incorporate overiapping, and the fundamental tradeoffs
between the temporal and lag weightings were not studied. Furthermore, the only
frequency-smoothing case considered was a rectangular boxcar, which.severely
limits the potential of the technique; some advantages of the generalized technique
considered here will become apparent at a later stage. For the time being, we ob-
serve that side !obe control will be realized by a mixture of temporal weighting and
lag weighting (frequency smoothing), while stability will be achieved by a com-
bination of segment averaging and frequency smoothing (lag weighting).

Discrete-Time Processing

All the functions above have been tacitly assumed no worse than discontinuous;
see figures 2 and 3 for example. However, there is nothing in the above mathematics
which precludes impulsive behavior. For example, suppose the temporal weighting
is a sum of N, equispaced impulses:

t) = A 6 - E
wl() tZE wlm (c mAt) (24)

where {w, 1} is a finite length, real sequence, symmetric about m=0; this corres-

pords to discrete sampling of waveform x(t) at time spacing A,. The p th piece of
weighted data is, from (13),

L
1
)'p(t) = X(t) At % Wlm 6<t - T - pS - mAt>

L
1
8, ; £ 6<t -3 -PpS - mAt> s (25)
where weighted sample
l"1
)’pm Wi X\ +po ¢ ma, | . (26)
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The first-stage correlation estimate, (16), becomes

A A
R (1) = &, § Ry 8(1 - ko) @7

where the area of each impulse is given by

M'U

~>

l
P

(
1k © k (28)

g
O

and :
A(p) *
Rk = At § )'p’ m yp ,m-k 29

The last quantity is the sample correlation of the p-th set of samples, and ﬁ,k is their
average over the total of P pieces.

The first-stage spectral estimate is the Fourier transform of (27) as usual;
A A .
Gl (f) = At % le exp(-lZﬂ'kat) » (30)

which is finite for all f and is of period 1/4, in f. An alternative expression is
available by substitution of (25) in (14):

A p P . 2
Gl(f) %5 Z IAt Z Ypm exp(-12nfmAt) .
p=0 " a1

These two expressions hold for arbitrary f; either one can be used to obtain the
first-stage spectral estimate. If we restrict our calculations of interest to multiples of
some frequency increment A, (31), for example, specializes to

e(qA)slpz-l A Zy ex(-iZmnAA)z

1Y TP & | % pm S*P Ve’F :
P n (32)

where q is an integer. A1 this point, there needn’t be any relation between A, and Ag;

we can calculate the spectral estimate at any frequencies we please. However, a
favorite choice for com yutational purposes is to choose frequency increment

b = N3 N = power of 2 ,
F - Na, P 5
to get the special digital processing result
1 2
A —— --
Gy <NA ) P Z l 2, Y/ CAP(-12mq/N) | -,
i (34)
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which is recognized as the familiar power average of N-point FFTs of weighted data
sequences. All the impulsive functions in (24)-(27) have dropped out of first-stage
spectral estimates (30)-(34).

The temporal window associated with impulsive weighting (24) is its Fourier
transform

W (£) = 8, § Wi, exp(-i2nfma )
35)

Having picked an impulsive temporal weighting w(t), we are still free to select the
lag weighting or lag window as we please. For example, for any lag weighting
function w,(7), (19) and (27) yield second-stage correlation estimate

A A - A
Ry(1) = 8, Zk: wy(ka,) Ry, 8(r - k8 ) za, }]:(: Ry §(t - ka)
(36)

The corresponding second-stage spectral estimate is the Fourier transform

-

& (¢ T w (ka,) R i2nfk R i2n£k
G,(£) = &, ] uz( 8,) R, exp(-i2nfka,) = 8, % R, exp(-i2nfka,) ,
37

which is everywhere finite and has period 1/4, in f. Evaluation of (37) can therefore
be confined to |f| < (24,)!.

These results apply for general lag weighting. A sp=cific choice is the lag window
with N, equispaced nonzero impulses:

W,(f) = A W, &(f - na,)
2 f; 2n f (38)

Frequency spacing A; need not be related to time spacing 4, in (24), nor to frequency
increment Ag used in the frequency and FFT calculations above in (32)-(34). Also
there are no relations between the real symmetric sets of numbers {w, } in (24) and
{W,,} in (38). Substitution of (38) in (18) yields for the second-stage spectral
estimate

A A
Gy(f) =8, 3 W, G (f -nag) ,
n (39

which is a local average (of the first-stage estimates) in the band about the
frequency, f, of interest. Equation (39) is a discrete, quadratic, frequency-
smoothing operation. In fact, (39) holds for lag window (38) and any temporal
weighting w/(t); it is not limited to the discrete-time form (24).

If we limit our calculations of Cz(f) to multiples of frequency increment A; as in
(32), then (39) yields

e A
Z(qAF) - Af %: wZn Gl(qAF - nAf) ; (40)

11



B . - TRO&Y

12

we can use (30) for Q on the right-hand side. Finally, if we take frequency in-
crement (33) and frequency spacing A, = (MA,)-!, where integer M is a submultiple
of N,and M4, is of the order of 2L, the FFT results of (34) can be employed in (40).
More will be said later on the choice of frequency spacing A;.

The variety of forms available at different stages of the data processing illustrates
a great deal of flexibility in exactly how the available data x(t) is processed. For
example, one might first evaluate G, via FFT procedure (34). Then, since (30) can be
expressed as

8(a).a T & expleiznka/) ,
(W5, ) = % & P an

it follows that the complete nonzero portion of correlation sequence {ﬁlk} is
recoverable from the set of numbers {6,( v )31 if N32N,-1, where N, is the
number of nonzero weights {w,, } in (24) (see reference 18). On the other hand, for
N<2N,-1, the inverse FFT of {6,( =) ! would yield ﬁ“ only for |k| € N-N,
(reference 18, eq. (15)); thus the central values of R ;, are recoverable from G,. Then
second-stage correlation estimate

A A

R,, = Wy (kAt) le

2k 42)

follows from (36), and the final spectral estimate follows from (37). The lag
weighting samples in (42) are arbitrary; thus this is a very general procedure for
obtaining estimate G,(f) at any f.

The relations in this subsection hold for arbitrary values of 1, f, and q. However,
the functions of t are impulsive, and are zero outside limited ranges, while the
functions of f and q are periodic. These properties should be utilized in any com-
puter processing technique employing these forms. Some further useful properties
and interrelationships of the sampled lag weightings and lag windows are presented
in appendix B.



Average Value of Spectral Estimate

We now return to the general situation for both the temporal and the lag
weightings; that is, we do not presume discrete sampling in time or discrete
smoothing in frequency. From (16) and (13), the mean value of the first-stage
correlation estimate is

N P-1 L
MR (D) = 5 T [ TOTE SO (c - - ps>

p=0
L
o wilt -1-5- pS) = x(t)x*(t - 1) ¢1(t) = R(t) ¢1(t) @3)
where R(1) is the true correlation of stationary process x(t), and where
¢,(1) = Idt W () Wit - 1) &

will be called the correlation of real temporal weighting w,(t); see the footnote to
(9). We have not presumed process x(t) Gaussian; relation (43) holds for any
stationary process x(t).

Since the first-stage spectral estimate Gl(f) is a linear operation (Fourier trans-
form) of R (1), the mean value of é 1(f) is the Fourier transform of (43); that is,

avid () = f at exp(-izner) R(x) 4, (D)

= G(£) @ W2(f) = Idu G, WiE-u , @9

where G(f) is the true spectrum of x(t), i.e., Fourier transform of R(r), and we have
Fourier transformed (44) by interchanging integrals and using temporal window

W, (f) = fdt exp(-i2nft) w (t) . 46)

The convolution result in (45) is a familiar one for the standard FFT processing of
weighted, overlapped data segments; see reference 9, eq. (5), for example. Window
W, () is real and even about f =0, since weighting w(t) is real and even about t =0.

The mean value of the second-stage correlation estimate follows immediately
from (19) and (43):

A
AV{RZ(T)} = R(7) ¢1(r) wz(r) = R(1) we(r) . @7

where

‘TR 6459
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wo(t) = ¢, (1) w, (1) (48)

is called the effective (overall) weighting of the generalized spectral analysis
technique. It incorporates the temporal weighting w,(t) through its correlation ¢,(t)
defined in (44), and it involves lag weighting w,(t) directly. Reference to (44) and to
figure 2, for a typical temporal weighting, shows that ¢,(7) is as depicted in figure 4;
¢,(7) extends over (~L,, L,) and is zero for |t] > L,. Since the effective weighting
w () in (48) involves ¢,(r) and w,(r), we now see the reason for the particular
choices of L, and L; in figures 2-4. Specifically, +L, and +L, measure the non-
zero extent, in the r-domain, of the functions that are relevant to the effective
weighting. Although L; measures the nonzero extent of temporal weighting w,(t) in
the time domain in figure 2, and the nonzero extents of ¢,(t) and w,(r) are 2L, and
2L, in figures 4 and 3, respectively, we will nevertheless refer to L, and L, as the
“lengths’’ of ¢,(r) and w,(), respectively, in the r-domain, for convenience.

P,0

-L 0 r L
Figure 4. Correlation ¢,(1) of Temporal Weighting w,(t)

In appendix C, ¢,() is evaluated for the class of temporal weightings*

w, (t) = a, exp(i2nkt/L,} for |t| < L,/2 ,
1 % k &XP 1 It 1 (49)

which includes a2 wide variety of weightings such as rectangular, hamming,
Hanning, Blackman, Harris, and the recent optimal weightings of Nuttall, reference
19. Specializations to real symmetric {a,} and to a limited number of nonzero
coefficients are also made in appendix C.

Finally, since second-stage spectral estimate Cz(t) is a Fourier transform of R 5(1),
its mean value follows from (47) and (48) as

A
Av{G,(f)} = G(f) @ W (f) , (50)

where

Wy (£) = fdt exp(-i2n£7) w_(x) = W2 (£) @ W,(£) o

*For brevity, here and later, we omit the **0 otherwise’’ statement that applies for {t| > L,/2, as was
donein (3).



is the effective (overall) window of the generalized spectral analysis technique of
interest here. The result in (51) follows by Fourier transformation of the product in
(48) and use of (44) (just as done in (45)). Relation (50) is a simple and informative
one for the average spectral estimate; it enables ready determination of the amount
of spreading caused by particular choices of temporal and lag windows. It holds for
any stationary process x(t) with spectrum G(f); thus x(t) needn’t be a Gaussian
process for (50) to hold true.

As a special case of (50), consider lag weighting w,(t) to be 1 for all r. Then
W,(f) = d(f) and (50) reduces to the result in (45) as expected, since we are em-
ploying no lag weighting at all in this case.

As another special case, let temporal weighting w,(t) be 1 for all |t| <L,/2 and let
L, = T, L, << T. This corresponds to Blackman-Tukey processing. Then W{(f) is
proportional to sincXTf), which is much narrower in f than W,(f), meaning that
W.(f) = W4(f), the lag window alone.

Interpretation of the response of the effective window, W (f), via convolution
(51) can sometimes be deceiving, and it may be helpful and necessary to resort to
(48). For example, suppose w,(7) is 1 for |1| < L, and 0 otherwise, where L, > L,.
Then (51) says that we have to convolve sinc(L,f), which has -6.63 dB side lobes,
with W§(f). Our first impression would be that W (f) is bound to have bad side lobes
regardless of the temporal window. But recourse to (48) and figure 4 immediately
reveals that w (1) = ¢,(7) for all 7, and that W,(f) is totally irrelevant, provided that
L, 3 L,. The scaling of ¢,(r) by a constant in (48), over the range of nonzero ¢,(1),
obviously has no effect on the relative side lobes of W (f). Furthermore, the actual
calculation of the effective window via (51) is often tedious, whereas a Fourier
transformation of the product in (48) is a reasonable approach, even if only by an
FFT.

15
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Constraint on Temporal and Lag Weighting Lengths

The effective window W (f) was presented in (51). Its *‘width’ is given ap-
proximately by the sum of the widths of the temporal and lag windows. As
discussed earlier, we wish to constrain the effective bandwidth B, of W (f), so as to
be able to fairly compare the performance of different spectral analysis techniques.
The effective bandwidth is given by (1) and can be developed as

2 2 2 2
o] o o o
e ]df Wi(f) far wz(r) fdt ¢f(r) Wa(n)
-1
0. (0] [w.(0]?
. IdT 1 ] 2
MO A ' (52)

where we have used Parseval’s theorem, the Fourier transform relationship in (51),
and (48). Since B, is to be considered fixed, (52) forces a relationship between
lengths L, and L, of ¢,(7) and w,(1).

For example, consider rectangular temporal and lag weightings (this is not a
practical case and is presented only for illustration purposes):

w,(t) =1 for |t]| <L;/2 ,

$,(v) = L, - |t| for || < L,

wy(t) = 1 for |t| <L, . (53)
Then (52) yields
L 2
-1 R
B = 2 I d'l' <1 = L—') »
e 0 1
(54)
where
L = min(Ll, Lz)
(55)

Given a value of B,, (54) can be considered as an equation for L, in terms of L, or
vice versa. Here we have fixed the shapes of the weightings and are varying the
lengths so as to realize the specified frequency resolution B,.
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Generally, the qualitative character of the interrelationship between lengths is as
depicted in figure 5, for fixed weighting shapes. The larger one of the lengths is
made, the smaller the other length can get and still satisfy the specified bandwidth
of the effective window. For a specified pair of shapes for w,(t) and w,(1), a plot
like figure 5 can be used in two different ways. If we pick a value for B.L,, this
determines B,L, and hence L,/L,. On the other hand, choice of a value for the ratio
of lengths, L,/L,,puts a line through the origin of slope L,/L,, and thereby
determines B_.L, and B_L, where the line intersects the curve. We note therefore that
knowledge of one of the following three quantities determines the other two: L,/L,,

BL,, BL,.
The limiting parameter values on figure S are determined as follows: as L, = o,
then L, = L,(min), where now (from (52))

1 ¥, (1) C
Be = fd‘! w—zray = 2L2(m1n) C{Wz) 3 9

Here, c{ } is a ‘‘shape factor’’ defined for any limited-duration function g as

2
S 21T8 [ [88] - (57)

where it is assumed that
g(t) =0 for || > Lg : (58)
Be"z
|
I
: ’Bil.zﬂ_') L L TTTe—
2c{wy} :_
I
i ] N
0 1 BT B L
2c{01} e e

Figure S. Interrelationship of Lengths L, and L, for Fixed Shapes
of the Temporal and Lag Weightings

17
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that is, 2L, is the nonzero extent of g(t). Shape factor c{g} is independent of the
magmtude of g(r) and of its length on the t-scale. Thus (56) yields
B,Lz(mm) (2 c{w,})-!, which is entered on the ordinate in figure 5. However,
since L, is limited by T, the dotted portion of the curve on the far right is not at-

tainable.
Conversely, if instead, L, = o, then L, = L,(min), where now (from (52))

¢1(r)
]dr = 2L1(min) c{¢1} :
59

that is, B,L,(min) = (2 c{$,})-!. This value is attainable; it corresponds to no lag
weighting. The ratio, L,/L,, of weighting lengths can take values in the range
L,(T)/T to o; for B,T >> 1, this constitutes the range from almost zero to infinity.

Since the shape factors c{w,} and c{4,} are important limits on the weighting
lengths, tables of their numerical values for a number of useful weight functions are
given below. The weightings listed under CS, C3, C1 are those given in reference 19,
figures 10, 11, 12, respectively; the notation means

C5: continuous fifth derivative of weighting

C3: continuous third derivative of weighting (60)

Cl: continuous first derivative of weighting

Far the class of lag weightings given by

wy(1) = 3 cos(rkt/L,) for |z| < L,

k20 * | ’ (61)
the shape factor is
(‘t) ag+%(af+a§+ )
c{w,} = T f dr = £ .

(3 + a3, +a, +...) (62)

This is evaluated for several weightings in table 1.

Table 1. Shape Factor for Lag Weighting w,()

wy(7) c{w,(1}

Rectangular 1.000
Hanning .3750
Hamming .3964
Blackman .3046
Cs .2256

C3 .2442

Cl .2558

18



For the class of temporal weightings given by

w(t) = En a, cos(2nkt/L;) for [t| <L /2 )

the correiation ¢,(t) is evaluated in general in appendix C. The shape factor of ¢,(1),

¢ (r)
c{¢ } = [d‘t [ 1 "
(64)

can then be evaluated numerically and is given in table 2.

Table 2. Shape Factor for Correlation
¢,(v) of Temporal Weighting w,(t)

w,(t) C{h}
Rectangular 33313 =1/3
Hanning .2405 = (8n2+135)/(48n2)

Hamming .2628
Blackman .2073

Cs .1545
C3 .1678
Cl1 .1763

Plots of the relationship between L, and L, dictated by (52) are given in figure 6
for various combinations of temporal and lag weightings. For a rectangular lag
weighting, the curve will actually reach B.L, = (2c{¢,})-! when L, = L,; then the
curve goes vertically up from this point for L, 3 L, (see figure 6A). The procedure
for the evaluation of figure 6 is as described under figure 5; namely, pick a value for
L,/L,, compute B,.L, via (52), and then compute B.L, = B.L, »(L,/L)).

If the maximum segment length, L,, is specified (as for example, when the
maximum FFT size and the time-sampling spacing 4, are fixed), under what con-
dition can a desired effective frequency resolution, B,, be met? The answer to this
question is available from figure 5; namely, we see that

-1 1
B L, 2 (2c{¢,]) , or B > .
el 1 e 2c1¢1}L1 (65)

Tuus if desired resolution B, is greater than or equal to the right-most term of (65),
there exists a choice for lag length L, that will yield the desired frequency resolution.
The shape factor in (65) depends only on the temporal weighting w(t).

TR 6459
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Normalization of Weightings

The average of the first-stage correlation estimate was given in (43). For t = 0, it
yields

A
Av{Rl(O)} = R(0) ¢1(0)
(66)

Since R(0) is the true power in the process x(t) under investigation, it is convenient
to normalize according to

14,00 = fdt wa(t) .

Then ﬂ,(O) is an unbiased estimator of R(0).

Additionally, from (47) and (48), we have, for the second-stage correlation
estimate,

A
Av{R,(0)} = R(0) ¢,(0) w,(0) .
2 1 2 (68)

Therefore, in addition to (67), we also set lag weighting value

0) =
R CURL (69)

making ﬁz(O) an unbiased estimator of R(0). There follows, for the effective
weighting,

w (0 =1
€ (70)

Since there is no significant loss of generality, the normalizations in (67), (69), and
(70) will be used in the rest of this report.

Discrete-Time Processing

For the impulsive temporal weighting introduced in (24)-(29), the normalization
(67) must be modified somewhat, since the integral of w{(t) in (24) would be infinite.
We resort to (28) and require that the origin value of the sample correlation satisfy
the unbiased requirement that

A
Av{R, .} = R(0)
10 )

Reference to (28), (29), (26), and (43) yields
A A .2 2
iRl = vRPY =8 Ty [P=8, T W RO ;0D

m pm

TR 6459
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therefore the normalization is
2
A w =1
t Z: Im (73)

This is the discrete analog to the integral constraint in (67).

The correlation ¢,(t) of temporal weighting w(t) in (24) is given by (44) as usual
and is expressible as

0(1) = 8, %: oy 8(x - k8 %4

where

Sk = 4 § “1n"1,m-k

(75)
Thus we see that (73) is tantamount to ¢,,= 1, which replaces the constraint ¢,(0) = 1
in (67) for the continuous temporal weighting case.

If we also require that second-stage correlation estimate (42) satisfy the unbiased
requirement

A
AV{RZO} = R(O) »

(76)
then, as before, we require
w2(0) =1
)
Finally, the effective weighting becomes, upon use of (74),
wo (1) = ¢, (1) w,y(1) = 4, Zk: Oqx ¥p(ka,) 6(r - ka) 8

The normalizations adopted above make the area of the impulse at T = 0 equal to

A, ¢, W, (0) = A
t 10 2 t (79)



Exampler of Effective Windows

We consider first a rectangular temporal weighting w,(t), for which the
correlation is triangular,

¢,() = 1 - |ti/Ly for |t| <L

(80)
and the class of lag weightings as given earlier by (61):
w,(t) = a, cos(rkt/L,) for |t| <L, .
2 k§0 k 2 2 81)
Then constraint (52) yields
2 el
1 Z: 2 sz]
B L, = Zf dx cos (wkx) - — for L, <L
e 2 5 [k;o *x ] [ Ly 2="M
(82)

The effective weighting, w(7), is given by the product of (80) and (81); its Fourier
transform is the effective window

Zl..2 2 Lz ( l)k
W (f) = —= a 1 - == 2mv sin(2mwv) =
e a0 o % L TR A
b

+

[

2 2
[1 - -k cos(Zﬂv)] v+ kK _leort <L, ,
i4v -k )

vVEB L
e

where

u , uz:zf/B
2 e (84)

Although (82) and (83) could be extended to the case where L, > L,, that range is not
of practical interest, as will become apparent later.

The numerical procedure for evaluation cf the effective window is to first select
the shape of the lag window by specifying coefficients {a, }. Then we choose a value
for L,/L, and compute B.L, from (82). We can then employ (83) and (84) to
determine W (f). Four examples are given in figure 7, where we have plotted

W (f)

dB = 10 log A vs -
w -
RO Be (85)

TR 6459
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Figure 7. Examples of Effective Windows for Rectangular Temporal Weighting
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The curve corresponding to L,/L, = 0 (i.e.,, L, = ®) is that for the lag window
alone.

The overriding impression of the plots in figure 7 is that the effective window has
poor side lobe behavior and decay unless L,/L, is chosen very small. That is, the
poor side lobe behavior of temporal window W(f) enters the convolution (51) for
W.(f), and is difficult to suppress, even by choice of good lag windows. It would be
desirable to realize the bottom-most figures in each of these plots, since these latter
curves have good side lobes and decay; a procedure for accomplishing this goal is
presented in the next section,

The situation is significantly improved when the temporal weighting is tapered.
An example for Hanning temporal and lag weightings is given in figure 8. The
bottom-most curve has an eventual 18 dB/octave decay because ¢,(r) has a
discontinuous fifth derivative at = 0, which is not compensated by w,(t). (¢,(t)
also has a discontinuous fifth derivative at = +L,, but this is converted to a
discontinuous seventh derivative for w (t) by means of w,(t) whenL, = L,.)

-10

PdBOCTAVE DECAY

Ner | A

- 60} <

T’CICTA'H'E DECAY
l

AN REN

0 1 2 3 4 - -] T 8 9

i
PB'

Figure 8. Effective Window for Hanning Temporal Weighting and
Hanning Lag Weighting
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Discrete-Time Processing

The temporal weighting w,(t) is given by (24), and its correlation ¢,(t) by (74),
where coefficients {¢,,} are given by (75). The Fourier transform of (24) leads to
temporal window

W (E) = 8, }; Won exp (-izmfmd)
(86)

which has period 174, in f, and is real and even, since weight sequence {w,_} is real
and even.

For a general lag weighting w,(t), the effective weighting is given by (78). The
effective window W (f) is given by (51) as the Fourier transformation of (78):

W (£) = & % ¢1) Wp(ka,) exp(-i2nfka ) , o

which also has period 1/4, in f, and is real and even, since lag weighting w,(7) is real
and even. This result holds for any lag weighting w,(t) and is a very useful form for
computing W (f) for any value of frequency f. The convolutional form of (51) is not
very useful for computing W (f) for general W,(f).

As a special case, we can evaluate (87) at particular frequencies
f,=ndg=n/(NA)-}, as in (33) and (34):

n s
W, (m_t.> = 8, % 1k wz(kAt) exp(-i2wnk/N) , (88)

which can be accomplished as an N-point FFT. We should choose N large in order
that (88) be capable of tracing the fine detail of W (f). This is an attractive and
efficient way to evaluate the effective window.

A Special Lag Window for Discrete-Time Processing

The result in (87) applies for discrete time sampling and arbitrary lag weighting.
We now specialize to the lag window given in (38):

W,(f) = & 2,,: W,, 8(f - nag) o

where sequence {W, } is real and even, and frequency spacing A; need not be related
to time spacing 4, in (24). Then, via inverse Fourier transformation (20), the
corresponding lag weighting is

w,(t) = A W, exp(i2mna.t) ,

and, in particular, sample values

wz(kAt) = 8 Z Wy exp(iZnnkAfAt) ,
n on
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which can be used in (87) to evaluate W (f) for any frequency f whatsoever.

An alternative form to (87) for calculation of W (f) for this special lag window
(89) is afforded by substitution of (89) in the convolutional form of (51):

2
We(f) = A znj Wor wl(f - nAf) . 02)

The temporal window W (f) is given here by (86). Equation (92) is an attractive
form when the number, N,, of nonzero coefficients {W,,} is small and W (f) can be
evaluated in closed form. In fact, (92) actually holds for any temporal weighting
w,(t); it is not limited to the discrete-time forms (24) and (86). Equations (87) and
(92) are duals in the sense that (87) applies to any w,(r) and an impulsive w (t),
whereas (92) applies to any W,(f) and an impuisive W(f). Either equation can be
evaluated at any f of interest.

Our first example is rectangular temporal weighting; from figure 2, (24), and
(73), Wy, = L;1/2, where L, = N,A,. Then, from (86),

) sin(rL,£) 2
wl(f) = L1 s L1 QN (Llf)
N1 sin(nLlf/Nl) 1 93)
For the lag window, we take impulsive form (89); then (92) and (93) give
We(f) =L, & ) W Q (L, - nLia))
n 1 (94)

Two important choices yet to be made are LA, the relative frequency spacing used
in frequency smoothing, and the set of coefficients {W,,}. For Hanning frequency
smoothing, the latter is

1/2 forn=20

1
T 4 = N 3
Wz 1/ for n +1 g 2

0 otherwise 95)

The effective windows for L |A; = 1/2 and 1 are given in figure 9 for N, = 32.
Window (94) is even about f=0 and has period 1/4, in f; hence only the region
0, (24))"! is plotted in f. The window in figure 9A has no deep notches since the
frequency displacement (spacing) &; = (2L,)-! causes the notches to be filled in; the
window for A; = Lj! in figure 9B reinforces the notches and has a significant
shoulder near f = 1/L,. Both windows have slow decay with frequency and do not
have significant rejection, even near Nyquist frequency. Closer spacings than
(2L))"! do not improve the decay or rejection capabilities; wider spacings than L;!
generate humps in the effective window. The bad features of rectangular temporal
weighting are not undone by Hanning frequency smoothing; see also figure 7A.
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The second example is rectangular temporal weighting with N, = 32 and rec-
tangular frequency smoothing over five frequency samples; i.e.,

1/5 for |n| <2
1

WZn = ¥ R N. = 9§
0 otherwise (96)

The effective windows for L ,A; = 1/2 and 1 are given in figure 10. The main lobe
humps in figure 10B are caused by the displacements of W(f) according to (92).
Both windows again have poor decay < nd poor rejection; however, the main lobe is
more box-like in shape than previously.

The third example is identical to the previous one except that N, = 11. The plots
in figure 11 reveal that the main lobe is quite box-like, but the decay and rejection
are no better than previous cases. According to (92), we are merely taking the poor
side lobes and decay of W{(f) and moving them about, but not improving them in
any way.

The last example in this subsection is Hanming temporal weighting with no
frequency smoothing at all. The effective window for N, = 32 is simply W(f) and is
plotted in figure 12. It has the familiar -31.5 dB peak side lobe, a rapid decay, and
significant rejection capability.



TR 6459

M AV PN

) 8 10
L,
10A. LA, = 1/2,N, = 32

12

14

16

- 10}

- 15¢

RVAVAVAV

I

Al

___.
|
——

(] 8 10
L1l'

10B. LA, = 1,N, = 32

12

14

Figure 10. Effective Window for Discrete-Time Rectangular Temporal Weighting

and Rectangular Frequency-Smoothing with N, = §

33



TR 6459

-20 \/\/

-3

) 2 4 8 8 10 12 14
Lt

11A. LA, = I/2,N, = 32

» {\ f\nﬁnn

11B. LA, = 1,N, = 32

Figure 11. Effective Window for Discrete-Time Rectangular Temporal Weighting
and Rectangular Frequency-Smoothing with N, = 11

34



dB

TR 6459

N
e \ N, =32
AL
e AVRN
i R AYA\ N

AV

\|1 A
_w | \L -
0 2 4 8 8 10 12 " 14 \ 16m N1/2

|_1f (NYQUIST)

"o
8 &
ey

_

Figure 12. Effective Window for Discrete-Time Hanning Temporal Weighting

35



TR 6459

36

7

Lag Reshaping for Desired Effective Windows

From (48), the effective weighting of the generalized spectral analysis technique is
given by

W (1) = ¢,(7) wy(1) ,
)

where ¢,(7) is the correlation of temporal weighting w,(t); see (44). Now suppose
that for a given temporal weighting w(t), with associated correlation ¢,(1), we
choose lag weighting

T = T < <

where w,(7) is a desirable weighting with wy(0) = 1 (in keeping with (67) and (70))
and ’

wy(t) = 0 for It] > L,
99

Notice that L, > L, is disallowed in (98) since ¢,(r) = 0 for |t| > L,. Then sub-
stitution of (98) in (97) yields

w (1) =w (1) , W(f) =W (f)
e d e d (100)

That is, the effective weighting and window are equal to the desired behavior. We
have “‘undone’’ the effects of bad side lobes in temporal window W (f) by reshaping
according to lag weighting w,(t) in (98). (The effect on the variance of the second-
stage spectral estimate G,(f) will be considered later.)

To see how much can be accomplished by this approach, some attainable ef-
fective windows that can be realized via lag reshaping, for continuous rectangular
temporal weighting, are given in figure 13 for the largest possible value of L,,
namely, L, = L,. Superposed on the window W{(f) for rectangular temporal
weighting are the effective windows for four candidate lag reshapings, forL, = L,.
These are the narrowest possible effective windows for a given L,. The first one in
figure 13A corresponds to an effective Hanning weighting. The peak side lobe is
only reduced from -13.3 dB to -15.7 dB, and the asymptotic decay is improved to 9
dB/octave from 6 dB/octave. The main lobe width is only slightly broadened.

Much greater improvements in side lobe behavior are possible with other lag
weightings, and are illustrated in parts (B)-(D) of figure 13. They illustrate,
respectively, peak side lobe levels and decays of: -30.5 dBE, 21 dB/octave; -41.3 dB,
15 dB/octave; and -46.7 dB, 9 dB/octave. The deeper peak side lobe is realized at
the expense of a slower asymptotic decay. They all have about the same main lobe
width. The C§, C3, C! weightings were introduced and explained in (60).
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Figure 13 illustrates how advantageous the reshaping technique can be in terms of
peak side lobe and asymptotic decay, although the main lobe width is significantly
increased. In fact, the peak side lobe at f % 1.5/L, for the rectangular window is
really not suppressed,so mucli as it is smeared out; however, the other peaks of
Wi(f) for |f| > 2/L, are indeed significantly reduced. Thus reduction of leakage via
lag reshaping is a very effective method, provided that we accept the nearest side
lobe of the temporal window; this conclusion is 1n contrast to reference 20, page 57.
These general conclusions on lag reshaping hold also for temporal weightings other
than rectangular, although the exact degree of improvement will be different.

If L, is chosen less than L,, the effective windows in figure 13 are simply
broadened according to the ratio L,/L,. The peak side lobe levels and asymptotic
decay are unchanged, but the main lobe width is increased. Here we are presuming

L, fixed and decreasing L,.

If we insist that the combination of temporal weighting w,(t) and lag reshaping
wy(7) in (98) have effective bandwidth B,, then use of (52), (99)-(100), and (57)-(58)
yields

2 2
. (1)) LA (0) 1

B = = = .
e fdr wi(r) fdr wg(r) 2L, clwy!

(101)

where c{w,} is the shape factor of w4(t) (see table 1). Thus

1

BL, = for L, <L, <T ;
2 " T T 2L =T

. €ty (102A)

the limits on L, in (102A) follow from (98) and (15).

A plot of the interrelationship between L, and L, (introduced in figure 5) is shown
in figure 14 for the case of lag reshaping. The reason that the plot is flat, in contrast
to figures S and 6, is that the shape of w,(t) now changes as L, changes. This
behavior is discernible from (98), since the denominator varies while the numerator
remains fixed according to the selection of w,(t) and its associated bandwidth-
length factor (102A).

If the maximum segment length, L, is specified (as for example when the
maximum FFT size and the time-sampling spacing 4, are fixed), the condition under
which a desired effective frequency resolution, B, can be met is given by figure 14.
Namely, we see that

1

B & T o T
e 2cwd L1 (102B)

Thus if desired resolution B, is greater than or equal to the right-side of (102B),
there exists a choice for segment length L, that will yield the desired frequency
resolution. The shape factor in (102B) depends only on the desired weighting w(t).
(See (65) and the accompanying discussion for the case where lag reshaping is not
employed.)
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Variance of Spectral Estimate

Up to this point, we have presumed nothing about the process x(t) except that it
be (second-order) stationary during the observation interval T. Now we make a
couple of assumptions about the process in order to obtain manageable expressions
for the variance of the second-stage spectral estimate Gz(f), at frequency f. Our first
assumption is that the true spectrum G of x(t) varies slowly in the neighborhood of
the frequency of interest, f. More precisely, from (50) and (70), we obtain, fr the
mean spectral estimate,

Av{é‘ch)} : fdu G(£ - u) W (u) = G(f) f du W_(u) = G(£) o

where we assume that spectrum G is relatively constant in the frequency band
(f-B./2, f+B,/2); i.e., the only region where effective window W, in (103) is
substantially nonzero is in the range (-B./2, B,/2).

Our second assumption is that x(t) is a complex Gaussian process. The variance of
e} (f) is developed under this assumption in appendix D, culminating in the exact
2
result in (D-13):

Var(6,()1 = [[ do 48 6(a) G(8) |¥(£ - o, £- )% Qp(SCa - B))

(104)
where window convolution function
y(x, y) = [ du Wy) W (x - w) WGy - W) 05
and periodic function
o = [agea ]’
P sin(mu] (106)

The variance result in (104) does not require that spectrum G vary slowly in the
neighbor of f; the result utilizes only the Gaussian assumption on the process x(t).
The temporal and lag windows contribute through the window convolution func-
tion y, while the shift S and number of pieces P appear through the periodic func-

tion Qp.

When the assumption regarding a slowly varying spectrum G in the neighborhood
of frequency f of interest is also invoked, (104) simplifies to forms given in (D-20)
and (D-24); the latter is a ‘‘weighting domain’’ version of the variance:

P-1
( - -‘I-g-l->]dr wg(r) ¢3(r, pS) ,

(107)

A 2 1
Var{G,(f)} = G (f) =
2 P
p:l-P
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where
2 TR SRR | p+T -y o+ T
95 (T, 1) = Idt Wy (t * = )w1<t + = )w1<t + — ) Wy (t + —2—-—>

= ¢5 (21, +u)

(108)
is a third-order correlation of temporal weighting w,(t). The form (107) is very

useful if ¢, can be evaluated in closed form. An ‘‘ambiguity domain’’ version of the
variance is given by (D-20).
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Quality Ratio

The quality ratio for spectral estimation was defined in (4). With the aid of (103)
and (107), it is given by
Var{e2 (£)}

Q=
XY

P-1
> (1 - -I-%L)[d‘l' wg(r) ¢3(t, PS) . (109

p=1-P

Since the smallest possible value of Q is (TB,)-! (see (11) et seq.), the normalized
quality ratio is

L}
o) -

T8, P-1
NQR = Q - TB, = Te }:1 . (1 - -LE-J-) fdr wg(r) ¢5(t, pS)
p. -

(110)

This quantity can never be smaller than unity.

If we employ (52) and the normalizations (67) and (69), the convenient form

P-1
.1_ Z ( --l-gJ-> fd‘l' Wg('l') ’3(T,pS)

p'pal-l"'
[d‘t wg(t) ¢f(t) (111)

for the normalized quality ratio is obtained. We are interested in the behavior of the
normalized quality ratio for different choices of P, S, w,(t), and w,(1). The con-
straint of a fixed effective bandwidth B, has been injected into the normalized
quality ratio via the use of (52) in (111). The quantities ¢, and ¢, needed in (111) are
given by (44) and (108) respectively.

NQR = T

Before we embark on particular cases, some general observations on overlap
(shift S) are in order. For a minimum normalized quality ratio (minimum variance)
with each temporal weighting w,(t), we should use approximately the optimum
overlap as derived in reference 9. For example, Hanning temporal weighting should
be employed with approximately 62 percent overlap, although there is only an 8
percent loss in stability if SO percent overlap is used for convenience (reference 9,
tables 5 and 6). There is no point in considering excessive or inadequate overlap,
since this leads to excessive computational effort or more variance, respectively.
Inadequate temporal overlap cannot be made up, in terms of variance reduction, by
any amount of quadratic smoothing. This can be seen by observing that poor first-
stage correlation estimates R, (1) are merely multiplied by lag weighting w,(1), and
are not improved statisticall\’ in any way for |t| < L,; those estimates for |t| > L, are
discarded by the lag weighting.

Some related work on the effects of windowing on stability is given in references
21 and 22. However, the present report is more thorough and detailed in its
treatment of the problem and the inclusion of a bandwidth constraint.
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Special Cases of Generalized Spectral Analysis Technique

This section will consider several special cases of the normalized quality ratio and
show how some earlier results are obtained as limiting cases. The next section will
treat the generalized spectral analysis results.

One Plece, P=1

When only one piece is used in the first-stage spectral estimate Gl(f) in (14), we
have a generalized version of the Blackman-Tukey approach, in that the data x(t)
are weighted by w/(t) prior to computing the sample correlation; see (16) and (13).
Also, we allow length L, < T (although we soon show that the best L, isequal to T,
the available record length). From (111),

]d-: W§ (1) ¢2(t)

NQR, = T ’
i fdr wg(r) &r(r) (112)
where (using (108))
¢2(1') H ¢3(r,0) ] fdt wi(t + %) wf(t - %) = [dt wf(t) wi(t - 1)

(113)

is the correlation of the squared temporal weight function wi(t).

Now if L, >> L,, w, is much narrower than ¢, or ¢,. In that case, the exact shape
of w, is irrelevant, and (112), (113), (44), figure 2, and Schwarz's inequality yield

0,0  fJawlw o
NQR, » T —5— = T >~ for L > L, .
"o | fa w.lz(t)] 1 T

Equality in (114) results if and only if w{(t) is constant for [t| < L,/2; furthermore,
the best value for L, is then its largest allowed value T (see (15)), in which case we
have Blackman-Tukey processing and

NQR, (rectangular w,) s 1 for T =1L >>1L
1 1 1 2 (115)

This result agrees with reference 2, section B.8. It should be noted that L, >> L,
implies B.L, >> B.L, > .5/¢c{w,} ~ 1, according to figure § and table 1; thus stable
estimates result in this case.

Instead of rectangular temporal weighting, consider Hanning weighting:

3
wl(t) = <?E—) cosz<{i> for [t] < Ll/z

1 1 (116)



Then
2 4 35
w@ = fado a1, g0 fedoag L
and (114) yields

. 35 T
NQRI(Hannmg wl) = I3 L—l for L, > Lz

(118)

The best L, is again T; however, the minimum value of the normalized quality ratio
is then 35/18, which is twice th. value in (115) for rectangular temporal weighting.
This is due to the squandering of the edges of the available data record by the small
values there of Hanning temporal weighting.

Now instead of assuming L, >> L,, let us reconsider, for general w;, L, L,, the
normalized quality ratio (112). Since w(t) is zero for [t| > L,/2, we have from (44),

b(t) -
¢, (1) = dt w (t) w (t - 1) for |t| <L, |,
L a(r) e B : (119)
where
a(t) = max(-Ll/Z, - L1/2 + 1)
for || < L,
b(t) = min(Ll/Z, L1/2 + 1) (120)
Then by Schwarz’s inequality, (113), and (120),
b(1) b(r)
2 2 2
¢, (1) < dt w,(t) w,(t - 1) dt 1
1 'L(r) 1 ! a(q)
(121)

= ¢,(1) (L) - |t]) for |z] <L,

Equality is realized in (121) if and only if w(t) is constant for |t| < L,/2; that 1s, the
best temporal weighting for maximum stability is rectangular when P =1. This
conclusion holds regardless of the form of lag weighting w,(t) or the relative sizes of
L,andL,.

As an example, for rectangular temporal weighting,

W = L™ for e <L/2

(1) =1 - |1-|/L1 for |t| < L ,

]

&0 - e for [t <L (122)
1

¢2(T) 2
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and (112) yields for general wy(7),

1 2 T
dt w,(t) (1 -
!L T ( L1>

T
NQRl(rect. wl) » = T

1 1 2 . (123)
f dt wg(r) (1 - 16;'-)

The ratio of integrals is obviously greater than 1. For a monotonically decreasing
lag weighting w,(7) of fixed shape, the ratio of integrals is minimized by choosing L,
as large as possible. Since the leading factor aiso has the same behavior, the best
value for the normalized quality ratio is

[TTdr wg(r) <1 - J-}-'-)
= for L, =T .

T 2 1
] dr wg(t) (l - J%L) (124)
~T

NQRl(rect. "1) =

We cannot give numerical values to this ratio of integrals until we select a lag
weighting w,(7) and determine the specific value of L,(T); see figures 5 and 6. But if
TB, >> 1, which is the usual case for reasonably good spectral estimates, then
L,<<L, =Tand

R, (rect. w s 1 f L, =T, TB. > 1
NQI( 1) ] 1 e (125)

This result holds independently of the exact shape of the lag weighting w,(t); thus
we could chnose w,(t) such that the effective weighting w () in (48) has good side
lobe behavior, as discussed in an earlier section.

No Quadratic Frequency-Smoothing
No quadratic smoothing corresponds to
W, (£) = &(£),

wz(r) =1 for all v . (126)

Thus L, = ®, and (109) becomes

P-1
ey T (1 - i£l> Jdr o5c.p8)

p=1-P

P-1
7 B (1 - i{;i> spS)
p?: -

(127)
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since

Idr ¢3(r,u) = ]dr Idu wl(u)wl(u - u)wl(u + 1) wl(u + T - u)

= Idu wl(u) wl(u - ) ¢1(U) = ¢f(u) (128)

by use of (108). The result in (127) is identical to reference 9, equation 8, when we
recall definition (109) and normalization (67).

Non-Overlapping Segments

Let us choose time shift S in (13) equal to the segment length L,; this leads to
abutting time segments. From (15), we have

PL, =T , (129)

where we have chosen to use up all of the available data length. (This is different
from the earlier subsection for P=1 where we allowed L, < T.) The general
normalized quality ratio in (111) reduces to

Jar (o) 6,0 |
1 [dr wg(t) ¢§(r) (130)

NQR, = L

where we used (129), the fact that w,(t) is of length L, and (113).

Once again, we refer to bound (121) and the fact that equality is realized only for
a flat weighting w (t). Thus, from (130) and (122),

by
2 T
I dt wz('r) (l - q)

0
NQRP (rect. wl) = T :

Il 2 T
dr w5 (1) (1 - ff)

0

(131)

for any (real symmet:’ ) iag weighting w,(1). The ratio of integrals is obviously
always greater than v.'.ty; therefore, for a monotonically decreasing lag weighting
w,(1) of fixed shape, values of L, large in comparison with L, are preferred.
However, L, >> L, means that

P

TB = PL, B >> PL, B > ~ P
1 -— ’
e e 2 e fc]wzi (132)

according to (129) and figure 5. Thus large time-bandwidth products, TB,, are
required; also P must be kept small enough to realize L, >> L,. In this case, we have

NQRy(rect. w;) = 1 for TB_ >>1, L, > L, (133)
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regardless of lag weighting w,(1). Qualitatively, when L, >> L,, the edge effects of
segmenting the data x(t) are negligible, since only a small fraction of the utilized
correlation values that can be calculated from a record of length T are neglected
when using segments of length L,. Stated alternatively, all the first-stage correlation
estimates that are used, namely h,(r) for |t} < L,, have the same quality (stability)
when L, <<L,.

An example of the exact normalized quality ratio for Hanning lag weighting and
rectangular temporal weighting is afforded by substituting the equation

2 (m 1t
W, (1) = cos (5-{;) for |t] < L,

(134)
into (131) (see figure 7A for the effective window):
Yy L
]dx cos4x<1--,-2r-L—x>
NQR, (rect. w_ , Hann. w,) = 2 : 3
P 1’ 2 y : L L, \
dx cos x(l 3= L—z- x) (135)
0 1
where E"l
=X min(l, —|.
i L, (136)

Equation (135) is plotted®* as the top curve in figure 15A. As expected, the
normalized quality ratio tends to ! as L,/L, tends to zero. But even for as large a
value as L,/L,; = .5, the normalized quality ratio has increased only by 12 percent.
Thus the penalty in increased variance,for not realizing a small ratio for L,/L,,is not
severe.

Also plotted in figure 15A is the normalized quality ratio for the three lag
weightings introduced in (60) et seq. They all lead to smaller values of the
normalized quality ratio, for the same value of L,/L,; in fact, lag weighting C;
incurs only a 7 percent increase in variance when L,/L, = .5, in relation to the ideal
value ]. The reason that the normalized quality ratio is lower is due to the fact that
the lag weightings drop to zero faster within their length L,.

Non-Overlapping Segments; Lag Reshaping

The possibilities of lag reshaping have been discussed earlier with regard to the
mean of the spectral estimate and the effective window. We now want to see what
effect lag reshaping has on the normalized quality ratio in (130). Substitution of (98)
in (130) yields

NQR,(lag reshaping) = L <
B b far Wi 2=
(137)

*The quantity TB, is not involved in figure 15; some related computational considerations are
discussed in appendix E.




TR 6459

1.5
: C1
| A Lz

7z

NQF:.2 / %
A

1.1
10 5 15 T2 25 3 35 4
LAt
15A. Various Lag Weightings w,(1)
14
1.3

wd(")- HANNING
NQR

L
- — /A
=
/

1.0

o
N
FS
o
[
=2,

L /l.1

2
15SB. Reshaping to Desired Lag Weighting w (1)

Figure 15. Normalized Quality-Ratio for Rectangular Temporal
Weighting and No Overlap

49



TR 6459

50

The special case of rectangular temporal weighting is obtained by employing (122)

in (137):
Ly 5 -1
f dt wd(r) (1 = LL)
1 £

L,

2
I dt wd(r)
0

or L

NQRP(rect. Wi lag reshaping) = 2

(138)

The division by ¢,(1) in reshaping (98) increases the variance (for a specified L,/L,
and for wy(tr) = w,(t)) above that in (131), because we are more heavily weighting
regions where the denominator in (138) is smaller.

Equation (138) is plotted in figure 15B for desired effective weightings of Han-
ning, Cl, C3, and CS5. Notice that the abscissa is now limited to L,/L, € 1. As
expected, the normalized quality ratio tends to 1 as L,/L, tends to zero; that is, we
can do lag reshaping for good side lobe behavior and lose little in terms of stability,
provided that L, is chosen sufficiently larger than L,. Of course, the normalized
quality ratio values in figure 15B are larger than those in figure 15A, for the same
value of L,/L,. As an example, for desired effective weighting C,, if we take
L, = 2L,, the increase in variance over the ideal value is only 9 percent. Thus lag
reshaping is an attractive procedure for spectral estimation; recall from figure 14
that L, is set by the specified B, and the shape of w (7).



General Results on Stability

We now return to the general normalized quality ratio in (111) and recall con-
straint (15). We will select time shift S according to

Ss= qu ' (139)

where q = q{w, } is a fraction specified to be in the range (0, 1] and is dependent on
the particular temporal weighting w,(t) employed. The observations made in the
paragraph following (111) are relevant in this regard. For example, with no
quadratic frequency smoothing and with Hanning temporal weighting, q = .39 (61
percent overlap) is virtually optimum, although q = 1/2 loses only 8 percent in
variance-reduction capability (reference 9, tables 4-7). We also select equality in (15)
50 as to make maximum use of the available record length, i.e., minimum variance
of the spectral estimate. Then we have

T
LT+ -Dq (P21) . (140)

Thus for a given T and specified shift fraction g, L, can take on only a aiscrete set
of values.

Arbitrarily large values of P are not allowed in (140), because this would result in
such small values of L, that the bandwidth constraint, B,, could not be met. From
figure 5, the lower bound on B_L, limits

2c{¢,} BT -1
P =1+ ———t .
q (141)

(Actually, P, must be the integer part of the right-hand side.) Thus P, depends
on the temporal weighting w,(t) directly through its shape factor ¢{4,} and in-
directly via the selected shift fraction q = q{w,}. For q = 1, no overlap, (141)
reduces to (E-1).

WhenP = P_ ., L, is atits minimum value, and L, must be greater than T; it can
be » (see figures 5 and 6A). In this case, there is no quadratic frequency smoothing,
and we have the situation studied in detail in references 9 and {2, and mentioned
earlier in (126)-(128). At the other extreme, when P = 1, we have Blackman-Tukey
processing with the generalization that the temporal weighting need not be
rectangular; this case was considered in the previous section. The range of values of
L,/L, is shown in (E-2) and (E-3) to be very wide when B_.T >> 1, which is a usual
practical case.

More generally, for P in the range [1, P_, ], we can investigate the tradeoff
between the amounts of temporal- and lag-weighting, for specified resolution B,
and for specified weighting shapes of interest. Below, we consider the two cases of
rectangular temporal weighting and Hanning temporal weighting.
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Rectangular Temporal Weighting

It was shown earlier in figure 15 that rectangular temporal weighting with no
overlap results in small values for the normalized quality ratio, whether the lag
weighting is reshaped or not, provided that L, is chosen somewhat smaller than L,.
Now the question arises as to whether one should use any overlap, such as 50
percent, with rectangular temporal weighting.

We presume BT >> 1. For no overlap, the estimate of first-stage correlation
R,(7) at T = L,/2 has only half the degrees of freedom as the estimate at T = 0. But
with 50 percent overlap, the degrees of freedom for estimation at r = L,/2 are about
the same as at T = 0. This is why 50 percent overlap for rectangular temporal
weighting appears attractive.

However, for estimation of R (1) at t> L,/2, we still do not get as many degrees
of freedom as for Blackman-Tukey processing, because some data points never
interact. For example, although at r = 3L,/4 we have doubled the degrees of
freedom by using 50 percent overlap, we still have only about haif of the number
that are available at this r value via Blackman-Tukey processing.

In order to ascertain quantitatively the merit of overlapping for rectangular
temporal weighting, we have evaluated the normalized quality ratio (111) for lag
reshaping to realize a desired effective weighting equal to C1 as given in (60) and
(61) (reference 19, figure 12). Thatis, in(111), we use

wd(r)

WZ(T) = m for |t| < LZ < Ll ’
(142)

where ¢,(7) is given by (122). In addition, we need the third-order correlation (108),
which is

1 L1

s = 1 LJ_M) for <l [l <L,

(143)

for rectangular temporal weighting.

For the two cases of B,T = 100 and B,T = 1000, the normalized quality ratio has
been evaluated for q = 1, .75, and .5, and plotted in figure 16. The explanation of
the behavior of the curves is as follows: -

q=1 NoOverlap

IfP=1, then L, << L, and it follows that for all |t| < L,, R,(7) is estimated with
virtually the same degrees of freedom as at t=0, where we have the maximum
degrees of freedom possible to estimate R (0). As P increases toward P, then L,
tends to L,. Now R,(0) is still estimated with the full degrees of freedom, but R,(v)
for T # 0 is estimated with fewer degrees of freedom. For T near L,, the loss in
degrees of freedom in estimation of R () is significant, and the variance increases.
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Figure 16. Normalized Quality-Ratio for Overlapped Rectangular
Temporal Weighting and Lag Reshaping to C1
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q =.5 50Percent Overlap

For P=1, there is no overlap and conditions are identical to those described
above. For P =2, the sudden increase in variance can be explained as follows: from
(16), the first-stage estimate is

A
R(D) = 3 []dt Yot vyt - ) + fat y(®) yice - "’] . (44)

In particular,
A 2
R, (0) '%[Idt ch(t)l2 + [dt |y1(t)| ]

] .
..;_ ]0 dt x2(t) o(t) , (145)

where the overall weighting O(t) of x(t) is depicted in figure 17. As shown, the
overall weighting is very uneven, causing loss in stability. As P increases above 2,
the uneveness of the overall weighting (for g =.5) occurs only towards the edges of
the (0, T) interval, yielding a decrease of variance, since more data points tend to get
the same overall weighting, insofar as their effect upon the estimation of R (1) is
concerned. However, at the same time, the effect of fewer degrees of freedom in
estimation of R,(7), for T values near L,, becomes more pronounced as P increases
and L, decreases; this is true even for the 50 percent overlap case being considered
here. Eventually, this effect dominates, and the variance increases with P.

ot

J/4
1 I t
0 I 27 T
3 3

Figure 17. Overall Weighting of xX(1) for q=.5, P =2, Rectangular w (1)
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q = .75 25 Percent Overlap

'For any value of P > 1, the overall weighting O(t) is very jagged (as above), and
the jaggedness does not decrease or concentrate near the edges as P increases. This is
true for any overlap greater than 0 and less than 50 percent.

In summary, for rectangular temporal weighting, the smallest values for the
normalized quality ratio are realized by choosing q =1, no overlap, and making L,
several times larger than L,. This conclusion about the ratio L,/L, is consistent with
those reached earlier.

Hanning Temporal Weighting

The temporal weighting and associated correlation for this case are given by
(116), (C-9), and (C-10):

Y L
w (t) = <38T1> cos2(-%) for |t| < —21- -

. {2
¢,(x) = <1 - Jl.lll')[% + %cos(z—gl—f-)] + -21? s1n(—"[‘111|-> for |t]| < L, -
(146)

Evaluation of third-order correlation ¢,(t, u) in (108) is rather tedious; the end
result is given in (F-1) and (F-2). The procedure and program for the evaluation of
the normalized quality ratio is given in appendix F.

The normalized quality ratio for Hanning lag weighting and B_,T = 100 is plotted
in figure 18 for several values of the shift fraction q. When q=1, no overlap, the
small values of the Hanning temporal weighting at its edges cannot be compensated
for, by any choice of L,/L,, and the variance remains at approximately twice the
ideal value. For 50 percent overlap of the Hanning temporal weighting, q=1/2, the
situation is markedly improved, there being a value, L,/L, = .4, at which the excess
variance is only 8 percent above ideal; this is reminiscent of the variance ratio for
the case of no quadratic smoothing in reference 9, tables 5-7. When q is decreased to
3/8 or 1/4 (62.5 and 75 percent overlap, respectively), virtually the ideal variance
reduction can be achieved by choosing L, = L,.

In figure 19, the shift fraction q is kept at 3/8, while B,T is taken at both 100 and
32. The smaller value of B,T leads to a slightly larger loss in performance because of
more significant edge effects. However, even so, the normalized quality ratio does
reach a very desirable level only 4 percent above ideal when L, ~ 2L,.
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Summary

The possibilities and performance of a generalized spectral analysis technique
employing temporal and lag weighting have been investigated in terms of the mean
and variance of the spectral estimate. The only assumption required about the
process under analysis, in so far as the mean is concerned, is that it be second-order
stationary over the observation interval. We then were able to extract a simple
expression for the effective window involving the temporal and lag windows.

The possibility of doing lag reshaping to achieve desirable effective windows was
considered in detail and found to be reasonable for a wide variety of windows with
good side lobe behavior and decay rates. In particular, if rectangular temporal
weighting is employed, its inherent poor side lobe structure can be corrected via
proper lag weighting, in so far as the effective window is concerned. Strictly
speaking, the closest side lobe cannot be eliminated; however, all the other side
lobes can be suppressed.

The effect of temporal and lag weighting on the variance of the spectral estimate
was evaluated and compared with the ideal value for large B,T. For rectangular
temporal weighting, it was found that small values of L,/L, and no overlap led to
values of the normalized quality ratio virtually equal to the best
attainable by any spectral analysis technique. The comparison is made under the
constraint that the effective frequency resolution B, is maintained the same for all
techniques under consideration. On the other hand, if Hanning temporal weighting
is employed, overlapping must be used for maximum variance reduction and the
length ratio L,/L, ought to be of the order of unity.

Since Hanning temporal weighting requires multiplication of each and every data
segment (P pieces) and significant overlap (~ 50 percent), whereas rectangular
temporal weighting requires no multiplication and no overlap, the latter approach is
a strong candidate for spectral analysis, particularly since excellent effective
windows (low side lobes and rapid decay) and virtually ideal variance reduction can
be achieved by proper lag weighting and choice of ratio L,/L,. Investigation of
other cases than those evaluated here can be achieved by appropriate modification
of the program in appendix F. A major analytical task will be the evaluation of the
third-order correlation (108), if temporal weighting w,(t) is taken other than rec-
tangular or Hanning.



Appendix A
Comparison of Two Bandwidth Measures

The effective bandwidth of narrowband window W (f) was defined in (1) as

., -

. 5
af W (£) (A-1)

£ W, (£)

The half-power bandwidth, B,, is defined as the solution of

w‘o(fo l% Bh)
Wo(£))

= 1
2 (A-2)

where it is assumed that window W (f) is real, even about f_, and peaked at f,. We
let W (i) = W (f+f); thus W (f) is even about f =0.

The inverse Fourier transform of lowpass window W (f) is called the weighting

w (1) = ]df exp(i2nfr) W_(£)

(A-3)
We consider here the class of weightings given by
we(r) = kzoa.k cos (nkr/Le) for || < L.
z (A4)

and zero otherwise, where {a,} are real and non-negative. This class includes
rectangular, Hanning, Hamming, Blackman, and the optimal windows of Nuttall,
reference 19. The Fourier transform of (A-4) yields lowpass window

k
2L (-1)" a
W ()= == 2L £ sin(arl_£) X _z—k—? ,
¢ € k20 (2L, )% - k

Zao for n=0

nl for n#0 (A-5)

S

A table of bandwidths B, and B, and their ratio is given below for the window in

(A-5). Although these bandwidths vary significantly for the different weightings,

their ratio is much more stable. In fact, for the last four weightings listed, the ratio

is constant within + 1 percent. The weightings listed under C5, C3, Cl are those
given in reference 19, figures 10, 11, 12; the notation means
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CS: continuous fifth derivative of weighting
C3: continuous third derivative of weighting
Cl: continuous first derivative of weighting (A-6)

Table A-1. Bandwidths for Various Weightings

Weighting B.L, B,L. B./B,
Rectangular 0.5000 0.6034 0.8287
Hanning 1.3333 1.0000 1.3333
Hamming 1.2614 0.9109 1.3848
Blackman 1.6415 1.1494 1.4281
C5 2.2165 1.5371 1.4420

C3 2.0478 1.4139 1.4483

Cl 1.9544 1.3444 1.4537

A-2



Appendix B

Some Lag Weighting and Lag Windowing Considerations
For Discrete-Time Processing

It is convenient here to define an equispaced unit-impulse train by the notation

§,(b) = ; §(b -~ na) , B-1)

where the summation on n extends over % %,

For discrete time sampling at spacing 4,, it has been observed in (30) that Gl(f)
has period 1/4, in f. Therefore lag window W,(f) could be confined to |f| < (24,)-!
with no loss in generality, in so far as its effects on G,(f) by means of (18) are
concerned. In fact, for a general lag window W,(f) specified arbitrarily, the
equivalent band limited lag window is

ﬁz(f) = rect(a ) | W,(f) @ & 1 (£) :

A
t (B-2)
where we will utilize definitions
1 for |x| < 1/2
rect(x) = , sinc(x) = 2‘% ,
0 otherwise (B-3)

and where @ denotes convolution. That is, W,(f) is aliased into the band
|f| <(24))-!, and only this band-limited portion is retained for Wz(f).

A way to demonstrate this mathematically i* .0 note that the only values of lag
weighting w,() that can affect ﬁz(r) are the samples

wz(th) = fdf exp(ianth) Wz(f) . (B-4)

The band-limited lag weighting function that passes through all these specified
values, for all q, is

wo(t) = w,(q 4,) sinc(L - q) ,

with corresponding Fourier transform
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B-2

Wz(f)

A, rect(Atf) > "z(th) exP(-iZﬂqut) (B-6)

At rect(Atf) % exp(-ianth) Idu exp(iZnqut) Wz(u)

r':ct(Atf) Idu Wy(u) a, PN exp[-iZn(f - u)th]
q

rect(Atf) f du wz(u) G‘I_(f - u)

B¢

rect(Atf) wz(f) o Gl(f) . (B-7)

B¢

Relation (B-4) indicates how an arbitrarily specified W,(f) fixes the lag weights at
the sample points. For the reverse problem, where sampled lag weights {w,(qA,)}
are specified for all q, relation (B-6) gives an equivalent lag window, in sarticular
the band-limited spectral window, which results in the same estimates R,(1) and
Gz(f). Notice that Wy(f) is not uniquely specified by samples {w,(q4,)}; however,
the band-limited W,(f), which realizes weights {w,(q4,)} for all q, is unique and is
given by (B-6).

As a special case of the above, consider discrete frequency smoothing with
frequency spacing A, = (MA))-!, where MA, is of the order of 2L ; i.c., from (38),

1 n
W, (f) = W, 6lf - — 5
2( ) MAt zn: 2n ( H&t) (B-8)

where we set W, = 0 for |n| > M/2 without loss of generality, in accordance with
the observation above (B-2). Then lag weights (B-4), given now by

1 .
w,(qa,) = o7 Z W, exp(i2nng/M) ,
27T May In|<M/2 2 (B-9)
will equivalently accomplish the same purpose. This last relation can be
accomplished by an M-point FFT, where W, ., receive the same complex
exponential weighting in (B-9).

't should be noted that the discrete function w,(q4,)) in (B-9) has period M in q;
this means that w,(q4)) in (B-9) will increase in magnitude for M/2<q <M. If ﬁl
is nonzero for |q| > M/2, this lag weighting may cause a problem. One guarameeg
way to avoid the problem is to choose M/2 larger than the nonzero extent, N, of
ﬁ,q. Physically, this means that the frequency spacing 4; = (M4))-!, used in
frequency smoothing (B-8), must be small enough so as not to miss any information
in él(f). Coarse frequency spacing gives spurious results for éz(f). (It will also yield
poor effective windows.)



Since from (24), R 1q = 0 for @ 3 N, where N, is the number of time samples per
segment, only a finite number of the general weights {w,(q4,)} in (B-4) affect R .
Thus in example (B-8), although (B-9) has period M in q, only the values for
|q| < N, are relevant to the effect on 2 More generally, the values yielded by (B-4)
for a general W,(f) are relevant only for |q| < N,, and only these need be evaluated
and retained if we choose to process via the lag domain.

Now let us consider the reverse problem, where lag weights {w,(qA)} are
specified for all q, and we wish to determine some allowable lag windows W,(f) that
will realize the same estimates ﬁz(-r) and éz(f), but which take advantage of the fact
that only w,(q4)) fot |q| < N, must be realized. One obvious candidate is the band-
limited lag weighting version

Gz(r) = 2 wz(th) sinc(A—: - q) ;

laf <N (B-10)
notice the limitation on q employed. The corresponding lag window is

A -i2nfqa

W.(f) = &, rect(af) 2w, (qh) e t
2 t t lq[<N 2'%% (B-11)

1
A second candidate is
4 A (B-12)
wz(r) = wz(t) () 6MA () ,

t

provided that M 2 2N,-1; this provision guarantees non-overlap of the
displacements of %,(1). Then

4 1 B

W,(f) = ﬁz(f) o 81 (8 = 2 W 6( T Ma ) (B-13)
t i@ n ’

where .

1 A ( n ) 1 n .
W, = ———W [=——]== rect{= E w_(qa, ) exp(-i2wnq/M)
2n MAt 2 MAt M (M)IqI<N1 2 t

(B-14)

from (B-11). Notice that (B-13) has the form of discrete frequency smoothing in
(B-8); (B-14) gives the area of each impulse needed in (B-13). Also notice from
(B-14) that all these areas are zero for |[n| > M/2; thus we have a finite sequence to
apply in the frequency domain, which is equivalent to a specified finite set of lag
weights.

Equations (B-14) and (B-9) are complementary to each other. In fact, we can
derive (B-9) from (B-14) as follows: from (B-14),

1 n = .
W, = = rect{:s w_exp(-i2wnq/M) ,
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where
_ w,(qa,) for la| < N;
w =
q
0 otherwise
(B-16)
Then
2 Wor exp(i2nnp/M) = Z exp (i2wnp/M) %rect(%)z w_ exp(-i2mnq/M)
|n|<M/2 In|<M/2 q 1
- 1 n
= Z v = 2 rect(—) exp(i2mn(p - q)/M)
g M |nj9u2 "
- (M _ = M)
= I = o1 ,
‘? "9 'p-a T p T p (B-17)
where
1 for p=20, + M, + 2M, ...
I(M) =
p
0 otherwise
(B-18)
Now if M 3 2N, -1 (as assumed above (B-13)), then
Z W, exp(i2nnp/M) = w,(qA,) for <N
In|g¥2 20 P P 2°%% lal <N, (B-19)

This is (B-9) for |q} < N, which is the only range that affects ﬁzq.

B4
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Appendix C

Correlation ¢,(7) of a General Class of
Temporal Weightings

The class of temporal weightings of interest here is given by a sum of complex
exponentials:

w, (t) -Z exp(i2rkt/L,) for |t| < L,/2 ,
1 = % 1 1 ©-1)

and zero otherwise. We assume that the coefficient sequence has conjugate sym-
metry

= * =
a_, =ap for all k ;

(C-2)
then w,(t) is real, and it follows that the (aperiodic) correlation
NORN EENORNCEE) -
is also real, in addition to being even about r = 0.
Substitution of (C-1) in (C-3) yields
Ll/ 2
¢1(r) = 2 ay a;l f de exp[iZwkt/L1 - i2m(t - r)/Ll]
km
r-Ll/Z
for 0 <t <L, . (C4)

1

This can be evaluated and then extended to t < 0 by the use of the even character of
¢,(); there follows

¢l(r) = (Ll - |t [a + 2 z |0.k| cos(2nkt/L )]
k>0

m>k

= 2: -m—_TRe( a;) sin(2nm|r|/L1)
for |t| < L, (C-9)

and zero otherv. ‘se. This is the general result for the correlation of weighting (C-1).

We now specialize (C-5) to the case of real symmetric coefficients in (C-1):

a, real, a, =a
k -k k (C-6)

C-1
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For all coefficients zero except for a,, we have

wl(t) = qo for Itl < L1/2 5 (€7
2 K
¢, (x) = (L, - It]) ay for lt] < L, - (C-8)
For all coefficients zero except for a , a;, we have
w (t) = ay ¢ 2a, cos(2nt/L,) for |t]| < L,/2 , (C-9)
¢, (t) = (L, - |t]) [az + 202 cos(2nt/L )]
1 1 0 1 1
!
* 5 9 - ay) sin(anrl/Ll) for |t| < L (C-10)

For all coefficients zero except for a, a,, a;, we have

wl(t) =a, + 20 cos(Znt/Ll) + 2a cos(41rt/L1) for |t| < L1/2

0 2

(C-11)

¢1(1’) = (L1 - |t [a(z) + Zaf cos(an/Ll) + 2a§ cos(41.'1:/L1)]

L
1 .
o [2a1(6uo - 30, - 4a,) sm(anrI/Ll)

- a,(6a, - 162, + 3a,) sin(4n|r|/L1)]

for |t| < L, - (C-12)

For all coefficients zero except for a, @), a,, a;, we have

wl(t) =ap+ 2a1 cos(2nt/L1) + 2(:;2 cos(4nt/L1) + 2a3 cos((mt/Ll)

for |t| < L/2 (C-13)

C-2
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¢1(T) = (Ll = Itl)

o [ag + 2u§ cos (21r'r/L1) + 2a§ cos(41r-r/L1) + 2a§ cos(61rt/L1)]

L

1 .
* 30w [Sal(IZcxo - 6a, - 8a, + 3a3) 51n(21r|'r|/L1)

- a,(30a, - 80a, + 15a, + 48ay) sin(4n|t|/L))

+ a5(20a, - 450, + 720, - 10a,) sin(6ﬂ|r|/L1)]
for |t| < L, - (C-14)

This last case includes all the weightings considered in reference 19, with the
identification of coefficients as

a slak {or k>0

a, = a

0 o > k 2
(C-15)

Then we can express the temporal weighting as
wy(t) = ) a, cos(2nkt/L,) for |[t| < L,/2 (C-16)

k>0

C-3/C4
Reverse Blank
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AppendixD
Derivation of Variance of Spectral Estimate

Our starting point is (14). The integral on t is a Fourier transform of the product
in (13), and can therefore be expressed as a convolution:

‘ L
Y (£) = X() ® ["1 (£) exp(-iznfe. . pS))]

L
1
= ]du X(f - u) Wl(u) exp(-iZwu<T + PS)> * (-1

where we used (46) and defined

X(f) = fdt x(t) exp(-i2nft). 02

Although the relations to follow could be derived in the time domain, it is more
convenient to develop them in the frequency domain because of the frequent and
useful occurrence of delta functions.

X(f) is complex Gaussian for all f, since (D-2) is a linear transformation and we
have assumed x(t) to be a complex Gaussian process, for the variance calculation to
follow. Furthermore covariance

Av{X(fl) X"(fz)} = ]Idtl dt2 x(tl) x*(tz) exp(-inrflt:1 + ianztz)
= ffar, ar, Rty - ty) expeizng e v d2nfe,)
. Hdu dt, R(u) exp(-i2nf (u + t,) + iZnf,t,)

= S(f, - £
G(E) 8(F, - £,) -

upon use of (43) and (45). When x(t) is a single-sided (analytic) complex process,
there then follows for the fourth-order average, which will be needed later
(reference 23),

AVIX(E)) X*(£,) X(£;) X*(£,)}

= G(£)) G(fs)[é(fl S £,) (5 - £) + 6(F, - £,) 8(s, - fs)]
(D-4)

D-1
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(When x(t) is a real process, there would be a third term in addition. However, even
then, this term contributes only near f = 0; see reference 9, equations {A-4) - (A-8).)

Upon use of (D-1), (14) becomes*

P-1
al(f) = -[17 go ]Idu dv X(f - u) X*(f - v)

/L )
* = - - = .
< W (u) Wi(V) exP( i2n(u V)\T ps) (D-5)

Then the average of the product of the first-stage spectral estimates is

A A 1 P-1
AV{G (£,) G, (£,)} = e pzq-O ”’f du dv dy dv

. )((f1 - u) )("'(f1 -v) X(f.‘. - u) )(*'(f2 - v) i‘.’l(u) Wl"(v) Wl(u) WI(\))

L1 Ll
.exp<-121r(u -v) <-2— + p.S> expl-i2n(u - v)<T +qS)] .
(D-6)

Reference to (D-4) enables us to express the fourth-order average as
G(fl - u) (;(f2 - u)

-[ccu-v)c(u-v)+6(f1-f2+v-u) c(fl-fzw-v)] . (D-7)

Use of the first term  of (D-7) in (D-6) yields

P-1
1 2 2
2z [faw aw see - w 6ee, - ) w12 W )]

= fdu G(£, - u) |W1(u)|2 . fdu G(f, - 1) |w1(u)|2

A A

where we employed (45) in the last line. Moving this term to the left side of (D-6),
and using the second term of (D-7), we obtain, for the covariance of the first-stage
spectral estimates,

*For more generality, we allow temporal weight w, and window W to be complex in this appendix.

D-2
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A A 1 P-1
CoviG (£)), G,(£,)} = 5 q=0 [[du dv G(£, - u) G(£, - V)

-wl(u) W‘;(v) Wl(v + f2 - fl) W‘l'(u + f2 - fl) exp(-i2w(u - v) (p - q)S)

- ]fda d8 G(o) G(B) W, (f, - a) W(f, - B)
P pq-O

. Wl(f2 - B) W‘l*(f2 - a) exp(-i2n(B - a)(p - q)S)

p 2

LE

p=1-P

2
]da G(a) Wl(f1 - a) W‘i(fz - a) exp(i2nmap$S)

f]' da dB G(a) G(B) W,(f; - a) Wi(f; - B) W (f, - B) Wi(f, - a)

2
. sin(7PS(a - B))
P sin(nS(a - B8))] (D-9)
Here we have used the identities

P-1 P-1
—12- Y exp(i2m{p - q)u) = l%' > ( - J.B.l.) exp(i2mpu)
P° p,q=0 p=1-P P

_ | sin(nPu)
- [P s1n2nuél Qp(u) . (D-10)

For f, = f,, (D-9) checks with reference 9, equation (A-9); more generally, it is
equatlon D-2 of reference 9. We observe that if |f. - f,| is greater than the effective
bandwidth of temporal window W,, (D-9) will be small since W(f, - a) and
Wi(f, - a) will then not overlap significantly on the a-scale. Also notice that
spectrum G is still left under the integral sign; i.e., there are no assumptions yet on
the character of the spectrum.

We are now prepared to consider the second-stage spectral estimate éz(f) as given
by (18):

A A
GZ(f) = ]df1 Gl(fl) Wz(f - fl) . (D-11)

Then
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'%Z

D4

Lo - wfbyo) - f dfl[c':‘1 (£,) - Av[s"l(fl)}] Wy(f - £))
(D-12)

and therefore (recall that W, is real) the variance of the second-stage spectral
estimate is

Var{ﬁz(f)} - f af, df, Cov{él(fl), ﬁlcfz)} Wy (€ - £) W,y(f - £))

P-1
(1 - l%") ffda dB8 G(a) G(B) exp(i2r(a - B)pS)|Y(f - a, £ - 3)|2
p=1-P

-[]da d8 G(a) G(B) |Y(£ - a, £ - B) | Qp(S(a - 8)), (D.13)

where we used (D-9) and (D-10), interchanged integrals, and defined window
convolution function

yooy) = [ du Hy(w) W (x - w) WOy - u) Oo14

Relation (D-13) is exact; it makes no presumption about the relative widths of the
spectrum G and the windows W, W,. The compact expression (D-13) involves the
windows W,, W, through the convolution function y, and involves the shift S and
number of pieces P through the periodic function Q, defined in (D-10).

The window convolution function y in (D-14) realizes its peak valueat x=0, y =0,
and is rather small everywhere else, since the windows are virtually unimodal and
rather narrow. In fact, a special case is the diagonal slice

y(x,x) = ]du W) W x - w) %= W ]? e w) =W
(D-15)

by reference to (51). Generally, y(x, y) is substantially nonzero only in the region
B,, B, at the origin of x, y space.

We now employ the assumption discussed in connection with approximation
(103), namely, that spectrum G is relatively constant in the band of width B, about
the frequency f of interest. Then the major contribution to the variance, (D-13),
comes from the region near a = ="f in a, § space. There follows the approximation
for the variance of the second-stage spectral estimate,



P-1
varffy 0} =6’ 5 T (1 i lrl;.l.)

p=1-P

.jfda dB exp(i2n(a - B)pS)|Y(f - a, £ - B)|2

P-1
s Gz(f) % EIP (1 3 J%L) ]fdx dy exp(i2n(y - x)pS)|v(x, y) |2
‘ p- -

=@ [[axay vx P Qs -0 L @16

where we used (D-10) again.

We now simplify the double integral in (D-16); from the second line of (D-16) and
from (D-14),

D Ef]dx dy exp(i2m(y - x)pS)' fdu Wz(u) Wl(x - u) W*l'(y - u) 2
=]fdu dv W,y (u) W, (v) fdx exp(-127xps) W (x - u) Wi (x - v)|?
‘Ifd“ dv W, (u) Wy(v) [x,(pS, u - v)[2 | (D-17)

where the complex ambiguity function of the temporal weight and window is
defined as

xl(r. v) = fdf exp(i2nft) w1<f + %’-) w;(f - 7')

. T T
= Idt exp(-i2mvt) w1<t + -5> w*l'(t - -2-) . (D-18)
Now letv = u - vin(D-17), and obtain a single integral for D:

D fdlel(ps, \:)|2 fdu Wz(u) wz(u - V)

fdv|x1(p5. V)|2 Xz(o, v) (D-19)

in terms of the ambiguity function x, of the lag window and weight. Substitution of
(D-19) in the second line of (D-16) yields for the variance,
P-1
A
p=1-P (D-20)

An alternative, and perhaps more useful form, to (D-20) is attained as follows;
the integral in (D-20) is expressible (by use of the definition (D-18) of the ambiguity
function) as

TR 6459
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Idval(pS, \))l2 Idt exp (-i2mvt) wg(t)

s Idt Wa(t) Idv exp(~i2mvt) |x, (pS, V) |
(D-21)
Now we have the general result that

fdv exp(-i2mvt) |x1(1', \))Iz

. fdv exp(-ivat)ffdtl dt, exp(-i2rv (t, - t,))

[}
5
[« W
=
x
—
[
+
-y
N
-
V
x
-
[=4
+
L]
l—.
N
]
(a4
N
3
—
[
+
-,
] +
S
=
—
A~
]
~
N
+
(a4
g

¢5(t, 1) (D-22)

This is a third-order correlation of temporal weighting w,; see the footnote to (9).
Thus (D-21) becomes

2
Idt wo(t) ¢,(t, pS) ,
2 3 (D-23}
and the variance in (D-20) becomes

pP-1 /
A 2,1 lp] ) 2
var(G,(£)} = 6°(f) = (1 - dt wo(t) ¢ (t, pS) .
2 P paT-p P /I 2 3 (D-24)

This ‘‘weighting-domain’’ version of the variance is very useful if third-order
correlation ¢, can be evaluated in closed form.



Appendix E
Computational Considerations for Non-Overlapping Segments

The curves in figure 15 for non-overlapping time segments are drawn over a
continuum of values of L,/L,. However, if we were given a value of TB,, all values
of L,/L, may not be allowed. To develop this point, suppose that we pick an integer
value for the number of pieces, P, and solve for L B, = TB,/P according to (129).
From figures S and 6, this dictates the value for L,B,, and hence a discrete value for
L,/L, is specified for each value of P. The number of pieces, P, can range from 1 to
P 4 Where

B T ’
Bel‘l(mi") = P:ax g 2c{‘¢1} v Phax ™ 2C{¢1} B T (E-1)
from figure 5. For B,T >> 1, we have, for
1 L2 1
P=1, BeLlsBeT, BeLzﬂmw—zT,L—l- 'chz Be.I.<<1 ,
(E-2)

and for

L
1 2
P = Pmax, BeLl = m 5 BeLz Z Be T, Ll 2 2C{¢1}Be T >> 1

(E-3)

Thus a very wide range of discrete values of L,/L, is allowed when B.T >> 1.

The problem with this approach is that when B.L, is calculated, B_L, must be
solved for from the integral relation (52) (or approxir- itely from figure 6). This
tedious procedure can be circumvented by specifying L,/L, instead; if desired, we
could then use (52) 1o determine B_L,, and solve for P = B, T/(B.L,). However, P
will not necessarily turn out to be an integer for a given fixed T; thus only a set of
discrete values of L,/L, are strictly legal. But if NQRin (130) does not vary
radically with L,/L,, this is not a significant limitation. And since it is simpler, we
adopt it. In Appendix F, we cannot avoid the calculation of B_L, from a given B_L,.
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Appendix F

Computational Considerations for Overlapping With
Hanning Temporal Weighting

The temporal weighting is given by (146). Substitution in (108) and evaluation of
the integral yields

050t W) = 5;4—1.1“’0(" ~a-8)+ 2: (-0*1 v, sink(a + 8)

for a+B8 <gm , (F-1)

where
u-lrl. B =lul
C = cos(a) = cos( > = cos(B) = cos(?) :
¢ 1
2 4 4
VO'E'C B+4C CB +CB,
2 2
V1 = Ca C8<4cu + 4CB - 1) .
1 1(.2 2 2 .2
‘2777 7<ca*ce>’ca g
=1 w 1
V3=3G % Va3 - (F-2)

The procedure for the evaluation of the normalized quality ratio follows. We
specify a value for B_T and select a temporal weighting w,(t) and a lag weighting
w,(1). We then evaluate shape factor c{¢,} from (64) or table 2, and select a shift
fraction q = q {w,} according to (139). We then solve (141) for P .., and allow P to
take integer values in the range 1 € P € P_,.. B_L, can then be evaluated from

(140) as

Be T
BeLl "1+ (P - 1)q (F-3)
for each integer value of P. We then solve (52) in the form
T Jar @l (o - [ax am ol
el 1 (F-4)

for the ratio L,/L,. w,(L,x) is a function of L,/L,, while ¢,(L,x) is independent of
L, and L,. Next we compute quality ratio (109) in the form

F-1
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P-1
1 pl 2

where we let T = L,x and used (139). The quantity w,(L,x) is a function of only
L,/L,, while the remaining quantity in the integrand of (F-5) is independent of L,
and L,. Finally, we multiply (F-5) by BT according to (110) in order to determine
the normalized quality ratio.

To reduce computation time, we take advantage of various properties of the
functions involved. First, since ¢(t, p) is even in T and u (see (108)), and w, is even,
we express (F-5) as

P-1 ™
4 k 2

1/2 for k=20
€ = t .
1 for k21 E-7)

Also, from (F-1) and (F-2), we have normalized form

where

4
L1¢3(L1 a, le) = 94—“ {VO 7(l - a ->b) + 2 (-l)k'1 Vk sin[kn(a + b)]}

k=1
for 0 < a, 0<b, a+b<l , (F-8)
where now
Ca = cos(ma), CB = cos(wb) ,
(F-9)

and {V}$ are still as given in (F-2).

Since L ¢,(L,x, pqL,) in (F-6) is zero if x + gk > 1, we can limit the sum on k in
(F-6) to k,, = min (P - 1, 1/q), and we need to evaluate the integral on x in (F-6)
only up to X, = min (L,/L,, 1 - gk). The number of x intervals needed in (F-6) is
about 16 with the Trapezoidal rule for integration. These features are incorporated
in the program listing below.

F-2
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10

26

30

40

Se

€0

70

80

90

100
110
120
130
140
150
160
176
180
190
200
210
220
230
240
250
260
27e
280
290
300
310
320
330
340
3509
360
370
360
390
400

Bet =100
Cl=1/6+385-(48#P1~2>
Q1=3-/8
Pm=1+(2%C1#Bet-1.-Q1

PRINT "Be T ="j;Bet,"q = q{wl} =";Q1

PRINT

COM Ti1,T2,T3,T4
T2=2x%P]

T3=1-3

T4=1/T2

FOR P={ TO Pm
Bell1=Bet /(1+(P-1)>%Q1)
L211=FNL211<{Bel1,C1>
TS=,S#PI-/L211
Km=MINCP~1,1-Q1)
S=,5#FNInt(Q,L211,TS)
FOR K=1 TO Km

9
!
!
!

MAY 1981,

Be T

HANNIMNG

A.

H.

NUTTHLL

TENPOIRAL-WEIGHTING W1;

62.5% QYERLAF FOR W1 0<01<(=1

Pmax;

Be L1i;
L2-L13

SES+(1-K/P)*FNInt (Q1#K,L211,TS)

NEXT K

Q=4 /P %S

PRINT P,L211,Q#Bet
NEXT P

END

|

DEF FNL211<(Bell,Ci>
Eps=Bel'1-.5-/C1
X1=4/(3%Bel 1)

EQ.

E@.

SOLYE EUG.

141

149
SOLUTIOMN OF EQ. S2

S

FOR LZ-L1

IF Bell<10 THEN X1=,603245/SQRCEps -Epz-(E+12%Eps)

Xe=KX1%1.,037
Fi=FNF(X1,Bell)
F2=FNF (X2,Bel1)

IF ABS(F2-F1)><1E-6 THEN 239

T=K2
X2=(F2#X1-F12X2)/(F2-F1>
X1=T

Fil=F2

GOTO 319

RETURN X2

FNEND
1
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F4

410
420
430
440
456
460
470
480
4950
See
S10
S20
530
540
550
560
S70
ceo
S90
600
6180
620
630
640
650
660
678
680
690
7’00
710
720
730
740
750
760
770
I4-1")
798
g80e
g1e@
820
83e
840
gse
860
8vo
880

DEF FNF<L211,Beli> ! RIGHT SIDE =~ LEFT SIDE QF EQ. F-4
com T

“m=MINCL,L211)

Ti=,S*Pl/L211

N=16

Del=Xm/N

F=,S

FOR K=1 TO N-1

FeF+FNG(K*Del)

NEXT K

RETURN 2#Del#F-1-Bell

FNEND

|

DEF FNG(X) I (H2CL1*X)*Fh11CL1#L0~2
COM T:,T2,T3,T4

P=aT2#X

Go(1=-X)%#(2+COS(P)>*#T3+T4%SIH(P)

W2sCOSCT1#X>~2 I HAMNING LAG-WEIGHTING W2
RETURN <CWZ#*G>~2

FNEND

|

DEF FNINnt(Qk,L211,T5S> t INTEGRAL OF ER, F-S
Xm=MINCL211,1-Qk)

Dels¥m-/16

S=,5#FNPhi3¢(0,Qk)

FOR J=i{ TO 1S

X=DelnJ

SuS+COS(TS*X)~4%#FHPhi3(X, Uk

NEXT J

RETURN Del=#*S

FNEND

]

DEF FNPhi3C(A,B> ! LI#PHI3CLi*A,L1%B) for RA>=0, B =8 EG. F-3
IF R+B>=] THEN RETURH @

Rb=PI#{(R+B)

Ca=COS<PI*RA)>

Cb=COS<(PIx*B)

Ca2=Ca~2

Cb2=Cb~2

S=Ca2+Cb2

VO=,375-S+4x%Ca2#Cb2+Caz2~2+Cb2"2

ViasCa#Cb#(4#5-1)

Ve=-,25+,54S+Ca2#Cbh2

vV3=Ca#Cb/3
SaVi#SINCREY-V22SINC(2#Ab » +V34SIN(3+#Rb ' -, B2312%+5 [l 3+RAb
Liphi3=4/(9%P1)#(VO*(PI-Ab1+S)

RETURN L1phi3

FNEND
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Two-Channel Linear-
Predictive Spectral
Analysis; Program
For the HP 9845
Desk Calculator

A. H. Nuttall

ABSTRACT

A program for linear-p. edictive spectral analysis of two channels of
data, including estimation of the auto-spectra, cross-spectrum,
magnitude-squared-coherence, and the argument of the coherence,
is presented in BASIC for the HP 9845 desk calculator. Timing results
for the major subroutines are included, and their dependence on the
fundamental parameters of the data, filter, and desired spectrai
resolution is indicated. These techniques and program for spectral
analysis are very appropriate for short data segments. In particular, a
positive-definite spectral matrix estimate is guaranteed.

Applications to examples including a strong tonal interference in one
channel are made, and a possible shortcoming of the technique is
pointed out. A suggested remedy is proposed and a philosophy for
multichannel spectral analysis is suggested for further con-
sideration.

Approved for public release, distribution unlimited.
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Two-Channel Linear-Predictive Spectral Analysis;
Program for the HP 9845 Desk Calculator

Introduction

Spectral analysis of short data segments by the standard FFT procedure is not a
viable approach; unstable and/or coarse estimates of the spectra result. An at-
tractive technique in this case is linear-predictive spectral analysis, both for the
single-channel as well as the multiple-channel cases. See references 1-9, particularly
references 7-9 which derive and give Fortran programs for a multiple-channel
linear-predictive spectral analysis technique that is a generalization of Burg’s
technique for the single-channel case (reference 1).

The purpose of this report is twofold: first, we translate the Fortran program in
reference 9 into Basic for use on the Hewlett-Packard HP 9845 Desk Calculator,
and in the process, also make some minor improvements and modifications to the
format and printout statements. We also limit consideration to the two-channel case
and thereby take advantage of some simplifications in computing possibie for this
special case. Second, we apply the program to a pair of stationary processes, one of
which has pure tones that are not preseat in the other process. In this manner, we
point out a possibly deleterious effect on the auto-spectral estimates and the
coherence estimate, and indicate a method for circumventing some of the difficulty.
As a byproduct, a philosophy for multichannel spectral analysis is suggested for
further consideration.
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Use of Program For Spectral Analysis

In appendix A, the listing for the two-channel linear-predictive spectral analysis
technique is presented. Inputs required of the user are the following:

N Number of data points in each process
Pmax Maximum order of predictive filter to be considered
Nfft Size of FFT to be used in spectral computation. (1)

In addition to these ihtcger inputs, the user must modify the subroutine
SUB Data (N,X(*)) to accommodate and read in his particular two-channel data.
All data are presumed real.

The program computes the (sample) means of each of the two processes and
subtracts the means from the data. (Some possible ramifications of this procedure
are considered in reference 6, appendix B; in addition, the effect of choosing too
small an FFT size, Nfft, is discussed in reference 6.) Next, the covariance matrix (at
zero delay) of the input data is computed, and the Akaike Information Criterion
(AIC, reference 8, pages 42-44) is evaluated and used to select the integer

Pbest Best order of predictive filter to use. 2)

The forward and backward partial correlation coefficients (references 7-9) are
evaluated through order Pmax, as well as the forward predictive filter coefficients
for Pbest. The normalized correlation matrices are computed through Pmax (ex-
trapolated values beyond Pbest) and the spectral density matrix is computed (via an
FFT) from zero to Nyquist frequency, fy = (24)-!, where A is the time-sampling
increment of the processes. A partial check on the adequacy of the FFT size, Nfft, is
afforded by a printout of the areas under the spectral estimates and comparison
with the (sample) covariances of the input data. Finally, the inverse FFT of the
spectral estimate gives the aliased normalized correlation matrices; the motivation
and equations for this approach are given in reference 9.

A sample printout for a short data sequence (20 data points in each process) is
given after the program listing in appendix A, as a test or check case on a user-
written program. Also, plots of the corresponding auto-spectral estimates and the
coherence estimates are given there for completeness, although this example has no
real physical significance.

Timing Results

Execution times for the five major subroutines,

Pcc Partial correlation coefficients
Pfc Predictive filter coefficients
Peftf  Predictive error filter transfer function
Sdm  Spectral density matrix
Acm  Aliased correlation matrices, 3)



are given in tables 1-5 below, for the HP 9845B Desk Calculator equipped with the
Fast Processor Upgrade Kit. Only those variables utilized in each subroutine are
considered in these tables, since execution time is independent of the other
variables; for example, the execution time of subroutine Pcc does not depend on

Pbest.

Table 1. Execution Times for Subroutine Pcc

N Pmax Seconds
20 6 1.9
50 10 5.4

100 5 4.7

100 10 9.5

100 15 14.1

1000 47 404.2

Table 2. Execution Times for Subroutine Pfc

Pmax Pbest Seconds
s 1 .09
10 1 15
6 4 .24
15 5 .62
15 11 1.4]
47 12 4.06

Table 3. Execution Times for Subroutine Peftf

Pbest Nfft Seconds
4 256 17.5
11 256 17.8
1 512 32.0
b 512 32.8
| 1024 63.9
11 1024 66.6

Table 4. Execution Times for Subroutine Sdm

Nfft  Seconds

256 8.9
512 17.7
1024 35.3
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Table 5. Execution Times for Subroutine Acm

Nfft  Seconds

256 9.8
512 18.6
1024 37.7

From these tables, we are able to extract the following fairly accurate rules of
thumb: the execution time of

Pccis linearly dependent on N and Pmax

Pfc s linearly dependent on Pmax and Pbest

Peftf is linearly dependent on Nfft, but is essentially independent of Pbest

Sdm is linearly dependent on Nfft

Acm is linearly dependent on Nfft. @)

These rules allow extrapolation to other cases of interest to the user. The execution
times of the FFT itself are given in table 6.

Table 6. Execution Times for Subroutine Fft10

Nfft  Seconds

128 2.6
256 4.5
512 8.4
1024 17.1

If the user is intcrested only in obtaining the predictive filter coefficients (for
example, to do time domain prediction and signal processing), these results are
available immediately after execution of subroutine Pfc. There is then no need to
resort to the frequency domain routines that follow Pfc; in this manner, execution
time and storage can be significantly reduced. An additional reduction in execution
time is available by declaring all the loop counters in a subroutine to be INTEGER.
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Application to Processes With Tones

Our first example is the two-channel case given numerically by the sample values
in reference 7, page 17; reference 8, page K-12; and in reference 9, page D-18. The
analytic expression for the autoregression is

x,(k) = .85 x,(k=1) =.75 xy(k-1) + w,(k)
X,(k) = .65 x,(k=1) + .55 x5(k=1) + w,(k) (5)

where {w,(k)} and {w,(k)} are uniformly distributed, independent white noise
processes with zero means and variances 1/12. General filter and spectral relations
for moving-average and autoregressive processes are given in appendix B; these
general relations are then specialized to this particular numerical example. It is
shown in (B-31) et seq. that the auto spectrum of process {x,(k)} has four poles and
three zeros in the finite z-plane, even though the two-channel recursion, (5), is only
first-order regressive.

Generally, for a two-channel P-th order regression and independent white ex-
citations (i.e., E, = 0 fork > P, F, = 14d,, and Q(z) = Al in (B-18)), the auto- and
cross-spectra of the processes each possess 4P poles and 3P zeros in the finite z-
plane (of which P zeros occur at the origin). This is in contrast o the single-channel
case, where 2P poles (and a P-th order zero only at the origin) can occur. This in-
creased generality can be anticipated by the observation that whereas a single-
channel approximation requires estimation of only P parameters, an M-channel
approximation requires estimation of M2P parameters (4P for the two-channel case
M =2). Of course, for a fixed number, N, of data points from each process, the
estimation of an increased number of parameters can only be done with increased
variance; this is a manifestation of the tradeoff between resolution and stability that
accompanies all spectral analysis techniques.

The first-order forward partial correlation coefficient for two-channel process (5)

is
.85 -.75
Al (true) = . (6)
.65 .55

and all other higher-order coefficients are zero. The exact auto spectrum of the first
process, {x,(k)}, is shown (in dB) in figure 1A; the auto spectrum of the second
process, {x,(k)}, is shown in figure 1B; the magnitude-squared coherence is
displayed in figure 1C; and the argument of the complex coherence or cross spec-
trum is depicted in figure 1D. There is seen to be a strong narrowband component at
approximately one-fourth of the Nyquist frequency fy = (24)-!, where A is the time-
sampling increment for the two-channel process (5). This leads to a peak magnitude-
squared coherence value of .999013 at 2fA = .2459.

The results of applying the two-channel spectral analysis program in appendix A
to the numerical data cited above, with N =100, are shown in figure 2, where the
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four parts of this figure correspond directly to those of figure 1. Pbest turns out to
be equal to the correct value 1, and the spectral estimates are all quite good. In fact,
the estimated magnitude-squared coherence reaches a peak value of .99974S5 versus
the true value of .999013.

The covariance matrix of the process generated by (5) is (refgrcncc 8, page 18,
after scaling by variance 1/*?)

2.095 0.405
R (true) = )

0.405 1.804

The corresponding matrix estimate yielded by the program here, based on the
particular N = 100 data values cited above, is

4.62 916
R, = for N = 100; ®
916  3.80

these values are approximately 2.2 times larger than (7), due to the fact that (5) is a
narrowband process and the particular 100 pairs of samples used in the spectral
estimates happen to lie on a local peak of the instantaneous waveforms. Although
the local estimates of the absolute power levels are of f considerably, the estimate of
the forward partial correlation coefficient is very good; we find, instead of (6),

872 -.770
A‘l" = for N =100. 9)

.634 .560

Next we add a pure tone only to the second process {x,(k)} at a frequency equal to
0.6 of the Nyquist frequency, i.e., at 0.6fy. The power in the tone is 1/512, i.e., 32.9
dB below the average power, 3.80, in this particular segment of autoregressive
process {x,(k)}; see (8). The resultant spectral estimates are shown in figure 3; they
are virtually identical to figure 2. The only inadequacy of figure 3 is that the
autospectral estimate in figure 3B gives no indication of the added tone; of course,
there should ideally be no indication of the tone in figure 3A for the auto spectrum
of {x,(k)}. The value of Pbest was again 1, as determined by the AIC.

When the tonal power in the second process is increased to -26.9 dB, Pbest in-
creases to 4 (see figure 4) and there are humps in both auto-spectral estimates near
the tone frequency 0.6fy. The coherence estimates (magnitude and argument) are
significantly perturbed in a considerable neighborhood of 0.6fy; this broad
frequency-perturbation width is due to a small value of Pbest having been selected
by the AIC.

Increasing the tonal power to -20.8 dB results in the estimates depicted in figure
5. Now there is a considerable indication of the tonal power in figure SB; however,
there is also an undesirable indication in figure SA at frequency 0.6fy in the auto-
spectral estimate for process {x,(k)}. This *‘feed-across’’ is due to the fact that we
are working with only N =100 data samples of each process; with this small a data
set, the *‘best’’ two-channel linear-prediction is misled into an erroneous indication.
It is important to observe at this point that any auto-spectral estimate based on
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samples of process {x,(k)} alone would not give this tonal indication, since the tone
is not present in this process.

The coherence estimates in figure 5 fare no better, even though Pbest = 8 now. A
large magnitude-squared coherence value of 0.85 is yielded at frequency 0.6fy. The
progression towards poorer behavior is also present in figure 6, which employs a
tonal power of -14.8 dB relative to the sample power in {x,(k)}. Now the undesired
peak magnitude-squared cohersnce estimate is 0.9. A tonal power of -8.8 dB (figure
7) yields a near-unity magritude-squared coherence estimate at 0.6fy, and a very
substantial tonal indication in the auto spectrum of {x,(k)}, figure 7A.

The situation is markedly improved if more data samples are available. When N
is increased to 1000, and data are generated via (5) as before, the sample covariance
for the particular data set generated is

2.60 514
R, = for N = 1000, (10)
sS4 2.27

for no tone present. When a tone is added to process {x,(k)}, with strength -24.6 dB
relative to the sample power, 2.27, of the second process, the resultant spectral
estimates are as displayed in figure 8. There is a slight hump at 0.6fy in figure 8B,
and a near-zero coherence estimate at this frequency. Recall that the ideal
characteristics would be identical to figure 1 except for an impulse in figure 8B at
0.6fy and a very sharp null in the magnitude-squared coherence at 0.6f,.

The results in figure 8 were achieved by taking Pmax = 8, for which the AIC
indicated Pbest = 8 for this particular data set. However, the AIC is a very flat
function of filter order P in this range, and it is difficult to justify a particular value
of P as “‘best’’. Some additional information about the autoregressive portion of
the observed process, such as a limit on P, could be useful; for example, when we
specified Pmax as 1, the results were very similar to figure 1. There was virtually no
indication of the tone in any of the spectral estimates, even though it was in the
{x,(k)} data at a relative level of -24.6 dB with respect to the sample power, 2.27, of
the second autoregressive component. In fact, the estimated first partial correlation
coefficient was

8543 -.7394
A = for N = 1000, an
6578 5415

which is very close to the true value, (6).

Results for the spectral estimates when the tonal power is increased to -18.6 dB,
-12.6 dB, -6.6 dB, and -0.6 dB are given in figures 9, 10, 11, and 12, respectively,
all corresponding to Pmax = 8 and Pbest = 8. Even for the nearly 0 dB case in
figure 12, there is virtually no indication in auto-spectral estimate 12A of the
strong tonal in process {x,(k)}, figure 12B. The magnitude-squared coherence
estimate in figure 12C appears :0 have developed a couple of zeros and poles near
the frequency f = 0.6fy, where the strong tone is located; recall that we have
4P = 32 poles available in the approximation for Pbest = 8. Typically, it has been
observed that a strong tonal present in only one process manifests itself in the
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coherence estimate as a sharp spike at the tone frequency. The change in argument
in figure 12D in the neighborhood of this frequency can serve as an indicator of the
number of poles and zeros clusterad there.

When Pmax was increased to 47, the AIC yielded Pbest = 25 for these last four
figures. However, the spectral estimates for Pbest = 25 proved to be too spiky and
erratic. Also the selection of Pbest at 25 is rather tenuous, as figure 13 indicates; this
is a plot of the AIC versus filter order P in the range (1, 47). Although the absolute
minimum occurs at P = 25, there are significant drops in the curveat P = 4, 6, and
8. Selection of P at one of these significant drops appears to be a promising ap-
proach, instead of using the absolute minimum of the curve. In addition, the
flatness of the curve is brought out by observing that the range of values of AIC is
limited to (-4.80, -4.73) for P in the wide range from 10 to 47. Thus, the local minor
drops and rises in the AIC curves are not significant; selection of values of P
corresponding to significant decreases seems to be a viable approach.
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Figure 13. Akaike Information Criterion for N = 1000, Tone Power=-12.6 dB

The last example we consider is a two-channel process of N = 64 data points,
composed of several tones, some of which are at common frequencies, and some of
which are not; this example was supplied by S. L. Marple (reference 10). In par-
ticular, process {x,(k)} has two strong tones at f = 0.4fy and 0.5fy, and a weaker
tone (-20 dB) at f = 0.2f, in addition to some low level, colored background noise.
The other process has two strong tones at f = 0.4fy and 0.8fy, and a weaker tone
(=20 dB) at f = 0.2fy. Thus the tonal frequencies common to both processes are
0.2fy and 0.4fy, whereas the uncommon frequencies are 0.5fy and 0.8fy. The two
auto-spectral estimates of each process (obtained via the single-channel, forward-
backward averaging technique of reference 4) are displayed in figure 14 for
prediction length P = 12 (24 poles for each spectral estimate). There is, of course,
no cross-feed at frequencies 0.5fy and 0.8f,.

The spectral estimates of the same two-channel data (obtained via the program in
appendix A which includes coherence estimation) are given in figure 15. The value
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of P used was 6, which allows for 24 poles in each spectral estimate. The low
number of data points, N = 64, now allows some undesired cross-feed in figures
15A and 15B at f = 0.3fy and 0.5fy, respectively. This also shows up in the
magnitude-squared coherence estimate as two very sharp spikes at these two
frequencies, whereas the true coherence is zero at these two frequencies. This
limited capability of the multi-channe! linear predictive technique can be improved
by utilizing larger data sets; N = 64 is too small a data size to accomplish a high
quality result for a data set such as this with strong interfering tones.
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Figure 14. Auto-Spectral Estimates for Multitone Example, N =64, P =12
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Discussion and Conclusions

A program for two-channel auto- and cross-spectral estimation has been
presented and illustrated for cases including interfering tones. If the number of
available points, N, is too small, some misleading estimates may be obtained
because of cross-feed between the finite lengths of data from each channel. This
cross-feed manifests itself as narrow spurious spikes in the spectral and coherence
estimates. Choice of the appropriate value of filter order, P, is possible by ob-
serving where the AIC undergoes significant negative jumps, rather than by using
the absolute minimum of the curve. It can also be illuminating to overlay plots made
with two (or more) different values of P, thereby obtaining different degrees of
resolution and stability from the same data set. The recursive nature of the linear-
predictive approach makes this practice easy to achieve.

A more fundamental observation about spectral estimation in general is now
developed. Suppose we are given finite data records of three stationary processes
x(t), y(t), and z(t), and we wish tc estimate all the auto spectra and cross spectra
involved. The Blackman and Tukey and weighted-FFT approaches evaluate the
auto spectrum of each process separately. Thus, the spectrum of x(t) is estimated
without interference from y(t) and z(t); the availability of the data records for y(t)
and z(t) plays no part in the eventual auto-spectral estimate for x(t). Additionally,
the cross-spectral estimate for processes x(t) and y(t) is independent of the available
data on the z(t) process. Finally, the coherence estimate between two processes is
independent of any additional data records for other (statistically related) processes.

On the other hand, the generalization (in references 7-9) of Burg’s single-channel
linear-predictive spectral analysis approach to the multichannel case gives auto-
spectral estimates of the x(t) process that are dependent on the available values of
y(t) and z(t). Also, the cross-spectral estimate between x(t) and y(t) is dependent on
the particular z(t) data available. This procedure can be poor for short data lengths
if, for example, y(t) contains a strong tone at f that is not present in x(t) or z(t).
Thus, estimates of spectra G,,(f), ny(f), and G,,(f) all contain tonal indications at
f, that should not be there. These spurious tonal indications are due to cross-feed
between the available finite data segments of the various processes.

This raises the following questions:

¢ Should the estimate of G, (f) be determined only from the available x(t)
data record ?

¢ Should the estimate of G, (f) be determined only from the available x(t)
and y(t) data records ?

* [f coherence C,y(fo) = 0, why use y(t) to estimate G (f ) ?

e If coherence ny(fo) = ], why use the completely statistically dependent
y(t) data to estimate G, (f ) ?

This philosophy of discarding ‘‘irrelevant’’ data would be consistent with the
Blackman and Tukey and FFT approaches. Carrying this philosophy on, we are led
to the following: estimate G, (f) solely from the x(t) data by some good single-
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channel linear-predictive technique, such as forward-and-backward averaging,
coupled with an efficient way of inverting the relevant matrices (e.g., references 4
and 5). Then estimate cross spectrum G, (f) or coherence C(f) directly, by some (yet
unknown) linear predictive technique whose sole goal is linear prediction of x(t)
from y(t) and vice versa, with no interest in or diversion from simultaneous
estimation of G,,(f) or G,,(f). By this means, we can concentrate on extracting all
the relevant cross-spectral information with maximum stability and resolution.
Other cross spectra of interest between particular pairs of available processes can be
similarly obtained, one at a time. This procedure is currentiy under investigation.
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Appendix A
Program For Two-Channel Linear-Predictive Spectral Analysis

The program listing below in Basic for the HP 9845B Desk Calculator is a
translation and update of that given in references 7-9. A complete breakdown and
explanation of the components and subroutines of the program are given in
reference 8, and in reference 9, appendix D.

Inputs required of the user are the integers listed in lines 20, 30, 40; they are

N Number of data points in each process;
Pmax  Maximum order of predictive filter to be considered;
Nfft Size of FFT to be used in spectral analysis.

In addition, the user must modify subroutine SUB Data(N,X(*)) in lines 5430-5490
at the end of the program to read in his own particular two-channel data sets. Pbest
can be forced to equal Pmax by setting Fac = 0in SUB Pcc.

An explanation of the program output is given under equation (1) of the main text
of this report. A sample printout for a short (N = 20) data sequence that can be
used as a check case on the program is presented following the listing below, Sample

plots of the auto-spectral estimates and the coherence estimates conclude the ap-
pendix.
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2%9

THO-CHANHEL LINEAR PREDICTIVE SPECTRAL SHAL SIS, TR 5921
N=Z0 ! NUMBER 0OF DARTA POINT: IN ERCH PROCESS
Pmaxsé ! MAXIMUM ORDER OF PREDICTIVE FILTER
Nfft=3Sé ! SI2ZE OF FFT

OPTION BRSE 1
REDIM ¢(Q,N>,2(2,N>,Ap(Pma~,2,2),Bp Frna 2,2

REDIM RA(Pmax,2,8),Ric(OiPmax ', KI11CHFFL ), rL1eNrf (V12 HfFL)

REDIM Y12(NFFt) , X21NFFUY Y2LONFFL) , RZQ(NFFL Y, Y22 e f ey
DIM Y(2,1000),2(2,1000),Ap(25.2,2),Bp.2%,2.2

DIM Rn¢2%,2,2),R1c<0:2%),X11(1024),Y11¢1624),412 1024
DIM Y12¢1024),%21(1924>,Y21(1024),X22¢1024),122¢1024)

DIM Avev2),Ubest(2,2),U(2,2),Y(2, 2).Ul's,.),vv'£,2 yROZ, a0

DIM BC(a,2>,R<C2, 2),“.(2 2), Nb(2 2) Wei2,2),Hdc2, 27, Wedg, o0

PRINT "NUMBEF OF DATA POINT IN EACH PPOCE:S H a";N
PRINT "MAXIMUM ORDER OF PREDICTIVE FILTER Pma: =";Pnax
PRINT “SI1ZE OF FFT Nfft s";Nfft

PRINT

CALL DatalN,Y(#)>

PRINT “PROCESS NUMBER 1"

FOK I=1 TO N

PRINT ¥<1,15;

NEXT 1

PRINT LINCE)

PRINT “PROCESS NUMBER 2"

FOR I=1 TO H

PRINT YC2,1);

NEXT 1

PRINT LINC2)

CALL Pcc(N,Pmax.Y\r>,:<~),Huc‘*»,u;x.,,nb.~-,u¢7«~,wa.'-,u.~¢;,ﬁ-*w,uao,,w

(r),Ric(#) ,Pbest,Ubest %), Uri#) V173 R ¢, Bre) Apie . Epr e

300 PRINT “MEANS OF INPUT DATA (Aves:"
319 PRINT Ave(l)
<9 PRINT Rve(2)
330 PRINT LINCYD
340 PRINT “COVARIANCE MATRIX OF INPUT DATA (Ry:" R »:
3%0 PRINT “AKRIKE INFORMATION CRITERION:*
360 PRINT = P Ric(Pr*
379 IMAGE 3D, 4<4%, M, 9DED
380 FOR P=Q TO Pmax
390 PPINT USING 370;P,Ric(P>
400 NEXT P
419 PRINT LINC1)O
420 PRINT "Pbest =";Pbest
439 PRINT LINC1)D
449 PRINT "Ubest:",Ubest(#)
470 PRINT "FORWRRD PARTIAL CORRELATION COSFFICIENTS:
460 PRINT * P Apii, 1) Apca, 1
Ap(g, 20"
47¢ FOR P={ TO Pmax
430 PRINT USING 370;P,Ap<P,1,1),Rp'P,2,1 . Ap P, 1,2 . Fp P, 2,2
499 NEKXT P
S00 PRINT LINCI)D

A-2
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TR 6533

sto PRINT “BACKWRRD FPARTIAL CORRELATION COEFFICIENHTS:"
S30 PRINT * P BpCti, 1 Ep' &, 1) Bp.1,2>
Bpc2,a>"
330 FOR P=1 TO Pmax
S0 PRINT USING 370;P,BpC(P,1,1>,BpP,2,1,,Bp'P,1,2,Bp"FP,2,2)
S%0 NEXT P
S€0 PRINT LINCYED
$70 IF Pbeat=d THEN 890
S80 CALL PFcc<Pmax,Pbest ,R(#) Ap(#),Bpis ) Wai#, Wb 4), Wcrw) HUdi#) Rn(*¥>,R1L1,RZ2
yR12)
S99 PRINT “FORWRPD PREDICTIVE FILTER COEFFICIENTS FOR Pbest:!"
600 PRINT * P ApC1, 1) Apra, 1> Rp<l, &>
Apc2,2)"
81@ FOR P=1 TO Pbest
629 PRINT USING 370;P,Ap<P,1,1),ApP,2,15,RpiP, 1,2 R P, 2,2
630 NEXT P
640 PRINT LINCD)
6%0 PRINT "NORMALIZED CORRELATION MATRICES (Rny:"
6€0 PRINT “DELRAY RUTO11 CROSS2! CROS512
AUTO22"
670 PRINT USING 3709;0,R<1,1),R(2,15,RP(1,2>,RC2,2?
680 FOR P=1 TO Pmax
699 PRINT USING 379;P,Rn(P,1,1>,Rn(P,2,1),Ffn¢P, 1,27 ,Fn P,2,2"
700 NEXT P
710 PRINT LINCD)
720 CALL Peftf(PDest, NFft, ApC#) X11C#) Y11C#), X120 % Y12  +1, 42100, Y21 (#), X227
*),Y22¢#))
730 CALL SAm(Nffr Ubest #) ,Wad#) WbCa#d e #>, WadCer Har#s,511(4,, 7 1ue),X12Cx),
Y12¢#), 421 #) ,Y21(#) ,X22C¢>,Y22(*),511,522,512)>
740 PRINT "SPECTRAL DENSITY MATRIX AND COHEFRENCE, FRIM ZEFC FREQUENCY <BIM 153

. ’

7%0  PRINT * BIN AUTORI AUTO22 RECCROSS12) IMCCRDS312) MRG SQ COH
ARGUMENT* ‘
760  IMAGE 3D,S<M.6DE, 1X),M.6DE
o FOR I=3 TO 30
780 Ls! )
798 IF 1<16 THEN 8490
800 IF 1>16 THEN 839
819 PRINT "asoar
20 GOTO 8%Q
830 LsleNffr-,2-29
840 PRINT USING ?60;L,%11¢L),X22¢0L, K12, fl2 ), I1cL, V2l
850  NEXT 1
868  PRINT LINC1)
870 PRINT “TRAPEZOIDAL SUMS OF SPECTRM:"
860  PRINT $11,822,812
898  PRINT
98@ PRINT "COYRRIANCES OF INPUT DRATA:"
910 PRINT R11,R22,R12
920  PRINT LINC1)
930 CALL RCMINAFL,X11Cm> X12¢#),Y12¢8) X213 #), 2 e 22 = N1Im1,H22m1, 1 1md,
X2Znd)
940  NIsNffe+}
9%@  N2=Nfft.2
960  N22mN2+2
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TR 6533

370
930

PRINT “ALIASED NORMALIZED CORRELRTION MATRICES:"

PRINT “DELRY AUTOL1 LROSS21

AUTO22"

9%0

1000
1010
1020
1030
1049
1030
1060
1079
10890
1090
1100
1110
1120
1130
1140
11350
1160
1170
1180
1190
1200
1219
1220
1230
1240
1230
1260
1270
1280
1290
1300
1310
1320
1330
1340
13%0
1360
1370
1380
1390
1400
1410
1420
1430
1440
14359
1460
1470

PRINT USING 370;08,A11(N22>,X21¢(1»,X21c1),X22.N22"

FOR I=1 TO 27

Le!

IF I<1é THEN 1070
IF 1>16 THEN 1060
PRINT “#xsuv

GOTO 1080
Lsl+N2-29

CROSS12

PRINT USING 370 ;L,X11(NQ2+L), KQ1(N1=L ', K211+l  ¥22ON2Z+L)

NEXT 1

PRINT USING 37O;N2-1,X11m1,X21(N22),X21 NI, X22m?
PRINT USING 370;N2,X11m0,X21(NS+1), XS1 NI+, n22m0

PRINT LINC2)

PRINTER IS ©

PRINT “"AUTO SPECTRAL DENSITIES IN DB:"
PLOTTER IS “"GRAPHICS"
GRAPHICS

SCALE O,NZ,-5,0

GRID N2-4,1

PENUP

FOR I=9 TO N2

PLOT I,LGTI(X11CLI+1))
NEXT I

PENUP

FOR =0 TO N2

PLOT I,LGTC(X22(I+1))
NEXT I

PENUP

DUMP GRAPHICS

PRINT LINC3D

PRINT “MAGNITUDE SQUARED COHMERENCE AND ARGUMENT"
PLOTTER IS “"GRAPHICS"
SCALE O,N2,0,1

GRID N2/4,.23

PENUP

FOR 1=9 TO N2

PLOT I,Y11C1+1)

NEXT 1

PENUP

SCALE 9,N2,-PI,PI

FOR I=@8 TO N2

PLOT I,'722CI+1>

NEXT 1

PENUP

DUMP GKAPHICS

PRINT LINC4D

PRINTER IS 16

END

!




1430

SUB PECCN,PRaX,Y(#),2C#) , Rud+) Hat#) , UbC 1,4z e Wdr =1 Hei#) ,Rie), Yiwy

#),RicCe),Pbest,Ubest (#),UiC#),Vi(#) A%, B+, Rpiss, Bpisl

1490
13580
1510
18520
1830
1340
15350
13560
1570
1580
13590
1600
1610
1629
1638
1640
1630
1660
1670
1680
1690
1700
1710
1720
1730
1740
1730
1760
1779
1780
1790
1800
1810
1820
1830
1840
18350
1860
1870
1880
1890
1900
1910
1920
1930
1940
19S50
1960
1979
1960
1990
2000

1asINT(1,.S*SQR(NY)
IF Pmax<{=s]a THEN 1320

PRINT “Pmax =";Pmax;"IS TOO LARGE FOR N ="“;N;" SEARCH LIMITED TG P =" 1Ia

lasMINCla,Pmax)

Facs=3/N | Fac=@ WOULD FORCE Pbest EQUAL TO Pmnax
MAT Ave=RSUM.Y)

MAT Ave=Auve~ (N)

AlsAvecl)

A2sAve(2)

FOR I=1 TO N

Y¢i,1)myY(y, I>=-A1
Y<(2,1>aY(2,1>-A2

NEXT I

MAT ZsY

CALL Auto(Z,N=1,YC(#),Uc(#))
CALL Autodl,1,Y(#),Wd(#))

CALL AUto(N,N,Y(#) ,We(#))

MAT WaskceWe

MAT Wbalc+Wd

MAT Rsib+le

MAT RsR/(N)

MAT U=R

MAT VYsR

CALL Cross<2,N,Y(#),2(#) ,Wc (%))
Aic(0)=LOGCDETCUI)
ARicminmAic (@)

Pbest =0

MAT Ubest=U

FOR Ps! TO la

MAT VisINV(VY)

MAT WdsVisWb .

MAT Wb=ld

MAT UisINVWD)

MAT WdsWa

MAT Wasldeyi

MAT Wcokc#(2) ’
CALL Soluve(Hai#),WbC#), e (*#), HdC(e), Wer+"
MAT AsWc#Vi :
MAT WdsTRNCWC)

MAT BsWde#Ui

Ap(P,1,1>=AC1, 1)
Rp(P,1,2)®R(1,2>
Ap(P,2,1>=AC2,1)
Ap(P,2,2>=AR¢2,2)
Bp¢P,1,1)>sB(8, 1)
Bp(P,1,2)=BC(t,2)
Bp(P,2,1>=B¢2,1)
Bp(P,2,2)=B(2,2)

MAT WewAeld

MAT UsU-We

MAT We=B#lc

MAT VeV-Ue

y Ve
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2010
2029
2030
2040
2030
2060
2070
2080
2090
2100
2110
2120
2130
2140
21358
2160
2170
2180
2190
2200
2210
2220
2230
2249
2250

<260
R12)
2270
2280
2230
2300
2310
2320
2330
2340
2330
2360
2370
2380
2390
2400
2419
2420
2430
2440
2450

A-6

RicCP)sLOG(DETCU>)+Fac+P

IF Ric<Pi>sRicmin THEN 20860
RAicminsRic(P)

Pbest =P

MAT UbestsUy

IF P=la THEN 2220

LaPel

FOR K=N TO L STEP -1
AlsY(l,K>

R28Y(2,K) 0
B1=s2(1,K=1)

B2=Z2(2,K=1)>
2¢1,K>=B1-B¢1,1,%A1-BC(1,2)%A2
2(2,K>=B2-B(2, 1 #A1-B(2,2)+RA2
YC1,K)=R1-AC1,1)#B1-RC1,2,#B2
Y(2,K>=A2-AC2,1)#B1-AC2,2>%B2
NEXT K

CALL AUuto(P+2,N,Y(#) Wal(*))
CALL Auto(P+) N-1,2(#),Wb(#))
CALL Cross<(P+2,N,Y(%), Z2C¢(#) Uc(+")
NEXT P
Ala,S+(Ubest¢1,2)+Ubest(2,1))
Ubest (1,2)=Ubest(2,1)>=AL

SUBEND
!

SUB Frc<Pma:x,Pbest ,R(*) Apv+) ,Bpde, da ~ kb *  He = Wdi#) Rni>: ,R11,RZL,

Rn(l,1,10=ApC1, 1, 1i#R{L, 1 +RAprl, 1, =F 2,1"
Rn(l,1,2)=Ap1, 1, 12eR0]  20+fApil, 1,2 =Fig, 20
Rn{1,2,108fp(1,2,1:#RC1,12+Apil,2,8*F- 2,1°
Rn(l1,2,2>%Ap"1,2, 1 )#RC1,2)+Apil, 2,2 #F 2,4

FOR P=2 TO Pbest
MeC1,1)=RpCP, 1, 108RC1, 10*Ap P, 1, 2)8R 2, 1"
We(l,2)®Rp(P, 1, 1 1#RC],2)+ApiP, 1,2 ek 2,2}

He(2, 1)mApPCP, 2, 18R, 1)+ApLP, 2, 20+R L, 1
NC(2,2)=ApC(P,2,1)#R(1,2)+Rp(P, 2,2)eR(2,2)

FOR L=1 TQ P-1

Ib=sP=L
Ha(l,1)sAp(P, 1,1 i#Bpilb,1,1)+ApiP, 1,2 -Ep- Ib, 2,1~
Ha(1,2>=ApC(P,1,1)#BptIb,1,2)+Ap(P, 1,2 +BpIb,2,c"
Wa(2,1>=Ap(P,2,1'#BplIb, 1, 1)+ApP, g, 2)<+BpClo, 2,1
Wa(2,2sAp P, 2,1 7+BpiIb,1,2)*Rp(P,2,2 ' «Bp<Ib. 2,3
Wa(l,1)=Rp?L,1,1)=Hatl, 1)
Wa(l,2>=ApcL,l,2>~uall,2)
Wa(2,17=ApCL, 2,1 -Hat2,1)
Wa(g,2>sAp(lL,2,2 ) -Hal2, 22

duced from o
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2460
2470
2480
2490
2500
2919
2520
2530
2540
2330
2560
2370
238e
2590
2690
2610
2629
2630
2640
2630
2660
2670
2680
2690
2700
2710
2720
2730
2740
27%0
2760
2770
2780
2790
20800
2810
2820
2830
2840
2830
28€0
2870
28890
26890
2900
29180
2920
2930
2940
29350
2960
2970

Wb<1,1)8Bp(P, 1,1 #RpCL,1,1)+BpiP, 1,2 %ApcL,2,1"
WbC1,2)sBp(P,1,1)%RpdL,1,2)+Bp.P,1,27+Ap(,2,2"
Wb(2,1)mBp(P,2, 1)#RpCL,1,1)+Bp/P,2,2)+ApiL,2,1>
Wb(2,2>=Bp(P,2,1>%Ap(L,1,2>+Bp(P,2,2)+RptL.2.2D
Bp<lb,1,1>=sBpCIb,1,1)=-Wb(1,1)>
BpClIb,1,2)=BpC(Ib,1,2)-Hb(1,2)
Bp(Ib,2,1)8BpCIb,2,1)-Wb(2,1)
BpClb,2,2)=Bpclb,2,2)-Wb(2,2)

ApcL,1,1>slacl, 1)

ApdL,1,2)=Hact, 2>

ApdL,2,1)=lac2, 1>

HP(L|2'2)-H.(2.2) .
WdC(1,1)ekacl, 1>#RN(ID, 1, 10+Kac1,2)*Rn Ib,2.1)
Wd(1,2)shall, 1)#*Rn(Ib,1,2)+Wal,2)#RNn Ib,2,2"
Hd(2,1)=Ha(2, 1)#*RNn(Ib, !, 1)>+Wald,2)+Rn(1Ib,2,1"
Wd(2,2)oHal2, 1)*RN(Ib, 1,2 >+Wacl2,2)«Rn(Ib, 2,2/
MAT uWcslc+hd

NEXT L

Rn(P,1,1)0slc (L, 1)

Rn(P,1,2)sH¢c(3,2>

Rn(P,2,1)8lc(2,1>

Rn(P,2,2)8Wc (2,2

NEXT P

FOR PwPbest+i TO Pmax

MAT Wa=2ER

FOR L=t TO Pbest

IbapP-L

Wb(1,1)>=ApCL, 1,1)#RN(Ib,1,1)+Ap<L,1,2 ' *RNC 1D, 2,1
Wb(1,2)sAp(L,1,1)*RN(Ib, 1,2 +Ap(L, 1,2 +Rn 1b, 2,2
Wb<(2,1)=ARp(L,2,1)#RNC(Ib,1,1)+Ap(L,2,2)*Pni{Ib, 2.1
Wb(2,2)8Ap(L,2,1)#RN(1Ib,1,2)+Ap(L,2,2 «Rn' [D. 2.2/
MAT WasWa+kd

NEXT L

RNCP,1,1)sHact, 1>

Rn(P,1,2)sHacl, 2>

Rn(P,2,1)>sUac2,1>

Rn(P,2,2)sla(2,2>

NEXT P

RilsR(}1, 1)

R22=R(2,2)

R12=R(1,2)

T=SQR(R11#R22>

R(1,1)>mR(2,2)m

R(1,2)8R(2,1>=R12/T

FOR Ps{ TO Pmax

Rn(P,1,1)>sRn¢P,1,1)>/R11

RN(P,1,2)8RNCP, 1,277

RN(P,2,1)sRN(P,2,1)/T

Rn(P,2,2)sRn(P,2,2)7R22

NEXT P

SUBEND

[}
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2980 SUB Peftf(Pbest ,NFft,Ap(*)>,X11(#>,Y11ce,

), ¥22(#))

2990 X11(1)=X22C(1)e}

3000 FOR Le=1 TO Pbest

3010 Xitd(Lel)e=ApdclL,1,1)>

3020 X1Q(L+1)s=-RplL,1,2)

3030 X2icLel)s-Ap(lL,2,1>

3040 X22(L+1)m=-Ap(L,2,2)

3080 NEXT L

3060 CALL FFrlO(Nffe , X11C¢#),Y11(#))
3070 CALL Fft1OCNFfL X12¢8),Y12¢#>)
37230 CALL FFLIQ(NFfL,X21¢#),Y21(*))
3090 CALL FFt10CNFfe ,X22(#),Y22¢#))
3100 SUBEND

3110 !

3128 SUB SAm(Nffe,Ubest(#),WHaC#) Wb (#) ,Uc ) Udr#.,
12C#) , K21 (), Y21 (%), X22¢#),Y22¢#>,511,322,312:
3130 Ts2 Nffe

3140 $S11=§22s512%0

3150 JsNffe/ 2+

3160 FOR L=y TO J

3170 MWadl,1>sX22¢L)

3130 Wac1,2)=-X12<L)

31990 MKWad2,1)s=X21<CL)

3200 Mac2,2>sX1i1<L)

3216 Wb(1,15aY22¢CL)

3220 Wb(1,2)m-Y12CLD

3230 Wb(2,1)3-Y21<CL)

3240 Wb(2,2)mY11CL)

32%@ TasDET(Wa)=-DETCWD)

3260

3270 TA-T/(TaOTaofb-Tb>

3280 MAT kWcsTRN(Ma)

3290 MAT WdsUbest #lc

3390 MAT WcsWb#ld

3310 Tb=Wc(1,2)=-Uc(2,1)

3320 MAT WcsWarld

3330 MAT WdsTRNCWD)

3340 MAT WesUbest *ld

3350 MAT Uds=uWberile

3368 MAT UWesle+id

3370 YI1CLO)®m(WC(1,25~2¢TD#Th) /7 CHCCL,1)#lc 2,20
3380 Y22<L)=FNArgcMc(1,2>,Tb)

3390 XildL)>sTasWe(l1,1)

3400 X22(L)sTaslcc2,>

3410 Xi1zdLr)sTaslc(1,2)

3420 Y12<L)aTaeTd

3430 Siis=S1ieX11(L)

3440 $223522+422¢L)

3450 S12=512+X12CL>

3460 NEXT L

34790 Si1mS11-,5#(X11C1)*eXLLCT))
3480 $2228522-.5#(X2C1)1+X22¢J))
3430 S12m512-.50(X12C1r+X12CI))
3%00 SUBEND

3%te !

Thb=Wacl, 1)#Wb(2,2) +Wa(2, 2 #Wb< 1, xw-uc-1,:;~ub«2,1:-u;-z.x».ubxx,2>
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C20 SUB RCM(NFFL, X11(#) X12¢#),Y120#) ,X21C#), 72 v ) 0 22¢% 0 X1iml,X22m1,X11md, X
aZmd) .
3530 N2sNffe 2

3840 HN21sN2+l

3550 HN22=N2+2

3560 FOR L=1 TO N2

3870 X21dL)s, SeX11L)

3880 Y21d(L)=,SeX22¢L)

390 X21(N2+L)=, S#X{1(N22-L)
3600 Y21(NZ+L)>=,S#X22(N22-L)
3610 NEXT L

3620 CALL FFLIQ(NfFL ,X21<#),Y21(#))
3639 Tasi/ /X211

3640 Tbwi/vY21(Y)

3630 TeSAR(TasTh)

3660 X11(N22)=K22(NQ2)>=1
3670 FOR (=2 TO N2-1

3680 X11(N21+L)>=sX21<(L)*Ta
3690 X22(N21+L)>=sY21(L)>#TD
3700 HNEXT L

3710 XilmisX21(N2)sTa

3720 X22misY21(N2)>#TD

3730 X1imdsX231C(N21)>#Ta

3740 X22m0=Y21(N21)+Tb

3789 X21<1)a, S#)12C )T

3760 Y21(1)m= SaY12C¢1)#T
3770 FOR L=2 TO N2

3780 X21<L)aX12L)*T

3790 Y21<(L)=s=Y12(L)*T

3800 X21(N2+L)>=Y21(N2+L)> =D
3810 NEXT L

3820 XQ1(N21 s, S#Y.12(N21)#T
3630 Y21 (N21)w=,SsY12(N21)>+T
3840 CALL FFL10(Nffe ,X21¢®),721C))
385 SUBEND

3860 !
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3gve
3880
3890
3%00
3910
3920
3939
3940
3950
3960
3970
3980
3999
40090
4010
4020
4030
4040

40%0
4060
4079
4080
4090
4100
41109
4120
4130
4140
4150
4160
4170
4130

4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4309
4310
4329
4330
4340
4350

SUB Cross(HI,N2,RC*),Bc#)>,C %))
S11=512=5213522=0
FOR KsNi TO N2
A1sR(1,KD
A2=AC2,K)
BisB(1,K-1)
B2=B(2,K=-1)
S11=S11+R1+B1
$12=812+R1 482
$218521+A2*B1
$222822+A2%B2
NEXT K

C<1,1)>=811
Cc1,2>s812
Cc2,1)=821
C(2,2>8822

SUBEND

!

SUB Auto¢N1,N2,AC#) ,B(#))
S11=8122822-0
FOR K=N1 TO N2
AL=ACL, KD
A2=AC2,K)
S11=S11+A1+A1
$12s512+A1#A2
$223S522+A2#R2
NEXT K

BC1,1)m811}
B(1,2)=B¢2,1)>2512
3¢2,2>=822
SUBEND

!

SUB Solue(Wa(#) ,Wb(#),lHc(#),Hd(2), Ue(*) "
TasWacl,1)>+Wa(2,2)+Wb(],1)>+Ub(2,2)
To=DET(Wa)>-DET (WD)

MAT Wd=kc*uWbd

We(l,1)eHac2,2)

WecCl,2)s=-Wacl,2)

We(2,1)s-Wac2, 1)

H.(z,z‘liul(l. 1)

MAT WasWe#Wc

MAT Wd=Wd+Wa

MAT Wb=Wbe(Tad

WB<1,1)=UWb(1,1)«TD
Wb(2,2)=Wb(2,2)+TD

MAT WesINV(WD)

MAT Wc=Wdsle

SUBEND

'
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4360 SUB FFLIOIN,X(#),Y(®)) I N <= 2+10 = 194, N=Z [NTEGER

4370 DIM C(1:257)

4380 DATA 1,.999981173283,.999324701839,.93%330%21758,.,399628813696,.999529417S
01,.999322384588,.999077727733,.9987954356205, . 733479530573,.998118112909

4390 DATR .997723066644,.997299456€79,,995320279271,.996212612182,.995767414468
1998184726672, .994364370734,,993906970002, . 3932119749225, ,972479534599

4409 DATA .9917097353669,.990902633428,.990053210262,.933176%0996%,.9838287%67731
»+9873014181358,,926308097243,,983277642389, . 934210092387, .983105487431

4410 DATA .981963869110,.98078352380403,.979569783638%3,,.%73317370720,.977028142638
» 9738702130039, .974339382786,.972939952296, .97150229093¢€, . 270031233138

4429 DATRA .968522094274,.966976471045,.,.965394441693,,.953776063795,.9€2121404269
)« 960430519416, .9358703474896, .956940333732, . 335141168306, .353306040354

44390 DATR ,951435020969,.949523180%93,.947555591018,.945607325381,.943333438162
) 9413440635183, . 939459223602, .9373399011913,.935133%09939, ,9232992798838

4440 DATA .930766961079,.9295045030473,.926210242138,.923879332511,.9215140839342
»+919113851699,.916679039921,.914209733704, ., 211796032009, .509167963991

445@ DATR ,906393704315,.,903999293123,.901343347046,.8936744556€94,,395966249736
)« 893224301195, .890448723248, ,837639620403,.884737092431,.831921264348

4460 DATA ,979012226429,.876070094193,.373094973415,,370036991109,.867046245516
» 863372856122, .860866938638,.857728610000, .334535798236%,,3%1339519310S

4479 DATA .348120344803,.84483535632309,.8415354977437,,.3382247095335,.834362874936
»+ 831469612303, .982804350452358,.8245393927883, .251104%14991,.8179384813152

4480 DATA .814036329706,.81043571982353,.306347353344,,303207331481,.799337263108
s 793336904609, .792106577308, . 798346427627, . 734556397155, . 739737223572

4490 DARTR .7769884635673,.773010433363,.767103337646,.76%167265622,.761202385434
»+ 737208846306, , 733186799044, ,749135394323, . 7470I7785441,.74095112535S
407 DATA ,736816363877,.732654271€72,.728464390443,.7242470829%1,.7200025973€1
v 718730823284, .711432195745,.707106781187, .7027%4744437,,698376249409 :

319 DATA .693971460890,.6893540T44737,,633033657772,.63050099779%,.67609270337S
1:671338954847,.666999922304, .662415777590, .5573806623297,.653172842954
4528 DATR .648514401022,.643831542890,.639124444364,,534332284164,.629638238919
».624359438142,,620057211763,.615231590%81,.5103825065276,.605511041404
4338 DATA .600616479384,.595699304432,.5307S97012%%,.%35797887456,.98081395809¢
»+3573308191418,.570780745887,.563731810784, .360561376197,.353570233020
43540 DATA .350457972337,.545324988422,.%540171472730,.,%34937619887,.529303624686
)« 324389682678,.319353990166,.514102744193, ,.503330142343,,30353838372¢
4550 DATR ,.498227666973,.492898192230,.487550150148,.432133772079,.476799230053
1+471396736826,.465976493768, .460538710958, . 457033587126, .443611329655
4560 DATA .444122144570,.432615238539,.4330%33133%2,.4273550893430,.422000270800
1416429360098, .4108431710358, .405241314005,.3996241933345,.393992040061
4370 DATA .38834T046699,.382683432365,.377007410216,.371317193932,.363612997395
» 339395036333, .354163525420,.348418680249,.2342560717312,.336889833392
4380 DATA .331108303760,.325310292162,.319%0293031¢,.213681740399,.307849640042
3023095949319, .299150888244,.290284677234, . 284407737211, . 272519689385
4390 DATA .27262135%4%50,.266712737473,.260794117915,.2%4559559605,.24992768%746
» 242380179903, .2370236035994,.231058103281,.225033911359,.219101240157
4600 DATA .213110319916,.207111376192,.201104634342,.129050222016,,1590536641%9
». 183239887935, .177004220412,.170961388769,.184913122499,,158858143334
4€10 DATA ,152797185258,.146730474458,,1405T2239333,,134532708507,.128438110794
v 122410675199,.116318630912,.110222207294, . 104121632572, . %301714083296E-1
4620 DATA ,919089864971E~-1,.857973123444E-1,.798824379714E-1,.735645635237€E-1,.
674433198637E-1,.613207363022E-1,.551952443497E-1,.430aTuT43274E~1
4630 DATA ,.429382369349E-1,.363072229414E-1,.30674303178E~1,.245412258522%€E-1,.
184067299038E-1,.122715382837E-1,.613588464215€~-2,0
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4649
4650
4660
4679
4630
4550
4700
4710
4729
4730
4740
47350
4760
4770
4780
4790
4800
4810
4820
4830
4840
4350
4860
4870
4880
4890
4500
4910
4920
4930
4940
4950
4960
4970
4980
4990
Soeo
Sote
Se20
Sa3e

A-12

N P T P p—

READ C<(#)

M=1024/N

FOR I=® TO N/4
C{l+1duC(Malel)
NEXT 1

Ni=N/4

N2sNi+]

N3=N2+1

N4sNi+N3
Log2naINT(1,44274LOGC(NI+, )
FOR Ii=1 TO Log2n
1292~(Log2n~-11>
13=2#12

14aN/13

FOR IS=1 TO 2

168 (1S=1)#]4+}

IF 16<=N2 THEN 4840
Nés-C(N4-16)>
N?==-C(I6=-N1)

GOTO 4860

Né=C(l16)
N?s=C(N3-16>

FOR I7=9 TO N-I3 STEP I3
18217+1S

19=]18+12
N8sX(18)-XC(I9)
N9sY(I8)=YCI9)
KC18I)mX(IBI+X (1D
YCI8)mY(I8)+Y(19)
XCI9)=NE#NS-N7#NS
YC(I9)aNE#NI+N7#NS
NEXT 1?

NEXT IS

NEXT It

Il1=Log2n+1

FOR I2=% TO 1@
C(l2)>=y

IF 12>Log2n THEN %030
CCla2 >=2~C(11=-12)
NEXT I2

I 2~10=1024



S049
sese
Soed
Seve
Sose
Sese
S100
S110
Si120
S130
S140
S130
S160
S17¢
S180
S190
S2e0
sSa1e
S220
S230
3240
sase
S5260
s27e
Sc8e
S299
S300
sS31e
S320
3330
S340
33350

$360
S378
S$380
s$39¢
5400
S410
5420

S430
S449
%4%8
5460
S470
S439
S490

e S ————

ool L i s . il i, W ] e i

Kmi

FOR [1=1 TO C(1®

FOR 12=I1 TO C(9)> STEP C(1d>
FOR I3=]12 TO C-3> STEP C(9
FOR l4=13 TO C<?> STEP C(8>
FOR ISsl4 TO CC6) STEP C(?
FOR 16«15 TO C(S) STEP C(6)
FOR [73]6 TO C(4) STEP C(S>
FOR I8=1?7 TO C(3> STEP C(4>
FOR [9=I8 TO CC2) -TEP C(3>
FOR 110=19 TO C<1> STEP C<2)
Jel10

IF K>J THEN S23@

AaX(K)

X(K)eX(JI)

X¢J)=A

Ay (K)

Y<KImY ()

Y<Jr=A

KeK+1

NEXT l1@

NEXT 19

NEXT I8

.NEXT 17

NEXT 16
NEXT IS
NEXT 14
NEXT I3
NEXT 12
NEXT 11
SUBEND

t

DEF FNArg(X,Y)> ! PRINCIPAL ARG(Z.
IF X=9 THEN A=, S+PI#SGNCY)

IF X<>@ THEN ASATNIY/X)

IF X<@ THEN AsR<+Pla(1-24(Y<0))

RETURN R

FNEND

'

SUB Data(N,X(#))
OPTIOM BRSE 1
REDIM X<2,ND

DATAH 1,2,6,3,1,1,%,1,4,5,3,2,1,5,6,1,2,4,%,2
DATAR 2,1,0,1,5,3,0,1,2,8,2,2,4,2,3,5,€,9,”,2
READ X(#)

SUBEND

A-13
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A-14

NUMBER OF
SI12E OF FFT Nfft = 236

PROCESS NUMBER 1

DATR POINTS IN ERCH FROCE:S N
MAXIMJM ORDER OF PREDICTIVE FILTER Pmax

. a
[ X
L]

1 2 6 3 1 1 2 t+ 4 95 3 2 1 95 €

PROCESS NUMBER 2
¢ 1 9 1 S 3 0 1

MEANS OF INPUT DATA (Ave):
3.39
3.2

2 6 2 2 &4 2 2

COVARIANCE MATRIX OF INPUT DATA (RJ:

S.7273 .83

.83 é.18

AKARIKE INFORMATION CRITERION:
P Aic(P
") +354363830E+01
1 . 324147843E+01
e +31320954SE+01
3 . 342423963E+01
4 .2387773SS3E+01
-] .248589498E+01 .
é .26611?718SE+01
Pbest = 4
Ubest:
. 54893344383 . 226987933323
. 226987333923 4.00240808163

FORWARD FPARTIAL CORRELATION COEFFICIENTS:

ApCl, 1D
+ 32684786 1E+0
-, 49707941 2E+00
-.172083146E+00
-.143631633E+900
-.31354456SE~-01
«9901306062E-01

ANEWN~-TD

BRCKWRARD PARTIAL CORRELRTI
Bp(i, 1>
«391694421E+20
-.857848277E+00
-.218767331E+09
-.128639908E+009
-.28%7137623E-01
.182731463E+00

PR E W ~-T

Apta, 1>
~.29623%502%E-01
.851093325E-01
+2373353%8E+0V
-.11068663ZE+00
~.440540782E+00
-.736516304E-01

ON COEFFICIENTS:
Bp(2, 1»
.4S15€5794E+00
17842283 3E+M0
.682%53%0177E-91
10051747 7E+0D1
«194124208E+0)0
-, 2844€31€3E+00

TN S
JAITINIETEELN
LITTATILITOE 4
LTES121047E-01
Al g Y L] X T
12332 FAZIELOD
L2SEATIVICTE+DY

Bprtl.22
L12271T7514E-01
LT 140D 10E-D])
AT ESSESQR
BT AET Fa Rl X1
s 2 13ZQAZNTE-DD
sBERL T IE=-D

Ap{2,a>
«492296101E+00
27801751 2E+20
. 154803723E+90
. 12471S353E+00

.323%E0134E+00
. T347S2V3TE+0D

Bp¢a, 22
42744342 1E+ 00
-.192143512E+00
«1297%39853E+09
-.9441418%cE-01
.117929S10E+v0
.1€1431ST79E+0Q



FORWARD PREDICTIVE FILTER COEFFICIENTS FOR Phest:

> WM - O

NORMAL I
DELAY

AR EWDN—-O

SPECTRAL DENSITY

Apcl, 1)
«235726249E+00
-.600483360E+00
-.404360932E+00
-.143631688E+00

ZED CORRELRATION
AUTOL!
. 100000000E+0!
« 3F,9669762E+00
-.28473130SE+00
~.372945922E+00
-.223941701E-01
+396697360E+900
« 3390388400E+00

MATRIX AMD COMERENCE,

«174118149E+00
-.164936772E+00
+342089499E+00
-, 1106865633E+00

MATRICES (Rn):

CROSS21
«139734996E+00
+402437203E-01
. 912480910€-81
. 199208143E+00
+876238663E-01

-.896791098€-01
-.836262322E-01

BIN AUTOL!L RUTO22 REC(CROSS1I Q)
1 .563234E-01 ,130480E+02 .343704E-01
2 .T6R462E-01 .13029TE+09 .34T113E-01
3 .S60132E-Q1 .129740E+00 ,3423%9€E-01
4 ,336327E-01 .128822E+0Q .334493E-01
S .351025E-01 ,127S49E+00 .823603E-01
6 .S44301E-01 .129934E+00 .809811E-01
7 .336226E-81 .123994E+00 .?793277E-01
8 .S526890E-01 .1217S1E+00 .7?419%E-01
9 .S16400E-01 .119230E+00 .?7S2793E-01

10 .%04882E-91 .116460E+I0 .729330E-01
11 .492476E-01 .113474E+00 .?704068E-91
12 .47933SE-01 .110309E+00 .677369E-01
13 .4656423E-01 .107002E+00 .649485E-01
14 .4S1S507E-0! .103393C5+00 .6207S1E-0O1

15
oo
116
117
118
119
120
121
1e¢
123
124
129
126
127
128
129

«437138€-01

+4956384€-02
+464126E-02
«436922€-02
«413522€-02
+393482E-02
+376422E-02
. 36202SE-Q2
+ 350027E-02
«340211E-02
« 332403E-02
«32646SE-02
» 32229%E-02
«319821E~-Q2
« 319001E-02

+100121E+@0

+S277S6E-02
. 492382E-02
«461992€E-02
+43S9SSE-02
.413733€-02
«3943°7E-02
+379007E-0Q2
+365814E-02
.355042€-02
+346487E-02
+339991E-02
«333433E€-02
+332731E-02
.331836E-~-02

TRAPEZO0IDAL SUMS OF SPECTRR:
S5.72578250464

«591473E-91

«1290088E-02
«190292E-02
+199172E-02
.204244€-02
.208889E-02
«212416E-082
+215073E-02
«217R33E-0QC
.213%039€-02
+219%S8E-09¢
. 220289€-02
«220767E-02
.221037€E-02
.22112%5€E-02

6.13993376382

COVARIANCES OF INPUT DATA:

S.?

273

6.16

Apdt, 2t
L2 STASTTESQD
41269967 3E+0Y
-, 239743642E+00
s T34THIRLE+D0

CROSS12
+139734996E+00
«433290946E+00
+311090650E+00
«117107113€E+00
« 1907927 16E+00
»112701303E£+00

=.9%1269127E-91

1NOJJJ

Ap(2,2”
.870170ST2E+00
-, 44241293BE+00
«23144S373E+00
-.124713353E+900

AUTQZ2
. 180000000E+01
+438307047E+00
+640872368E-91
+663036633E-01
+100976458E+00
«128691973E+00
.1883887381E-01

FROM ZERO FREQUENCY C(BIMN 1)@

IM{CROSSL 2 MAG SO COH ARGUMENT

<Q00Q0VE+D1  .98Q11T7E+QQ . 0OQOQURE+D!
caS4597E-0s (. IS00SHE+90 -,300463E-01
«SOEITIE-QT . DBTI9904E+00 -.601103E-01
¢ 734240E-02 .ITIS34E+QQ -.I0IVF4E-D]
«996103E-0c . 9TI2TVE+CQ -.120Z60E+90
«122873E-81 .9T73746E+00 -,150C31E+90
«14%083E-01 ,9TH113E+00 -.130892E+00
.186Q73€E-91 LAITTI4LE+QQ -.211311E+090
.138704E-91 .37E413E+00 ~-.2418S8E+00
«2Q3337€-901 ,97I33LE+Q0 -.IZ72SIVE+00
«220443E-91 .9740S9E+Q0 -, 303429E+00
+&39426E-01 L IVZTCHELQ0 -, 334493E+00
<2487 74E-D1 ,970323E+00 ~-.36579SE+0Q0
. &60%03E-81 ,9I63328E+30 -,397345E+00
«270676€E-01 ,955658E+00 -.429181E+00
+36€37SE-02 .63CSI9E+00 .111448E+01
«323493€-92  .516259E+08 . 103904E+Q1
«234179€-92 . SI464E+09 .9518S1E+90
+248431€-92 .TT3915E+99 .88282ZE+0Q0
«a198923E-92 .ST4351E+00 .BU1897E+00
. 139943€-92 .S55176E+00 ,719053E+00
«153235E-92 .S51960SE+90 .634308E+00
. 132338E-92 . S0433SE+Q0 ,S547727E+00
»188104€-92 ,432835E+00 . 4S59427E+00
«35052TE-92 .431358E+0Q .359532E+00
LEQFSTIE-QT L 4T2I23E+00 . 27841EE+00
«413219€-92 ,4£E3828E+00 . 13€214E+00
ca25E09E-03 . 463144E+99 ,932912E-0!

< A0BUAAE+D]

J451911E+092

.900000¥E+021



[§ . QR

A-16

ALIASED NORMALIZED CORRELATION MATRICES:

DELAY

CONOANE DN — G

AUTOL1L
«100000000E+01
+389662823E+00

-.,284711073E+00
=, 37286887TE+00
~.223628911E-01
+396632316E+90
+330310631E+00
-.343026269E-01
-.3088602935E+00
=.262499186E+00
«798873936E-01
«310323251E+00
«192490120E+00
-.123481193E+00
-.294362011E€+20
-.128164922E+00

-, 294194112€-02
«2703706S1E-02
+4112441935E-02
+8uv3212010€E-03

-.280736944E-92

-.264788177E-02
+440106016E-03
«23833S013E-02
.112686107E-02

-.121802673SE-02
-.131737804€-02

.3063563500E-03
. 148247837E-02

CROsSS21
+ 139783721E+00
.402433863E-01
«912187098E-01
«1951853513E+00
.876380054E-01
-.896403926E-01
-.836012969€-01
.6096950818E-02
+8248351230€E-0!
«629998336E-01
-.238734308E-01
~.669643776E-01
~.429332422E-01
+241337936E-01
«639641473E-01
»302603973E-01

«913297510€-03
«703063771E-03
=-.122243230E-03
~.844466456E-03
-.98223035920E-03
=.179269831E-04
.889991232€E-03
. 101284639E-02
+992673477E-04
-.105363279¢€-082
-.124926330€-02
-.866410300E-04

«133530383%E-02 |

CRO3512

+139733721E+2Q
«49T316391E+60

«S511114131E+00
11707 4400E+20
19078184 1E+909
112729949E+00
-.951%20121€-01
=.939179328E-01
«131798148€-01!
+176921945E+09
. 1057674SEE+0Q
-.976171228€-01
= 14339816 3E+00
-.4322583435E-01
« 104637982E+00
«12372S301E+00

+ 313869734E-02
« 135538926E-02
=.167953100E-0L
-.469389723E~-02
. 764920706E-02
< 172870237E~92
+216369761E-02
+329164528E-023
= 1£423€260E~-92
-.1716697838E-082
~.43107413%E-04
+148450666E-02
»1335%50355€E-02

RUTOR22
. 100009930E+01
+438387310€+00
+640949626E-01
«663147971E-01
10097917 9E+00
«122634113E+99
«138794710E-01
~.796893320E-02
«197442248E-01
=.191113963E-01
-.211019705E-91
«506845393E-92
«23049572S7E-01
«212691423E-01
=.219543907E~¥1
=.315105389€-01

-.782794385E-03
~.620439604E-03
+177338396E-03
. 730S513242€-03
+3190568%2E-03
~.239248236E~03
-.719997737€~-03
-.4395264S1E-03
. 286993480E-03
.698618350€E-02
«378892473E-03
-~.330374132E-03
-.690972982E-03
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Figure A-1. Spectral Estimates for N =20, Pmax =6, Pbest =4
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Appendix B

General Filter and Spectral Relations

For each integer k, let H, be a rectangular matrix of (complex) constants, to be
called the filter impulse response at delay kA, where A is the time sampling in-
crement. The number of filter outputs need not equal the number of filter inputs.
For multichannel filter excitation W at time n4, the filter output at time nA is given
by the discrete convolution

B Zk e Wn-k »
(B-1)

where the summation extends over all nonzero summands.

For a stationary excitation, let the correlation matrix of complex input process
{W,}atdelay LA be

W ;" = P (non-diagonal matrix),

n n-f. L (3-2)

where the overbar denotes an ensemble average, and the superscrip: H denotes a
conjugate transpose. The z-transform of input correlation sequence {P 2 }is

Qz) =aYyztp
- 2

(B-3)
and the spectrum of input process {W_} is, for real frequency f,
Q(f) = Q(exp(i2mfA)) = A Y, exp(-i2mfAR) ¥
=42 exp(-iu:) P, e (B-4)
where we let =
u s 2rfA . (B-5)

The correlation matrix of the filter output process {X,}, atdelay £4, is given by
using (B-1) and (B-2):

H

'3 n n-‘L kz H n k Hﬁ :lgm H'k p9,+m-k Hm

-
i

(B-6)

~ The z-transform of output correlation sequence {Rz }is, by use of (B-6),
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= -L -2
6(2) = A§ ¢ RR. - A§ 2 kzm Hk l:.1!,4-m-k H:

=k - -k
.; 'y A% .~ (G+m-k) P2.+m-k2 0 H: . B

Now define the z-transform of filter sequence {H,} by

-k
H(z) = § 2™ H o
and define the quantity
HH(Z) 3 [H(z)]H , including conjugation of z. (B-9)
Then

H H
1 1 k k
#@) -] - [T n] - T A . o
We now employ (B-8), (B-3), and (B-10) in (B-7) to obtain

6(2) = H() 22 K (35)

(B-11)
The spectrum of output process {X,} is then, at real frequency f,
G(f) = G(exp(i2nfd)) = & 2 exp(-i2nfAl) R,
L
= H HiH
() QB H (D B12
where we employed (B-11), (B-4), and set
H(f) = H(exp(i2mfA))= 3, exp(-i2mfAk) H . (B1)
k
We also employed the property that
H H .
Hlie) = et - % exp (i2m£AK) H‘: , 18

B-2



or

f#(m) - Hiexpizne)) = HI(H . @uis)

Finally, from convolution (B-1), we obtain the z-transform of output data
sequence {X_} as

x(2) 2 L 27X = H(2) W(z)
n (B-16)

where we used (B-8) and defired
Wz) = 3 2w .
n (B-17)

The major results thus far are given by (B-1), (B-16), (B-11), and (B-12) for a
general filter and excitation.

ARMA Process

For a multichannel, autoregressive, moving-average process, the recursion is
given by

xn * Z Ek xn-k * ; Fk wn-k *

k (B-18)
The z-transform of this equation is
X(z) = E(z) X(z) + F(z) W(z) , (B-19)
where
)z Y 2%, , Fp= L 2k .
k k m k (B-20)

Then we can solve (B-19) for X(z) as

X(2) = (1 - E@]17 F(2) W) = H(z) W(z) ,  (B-21)
where the transfer function from input to output is

H(z) = (I - E(Z)]-l F(z) (B-22)

in terms of the parameters of recursion (B-18). But now (B-22) is in the framework
of the presentation above; namely, the spectrum of output process {X_} is, from
(B'lz)o

G(£) = H(E) Q) H () , (B-23)
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where -1
H(f) = [I - E(f)] " F(f) ,
E(f) = E(exp(i2mfd)) = ) exp(-i2mfAk) E,
k
F(£) = F(exp(i2mfa)) = ) exp(-i2mfAk) Fy
k (B-24)
Example
As an example of (B-18), consider the multichannel first-order recursion
xn "E Xt " (B-25)
with the input spectrum for {W},
Q(f) =41 for all. f (B-26)
This is a white process, uncorrelated from channel to channel. Then
-1
E(z) = 2z !E1 , F(z) =1 ,
H(z) = (1 -21E)!
(z) = (I -2z E , (B-27)

G(E) = & H(E) H (D)

Specialization to Two-Channel Process

We further specialize example (B-25) to the two-input, two-output channel
process characterized by coefficient matrix

E, = (complex coefficients).
(B-28)

Then (B-27) and (B-22) yield transfer function

B4
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-1
1-21, -z7! b
H(z) =
o =Aae 1-214
1-214 1y
- 1
1-21 (a +d) z'z(ad - be) -1 1 '(3.29)
z ¢ 1-2"a
There follows
w1/z%) = [H1/z9]®
1 - zd* zc*
1
- (B-30)
1-12(a+d)*+ zf(ad - be)* zb* 1 - za*

and
8,,(2) 8,2(2)
G(z) = & H(z) HI(1/z*) =
g5, (2) 8,5,(2)
1+|b|2+|d|2-z'1d-zd* ca*b-ctd+ 27l b e zet
1
b 1 2 2] '
-ab* - cd* + 27" ¢ + zb* 1+ 2]+ |c|®-2""a - za*
(B-31)
where

p=[t-2Yasa) s 2 %aa - be)] [1 - 2ta + r + 2%cad - be)*]

(B-32)

Inspection of denominator D in (B-32) reveals that G (z) has poles (i.e., all the
elements of matrix G (z) have poles) at

B-5
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2 =

a+d;V(a%d)2-4(ad-bc)

- (B-33)
and at

Lol exp(i arg(z))

7 " Te T PN TR

(B-34)

That is, even though recursion (B-25) is limited to first-order regressive and white
independent excitations (see (B-26)), G(z) has four poles in the finite z-plane.
Generally, if H(z) hasa pole at z,, then H(1/2*)hasa poleat 1/z%; soif

2 i8), th 1/z* = ig
z, = r exp(if) en zy = exp(ig)/r (B-35)

has the same argument.

In addition, element g,,(z) in (B-31) has a zero at ® and three zeros in the finite
z-plane, at

"

2
2 2 2 2 2
. JLl+ bl +(a]% s VM1 + |b]° + [d] ) -4]d|
20 0 and zo o

(B-36)

The product of the latter two zero locations is d/d* = exp(i2arg(d)). Thus, the auto
spectrum of process 1 has three zeros and four poles, even though the multichannel
recursion, (B-25), is first-order regressive. Similar behavior is true of the auto

spectrum of the second process, as well as the cross spectrum between the two
processes.

The magnitude-squared coherence for this example is, from (B-31) and (B-5),
8,,(exp(iu)) g,, (exp(iv))

8, (exp(iv)) g,,(exp(iv))

. _l-a*b - c*d + b exp(-iu) + c* exg(iu)l2
[Il - d exp(-iw)|% » Iblj] [I1 - a exp(- i) [% + Iclzl

(B-37)

This has four zeros and four poles in the finite z-plane.
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Numerical Example

We now specialize (B-28) to example (6) in the main text:

E. = = . (B-38)

The four poles of the spectrum G(z) are located at

2, = .7 +1i.6819, 1/z% = .7330 + i .7140 ,

(B-39)
and the zeros of g,,(z) are at
zo = 0, 3.0646, .3263, =
(B-40)
The zeros of g,,(z) are located instead at
zy ® 0, .8802, -1.3109, =
(B-41)
The magnitude-squared coherence simplifies to
1.0634 - .056 cos(u) - .975 cos(2u)
[1.865 - 1.1 cos(u)] [2.145 - 1.7 cos(u)] ° (B42)

This example was used frequently in the main body of this report. The peak value is
.9990128 atu = 772564, or 2fA = .245915.
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Experimental Comparison
Of Three Multichannel
Linear Prediction

Spectral Estimators

S.L. Marple

A. H. Nuttall

ABSTRACT

Single-channel spectral estimators based on linear prediction
techniques, such as the maximum-entropy method, have been shown
to often provide better spectral stability and resolution than standard
FFT procedures for short data sequences. Based on this improved
performance, a muititude of muitichannel linear prediction
techniques have been promoted for processing muitichannel data
sequences. Three of these are examined in the paper: a muitichannel
generalization of the single-channel Burg algorithm by Nuttall, a
maximum-entropy type of algorithm by Motf, Vieira, Lee and Kailath,
and a multichanne! extension of the covariance method of linear
prediction implemented by Marple. For purposes of experimental
comparison, various two-channei data sets were processed by the
three methods td produce the two autospectra, the magnitude-
squared coherence and the coherence phase associated with each
data set. A possible deleterious effect of signal ‘feed-across’ be-
tween autospectra and in the coherence has been discovered in all
three methods. The phenomenon, due to inexact pole-zero can-
cellation, is especially prominent for short data sequences. Based on
the muitichannel results given here, the Nuttall method generally
produced the best spectral estimates.
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PARAMETRIC SPECTRAL ANALYSIS

Experimental comparison of three muitichannel

linear prediction spectral estimators

S. Lawrence Marple Jr. and Albert H. Nuttall

Indexing term:  Signal processing

Abstract: Single-channel spectral estimators based on linear prediction techniques, such as the maximum-
entropy method, have been shown to often provide better spectral stability and resolution than standard
FFT procedures for short data sequencss. Based on this improved performance, a multituds of muitichannel
linear prediction techniques have been promoted for procsssing muitichannel data sequences. Three of these
are examined in the paper: a muiltichannel generalisation of the singlechannel Burg algorithm by Nuttall,
a maximum-entropy typs of algorithm by Morf, Visira, Les and Kailath, and a2 multichannel extension
of the covariance method of linear prediction implemented by Marple. For purposes of experimeatal com-
parison, various two-channel data ssts wers processed by the three methods to producs the two sutospectra,
the magnitude-squared coherence and the coherence phase associated with each data set. A possible deleteri-
ous effect of signal ‘feed-across’ between autospectra and in the coherence has been discovered in all three
methods. The phenomenon, due to inexact pole-zero cancellation, is especially prominent for short data
sequences. Based on the multichannel resuits given here, the Nuttall method generally produced the best

spectral estimates.

1 Introduction

Multichannel digital signal processing is being used in an
increasing number of application areas, particularly in the
sonar and geoseismic communities. Until recently, most
multichannel digital signal processing was based on fast
Fourier transform (FFT) methods. The success of unichannel
high-resolution spectral estimation techniques, like the auto-
regressive or so<alled maximum-entropy methods, has
encouraged researchers to develop multichannel extensions
in hope of obtaining performance improvements for multi-
channel applications comparable with that seen in unichannel
applications. The multichannel extensions are all based on
linear prediction concepts, since a linear prediction filter
whitens an autoregressive process.

Three multichannel linear prediction spectrum analysis
algorithms are examined in this paper. They are the multi-
channel generalisation of the Burg algorithm developed by
Nuttall (1—4], a2 multichannel maximum-entropy spectral
estimate by Morf, Vieira, Lee and Kailath {5, 6], and a multi-
channel generalisation of the covariance method of linear
prediction as implemented by Marple [7]. All three algorithms
make estimates of the multichannel linear prediction coef-
ficients, from which the muitichannel autoregressive auto-
spectra and cross-spectra may be computed. From the cross-
spectra, the magnitude-squared coherence and coherence
phase may be computed.

There has been no previous attempt in the literature to
compare and characterise the various muitichannel linear.
prediction/autoregressive spectral estimators. An experimental
approach is used in this paper to empirically characterise
performance with respect to two signal classes. One class is
an actual two<hannel autoregressive process. The other
class is a set of tones (sinusoids) imbedded in a coloured
noise process. An analytic approach for caiculating multi-
channel algotithm performance was felt to be mathematically
intractable, given the very complex analysis that was required
to characterise the singlechannel autoregressive spectral
estimate (8,9].

Paper 2461F, first received 1st April 1982 and in revised form 4th
January 1983

Dr. Marple was formerly with The Analytic Sciences Corporstion,
8301 Greensboro Drive, Suite 1200, McLean, VA 22102, USA, and 1s
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Houston, TX 772104594, USA. Dr. Nuttall is with the Naval Under-
water Systems Center, New London Laboratory, New London. CT
06320, USA

18

Relative to the particular multichannel results reported
here, the Nuttall algorithm generally produced the best results.
Best in this case means with less frequency estimation bias
and variance than the other methods when tested against
autoregressive and tonal processes. During the testing, a
‘feed-across’ effect was discovered that was common to
all techniques. Narrowband components that should be
present in only one channel’s autospectra were found coupled
into another channel’s autospectral estimate. This is shown to
be due to inexact pole-zero cancellation in the autospectral
estimate, Conditions that would cause spectral line splitting in
the single<channel case were found to also cause splitting in
two of the three linear prediction techniques considered here.

2 Summary of techniques

This Section provides an overview of the three multichannel
linear prediction methods considered. If we define X, as
the vector of M channel samples at time index n

EXOR

_.\' n (1" )-j

from a stationary zero-mean multichannel process, then the
covariance function at time lag k is given by
Ry = E[X\aXH] = RY,

The symbol 4 denotes Hermitian transpose, and £ denotes
statistical expectation. Define the forward linear prediction
error for prediction order p as

.4
Yk = z Aslp)xh-n

neo

and the backward linear prediction error as
p
Zy = Y B X pun
n=0

where (ALY and {BP'¥ are. respecuvely. the forward and
backward linear prediction cvefficient matrices of dimension
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M x M. Note that A = B{P’ = [ (the identity matrix) by
convention.

Minimisation of the forward and backward linear predic-
tion mean square errors tr{E(Y,Y¥}}=tr{U,} and
tr{E(ZyZH) } = tr {V, ), respectively, (tr denotes the matrix
trace) will yield coefficient matrices that satisfy the block-
Toeplitz normal equation

is the power spectral density matrix in the twochannel case.
Here G, (/) and G4, (f) are the autospectra of channel | and
channel 2, respectively, and the magnitude-squared coherence
(MSC) is gtven by

MSC = |G (N /{Gu (NG (N}

(Re RY ... RY
Ry, Ry ...... RY_,
1 A ... ALY AP . [u, 0...... 0 0
B B ...... B I _ 0 0...... 0o v,
R’ R"l ------ RQJ

The solution to this normal equation, when the covariance
matrices (R, }§ are known, is provided by the multichannel
(vector) Levinson-Wiggins-Robinson (LWR) algorithm. Briefly,
this algorithm relates the order p solution to the order p — |
solution according to the recursions

a, = :;: APIR,_,
AP = =8y (Vo)
B = - a7 (U,-y)

Up = I —AP'BPU,.,

Vy = I =BPAPYW, .,

AP = APV 4+ APBOLY for 1<k<p—1

B» = BV + P4 PV for 1<k<p—1
with initial conditions
Up = Vo = Ry

AP = B§ = | for 0Kk<p

The M x M matrix 4, is often called the reflection coefficient
matrix.

Based on the linear prediction coefficients, the multi-
channel autoregressive power spectral density matrix estimate
may be shown to be (1]

GA2) = AI[A@)] ' Up [4(112")] "
= Ar(B@)'V, [B(1/zNH
= Gp(2)

where Az is the sample interval, — A denotes the Hermitian
transpose of the inverse, the asterisk denotes complex conju-
gate, and

Az) = i A"
o

»
B(z) = Y 8w

The substitution z =exp (j2nfAr) is made, and G, is
evaluated as a function of the frequency f. With this substi-
tution having been made, then

GulN Gu(N
Gu(N Gu(N

G(N =

IEE PROC.. Vol. 130. Pr. F, No. 3, APRIL 1983

The coherence phase spectrum (CPS) is simply
CPS = arg (G132 (/)]

3 Unknown covarisnce: Measured data

The three linear prediction algorithms examined in this paper
are concerned with the situation in which there are data
samples available, but no covariance values are known at
any lags. Assuming N vectors X, of channel samples have
been collected, then the following squared-error and cross-
erTor covariance estimates may be formed:

£ =— ¥ ry¥
L N_ph-pol.

The Nuttall extension of the Burg algorithm to the muiti-
channel case makes use of the LWR algorithm, with the
exception of how the reflection coefficient 4, is computed,
since covariance values are now unavailable. Using the error
covariance estimates, 4, is obtained as the solution of the
bilinear equation

Voar) ' Fpdp + 3, (Up-, ) 'E, = = 2G,

in order to satisfy a weighted arithmetic mean criterion
between the forward and backward squared errors £, and
F,.
The so<alled maximum entropy algorithm of Morf er af.
also uses the LWR algorithm, but the reflection coefficient
Ap is computed as the weighted geometric mean of the for-
ward and backward squared errors:

A’ o [E’]-IIQG’ [F’H]-III

The superscript notation — 1/2 means the square-root matrix
of the inverse, since a normalised form of the LWR algorithm
is used by the authors of this linear prediction method.

Instead of forcing the LWR recursions to hold in the
given data case, as in the two previous algorithms, one could
separately minimise the forward and backward squared errors

N
tr[ Z Y, vt
nep+|

® B A e B -

B T VI R P



tr[ f Z,.-,Z,t’.,]

nepe|

in the least-squares sense. This yields the normal equation

[l AP 4,2 af
B 8,2 .. .. 8® I
[u 0. ..n. 0 o]
0 0...... 0,
where

N
R’f" Z xn-lX'£I

REpej

for0 € i,j < p

and the matrix of R‘” terms is no longer block-Toeplitz.
However, a fast recursive algorithm similar in structure to the
LWR algorithm can solve the above least-squares normal
equation; see Reference 7 for detsids. The fast algorithm is a
multichannel extension of the singlechannel covariance linear
prediction algorithm used in speech processing {10]. Since
the block-Toeplitz property is lost in the least-squares minimis-
ation of this method, the estimated power spectral densities
G, (2) and Gy(z) do not, in general, yield mathematically
identical values, although the plotted spectra are often of
comparable shapes.

4 Experimental comparisons

Plots of autospectra, MSC and CPS from various two-channel
test cases are used here to examine relative experimental
performance differences among the three linear prediction
spectrum analysis techniques. The discussion is restricted
to real-valued data and filters.

In the first test, a first-order (p = 1) twochannel auto-
regressive process was used to generate data ensembles. Data
were generated according to the recursion

X,‘ = A| xll-l + wn

085 —0.5 ®
A, =
065 055

where W, is a white process, uncorrelated from channel to
channel and of unit variance in both channels. The exact
autospectra for each of the two channels are shown in Figs.
la and b, while the MSC and phase of the complex coherence
(cross-spectrum) are shown in Figs. Ic and d. There is seen
to be a strong narrowband component at approximately 1/8
of the sampling frequency; the peak magnitude of the squared
coherence is 0.999013 at this point. 20 sequences, each of
100 sample points, were processed by each of the three
algorithms, with the order p restricted to be i. The 20 spectral
plots were overlapped, as shown in Figs. 2-5. All plots are
made to the same reference values established in Fig. 1. Of
the four sets of plots, clearly the Nuttall linear prediction
algorithm has less variance and bias (location of the spectral
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peak) than the other methods. In fact, 18 out of 20 of the
phase estimates were close to the truth for the Nuttall algor-
ithm, whereas none of those given by the other techniques
was correct at all. Note that the four plots of Fig. 4, based on
the forward linear prediction estimate, differ little from those
in Fig. S, based on the backward linear prediction estimate,
even though the covariance method does not guarantee that
the two cases will yield the same resuit.

This first test has very important implications. All three
techniques should work well against a simple first-order
autoregressive process, since this is the data model appropriate
for linear prediction spectral estimators. Clearly, however,
the Nuttall technique works best, at least for short data
records. The other two techniques exhibit more variance
than is typically found in singlechannel versions of these
methods. For a multichannel pth-order regression and indepen-
dent white excitations, it may easily be shown that the auto-
and cross-spectra of the processes each possess 4p poles and
3p zeros in the finite z-plane (of which p zeros occur at the
origin). This is in contrast to the singlechannel case, where
only 2p poles (and a pth-order zero only at the origin) can
occur. Thus, while a singiechannel linear prediction requires
estimation of only p parameters, an M channel approximation
requires estimation of M p parameters per channel. For a
fixed number N of data points from each process, the esti-
mation of an increased number of parameters can only be
done with increased variance since the total number of data
points is only MN. This is a partial explanation of the results

1.00

seen in Figs. 2-5.

The next test consisted of data sequences with three
sinusoids in a coloured noise process. [n channel 1, sinusoids
with fractions of sampling frequency of 0.1, 0.2 and 0.24
were used. The respective amplitudes were 0.1, 1 and 1,
while the respective initial phases were 0, 90 and 235°, The
coloured noise process, which had most of its power above
the ‘frequencies of the siiusoids, was generated by passing
white noise of 0.05 variznce through a digital filter with a
raisedcosine spectral response between 0.2 and 0.5 of the
sampling rate. In channel 2, sinusoids of fractional frequencies
0.1, 0.2 and 0.4, amplitudes of 0.1, 1 and 1, and initial phases
of 0, 210 and 25° were generated. A coloured noise process
similar to channel 1, but independently generated, was added
to the sinusoids. Note that the sinusoid components at frac-
tional frequencies 0.1 and 0.2 are common to both channels.
A data sequence of 64 points was generated for each channel.
Figs. 6~8 depict the autospectra and coherence magnitude
and phase for order p = 12 estimates by the three linear
prediction methods. Note that in all plots. some energy of
the 0.24 fractional frequency sinusoid, present only in channel
1. has coupled into the Gy estimate for channel 2, and.
conversely, the 0.4 fractional frequency sinusoid, present only
in channel 2, has coupled into the G,, estimate for channel
1. The MSC plots also show spikes at the tone frequencies
of 0.24 and 0.4, where ideally the coherence should be zero.
This ‘feed-across’ artifact is an undesirable effect: however,
it appears unavoidable whenever processing short data
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sequences with multichannel algorithms. If the data sequences
from each channel are processed separately by the single-
channel Burg linear prediction algorithm. the autospectra
shown in Fig. 9 are the result. Note that thuse spectra do
not give a false tonal indication. By increasing the data
sequence length to 500 samples, there is an improvement in
the feed-across effect in the multichannel autospectra in Fig.
10, although the coherence still has strong sharp spikes. Thus
it seems that the attractive properties of singlechannel linear
prediction spectrum analysis relative to periodogram spectrum
analysis when processing short data records do not extend to
the multichannel case without problems. The feed-across
effect leads to false indications of narrowband components,
especially when processing short data sequences. A detailed
analysis of the cause of the feed-across effect is presented in
the following Section.

The final test case examined the spectral line splitting pheno-
menon that has been reported in the literature for singie-
channel linear prediction spectrum analysis. A data sequence
of 101 samples of a single tone at 0.0725 fractior. of sampling
frequency, unit amplitude and 4>° initial phase, added to the
same coloured noise process (variance 107*) as in the last
test, was generated for channel 1. A comparable 101-sample
sequence was generated for channel 2, but the tone was placed
at a fractional frequency of 0.2175. Both cases are known to
cause line splitting in the singlechannel Burg algorithm.
Figs. 11-13 show the autospectra generated by the three
multichannel linear prediction methods for order p = 15.
Line splitting is present in the Nuttall and Morf methods,
but not in the covariance method. Thus line splitting be-
haviour carries over into some of the multichannel techniques.

5 Properties of linear predictive spectral analysis
techniques

The behaviour of the linear predictive techniques in the
presence of tonals is of importance to anyone using these
spectral analysis procedures. We now present some of the
important properties of multichannel linear prediction
techniques and illustrate these properties by an example
from the Nuttall algorithm for the two-channel auto-
regressive process in eqn. I, with a tone added solely to the
channel-2 process. The tone strength is — 6.6dB relative to
the sample power in the second component of X,, and the
tone is located at fractional frequency f. = 0.3;this is basically
the example considered in Fig. 11 of Reference 4.

The autospectra and coherence estimates for a data run
with N = 1000 data points and p = 8 are given in Fig. 14.
There is the desired strong tonal indication at f, in G,
but, in addition, there is a weak undesired contribution
at f, in G,,. Since this tone was never added to process 1,
this indication in G,; has ‘leaked across’ in the mathematical
data manipulations of the linear predictive algorithm. This
leakage is unavoidable and will be present in all multichannel
linear predictive procedures; it is due to the fact that we
must work with finite data sets, thereby resulting in slightly
inaccurate filter coefficients. The effects on the poles and
zeros of the autospectral and coherence estimates are discussed
below. The MSC estimate in Fig. 14¢ has developed two
notches and a sharp spike near frequency f,, while the phase
in Fig. 14d has gone through an abrupt 2r change in that
neighbourhood.

In order to explain the various behaviours of the spectral
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estimates in Fig. 14, we need to develop. in more detail,
the matrix spectral estimate (see eqn. F-16 of Reference 1)

G(z) = [A@)] "' U, (A(1/z%)) ¥ )
where
.4
A@Q) = [+ Y 27749 3
A=\

For real data and filters, U, and {4’} are real. For a two-
channel application, eqn. 3 can be expressed as

h,) h
A(z) [ n ) 11(2)] @)
hy (2) hy(z)
where {hy;(2)}are scalars of the form
»
ha@) = 3 2z "ag(n) (5)

ReQ

There follows for eqn. 2

60 = s |n e [
D(@)D(1/2) |=hyy(z2) hy(2)] |4y up
[hu(l/z) —hzl(l/z)]
) (6)
= h(l/z) A (1D)
where
D(:) = h.,(:)h:,(:)—h':(:,hn () (7)
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We denote
hay(2) = 27 qui(2)

hyi(1/2) = ryy(2)

where qu(z) and ryy(2) are polynomials of degree p in z
with real coefficients. Then

D@) = "% Q(z)'
D(1/z) = R(z)

where Q(z) and R(z) are polynomials of degree 2p in z. It
follows that

Q) = a1 (P)a31(p) —212(p)an (p)
R@O) = 1

neither of which is zero; thus Q(z) and R(z) have no zeros
at the origin of the z-plane. The spectral estimate can now
Nu@) N

be expresed as
[
Q(z)‘z(z) N"(z) sz(z)

where the 2 x 2 matrix in eqn. 10 is given by

®)

)

G@) = (10)

All the functions in eqn. 10 and expr. 11 are polynomials
inz.

For the real data and filters employed here, the 2p zeros
of Q(z) occur in conjugate pairs (or in real pairs). Furthermore,
they are all inside the unit circle C; in the complex z-plane;
this property was proved in eqn. 33 of Reterence 3. Thus we
only need to search the interior of the unit hemisphere in the
upper-half z-plane for p zeros of Q(2).

Furthermore, if Q(z) has a zero at z,, then R(z) has a zero
at 1/z,; thus G(z) in eqn. 10 has 4p poles in the z-plane,
2p in the upper halfplane, of which p are inside the unit
hemisphere. A typical 4-tuple of poles in G(2) is given by
2o, 25, 1/20, 1/2g; there are p such 4-tuples. These poles are
common to all the auto- and cross-spectral ‘estimates in eqn.
10.

Similarly, a typical term, Ny, (2), in the numerator of G(2)
in eqn. 10 is a polynomial of degree 2p in 2z, of which p
zetos will be located in the upper-half z-plane. Thus eqn. 10
shows that (every term of) G(z) has p zeros at 0, p zeros at
e and 2p zeros in the finite plane. We need only search for
the p zeros of Ny (2) in the upper-half plane, fork, [ =1, 2.

In order to explain the behaviour of the coherence estimates
given by the linear predictive techniques, we start with the
complex coherence at frequency fas given (for Az = 1) by

Ny (exp(j2nf))

(= > v (12)
[ q22(2) "Qu(z)l [“u “n] [’zz(z) -’ZI(Z)] (N (exp(F2r))N 5y (exp (j27)))]
~qu @) qu@) Un Un =@ () The squared coherence, generalised to the entire z-plane, is
(11)
gz = Mi(2) N3 (2N, (2) (13)
Ny (@Nn(2) N (2N (2)
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The following are general properties of the Ny (2) polynomials:

(@) If Ny (2) has a zero at r, exp (j@,), it also has a zero at
(1/ry) exp (/6,). '

(b) If N3;(2) has a zcro atr; exp (f8,), it also has a zero at
(1/r) exp (/65). .

(¢) If Ny (2) has a zero at 7 exp (f84), Ny (2) has a zero at

(1/ro) exp (f86).
In fact, property (c) is a special case of the geneial rule that

Ny (z) = 23N,y (1)2) (14)

Now we return to the example of Fig. 14, where a tone was
present only in the channel-2 data, at frequency f. Since
process 1 hasno toneat f,, N,; (z) develops two zeros near z, =
exp (j2af,) = exp (jn0.6), one inside the unit circle C,
and one outside C;, tending to cancel the one zero of D(z)
inside C, and the one zero of D(1/z) outside C,, which are
near z., so that the autospectral estimate G, () is well
behaved near f.. However, the cancellation is not perfect,
and the small spike at f, in Fig. 14@ remains. For this example,
the pole location inside C; is 0.993591 exp (j» 0.600104),
whereas the zero location inside C; is 0.992697 exp (j=»
0.600015). Since the pole is closer to C,, a positivegoing
perturbation occurs in Fig. 14aat f,.

Similarly, the cross-spectrum of G(z) ideaily should have
no indication at f, sincs there is no tone in process 1. In order
to counter the zeros of D(z) and D(1/z) near z,, V3 (2)
develops fwo zeros near z.. For the same example, they are
at 0.996958 exp (j70.592593) and 0.983192 exp (r
0.615533), both of which happen to be inside C,. Other
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examples have shown that these two zeros can both be o “side
C,, or one can be inside and one outside C, .

Finally, since process 2 does have a tone at /., .V,; (f) does
not develop any zeros near z.. Thus the zeros of D(z) and
D(1/z) dominate near 2., and the estimate G,, (/) in Fig. 145
develops a large value near f,, as desired.

The squared coherence estimate in eqn. 13 is independent
of D(z) or Q(z). However, 1ccording to the discussion above.
it has two double-zeros near z., owing to the NV} (2) term.
These four zeros can lie either all inside C,, all outside C,,
or two inside and two outside C,.¢ *(7) also has two poles
near 2., owing to the two zeros of Ny, (z) near z,: one pole
lies inside C,; the other lies outside C,. Since there are no
poles and zeros near z. that cancel exactly, some very fine
detail can develop in the coherence estimate in the neighbour-
hood of z,. Sharp notches and spikes are the rule, not the
exception, in the MSC evaluated on C, in the neighbourhood
of a tonal frequency ¢ wing to this imperfect cancellation of
poles and zeros. The phase variations can be so rapid that
large FFT sizes are required to track it accurately. The two
double-zeros of V}(z) cause this rapid variation, especially
if they are all located on the same side of C, ; the two zeros
of Ny, (z) are always located on opposite sides of C, and so
do not themselves lead to a very rapid phase change near z,,
although they greatly influence the MSC in that region. In
general, the squared coherence ¥ *(z) has 2p double-zeros
and 4p poles in the complex z-plane. none restricted to be
inside or outside of C, ; however, they ail occur in conjugate
pairs.

Since order p = 8 used in this example is larger than
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necessary to account for a single tone and a narrowband
spectral component, the extra poles [zeros of Q(z)] are
distributed fairly uniformly inside C,, with radii in the range
0.5 to 0.7. The extra zeros of polynomials Ny,(z) can lie
anywhere, either inside or outside of C, .

6 Discussion and conclusions

Experimental results for two-channel linear prediction auto-
and cross-spectral estimation have been presented for a
first-order autoregressive process and for cases with inter-
fering tones. It has been shown that some misieading estimates
may be obtained because of feed-across in the mathematical
manipulations of the finite lengths of data from each channel.
This feed-across manifests itself as narrow spurious spikes
in the spectral and coherence estimates. In order to circumvent
this problem, while maintaining the high-resolution properties
of linear prediction techniques, the following philosophy
for multichannel spectrum analysis is suggested.

Suppose we are given finite data records of three station-
ary processes x(t), y(t) and z(¢), and we wish to estimate
all the autospectra and cross-spectra invoved. The Blackman
and Tukey and weighted-FFT approaches evaluate the auto-
spectrum of each process separately. Thus the spectrum of
x(¢) is estimated without interference from y(¢) and z(t);
the availability of the data records for y(¢) and z(t) plays no
part in the eventual autospectral esiimate for x(r). Ad-
ditionally, the cross-spectral estimate for processes x(r) and
»¢) is independent of the available data on the z(¢) process.
Finally, the coherence estimate between two processes is
independent of any additional data records for other (statisti-
cally related) processes.
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On the other hand, the three multichannel linear predictive
spectral analysis approaches give autospectral estimates of the
x(tr) process that are dependent on the available values of y(r)
‘and z(t). Also, the cross-spectral estimate between x(f) and
y(¢) is dependent on the particular 2(¢) data available. This
procedure can be poor for short data lengths if, for example,
y(t) contains a strong tone at f, that is not present in x(¢)
or z(¢). Thus estimates of spectra' G, (f), G.,(/) and G,,(f)
all contain tonal indications at f, that should not be there.
These spurious tonal indications are due to feed-across
between the available finite data segments of the various
processes.

This raises the following questions:

(i) Should the estimate of G, ,(f) be determined only from
the available x(r) data record?

(ii) Should the estimate of G, (f) be determined only from
the available x(¢) and y(¢) data records?

(idi) If coherence C,,(fo) = 0, why use y(:) to estimate
Gxx (fo)?

(iv) If coherence C.,(fo) = 1, why use the completely
statistically dependent y(¢) data to estimate G, (f,)?

This philosophy of discarding ‘irrelevant’ data would be
consistent with the Blackman and Tukey and FFT approaches.
Carrying this philosophy on, we are led to the following:
estimate G, (/) solely from the x(¢) data by some single-
channel linear predictive technique. Then estimate cross-
spectrum G, (f) or coherence C(f) directly, by some linear
predictive technique whose sole goal is linear prediction
of x(t) from y(¢) and vice versa, with no interest in or diver-
sion from simultaneous estimation of G, (f) or G,, (/).
By this means, we can concentrate on extracting all the
relevant cross-spectral information with maximum stability

{EE PROC.. Voi. 130. Pr. F, No. 3. APRIL 1983

MY AT NN T Y TR R YUYV U XY

and resolution. Other cross-spectra of interest between particu-
lar pairs of available processes can be similarly obtained,
one at a time.
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