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Foreword
This collection of technical reports, documents, and memoranda deals with

estimation of the coherence function between two wide-sense stationary random
processes. Topics covered include accuracy and stability of the estimate, in-
cluding the effects of weighting, approximations for the statistics of the estimate:
the use of coherence in time-delay estimation; interpretation of the Fourier
transform of the coherence; generation of processes with specified coherence;
and alternative methods of estimating coherence. Applications of coherence
estimation are given; they include systems identification, measurement of signal-
to-noise ratio, and determination of relative time delay. This book furnishes a

4 handy reference for anyone interested in obtaining high resolution and stable
coherence estimates from limited data records.

In addition to the results presented here, other work done by the authors is
available in the open literature, as listed below.

1. G. C. Carter and A. H. Nuttall, "Statistics of the Estimate of
Coherence," IEEE Proceedings, vol 60, no. 4, 1972, pp. 465-466.

2. G. C. Carter, C. H. Knapp, and A. H. Nuttall, "Estimation of the
Magnitude-Squared Coherence Function Via Overlapped Fast
Fourier Transform Processing." IEEE Transactions on Audio and
Electroacoustics, vol AU-21, no. 4, 1973, pp. 337-344.

3. G. C. Carter, C. H. Knapp, and A. H. Nuttall, "Statistics of the
Estimate of the Magnitude-Coherence Function," IEEE Transactions

Eon Audio and Electroacoustics, vol AU-21, no. 4, 1973, pp. 388-389.

04. G. C. Carter, A. H. Nuttall, and P. G. Cable, "The Smoothed
Coherence Transform," IEEE Proceedings, vol 61, no. 10, 1973, pp.
1497-1498.

6" 5. G. C. Carter and C. H. Knapp, 'Coherence and Its Estimation Via
,, the Partitioned Chirp-Z Transform, IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol 23, no. 3, 1975, pp. 257-264.

6. C. H. Knapp and G. C. Carter, "The Generalized Correlation
Method for Estimation of Time Delay," IEEE Transactions on
Acoustics, Speech, and Signal Processing,. vol 24, no. 4, 1976, pp.
320-327.

7. Aspects of Signal Processing Part I, D. Reidel Publishing Co.,
* Boston, MA, 1977, pp. 251-256.

8. Programs for Digital Signal Processing, IEEE Press, NY, to
appear 1979.

9. A. H. Nuttall and G. C. Carter, "Bias of the Estimate of
Magnitude-Squared Coherence," IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol 24, no. 6, 1976, pp 582-583.
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10., (1 C. Carter, -Receivr Operating Characteristics for a
Linrty Thresholded Coherence Estimation Detector," IEEE
Trow'iscton on Acoustics. %spech. and Signal Processing, vol 25,
no. 1. 1977. pp. 90-42.

11.- E. H. 3carnell. Jr., and G. C. Carter, "Confidence Bounds for
Mmgntud~quredCoherence Estimates," IEEE Transactions on

Acoutic. Seech. an Sgna Processing, vol 26, no. 5, 1978, pp.

12. Aspets of S0gna Processing Part I. D. Reidel Publishing Co.,
Scowto, M&1977. pp. 251-256.
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NUSC Technical Memorandum TC-1 87-71
22 September 1971

On Generating Processes
With Specified Coherence

A. H. Nuttall
G. C. Carter

ABSTRACT

For purposes of investigating the bias of different estimators
of coherence, It Is necessary to generate processes with
accurately specified known values of coherence. A method of
minimizing the effects of unknown power levels on the
coherence of the generated processes is presented, such that
desired values of coherence can be very accurately realized.
Comparison with the standard approach reveals a much
smaller error for the new method.
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INTRODUCTION

For purpses of investigating the bias of different estimators of coherence,
It is necessary to generate processes with accurately specified known values
of coherence. This Is commonly done by adding together different fractions
of two uncorrelated'processes. However, if the two uncorrelated processes
do not have the anticipated spectral levels in the frequency regions of interest,

4 the resultant values of coherence will not be the design values. This occurs,
for example, when two different physical noise sources are filtered by two
different filters, and the gains or levels of the two channels are not identical.
This situation can apparently be eliminated by using only one physical noise
source and one filter, and taking two sufficiently disjoint time sections of

Athe output to represent the two desired uncorrelated processes. However, if
there are line voltage fluctuations or gain changes during the time taken to
generate the two time sections, the same problem arises. In this memorandum,
a method of minimizing the effects of unknown power levels an the coherence
of the generated processes Is presented, such that desired values of coherence
can be very accurately realized.

PROBLEM SOLUTION

The problem is as follows: two*stationary uncorrelated processes X) .A4 3*)

are available, with power density spectra &4 (f) (Nd (f) , respectively.
Theratio R(f), defined by

is hopefully unity, but its exact value is not known. Two new processes

* I may be a sufficiently delayed version of 140, as discussed in the Introduction;

in fact, this is recommended because of limitations in the state of the art in selecting
two different filters having the same characteristics.

P,
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T14 TC-187-71

YV)5I~ +f& .Xk~t (2)

am 0 uenshuted, where filtrs AaM &d WO are to be chose to that the
coherence of aWI &uW AM) Is a specified function of frequency. The following
analysis will allow for complex processes zN) RAW 310, and complex filters
a 4) and WO). Specialization to real processs and filters Is Immediate.
Equation (2) constitutes linear operations only; non linear operations on A0 avillll
~SO are disallowed because knowledge of the statistics of a higher order
than the power spectra would be required.

The correlation of I aQi AI is defined as

and the crows-power spectrum Is defined as

G~-4v( I ar ell~~ol r .,t) (4)

Using (2) - (4), we find that the auto- and cross-power spectra of the
processes in (2) are

Era) if~~ + I r A(5)

where OW)+1 jfr 0

A SA C -i 2w

(6)

2.1r



TM TC-187-71

ar the transfer functions of the linear filters.

The complex coherence between ulk) O vie is then

Ge 4 +A OW( (7)

using (5) and (I). For notational simplicity, we will suppress the f-dependence
in (7) and write

" [1+ IAN] [R18(1

In order to make the complex coherence 5 insensitive to the exact value
of R in the neighborhood of It- 1) we will force the partial derivatives
with respect to R, of both the real and imaginar parts of 1 equal to zero
at It I . This can be accomplished by setting 3)Vlh ,, at A-,I
We find from (8),

A~i~4AIIu)+ i10rD')(4Ii I + rJ
Fit 11W1t W [t+ s* (9)

At It1, (9)becomes

A[(i 1+ 1 + IW - l J IA~t8%~ 4A 1 (10)

3
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For (10) to equal zeo, it is necemary (1bt not sufficlent) that

Lnder this choice, (10) becomes

altr(# [4A1rI+ 10(12)

Equation (12) equals zero only if

11BI- IAl or I1I- I/IA 1. (13)

Combining (13) and (11), we find that the two possible solutions are

Sa B I/A (14) 4

However, the solution v= ,A substituted in (8) yields '- exAd.v,(A) ] , which
Is unacceptable, since it always has magnitude unity. The ther solution

yields, upon substitution in (8),

-jg{ a(Ai l (16)

This is acceptable, since values of lI between 0 and 1 are attainable through
choice of IAI . For example, 1Aj - 0 yields I¥1 a 0 , while JAI-

yields Ill - I. Thus only filter gains IAI between zero and unity are I
necessary to realize prescribed 1 The filter phase org(A) is chosen to realize

4
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specified org (1) . The relationship (15) between fitters forces the impulse
responses to satisfy

41 1-0. 17

Thus one filter must have a time-reversed Impulse response of the other filter.
Physical realization of these filters and processes will require recording and
delaying various processes.

We notice from (16) that R has no effect upon the phase of the complex
coherence. The phase of the complex coherence depends solely upon the phase
of the filter A, and Is Independent of relative spectral levels.

For A I , (16) yields

~k1 ~ -. vcar~i]~j~2.)AI18

The value Ito is the design (or desired) value of coherence. The required

filter gain and phase are given In term of Nby

ltrS a (19)10

(For I , 1A a0)l ).

We notice that since

(Y2-T1 A, "r4 IT (20)

it fall.as t3~t

511
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because the requirement al/M 0 at R-I causes the real and imaginary
parts of W to have zero slope at I - I . Thus the magnitude-squared
coherence Is also insensitive to values of R near t a I • The magnitude-
coherence l similarly insensitive.

It should be noted that even if al the proceses and fltusi in (2) are real,
complex values of coherence are still dluinable, because A can be complex,
even when 1k) is real. Far example, an odd Impulseresponse 4') results
In an Imaginary coherence.

SENSITIVITY ANALYSIS

For a design value II, of coherence, the required filter characteristics
are given by (19). When these filter characteristics'are substituted in (16),
we find the attained coherence for arbitrary R. For convenience, we first
deflne the error in R as A;

R I A. (22)

Then there follows

,_I+-A (23)

For A O, ¥=. f as dired. For A f Os we will investigate the dependence
of the magngltude-squared coherence llI on A.

We define the error

_ __a_ _ _ __4 (2 4 )

4-L A
E • I1l-llf, l = It l (i-iI), i- sjT 2 '

upon usage of (23). The error is zero for magnitude-squared coherences of zero
and unity. To third-order in 4)

6
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This quantity b mwuImum for |1I, - 4: yielding

E... (r-(L '-...) (26)

Thus the error depends on R mainly thruh the quadratic behavior (R-1 f for
R near 1.

In Table 1 are presented attained values of Ill for several desired values
1,141|% as a function of R. Thusa 0/oerror in R causes an error of
C3 a1 iw In the magnitude-squared coherence at the value 0.5. And a
5/0 error causes an error of Is x0 " .

Table I. Attained Magnitude-Squared Coherence2!
IRj1 -.3 I, l" .4 r____ a Jr I ,I" U.6 Ix '- .,I

0.95 .3001381 .4001579 .5001644 .6001578 .7001381
0. 9 .3000053 .4000061 .5000063 .6000061 .7000053
1.00 .3000000 .4000000 .5000000 .6000000 .7000000
1.01 .3000052 .4000059 .5000062 .6000059 .7000052
1.05 .3001250 .4001428 .5001488 .6001428 .7001249

7
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For comparison purposs suppose filter B were not used at all In the
construction of processes k 4 .,v14 In (2). By a procedure analog"u to that
developed above, it may be shown that the error In agitude-squared coherence
is

Em V(1-11.X) A(27)

whichIsinear In A, forusmall A. To first-oider in 46, the maxinmmerror is

* (28)

Comparison of (26) and (28) indicates that carefu choice of two filters yields
an error that behaves as the square of the error for one filter. For a 40/0 error in
relative power levels R, this is two orders of magnitude improvement.

SPECIAL CASE

In order to accurately investigate the bias of coherence estimators, It Is often
convenient to generate two processes, with constmt magnitude-squared coherence
for all frequencies. This is most easily accomplished by choosing

410 = 1b)x M Gr M. r e (29)

In (2). The processes are then

1AM- + Cr 310, (30)
Al~ - jj)+G qt)

The transfer function of this filter Is A*)-Cr all f; the'gain G Is available
from (19) as

Wo--7'0< yj )I (31)
IYII

where -I4is the desired magnitude-coherence. For 111% 0, Er- 0.I

6oN
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SUMMARY

A method of minimizing the effects of unknown power 'IgvI a the coherence
of generated proceises has been preseted. For example, a 1'/o variaflon In
power levels (. 04 dB fluctuation) will affect the desired value of magnitude-
squred coherence by only six parts In the sixth place. Hsnce~state of the
art power supply fluctuations can now be tolerated In the genera!iof
processes with accurately specified known values of coherence.

9/10
REVERSE BLANK



NUSC Technical Memorandum TC1 -193-71 I
28 September 1971

Evaluation of the Statistics i
Of the Estimate of

Magnitude-Squared Coherence

G. C. Carter

A. H. Nuttall

ABSTRACT

Closed form expressions for the statistics of the estimate of
magnitude-squared coherence are presented. These statistics
include the probability density function, the cumulative
distribution function, the bias, and the variance. The ex-
pressions presented are in convenient and accurate forms for
digital computer evaluation; examples of their computation are
included. Simple approximations are also given for the bias and
variance.

Aproved. for public Wel430. diStntbutuow unlimite.



TM No. T-193-71

INTRODUCTION

Consider two wide-sense stationary random processes 4I and Sit) with
auto-power spectra &3jf) a"& CIf) , respectively, and cross-power
spectrum fr. (f). The magnitude-squared coherence between the two processes
is defined as

C V.€) ,f)G.V(f r.)
Estimates of C(W) from n independent segments (or pieces) of data are frequently
made according to .€,) l as, V) Y,'c>"

where Xiv) 1s0.'J) are the Fourier coefficients at frequency f, obtained
from the i-th weighted segments. The problem we address here is the statistics
of the random variable ef).

STATISTICS OF THE ESTIMATOR

There has been much related post work on statistics of the form of (1)
(Refs. 1-7). For x N) nW jd Gaussian zero-mean processes, the probability
density function (PDF) of* (Refs. 2 and 5) can be manipulated into the form

-(0) '( ' ' - " il c "),c ' (2)

This is a convenient form, since the hypergeometric function is a (n-1)-st order
polynomial, all the terms of which are positive. (For C" a, p(t) a S -i).)
The density function can also be written as

14 CCI

*The f-dependence is suppressed for notational simplicity.

I
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where ?,,,,(-) is a Legendre polynomial.

The cumulative distribution function (CDF) of C can also be written in
closed form, through proper Identification of variables in the work of Fisher (Ref. I):

The k-th hypergeometric function Is a k-th order polynomial, all the terms
of which are positive. The probability density function and cumulative distribution
function are plotted for % a 32 in Figures la-ld, and for n-64 in Figures
le-lh. The method for determining confidence intervals from the cumulative
distribution function Is given in the appendix.

In order to obtain the moments of (., we rewrite (2) as (Ref. 8, eq. 9. 131 1)

p( C I- O".., (11, 1 C< I. (3)

The m-th moment of C Is Immediately available (Ref. 8, eq. 7.512 12):tml'} r(*) r(-n i, o(4
I r~r ) (- cj F.w,..,. ).,c), c-i. (4)

By proper identification of variables, this result car be shown equal to that of
Anderson (Ref. 3). The series (4) Is easily evaluated with computer aid.

The first moment is available from (4) by setting m-. It can be manipulated
Into the simpler (and rapidly convergent) form

1+C F(l; n+2 r) , r < 1.

By expanding , in a power series in C, a simple approximation for the bias
is made available:

I-

2
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bis EMI- C (5a)

,,.. C +- 1- < 2 (+)na 4-) (5b)

(Where (5b) goes negative, replace it by zero). As an example, for n8S, the
bias lies In the range (0,325), and the maximum error in (5b) is .0027 at C=. 86.
Expression (5b) is a generalization of an empirical result of Benignus (Ref. 7).
The bias (5o) is plotted in Figure 2; no approximations are involved here.

The variance of the estimator is available from (4) by expanding 3FL
in a power series in C:

Et 6 - l E (6a)

n+42 (w4).4X9.) C (6b)

(11 +Iv-3 1)0 4C].11+(04V
(Where (6b) goes negative, replace it by zero) ror n=8, the variance l ies in the
range (0,.031), and the maximum error is .0067 at C=.83. This result is a
generafllzation of Jhnkins (Ref. 6). The variance (6a) is plotted in Figure 3,
again without any approximations.
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APPENDIX

DETERMINATION OF CONFIDENCE INTERVALS FROM THE
CUMULATIVE DISTRIBUTION FUNCTION

Lot I be the true value of an unknown parameter, and lot 6be its
estimate. 8Is a random variable (RV) with a known probability density
function (PDF) p(t; 'j). (The conditioning on 'I indicates that the
shape of the PDF of I depends on th, exact (unknown) value of 1.)

Suppose we choose A..(J) mAsd &R() such that

ALoV OA cl is (Sol)r'I

Then the probability that RV 6les in the range (A,,(0), W~J) is

F'.,6 A W.4 AV() 1 V -

Now asume that AJT) oxil A,('i) are monotonically increasing with 1

and continuous. Then there follows

Therefore the confidence Interval for 6Is*

(A;' i'), A:' M )f with confidence coefficient .9.

Given a measurement ',this interval can be conrputed once the functions

A a() A-'- are known.
*An excellent discussion of confidence intervals is given in Ref. 9, Chapter 34.

is
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In order to evaluate these functions, consider the plot of the cumulative
distribution function ?(A j ,1)

vesu A, for particular value of 1, as Indicated in Fig. I. The

lkLI) - 4r) A

Fig. 1. Cumulative Distribution Function

points indicated on th abscissa enable determination of A, Lr) ant Av() for this
value of Y . Now suppose ALC() end A )are plotted versus I as indicated
in Fig. 2. (This requires many plots like Fig. 1 for different values of .)

Fig. 2. Determination of Confidence Interval, for .9
Confidence Coefficient

Then given a value an the ordinate such as i, the points indicated on the

abscissa of Fig. 2 are the confidence interval limits for .9 confidence coefficient.

The general results of this appendix apply immediately to coherence estimation
when we identify as C, and as

16
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Some Practical
Considerations of

Coherence Estimation

G. C. Carter
C. R. Arnold

ABSTRACT

Given two processes, the complex coherence spectrum is
the complex cross spectral density function divided by the
square root of the product of the two auto spectral density
functions.

Estimation of coherence in light of the fast Fourier transform
(FFT) is investigated for synthetic data. The procedure used is
to segment the given finite time histories to NSEG segments of
size NNN. Each segment is multiplied by a weighting function
(in this case a cosine bell) prior to computation of the FFT.
Cross and auto spectra are then averaged over the NSEG
segments prior to forming the coherence ratio.

Practical conclusions drawn are that for non-flat auto
spectrum, multiplication by a weighting function is necessary,
that NSEG must be on the order of 64, that NNN must be large
enough to insure sufficient spectral resolution.

Approved for PuDt release, distrioution unlmilted
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INTRODUCTION

The coherence function is in some sense a normalized
complex cross spectral density function. Specifically,
given tw processes the coherence function is the complex
cross spectral density function divided by the square root
of the product of the auto spectral density functions of
the two processes.

The coherence function can be used to determine a nea-
sure of statistical independence between two processes.
When two processes are independent, their correlation func-
tion is zero. Hence the cross spectral density function
(numerator of the coherence) is zero and so is the coherence.

The coherence can also be used to determine a measure
of a linear relationship between two processes. If thn two
processes happen to be the input and the output from a qen-
eral system, the magnitude squared coherence is a measure
of the linearity of the system. Thus if a qood estimate of
coherence could be obtained, itwould be a useful statistic
in measuring the linearity of a system.

The estimation procedure, like most spectral analysis
computations, is rather straightforward in implementing,
but often subtle, and indeed difficult, in proper interpre-
tation. A minimum requirement for its interpretation is an
appreciation for spectral analysis techniques.

To illustrate some of the problems and pitfalls in co-
herency estimation, the authors have simulated various syn-
thetic signals and input/outputs. The results are most
illuminating, and add insight to coherence estimation pro-
cedures.

II. TIlE COIIERPNCE FINCTION

II.A. Definition

Tite coherence function is in some sense a normalized
complex cross spectral density function. riven two processes
x(t) and y(t) with auto power spectral density functions -,

and ]f), respectivelyand complex cross spectral

'.a
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density function Xx,4) then the complex coherence func-
tion Is defined as in reference (a) by:

and the magnitude squared coherence function as

2 ~ 3. 1 () 1

II.B. Squared Coherence as a M1easure
of System Linearity

If we consider the linear system with input, x(t), im-
pulse response h(t), and output y(t), as follows:

Pig. (1)

then the output, y(t), is obtained by the convolution

integral

Thes frequency domain equivalent is a multiplication,

namely,

Y~f
where the transformation fromi the tim~e donain to frequency
domain is via the Fourier integral:

2U
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From reference (a) we know that

) ~ Eq. (3)

and also that

that is,

or conjugating both sides, we see that

but 75 is real so that

xx Eq. (4)

Now equation (2) can be rewritten as

TIX (f ) -J: * 4
I i Eq. (S)

Substituting from equations 3 and 4, we see

3
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0 q. (6)

rhus for the nssurtlitions nade, namely that the system
is linear, we have Lg(t') I . Tf 1(f)Ilis not enual to
1, then either the observations of x(t) and y(t) have been
corrupted in some manner by noise or our assinntion was in
error and the system is nonlinear.

This could he expressed as a theo-em: If a rstem is
linear, then the coherence between the input and output is
equal to unity.

TIT. T1'r- CflInPENCI ESTIMATOR

T!I.A. neginition

While several references (e.g., (a), (h), (c), (1i),
and (e)) introduce the coherence function, only a few (ref-
erences (h), (c), (it), (e)) address its estimation.

The method implemented for obtainino good coherence
estination is explained below. Briefly it consists of oh-
taining two finite time series from the randon processes
being investigated and segmenting these time series into
NSE; segments.

The NSE, pieces may be either "overlapped" or "disjoint"
from other segments. Each. piece is comprised of I'NN data
points. A weightinp or windowing function is then applied
to each piece and the fast Fourier transform (FFT) of the
weighted N14N point sequence is performed. The Fourier co-
efficients for the p-th weichted piece are then used to com-
pute the two auto and the co- and quad-spectral estimates
which are then averaged over all NSE, pieces. The coherence
function is then finally conputed from a ratio of the average
spectral estimates. (Note for real data NSE. number of FFT's
must be computed each of complex size NNN.)

Specifically, let &a(1640 denote the estimate of the
power spectral density (PSn) function at the k-th frentuency,
fk,Ohtained fr.on the p-th weighted segment of size NNN of

4 '
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the stationary rnndom process x(t). Similarly, let -*fX
be the estimate of the PSI) function of the stationary random
process y(t). Also, let (f and j(f) denote re-
spectively the real (co-) and imaginary (quad-) part of the
estimate of the complex cross-spectral density function of
the two processes. The estimate of the maRnitude squared
coherence function implemented by the authors is given by:

SE.

where the circumflex denotes estimate and NSEG is the number
of weighted segments (overlapped or disjoint) over which the
estimates are averaged.

Because the squared coherence estimator is the ratio of
random variables, it is imperative that qood spectral esti-
mates of C(f), Q(f), 3,x (f) and Xt (f) Ise obtained. Random
flucttiations and bias of any of the four snectral estimators
become significant in the ratio used to estimate the coher-
ence function.

IIl.B. The Computer Implementation

NIJSc FORTRAN program designated S1741 implements ee. (7).
A capsulized flowchart of the progran's basic version is pre-
sented in Figure 2. Specific input parameters include: DT,
the hasic increment in time between samples; NSFG, the number
of seements of data; and NNN, the FFT size. Programmable
options include DC removal, linear trend removal, different
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hA= CCONTO

OFT 2 IM AAF
!.APEMM APE~

DACTSPDATA

DATAIR~~NX

COPBE ES RE ESMK T II AT

TWO RUM=SPCTU

CROSS tECTRiM
(HEAL (CO) AUjD I *? ;Aj:A:~y (qUAD))

SQUARZD C13rC

Figure 2. Summnary Flow Chart for Basic Version of
NIJSC S-1741. FFT Spectrum Analysis Program
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weighting functions. overlapped processing, IGS plots, and
printer displavs.

Thto programi's modularized nature, together with its all-
FORTRAN implementation, has made updates and modifications
strailbtforward to fill many Center requirements. The fast
Fourier transform (FFT) was coded by R, 9. Singleton (ref.
eromee (1)). The cosine weighting function was coded by
A. 11. Pluttall of NtISC.

1TI.C. Choice of Program Parameters and Olptions

1I.C.I. Windowing the Data Segments

The first preuqram option is the application of a window
or weighting function. The ideal FFT resolution, Af, speci-
fied by 1/(DT*NNN) cannot be achieved without a phenomenon
known as leakage taking place (reference (f)). This is due
to the non- cal bandpass characteristics of the FFT's when
consideredasa bank of filters. When an NN?4 point sequence
Is multiplied by a rectangular window (no weighting), the
transfer function for each FPT filter is sin(x)Ix. Therefore,
each PFT filtor centered at a specific frequency sees energy
not only from the band about that frequency but also from fre-
quency hands not desired.

S This lp~akage results in biased estimators
11trk, ) C~(ko0"A4(o

This bias bocones a critical factor in coherence estimation
because it is then a ratio of biased estimators. This is
well illustrated in the example cases in the next section.

A technique to reduce lenIhap'e,znd hence the bias, i.s to
window each segment of time history by multiplying it by a
data window. The authors have tinilemented ai cosine bell win-
dow which is equivalent to convolvinr the complex discrete
Fourier coefficients with thle weights (-1/4, 1/2. -1/4).
(Different windows are also available, such as cubic and
quartic.) Discussion of the Perits nf various windows to
be selected is heynndl the scope of this paper, but the im-
portant fact is that some windowinp in required to reduce
leakage.

'?1indowing, however, results in poorer frequency resolit-
tion; that is, of tite effective frequency resoluition, Afepf

7f
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becomes greater by a multiplicative factor K, dependent on
the window, That is,

and K is approximately 1.44 for the cosine bell window when
measured at the half power point.

III.C.2. Averaging the Spectral Estimators

The second choice of program parameters involves selec-
tion of NSEG, the number of segments of data and NNN, the
PPT size. Given time series data limited in time and repre-
sentative of two random processes, let each time series con-
sist of NTS samples. Then, for non-overlapped segments, the
total number of samples, NTSO can only be partitioned as:

NTS a NNN * NSEG Eq. (8)

It is easy to see but important to note that, for a
fixed value of NTSO NNN can only be increased at the expense
of decreasing NSEG, and vice versa.

Recall that the frequency resolution must be made fine
enough to encompass all the detail of the data's true spec-
trum. Note that if fine resolution is required, then the
FFT size, NNN, must he made large, and for a fixed total
number of samples, NTS, the number of disjoint segment NSEG
becomes small.

A small value for NSR( leads to two serious problens:
low stability and biased cross power spectrum. Por-a fixed
value of NTS, NSEG can be increased at the expense of do-
creasing NNN. This results in better stability and low bias
in the cross spectrum but poorer resolution. Small NSGE im-
plies less averaging of the numerator and denominatnor of the
coherence ratio. This is most important in terms of serious
positive bias problems. The bias problem is easy to see when
x(t) and y(t) are uncorrelated. Recall that if x(t) and y(t)
are uncorrelated, the cross correlation function is zero for
all lags and its Fourier transform yields the complex cross
spectral density which is zero for all frequencies, Hlence
the true coherence is zero for all frequencies. However.
when no averaging is done (i.e., NSEn a 1), then the estimate
of coherence (eq. (7)) can be shown to he unity. This ser-
ious positive bias can be shown to decrease as the amount of
averaging increases.
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Clearly there Is a trade-off between the selection of
NNN and NSEC. For a fixed value of NTS, NNN can not be in-
creased withouit decreasing NSEG.Pand NSE( can not be in-
creased without decreasing NNH. The important point, though.
is that parameter selection for high resolution and stable
estimates is at cross purposes.

IV, THE EXA'IPLE CASES

Six examples are enclosed to illustrate coherence esti-
mation. The first example illustrates estimating coherence
for two independent noise sources. The remaining five ex-
amples illustrate estimating coherence for system input/
output relations. The plot labels of the spectral estimates
for the systeM input is "A/PIIIX," for the output is "A/PHIIY,"
for the transfer gain characterisitics is "1?100H2," and for
the phase characteristics is "PHASE".

IV.A. Independent Noise Case

The coherence between two independent noise sources is
estimated by averagingr more and more disjoint segments. The
following set of figures illustrates the resulting coherence
estimates for NSEG a 2, 4, 8, 16, 32, 64, l2R~and MS. The
results are most useful and concur with work by Hiaubrich,
reference (d); Benignus, reference (e); and Carter and Nuttall,
reference (J). Recall that independent noise souarces are
tancorrelatut, andI therefore the inverse Fourier transforn of
the cross correlation function is zero for all frequencies.
The positive bias associated witb estimatin'- the nillnerator
of the coherence ratio is illustrated. Note that as the
avernging Increases, this type bias decreases and the esti-
m'ate of coherence -kprroaches the true value. Byv averaging
over 64 segments, l authors achieve what can be considered
an acceptable "ostim'ate"l of stnuared coh~erence when the true
coherence is zero.

9
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IV.B. Smooth Filter Case

White faussian noise (flat spectrum) is filtered by
the first order, low pass,digital filter specified by the
recursion equation

Yn a 7/8 Yn-l + 1/8 Xn

The enclosed plots show the auto spectra of X and Y
and the modulus (gain) and phase characteristics of the
filter. The coherence estimate of the filter is 100% for
all frequencies.

Note that the estimator is unbiased (since the true
coherence is 100%) and has zero variance. This behavior
of the coherence estimator was predicted by Benignus (ref.
(e)), Carter and Nuttall Cref. (k))Mand Carter (ref. (1)).

14j
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The symmetry of the coherence function is also illus-
trated by designating y as the filter input and x as the
filtor output.

SI OOTH FILTFR CASKI 04231331133 SJ7dflcO
n  

041371

10"Mq~ TOP 8 CIA? ( OM

. lot's . SN@ il I IflS 
i  

4 M * S

iiL -

in*~ v o L-

INVERSE

Quite naturally the estimates of the gilter character-
istics change. Note, though, that-the coherencebeing sym-
metric, does not change.

I
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II".C. Sharp Filter Case

1I.C.l. With WeightinR Function

White r-aussian noise (flat spectrumn) is filtered by
the second order low pass digital filter specified hy the
recursion equation:

Y AY ft- * BYn-2 *x nX

where

A *1.9733n
B -0.98202
C a0.00872

Theo plot labeled "A/PIIIY" shows the spectrum o~f the
filter output. The modulus and phase of the filter are
displayed (Note: the band of sharp resonance and rapidly
phase change at 30 11z). The true coherence is 100%. The
estimate of squared coherence is given and fails in the
band of poor resolving power (relative to true spectrm).
This is a different type of bias than previously discussed.
It can be most severe when estimating coherence..* This be-
havior of the coherence estimator was predicted by Jenkins
and Watts (ref. (c)).

211
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Increasing the resolving poweor can improve the co-
herence estimtator though for a finite time history. in-
creasing resolving power means decreasing the amount of
averaging possible.

The same data fron the Sharp Filter Case was repro-
cessed with 16 disjoint pieces of size 4096 (vice 64 of
1024).

Note the improvement of the estimator at 30 Hz due
to higher resolving power.

SHARP FILTPR CAS8 4096 0421Y1333186 Sl'4,1MVe~ 041371
?Avg? tA a e Cole cauegL
O. M w e 0 mes wpm iss.e
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40W
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The same data from the Sharp Filter Case was again
reprocessed, this time with 256 disjoint pieces of size
1024.

Note that the bias dite to poor resolutionca t
be corrected by increased averaging.

sHArP PiTI as& 1034 042911476296 32141.40008D 041171
IPFW ?AM3 a 0 Cae CfSI

M O 11a . a l *o0 I Wel*W .eem,

100
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IIV.C. Sharp Filter Casem

IV.C.2. With No Weighting Function

The "sharp filter case" data was used again to estimate squared

coherence. This time the data segments were not multiplied by a weighting

function. The FFT side lobe "leakage" problem, reference (f), corrupts

the estimator. Note that even though the true value of coherence is 100%,

the estimator fails to attain the true value. Also the estimates of filter

gain andphase are not as good as with the use of a weighting function.

The result dramatically portrays the need to apply a weighting

function.

27
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The data from the Sharp Filter Case were reprocessed with NO
weighting function applied to the time series but with higher resolving
power,

Here 16 disjoint pieces of size 4096 (vice 64 of 1024) are proc-
es sed.

Note that higher resolving power without weighting function still
yields poor results.

son,__ __ _ 000WtcI 4TI NO CAP 4006

40M

20%,
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The data from the Sharp Filter Case were reprocessed with NO
weighting function applied to the time series but with higher resolving
power and more averaging.

He*re 64 disjoint pieces of size 4096 are processed.

Note that the estimator is stabilizing but not about

th. correct answer.
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IV.D. Tones Thru Filter Cane

The question of resolving power leads to the investi-I
gation of tones through a filter. That is. if there are
fine lines in the input spectrum, plot A1/piIix," the coher- -

ence can be estimated for a smooth filter. The smooth filter

Is again specifted by the recursion equation:

Yn 7/8 Yn.i * 1/8 XnI
The input sequence'is generated by sun'minp noise and

two sine waves (one centered in an rFT frequency bin, one
out). The results show our ability to estinate coherence in
this environment.

33
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V.E. Variable Coherent Case

White raussian noise source 1 (flat spectrum) is filter
through the first order low pass dicital filter specified by
the recursion equation:

----_

Zn a 31/32 Zn.1 + 1/32 Xn

The output Zn is corrupted (intentionally) with additive
Gaussian noise sourco 2 (flat spectrum) independent of noise
source 1. The observed output Yn is specified by the equation

Yn a Zn *.I/4 rn

where: rn is noise source d

The output Yn becomes dominated by additive noise as the
frequency increases, hence the squared coherence decreases
with increasing frequency. Estimatinq the "transfer function"
between X. and Yn is shown.

LinearXn " Zn- 4- Yn

~rn'

This behavior of the true coherence was preflicte.I by
Roth (ref. i)) and Carter (ref. (1)). The tendency for the
variability of the estimator to he qreater at true coherence
about 0.3 was predicted by Jenkins an-1 Watts (ref. (c)),
Carter and :uttall (ref. (k))o and Carter (ref. (I)).
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I"I.P. True Coherence Fqtial 0.3 Came

Two processes with trite coherence equal to 0.3 for all
frequencies were generated (Nuttall and Carter ref. (m) and
Carter ref. (1)). The following set of figures illustrates
the resulting coherence estimates for NSEG a8, 16, 32, 64,
128.and 2S6. The variance of the estimator agtrees with
theoretical predictions (Carter and Nuttall ref. (k) and
Carter ref. (1)).

41
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it. CONCLIISIONS

Some of the practical aspects of estimating the co-
hercnce function have been presented. The problems of ana-
lyzing the results are harsh. The two most significant
points are weighting functions and stability. First, a
weighting function must be applied to the data to estimate

.the coherence spectrum. Second, averaginq is renuired, dic-
tatinx time series of long duration which are stationary
over the period of observation.

Extracting from Tick reference (b), "I wonder how many
conclusions have been drawn over the years because of poor
estimation procedures."

This field of spectral estimation is open to further
in-depth research and the authors will not be surprised to
see significant contributions over the next several years.
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Estimation of the Magnitude- i
Squared Coherence Function

(Spectrum)

G. C. Carter

ABSTRACT

A method of estimating the magnWdquared coherence
function (spectrum) for zero-mean processes that are wide-
sense stationary and random is presented. The estimation
technique utilizes the weighted overlapped segmentation fast
Fourier transform (FFT) approach. Analytical and empirical
results for statistics of the estimator are presented for the
processes. Analytical expressions are derived in the non-
overlapped case. Empirical results show a decrease in bias
and variance of the estimator with increasing overlap and
suggest that a 50-percent overlap is highly desirable when
cosine (Hanning) weighting is used.

Approved for public release, distribution, unlimithed
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ESTIMATION4 OF THE
MAGNITUDE-SQUARED COHERENCE FUNCTION (SPECTRUM)

1. INTRODUCTION

yTe whchmaretwdsne srobabi naty sw joi l o ze ssiman prcssecise byt tnd

Vthe completre probaisity sttren intly Gero-msian prssfe x y) sa

spectral density matrix,

xy y

where

$ #xI) is the (real) auto pmer spectral density function of x(t),

*"i) s thee (real) auto power spectral dieit function of y(t) , and

is~f tohe (complex) croms per spectral density ftion~ at x(t)

sad Y(9) and consists ofia real or coincidental (COt spectrum and an imaginary

or quadrature (quad) spectrum. 1

A simplifying ratio is the complex coherence function (spectrum),

...-~f (1.2)

Uf*X 4yy~f

or. more commonly, the magnitude- squared coherence function,
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2 2
Oxx~f 40y(f)

The term "cobereace" can imply EZp. (1. 2h (1.3), (r the positive miuare root

of Eq. (1.3).

Equation t. 3) ponsesss a number of useful attributes: firut, It always

falls between zero and ne. Second, It is zero if the processes x(t) and y(t)

are uncorretated. Third, it is equal to unity if and only if there exists a linear

relation between x(t) and y(t). 2

These attributes are of particular significance in stwar systemis where a

waveform received at two spatially separated elements of a bydropbome array

may be oorrupsd by additive noise umorreat d from the first to the seond

elemse. V _

Unfortunately, the difficuslty in estimating the true cohevnce ba plagued

modern statisticians. 3 An aalytical expression was derived by Goodman for

the probability density futiUon of the estimate of magnitude coherence i i

%hen several independent observations (or segmenis) of tle processes are

available. A closed-form solution for the cumulative distribution function, s

a fiile sum of bypergeometric functions, can be fuund L,. pi olper identification

of variables in the work of Fisher. 4 The application of Fisher's work to this

prohlem im believed original in this thesis. Earlier, statistics for coherence

estimation were found in tables, and graphs, 5-7 and trai sformations to be

iprfurmed ,m the cohereuce estimator were sugteStL:(j so as to "normalize"

(mimke Gaussian) the density function.

2

NI
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Certain empirical studies have also been conducted. Haubrich suggested

that the total time series under investlgtion be segmented into a number of

shorter segments overlapping one another by 50 percent and that a triangular

weighting function be applied to each segment. 7 Tick showed empirical exam-

plea of the types of estimates to anticipate whea the true cohereace is 0. 2 anda
mean lagged product techniques are used. 3 Dealgns empirically showed the

bias and confdence intervals to expect when n independent segments are proc-

essed using a rectangular weighting function. to

Current techniques for coherence estimation involve applying the fast

Fourier transform (FFT). 11 Some of the latest published results an coherence
10

estimation are limited In scope to processes that have relatively flat spectra. 1

The problem associated with nadlat spectra cm. be avoided through judicious

choice of a time-weighting (or windowing) futiitica. 1 T-14 7U use df a weighting

function in nfcesaery for data act spectrally flat and should be prudently selected

for unkmown data. In coherence estimation, the application of a weighting func-

tion results in wasted data (lose of stability and increase of bias) unless over-

14:-lapped processing is employed. In underwater acoustic environments, which

require weighting functions and good spectral resolution, but which remain

stationary only for limited amounts of time, such wastage can not be permitted.

This thesis empirically determines the effect of overlap processing on the

estimated magnitude-squared coherence function when cosine (or Hanning, after

Julius von Ham•) weighting has been applied.

The empirical method for determining the effect of overlap has been limited

in scope to a cosine weighting function, a finite time history, and a desired
* SS.'. 'h.

3

4 l



94343

d- bo a m i o do so ggf d sadb-quv cobwgmiI have bins

so f Su e ma.. 4d .oisin. TlwbA a - d Ihm uemmassm w a hweeks

allm to pn iIs bliffe arlom.

1 " 1 16 - - -l



TR 4343

II. COHERENCE FUNCTION(SPECTRUM) AND ITS USES

This chapter defines the coherence function (spectrum). Additionally, it

reviews those terms necessary for its definition or helpful in its estimation.

Finally. this chapter presents some examples of the uses of coherence to lay

a background for why this particular function is meaningful.

II.A. COHERENCE FUNCTION

The essense of the coherence function is a collapsed power spectral density

matrix. To fully appreciate the Intricacies of Its definition, it is first necessary 6

to review some basic concepts. They include the correlation matrix, wide-

sene stationarity, ergodicity, Gaussian assumption, and power spectral

density matrix.

11. A. 1. Correlation Matrix and
Wide-Sense Stationarity

The general correlation function between zero-mean processes x(t) and

y(t). which are real and nonstationary, in defined by Davenport and Root. as,

follows :

fol w :Rxy (ti I Y A E [x(t ) Y 2)) 
(2 1I

6i.m
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Ky

*YM (2.5)

The power spectral density funmcls composig the elements of the power

spectral demesity matrix are the Fourier trasforms of the associated correlation

functions. Thme cross power spectral density funcion is
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hpral, Ob Is m Iw eu.gss aw 3 7(' Is mo nsmrsy so or

U.A. Ed~mUm

Tbe -dw Sermeem Sw We wlb-mm Msmar7y'

isa a meUmala -- k Wee. pmw speetrsl dmsy tmeUm gtve. by

ohm00 () is complex,

*Y qf) -C (t).+JQ (1) (2.9)

Further, 4D*(0 and* (f) are nonnegative, real functions of f ,

xx (2.10)



4ovme it s(1

ft Melom rsty dibM b square ot tbs mauidtuds o( Lbs complex cohe ren.

Ilemefan fsr. imp"., ft neglftios"Swvd eohu'eue) is

tXY 1W 2 1.*-Mi (2.13a)

C2 +2

a . (2.13b)

Oxx ()0yyM

Altho tUs tern "cobrews" can imply Eqs. (2.86), (2. 12), or (2. 13), it

usually refero to Zq. (2. 13).

For owns of notation, 9bs dependence am f to often noot spcified; for

example,
C2 + 2

2 X X (2. 14)

10
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It. L USGS OF t'OKRElNCZ FUN(TION

The m aitude-sqursed cohercme function for the ero-mean, wide-senw.

sintin- prooeses xt) sind yft) is Nsef several ways, which will be

prwvmd In the following sections. First, for two prmosers that are lin.ari'

rviated, the magltudi-squared coherence function is unity. Second, for two

indepaulnt processe, the manditude-squared coherence function is zero.

Third, under the assumptin to be presented, the magnitudr-squared cohirenct.

function owrvse as a sftmi-to-noise measure.

n. B. 1. A Measure of Sstem Unarlty

The anltuds-squared coerenoe fusction c a be used Io wmsure system

linearity. 1 In Fig. 1 consdr the lisear system with input z(t', impulse

response h( v). and output y(t). The output y(t) is expressed by the con-

volution Integral

(1) -c I C (r) x (I dr (2 .1

Flig. 1. Unemr Systemt with Impulse Response hi,)

,0 ,
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Th. tnqmwioY-denuft equlvakMu Is a mdUatpIhaion oale d via the

YOf) a RfX k) (2.16)

N aft Is a MMPW 6iMUOR of a atauOWmry r nm process. 2 then

* (f- HM O (f) C2. 17)
NY

and

M HM(f H O(t)*uXM *-H(r00 (f) .(2.18)

bince the 8MapIwdI-.qu~dI coeus deflaed by Eq. (2.13) cazi be

wrttle as

XY~ 2f) diyoOO(f)

arqpication of Eqs. (2. 17) and (2. 1ll) yields

7 7xy 2 -H(f) -I a~ I yf .(2.20)

11(f)

(Consequt-ntiv, .he magnitude-squAred coherence between the input and output of

a linear system is units,.

12
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11.3B.2. A Measure of Correistiam

If the mrnow-.. promessee x(t) and y(t) are indepedent, they are also

merrelated asid orthagal; tha is

R XY(r)fE(Qty#t+?)r mE x(t)J E y(t + r)]aE 0 (2.21)

* XY () a Cf aS R(1v_2 e di -0 ,(2.22)

and

V.Y(f). 0 V f (2.23)

1h0 WO PIN tw0 prsMV bWWND& indepiedmat oe mcmsed with aero mesa.

the mastbi-@q*md omeereIIIIs I "e th- in ere.

11.B. 3. A Measure of U4Iga-to-NOIe patio

Consider & 2165al, DOt) , pssed through two lWear filtes and received

at two se4so where It is corrupted by sincorelaWe additive noises. The

received waveform at eachb searr is tUm passed through two liner filters, as

shown in Fig. 2.

Assumne that s(t) , a*M(.OW ad u(t) are uncorrelated; that in.

IE t n p 2(tv ]u 0 (2. 24)

E [n 1 (t) s(~) 0O (2. 25
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3[uaft ?R)I mo .(.

~. 2. pal aft) aUoived at Two sinew.

YII r I r I ff (2. 27a)

ad

a[. I.)I 12 (f I Hl(f)I2 , (2.27c)

Y2 2  r 2 r 2  M I 2MI 2 (2. 28a)

2 R2 2 ) H 2(f) 12 (2. 28b)

14
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2I

. a

Z) 2-" O(2.351

(1.
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v 12 40i
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_ f12(2.41)
nnl) - YYIV2

f ) 1

19 12This to a pneralization of work done by Roth, Carter and Arnold, and

Knapp. 20

II
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Il1. COHERENCE-ESTIMATION PROCEDURE

The procedure for estimating the coherence or magnitude-squared coherence

functions for wide-sense ergodic (and, hence, wide-sense stationary), zero-

mean random processes x(t) and y(t) is discussed in this chapter. (References

within this chapter to x(t) and y(t) apply to those specific processes with the

noted characteristics, that is, zero-mean, wide-sense ergodic. ) The basic ob-

Jective is to obtain estimates of the elements of the spectral density matrix,

Mq f-f) 1M 31

in order to form the magnitude-squared coherence estimator.

The estimation procedure described Is the direct method, which is discussed
21 22 13 1,0 14

in part by Welch, Knapp, Bingham, Benignus, Nuttall, and Carter

and Arnold. 12 It includes cosine weighting and overlapped processing and is

used because of the computational advantage of the FFT. 11

Briefly, the method implemented consists of obtaining two finite-time series

from the random processes being investigated. The time series are segmented

into n segments, each having P-data points. For example, from each process

there may be 32 segments, each segment having 4096 points. The segments may

)e overlapped 'or disjoint. Each segment is multiplied by a weighting function.

I8

%$ ;.y% Ni, 1.%;4 %W %(\ / 1 101-
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d~etm. or adoInomma Wordml d bapo ar is-oo Sbseo to
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qinwat fth Pow~ inbwlmO do helmum 6.tii lie..., as

%moSm SI be inin fty esa evor d" she trw e .tm

be is*dbWs

1~~~~a sal b tem.und asmu sommmi b oinds sape su

1w a bmbheuI epeSvear to o.

t. T Shueli ha ISP.P W WvW "M SOE Of avorapla be

~8s me s wom an " im". OrS anum nwiMOS.

3. jfw a ) bl bnhe onm ora *6. 1.,2 up IS Sawm

Of *O e 40S n m ms dteFmmvtwn

S44 md 70). Gourni5,. thi Ie is mwn by low bgn T.

T69 RPmSfGS nslefwo OF as wlow haUU &ss a , r Uwaisaffe.

As "Imel SOW 000@111 I, WM I ho) 601040is Of the St. (Hbmlq)

df*lmw u by

0* (3.3)

T a!% T
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Tbeybem, Im e , if T - I amd a s tm pc 0parmt. Where"

I Tat mi a-/4, Um P- l0IM.

NoSM if a ; T thmewedd bei h mulap, md each sgment would be

vlws*mimpeM of us 4We aee (imepi for correlated ed effects).

All Ihreileal a ts hero .oemeered t with he am of independent seaments,

do& i, m meip. A deftd amlysi. of the effect ot overlapped welglted

be - temr eOctgmmslaeb power spectral density fumtios is given by

put". 
14

H.5. COlMENCE mAT0"-O-

Lot as, where p- 1I, ,2..., P-1 demtm the P-ponteequen

idmed from the si wISghbd gmat ofprcmss x(t). .h settmating the

esheemee msm, It Is Neessary to evalumie a wmfomaUn of this weighted

sequsmse. The FIT Is a faIt alorith for evalaming a special came of the

Z-tam o da fbiM sequm e. of munimrs. The two sided Z-transform of

m imiafte sequmm Is defined by

0ss .t'

X )- xsp .I (3.4)

where z equels amy oemplax variable. 2 3

ivaluatlo. of the Z-tramform at P equally spaced points around the unit

circle for a P-point sequence yields the P-point DFT: 2 3

P-I _2 fk P/pP-0

22
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store x opIsthe fln~eweighed equomOS, p -0,l 1~ P- I, and

gal, 2.g.. .*,* a* Equatio (3. 3) ambeeovalined for k-,. *, P - I,

with a bsut algorithm requiring an the order of P lag2 P complex multiplications

sod additions. 1

Similarly, a vector, Y,(% . in formed for each segment (that is,

The estimate of the auto power spectral density function of x(t) at the kth

frequency, obtained from the nth weighted segment, is given by

I X(f) Xf ,where &t-1/f . (3. 6)
Txx k is - L

5 P'

Similarly.

5 P 1(Y YY

and the estimate of the cross power spectral density functioun is

!Vj X.f) (Y . (3.8)

Equation (3.58) can he rewritten in terms of the real and imaginary parts,

C - LtR I [Xs~k)k) J V (Y(39

and

23
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bst esUns d do elemes d do power spetwa damely matru

wre Aftlaib -, mveqf ~ b t hemr al sasimt, a . The nulami of

do mmqpfthb-sqnnW~ ebriams fellews mbvay:

t1 2

E ~) + 37 Y] .1

whan k Winm. Sb dMreft feqmiiy d at srm and a is Sbe minber of

Tbe ehasat d n@AplSbi .ebseonrins

tvs a~h~ +~V i~ Jmkims .iW~ (3.12)

Itbsrs If ma. laSMI t O M p*AW d by thaia ndW ssU

Waft anmm d soirniegly reamonale ter of Sb euilaft yid.

. 11:~ ~ v 1 (3.13~a)

ad

x sfy Y;VY X; (Y Y3(
U' (3.13b)

a -1 X*Y Xefk) Yeal) Y(LK)

Thi fact is330 bai that Itisa often not discussed. However, it points out

that regardless of the value of the true map itude- squared coherence, IKy 1.0

24
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wha a ~*CaMaineIlY, th8 ..timae is. Im gamrai, biased; t&M &Iua biss

dmpmjom(~&M~m a -IsPMOcti. ahsmld belar., as ill e sown.

25
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IV. STATISTICS OF ES ATZ OF COHERENCE

Ooo a in bis Up. (4. 51) sad 4. 0), 1 dertved - analytical expression

for as probabilft desity fd. -- a of the m.pltud.-cohereno. estimate. 1 ̂.

based an Uss. 43. 11) md (S. 12). Me reults were based an two ero-mean

processes that were stationary, Gasuin, and random and had been segmented

into a Indlpendent observations (that is, nonoverlapped segments). Each seg-

ment was assumed large enough to ensure adequate spectral resolution. Further,

each segment was assumed perfectly weighted (wtadowed), In the sense that the

Fourier coeffint at some kth frequency was to have "leaked" no power from

othor biee. However. HKam. 4 points out that the statistics do not hold at the

serotb or folding freqnmoles.

The material In t chapter relating to msgntude-squared coherence is

believod to be new (Carter and Nuttallas) and Is a direct mtension of Goodman's

work. I All of Goodman's original assumptions bold. Statistics of the magnitude-

coherence estimator are given in Appendix A.

V. A. PROBABILITY DENSITY AND CUMULATIVE
DISTRIBUTION FUNCTIONS

The first-order probability density and cumulative distribution functions for

the estimate of magnitude-squared coherence, given the true value of magnitude-

squared coherence and the number, n , of independent segments processed,

26
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are presented in closed-form. The expressims are evaluated and plotted.

IV. A. 1. Probability Density Funetion

The cundUtiunal probability density funcion for the estimate of magnitude-

squared coherence, r12, between two processes, given I _2 and n. is9

a 4n- )( f 2I _ ̂  )n; 1; 112 1'?12) ~ III~ 2< (4. 1)

it then follows, knowing v~[,2 & fitt

p( 9^1 a.I 1) p (1'7%1 21n.} I y 2 1^ (4.2)

Equation (4.2) can be shown (Appendix A) to be Goodman's result. 1 The

density function, Eq. (4. 1), can be rewritten using Eq. (15.35) of Abramowitz 2 6

in the following alternate forms:

P111n.l ")=(- y n n-2

12^1 (12 I^1) 2 Fl( - n., 1-n; 17112?2 (4.3)

and

27
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2 )

Uqtttos (4.3) and (4.4) are desirable because 2FI I-a ;1

can be wmpresed as am (a - )st order polynomial (Abramowitz, Eq. (1S. 4.1)

A specil cow of the density wntion occurs whmen 1. 12 =0.0 . In that event,

, .) ( (4.5)i

IV. A. 2. Cumalative Distribiom Fsactioa

4

Fisher. working an statistics ot the estimate of the squared correlation

ecefflucent, derived the probability density for that random variable. He into-

grated the result and achieved a closed-form solution for the cumulative distri-

bottom function; specifically the solution was a finite sum o 2 FI functions,

each one a flaite-order polynomial. Although these statistics are for a different

problem, proper identification of variables yields exactly the integration for-

mula needed to find the cumulative distribution of the estimate of magnitude-

squared coherence, namely,

28
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In the special ese when i 2 0 , ctimulatlve distribution funLnmm

becomes

-hicl em be staipt to give

p n. IIf( ^

tquntinn (4. 8). when differeniated, vields the probabilitv denttv funetinn.

Eq. (4 5).

V. A. 3. Compulor Evahuatio.

The probaillty dewtty knetio. Sq. (4.4). can be evaluated rcadilv

an a large digital computer In floating-polnt arithmetic. Evaluation for

100 values of I'I2 between 0.0 and 0..9 requires computing

100 (n - )st order polynomials for each value of 2 and n. Th.

29 S

I1 I] T "- "gl"*"[' . t ,- *I ' .:-"
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cumulative distribuation, Eq. (4. 6). can be similarly evaluated. The density -

fumciloft and the cumulative-distribution function were computed as illustrated

in Fig. 5 for ten values of I _f 12 and for n = 32, 40, 48, 56, and 64. (The

computations and 100 plots were done on the UNIVAC 1108 in less than 5 min-

ules.) Example plots are included in Figs. 6 through 13i.

One example of how these plots can be used is as follows: Magnitude-

squared coherence, If is2 estimated by averaging over 32 disjoint seg-

ments of data (that is, n - 32). Suppose the estimated value is approximately

0.-3. then from Fig.

Prob (L I 2 la 32,1 -Y 12 a 0.3)

f 0'~ p(JJV2In 32,1 Ij12.0.3) d J.Y2 (4. 9a)

Ica fro Fig. 6- 0.0.2.I

The upper limit is found from

r 1 2 <~ U~ Iait32~ 1--2 A

f U .^ 2 2 1f1 .3) ^ (4.10)

wich could be set equal to, for example, 0. 9, and the value of A. from Fig. 7,

is 0,43. Hernce,
31
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p. P n-$32. T I - 0. 3)d^1 0. 8 .(4.11) "

On aies of Eq. 4. 11), the proability that the estimator falls in the

up is. , 0. 42) is 0. 1, gives tha the exact value of the unlmow parameter

was . 3 and that 32 dijoint segments were used.

Proper ue of do cunlative dMtrbutim function yields confidence intervals

for the estimate of magattude-squared coherence or any "one for one" trans-

formation of it, such as the positive square root or I0 log, ( [(Se

for xample. Cramer 7 or Carter ad Nuttall. 2 5

IV. B. uth MOMSNT OF DENSITY FUNCTION

The mih moment of the magnitd-equared coherence is given by

2md1, [ 1)2 4.12)

where ts to" been made of the density function, Eq. (4.1).

Application of Eq. 7. 512(12) by Gradshteyn28 yields

40
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r o+ m)

*3 F 2 (m41,a~. *'* s-* 1; 1, 12) . (4.13)

The three-two hypergeomotric functions denoting three numerator terms

and two denominator terms are given by

,e (8)k(b)k clk 
z k

3 F2 (abe: d.e;:)-' - (4.14)
k-O (d)k(e)k k!

where the (a)k notation is Poebhammer's symbol . defined by

Wak 4 rot + k) .(.l)

r F(a)

The mth moment for the estimate of magnitude-coherence is given in Appendix

A.-

These results can be verified through proper identification of variables in

the. work of Anderson, 29 who extended Fisher's original work4 on the squared

correlation coefficient.

IV. C. BIAS AND VARIANCE

This section deals with the bias and variance of the estimator 2

Exact and approximate expressions are presented. In addition, computer

evaluation of the exact expressions is presented to lend meaning to these results.

41
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IV. C.1. a"

Cosider um No first nesea o do probability damety (meac for the

esurateof uagutud.sq~red ehemoe Wh~ m m o .be written

E [r-.121 . 12]i 3 n41.l;IV,.2 (4.16)

is 1-12- 1 .0. 3 .r2 ; therefore. the evaluation of Eq. (4. 16) Is not

meanSMfu. Wham 1,12.0 0.3F2 a1. 0, which yields

Z(i'^i21 m. tl!12.0.*)m 1 (4.17)

Tediou .sawpulatin of Eq. (4. 16) (Appeadix IN yields the simpler result:

a*

An extremely useful approximatdon can be made by expanding Eq. (4.16S) to

obtain

E(^12 1 ~ v2)wi+LL -1 12,J-1 2 + 12 2

(a + n l2

In- )2 112 (4.19)

(an + 1)n + 2)(n + 3)

Computation of higher order approximating polynomials is also easily performed

and is based on an analytical expression for E(?2nh 12

42
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The bias or expected estimaton error is deoined as

From Sq. (4. 1S). - at Weressom for the bias is

I - ba2~ ~ 2

(4. 22a)

(4. 22b)

As an example of using this approximation for n - 8S, the exact bias lies in the

range 0. 0 , 0. 125). depending on V 12 ; and the maximum difference between

Eq@. (4. 21) and 4. n) is 0. 0027 at FI O.86. For large n , Eq. (4. 22a

and b) reduces to 2

Rim, 2 1 f 12) (4. 22c)

It should be noted (see, for example, Eqs. (4 22a) and (4. 22b)) that

lim (Bias)-O0
n -C (4. 23)

therefore, the estimator may be referred to a~s asymptotically uinbiased.

43 .%Z I
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An ommplulady dskmaimd iMe wa In.md by Dom~om to be

3Smsm(1-II) *44. 241

KtissmW~fdUIMdhIW adepa -~ pdial ex~presion for bias,

W4. (44*23osed i,'mf brtei be used 4w opposed to Nomigams result. t

Sq. (4.34)). ompmimy for sm&l a. Noever. It con be uhowu that beigus

rosk m uppr bmed as*AbimFr my a.

A Ir h fr We bi of hiV4 swi to womte smtwaI resolvto

Pew~rlh MMWI. FI We 800) ihia~ by Judsan I but is

- Sb ss~ .1 e te Me Thermm for hin derived above wmew

-umb -"d pwe.

IV. C.2. Vesimg

The vartesmo doh efimar inmly. On. second .meut about the mean,

is gives b

2) 2 [JE 2
Vaziame a V -* EyI, IV~ (4.25

The second mowet of the doity fIcsrl is. as a consequence of Eq. 14. 16).

4(1' 2 i.1 j2]2 . 2 ~ F 2  n, n. n W~ ~ 2f

1h 2 a 0 -.0. Eq. 04. 26) Yields the result
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in(n + 1)

Ani exact expressias for the variance of MY2is obtained from Eqs. (4. 16),

44. 2N., ad 44.26). The result is

V 2( 1 2 ,F(3, n,a; n 42, 1; -Y 2
DO + 1) 3 2'

2

3'2 2, , n~ + , 1(4.28)

For the special casead 2. .

-a - 2.~ - 1 (4. 29a)
mfa* (a) \rI (n +)

And

I 2 for large n and -f 1 2 o .0. (4. 29b)
n

In order to avoid tedious and error-prone hand manipulation, computer-

aided formula manipulation 30 o Eq. (4. 26) was used to yield an apprcoimation

for the va riance of 7! The result is

451
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V -) +2n-2 2t _2 23 2 _ 2 - 3- 12)

n(n[I) n + 2 ok * 1)(a + 2)m + 3)

4 32- 2
42 I - _n +10n -8 172)3

(n + 1)(n + 2) (n + 3)(n + 4)

+ 13n 5 - 15n 4 - 113n 3 +27n 2+ 136n - 120 (j12 )4](.3a

(n + l)n + 2)2 (n + 3)n + 4)(n + 5)

or V V 0

V= (4.30b)
O0 V 0 < 0

As an example of using the approximation given by Eq. (4.30) for n a ,

the exact variance lies in the range (0.0, 0.031) , and the max'mum error due

to the approximation in Eq. (4.30) is 0.0067 at I y 12 .$3. This result is
a

a generalization of the third-order approximation by Jenkins and Watts, which

has no zeroth order term; that is, it assumes no variance of I 1 2 when

7 -2 0.0.

In particular, for large n and _72 f1 0 , Eq. (4.30) reduces to

- F 2,l1 (4.31)
n

which has a maximum value of 8/27n at I 12  1/3

46
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TABLE 1

BAS AND VARIANCE OF h' FOR n =32

Ivy1 2  Z(1412) Bias 0:41~2 1J2  variance

odavou *448bo-O1 *314bo-o1 .18939-02 *91738-03
.*0OUu-O1 .eb.U7O-@a o25070OiU *758-02 *28377-02
oOUO0-01 *.luO*00 *26079-01 *A1523-01 .'4463'-02
olauuo00 *14434*00 *24,676-01 9;9654-01 *54069-02
916000.00 *1idg7.0O *ZU67-01 .'40110-01 *686-0.2
*20ubo4oo 9"@2b+@0 .ao0'uT-01 ob"817-O1 *7?162-02
98*ooo6oo .l*432+00 91314-01 .75041-01 .63127-02
oleu0o.** ok*a*0 o&6462.G-01 *9590-01 986a-02
.31000.00 93474#00 o1*736-0j a.1091+00 osGU%-0a
*MWuO.+00 *31309#00 913068-01 *14005+00 o"8513-02
.*Ou00@ *&11544 el1b33-01 *17603+00 986732-02
0**00+0 .AO07*@@ .10072-Ll .21091+00 *&%62I-02
94&vQoo00 **.671+0@ 9670"-02 *24672+00 o78895-02
.Uuoo.@S 954144+0@ *74379-02 *98551.00 .73225-02
odooo *sba?.@00 9.6.-Oa s32732+o *65i-ug
*6@uOO.O0 obublt+00 .51920-02 *37220+00 @5939L-02
ooou0o00 *,2U*00 9*Z65mOa @42018+00 951651-02
*8800.uo *soa334+O0 .33*02-02 .'4713S+0 o4.3659-02
9?2uooi00 .7gl56*00 925"0-oe ob2566+0O o35644-02
*76O0000 o7ul694OO 91S*96-02 *b&326+00 *278S-5O1
.60000+00 *6011+0*0 o1314'7-02 .*4416+00 *20509-0a
064000#00 0640e*.00 .6*186-03 .706*1+00 .13891-0l
."60000 AdO%7+00 *?91.03 976Ob00 *S2562-03
#92w00#94* 9&021+@0 .21109-03 964717+00 938801-O3
o96000+68 #9.085+009940*704 92160+00 .10573-03
910,00+191v00+01 000000 .10000.01 .000000
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TASLI 3

S AMD VARLAXCE Op 1412 FOB n-.40

111 2 X(4912) Bias z 0 4,] 02 Vartance

000Ouo 98,040-01 .25000-0li1 *lal-02 .59451-03
*40000-o1 *6,30#5-01 .23045-01 961677-02 021BWC-ua
@000-0 *11*00 92aa3-oi 91378*-Ol *35342-u2
*18(.@o.@ :14%*7+00 .19474-1 .*-Ol 9409-1.6458-02
.1000.00 .11774+00 .17779-01 *37141-01 o55357-02
82969+96 84100 .16150-01 .bMW2-01 *62174-02

*2a0o*eo .a +0u o 141.a-01 .7153-01 *67oss-Ga
02SOOS+06 *ayq51*+Oo *13141-01 0*98-0 070106-02'
03200#0e., :3417.+O 01176S.01 .11721+00 .71507-02
,AVOSogo *31%2*00 .10429-01 .14435+00 .71391-02
*40@0000 **,1916+00 .91604-02 *17442+00 0b9912-02
944o0"0 *86%6@1+00 o&0137-0& ea0744+00 .07223-02
.*80600 o.*WI.00 969d39-08 e2*3**+00 963484-02
.51000+00 95091+99 .59117-08 .J2S*7*00 058659-02
ob00+8.0 *b*9400 $497U5-02 .381455.00 053515-02
.0000000 :6041Q+00 0*1ass-08 .3697-3.00 047695-O2
e64896#40 .0-435+00 .33*59-2 941403+00 941364-02
.000000 .. 85400 ogb*9@-09 .46950.00 .34916-02
*72000+00 o?4203+00 920388-02 *62416*00 q26465-02
076000#00 0701b0+00 0149O-02 058210+00 022204-02
*80000+00 *de)1@**00 91040a-0a .64330+00 .16329-02
.*000.00 *8*067+00 *66704-03 .70763+00 911044-U2
.8600o.00 oba036*OO .37527-03 977572+00 965547-03

o98000+00 *9.4017+00 *1ebO0-03 o#4701+00 930789-03
.99600000 *6004+00 937304-04 992176.00 064845-04
.10000+01*US0 00+01 .00000 .910000.011.00000
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TABLE 3
BISAN D VAIANCE OF 12 OR n48

2- (7 Ding~ Bia [04I1 2 2 Vrac

000000 I .vuU34-O .9933-01 .i050341-03 .141631-03
*0000-01 obv,31-0k 919831-o1 9*2854-02 *1776'#-02
*00000-01 '.9/691-01 *00'91-O1 *&2%66WOL *29247-02
o1gu0oo#0 *14611+00 o1b213-ol e.a'.as-oi *36110-02
016000+00 01,1480+00 .14797-01 045161-01 06273m02
4aovoo0o .*i3***O0 913"13-01 .567"1-01 .520511-02
.24000o00o 2*815+O0 s12153-01 969199-01 o56175-US
o28900+,00 *210934'00 .10926-01 o90513-01 .16756-va
*3ao0o00 o3&Y76+0 997616-02 o21*71400 s59929-02
.56000*00 .3*66+00 6615-01 .14189+00 *5916-O1
*00000+00 .110763*00 .762511"02 .17201+00 *54552-02
.11*000+00 .14.665+00 956$38-02 920513+00 *5616-02
0486000+00 04*b71.0 .57*69-02 92*126+00 e5S106-02
.52000+00 054*91+00 .19051-02 .260*1.00 **9201-0a
o56000+00 .56*13+00 .1a1360-02 *31271+00 o"*700-02
.60000+00 *60342400 .3*179-02 .36609.+00 .39746-01
.6*000+00 964277+00 .27732-Ga .11661+00 *3*1191-02
.68000.00 e6a,219+OO .21946-02 s46830+00 .29088-01
*7aooo.00 *7AL66+00 .16632-02 ob4320+00 923691-02
*76000+00 *7l*121100 o12386-02 *58133+00 .164162-02
*s0000+00 *80086+00 6127-03 964274+00 913565-02
9640000 98##055+00 .55169-03 .707*14+00 .91652-03
PGOU00.O0 *6.031+00 931001-03 .775419+00 9541359-03
*92uoo.0 o92O14+00 *13037-U3 .04691.00 .25541-03
9960000 .9*003+00 .29739-01 .92173+00 971213-041
010000+011,0000+01 000000 910000+011900000
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ma Am vAm cz oi 1412 MR 54I

1?12 2(1412) sa. Varian,2ce

-990000 Ilb7?-0 .17657-01 .62657-03 930769-03
o"GeO-l *b.*-0 * 16"0-0L 1 9444-02 * 149'14-02
9"60"-il e9*157-Ol *15157-01 .115*9-01 .24.913-02
elaM00 9 144".04 o13647-Oj 921244-01 * 33176-08

9"004#40 .909"44 .1508-01 .67536-01 .1.3339-02
.IWO90 o*36+N .931*94-02 *"740-01 s58571-02
*328Off.90 * 35*06 .6b14-Oia .11297+00 .51577-02
oA6M+04 *3.?*&*SS 9716004-02 *14014#09 .*511.70-02
94"00+"9 o*OU8.@@ o&520-Oa .17030+00 .50366-08
o"* " *99 4 * @ 951044-04 * a034S.O0 o* 1333-02
o*&*0f.00 **d*91+00 .19119-0 .23970+00 94.5642-02
*UGgOg+C *Sa*I900 .1.1913-02 .27900+00 .1.226*-02
*6600s0+ .3300 b * 3SW?0-02 .52110+00 936376-02
..n00o.00 .60298+00 .89190-Ok .36692+00 .3*103-02
*64000+00 o6*237+00 .23676-02 941539+00 .29575-02
90@o#00 96o107+00 .18735-02 o4.6714+00 924926-02
.72000.00 97a4404 .L1436*-u& oba25O+oO *a0ae8-0a
.76000.00 o7*106+00 o10b66-02 .56079.00 o15800-02
.80000+00 *60073+G0 .734419-03 .64234+00 911601-02
.6*000+00 96*01.7+00 .17025-03 .70717+00 .78333-03
.59000.00 **.O26+00 *26403-03 *77533+00 94.6438-03
.92000.00 o9d012+00 *11579-03 '6683+00 .21832-03
*9600u.00 .99002.00 *2268-0' o92171+00 .61738-01.
.10000+01,910000+01 .000000 .10000+01 .00000
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TABLE 5

UIIAIAND VANAICK OF I~I FOR n64

172 (1412) Bias__ z 614120 2  Variace

eIo0uoo alib~b-OI el&bS-Ol o46077-03 .23663-ui3
*40400-01 ob.416-01 .h*141m01 *42*9"aO *12b6b-U2
qdOuuu-Ol 094ab-o01,1J50-o1 91871-01 021743--02
*12u~00 o1aal4+0S .12145-01 .o036501 929030-ut
9&ouo+OO e 11104#0 91100I0-01 8!9364-02t
eaOU0@08 o9a.17.ee *1062O o*e?3-01 93923-ot
saovooo 0*7.so *7998-o'd .11as., **585-02

*5.vo@. o3A*74S0 .5*720-Ok o&3eU0O *45156-u2
06086O00 ***97*SSG 956"b-02 .a1aa*.eo .*4418-0a
.*oe000o0 .*4*g9.0 *4*660 *aOa5*.@0 48434-81
9458u00+00 *5g*4900 *42647-08 9930114+0 *3001-08
*b~u~o.00ode69 *a0 * kS"&~ .J2s8*00 *3?041-02
obOO0*0O 960255+.0 .8573-01 .14605.00 .296W -02
.*000+00 ob*207+00 .20656-02 .*4148400 .85604-02
,6000+00 o*163*00 *16342-02 .46661+00 .*1S04-Ug
*720G@,00 *74196400 *10b27-02 b52198+00 917740-02
*76U.O.00C *7g092+00 *92125-03 ob$036+00 o1309-2
*O0000+00 4404+00 4025-03 **42041,00 .10133-02
.*000+00 .6.0*00 *40970-3 *70697+00 *6639"-3
.6880000 964023+00 @22VOO0-. o?1521400 940543-03
*92000+00 o9&O.00O 910040-03 *046?8400 919062-03
.99000+00 *9oU0d*00 *20237-U* 992169+00 *5~49-04
41040o#01 .0u000+811900000 1,10000*011.000000
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V. EEPKRIZNTAL INVESTIGATION
OF OVERLAP EFFECTS

Aa coerhma has been coaduaied to study the effect of overlap of data on

the eetinmte I ^f12. The analytical results presented earlier relau only to the

case of independent oopnnt* (that Is, the case at zero percent overlap). This

experiment exmines the effect of different amounts of overlap on bias and

variace al 11
Intuitively, It seems tiak the application of mnoverlapping weighting funo-

tics does act ake thbe beg use ofthisdetwhen forminfg the estimaltor Ift)

This Ialemy is simitlar to the Wastag in forming auto power spectral

y Outics hoe ~14 1^ CV 12wiouoe-
densiy twei sbs by uttal. Wbn If is formedwihuovr

lap, larger bias amid lare variance resl than whes . Vf)2I formed from

the same data, with overlap. Because this inefficiency can not be permitted in

many practical situations of interest (for example, underwater acoustic environ.

meats), It to desirable to bmow how much the bias and variance can be reduced

and at what expense this reduction can be achieved.

V. A. METHOD

The method of achieving the desired objective is straightforward in concept

Data are generated with an accurately prespecifled value of magnitude- squared

cahereibsc;, I gJI2 , which in independent of frequency, f . Since the data
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have been geuerated so that the magfniud-squared coherence is independent of

frequency, tM sample mean and variance o 2 can be empirically deter-

mined for the given overlap by averaging over frequency. These data can then

be reprocessed at several dflbreo overlaps to form estimates of bias and

variance.

V. A. 1. Data Gsneration

Consider the zero-mean, wide-sense stationary, Gaussian waveforms

hI(t) and a (t) that are statistically independent and have power spectral

density functions Y(f) Da n (f), respectively. Statistical independence

dictates that tbey be dc; that is,

Rn aE[al(t)n,(t+)]-0. (5.1)

In order to generate two processes with magnitude-squared coberence

independent of frequancy, let (Nuttall and Carter3 1)

z(t) m n (t) + an2(t )  (5.2)

and

Y(&) m n2lt ) + GnIlt) (5.3)

The croes-correlation of x(t) and y(t) is

R (v) II t +G (jNt+ nI( ) (5.4)
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ExpaDdbg, dropping terms that go to sero, and taking the Fourier transform of
S. s4) yields !

X () GO (f)O (f) • .)
222

The autocorrelatlo of x(t) is

Exanding, dropping terms that go to zero, and taking the Fourier transform of

Eq. (5.6) yields

a ) M + G* n(f)• (5.1)

Similarly,

M0  2na2 2 + G; n1 I , s

Thus, the magaltude-uquared coherence between x(t) and y(t) Is

04bM+ 0 (f)+G2

[46 1 2 1 1 (5229)1

Now introducing the assumption that O (f) 0h f) On0(f)

68
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4 * 4G4 240
am 16M (5.10)

xy ( ;)2 4b2~ (f (+2)2

which Is Independent of frequency.

In order to prespecity a desired magnitude-squared coherence, f d 12

between x(t) and y(t) the gain G of Eqs. (5.2) and (5.3) must be selected

by solving Eq. (5.10):

I dI 12 0< I-d1:
a. , .dI (5.11)

0 7 dl 120.0

Under the assumptions made, a pre peifled dewed value for nagnitude-

equared coberence can be generated. Bmeum th generated processes will

later be used to empirically determine a very small quantity (las6tLt is

important that the generated value of coherence to indeed the desired value. In the

actul generation of two processes, the assumption *3 On a I f %22( may be

violated; therefore It becomes Important to determine bow sensitive Eq. (5.10) Is

to this assumption. Com sder them

2 1+A(f)1 (5.12)
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it ta eaily howni by subetituting Zq.(5. 12) into Eq. (S. 9) that the value

of mantu-sqared coherence generated, gi 2 .

+A+*&1 rdA.

where I td i 2desired value of 12 . mnd the dependence of f isadropped

for convenience.

The error in the generated value is

I?7g12- 1d 1 1d"12 -Vd 12) 2  &5 .14)

Evatlamt of Eq. (S. 14) to third order In A yields

g12 17d Ify Id 1 2), A (1-4) W(.)

This quantity Is maximum at d " j and, hence, the maximum error is

approximately

Ma error • (1 ) (5. 1)

Therefore, for example, when A - 0.01. the maximum error is approx-

Imately A x 10- 6 ; for a - 0.05, the maximum error is approximateiv-4i 2 31
1.5q x 10- 4 . (A table of errors versus ! rd and .3. as computed friom

Eq. (5. 14). yields results similar to the given approximations.

I70
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The processes lgemerated accrdng to Sqs . .2) and 0S.3) have been

shiown to be relatively Iinaemuttve to mimer igemee to tWe power sectral

donaity fituon of the original moorrlbd waveform a~ I t) and a 2 it) .

The prosdire for VermtIg -al -coeremoe tUm series m briefly

be eusmmarzed as folirn: Om G2Mnaiam oise mire ummorrelated from

point to point was used to generat, a Ure-lmited maple fumotlm ol a I 4) and.

later, of V2 (). (This method ellssmlt the medl for two hDantical filters..)

The waveforms were band -lmted maimg a low-psse filter and dWitised. The

dMIgit data were dhm stored onmo* mtps inp A a harmat oompatWble with over-

Iimpped promeaelq. igftml versem of aft) - a 1 0 * CIS2 ) and ys) a t

+O It were gumerated from dgleal veeim4 f Ri and a.*) for two

valum of 1 Vmwepta fer eterdw Saa ftue S"Wtf-sqinr

cobaee appeae to be inoemr,.)

A Mbe Packard Mae in aersatmr, K MeN. MP3?23A, w wed for

dlata gemrsUm with *A felow~ml~weti:

Oemueniam rms 0.61x 3 16 volta 4pe circtt

Ther mipAb poweir damily fumetlm iselt to wftbm ±0, 3 d5,k P OVid the

ina powr vehage flumme m more Omm 4is persest. Thia eer r
90 a £. in Wq. 6. 12). Of 7.163 uX IS- amil. menirn error is fte gmeraaed

-4
maituda-red cohereme. fr~wn Eq. 0 14). al 3 x 10 IFtr exampi. tf

d 000 om em exIpec1 0 $004 2>0 449% ma.king t

. . .. '
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Va" E i-(k) - Bias (5.16)999 k- I

Results of the experiment are described in the next section.

V. B. RESU LTS

Results of the experiment for a Joint set of data, each (32 x 4090) saampieb

hvn. are included in tabular and graphic form. Confidence hends for the

,.sianaes tof ias can be determined from the estimates of variance. However,

it must be realized that 1000 samples (frequencies) wore used to determine the

averap. and thateach sample is correlated to the extent of approximately 0. 5 with

weighboring estimates (empirical results). This agrees with analytical results

provided for auto spectral estimates. 
1 4

It is apparent from the results (Tables 6 :wd/ 7 amd Figs. 28 through :;1)

that the bias and variance of I j2 can be reduced through the use of over-

lapped processing. For example, wh~en I _y 2 . 0. 0 , the variance of the

estimator with 50-percent overlap equals 31 percent of the variance of the

esitimator with 0-percent overlap. Vith 50-percent overlap, the bias is 55 per-

cent as large as with0-percent overlap. Similarly, when 'Y i 2 = 0.3 , the

variace is 55 percent of the 0-percent overlap estimator, and the bias is

760 percent as large. It also can be seen from the results that 62.5-percent s _

,,%',*rinp is similar to having processed twice as much data with 0-percent over-

lop. There is one possible exception: The bias for I) 1 2 = 0.3 is 36 percent

as large a., the 0-percent overlap estimator. This is better than 50 percent,
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whieh would be expected from twice as much data.

Q.e usrally, there Is an Intease In ocmpu-ttcal cost ssocated with

overlapped processig. Upslfleafly, the number of PFTs to be performed

is xm unr of th isali cost) Increases with the percent overlap spec-

Ified (Fig. 32). Tbe =umber of FITs required for 50-percent overlap is -

pd 6-mume l fI the nusmber tor O-peroeat overlap.

ioreasin the overlap from 50 peroent to 62.5 percent, requires 32-per-

cot more FFTs, but the variance of the estimLtor becomes only 80-95 percent

o its value at W-poromt overlap. In most oases, the improvement to be

ditd from usfng 62. 5-peraent overlap, as opposed to 50-percent overlap,

will m"i wa rat the incresed cmputatmml costs, and should be used only

whm tv sb t aiane d bias redactim rwum enta demanded.
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A deftled 806"WeaMWFlyl sO 11 sisti oir estimlUmg Sb. mOVMtuus-

~mred ~bsram e ~tis gosaftwre) Me bee ie. YA suh estimates

an made. time-limted sample Isctoms o long daratica, which awe statimearv

Om d wiftesmum) ever *a period of observatio. must be available. Kapree-

elm jr the proabillty demmiy, Sb. cmulative distribution, and tbs bias and

vaimes ofj 1 habve bee. presmed for the case where no overlap process-

Mg is waed 9vaismie. of thes a~presses. which are depuident an bath the

tras vake df obrem ad the amber of observed sem a .adamatically

pwporry dhe 9 eqat--emM& at be large.

The applicai tomo a .oslas-weigh~uig 6mmotim is order to reduce errors des

to sielohe eae wses Sb. available Mst. As ahows emplrically. proper

we of se dam, is term of redoed bias and variancs at the estimator can be

achieved through overlapped processing. It appears that a 62. 5-percent over-

lap is rougl equivalsa to having twice a" much data available. The reduced

bias and vartance of tbs estimator achieved Whough 62. 5-percent overlapped

procsesing can be realized almost entirely through a S-percent overlap. The

oompsttoa cost associated with K-peroemt overlap Is not unreasonable.

With 50percent over lap, variance and bias reductions are achieved that are

similar to reductions resulting from processing twice as much data with 0- percent

overlap. This significant gain to be obtained from SO- percent overlap process Ing

82
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Ust .s. (A. ) A $. A) yi l

2 ?. 2 B1 1 + B(A. 11)

Fore eampk. csid thecase I1 1 .o. Now B- 0. , B =0.0

nd lQ. 4A.11)bold with equallity. Conuider goo I7-y 0. 0. Then

r() r(3/2)"~1~. 1" o.o)- .~~12 (A. 12)

mg ES. 1$. . 47) o Abramowitz and Stsguf, 2E Eq. (A. 12) yields for large n

Fo r .o, Eq. (4.21) gives

1--2 , 0. (A.14)2 n 7200

Thag, the ineamlty bolds and Eq. (A. 11) becomes

11 .)10.0. (A. 15)
fi 4 'n
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APPENDIX B

MWATIOt OF A SMPLIFIED EXPtESSION
IM THE jXPECTATION OF THE

ESTMATEI OF MAG!IIT1UE-
SQUAUMD COHERENCE

Th mia, s bivta simplified expression forEl'1j j v)

ov Pmso hoe.

Aswiq to Eq. (4.26).

2~ 1 )D( 2 , n,n; +, i; 2), (B1

asi be o mmi~kd into Me form

2 IV 1)a (M~k(k 2 (B. 2)
ko(a~k) k

448 - OAUVMMW * Irm the muuwratc term in Eq. (B. 2) yields

__ (B.3)
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it follows that

(b)kk n

0 - (B.s)

k=O (n + 1)k

In terms of 2F functions, Eq. (B.5).becomes

212F

E(I121.In, 12) (1712 ) n [2F ( nb;b;7 2)

(- n)

26
By using Eq. (15. 1.8) of Abramowitz and Stegun, Eq. (B. 6) reduces to

2112). )n\n

E (i 7' n, 11 - -I12) [-I12)'Y

*- 2 F 1(n,n;n +1; 2)] (B. 7)

n

8implifying aW applying Eq. (15.3.3) of Abramowitz and Stegun, 26 Eq. (B. 7)

can be further reduced to

(I "In,() (1 -)21 12)

(B. 8)
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nuafly. by applyft Sq. (15. 1. 6) of Abramwit ad gag=u, 26with a *1,

b 1. mWai 0.+1 I Eq. (5.60) con be manipulaWe Waot&M form
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Statistics of the Estimate of
Magnitude Coherence

G. C. Carter

ABSTRACT

Expressions for the statistics of the estimate of magnitude
coherence are presented. These statistics include the
probability density function, the cumulative distribution func-
tion, the bias, and the variance. The expressions presented are
in convenient and accurate forms for digital computer
evaluation. Tabular and graphical examples of computing bias
and variance are included. Simple approximations are also
given for the maximum bias, variance, and mean square error.
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I NTRO DUCT ION

Consider two wide-sense Stationary random processes x(t)
ad y(t) with auto power spectral density functions G,(f) and
Gy(f)s respectively, and cross power spectrum Gxy(f). The
magmitude-coherence between these two processes is defined as

I I W (I

Estimates of IW(f)I from n segments (or pieces) of data
are frequently made according to

(2)

where Xi(f) and Yi(f) are the Fourier coefficients' obtained
by performing a fast Fourier transform (FFT) of the ith
weighted segment. The problem addrossect here i he behavior
of the bias and variance of the random variable I'(W).

STATISTICS OF THE ESTIMATOR

There has been much related past work on statistics of
the form of (2) for n independent segments and x(t) and y(t)
Gaussian zero-mean processes[l-12J. In particularthe prob-
ability density function (POP) of* I4I can be found in refer-
ences 2, S, and 10-12.

~ ~ L'l~(3)

----------------------------- --- ---- - ----------- --- 

*The f dependency is dropped for notational simplicity.
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The cumulative distribution is given by [121:

For the special case of Irl o 0

r(iIn,V& (S)t 7~Y'
Differentiation yield s the result

In general, for arbitrary 170 the nth moment (Ref.
12) Is given by

~ A; ~ . (7)
* 2

An exact expression for the

bias to E(1^'1~ I (83)

is

bias =~n (i-/L)

(9)

2
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An exact eapression for the

An auoiaeo * o L .varin Lis' (10)by[6variance e E)
30(11)

An approximation for the variance is given by s6-

variance XI I bI , (12)
7.n

which has a peak value at I *0 such that

= (IS)

maximum variance (13)

Ihe mean square error of the magnitude-coherence estima-
tor.41~. from the true value is

moan square error a variance'* [biasJ2  (14)

Since the mean square error is always greater than the vari-
ance, it follows that equation (16) is an upper bound on the
variance, though not a least upper bound. , -

t3
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COMPUTER EVALUATION

The FORTRAN computer pregram for the P32 function coded
by A. H. Nuttall is included in Appendix A. The FORTRAN com-
puter progra. for evaluating the bias, variance, variance
approximation, mean square error, and 3a points is included
In Appendix B. Tabular results are given in Appendix C.

RESULTS

The tabular results, Appendix C. of the computer evalua-
tion are given for 7 values of a and several values of II.
In particular, n a 4. 8 16, 32, 64, 128, 256. For each value
of n, 1j; ranged from 0.O,in steps of 0.02, until the variance
was .01 of its (approximate) peak value.

As shown in the tables1 the bias (Eq. (9)) has a max-

imum value at 0 J " 0, namely (see ref. (121).

maximum bias -. Tr (17)

for large n.

Now when I 0. a O, using a result in reference [12) and
inspecting tabular revults, we find that equation (16) yields

maximum mean square error m I" (18)

The appearance of a local maxima in the mean square error
for n a 64 and IWI a .2 remotely suggests that equation (18),
while true for the practical range n I 256, might not hold in
the limit of asymptotically large n. Similarly, an inspec-
tion of the tabulated variance clearly indicates that the
peak value does not occur at IWI - 0 as indicated by equation
(12). It can be observed (see tables) that the abscissa value
for which the variance, equation (11), is a maximum changes
with n. This type of behavior is not predicted by equation
(12). _

Plots of the variance versus I'l are provided in Fig. I
for the 7 values of n. It can readily be seen in this figure
that the abscissa value for which the peak value of variance
occurs changes with n. -.

A plot of the variance approximation, together with the
true variance is given in Fig. 2. The usefulness of the var-
iance approximation, which can he determined quantitatively

*

* .% 1
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from the tables, can now be seen qualitatively. In particu- I
lar. one can conclude that equation (12) approximates an
upper bound on equation, (11) near the origin, and hence equa-
tion (13) acts as an approximate upper bound on the variance.

Plots of bias and mean square error are given in Figs.
3 and 4. They bear out the observation that bias and mean
square error are maximum for 0. O

U

'1
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Appendix C

TABULAR RESULTS FOR THE COMPUTER PROGRAM
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Appendix C (Cont'd)
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ABSTRACT

The smoothed coherence transform is defined and exam-
ples of its uses and shortcomings are.given. Computation of
this function shows promise for measuring time delays be-
tween weak broadband correlated noises received at two
sensors.
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i. INTRODUCTION

The purpose of this memorandum is to define a new function, the smoothed
coherence transform (SCOT), and to point out its utility. Also, its shortcomings
and examples of its estimation are included for completeness.

II. DEFINITION

The SCOT is the smoothed Fourier transform of the complex coherence function.
Consider two stationary random processes x(t) and y(t) with auto spectra G (f)
and G (f), respectively, and cross spectrum G (f). The complex coherence x function

'(f) Ybetween the two processes is defined as y
Gxv (f)

The smoothed coherence transform is defined by:

c(.) =  w05(f) I (f) exp(12-f T) df

where W(f) is a smooth weighting function (window) such as a cosine
(Hanning) belt.

Estimates of I(f) from n, segments (or pieces) of data are frequently made
according to []

A.' fI I

j 2

!1
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whore X.(K) and Y.(K) are the Fourier coefficients at discrete frequency K,
obtained Ly computing the P point discrete Fourier transform (DFT) W2] of the
i-th weighted segment. Proper computation of V (K) requires: (1) that a smooth
weighting function be applied to each segment, (2) that each segment be of
sufficient length to ensure proper frequency resolutionand (3) that the number of
segments, n, be large in order to reduce the bias and variance of the estimator [3].

Estimates of the SCOT can now be obtained by computing the inverse DFT via
the fast Fourier transform, FFT [41

N-I

C P (K*t 6(K4 e~(j2r K P/N)

where W(K) are discrete samples of the smooth weighting function W(f).

Ill. DISCUSSION

The SCOT is an ad hoc technique discovered by the authors and believed to
be new. The specific problem which prompted its computation was an attempt to
determine time delays between weak broadband correlated noises received at two
sensors. A related problem was discussed by Roth C5), who %uggested utilization
of the * impulse response' function defined by

k ')- - e) (j2r r)

Under certain conditions (or models), h('-) has better time resolution than the cross
correlation function defined by

R(.') --- (C4 X (f) 2V'1)c1- -,_

2

_ .4
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Examples of this attribute are given by Roth. The rationale for dividing the cross
spectrum by the auto spectrum of the x(t) process, G (f), is that it has meaning
when x(t) is the input to a linear system. When there is no such physical interpretation,
however, there is no justification for normalizing by G (f) and one might be puzzled
as to whether to " whit e n the cross spectrum by dividing by the auto spectrum of the
y(t) ass, G (f). A technique which favors neither G (f) nor G (f) is to divide by

Y Of interest is the fact that in the speciarcase wheYe G (f) = G (f),
te x Fouller transform of the coherence function is equivalent to the * impulse re4onse"
defined by Roth.

The reasons for looking at the SCOT are in part obvious. Consider a cross
spectrum with certain dominait frequency components, e.g., the presence of a
60 Hz component 20 dB above the local average cross spectrum. The Fourier transform
of the cross spectrum yields a cross correlation function heavily dominated in the time
domain by a 60 Hz sine wave. Hence, it is difficult to measure the delays due to weak
components in other bands of frequencies. One apparent method to skirt this dilemma
is to compute the Fourier transform of the cross spectrum only over a limited band of
frequencies. Unfortunately this requires a great deal of apriori knowledge about the
data. Also the desired component ma be broadband. On the other hand, the
whitening process of dividing by -G (f) G (f) insures a complex function which
satisfies the relationship, o f, 1-6(ffi$ .y Additionally, if the two processes are
uncorrelated, the coherence is zero, and if they are linearly related, the coherence
is unity 3.

Depending on the model (or actual physical situation), the SCOT can be a useful
analysis tool. Two other points should be made at this time. First, both real physical
data (not reported here) and the synthetic data studied in this memorandum have
fortuitouslybomeout some of the strang assets of the SCOT. It is, however, a trivial
task to synthesize sample functions of two random processes in which. the SCOT would
be extremely misleading. Hence the SCOT and crass correlation functions should be
used together with other statistics, prior to drawing any premature conclusions. A
second point to make is that other whitening functions can be useful. One of them
briefly investigated is the phase transform (PHAT) defined by

A~t G.~C 2ir~f I)
I ,I

The PHAT whitens the crass spectrum more than the SCOT. In several real data cases
studied by the authors, the PHAT and SCOT gave similar results. It is possible to devise
synthetic cases in which one would perform better than the other. The application of
a weighting function, W(f),to any frequency function prior to performing the Fourier
transform, while not explicitedly called out, is useful when it has physical meaning.

3
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Hence, one could form a smoothed PHAT or smoothed impulse response as easily as

the PHAT or impulse response.

IV. COMPUTATIONAL CONSIDERATIONS

Thw most significant computational consideration affecting the estimation of the

SCOT is the estimation of the auto and cross spectral density functions prior to
estimating the coherence ( 3).

One computational trick which can be applied in order to reduce computer
running time is described by Eby[6] . If the P point sequences x and y are both
real, then the discrete Fourier transform (DFT) of x and the DFT n of n can

simultaneously be computed by performing one fast Fourier transform (FFT) and 4

of the complex sequence dn = xn + jyn '

If we denote D(K) as the DFT of d ,then [7, pp 308-309]

X(K) = 1/2 fD(K) + D- (J)]

Y(K) = 1/2 [D(K) - D*(J)]

Reference to the frequency J refers to the negative frequencies which are

found if, the upper half of the DFT output. For example, with the Cooley-Tuckey
subscripting (4] (namely, 0 to P-1 ),the P/2 + 1 subscripts starting with 0 and ending
with P/2 denote positive frequencies from zero to the Nyquist frequency; the P/2
subscripts starting with P/2 and ending with P-1 denote negative.frequencies from
minus Nyquist almost to zero frequency. Hencewith the Cooley-Tukey subscripting[4],
we add and subtract subscripted output from the FFT according to the following table:

Count K J K + J

I1 P-1 P

2 2 P-2 P

P/2-1 P/2-1 P/2+1 P

P/2 P/2 P/2 P

Table 1. Cooley-Tukey Subscripting

.1

e .
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The dC component must be treated separately. Negative frequencies can be
neglected since the power spectral density function of real random processes is
symmetric about the origin.

Another type of subscripting is that employed by Singleton 1, where the data
sequence (vector) is subscripted from 1 to P. Now the combining table becomes:

Count K J K + J

1 2 P P+2

2 3 P-1 P+2

P/2-1 P/2 P/2+2 P+2

P/2 J P/2+1 P/2+1 P+2

Table 2. Singleton Subscripting

Again the dC component is handled separately. Nott in Table 1 that J - P - K and
that in Table 2, J=P+2- K.

Let us now denote the complex vector D(K) as follows (using either Singleton
or Cooley-Tukey notation)

D(K) = M(K) + jB(K)

D(J) = M(J) + jB(J.)

Consider

X(K)X*(K) = 1/2 ED(K) + D-(Jj 1/2 tD-(K) + D(J5 ,

By substitution X(K)X*(K)

1/4 v. (K)+ 1B(K)+ M(J)- jB(J)

[M(K) - jB(K) + M(J) + jB(Jjj

MK 'M !S
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'.1/4 1 jM()+ M(J +1 [B(K) - B(Ji3)

. [M(K) +t(ji- I [(K) - S(J j

-1/4 CM(K)+M(j 2 + tBCK) - IBUj 21

Similarly, it can be derived that

Y(K).(K) -1/4 CS(K) + B( 2 + (M(K) _ M(Jj 23

and further that

Rj0 X(K)Y*(K)j - 1/2 £M(K)B(J) +~ M(J)B(Kfjl

and
a m X(K)Y*(K) - 1/4 [M 2(j) + B -M(K)-B2 (K].

The validity of these derivations has been verified by programming the listed equations
and executing the computer algorithm with the synthetic data described in Section V
of this memorandum.

V. EXAMPLE

There are many configurations (or models) which will boar out the usefulness
of the SCOT. For the purposes of illustrating this usefulnes it is only necessary
to present one such example. From this example it can be seen which types of
random processes should be studied by SCOT analysis. Cons ider now the following
block diagram (Fig. 1).

6
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Sine wave O TO A MPCS
generator Delayat f 1 I

Sine wave
generatorDea

x(t) at f n2 y(t)

Sne wiggeneratorDea

at f 3

Noise SCO Noisegenera generator generator
nl I)W n 2(t) :  n 3(t)

Figure 1. MODEL OF TWO RANDO M PROCESSES

The noise generators he broadband and uncorrlated. Hance x(t) and y(t)
have common (or correlated) broadband noise and sinsoids plus ncorrelated
broadband noise. The cross correlation coefficient was computed and plotted in
Figure 2.

The SCOT was computed and plotted in Figure 3. Notice the relative ease
with which the time delay of the broadband component can be determined from i!-

the SCOT plot. This is in contrast to the difficulty encountered in the crass
correlation coefficient plot, The PHAT plot, Figure 4, for this model yields
results similar to the SCOT.

The power of the SCOT, which is borne out by the above example, promises
to be a useful new tool for studying random processes.

7
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VI. CONCLUSIONS

The SCOT is a useful ad hoc technique for analysis of time delay characteristics
between two random processes. Examples of its power have been included together
with~ a discussion of its applications and limitations.
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Coherence Estimation as Affected
by Weighting Functions and
Fast Fourier Transform Size

G. C. Carter

ABSTRACT

Given two wide-sense stationary random processes, the
(complex) coherence function is the (complex) cross power
spectral density function divided by the square root of .the
product of the two (real) auto power spectral density functions.

Estimation of the magnitude square of the complex
coherence (MSC) with fast Fourier transform (FFT) processing
is investigated for synthetic data. The procedure used is to
partition the given finite time histories into n segments. Each
segment, consisting of P data points, is multiplied by a smooth
weighting function before computing the FFT. Cross and auto
spectra are then averaged over a large number of segments
before forming the coherence ratio.

It is demonstrated that, when the magnitude of the first
derivative of either the auto spectrum or the phase of the
complex coherence is large, (1) multiplication by a weighting
function is absolutely necessary and (2) P must be large
enough to ensure sufficient spectral resolution. While these
techniques have been suggested by individuals familiar with
spectral estimation, the gross bias errors encountered in the
MSC estimate due to improper (rectangular) weighting func-
tions and poor frequency resolution (small FFT size) are much
more serious than might have been expected.
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DEFINI1TION OF TERMS

C(f) real part of *yf

DFT discrete Fourier transform

f frequency

fk 1db discrete frequency

FFT fast Fourier transform (fast m~ethod of computing DFF)

MSC magnitude squared coherence, I - (f) 12

a number of segments, each of P points

P number of data points in each FFT

Q(f) imaginary part of *Yf

s subscript denoting segment number

-Y (f) complex coherence function

*x~f) auto power spectral density function of x process

*Y~f) auto power spectral density function of y process

*xy~f) cross power spectral density function of x with y

V for all

A estimate

* complex conjugation
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COHERENCE ESTIMATION AS AFFECTED BY WEIGHTING
FUNCTIONS AND FAST FOURIER TRANSFCRM SIZE

INTRODUCTION

Given two wide-sense stationary random processes, the (complex) coherence
function is a reduced form of the (complex) cross and (real) auto power spectral
density functions. The magnitude square of this complex function possesses
several useful attributes. For example, it always lies between zero and one,
and is zero for independent or uncorrelated processes. This report emphasizes
the magnitude squared coherence (MSC) and its estimate when the true function
is equal to unity.

For example, the M8C can be used to determine whether a linear relation-
ship exists between two random processes. In particular, if the two processes
are linearly related, then the MSC is identically unity. I Hence, when a good
estimate of MSC can be obtained, it Is a useful statistic In describing two wide-
sense stationary random processes.

The estimation procedure is straightforward computationally; however,
interpretation is more an art than a science. Several investigators have addressed
the problems of MSC estimation; for example, see references I through 16.
In this report, the effect of weighting functions and FFT size in NSC estimation
Is illustrated, using previously simulated signals and results of Carter and
Arnold. 15

The purpose of thii study is to aid experimenters purchasing and using
digital spectrum analyzers for field measurements. In particular, the inability
of a (hardware or software) spectrum analyzer to estimate properly the MSC
function strongly suggests that the auto and cross spectral estimates are in
error.

THE COHERENCE FUNCTION

The coherence function is a normalized (complex) cross spectral density
function. Specifically, given twowidesense stationary processes x(t) and y(t)
with auto power spectral density functions #x(f) and *y(f), respectively, and
complex cross spectral density fumction *xy(f), then the complex coherence
function is defined2 by

t MT, a",'
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* (f) M

and the MOC is then

IY~)122 C2 M+Q2M(2
#x~f - C1~f #f)+ M (0

The MSC can be used to measure system linearity, as will be proved.
Consider the linear system with input, x(t), impulse response, h(t), and out-
put, y(t). Then the output, y(t), is obtained by the convolution integral

YM f h(r) x(t -r) d? r (3)

The transfer function of this linear filter is obtained by means of the Fourier
integral:

-j2fr fH(f)J h(r) e dv (4)

From reference 2 it in known that the transfer function can be expressed in
terms of the (complex) cross spectrum and the input auto spectrum. In particular,

H(ja*(f) f) 0 5

Furthermore, the auto spectrum of the output of a linear filter Is given2 by

* y(f) =H(f) H*(f)* x(f) .(6)

By using equations (5) and (6) it can be shown15 that

I (bxy .(7)

11(f) *(f)
Substituting equations (5) and (7) into equation (2) yields ~

2

0
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IvfI =H(f) 1, Vf (8)
H(f)

Thus, for the asumption that the system is linear, we have 1.(f) 2 = 1, for
all frequencies. If Jy(f)l 2 is not equal to unity, then either the observations of
x(t) and y(t) have been corrupted by noise, or our assumption was in error and
the system is nonlinear.

This could be expressed as a theorem. If a system is linear, then the MSC
between the input and output is unity.

THE COHERENCE ESTIMATOR

The method used for obtaining good MSC estimates is the Welch 8 -Haubrich 5

technique. Briefly, it consists of obtaining two finite time series from the random
processes being investigated and segmenting these time series into n segments. 8
The n segments may be either "overlapped" or "disjoint" from other segments.
Each segment comprises P data points. A weighting (or windowing) function is
then applied to each segment and the fast Fourier transform (FFT) of the weighted
P-point sequence is performed. The Fourier coefficients for the sth weighted
segment are then used to compute the auto and cross spectral estimates, which
are then averaged over all n segments. The MSC is finally computed from a
ratio of the average spectral estimates. (Note that for real data, n complex
FFTs must be computed, each of size P.) I

Specifically, let *xs(fk) denote the estimate of the power spectral density
(PSD) function at the kth frequency, fk, obtained from the sth w ighted segment
of size P of the stationary random process x(t). Similarly, let lys(fk) be the
estimate of he PSD function of the stationary random process y(t). Also, let

sg(fk) and (fk) denote, respectively, the real (co-) and imaginary (quad-)
part of the estimate of the complex cross spectral density function of the two
processes. 7 (A detailed explanation of these estimates is given in reference 1. ) The
estimate of the MSC function is given by references 1, 2, 15, and 16 as follows:

2 2

12  n ] ]9)

4xs00D 0

3
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where n is the number of weightedsegments (overlapped or disjoint) over which
the individual estimates are averaged.

Becamse the MSC estimator is the ratio of random variables, it is impera-
tive that good spectral estimates of C(f), Q(f), *x(f), and 4y(f) be obtained.
Random fluctuations and bias of amy of the four spectral estimators become
slgulfcant in the ratio used to estimate the coberence fuctio. The theoretical
results dctatifg that n be large are given in references 1, 12, and 16.

THE COMPUTER STUDY

A digital computer program was written to implement equation (9). (Docu-
mentation, currently in preparation, is partially contained in references I and
15.) Two input parameters include the FFT size P and two different weighting
functions (rectangular and cosine). The FFT was coded by Singleton. 10

During the first part of this computer study the effect of a weighting function
was investigated by processing data with two differeft weightinga. When a P-point
sequence is multiplied by a rectangular weighting function (no weighting), the true
spectrum Is couvotved with the sin x/x fuoction. Therefore, each FFT filter
centered at a specific frequency sees energy not only from the band about that
frequency, but also from power which Leaks from frequency bands not desired. 7
Leakage results in biased estimators *x(, y(fk, Csffk, COW An (k),
which become a critical factor in MSC estimation because equation (9) is a ratio
of biased estimators. This Is well illustrated in the cases which follow.

An example of how this leakage problem seriously corrupts the MSC estimate
is in order. Recall from the earlier derivation that the MSC between the input
and output of a linear filter is unity for all frequencies. To illustrate the estima-
tion problem when poor weighting functios are used, white Gaussian noise (flat
spectrum) was filtered by the second-order linear filter specified by the recur-
sion equation

Yn AY n - I 'BYn-2 + CXn , (10)

where

A - 1. 97330

B = -0. 98202

C = 0.00972

4
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Figures 1 and 2 show estimates of the gain ad phase characteristics of
this &Kap filter. The true MSC Is unity (i. e., 100 percent). The estimate of
MC is plotted in figure 3 as a function of frequency.

The data segments were not multiplied by a weighting function. (This is
equivalet to saying a rectangular weighting functim was used.) The FFT side
lobe "lealage" problem7 corrupts the estimator. Note by studying figure 3 that,
even tbouh the true value of coherence is 100 percent, the MBC estimator fails
to attain the true value. This result dramatically portrays the need to apply a
smooth weighting function.

In other experiments, thedata from this sharp filter case were reprocessed
with no weighting function applied to the time series, but with higher resolving
power. In particular, 16 disjoint. segments of size 4096 (as opposed to 64 of
1024) were processed. Processing with higher resolving power but without a
weighting function still yields poor results. 15

RELATIVE POWER SPECTRAL DENSITY (d1)
.20

.10

REQUNCY 14)

0.1 10 100 1 00e

-10

-20

I -*
-30

Figure 1. Gain Characteristics of Second-Order Linear Filter

5
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PHASE OF CROSS SPECTRUM PDEG)

.90

FREQUENCY (Hz)

.110 100) 1 00

-qo

-1 0

Figure 2. Phase Characteristics of Second-Order Linear Filter

Thedata from the sharp filter case were again reprocessed with no weighting
functimo applied to the time series but with higher resolving, power and more
averaging. In particular, 64 disjoint segments of size 4096 were processed. In
that case, the estimator began to stabilize but not about the correct answer. 15

A technique for reducing the bias due to leakage is to multiply each segment
of time history by a smooth weighting function. The frequency-domain equivalent
of multiplying each segment by a weighting function is a convolution of the true
spectrum with the Fourier transform of the weighting function. Hence, the
weighting function should be judiciously selected in order that the true spectrum
be least distorted. The factors affecting the selection of the segment length and
window shape of the sth weighting function of length T to be applied to Ttotal
seconds of data are as follows:

" ws(t) should be relatively easy to compute.

" Ttotal/T should be large in order that the amount of averaging be suf-
ficient to reduce the bias and variance of the spectral estimates. (This
problem is studied in references 1, 12, 15, and 16.)

6
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PERCENT OF MSC
100

so

so

FREQUENCY fIz)

0.1 10 1000

40

30

0
Figure 3. Estimate of NBC (Between Input and Output of Second-Order Linear

Filter) Using P - 1024 and a Rectangular Weighting Function

* e" We(t)/den should be continuous for n = 0, 1, 2,..., up to some rea-
sonable limit, since this ensures that the sidelobes of the Fourier trans-
form of we(t) die off rapidly.

* The Fourier transform of ws (t) should also be narrow in the main lobe
(narrower than the finest detail of the true spectral density matrix of
processes x(t) and y(t). Generally, this lobe is narrowed by increas-
ing T.)

The specific selection of a weighting function involves a number of trade-
offs. 1 2 A commonly used weighting (or windowing) function is the cosine
(Boning) function defined by

7
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Ws T =(11)

0 elsewhere,

where a tsafwcon of the overlap 1 such that for a - T there is no over-
lapping of segments.

A an illustration of the tremendous improvement to be derived from the
use of a smooth weighting function, the data generated for the sharp filter case
were reprocessed, this time with a cosine weighting function applied. The re-
sultant estimator is plotted versus frequency in figure 4. Careful study of
figures 3 and 4 dramaticaly portrays the necessity for applying a good weight-
Ig function. In the purchase and use of spectrum analyzers designed to estimate
the true MSC function, it is Incumbent that a weighing function be both available
and used.

During the second part of this computer study the effect of the FFT size
was studied. Cosine weighting functions (verified to be essential during the first
part of this study) were used. Good frequency resolution requires large size
FFTs. Other studies, for example references 1, 12, 15, and 16, point out the
requirement that a large number of FFTs be computed.

The data from the sharp filter case were reprocessed with smaller size
FFTs (that is, poorer frequency resolution), as an illustration of this type of
bias. The resultant MSC estimates are plotted in figure 5. Note that the esti-
mator fails in the frequency band where the estimation procedure has poor
resolving power relative to the true complex coherence spectrum. As shown,
the bias, due to insufficient FFT size, can be most serious when estimating
coherence. This behavior of the MSC estimator was predicted by Jenkins and
Watts. 4

In other experiments the same data from the sharp filter case were reproc-
essed with 256 disjoint segments of size 1024. The results were the same as
those given in figure 5. That Is to may, the bias due to poor resolution can not
be corrected by increased averaging. 15 However, by increasing the resolving
power and processing the data with 16 disjoint segments each of size 4096, the

S|

=f 
' 1 1 1 1 1 1 111

+ "ll



Tit4423

PERCENT OF MSC
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d r L n aFngure 4. NIuDmm at BC (Detweem Input and Otput of Secm-onderLna
Fplter) Using p - 4M9 Wd a Cosine Weigting Function

PERCENT OF MIC
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60 
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Fngure 5. Estimate of WBC (Between Input and output of Second-Order Linear
Fiter) Using P - 1024 and a Cosine Weighting Function

9



true coherence can be estimated more nearly correctly as shown earlier in
figure 4. Increasing the resolving power can improve the coherence estimator,

tmxgh for a finite time history, increasing resolving power means decreasing

the ammt of possible averaging. In this example, the improvement of the esti-

mstor at 30 Es Is due to higher revolving power of the detail of the phase of the
mple coherence function.

In order to understand more fully this resolution problem, another case

was studied. A stationary process consisting of the sum of white Gaussian noise

and two sinisoids is filtered by the first-order linear filter specified by the

recursion equation
7Yn-1 Xn

Yn = -  + - " (12)
8 8

The estimate of the auto spectrum of the input to the filter is given in figure
6. Similarly, the output auto spectrum is given in figure 7. The filter specified
in equation (12) ti characterized by the gain and phase plots of figures 8 and 9,
respectively. The estimate of MSC Is given in figure 10.

MILATIE POWER SPECTRAL DENSITY (0)
*20

*10

FREQUENCY ft)

0.1 1 1 0 1000

-10

-10 ID -

Figure 6. Estimate of Input Auto Power Spectrum to First-Order Linear Filter
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ULATIVE POWER SPECTIAL DIMSITY (iS)
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-30 b

F411"e 7. Estsnate of (Oatpm* Auto Power Spectrum from First-Order
Linear Filter

IIATIW POWE SPECTRL DENSITY Wi)

PUCUENCY $4z)
0.-1 t0 10000

-t0

-30
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Figure 8. Gain Characteristics of First-Order Linear Filter
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ftIAS OF CROSS SPECTRUMA fEG)

____________FREQUENCY )
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Figme 9. Pasen Characteristics of First-Order Linear Filter
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F~gure 10. Estimat of MSC (Between Input and Output of First-Order Linear
Filter) Using P =1024 and a Cosine Weighting Function
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The input sequence was generated by summing noise and two sine waves
(mne centered in an FFT frequency bin, one out). The results illustrate the
ability to estimate MSC when the phase of the cross spectrum (which is the
same as both the phase of the filter and the phase of the complex coherence)
can be sufficiently resolved. The bias due to insufficient resolving power hes
been shown to be directly proportional to the first derivative of the phase. 3

Note that the estimator, having resolved the true coherence of 100 percent,
Is unblasod and has zero variance. This behavior of the coherence estimator
was predicted by BDn ga, 6 Carter and Nuttall, 12 Carter, I and Carter, Knapp,
and Nuttall 16 For the special case where the spectrumof the input tothe first-
order filter is fiat, as expected the coherence estimator is 100 percent as in
figure 10. 15

CONCLUSIONS

Some of the practical aspects of estimating the MSC function have been pre-
sented. It Is difficult to analyze the results; two points which must be considered
are weighting functions and resolution. First, a smooth weighting function must
be applied to the data to estimate the NBC spectrum. Second, averaging of large
size FFTs is required, dictatingtime series of long duration which are stationary
over the period of observation. Spectrum analyzers purchased or used for MSC
estimation must have weigting hanct/ons and -large FFT sizes and should have
phase displays.

Extracting from Tick, 3 "1 wonder how many conclusions have been drawn
over the years because of poor estimation procedures."

-I -
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Spectral Density Matrix Using
The Partitioned Modified

Chirp Z Transform
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ABSTRACT

This memorandum discusses a digital computer technique
for estimation of the power spectral density matrix between
two wide-sense ergodic random processes when a time-
limited member function of each process is available. The
digital computer algorithm, including the FORTRAN code, is
given in the appendixes. The technique is based upon per-
forming a partitioned and modified Chirp Z transform (PAM-
CZT) on each channel of data, using the computationally
rapid fast Fourier transform (FFT). The technique provides
fine frequency resolution in a frequency band of interest
despite limited computer core storage.

A complete discussion of the Chirp Z transform and the
method for obtaining finer frequency resolution by partition-
ing is presented together with an example case.
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I. INTRODUCTION

A technique t|..- estimation of the cross-power spectral density matrix between
two wide-sense ergodic processes is investigated using the partitioned modified
Chirp Z transform (PAM-CZT) [-61. This technique has received little
attention to date due to the lack of application by the originators [3, page 90].
While applications of the PAM-CZT may not be apparent when dealing
with transients, there clearly is a use for the technique when dealing with
stationary random data [61.

The second order probability structure of the zero-mean stationary random-
processes a(t) and b(t) can, in general, only be specified with knowledge of
the k-th and 1-th joint moment

AA #, (1) 'I =EI& t6J~iitk
where E denotes the mathematical expectation. For the special case of
k -1- 1, we have the cross correlation function

RX.LJ.-): = E, 0, (2)

The Fourier transform of jkt (i is given by

C0 ;, M A (3)

A partial description, then, of the second order statistics of the stationary
processes x(t) and y(t) is given by the power spectral density matrix,

I (4)

L-

where

G (f) is the (real) auto power spectral density function of x(t), from eq. (3)
when a-=b-nx,

" (f) is the (real) auto power spectral density function of y(t), from eq. (3)
when YY anbuy, and

(foG (f) is the (complex) cross power spectral density function of x(t) and y(t),
(from eq. (3) when a x and b-y),

%1

. 1=*
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A

and consists of a real or coincidental (co) spectrum and an imaginary or quadrature
(qucd) s ftm [7]. (G (f) is the complex conjugate of G (f).) When

these tw processes are wlde-ies& stationary and Gaussian, knowlecKae of the
power spectral density matrix specifies all order statistics of the processes. This

Is because the density function for Gaussian processes Is completely known from
means, variances, and correlation coefficients. It is for these reasons that study
of the power spectral density matrix is of widespread interest.

In obtaining etimates of the power spectral density matrix M (f), it is
incumbent upon the investigator to sufficiently resolve the true detailof the spectrum.
Severe bias and variance problems can result when the true spectral matrix has not
been resolved In frequency. For example, computation of the coherence from
estimates of the spectral matrix can be in error by 10/a or more
due to Insufficient resolution[81. Fine frequency resolution,

r (5)

where T is the length of the time segment to be transformed, can only be achieved
when T is large.

The concept of obtaining fine frequency resolution, using a fast Fourier
transform (FFT) was introduced by Rabiner, Schafer, and Rader 2-31. The technique
Is called the Chirp Z transform (CZT). The algorithm has been studied by Schilling [41,
Ahmed[5J. The CZT which will be discussed has been modified so that only frequency
points on the unit circle in the Z plane are evaluated; this is called the Modified
CZT (MCZT). By partitioning the input sequence to evaluate the MCZT, we can real i ze
savings in transform size and memory. Utilization of the partitioned modifie

chirp Z transform (PAM-CZT) allows computation of 1 large size FFT via several
smaller size FFTs E6). This extremely powerful technique for stationary data is
available as a digital computer program to estimate the spectral matrix Mxy (f).

II. PARTITIONED MODIFIED CHIRP Z TRANSFORM

The Z transform is given by 9]:
tJ-I

n- o (6)

where Vht) is an N point sequence (of T seconds duration)

The discrete Fourier transform DFT is given by [9]:

; = j qkn /N (7)

2
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The DFT can be evaluated with a fast algorithm or FFT. It can be seen that the
DFT, Eq. (7), evaluates the Z-tronsform at N equal ly-spaced' points around the
unit circle as shown In Figure 1, thus obtaining a periodic sequence representation
for Itio.

The CZT Is defined by [1 - 6 1:

where

and Wz O'x - 4

A = A,. e"xjr~
Note that if A. -% 1,: W. =~ 4,Aw. fi, that Eq. (8) is the DFT, Eq. (7).

by the inclusion of A. and w. in the algorithm, values other than on the unit
circle are attained. That is, Q. defines starting frequency and As defines the
starting amplitude. The value oo. defines the frequency spacing and W. defines
the spiraling rate.

We now modify Eq. (8) such that W= and AO, and define the modified
CZT (MCZT) C1- 1

03-1

where

A -C CAr

The Z plane Interpretation of the MCZT Is shown In Figure 2. A comparison of
figures 1 and 2 points up the fact that the MCZT evaluates a limited band of angular
frequencies.

Neither Eq. (8) nor Eq. (9) Is In FFT computational form, except in the special
case where Ml2 N - Thereforefor the general casewe are forced to perform the DFT
with MAI complex multiplications and additions required. For large M this becomes
prohibitive. However, by making the substitution suggested by Bluestein [10 1, we obta in

and substituting inta Eq. (8) , we obtain

3
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Z-FLA04

Figure 1. Evaluation of X(z) for z -exp(i2irk/N),

k -0, 19 2, .... Vi - 1;
N 16 (171

Z-PLANE

2re

Figure 2. Z-plane interpretation of MCZT [11

4



Th No. TC-5-73

which can be simplified to

( 0-40

'T~~ ~ ~ 0) ***)A 1 (2

Iy inspection of Eq. (12), we recognize thet It Is In the fanm of a convolution
sum, which con be computed via FFT techniques of Stocha.. t4 . Therfore, there
Isa way to compute Eq. (9)uwing an FFT.

Using the mod outlned by Rinbiner [21 and Shilling [14, form a new sequence
defined by

VW W -( ')(13)

Now defhwn

A ' W (14)

and define the convolution

C0 I M- (15)

Then weighting (k) of Eq. (10) by W alows Eq. (9) to be written as

W(kW i )W kL k-co, 04- (16)

The canvolution, Eq. (15), can be realized by computing an FET an the
sequence, defined by Eqs. (13) and (14), multiplying the resultsand inverse trans-
fanning. In order to nullify the adverse effects of circular convolution, the FFT's
performed are of size L tM AN -I wi th appropriate zero f IIIng.

This, a shown In Figure 3, the MCZT algorithm can be computed by performing
two FFTs and the Inverse FFT with approprilate weighting. Computationally the MCZT
takes 3FFTs of size greater than N. It should be noted that when many MCZT's are
to be performed on different Input data sequences, that the FFT of V(%) shouM be computed
once and stared. It this step Is taicen,then every MCZT peWorm would take only 2 FFTs,
resulting In a substantial swvings (33%/) In computational time [6). (This savings In
time Is done at the expense of having to store the transform of VOLn))

5
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INPUt DATA

M~n)
na 0.,...(N-I1) 2

A Anwfl/2 V
nt w 0,1...,N )

y(n) n 0, 1,.,

(N- -1), ---- -- - - e ,(L-~~~-

PERFOW~ED
FI FF ONLY ONCE

*HIGH SPEED r-rir 1 a
r 0, i

CONVOLUTION

k a ,1 M1

Figure 3. Block diagram of MCZT (Ref. t11)

6



Partitioning of the input sequences can be accomplished so as to reduce the
FIFT size. For example, 4 MCZT's of 512 data points can be computed in lieu of
I MCZT of 2048 data points. This partitioned and modified CZT (PA.M-CZT)
technique is extremely powerful and is discussed in the next paragraphs.

The modified Chirp Z-Transforn (MCZT);io defined by Eq. (9) can be evaluated
by a partitioning technique. Consider th, situation when th, data sequence X (nl),
n .b A.1' is extremely long and we desire M spectral samples where M-4"N. Then,
three II T% of* length L have to be compuited with the MCZT algorithmn, where L is
the samllest highly compo; ite value greater than or equal to (11+11-1). In such
cases. it is p1lausible that L may be so ldrqe that. %tora(le requirements prohibit
computation of the MCZT. In such cases, the sum in Eq. (16) can be broken up Into
R sums over the N points. That is, the original data seqence Is divided into R
partitions,and hence Eq. (16) can be written as follows 1.21

A

JpJ ko-Il AnW1

A - ~ (17)

where RN=N. Each of the Rsums in the brackeftcan then be evaluatd usn the
MCZTalgritm. q. 17)is referred to as the partitioned MCZT (PAM-CZT) t163

It is possible thet a swving In total time may result from this method as opposed
to evaluation of an N point transform (2 1. Hence, the P AM-CZT can be expected to
perform in a computpjionaliy expeditious manner. Say,for example, M - 1024 = 210
and N = 65, 536 r 2 " and R was selected R =64 = 26.

Then the brute force approach requires

* 2 2 complex multiplications and
additions'l(MAID' s).

7
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The FFT would take

and yield all the coefficlents,provided sufficient core memory was available. The
PAM-CZT would take (neglecting the FFT on V(,)

at..for power of.%1e e 2 algorithms •

so if brute force computations required 30 minutes in this case, PAM-CZT computations
would require only 1 minute.

Ill. POWER SPECTRAL DENSITY MATRIX ESTIMATION PROCEDURE

The basic objective is to obtain estimates of the elements of the spectral
density matrix,

L11  
(4

In order to characterize the second order statistics of the two processes being
investigated. The estimation technique described is the direct method similar to
the one discussed by Houbrich [I 1), Welch t1 2], Knapp D 3], Bingham 1 4], Benignus 1 51
Nuttall 06 - 17], Carter 18 - 193, and Bendat [203except that it uses the PAM-CZT
In lieu of the FFT.

In this Welch-Haubrich technique, the time series are segmented into P pieces,
each having N -data points. For example, from each process there may be 64 segments,
each segment having 4096 points, The segments may be overlapped or disjoint, and each
segment may have several partitions. Each segment must be multiplied by a smooth
weighting function. Next, the PAM-CZT of the weighted N-point sequence is computed.
The M Fourier coefficients for each weighted piece are then used to estimate the elements
of the power spectral density matrix. The power spectral estimates thus obtained from
each set of weighted sequences are then averaged over all the P segments CI 81. When
N is selected large enough to insure adequate spectral resolution and P is selected large
enough to reduce the variance and bias of the spectral estimators, then good spectral
estimates are obtained. It should be noted that the selection of large P and large N
are conflicting requirements when dealing with a fixed amount of data.

The method of overlapped weighted segmentation requires that each discrete
N point segment(of x(t) and y(t) obtained by sampling at fs (Hz) be multiplied
by a discrete weighting, W(A)

8
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The weighting function length must be selected so that its Fourier transform is
narrower in the main lobe than the finest detail of the true spectral density matrix of
processes x(t) and y(t). Generally., this lobe is narrowed by increasing the PAM-CZT
size C193.

The specific selection of a weighting function involves a number of tradeoffs.
A commonly used weighting (or windowing) function is the cosine (Hanning) function

IIdefined [14J by

In practice, w (t can be computed once and stored in a real floating point array of
size N points. Al-ternatively, a frequency domain convolution con be performed.

Let x (n) where n = 0, 1, 2, . . . , N-1 denote the N-point sequence obtained
from the s th weighted segment of process x(t). In estimating spectra, it is necessary to
evaluate a transformation of this weighted sequence. The PAM-CZT is a fast algorithm
for evaluating the Z transform of the weighted sequence x (n), n = 0, 1, * . * , N-1
where s = 1,2,.. , P at M equi.spaced points on the unt circle with arbitrary
starting frequency. The actual computation performed on each segment is

s (1) N--' jkrf rN) (Zo)

Similarly, a (complex) vector Ys (k) is formed for each piece or segment
(that is, s = 1, 2, . . . , P).

The estimate of the auto power spectral density function of x(t) at the kth
frequency, obtained from averaging sth weighted segment, is given by

(k) Xt Sf (k)

Similarly, ) -. 7xs(k)Xt (.) ) tt I (21)Sri

A

~(k) Wj-f 2i.'1, WkY, (k) (22)

and the estimate of the cross power spectral density function is

AA
(4X : W t (23)

(4 P f

Equation (23) can be rewritten in terms of the real and imaginary parts,

A A
CK (k (24)

9 yi
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and

(25)

The averaging or integration technique utilized here reduces the variance
of all four spectral estimators. Additionally, by properly averaging the real (co)
and imaginary (quad) parts of the crs spectrum, we obtain unbiased estimates of
this complex function. It should be noted that this type of averaging is invalid if
the data is not wide-sense stationary, for in that case the correlation matrix, and
hence the te power spectral matrx, varies from time segment to time segment.
That is, averaging is performed to reduce random fluctuations in the
estimator; it is not performed to suppress non stationarities.

A useful function immediately available from the power spectral density matrix
is the (complex) coherence defined by

________ - C (; + '~' '~(26)

Furthe, when x is the input to a linear system and y is the output it is useful to discuss
the transfer function defined by

H_ -. C (# , (27)

Estimation of these quantities Is performed by substituting the averaged estimators in
place of the true quantities. Statistics of these quantities is beyond the scope of this
report, but is discussed In [7] and (IS - 20J.

IV. COMPUTER ALGORITHM

The fundamental building block of the PAM-CZT is the fast Fourier transform
(FFT) rediscovered by Cooley and Tukey 1213. The selection of the proper FFT
algorithm Involves trade offs between speed, accuracy, flexibility, and storage of
the nature discussed by Ferrie [221. The mixed radix algorithm proposed (and coded)
by Singleton [231 is appealing because of its speed and ability to compute FFT's
when the FFT size is not a power of two. This is particularly appealing when
L & M+N-1 is slightly greater than a power of two; in this case, to resort to a power
of two algorithm will almost double the computation time. For example, consider
M - 1024 • 210 and N = 65,536 : 216; then a power of two algorithm will require

= 17 (1311 oll)

~ .2a ,t/0'

10,
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whereas Singleton's routine can compute an FFT of size 75,000 and will require

L f L 0 ? 00ooo u (75"oo3

Hence, Singleton' s algorithm requires approximately half the MAD' sand since it'is
already the fastest routine available, it provides a significant savings In computational
time.

Singleton' s routine is not without drawbacks, however. In particular, it suffers
from large errors due to round off, which grow rapidly with FFT size, unlike other
algorithms [221. A recent power of two FFT algorithm (including the FORTRAN code)
is gven by Markel [24 . An analysis of the error of this routine was done in reference
(251. Because Markel's FFT algorithm is the most accurate single precision technique
investigated to date, it must be given serious consideration. Selection of the algorithm
based on speed and flexibility dictates Singleton's FFT. On the other handselection
of the most accurate FFT requires picking Markel's technique. The authors, while
using both, have most recently been concerned with accuracy requirements and have
leaned towards Markel's routine which Is currently implemented in the computer program.

V. EXAMPLE CASE

An example case is enclosed to Illustrate some of the program's capabilities. .i.

White Gaussion noise Is filtered by the second order low pass digital filter specified
by the recursion equationle)

W- A (v, - B +

where

A = 1.97330
B = -0.98202
C = 0.00872

The block diagram for the example case is depicted in figure 4., where Z-
is the standard delay element.

Figure 4. Second Order Digital Filter

S'. Y 
%
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The figure which follow are estimate of the spectral characteristics derived
fronm the sampled time waveforms X(b') and Y(94~ In the 0 -100 Hz frequency band
by utilization of computer program .92178. Figure 5 Is an estimate of the ato
power spectral density function of the X( process (input to filter). Figure 6 Is an
estimate of the auto power spectral density function of the Y proess obtained from
the output of the filter. Figure 71Is an estimate of the phwe of the transfer function
between the X and Y processes. Figure 81Is an estit of the gan characteristics
of thes probed system.

For the sampling frequency f 5 -2048, the frequency resolution

was varied from 2Hz (when N -1024) to0. 125Hz (when N - 6384). Theresul tant
two estimates of the Magnitude Squared Coherence (MSC) are given in figure 9 for
N - 1024 and figure 10 for N 0 16384. The true MSC between the input and outpot
is unity at all frequencies DB1; however, when estimating the MS~serious bias
erro.n con result due to Insufficient resolution L81. This type of bias can be elIInated'
by using Program S2178whlch allows N to be selected a large as desired (consistent
with "h amount of available data). In particular, note when N - 1024,there Is
Insufficient resolution and the estimate of MWC Is biased (I.*., not equal to the true
value); howeverwhen N Is Increased to 16384, sufficient resolution exists and the
'random variable Is properly estimated.

VI1. SUMMARY

A digital computer algorithm to estimate th power spectral density matrix
between two wide-sense ergodic random processes when one time-limited member
function from each process Is available. The algorithm utilizes the Partitioned
Modified Chirp Z Transform in order to obtain frequency resolution which Is limited
only by the available record length. This added digital processing flexibility allows
easy circumvention of bias due to Insufficient resolving pawnr as shown In the
example presented. The FORTRAN implementation of the algorithm Is given In the
appendixes.

12
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APPENDIX A

LISTING OF COMPUTER PROGRAM S2178

H&Wf "ESOLiUI hAROW ISANU %KCTM4AL AfALYSIS POOGRAIN VIA TP4KWfIFED
PAkTtfIONWL C14114P L-TRAIIIIII as* VtlE CIW~*&%L VIRSION

LAUT uPBCAT.) *AI'C" 17#IV?4*

TIhE. ChOKAl.. Cos14S. wimDu iPECTIAL 0,1IALVSIS OITA So PEACE41 OVERLAP OF
hI*JT DaTA

PfqI*NA4MLO tiV ,J*F*IPER1- GoCoCRTIIR

Iss OftHAT&Nw 1141.4UCTI't.S so PARVITTOWe.0 CIVIB*'II Z SPECTRAL PRObPAN o S2116

CAk6IS 4 AN., 3 '40SI SC ks-PLAT&u FOR LACII DATA MArLL

CA44U COLUI FW.AA AROjMCUT

a 1-0 46 1q13 - ll*T D)ATA MULJ - KINMIC. aCDPmT# CflCNCH
701 10A6 P14T - VAkIAPLk' FON14AT P014 ICC DATAo lot* CE16o9)

*?inug oLA.4C
79-11 &J ICI - '*Eft OF DESINED UATA CMAWIIL STORU'D IN

XX AWAY

74-15 Aa P4.HAN - .d*A-4C1 OF DI CH4ANNELS ON CDC (R BCD DATA

1-P Is I - NUNER OF COWNVRSUOS PER RECOEC ON CDC ON
LOCL DATA T APE

J 1-b &S W~T - 'K$440 u# FILL jESINlED ON UWUtf DATA TAPE
6-46 AS? 14N -N9 OF RECOkfl OLS11NM ONE WT FILF OF

I*'J1 DATA TAPE
la-WSJ -s L.' uEN OF zIui VALUES TO SC PNOCESRCO

16-91 A6 ASR - 111Th66j1 SAMPLlt.4 W~E
9-19 ILK - IPJ'.$R OF WEIGHITS TO THE RIGHT (W CEINTER

AE14 41 WIf4 THE1 USE OF SMOOTN SUSOUTINE
IT IS APILD INj TmE FREIA14CY COMAIN
(:burn@ 1O,1 1O PE"MC DOMAIN 9400THINSI

116-86 &1 £1 - OAT,% OVERLAP FLAG ISETal FOR No OVERLAP)
87- £1 51 - AivffWWlWO SWIT~Ci IEEIZ1 FORt wifg)WTds

39m9 I S& - PUEVIT FLAG 18 F( OW0 OUTPUT)
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30-40 t'LAadK
31",0 Feb u.FX - SCALE FACTOR FOR FIRST CHANI

bi-Ta 3SA69"% LAdIA. - 2a CHAKACTEFt TITLE FOR GYRAPHS
73-.O to ITAEC: TuTAL 1A)MOET, OF RECOROS TO RE PROCESSED

ON INTWT DATA TAME
1-ie F10,5 OF - F,4*ENCY Rf.SOIT1* DESIRED IN HERTZ

1i-an raceb Fi0 - L0v.ER FREQIENC1 OF INTEREST IN HEfty?
&I-.A Flues F',LdH - 64lb41CR MFREOULKYC OF INTERE16T IN HERTZ
31-W La **PAR - "JAJ~,ER OF PARrITZIMS

!XPECAPICAT10h ANU TVAI WIATI.W.?JT6

DAMILNSION AX(4O09 6i1YY(4#.9b)
W640ION VA(4096s.VY(I'J%)eAL(4O96d.TL(a409b
ODi4ENSION ~~bjeY~O)~$(~i
IWJ610IN ,.C(J625)

O£.fdULON LZ40% eLZNL(O)
OUAfbIW P 1FT 1It I P u.AE15 v OUNM(1)
0114MIGH~ TITLX(b)PTITLEVY5)
EvUIVALENC.I hZ(I) evYll) I
C,AIt ANUAS(2001
IsMTLE~k F14 r
DATA IMAT190317749/

£1411 ALUE *iuOGRAO" 64ITS

"nARU3
Ivk.Tiftm
INJ APEXT

SET iNIlIAL vALU5

CALL ITRAMN.AP9.LO)
C04.16, 01TRANt I,4TAPE421
W ILII~a1

LAbEL (M2'21 16/'
LAVEL W600

LaMELI IOIZDATE

IIIALIZE i'~omMh

a FMMsAT(ll1/ApSPsi9RAM *PA6.A6#' LAST IONUAME *#Ab//i)

CALL 4kTS*.(A#4WOtL'4,97p1% 0O.0
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WI UP 08 RA4E &WID Xpy V IILLS FOR P%.OTIP

(MiAX3I@.00

TAILEXI1)3' FREV
TILKCA2a)ZUI'1CY
TZTLEA(3123UiL)

TAILXTt8afVGLT St

a4A Viol OF VUT I.ATA FROM OAlA CAIU) I

10 FOs.1AT(IA...IA31dpIb)
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Coherence Estimation Via the
Partitioned Modifiled

Chirp-Z Transform

Q. C.Carte

C. H. Knapp

ABSTRCT

This Is the oral version of a pae presented (in 7 minutes) on
17 January 1074 at the 1974 IEEArden House Workshop on
Digital Signal Processing, Harriman Campus of Columbia

UnierstyHarriman, New York. It defines the coherence,
dicsssuses for this function, and briefly examines Issues
regarding Its estimation.
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we shelf, In this peoom. deike *0 sesee fOWns. dbsem

M1W das fonivileu, ad bilear eumlagn Ims ooowdkq Its soimtiem.

Owe to the H.Std thm .wale* do de pet of aw we* will be

d.~G aw~mid PGW b~blelq we ewtekie kess

POT SUN P11*

The leshesele hmwlea betrween twe w~desme sontleavy rowdem,

pmseUsS x od y Is eol te is pinr opeeu dlikd by the sqmvur

nol ofk tePuaet of the I" SAO power qwee OWe. 1). It Is, In ~~a,

a -emm1m waw erneem denlty fowme "wk ela be diewn to hwoe

mqnedeW jut felle hetwu we mmd unity.

NUXT SLID PLUM

(SLUD 2)

The eghereoe- function has nunmes ws Inluln system Identification,

uwsremen of signal to noise power rttio md determination of time delay.

In the system Identification problem whe M Maps x Into y, It can be

shown that If M Is a linear moppingthen the magnitude coherene e*"as unity.

On the other hand, If x and y are unclorveiatedlhe the magnitude coherence

equals zero (We. 2).

NEXT SLIDE PLEASE

(SLIDE 3)

Another use of the coherence Is to measure the ratio of the signal power
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-n be deum e~d Wi Ag askemee. beessen x On y Ond ftPer pg splaitr

of y. SpeeModly, If **septuvole omhwanee Is, untyllltr. to me uwi..l

WhalU It *0 mqudftb ehowsn i m, AgA AgO~I*s ol melse (We. 1).

NUXT SUN PUAK6

OUM 4)

oteler s.le of rauu,1q signal to nelee pwer rel. Is skwm In

Ale iIe. Signal s, Il reeelvet two sov with equel poower hut different

mildis tkme del A. In adition, .mAk adgm Is esmipfed by additive raise

an fIIted. When 0 1 and 0 2 wre uneetetd hll have Asome pol wesectre

Ass aft ofil ft signal to mele poler Is given by thetl mgnitude coherence

ever am miuM the magntude coherence (Ref. 1). Estimation of the relative

time delay cm" he accomlsed using the Smoothed Coherence Transfom discussed

In the October Issue of the Proceedings of the IEEE (Ref. 3).

NEX SLIDE PLEASE

(SLIDE 5)

In discussing the problem of estimating the magnitude uared coherence,

the bias error will be considered first; then an estimation technique which reduces

this error will be presented (Ref. 4). The maximumn bias error under the

2
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uIe n h*A Wimlelent freqiemey rselutien Is svelle Is one ever the number

of ements Oef. I) henwfer 100 sGmnt te mamum bin Is only one

ene kwdmrdu. When 0ufflelent relilen Is reolalverlenee, NOT bia,

Is sersl probme. ofai o~ huiie0ed, h. n6r of 1sdmp endpwln doe ponls

P I im @@rme* Is foo smel, *An the resl1 peer equmony remlutienon

esaw serius Iass ene In stmmele m ahsen-e (Ref. 5). In fact, In lms

coo of Insufficient restI~nnth. mmulwm Was errar has beew obsev ed to ho

Indepsndent of the nuwme of sepgmis oeum@ (111. 2). Specific .smmples

ewAsihud hises .of.oe hok hoso the Vend wa Indicative of the fact Ot

an Isls les than one could ho *oected If suicient fequency resolution

wan' t avolloble. The practical IplIcatlon of this limitation Is that P must be

lare. This apparently reque cowptation of a laqe size fast Fourier transform,

or FT (Ref. 6). An altomotive oowputtiton which reduces the required FFT

size is the Partitioned Modified Chirp Z Transfo.. or PAM-CZT (Ref. 7).

NEXT SLIDE PLEASE

(SLIDE 6)

In this technique the Chirp Z transform,or CZTils modified to evaluate a

large but limited number of points on the unit circle In the z plane. A sectioning

algorithm is used to partition each P point segment Into several mailer pieces

(Ref. 7-8). The smaller plecsor partitionsare then processed In short, time

ordered sections which are recombined with an appropriate phasing function.

This technique for computing a PAM-CZT allows for computation of the coherence

In a manner paralleling FFT techniques. However, now a PAM-CZT is performed

3 I
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*euld seen IIId to lowspeidve PAt.T hwwe for coherwnow estimation~.

I am in kusale .1 of Ae heveoe funtlm Is usef for system

Id elf.im, meesuring uipel to nos perw uthq~wd desmnlow signal

time del. Cmss ds Badhet tholt he poweuful features of the coherence

em be resume through *a. PAMUZT processing technique.

The sigmifom of providing frequency resolution limited by the physical

chora tiels of the problem and not of the processing technique are that

while th Was emwr of the coherence estimate Is not a problem If sufficient

realutlen is availaloe, It Is a very serious problem If proper resolution Is not

evullbl. Analytic results presente previowly foil to point out this significant

ihortla.,Ing of coherence estimation and how It can be overcome.
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SYSTEM IDENTIFICATION

yuM (x)

CASE I: LINEAR MAPPING
CASE II: x ANDy UNCORRELATED

SLIDE 2
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MEASURING SIGNAL. TO NOIS-
POWER RATIO

H +I U
n

Gz (f) () 2

G~ (f) = Iyxy (f)I2
N. 

S

SLIDE 3

i P

I,



7 -A191 684 SCIENTIFIC AND ENGINEERING STUDIES COMPILED 1979 4/4
COHERENCE ESTI|ATION(U) NAVAL UNDERWATER SYSTEMS CENTER
NEWPORT RI 0 C CARTER ET AL. 1979

WNC:LASSIFIFIEO 911 Llllllllllll
I I I I I I I I I I I I I Il
IIIIIIIIIIIIIl
IIIIIIIIIIIIIl
IIIIIIIIIIIIII
mllllllmolsoon

III II III II



Nis



T" TCJ..2-74

"jo

xx

0 
_4

Zag -

00 E~

ale00

0C-
9
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Approximations for Statistics of

Coherence Estimators

A. H4. Nuttail
G. C. Certe

ABSTRACT

Appoximatnsfor the bias, variance, and measequare
magntud coerene ae peseted.Theappoxiations are

ac ,cfr lvlusof true cerence adover t prac-
tically useful range of N. where N is the nubrof aweages
employed in the cc stimators.
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LUT OF ABBREVIATIONS AND SYMBOLS

MaWtu.Sqae Coherence
XC Magnitude Cohereace

N asubr at lIependent averages

geineraUsed hypergometric fuaictiom
F Gamea hypergeometric fuanction

X(4), yMt jointly stationary processes

vilym complex: coherence

C(f), C magiWis-squared coberence

eCI), C estimate Of magnitudesaquared coherence
2I Q eIsembl average of random variable Q

$11a u-a moment of C
r gamma. function

844t, a maguaba. coherence

AmI, A estumate of Magnitude coherence

de, wo, ,A constants (aen (31) and (32))

Ap approxliate variance

A, 5, D contants (see (34))

bapp approximato bias

014 constant (see (40))
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APPROXIMIATIONS FOR STATISTICS OF
COHERENCE ESTIMATORS

INTRODUCT ION

Expressions for the probability density function, the cumulative distribution
functioj, and any moment of the estimates of magnitude-squared coherence
(NBC) and magnitude coherence (MC) are available in references 1-5. The
expressions for the moments usually involve a generalized hypergeometric

fumtin~ 3F2 and require a time-consuming computer effort for their evalu-
ation. Also, the fundamental dependence of statistics like the bias, variance, and
mean-square error on the number of averages N and the true coherence are
not obvious, because of the lack of significant results for the 3F2 funcition.

This report will seek to present accurate approximations for these statis
tics, of as aile a nature as possible, and capable of hand calculation. Also,
the dependence on N and on the true coherence will be deduced, and thereby
future experiments can be designed in which the required stability can be pre-
dicted and attained. with ease and certainty. As a by-product, a technique for
reucming a particular type Of AF function to a Gauss hypergeontetric function
(reference 7, chapter 15) ia presented.

ESTIMATION OF MAGNITUDE-SQUARED COHERENCE

The complex coherence between two Jointly stationary random processes
x (t) and y (t) is defined as

7Gx,(f)

where Gx,(f) is the cross-spectral density at frequency f, and Gxx(f) and

Gyyf) are the auto-spectral densities. The MSC in

Cf)M- 17xy MI 2 
*(2)

*See, for example, reference 6, section 9. 14.
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The MC is frequently estimated according to

ia(f ayy(f) - j IXnf)12  I n(f) 2 (3
ft- n-1 *

where N is the number of data segments employed, and Xn(f, Yn(f) are the
(discrete) Fourier transforms of the n-th weighted data segments of x(t) and y(t).

GENERAL RELATIONS

The ma-th moment of the random variable * for independent data segments
is given in reference 1, (4) and reference 2, (3) as

In . r(N rm+) (1 - C)N 3 F2 (m +1, N. N; N +m, 1; C). (4)

where C is the true MSC and 3F2 is a generalized hypergeometric function.
The power m need not be Integer in (4).

For m - 1, the first moment of e can be reduced (reference 5, appendix B)
to the simpler (and rapidly convergent) form

1 N- I

where F Is the Gauss hypergeometric function. For m =2, the second moment
of a can be reduced to the simpler form (see appendix A)

2a- + -N N -2 ,.NlN2 _ (N -2) C] F(1, 1; N +2; C) , (6)
N N+I1

which involves the F function with the same arguments as in (5). Equations (5)
and (6) give exact results from which the bias, variance, and mean-square error
of the MSC estimate E can be obtained.

04Tbe f-dependence is suppressed for convenience.

2
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BIAS APPROXIMATION

The bias of e is

Bias(ChE ftI, N - C 1-- C .(7)

By expanding F in (5) in a power series in C and retaining terms to order N- 2 ,
we obtain the approximation

Plots of (7) and (8) are given in figure 1 for N = 8 and 16. The discrepancy be-
tween the exact result (7) and the approximation (8) is barely discernible for
N = 8 and is not discernible for N = 16. The discrepancy (between (7) and (8))
is even less for larger N. Equation (8) is a much simpler and more accurate
approximaon than reference 2, (5). The bias and approximation are observed
to have a peak of value I/N at the origin and to decrease monotonically with
the value C of the true MSC.

SIAS t

' XACT

APPROXIMATION-"'\

0 Ct

Figure IA. N- 8

Figure 1. Bias of MSC Estimate
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SIAS

'OeXACT

APPROfUAS0U"O-\

I. c I

Figure 1B. N - 16
Figur I (Cont'd). Bias of MSC Estimate

VARIANCE A.PPROXIMATION

An expansion for the variance of t is given in reference 2, (6). If we

expand the bracketed term to order N-1, we obtain the approximation

VaiaceC)~ N-I 1 2 [2 +1- *6C + 13C!] (9)VraeC vN(N +1) (1-C)2 24 N J

This result can also be obtained from the exact expression

2 (0
Variance(e) = 02 - (10

combined with (5) and (6).

Plots of (9) and (10) are given in figure 2 for N -8 and 16. The discrepancy
between (9) and (10) is barely discernible for N - 16 and is not discernible for
N > 32. Equation (9) is -a much simpler and better approximation than refer-
ence 2, (6).

For large N, the peak of the variance occurs at C 3 1/3 and is of value
8/27 N- 1. Thus, even when the true coherence is unknown, the maximum vari-
ance will be less than 0. 3/N, for large N.'
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"APPOXIMATION
• "IIXACT-

VAIANCE (8)

N£

C Il

Furo 2A. N-S

.8.tm

CT

APPOKUATMO

VARIANCE()

0 C IC

Figur 2. Vartam. of WSC Zestmate
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KXPAUIO ABOUT 8 -1

If the results in (5) and (6) arle expanded about 8 - C -1I by means of ref-
Tou 7 equation 15. 3. 11, we MWe the asymptotc expanios

ZIC C + 11 (1-C)2  21 2! (I-)

+ 31(14 C. 1) 1-C) 3

(14-2)(1-3)(N-4)(1C 4 .. 20

Etl.- 2(1 -C) + +2 (1-C)2
N4-2

- (+I (IC)3 6.(4 2(43(42) (I C) 4+.. (21)

*C2 +1 4I 2 (1-C) 2 - 2 ( 2

G+ N142

"Mq regrouping terms. zpressio (20) end (22) are useful near C I and
iNdICAte how rapidl EIC' - Cm approach zero as C apptoaches one, for

I mr2 It will be observed from (20) mmd (22) that the coefficients of
(1L CM anr d (I _ Cm)3 ane identical and tho of (1 - Cm)4 are similar

It was 11 oqaht that 21§1 . Z IAI/21 might possess a similar expansion in
powers of (1 - C 1/2) - (1- 5) and provide a useful mthod of evaluating (15), at
least nsar 8 L 1 In appendix 5, it is indeed shown (after considerable labor) that

II I (_)_I N-4 (IC21 N2 -7N +16 (1-C) 3 ... (23)T(.C 8~ N-1C ) (1-2(N4-3)

1 j_) 2 (_83 (4N-2 ( - (1-8) -.. 3r'

9
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(upos regrouping term), which has the Identical coefflclents as (20) and (22),
up hoghteorder computed. Equation (24) shown that the bina of the KC

estmat £approacesw zero as 5 approaches, oms according to (I -S)2(N4 - a).
Alm%, (24) and (20) can be combined to *bow that

varance ) .1- 1-8)2as 8-1. (25)

Tbis orboae refernce 4, (8).

CHOICE OF APPROXIATION

Efxpanin like (20)-(25) cannot be used to evaluate the desired statistics
1wr small 8; In fact, they are divergent asymptotic expansilons. When this in-
formation is combined with the earlier results about 5 -0, we find that direct
analytic expansions of (15) are not fruitful, in contrast with the earlier approach
for JMI results. Instead, we musnt adopt some convenient simple approximation
and try to match it to the exact meutts In some fashion. (The techniques in ref-
erenc 12 chapter 9, are relevant in this regard.)

Deftre we do that, however, it Is necessary to digress. We know that

Dias($) E111 -S (26)

Variance $)- E1§ 2 1 - E21§1 (27)

Mean-Square Error (1) - [Be 4§)] 2 + Variance 4~, (28)

where the exact moments are given in (15) wad (16). A very good approximation
to E1§ 2 1 - E ICI is already available from (7) and (8), namely,

EIC I + (1_ C2 +2C (2

or

E 1§2 1 jS 2 +_ 1 _2)2 2S (30)

Therefore, if we can approximate EI~j or Bias $) or variance (S) in (26)
and (27), we will have approximations for all three statistics in (26)-(28).

10



TR Sl1

Initial ttempts concentrated on apprmdng de bias (26) by the form

(i-) + a(l.S)' -w , (31)

where a and were chosen so as to match the exact bias and its derivative at
8-0; these attlmpts were aft succesfal for all N and S. A generalaton to.
the form

+1) (I (iS)W [a 082(S-l)] qw-:. P >3 * (32)N 2  Mr ,.8

was quite good for N up to 100, but deteriorated for larger N, despite also
matching the exact second derivative of the bias at the origin. Numerous other
forms were tried for approximatn the bias but yielded poorer approximations.

VARIANCE APPROXMATION

Succeeding attempts were aimed at approximating the varia e (27). It will
be recalled (from the discmsion under (16)) that (27) Is am even function of S.
(This even property is not true of (26) or (28), became of the S term ia (26).)
Thu approximation to the variance was therefore also obooe. to be evon4* ater
much trial and error, an acceptable form was found to be

Variane~z 1 EM FlS )1 3

. F)- 1 (1) +A JI+W4 -P (3

The leading term in (33) is dictated by (25); the second term in the bracket was
deduced from observing the numerical values of the variance mar S - 1; and
&e mnmerator of the third term is chosen to make it decay fhater than the other
two terms near 8 -. Equatlc (33) already matches the value and derivative
of the exact variance at S - , and the three constants were chosen so as to
match the value and first four derivatives of the exact variance at S - 0; see
appendix C. The end result of the investigation is that the constants are given by

A- -0.571 -+ 1 .75 0O.760

N2

3 = 0.752 N- 3.26

D-0.221N - 1.66 N . (34)

*So* reference 12, pages 106 and 118.t-;1

i*.
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At the origin, we have, from (15) and (16),

I1 rr1Nirf3/2 1
Variance ( I)-- .~r32fgL Mli + /2)]

/w\ (jL I w 0.215 0.196 (7
1 N2  N - ;2 (37)

Here, we have employed the approximation (reference 7, equation 6.1. 47)

rm(Nr(3/2) 4w-112 'LN (38)
r(N + 172)+ SN

which is excellent even for N as small as 2.

BIAS APPROXIMATION

If we eliminate E111 from (26) and (27), and then employ (30) and (33),
we can express

Bias( [Z l§21 _Variance )]l/2 S

+ (1 I) + N _ PP S lbapp (39)

This approach is n line with the observation made under (30). The approximate
variance e2 in (39) is given by (33) and (34).

Plots of the exact bias (26) and the approximate bias (39) are presented in
figure 5 Ior N = 8 and 16. The exact bias decreases monotonically with S and
has an origin value of

Bias _) r r(3/} I GN (40)= (N+ 1/2) ON,(0

from (15); an excellent approximation to GN Is given in (38). The discrepancy
between (26) and (39) is barely discernible for N - 8 and is not discernible for
N=16 upthrough N 1024. --

15
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MEAN4-QUARE ERROR APPROXIUMATION

The apprimat o to the mean-square error in immediately available
via (8):

Meam-Squas Error 01) a b!" +#~app' (41)

1here o approximate bias and variance are given by (39) and (33), respectively.
Plots of (28) and (41)ar presented in fgure 6 for N - 8, 16, 64, 266, and 1024.
The discrepancy does not go to zero as N increases; however, it is smali over
tho rae of practically useful values of N.

The peek value of the man-square error occurs at 8 - 0 and is of value
I/N, as ts em from (16). The mean-square error curve is composed of two
distinct regiow, om near, th origin where the bias dominates, and oe for
larger S where the variance dominates; this explains the hump in the curves
sor la er N.

MEAN.

SIAaS
Samoo (1)

APPROXIMATION

EXACT

10 5 -

Fl.omure A. N
Figur 6. Mo 0-s"ur Error of MC Estimate
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SUMMARY

Apprzlmaimfor Mi SC estimate ane gives by

Vaancae r N- (- C) [2C+ Ic2 - SC+ 3W
a -N+1 1(L N j

Approximatonsr the MC estimate ane given by

Vaiace (-9)2 3(1_82 ) + A (1- _. 522 (33)2alne(-) iI+ + DgOPP

where

1.75 0.760
A--051 N

B a 0.752 N - 3.26

Ca 0.221 N2 _l.66 N .(34)

2 +.1(jL S2)2 282 11/2
Bia N 2' ~S ab (39)

Mean-S;quare Error a3 Q~ +02, (41:

20
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%6& s e sbip -msp Ow C mr L No%, in (A-1), soft mbem 6,
so$* S. A4 wv

3FS (I)k 01 Sk
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lit + At(A-4)
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Isom
0'ri s oa s L__

om bm

kI'
-(Im.c)M frmmi bt bi C) + if ~J.AF(N. N; N+I1 C)

03 M-, 010161001 7, O , 15. 1. . By no refeeC) 7, (A-des IL. We aI~o m swpt eo 69 ft= nn

- 1(I- C) FIrt Is N+2; C) ,(A-10) ---

96k i prtculauly good for dveolag In a series ia (1-C) by use of refer-
ies 7. sqeale 15.3. U.

At We psilt, a nmdiof~t of alarmadtve forms for (A-10) are available by
waset rereace 7, pag 56. Several rapidly coonverget forms involvLog a
An&iqs F f11,Jom are mow listed:

N3-1 " 3 4" _ 2 +N-* [N2- -(N-2) P F(I. IL;N 2;C) (A-11)

2 (N - 1)(N- 2) c
RN N+ 1)

+ N-I N[ (Nl-2) CCF(2, 1; N4+3; C) (A-12)

=I+ N-I(I-C) (N+I)(N-2) - N-2) F(2, 1; N+2; C). (A-13)

A-2

M



TR 5291

The form in (A-11) us"s exactly the same F function as encountered in $I in (5)
and is more rapidly convergent than the latter two forms, for all values of C.

The reduction technique employed above for m - 2 in (4) can also be used

for other Integer values of m. Howe ver, it falls for m noninteger, because

slaplificatona like (A-3) and (A-4) do not occur then.

A-3/A-4
REVERiSE BLANK

11, pjr':
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Appendix 5

KXPANWN ABOUT 8 - I FOR
KAGMTVlDZ COKUNKCZ

Th. e.~mme of NIC is gives Is (3). We We

X.0"4. s1m) a a

ya- O Y 3 .(~ i)hi 3f%+ 1L) gasp + OR-1

where In£ ,I, aneIdpmsi sero-man, mMit-wmrtamc., resa,
Gaima random variables. Them, for g real,

Z {Xs(f) Y.(f)) - '(mm vs + *) gE1Ie.1 2) 2g

Tharebore, the MC is

2 x2(14gS) jig2

Tor a apsoiflad Value c adthe MIc. as required vaiv. of mcawa hcow is

The., as g3-1, C a 2 - 1, g.06 and 1/g.0O. Becaae we are Woead is
a ~ss mit we can ocinemlrats an J/g near se.

U we define

A t jaRI B tD aj (D-5)

thea s.ubvlan of(5-I) is (3) yielde



IL -_ _ _ _ _ _ _ _ _ ID ~ gA 2

L N 2  + Ma~j A(B.%D 1.g A)

M2 + (54),

AS + IgADr + 52A2

where Dr is dw redl pert of D is (5-5). Reanugt (3-4), we obtala

I1+-IT .2 .. U

1 +.1.T + fv

whl

Arm-,u A2  A(54

HOW a msees m of @(5-7) in powers of J/g (ws noted under (D-4)) yields

-1~ a3 £ a. a6

S g3 B4 gS 96. '(5)

Where

ag-U-V. a3 -- (U-V)T, a4.(U-V)(T2 -V),

aG(U-V)(2V-T 2 )T, £6,L(U-V)(T4 +V2 -3T 2 V) (B-10)

Biwae we ame ierested in tbe bebavior of *@ MC estimate Iwe emaploy

2 8 16

D-2
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+ b3t1 +(1 a

3\
a* a 4i 2

Ald slam we are interested in S near aity, we let

x I - C (B-13)

ad expamd In a powr series la x. To do this, we utilize (B-4) and obtain1q
S1/2 3 X2...

x X + X3

x2 / (I +. x +...)u 2+ 23

1 5/2 1( 5+

-33, (3-14)

SusUl atiom of 0-14) in (3-12) yields

B-3

I a-

2%x2(Ta2+ 21&4-1a
XS/23 1 s -
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Nw we are ready to perform averages on the individual terms in (B-15) and
obtaineasepansionof E{SI inpowersof x- I-C.

ThO mthod of obtainig E a2 will be developed ful. The results for
So otber averages in (B-15) will merely be staed, and can easily be deduced
bot th method preseted, From (B-10), (B-8), and (B-5),

82=U-V =IDI2BA 1 ]L N
~T2 -: 1 P Pn Qmn , (B-16)A2  A2  m,-=1

where we have defnned
Qm Oman*-" A 6ran •(B-17) -

Now, let

a'[01 a2..a*N] (B-18)

Then, since Qm depends oly on a,

E{U-Vit)'m' F QmnE{P1iP4
A2 m, n-I

2. [A - N (B-19)
; 2- A2  A

where we have utlised the property

E{Pto* }2 6.s (3-20)

which follows directly from the definitions (B-i). Therefore, using (B-19), we
have

EJu -v} VI - (N- 1) E (B-2-1)

Now, A Is given by (B-5) and (B-1) as

A. ( + G2) (B-22)
n=1

B-4

v'
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Tberefore, the probability density bunction of A to

AN -I exp(-A/2) A>0 (B-231
2 N (N-1)

There follow. immediately the m-th moment of 1/A as

E {1/Am = -- (N-1)(N-2)...(N-m)' (,.24)

Employing (B-24) in (3-21), we have

EI-I U-Vl=- . (B-25)

By employing the generalizations of (B-20) to the fourth and sixth orders,
namely,

E{P~P~m~PP~}4 (6k,6n +68 61tM)'

+ 6kn 6im l6pq + 16kn 6Jjp 6too + 6klu 6ira 6np + 6kq 6p6 , (B3-26)

we find the following quanltle:

E1a3 1 0, E a4  N-2 E (al NN2

E ja s =0, E a2 a3  0, E a6 }.= N-

E = -2(N Ea2a4 -- N2
(N - 211N 31) (N- 2)(N-3)

E (N-2)(N-31 (B-27)

B-5 3

I , -- - I



Whim we employ (-27) Lik (9-15), there followB

3L_ (1-C) _L - ]_)

I1427N1 (1-C) 3 +.. (B-28)

ThiWi t e ad result quoted In (23) Lft the ai text,

13-6

p -y r

(-l ('1 11m -l -, A' Lo
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Appendix C

VARIANCE APPROXIMATION FOR
MAGNITUDE COHERENCE

From (19) and (40) in the main text, we have

E19S- %+ Q S 2 +Q 2 5'+... (C-1)

where

Q = GN

N(N- -1)
Qj GN 2~

Q2 GN 4(2N+1)(2N+3) .(C-2)

And, from (18), we have

E1§21 _R0 +-itS2 +R2 0 *..# (C-3)

where

NI

N-

R2-(N1)(N+2)*(C)

Therefore,

Variance a 'I+ S2 +YS4 +. .,(C-5)

where

aR.- Q!

P=R, - 2Q0Q1

Y= 2 Q1 2 2  (C-6)

V R2 Ql QoQ2C 
- 1

WS W
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By wme of (40) and reference 7, equation 6.1.47, we find

N 1 1+ (C-7)

Ixpandleg the above expressions in power. of N-1, we find

(L~ l 1.)1 65w 1
\ 4N 16 N2 W 1638 N3 +

__ 7w

Thus, (C-5) ad (C-8) give a power series expansion of Variance ()that should
be accurate for larg N.

The Waimsapoiation th~at we adopt is given in (33). We expand (33)
In powes of 82 sod obtain

-N2 ) N 11+A%+S l~3 A(2B+2)- +

We now select constants A, B, and D so that (C-5) and (C-9) match up through
the power 84. There follows

B .1[3
A N 2( a- 2)(a-N

C -2

11. MIDJ
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We now employ the expansions for a, 0, Y in (C-8) and obtain, finally,

A = -0. 57080 + 1. 7489/N +* 0. 76047/N 2 +.

B = 0. 75194N - 3.2639 +...

D - 0.22142N2 - 1. 6648N +... (C-i1)

Equations (33) and (C-11) are the final results for the variance approximation.
It has been found sufficient to retain only three decimals in the constants and to
stop with the terms shown in (C-11).

I

C-3/C-4
REVERSE BLANK
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CRAPTER 1

INTRODUCTION

This research Investigates methods for estimating

the position of a moving source by the processing of an

acoustically radiated signal received at two or more

physically separated sensors. If the source signal

is received at two geographical positions in the presence

of uncorrelated noise, then, depending on the signal

strength and duration, it is poselbla to estimate the

bearing to the source relative to the sensor baseline.

When the'source signal Is received at three sensors,

range, as well as bearing to the source, can be estimated

by using the intersection of two bearing lines of position

(LOPs). The mathematics for the solution to the problem

of finding the "best" estimate of bearing is analogous

to the more general problem of estimating the time delay

(or group delay) between two time series. Therefore,

this dissertation derives the maximum likelihood (ML)

estimate time delay.

Techniques for estimation of time delay can be

applied to a variety of practical problems, in addition

to those motivating this research. For example, if we

consider a signal which probes a linear time invariant

WXI,',MII
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system, then the problem of estimating time delay can

be viewed as attempting to identify a parameter of the

probed system, based on time-limited, noise-corrupted

observations of the system input and output. The delay

In a particularly valuable characterization of the system

(and interrelationship between two processes) when the

system output is an attenuated and delayed version of the

input. Physical plants in which delays occur can also be

visualized in terms of the bearing estimation problem.

For example, consider two geographically separated

sensors that receive a signal from an acoustically

radiating point source, as shown in Figure 1-1. If

the properties of the medium are such that the signal

from the source propagates at a constant velocity, then

the travel time from the source to either sensor is

directly proportional to the distance traveled. Thus,

the difference between the travel time (from the source

to each sensor) or time delay is given by the difference

in path lengths divided by the propagation velocity.

There exists a well defined locus of points (relative to

the sensors) for which the time delay is constant. Hence,

knowledge of the time delay is sufficient to dictate

that the source is located somewhere on that locus of

points. In particular, the acoustic source must be

located on the locus of points that satisfies the constant

time delay constraint, namely, the hyperbola in

Figure 1-2 . The bearing angle, e, that the hyperbolic

asymptote makes with the baseline is a good approximation

2
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to the true btetang to the souce (relative to thH

10d001t of the W0ell0) esPecially for distant sourve.

Th1s. by skling a distat poItt source (or equivalently

a plane wave) aesolptie 11d solving for the bearing

minle S. See is equivalently fiading the angle that the

hIwrbollc asymptote (or line of posit ion (LOP)) mak"

with the baseline. Failiarity with hyperbola suggestu

that the source need sot be very distant (relative to

the weusor separatlo d) is order for the arrival aingle

to be a good estimator of true Source angle. to the

estimatio problem, the reseolvers are attempting to

estimte hearing (or position) of a sowm. that is

radiattng a elgUal either ltentionally or unlnteutionslly.

DWtI" Itentioal rudiat io (for sUOMle* a ommualca-

tiess sytme) alsm" stistlee ame Seletable within

.- rtaim prastleal ead regulstory, lmlttlos. Is other

aplieatiose, the signal characteristics are usakowm

as the output of te Sooesrs muot be processed without

this a priori knowledge Is order to estimte time delay

or equivalestly Source bearing. I tbs thesis it tis

summed that the Source characteristics are sot under

the control of the deelgmer and at beet the spectral

chascteristic of the signal are known or esttmated.

Tbe time delay estimstion research presented in

this text is arranged Is six chapters sad four appendices.

Decausse the estiation of time delay and bearing is

intimately related to the coherence between two received

I I I I IIIl'"lllr N * T r "5



waveforms, as extensive investigatton of coherence in

gives (in Chapter 2). New results on using coherence

to provide lifomtion about linear and nonlinear

mystem Idetification aae presented and proved. Among

other remlts, Chapter 2 explicitly shows how the

signal-to-noise ratio (SR) Is a function of coherence.

In Chapter 3, the ML estimate of time delay

between two signals is derived under jointly stationary

Gaussian assumptions. The explicit dependence of the

time delay estimate on coherence is evident in the

estimator realization in which the two time series are

prefiltered (to accentuate frequency bands according

to the strength of the coherence) and subsequently

croescorrelated. The time argument at which the

generalized croescorrelation (0CC) function peaks is

the time delay estimate (Carter and Knapp (1976a)).

The method of derivation ts akin to the ML bearing

estimate derived by MacDonald and Schultheiss (1969)

with two exceptions: (1) the technique here requires

no plane wave assumption but finds the ML estimate of the

more general time delay parameter, from which one can

estimate both the hyperbolic LOP and source be.aring,

Sad. (2) the derivation here does not constrain the

additive noise waveforms at different sensors to have

the sam spectral characteristics. These conditions

allow for widely spaced sensors since the spectral

characteristics of the noise can be different and the!

l
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signal wavefront is not .onstrained tn be planar.

Having derived the UL estimate of time delay.

we show that It is equivalent to the GCC function with

prefiltering suggested by Hannan and Thomson (1973).

Although the ML estimator Is the same as the method

suggested by Hannan and Thomson (1973), this could

not have been accurately predicted ahead of time.

The Hannan Thomson (IT) processor was obtained as a

0CC function with optimally determined weighting.

In related work, Clay, Hinich, and Shaman (1973) arrived

at a less general UL estimate for bearing, due to the

assumption that the signal spectral characteristics

were flat in the frequency band of interest. The results

of this thesis are also more general than those of

MacDonald and Schultheiss (1969) because there is

no signal plane wave assumption and the noise spectral

characteristics can differ from sensor to sensor.

When the received signal and noise waveforms are

stationary and Gaussian with known spectral characteristics,

it is shown that the UL estimate of time delay achieves

the Cramer-Rao bound. Thus, the ML estimate, in this

case, achieves a variance less than or equal to that

attained by any other means. Two realizations of the

time delay estimate are given: the first, uses the

0CC function with appropriate prefilters; the second

appropriately filters, sums, squares, and averages as

'7



suggested by Carter and Knapp (19761. Further, when

the spectral characteristics are known the variance of

the delay estimates Is derived for all GCC processors.

When the signal and noise spectral characteristics are

unknown, as'is often the case in the passive bearing

estimation problem, it is suggested that an approximate

technique be used, whereby estimates of the ML weighting

are inserted in the place of the correct weighting.

This heuristic procedure will converge to the ML estimate

provided the weighting is properly estimated. The

appendices sumariz work in this area by Carter, Knapp,

and Nuttall (1973a) to estimate the spectral densities

Including coherence. (Details of the appendices are

discussed later In the introduction.)

In Chapter 4, the variances of six proposed time

delay estimates, Including ones suggested by Roth (1971)

and Carter, Nuttall, and Cable (1973), are compared for

an example case where the signal and noise have

rectangular spectra with different bandwidths. The

results confirm the advantages of ML time delay

estimation. -

The estimation formulation is extended, in Chapter

5, to three important generalizations: multiple sources,

moving source, and multiple sensors. The multiple

source problem introduces a new term in the award

function which was maximized in Chapter 3 to obtain a

single time delay estimate. This additional term is the

8
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information between two processes. Nettheim (1966),

using results of Gelfand and Yaglom (1959), has

shown the Shannon (1949) definition of information to

be directly related to the coherence between two

processes. Thus, an with the single time delay

estimation problem, coherence plays an important role.

Source motion significantly complicates the bearing

estimation problem as indicated in section B of Chapter 5.

Indeed, unless some preprocessing is done, the received

waveforms appear uncorrelated despite the presence of a

common but time compressed (or less generally, Doppler

shifted) signal. A method based on the ideas of Chapter

3 is suggested for preprocessing the received waveforms

to remove the effect of source motion. The last section

of Chapter 5 extends the filter and sum realization for

time delay estimation to a multiple sensor environment.

Finally, Chapter 6 is a brief discussion and summary of

applications for the methods of time delay estimation

and suggestions for future work.

The appendices of this dissertation are provided to

imolmmnt and corroborate the theory developed in Chapter 3.

Appendix A sumarizes two methods of spectral estimation

given in Carter, Knapp, and Nuttall (1973a) and Carter

and Knapp (1975). Appendix B gives important results

of the statistical behavior of the estimates of the

magnitude-squared coherence (MSC),including the

probability density function (pdf), the cumulative

9
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distributiom funtion (odf),sad the m-th moment of the

VC esmtime. A complete discussiomn of the bias and the

varisee of the NC estimates to preseated, lcluding

a simalatlom (do*e by Sluttall sad Carter (197b)) that

suMports tbeoretical results of Naubrlch (1968) aind

Carter, Kaspp, sad Ruttall (193sa) and refutes past

s9mulatiom results of Senigaiu (1969a). Using a method

suggested by Demigaus (1969a), a reduced bias method

of ISC estimation Is verified; however, it to discovered

that for many practical estimation situations the reduced

bias NSC estimator will have increased mean square error

(SZ) when compared with the USC estimator given In

Appendix A. An example is given of erroneous simulation

results (in particular, unexpectedly large bias) when

the assumptions of the theory have been violated.

In the process of detecting a coherent source

it io desirable to establish a threshold above which a

source is considered detected. Rules for establishing

such a threshold are given (Carter (1976)) in order to

achieve a specified probability of false alarm. Having

established such a threshold, it is possible to determine

the probability of detecting a coherent source; the

probability of detection will depend both on the

observation time and the underlying strength of the

coherent source. Ixamrle receiver operating character-

Istics ar* FIottcd for different observation times and

coherent source levels.

10
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Appendix C gives a Complete FORTRAN IV computer

listing of a program to estimate time delay. The.

program wa" SUCCesstully copipiled and run on both a

Univac and an uNM computer. Appendix D presents an

example case to validate both the theory and the computer

The text, then, io arranged an follows: Chapter 3

contains the derivation for the ML time delay estimator;

because these results depend on the coherence between

two random processes, we first demonstrate in Chapter 2

what characteristics the coherence possesses. Chapter 4

comipares the ML estimator derived In Chapter 3 with

other proposed methods for estimating time delay.

Chapter 5 extends the results of Chapter 3 to three

Important generalizations: mnltiple sourcies, moving

source,and multiple sensors. Applications and a general

discussion are presented in Chapter S. The four

appendices are all concerned with experimental

verification of approximate methods for estimating time

delay presented in Chapter 3.



CHAPTIR 2

TEOR AND APPLICATIONS 0F CONIRENCI

The solution to the physical problem of estimating

source bearing is intimately tied to the coherence

between spatially separated passive sensors.

This chapter presents the definition and properties

of the coherence and several new results on its use.

These results bear both directly and indirectly on the

solution to the opti mum delay estimation problem.

2A. Definition. Relationship to Crosucorrelation. and

Properties

2A1. Definition

The coefficient of coherency (CC) between two

wide sense stationary random processes in the normalized

cross power spectral density function defined by Weiner

(1930) as GX X2(f)

y(f) .1 (2-1)

where f denotes the frequency (Hz), OX X2(f) is the cross-

power spectrum between x1 (t) and x2(t), and GXlXl M.

x2x2 (f) denote the auto power spectra of x1 (t), x2 (t),

respectively. Despite some confusion in the literature,

Weiner intended for the CC to be complex. This in

12
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apparent stnce he discusses (p. 194, Weiner (1930))

both the modulus and the argument of the CC. Moreover,

In suggesting bow one might compute the CC, the modulus

of the complex numerator is not indicated. The CC is

also referred to as the complex coherence (Carter, Knapp,

and Nuttall (1973a)). Many of the results which follow

depend on the magnitude-squared of the CC (1SC). The

MC is also referred to an the squared coherency

(Jenkins and Watts (1968)).

In order to simplify the notation throughout

the thesis, we define

CZ (f) , 1Yx x ()12  . (2-2)

When the two processes under consideration are apparent,

we further simplify the notation by letting

C(f) I CxIX2 (f) a C12 (f).

The magnitude of the CC (MC) is denoted by

1 x (f) (2-3)

The term "coherence" can imply CC, MC or NBC. Indeed,

variables that are a function of the 11C (or MC) alone

are also functions of the CC alone, but not necessarily

vice versa. While it ses most natural mathematically

to refer to the CC as the coherence, the majority of the

literature refers to the SC as coherence.

Since Ox I (f) and X2x2(f) are real, the phase

of the CC denoted by

xIx2( M) - Arg [Y 2(f) (2-4 1)

13N-
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a Arg [G 1 (] (2-4b)

- Arg [Gxx(f)/Gx(t); (2-4c)

that is, the phase of the CC is the same as the phase of

the cross spectrum. Later we will interpret (2-4c) as

the phase of the optimum linear filter that maps xl(t)

to x2(t).

2M. Relation to Crosscorrelation

The CC between x(t) and y(t) can be confused with

the crosscorrelation coefficient or normalized cross-

correlation function defined for zero mean processes by
axy(T)

PX7(T) .- NZ [ (0) R y (0 (2-5)

The normalized croscorrelation is a function of lag and

not frequency. Further note that the normalizing factor

is the scalar a (O) Ryy(0)3i. independent of T. It

is not a lag dependent normalization. The CC has an

abscissa dependent type of normalization (2-1).

However, there are two models of filtering that aid in

interpreting the CC as a type of cronscorrelation.

In the first model, we are given x(t) and y(t) as

depicted In Figure 2-1, and we want to find the CC

between x(t) and y(t). If we prefilter x(t) by the

linear filter U1 (f) and y(t) by the linear H2 (f), then

(from p. 399, Davenport (1970)) the cross spectrum

between the filter outputs is

G4 lyl (f) a Gxy(f) H1 (f)H2 (f) (2-6)

14
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Thus Lf we select

H 1fMH:2 :(:f ) = o (2-7)

It follows that I
OX lYl M - YXYM-.

Thus, the CC between x(t) and y(t) can be obtained by

first prefiltering x(t) by the realizable whitening

filter

•( M J ( f )  (2-8)

and prefiltering y(t) with a realizable whitening

filter with the same phase as (2-8). Namely, we select

1 J*(f
3(f) e f  • (2-9)

Such filtering ensures

# lyl(f) - xy(f). (2-10)

That is, the phase between input processes in invariant

to equiphase filtering. Then, to compute the CC between

x(t) and y(t), we compute the cross spectrum between

XI(t) and yl(t). This could be accomplished by cross-

correlating x1 (t) and y,(t) and taking the inverse

Fourier transform (or see Appendix A).

In the second model used to understand the CC we

observe that for xI(t) and yl(t) (in Figure 2-1 ) zero

mean

PIF
%



TR 5335

1"G xyl f)H1(f)HI( r)eJ2, T df (

PX lyl I H I(f)12 fG (f )1H2( f )12dfl

Thus if _-

a(ejf(f) fc- < If I<f + A , (2-12)
0 , elsewhere

(2-11) becomes (for small Af)
( M Z Gxy(fc)ej2wfc +G x(-fc)e-j2WfcT]Af (2-13a)

Ilyl [~~~a ~
rGX( (fc)2&f -G,(fc)2if ]i

= xV c c (2-13b)
Gxx(f c)Gyy( fc)

a xy(fc)2I os 2 fc2wf D )] (2-13d)

The crossecorrelation coefficient at zero argument is

given by
P X.IYl(O) a Re Y >XY(fc)A . (2-14)

Thus we see from (2-14)and (2-13d) bow the CC is

related to the crosscorrelation coefficient.

2A3. Properties

The power spectral density matrix is positive

semidefinite (Jenkins and Watts (1968)). Therefore,
~N
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for two random processes, we see that

I1Q )1 - ,• 0 M (2-iSa)Gx Clt) 0xx(f) -

2 1 X2 2

For real processes G x t) - (I) and thus

X MlfGx x (f) -1 ox (fl)12 > 0 ( 2-15b)

and

Gx 1x(f)GX2 x(f) IXx2(f)12. (2-15c)

Further, GX1 X 1 ) and G x2 x2) are nonnegative, real

functions of f. When Gx1xI(f), Gx2x2(f) are strictly

positive definite (that In, when Gz X(f)GX 2 (f)0O),

(2-15c) can be divided through by G. x (f)G 2X2(f)

without changing the sense of the inequality thereby

yielding

CX1X(f) < 1, Vf. (2-162)

Further, the magnitude-squared of any complex number is

greater than or eQual to zero. Thus,

0 ( CXlX2(M < 1 . (2-1eb)

The USC always falls between zero and one. Further,

as will be shown, It is zero if the processes xI(t)

and x2 (t) are uncorrelated; and, it is equal to unity

if there exists a linear relation between xl(t) and

x2 (t). The cross-power spectrum is then defined by

1I 
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Thee provided I1l(f) 2 IK2 (f)12 f 0

C3 7 (g)L M * C 17(f) .(2-19)

That is, the OWC to the sm between x and y as

betwees the filtered versions x.ad "

&. Dow of Coberenag Funct ion

The OWC funct ion for the zero-meam * wide-sonse

stattomary pvoesems x~t) ad y(t) is useful in several

ways. which will be proved io the following sections.

First. for two Imdepeade proesee, the WSC function

to sero. Seoned. the MW measures the degree of system

linear'ity. Third, under the asrnptioms to be

presested, the WC functiLon serves as a WM measure.

231 Measure of Correlation

INBIDEN 2-1: If two tero-sean stationary processes

x(t) and Y(t) are Independent, they are also uncorrelated

ad ortbogonal;

a Iy(r)a1x(t)y(t-,r)I w K(x(t)IE(y(t- )I 0,O(2-20&)

a Mf a f AX Mre j 2 wfT d a 0 (2-20b)
3K *K

&ad the 10C

C xy(f) - 0 ,f (2-20c)

provided G ,(fMG yy(f) 00.

20
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Sence. If the two processes are Independent (or

sacarrelated) with zern mean, the USC between them is

lero.

DIUCO ION OF TIUOWI 2-1: Note that Jointly Gaussian

ram processe that are uncorrelated (incoherent)

ara also Independent. Nowever, It is possible for two

processes to be highly dependent yet uncorrelated

(incoherent), even if one of the two processes is

Gaussian. Altbough one may be led by physical

cossideritions to presume processes are independent and

hence uncorrelated, in practice, It Is easier to show

processes are uncorrelated than Independent. Note that

If Cy (1) 0 0, Vtf, It follows that Rely xy(t)-

Xmiyzt)M - 0 a GXYM(f) Vf and thence it follows that

I*y (T) - 0. WT. Nes, we see that if two processes

are incoherent, then tbey are also uncorrelated. Nowever,

as stated earlier, being incoherent does not necesarily

Imply being independent. for example, suppose

y(t) n n(x) and x(t) Is a nero mean stationary random

Gaussian process with variance a2 and first order

probability density function (pdf).

p(R)u e'X2/2 2 (2-21)

then from Nuttall (1958) and Carter and Knapp (1975)

xy( )  [ tXX(T), (2-22)

where

21
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I l i x /2a

a n(z)a gx 2  dx .(2-23)

V,,a OT

Th.r.r.rt, r.r even smlnearttles, K=O and CY(T)uO.

Peci 0 y(0-O and Cxy(f)-0. Thus, it is simple to derive

a process y(t) which is completely dependent on x(t)

but which is uncorrelated wtth it. Pence, the converse

of theorem (2-1) does not hold and coherence does not

provide Information on dependence or independence but

only on second order measures like correlation.

2M2. Measure of lystes Linsrity

The MC function ce be used to memsno system

linearity. In Figure 2-2 consider the linear system

with input x(t), implse response h(i), and output y(t).

The output 7(t) Is expressed by the convolution integral

y(t) a f l(r)X(t-r) dr , (2-24a)

or

y(t) a h(t) 6 X(t) , (2-24b)

where 0 denotes convolution.

In the Fourier domain the convolution is the multi-

plication (Oppenbeim and Schafer (1975))

Y(f) a U(f)X(f) , (2-25)

where 1. U, and Y are Fourier transforms of x, h and

y, respectively.

22
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u~s* hId

Figur* 2-2 Linear Iystm with Imuse Rsmpoms h(r)

23



It a system is linear then

Yxylf) ej*xy~ , Vt (2-26)

sd bea@*

C ty) - 1. Vt. (2-27)

PlOP Of TUUOU 2-2:

For linear systiqns,

o yt)iM xy(f)Nx. ,(t)Gxx(I).Gxy( f)-II y(f)Gxx (f) (2-28)

or when oiCt) 0
0 V(f)0* Ctf)

G 7 f)- -M GXX(t). (2-29)

kbetitutlig 0 y(t) into the bIsc definition of CC,

YXY af~ aay()(4o*Y (2-30a)
-4 0 x 0 (f)G *3t(f)

a. (2-30b)

Frther.

CXY(f) 2lyly - co(fxy(0 sn602 IsKy(f) =-.(2-31)

DISCUSSION OF TNOUM 2-2: This theorem is related to

work of Koopmans (1964), Jenkins and Watts (1968), *
OtMes and Imocheon (1972), Carter, Knapp and Nuttall

(ll93a). goomess (1974). Srillinger (1975), and

Ralvoren and Vendat (1975). This theorem, experience,

and certain intuition lead one to believe the converse

of the theorem should also be true. To date no proof

has been presented for the converse. Notably, it L

24
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the converse which would play a most important role in

the applications area. This to because one is seldom

given a linear system ad asked to measure W~C. Rather.

se to given as uIdestified system and asked:

"Is It limoar?"'. Im the past. it the WSC wasn unity. (I".

bad a "huach" that this was true but no rigorous proof

existed to assert this truth. The following theorem

acts to clarity this dilemma and Indeed show what can

and what cannot be said about linearity whom the MSC

is unity.

The strongest theorem which can be proved in

this regard Is as follows:

1211 W- 2-3: If C XY(f)o1.Vf. them with probability one

there exists an optim filter with unique transfer

ftectiom a 04) that Gam act on the input, x(t). to an

unidentified system to achieve output y 0(M exactly

equal In every detail to the output y(t) of the

unidentified system, (that Is, yo (t)ey(t). with

probability ome). Moreover, the phase of the filter

Avg H.M 40 A(f) = Avg y X(f)

tn order to prove thecom 2-3. It is necessary to introduce

and prove a lsmas.

LEMMA 2-1: If 0 0M Is the power spectrum of an eviodic

random process with member function o(t) and if 10 Oe(f)O.

Vf, then e(t) equal. zero with probability one for all t.

PROOF OF LEMMA 2-1- From p. 150, Papoulis ( 1965), the

Chebycheff (or Tchebycheff) Inequality io

25
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Preb (I(t)- eO(t)] I, i - . (2-32)

WMG 9e0 e be Nade arbitrarily imall and o2 Is the

ftrtaee or pmer of *(t). The astocorrelatiom function

of 0(t) to

* tooeCt)oj '"T if. (2-33)
-em

but a" ( tf)o, Vt o that a GO(T)m0. Vt. Is particular

Am,(o) a 2[02 (t)]-o - a2* B2 [(t)). (2-34)

Owe .2.. m 3(e(t)].. Alternatively mote that the

value of the tails of the autocorrelatioa is related to

the me value of the funotion. IpeSifioally. (p. 333.

Papeulin (INU))

,, ,I€&) a 2 (o(t)] . (2-38)

So mine A(?)oO, VT

13 (T) - 0 (2-36)

it follow that

S[e(t)] - 0. (2-37)

and than that

2 e(t) I 0 . (2-38)

Theretore, the Cheobceftf Inequality with a 2 0 and

3(e(t)3- 0 is

Prob [Ie(t)lc1) ., I(2-39a)

26 - '.3
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but O Plo( I so tohat

Prob [le(t)l.J] a ; (2-3fb)

that is. thl probablity that Ie(t)I is loe tbas ome

arbitrarily mall value is o. statistically. we say

that this voet haPPeeS "with probability ome' or we

say that It MpOIG "almost surely." So she. the power

spectrum OO(f) of this raadsm process tio ero for all

Ireu~qmcieo the* o(t)-O with probability ot.

DiI 810N OF M? 2-1:

The isterpretatlos of the results ca be

mslsoselag for tramtests (monstatiosary procesees).

For Sumple.o seolmr (see. for example. p. 93 of e

(Iw)).

.k o(t)dt a Be(0) R O G(t) df. (2-40)

New clearly there mise e(t 0 meeh that

441W1~ so(et . 0. (3-,1)

For Iesmple.t a fiite eery pulse lasts osly a few

secoads. thee the power (or 'average energy) Is such

a sonrepetltive pulse is sere. This In because

Ile 1 T 03(t) at
Too -T

equals so mosseve ostat esergy but

-T

I It'3?
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equals sero; bece. the power is zser. Trasiest

aituatioss of this type are dsallnwed by the erndtcity

coestraint *bhib requires statiosarity. (Irodic

processes are tatianary but sot neceesarily vice versa.)

Te eeseme of the proof them to that for ergoitc ra aom

processes almet sarely e(t) O is that frequemay bred

where o(t)O. This is a reasosable practical assmption;

however, It should not be overlooked that there exists a

sonstatoasay class of processes for which the proof of

LJOA 2-1 does sot apply. We now proceed with the proof

of theorem 5-3.

PW Or iini -: It is inructive to vimualise

the proof as atteeting to select a aptimo filter such

that the iasme me. squared error (I ) Is achieved.

Where the error O(t) Is "tin" as o(t)sy(td-Yo

as shom is Pigre 2-3.

The soluticm will make so preemptions on the

origis (soure) of y(t). It io useful, however, to

cavisios y(t) to the statiosary output of as "idetiffled

system as "epicted is Figure 2-4; such a model is a

special case of Figure 2-3. but is perhaps a more coma

system identification problem. Whether the error signal

e(t) is gemerated from figure 2-3 or Figure 2-4. it

follows that the total power to gives by

ie + T/2 e
2(t)dt - (f) df (2-421

-T/M --

emq
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All power spectra have the property that they are non-

egative. The implication In that in integrating over

the interval (-m,), there will be no portions of

Gee(f) that .1l "cancel" other portions. Solving for

G (f). it caa be sbow that

G (f)-G yyt) G (f)IlI(f) "R(f)G xy(f)(2-43)

-*(f)G'y (f),

which can be written, as done by Carter and Knapp (1975),

as

SM-)G t(t),ln(f)- G (f)1 24+;yy(f) 1-CxyMfI. (2-44)

since

GUM) 0 O, a0y(f) t 0, and 0 < C(f) _ 1

it Is necessary to mlaimise
Sx-(f) 

2

which i 6oe by selecting the optimum linear filter

o M a0(f )  (2-45)

The optinum filter i a Wisner filter and is discussed

in texts by Lee (1960) and Van Trees (1968). The Fourier

transform of (2-45) is the impulse response

ho(T) - M (f)e jfdf (2-46)

I general, h0 (T) will be a nonzero for r<O; hence,

the system will be nonrealizable. Various methods can

be applied to obtain the optimim realizable linear filter;

although they are beyond the scope of this thesis, they

31
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are discussed In standard texts such as Lee (1960) or

Van Trees (1968).

From (2-45) the cross spectrum between x(t) and

G YX(f) - H 0(fMG x(f), (2-47)

but since x(t) excites a linear filter H0 (f) to produce

output Y 0(t), it also follows that

GY (f) - H 0 (f)GX( f) (2-48)

Substituting (2-48) into.(2-47) yields

G YX(f) a 0 Y (f) (2-49)

Since y(t)-e(t) + YOMt

Ry (T) a Z( (e(t)+y o(t]t-) (2-50a)

a Re (T) +R Y (T) -(2-50b)

But by taking the Fourier transform of both sides of

(2-49)

Ra (T) n* 0 X(T) (2-51)

Hence, from (2-51) and (2-50)

Rex (T) *0, G e(f)8O; (2-52)

that is, the error Is uncorrelated with the input x(t).

This is an interesting property of the error signal

in it's own right. When xi (t) is linearly filtered

by Hi (f) to yield y (tM for i-1,2, the cross-power

spectrum of the filter outputs is given by Davenport

(1970) as

32
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a~:f -lY M axIn(f)()G, I x2 M (2-53)

nems to the special case where x l(t)-u(t), X2(t)-O(t)*

DIMOSOM a"u E2(Mal. It follows that

a700 M aX0 30O (-4

So If the error to uncorrelated with x(t) ( thatis1. if

GR(f)O), them it must be true that G Yoe )0- (that is,

the error in uiicorrelated with the output of the optimum

filter). .The waveform x(t) being uncorrelated with e(t)

implies that e~t) Is also uncorrolated with y 0(t).

Further.

3 Cr) - zC()~-)'(2-55a)

but y(t)-o(t)+y0(tM so that

R*7(r) a C{eMt)[(t-r) + YO (t-r)] (2-55b)

-S CR) + ni (T) .(2-55c)

Recognizing that R3y (r).O and taking the Fourier

transform of both sides of (2-55) yields

G ey(f) a G 00(f) .(2-56)

The selection of the optimum 1(f) forces (2-44) to

become

G**(fM G( )[ly M1 - C xv(f)J (2-57)

When C XY(f)-1. clearly (from 2-57) Gee0 (f)wO, and thus

(from LEMMA 2-1) .(t)oO with probability one, but

y(t) a Yo (t) + e(t), (2-58)

so that almost surely,

yMt -YOM) (2-59)
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Thum., with probability one, the linear filter A
nom(f)f) eJyx(f)  (2-60)

will operate on x(t) to achieve y0 (t)-y(t). If the

optimum output y0 (t)ox(t) 0 b(t) then by the Fourier

transform relation

Yo(f) - X(f)3o(f) . (2-61)

The Fourier transform is a one for one reversible

transformation so that a unique x(t), y(t) implies a

unique X(f), Y(f).but then
Y (f)-

e = M (2-62)

must be unique. This completes the proof of theorem 2-3.

DISCUSSION OF TIOltIM 2-3:

Unique transfer functions do not identify

unique systems. Indeed, nothing is known about the

internal structure of the unidentified system. Further,

the fact that the system can be modeled by a linear

system Ne(f) such that when both (system and model) are

stimulated by an excitation x(t) they yield identical

output y(t) does not prove that the system is linear

over all inputs. There may indeed be unobservable

ndnlinearities in the unidentified system. For example,

suppose the excitation x(t) is stationary but with first

order pdf such that -A <cx(t)IjA. This implies that

x(t) never excites the unidentified system for amplitudes

greater than A; hence, no conclusions can be drawn

about the linearity of the system over all inputs.

34
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Many "real world" systems are linear over a certain

rango of amplitudes and then saturate above that

ampliLude as in the cane of analog ucmputers

(Kochenburger (1972)). As another example, consider

any stationary x(t). The stationary excitation has

only one Invariant power spectrum Gxx(f). Systems

which appear linear for some Gxx(f) but which are

clearly nonlinear for different input statistics are

simple to envision. If a system is nonlinear but the

nonlinearity is not excited (or more generally, not

observed), then the system will appear linear and the

measurement of the uSC will equal unity. In essence

then, the class of nonlinear functions is so large that

based on a single excitation (even white Gaussian noise)

it Is impossible to claim, without qualification, that

a system is "linear" simply because the USC Is unity, for

all probed frequencies. Another type of nonlinear system

is one in which the USC is observed to be unity in some
frequency bands and not unity in other bands. Thus

YO(t) 0 y(t), unless those frequency bands which cannot

be accounted for by linear processing are removed. More
precisely, if C xy(f) - 1 in the frequency band (flf 2 )

then with probability one there exists an optimum linear

filter with unique transfer function 0 (f) that can

act on x(t) to achieve optimum output y0 (t) where

yO (t)-y(t) 0 hI(t) and hI(t) is the impulse response of

an ideal zero phase, unity gain "box car" filter that

35
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passes only those frequencies in the (fl,! 2 ) band.

The whole problem of nonlinear systems can be treated

by considering what proportion ofr aL system outpt c:in

be Ittrlibuted to a linear opetration and what propx)rtion

is due to a residual or nonlinear operation. In

general, the powor spectrum of the optimum output

G1yY(f ) - IH0(f)2 GXX(f) (2-63)

or substituting (2-1),. (2-2) and (2-45) into (2-63) yields

G (f) - G yy(f)C xy(f) • (2-64)

This important result (Carter and Knapp (1975)) can be

rewritten as G Yo(f)

Cxy(f) yy) (2-65)

The implication is that the USC measures the portion

or amount of power (G (f)) which can be obtained through
yy

optimal linear filtering (in the MUSE sense) of x(t).

Moreover, it is always true (provided C xy(f) is defined)

that

Gyy(f) = Cxy(f)Gyy(f) + [1-Cy(f )]Gyy(f) (2-66) -_

Substituting from (2-64) and (2-57) into (2-66)

yields

G yy(f) - G yoo(f) + Gee(f) , (2-67)

which implies the power spectrum of the output of a

system is comprised only of the sum of an error spectrum

and an optimum spectrum. This same result can be

noticed from

36
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RyylUr) a a "(M + It (T) + R eY() +R yYo() (2-68)

but Ry O(lM-IeYo (-)-O,Vy so that

a3 W ( a M + Ry (') T (2-69)
77 @ yYO

Computing the Fourier transform of (2-69) verifies

(2-67).

Just as the NBC measured what portion of G yy(f)

could be obtained by (optimal) linear filtering, one

minus NBC ir a measure of the portion of output power

due to an uncorrelated error component; that is,

Gee (f)
o0(: "O 1 - CXYltM (2-70)

Thus, it follows that the ratio of the optimum linear-

power to the nonlinear or error power is

Gyo (f) Cxy(f)
G y 

(2-71)
Geem A-Cxy(f

(This ratio will be important in the estimation of time

delay.)

For practical nonlinear systems, the identification of

the optimum linear component is not always obvious.

For example, in the system without noise described by

y(t)x 3(t)+b x(t), the optimal linear part is not bx(t).

To clarify this point, it will be demonstrated that for

a limited class of inputs and a limited class of non-

linearities, analytic expressions for the optimal linear

part can be obtained. This offers interesting insight

37
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lnte both the general systeM Identification problem and

the eobereece Interpretation problem. First, the

soallsearity Is ostrained to have so memory and no

mone., that is y-q%(z). -Second, the Input processes are

constrained to be separable in the sense defimed by

Nuttall (1MG). A separable process with second-order

pOf p(z 1 1 z2 ;T) and mean M is defined an one for which

the Integral f"Zr)(X:X;)dx, separate* into the

product of a function of X2 alone, and a function of

T &lone. For example. It can be shown that a Gaussian

process possesses these properties and, hence, is a

separable process.

Under the no-mem"r nonlinearity and separable

process constraints, It has been proved by Nuttall (1958)

the crosecorrelation between z(t) and y(t) at delay T is

given by

3 CX T) a K 0RM(T) ,(2-72a)

where

K f ~ n(x)(x-mdp(x)dx ,(2-72b)

pWx is the first-order pdf of x(t), 11(x) is a complete

description of the no-memory nonlinear function, and

0Is the variance of x(t). Notice that the constant K

does not depend on frequency or delay but only on the

first-order pdf and the nonlinearity. It follows directly

from (2-72a) that, for no-memory nonlinearities excited

by separable processes,

38
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COMPartarn of (2-73) with (2-45) asnd (2-1) s4howN thatl

the cunmtast K is the optImiM linear f i Iter In the

MIZ sense.I
As an example, suppose x(t) has a Gaussian

zero-mean, olvariance pdf; then

K m ~1n(x)x I x2/2o dx. (2-74)

Whenever the pdf Is even and n(x) is an even function,

K-0 so that the coherence io zero. However, when rI(x)

Is an odd function, K does not necessarily equal zero

even though the unidentified system In nonlinear. For

example, when n(x)-x 3(t)+bx (t), application of (2-74)

yIelds K-3o 2 b. Therefore, the optimal linear part of

x 3(t)+bx(t) is not bx(t) but rather y 0 (t)u(b+3 2)xWt)
2for a zero mean Gaussian process with variance of a

For b-0, it follows that K f 0 and C xy(f) t' 0 provided

G ,x(f) f 0. However, if b-3c2 then .K-0 and C xy(f)rnO.

Thus, the USC may still be zero even though the non-

linearity is not leven. A computer simulation of the

examl with a 2 -1/2 and b-- 32 was conducted, and the

results verified the theory (Carter and Knapp (1975)).

This result can be Independently verified by calculating

R xy(0) a Bx(t) [x3(t_-r)+bx(t-T)]) which for Gaussian

processes is 3c 2R ,x(T)+bRxx(T). Therefore, C (f)M-0 if

bu-3a2 and there is no power in the optimum linear part

39



TR 533

of time nomilnearity n(x) a x 3(t) - 3a2 X(t).

Parenthetically, we note that another approach

to this problem in to expand the no-memory nonlinearity

qg a an Infinte serlom of orthogonal polyncimialu.

s.ptQt! i r j at l y.

yMt - q~x(t)) ua nH 0[X(t)) (2-75a&)

where the He Wx are ti Ilermite polynomials (see, for

e'xample.* p. xxxv, Gradahteyn and Ryzhik (1965))

He0(xWul. H e I(x)-x He 2 (x)ax
2 _ 1, H 0(Wx)*3 _3x

and in general

Hen1(x)uxH va(x)-nH en (x) (2-75b)

Thean, the cromecorrelation betwipen x and y 1-4 givvn by

R (O) on Oa E(x(t)II [~-(] (2-76)

The advanratge to this maethod is that, ir the family of

correlat ions

RxH en W 0) - E{x(t)Hen tX(t-T)]), n-1,2,.. (2-77)

had been computed once, orthogonal expansion of n(x)

makes R xy(T) immediately apparent by a simple weighted

summation.

It is perhaps germane to clarify the significance

of knowing that the MSC is unity. Just as C (f)M-1 for

all f ensured that there was some linear filter that

mapped x(t) into y 0 (t)-y(t) exactly, there also exists

a linear filter which maps y(t) into x(t) exactly. That
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i. since 10 XY(f) 2 a IGyx(f)l 2, CXy(r) - cyxr) and

conclusions drawn with regard to x(t) and y(t) have

an analogous relation between y(t) and x(t). Thus,

even though one cannot make unqualified statements

about the unidentified system, there certainly exists

a total detailed knowledge of its output for a given

input and therefore, all of its output mtatistics whe'n

the MSC is unity and the input remains unchanged. All

this is accomplished through the utilization of a

linear (though not necessarily realizable) model.

2B3. Measure of Signal-to-Noise Ratio

The coherence can be used for determining SNR

as will be discussed in this section. The results of

this section are of interest from two points of view.

First, the SNR is a fundamnental concern in the bni(.

passive detection problem and parameter estimation problem.

and second the results of this section will aid in the

interpretation of optimum delay estimation and variance

of the estimate of coherence phase. lionve, while these

results can be derived independent of the time delay

estimation problem, they will form an important role in

the understanding of how to estimate time delay or

source bearing.

When x(t) is linearly filtered to yield output

y(t) and the output is corrupted by uncorrelated additive

noise, as depicted in Figure 2-5, then the noise power

spectrum is

41
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This is as imtultVely NatisfylMg result misce the IC

is unity if there ins m elee. wherea the OC is zero

VbM the output Is all *mIo. For limear system

dltlvo ales, usoorrelated with the Input reduces the

MC according to the ratio of G5 *(f) to yy(f).

Measurement of O (f) is Useful not only i the Image

processing problem discussed by Cannon (1974) but also

in studying the gross effects of digital filtering when

viewed as a perfect filter plus additive noise (James

(1975) and Weinstein and Oppenbeim (1969)). These

methods can also be applied to studying special problems

such an fast Fourier transform (FF1) noise (Ferrie and

Nuttall (1971) and Rabiner and Rader (1972)).

The power spectrum from the output of an arbitrary

xystem can always be viewed in terms of its two components

Gyy(f)Cxy(f) and Gyy(f)[1-Cxy(f)] regardless.of how

Syy(f) is produced (as long as Cxy(f) in defined). It is

interesting to note that the ratio of these components

GGy M(G ) C Mf
Yoo zz xy (2-79)

Gee) Gnn(f)' - Cxy(f)

can be considered as either the SNR or the linear-to-

nonlinear ratio, depending on the application.

For situations like those shown in Figure 2-5,

the coherence measures what proportion of an unidentified

system output is "linear." Through the use of (2-79),

the USC provides a comparison of the proportion of system

43 1



pa or that to line ~ with the proportiton that is

nusimatis gsotly the snin way to which the 333

was siIIImsaed rar the output of a linar system corrupted

by s"Idtive ale*. NoIver. to other syste

mfguations. much as that aba,. in Figure 2-6. where

saolie and signal have a different interpretation.

relation (2-79) will not be useful. Figure 2-6 1. of

interest to the sonar coiiiisity since it is analogous

to the physical situation in which signal a(t) from an

acoustic source is received at two geographically

separated sensors. Each observed signal is corrupted

by additive stationary nois, and io linearly filtered.

When a ItM and a 2(M are uncorrelated but have the same

power spectra Gn (f), the SXR. G as(f)/G a (f) is readily

shown to be

which differs from (2-79). (Note from (2-19) that

C r1r2 (f)-C ,&f(M) Ironically it will turn out to be I
(2-7%) and not (2-80) which is critical to our problem.

In cases where each transmission path attenuates the

source signal differently, the model must be changed

to reflect an attenuation in one channel. Unless

simplifying assumptions are employed, the net result

is that G as(f)/G nn(f) cannot be determined from C (f)

unless attenuation in each path is known. (See

44 section 4of 
appendix B.)
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More generally, the source is transmitted

through two ocean sedium operators 1 1 (f and H()

as shown In Figure 2-7, which can attenuate the signal

difforeintly at different frequencies. For illustrative

purposes, we assum that the ocean medium operators are

linear time invariant filters. Thus s,(t) and 82 (t)

are the outputs of filters Hi(f and H2 (f), respectively,

which have been excited by source 9(t). This model of

linear filters and noise is mathematically tractable

and has bees proposed before, as for example, on

p. 369 of Whalen (1971). (More sophisticated models are

given by Kennedy (1969).) When the noise ni t) is

uncorrelated with the signal s1(t). the power spectral

density at the output of the i-th sensor is given by

O (I IM -O 0a fv (12 + G n n I(f), 1-1,2 (2-81a)

- aGa 0 (f) + 0 n I(f), ill, . (2-81b)

Further, the ratio of the power at the output of the

filter to the corruptive noise power depends on the USC

between the source and the sensor. Specifically, from

equation (8) of Carter, Knapp and Nuttall (1973a) or

(2-79)01

0 (f)M Cox~ (fM

0 M , - 1 --C M -, . (2-82)

(Note that when IH i(f)I 'p., (2-82) does not measure the

ratio of source to noise power.) The coherence between
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x1() ad x(t)in Figure 2-7 when and w (t) and

42 (t) are uncorrelated is given by

YX 1X M a -I -(2-83)

In order to relate this result to the coherence

between the source and each sensor, nowethat.

Goo (r)H 1 (f)

-YOXi~ I~CT M ia1,2, (2-84)

so that

Y M -i Yx MfYs 2 f *.M (2-85)

Taking the magnitude-squared yields

1) M C ax (fC.X2 Mf (2-86)

Thus, when a source drives two linear time invariant

filters whose output is observed in the presence of

uncorrelated noise, the USC between the outputs can

be no larger than the USC between the source and any

sensor. In particular, for two sensors the NSC is

the product of the two source USCs, as given in (2-86).

However, it is possible to have a source transmitted

through some nonlinearity such that the MSC between

s(t) and x 1(t) is low and the MSC between s(t) and

x2(t) is low and the MSC between xl(t) and x2(t) is high.

For example,suppose s(t) is a member function of a

stationary random process which is separable in the

Nuttall sense. Then the MSC between x Mt) s 2Ct) and

48
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s(t) is zero; similarly1 the MOC between x 2(t) 2tM

and s~t) Is zero; however, for this example, the USC

between x1(t) and x2(t) is unity. Thus,care should

be used In Interpreting these results since they apply

only to the case where the medium can be accurately

modeled by linear time invariant filters corrupted by

uncorrelated additive noise.

Using (2-86) we can compute a SNE squared quantity,

namely,

G811aI( 2 a2 M 1 x2 *(2-87)

A aGn2 2T f ' ri-ca (f Iri1-C sf2)M

To be useful (2-87) requires knowledge of the source to

sensor NSCs. Howeverif C ex1(f) --C5 ~f ax2 [ -C x1 (f)'

then it follows that

aI : a 1 ( sf) ] ____2__(f (2-88)

The results on coherence from this chapter will

add to the understanding of the role of coherence in

ML estimation of time delay as will be seen in the next

chapter.
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CHAPTER 3

MAXIMUM LIKELIHOOD ESTIMATE OF TIME DELAY

In the first section of this chapter an ML

estimator is derived for determining time delay between

signals received at two spatially separated sensors in

the spresence of uncorrelated noise. This ML estimator

can be realized as a pair of receiver prefilters followed

by a crosecorrelator. The time argument at which the

correlator achieves a maximum is the delay estimate.

In the second section of this chapter, the variance of

the time delay estimate is derived and compared with

the Cramer-Rao lower bound, and in the final section,

various realizations of the processor are considered.

3A. Derivation

For the purposes of the derivation, a signal

emanating from an acoustic source and monitored in the

presence of noise at two spatially separated sensors

can be mathematically modeled as depicted in Figure 3-1.

Mathematically,

x(t)asl(t)+n1 (t) (3-1a)

x2(t)uasl(t+D)+n 2 (t) , (3-1h)

where s1 (t), nl(t), and n2 (t) are real, Jointly stationary

50



TR 5335

40

0

jr 4A

U5

.......

lilliai



TiUS

random processes. The delay, D, is the unknown parameter

to be estimated. Signal 81 (t) is assumed to be

uscorrelated with noise nl(t) and n2 (t). Later we also

assume l(t) and n2 (t) are uncorrelated with each other.

Uore generally, it may be assumed that 82 (t)

Is linearly related to s1 (t) by the transfer function

H(f)=j*(f)je "J wfD.. Thus, unlike (3-1) where the

Fourier transform of the system output is s1 (f)ei
2wfD ,

the output transform in this case is Ic(f)js 1(f)eJ 2,fD"1S
The'linear phase characteristic of such a system is

assured when the impulse response in symmetric about

TaD. For realisable systems, this implies that the

duration of the impulse response must be finite. Thus,

in a sense, we are estimating the midpoint of a symmetric

finite impulse response (FIR) filter depicted in

Figure 3-2a. Such an impulse response Is not necessarily

peaked at D (as for example in Figure 3-2b). In the

derivation which follows, then. a can (more generally) be

interpreted an a frequency dependent attenuation IM(f)j.

There are many applications in which it is of

interest to estimate the delay D. This chapter derives

an IL estimator and evaluates its variance. Chapter 4

compares the estimator with other similar techniques.

While the model of the physical phenomena, presumes

stationarity, the techniques to be developed herein may

be employed in slowly varying environments where the

characteristics of the signal and noise remain
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Figure 3-2 Syummetric Impulse Response for Two FIR
Linear Phase Filters
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stationary only for finit- observl iton Lime T. Furthe~r,

the delay D and attenuation a may alo change slowly.

The estimator Is therefore constrained to operate on

observations of a finite duration. Having estimated the

delay, an estimate of the bearing may be obtained by

mapping the delay estimate according to (Nuttall, Carter

and Montavon (1974))

arccos d * (3-2)

where E is the nominal speed of sound in the non-

dispersive medium and d is the sensor separation.

(See pp. 93-103 of Urick (1967) A rigorous derivation

for the IdL estimator of D using the mathematical model

(3-1a) and (3-1b) requires that signal and noise spectra

be given (that is, known). (See Hannan and Thomson

(1971).) When they are unknown, a heuristic procedure

of estimating these spectral characteristics is suggested.

The ML estimator of delay can be realized as a pair of

receiver prefilters followed by a.crosscorrelator. The

time argument at which the correlator achieves a maximum

is the delay estimate. Qualitatively, the role of the

prefilters is to weight the signal passed to the

correlator according to the strength of the coherence

function. This weighting turns out to be equivalent to

that proposed by Hannan and Thomson (1973) and undr 

simplifying assumptions to that proposed by MacDonald

and Schultheiss (1969),but apparently differs from the

results of Clay, Hinich and Shaman (1973). However, the

54



rL

T 5335

development presented here does not presume initially

that the estimator is a 0CC function. Rather. it is

shown that the ML estimate may be realized by prefiltering

and crosecorrelating the data xl(t) and x2 (t). Indeed,

other realizations of the ML procenxor are also posgible.

(See section 3C of this chapter.) For example, the data

can be appropriately filtered, summed, squared and

averaged in order to estimate the delay. This latter

processor follows directly from the derivation presented

here and is discussed fully in 3C.

To smk the model (3-1) mathematically tractable,

it is necessary to assume that s1 (t), nl(t) and n2 (t)

are Gaussian. Denote the Fourier coefficients of x1 (t)

as

Xi(k) I I T x (t)e'Jkt Adt, (3-3a)
0 1

where

-2: (3-3b)

Note that the linear transformation XI(k) t Gaussian

since xI(t) is Gaussian. In practice, the integral will

be replaced by a discrete Fourier transform (DFT) or

FFT. When the number of data points in each FFT is large

(as will usually be the case) then, by a central limit

theorem argument, Xik will tend toward being Gaussian

even if the xI(t) are not Gaussian.1 This presumption

1These observations were brought to the authors
attention by Dr. G. Vohnkern of the Naval Undersea Center,
San Diego, California.
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tis horne out by Benignus (1969b). Hence, the~

rpquirement that s 1(t), n 1(t) and n 2(t) be Gaussian

is not a strong requirement.

As the observation time T..,

T X, (fi) (k*

where Xisi the Fourier transform of x i(t). A more

e'mplete discussion on Fourier transforms and their

convergence is given in Davenport (1970), Jenkins and

Watts (1968), Koopmans (1974), Otnes and Enochson (1972),

Bendat and Piersol (1971) and Brillinger (1975). From

MacDonald and Schuitheiss (1969), it follows for T large

compared with IDI plus the correlation time of R sS T)

thatk-

Note that E(X i(k)] = E~xi(t)I -0, 1-1.2.

Now let the vector

X(k) - [x lk)3X2 k] T (3-5)

where denotes transpose. Then the covariance of X(k)

is

E (Ek)XIk] -E x X1(k)Xf(k) X 1(k)X3(k)1 (3-6)
x 2(k)Xf(k) X 2(k)XI(k)J
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T I G (kw ) G * l(k ]

( kkw t )

T Qx kA)

where Q x(w) is the spectral matrix of [x 1(t).Xc2 (t)]'

The vectors XWk) k--N.-N+l......N are, as a

consequence of (3-4), uncorr i at ed (Gatsia ;n (hence.

independent) random variables. MO re expIi ie it Iy, t he

pdf for X X-)X-.l,. (),given attenuation

a and delay D iu1

p$lIa,D) *h-exp - 1 ,(3-9)

where
N -1(w)(-0

1 -a X (k), w)Xk) 3-0
k--N

and h is a function of IQX (kw a)I (Van Trees (1968)).

Replacing TX i(k) by i (kw A), the Fourier transform of

x i(t), it follows from (3-10) that

N -- l 1 13il 1.
- E X (kw AQ (kw )X(kw) (311

The ML estimate of D (see, for example, Jenkins and Watts

(1968) or Van Trees (1968)) is the value of D which

maximizes p(Xla,D).

1More explicitly, since the density function depends%
on QPone could write p(Xica Q ). This notation obscures
the role of the delay but clarffies the need to know (or
estimate) signal and noise spectra. Further, if a-Ia(f)I
then the pdf is conditioned on knowing Ia(kw) k--N,
-N+1,. . .,N.
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In general, the parameter D affects both h and

Jin (3-9). However, for uncorrelated noise In (3-1),

h is independent of the delay.

For large T, (3-11) becomes

1 1 I fi*' (f)Qj'l(f)Z(f)df .(3-12)

From (3-6)-(3-8),

'a X x 2(f) Gx 1 (2)

Qx Gf x[G(f) G, x x )

Oxi1 M [/2Gz 1()-X 1  2 ( f)12 (3-x~). X 1 3a

C1i . -0 (f$ x1 (f)Gx (f} 1/f

where C12(f)3C 1 IX (t) whbich will exist provided

C12(I) 01; that is, x1(t) and z2(t) cannot be obtained

perfectly from one another by linear filtering

(Carter and Knapp (1975)), or equivalently for the model

(3-1) that observation noise is present.

When C ni 2(f-Gn n 2(f)-O

Mxx ( -O ff)+G Mf (3-14a)

O2x 2 )-o 2 G ala (f)+n n 2f M (3-14b)



TR 5335

0 x x(f)wMsaa (f) ai2vfD .(3-14r)

C 1 2 f-0 2 G aI M/,G I x1M x 2x 2 .(3-14d)

and It follows that

-a xI.(f)Q; (f)j(f)df-J 2+j 3

where

1 2M f txl j I2 I] I df (3-15b)

2 .Gx (f) G 22(f 1 - C 12 (r)

- 3 = f A(f)+A (I) df, (3-150)

0 M

XX1 2 2

In order to relate these results to Hannan and

Thomson (1973) and other. and interpret how to implement

the UL estimation technique note that for x ItM and

x 2(t) real, £ (f).A(-f). Then (3-15c) can be rewritten as

-13 A(f)df+ f A(-f)dfa2I A(f)df (3-16)

Letting TO (f (f)f)X M ;(f). (3-16)and (3-15d) can be

written as

C ~ 1 2 (f) wf

-J3=2T fO 3 f aQ x( ) ei2Mf df. (3-17)

Notice that the UL estimator for D will minimize

1 M 2+j31but the selection of D has no effect on J 2 *

59



Thus. D should maximize -j3. Equivalently, when

iI(f)i(f) is viewed as T times the estimated cross-

power spectrum, Taxix2(f). the UL estimator selects as

the extimate at delay the value of T at which

(UL ) W 1 C1 2 (f) . j 2 w f T

R Gy x (f)-I e df, (3-18a)

where
X1(fil(f)

.xix2(f)M T (3-18b)

achieves a peak. That is, the UL estimator selects as

the estimate of delay the value of T at which the GCC

A -% (t f)W (f)ej2' df (3-19)i ~ _ x22X x 2  .9

achieves a peak, where W (f)-1l(f)E1(f) is an appropriately

selected weighting function (Knapp and Carter (1976))

The ML estimator is equivalent to one proposed by Hannan

and Thomson (1973). The UL estimator can be achieved as

depicted in Figure 3-3 by shaping xl(t) with filter

HI(f) and x2 (t) with filter H2 (f) then crosscorrelating

the filter outputs and observing what value of delay

achieves a maximum. The estimator can also be achieved

in other forms. (See section C of this Chapter.) The

weighting proposed by Hannan and Thomson (1973) is

1 C12 (f) (3-20)

1 ( 1 - C12(f))

where (as required for x to exist) C12 (f) 0 1. Such
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weighting achieves the ML estimator. When lox x2(ml

and C1 2 (f) are known, thin is exactly the proper

watghLlng. An Important conaideration in estimator

design Is the available amount of a priori knowledge

of the signal and noise statistics. In many problems,

this information is negligible. For example, in passive

detection, unlike the usual communications problem,

the source spectrum is unknown or only known approximately.

Whop the terms in (3-20) are unknown, they can be

estimated via techniques of Carter, Knapp and Nuttall

(1973a&),which are summarized in appendix A and

prograu'ed in appendix C. Substituting estimated

weighting for true weighting t entirely a heuristic

procedure whereby the UL estimator can approximately

be achieved in practice. Such techniques have been

referred to as approximate ML (AML) techniques by Box

and Jenkins (1970) since they are not, truly speaking,

ML estimation techniques.

Since the estimation of delay may, in practice,

be governed by an AML rather than an ML technique, we

should not expect that more complex models will yield to

ML techniques without similar heuristic approximation.

Rather, the estimation of D with moving sources, for

example, will also require AML techniques and may

be even more prone to varying interpretations.
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38. Varianct' or (-ntrtti Time Delay E.timator

The croescorrelation rorm of the processor is

useful in ascertaining the statistical characteristics

of the delay estimate. For each of several different

trials a different estimate of delay might be obtained.

For example, when the true delay is about 5.0 seconds.

six typical trials are sketched in Figure 3-4. One

actual example case is given in appendix D. In

ascending orders, values of D are 4.5, 4.9, 5.0. 5.1,

5.3 and 5.7. For trial number 5. depicted on the

Figure 3-4, an estimate 4.9 is obtained. However,

there appear to be many ambiguous peaks in trial 5;

indeed if the noise had been slightly different, there

could have been a different delay estimate, such as:

4.1. 5.7, or 6.5; such an error would invnrease the

variation of the time delay estimate. The derivation of

variance of*D, which follows, does not account for errors

due to ambiguous peaks. It presumes that the estimated

delay is in the neighborhood of the correct delay and

not on a secondary peak.

A lower bound on the variance for any delay

estimator (which is not necessarily attainable) is given

by the Cramer-Rao bound

GA 1 -1 (3-21)D- EI 210 p(x C1.,T)

DT 
2

T=D
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Cramer.-Rao bounds are discuqlqed in Van Trees (196R)

and Sao@ and Melsa (1971). The only part of the log

pdf that depends on T. the hypothesnized delay, in

1of (3-17). That is.

EL 1n p (x ~ E(--r) (3-22)

If Gx x (f )-IG. (f)M I then since

E [G (f)]umOX x(f) , It follows that

E( 1)-f ej~f(r)C 12 (f) -df . (3-23)
V(~3) _ft *j -r-D) Ii

Hence, the minimum obtainable variance for de~lay

estimation is (Carter'and Knapp (1976a))

1-1

Minimum Var(;). [TJ.(2wf) 2 C 12(fM df J (3-24)
[-W 11 - C 1 2 ()

For the OCC processor with any weighting

Wg9( f)-H 1(f)HI(f) we will derive an expression for the

local variation of the delay estimator and show that

the ML weighting, (3-20), indeed achieves (3-24). The

determination of the variance of delay estimates closely

parallels a clever method of MacDonald and Schultheiss

(1969). Equivalent to the Var 6 -Var T IT*D (shown in

Figure 3-5) is the left to right variation of the zero

crossing of the derivative of the GCC function output

65
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with respcct to T (shown in Fig.ure 3-6). Typical mvan

output of the derivative of the correlator output. z,

Is plotted in Figure 3-5 together with similar cuirves

Cy above and below the mean. For a., small, so that

curves are approximately linear between D-afi and D+a 6.

the magnitude of the expected value of the slope of the

output at the true value of delay Is given by

E .1--1E ̂ ()a (3-25)a~x a- 2 9 
D

where a denotes standard deviation. Again using

1[x~)U4 E[RX, *(f t] Gxx(f). it follows with

Gxx~f)BI~xxf )Ie2wD ta

G3 1x 2 [Ig]x 2 gl ta

aT x 1x 2 J -'r 4 ~ lfE T-f a(2wf) 2 Wf (f)df.(3-26)

In order to solve (3-25) for a 206 It is also

necessary to solve for a z in Figure 3-6. The fundamental

problem is to find the variance of the random variable

z given by
T

z 0 I 0y1(t)y2(t )dt .(3-27a)

(For our particular problem we will later assume that

y1(t) In the output of a filter excited by xl(t*) and

Y2(t) Is the output of a filter excited by x2(t).)

The variance of z is given byI
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a 2 Z~ 1_2 (z,(3-27b)

where

zjzj 2 ifT yI(t)y2 (t )dt] 32c
0

- f T (Z yl( t )]dt (3-27d)
a

a-T YiY (0) (3-27s)

and

0 0T

Ivaluation of the fourth moment in (3-27f) can be achieved

under Gaussian assumptions. In particular, if yl(t)

and y2(t) are Jointly Gaussian (and stationary), then

I a21 0vT.[3 72 (0)+R 2 (t1 -t AR7 (t -t 2 )

+ 1YIY2( tl-t2 )3y2 yl(t -t 2)] dt Idt 2 .(3-27g)

Letting rt 1-t 2 and using (3-27b) and (3-27e), (3-27g)

becomes

Y(r+t 2 YMt 2)drdt2 ,(3-27h)

where

YTM 1 tc(0,T)
10 elsewhere

Intenrating (3-27h) with respect to t2 and manipulating

yields

a T f T [R7  (r)R 7 7 ()+R 7  (T)R 7 (T r1-+)d? 3-7i
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For large T (3-271)

03 2 & TfI(R 7 7 (?)R,7 ()+R M(tR (- dT. (3-27j)

By Parseval's Theorem

cz2a f 1 ll fG f+G2Y(f)Jdf (3-27k)

If y1(t) is the output of a filter HIi(f) cascaded with a

differentiator and y2(t) is the output of a filter H 2(r)

cascaded with a variable delay, then

G (f)l - IN I2 (2f2 G x1()(3-271)

G 7 7y(f) a InH2(f)1 2 G 2 (f2) (3-27m)

G (f).-H (f)H;(f)ei2wfT G (f). 32n

For T=D It follows, from(3-27k) - (.3-27n), since

W1 f-H (f)(f), that

Oz2I- TI 46V (f 2(1) (f)G x (fl-C 2(f)ldf.(3-27o)

'T- (wf)1 X1 1  2 2

Combining (3-25) through (3-27o) yields

2 2 f GM
a^0 (11 a (2 f)Gx 1 1 x2x2 (f)(-C 12 fI

D Tr m (3-28)

IT-D - (T)i / (2w f) 2 Gx1 .(f) W(f) df

-40 
12 1

which is valid for any W (fM. By substituting the

appropriate weighting function into (3-28) the standard

deviation of time delay estimates from each processor
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can be analytically evaluated.

Parenthetically, we note that the results (3-28)

with a particular weighting (3-20) can be related to

(20) of MacDonald and Schuitheiss (1969) as follows.

Dotfine the bearing to an acoustic source, similar to

(3-2), as

0 - arecos~~ (3-29)

where t~ Is the (nominal) speed of sound in the

nondispersive mdium. Consider the case where the

estimated D equals the true delay D plus a perturbation

n. By a Taylor series expansion it follows that

arccos[11 (D~v)Ia=rccosi-JDI+ A arccoos-rJ (6-D) (3-30)
dD-D

Thus the bearing error

eb arccos[ (D+n)J - arccos( .D) (3-31a)

(;-D)(3-31b)
dainO

and

[E(e 2(t))]* Var (-2

The term dumBO can be viewed as the effective array

length (sensor separation) physically steered at the

source. Assuming equal noise spectra, combining (3-32)

with (3-28) and (3-20), and introducing a change of

variables yields an expression which agrees with (20)

of MacDonald and Schuitheiss (1969) when e is interpreted
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7

as source (not wavefront) angle. Combining (3-28) and

(3-32) suggests that In order to reduce to variance of

the4 bearing estimate the observation period and the

senof)r separation should be made as large as possible.

(In practic*, there will undoubtedly be limitations on

both sensor separation and observation time.) Further,

since (3-32) depends on the effective array length

physically steered toward the source, this suggests the

desirability of sensor mobility to maximize the term

dain8.

It has been shown that the variance of the time

delay estimate in the neighborhood of the true delay,

for general weighting function VI (f) is given by

V 9 M Igf~ 2(21f)20x IX (f)G x 2 (f) -C 12 (f)]df

VrD T[f"(2wf )2 jGx( W (f) d] 2 (3-33a)

which for real processes may also be written

Va 9 Mjf~ G 1 1(f)Gx2 22 fM[-C 12 (f] f 2df (3-33b)
2

2iT jfG~~f (f)f2 2
o1 T flxx()dfj

Notice that a scale factor change in W (f) doe~s not

change the variance of the delay estimator.

The variance of the ML processor is

VarM D -(2T f'(2,f) C12 M()/(l-C 12(fMldf) (334
0
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which is the Cramer-Rao lower bound (3-24). It should be

reemphasized that (3-33) and (3-34) evaluate the local

variation of the time delay estimate and thus do not

account tor ambiguous peaks which may arise when the

averaging time is not large enough for the given signal

and noise characteristics. Indeed, when T is not

sufficiently large, local variation may be a poor

indicator of system performance and the envelope of the

ambiguous peaks must be considered (p. 40 of MacDonald

and Schultheiss (1969) and p. 41 of Hamon and Hannan

(1974) Further. (3-33) and (3-34) predict system

performance when signal and noise spectral characteristics

are known. For sufficiently large T, these spectra can

bo estimated accurately. However, in general, (3-33)

and (3-34) must be modified to account for estimation

errors; alternatively, system performance can be

evaluated by computer simulation. Empirical verification

of expressions for variance has not been undertaken by

simulation, because to do so without special purpose

correlator hardware would be computatlonally prohibitive.

For example, for a given 0 (f), Gnln(f), G n n2(),

a, and averaging time T, an estimated GCC function can

be computed, from which only one number (the delay

lThese observations were brought to the author's
attention by C. Stradling and R. Trueblood of the Naval
Undersea Center, San Diego, California.
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estimate) can be extracted. To empirically evaluate

the statistics of the delay estimate (which would be

valid only for these particular signal and noise spectra)

many such trials would need to be conducted. We have

conducted one such trial (with T large) and verified

that useful delay estimates can be obtained by inserting

estimates j xM(f)I and C12 (f) in place of the true

values in (3-20). This might have been expected since

the estimated optimum weighting will converge to the

true weighting as T--n. (The statistics of the MSC

estimates are given in appendix B.) In practice, T

may be limited by the stationarity properties of the

data, and (3-34) may be an overly optimistic prediction

of system performance when signal and noise spectra are

unknown.

With these qualifications in mind, consider the

following example of computing the variance of the ML

time delay estimate. Let

C12(f) - Cfc(0,B)

0, otherwise

Then

Varm E (3-35)

Sw '

The strong dependence of the estimator variation to the

cuocoherence Is Illustrated in a plot of L--C essCi
C

Figure 3-7. Note since
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3

I-c
C

C

Figure 3-7 Variance of Delay Estimate as a Functio~n
of Coherence for Fixed B and T
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IC 2+. (3-36)y~nCI1C+~C2...

that for C<<1, (3-36) is

C a (3-37)C

But for C-1-A, where A<<I, then

C . 1-A .I~ - 1Ia i -( -8
= T -6 A (3-38)

An approximate comparison of C-0.01 with C-0.99 shows

the variance changed not by a factor of 100 to 1 but

10.000 to 1. The implication is that weakly coherent

signals do not contribute much to reducing the variance

of the delay estimate. That is not entirely so but is

roughly correct. For example, high frequency, low

coherent power may be important. A more complete

discussion of the variance of several proposed time

delay estimators is given in Chapter 4. Prior to

Chapter 4, we will discuss other realizations of the

UL delay estimator.

3C. Other Realizations of the ML Estimator

This section of Chapter 3 will present four methods

for implementing the UL estimator for delay. One (and

only) of the methods, the one considered to be most

promising, has been programmed.(See appendix C.) The

program presumes that signal and noise waveforms are

real and that their statistics are unknown; hence the

program uses appropriate estimates in lieu of known

76

omoot



TR 5335

values, when forming the weighting function.

The first realization which comes to mind t a

bank of allowable delays as depicted In Figure 3-R.

lach data waveform x1 (t) and x2 (t) Is filterd by Hl(f)

and R2 (t), respectively. The output of R2(f) 's

delayed for several reasonable values of delay depending

on the resolution desired, a priori knowledge and

processing cost allowed. Each delayed output is multiplied

with the output of Hj(f). After integration for T seconds,

the delay that yields the maximum award is the estimate

of delay.

The second method Is to realize that the bank of

delays in Figure 3-8 corresponds to a particular method

for computing the 0CC function. Indeed we need not be

particular about the details of how the 0CC function is

estimated so long as it is estimated "accurately."

The second method uses the overlapped FMT method

presented by Carter, Knapp, and Nuttall (1973a) to

compute the estimated cross spectrum and USC. The

estimated cross spectrum is appropriately weighted and

inverse transformed via an FMT to obtain the estimated

GCC function. The delay where the GCC peaks is the

estimate of delay. One advantage to methods 1 and 2 is

that by computing the crossorrelation for a large

range of delays the presence of more than one delay

(acoustic source) can be observed. There are other

advantages, too; in the 0CC method uncorrelated cross

77
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terms vanish and there is no unknown residual bias to

account for when establishing thresholds (other than

the type discussed in appendix B).

If we desire to use a closed loop control scheme to

automatically adjust the delay estimate D, we can

instrument the estimator with a derivative in one

channel much like our discussion of the variance of the
1r

estimator. When we are in the neighborhood of the

correct delay, the output in Figure 3-9 should be

approximately zero. Any difference from zero (that is,

error) is fed back, perhaps smoothed and scaled, and

used to adjust the delay estimate in order to drive the

system output to zero. For estimating more than one

delay (acoustic source) with this realization, more

than one variable delay is required. It should be

noted as pointed out by Kochenburger (1972) that

differentiation is a "noisy" process which should be

avoided. However, the filter 1 (f) and the integrator

in Figure 3-9 may reduce the adverse effect of this-

realization.

The final realization to be discussed is the

method of Carter and Knapp (1976a). In this method

we re-examine our derivation in section 3A. In

1This idea was brought to the author's attention
by J. P. lanniello of the Naval Underwater Systems
Center, New London, Connecticut.
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particular, the spectral density matrix (3-6), ror

models Ilke (3-1) which give rime to spectral densitieR

given by (3-14), can be expronned (suppressing the f

dependence) as

% ayGo VV', (3-39)

whore the steering vector

- Ii~aoej2hfDJ (3-40)

and, for uncorrelated noise.,

a nd - [:.l:gj (3-41)

ad(for any given f) 0* asIs a scalar. The complete

award function to be mazimised (3-15) requires knowledge

of Q~. The Inverse of (3-39) Is given by Knapp (1966)

as~- -; 1 - a* ~ 1 V (3-42)

For uncorrelated noises Q does not depend on D;

therefore, the total award is maximized by maximizing

* -~;
m ~~j~df, (3-43)

where the 1x2 vector filter

-11101221 %IV(344
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By Parxovl'x The~orem, (3-41) can be Implemented

by filtering x1 (t) with filter H1 (f) and filtering

x2 (t) with filter 12(f), then summing, squaring, and

averaging.

It we separate from H2 (f) that portion dealing

with the hypothesized delay we can realize the delay

estimator as shown in Figure 3-10. Moreover, note that

-n'V n-- G (3-45a)

G 
e- 

2 2'

- (3-45b)

Gn2n2 2x1

Further,

1 G en0* -+0 lae-j2wfD 1 0 1

1 j2wfD
0

2 2 (3-46a)

anGeG [ 'eJ f n) I (1-46h)

ale j 2wfD,
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Thus, the estimator can be realized as shown in

Figure 3-11. For low SNR, that is, when

am c"1 and QG(f)4C

1.0aGo VQU- 1V a (3-47)

then the filter following the suimmation in Figure 3-11

is approximately a unity-gain zero-phase all-pass

network. Note In Figure 3-11 that the form of the

filters at each sensor depends on the signal and noise

spectrum. In particular the estimation of D presented

here requires filtering in exactly the fashion as the

detection of a signal arrival presented by Knapp (1966).

These low SNR filter forms are co mmo nly referred to as

Ickart filters after early work done in the -detection

area by Eckart (1952).
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CHAPTER 4

COMPARISON OF THE ML EST IMATOR TOI TR PROPOSED
8UDOPTINUM PROCESSORS

The objective of Chapter 4 in to compare the ML

time delay estimator with several other processors

that have been proposed. From Chapter 3, we know that

the ML processor will have the minimum local variation.

Also, the previously derived expressions for the local

variation of any correlation processor can be used to

analytically compare other intuitively appealing

correlation processors. Additionally, the effect of

erroneously identifying the signal spectrum will be

investigated, since that will cause the selection of an

erroneous weighting function.

The first section of this chapter presents the

motivation for the use of crosscorrelation processors.

The second section compares several such processors,

and the third section considers the interrelationships

of these various processors.

4A. Motivation for Crosscorrelation Processors

For the model

x1 (t) - 81 (t)+nl(t) (4-1a)

X2 (t) = Qs1(t+D)+n 2 (t) (4-1b)

one common method of estimating the time delay D is to
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compute the crosscorrelation function

R x x()d~x(t)x2 (t-r)J , (4-2)

whore E denotes expectation. The argument T that

maximizes (4-2) provides an estimate of delay. For

models of the form of (4-1). the crosecorrelation of

x 1(M and x 2(t) is

Rx1x2(r)mal**1a (r-D)+R (1) n * (4-3)

The Fourier transform of (4-3) given the cross-power

spectrum

If ni(t) and n2(t) are uncorrelated ('Gal 2Mf)) the

cross-power spectrum between x1(t) aud x2(t) is a scaled

signal power spectrum time a complex exponential. Since

multiplication in one domain corresponds to convolution

In the transformed domain (see, for example, Oppenheim

and Schafer (1975)), it follows for G nn f)WO that

One interpretation of (4-5) is that the delta

function has been spread or "smeared" by the Fourier

transform of the signal spectrum. If sl(t) is a white

noise source, then Its Fourier transform Is a delta

function and no spreading takes place. An Important
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property of autocorrelation functions is that I
Rsit (T)IRs18 (0). Equality will hold ror cortain

1 for periodic functions (see, for example, Davenport

(1970), pp. 323-326). However, for most practical

applications, equality does not hold for Tf0, and the

true crosscorrelation (4-5) will peak at D regardless of

whether or not it Is spread out. The spreading simply

acts to broaden the peak.

In fact, more generally, when x1 (t) and x2 (t)

have been filtered by H1 and H2 , respectively, then the

croso-power spectrum between the filter outputs is

given on p. 399 Davenport (1970) as

0 yy2 (f)Hl(f)h(f)Gx x2 (f) (4-6)

Therefore, the OCC between x1 (t) and x2(t) is

RX2(T)-$ W MG M2 e j2wf df ,(4-7a)

where ...

W (f)m)H;(f)  (4-7b)-

denotes the general frequency weighting. The particular

weighting selected Is denoted by a change in the sub-

script g.

For all of the proposed weightings which we will

investigate, W(f)=W*(f) and W(f)-W(-f); that is,W(f) is

real and even. These properties are also held by the

minimum variance ML weighting.
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To distinguish which of the proposed general

weightings has been applied, we denote

0 (f ).(;g (f)

and thus

G f~ Yl2Ma (f)(008G1 1 fejwD+ () (4-8b)

When the noises are incoherent, taking the Fourier

transform of (4-Sb) yields

Rg (r)mR,(-r)@0QR.s (T)Oe (r-D) ,(4-9)

where R (Y), the inverse Fourier transform of W (f), is

even. This being the case, the true GCC will also peak

at D regardless of the specific weighting. Thus one

might be puzzled as to why any weighting is needed.

Indeed, the crossoorrelation function alone is a useful

technique for estimating time delay.

Two practical reasons why prefiltering is-desirable

are evident. If the noise is coherent, for example, if

G n (f )8G a(f)eij2wfD2 (4-10)

Rg (T)-R (T) 0 (aR* (T) 0 8(9,-D)

R 2 (T) 0 4(w-D 2)1 .(4-11)

It is clear, from (4-11), that the convolutions by

Rs8(T) and R s8(Tr) will produce two peaks which may
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be spread into one another. The convolution by Rww(T)

can aid to undo this smearing. For a single delay

broadening of the delay peak may not be a serious

problem. However, when the signal has multiple delays,

the true crosacorrelation is given by

R x ( M-R ar) 0 ai6(T-Di) . (4-12)
31 2  sii i

In this came also, the convolution with Rsa(M can

spread one delta function into another, thereby making

it impossible to distinguish peaks or delay times. Under

ideal conditions where Vf$x3, (f)aGx(f), (f) should

be chosen to ensure large sharp peaks in R ylY2(T) rather

than a broad one (see Figure 4-1), since this will ensure

good time delay resolution.

There is a soond important reason why prefiltering

in desirable. In practice, only an estimate G (f)

of GX X (f) can be obtained from finite observations of

xM(t) and x2(t). Thus we can. never exactly obtain the

crosscorrelation from a limited amount of time data.

Because of the finite observation time, then, RxxT)

can only be estimated. For example, for real ergodic

processes an estimate of the crosecorrelation is given

on p. 327 of Papoulis (1965), as:

1 T
R )d90 (4-13)
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BROAD ESTIMATE

SHARP ESTIMATE

D

Figure 4-1 Broad and Sharp Estimates of Delay for
Infinite Averaging
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where T represents the observation interval. For limited

duration data records, the accuracy of the delay estimate,

D, can be Improved by prefiltering x1 (t) and x2 (t)

prior to the integration in (4-13). In practice we can

compute (4-13) by weighting the estimated cross spectrum

and computing an inverse Fourier transform to obtain an

estimated 0CC as follows:

(g) (T)-$ W (f)O (f)e 2 ftdf. (4-14)
1R 2 _ X1 X2

V (f) now serves to improve the estimate of Rx x2(2)

used to estimate time delay.

In practice, depending on the particular form of

Wg(f) and the a priori information, it may also be

necessary to estimate Wg(f). For example, when the role

of the prefilters is to accentuate the signal passed to

the correlator at those frequencies at which the StR

Is highest, then V (f) can be expected to be a function
of signal and noise spectra which must either be known

a priori or estimated.

Hence, we see that the true crosscorrelation

function, for the model (4-1), is sufficient to

determine the correct time delay; but for practical

(finite data) considerations it is desirable to prefilter

xI(t) and x2 (t) prior to crosecorrelation. Indeed, the

problem of selecting V (f) to optimize certain performance

criteria Is not new and has been studied by several

investigators. (See, for example, Akaiko and Yamanouchi
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(1963), Bangs (1971), and Hannan and Thomson (1971).)

Our intuitive discussion of sharply peaked

estimators may suggest certain types of weighting.

Eowever, sharp peaks are more sensitive to errors

introduced by finite observation time, particularly in

cases of low N . Thus, as with other spectral

estimation problems, the choice of V (f) is a compromise
g

between good resolution and stability. In the subsequent

section we compare several promising weighting functions

proposed previously in the literature.

4B. Comparison of Proposed Processors

The preceding discussion provides background for

the role that W(f) is to play. Now the six versions

of the generalized croescorrelation function listed in

Table 4-1 will be examined Individually. In the process

of comparing the processors In Table 4-1, there will be

a tendency to want to look at some simple cases, for

example, equal white noises and strong (or weak) white

noise signals. In this regard, it can be shown for the

case where Gn1n(f)-Gn2n 2(f)=Gnn(f) is equal to a

constant times 0 ala(f) (whether or not the signal is

white) that five of the processors in Table 4-1 provide

for the identical frequency weighting, except for a

constant. (The croescorrelation processor (W(f)-l,Vf)

is a delta function smeared out by the Fourier transform

of the signal (noise) power spectrum.) In these cases,
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Table 4-1. Proposed Processors

WeightI
Processor Name f) (H* )

1. Roth Impulse Response 1/G~ (f)

2. Smoothed Coherence l/ ()Gxf
Transform (SCOT) ..

3. Phase Transform (PHAT) I/ I x 1 )2

4. Crosorrelation1

S. Maximum Likelihood C Mf___
(ML) 1
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the delay estimate from each of these five processors

will have the same variance. Hence, a complete comparison

can only be made when detailed signal and noise character-

istics are provided. Such information is largely

dependent on the particular application and a detailed

comparison is therefore beyond the intent of this work.

For underwater acoustic applications, characteristics

of the radiated and self noise of ships, submarines, and

torpedoes and the noise background of the sea are given

by Urick (17). For more fundamental signal and noise

characteristics, it is useful to provide a brief example

of using (3-33) and (3-34). Suppose the example

corresponds to (4-1) where a-1; Gs(f)-1, Vfe(-B,B)

otherwise Gas(fM-0; n1n (f)G 02'2(f)Wl,Vf. It follows

from (2-1) and (2-2) that

G 2f)a-sf .(4-15)

Sas(f) +Gnnl1 (f)I]G as(f)+Gn2n2 (f)]

Hence, C12f) 0.25 V ¥f (-B, B)

C 2() ,1 otherwise.

Other values are given in Table 4-2.

4M1. Roth Processor

The weighting proposed by Roth (1971)

Gx1x(f) (4-16)

where the subscript R is to distinguish the choice of

95I
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Table 4.2. Comparlson Case Data

fc(OB) fc(+B,H)

0 (f)1 1 0

"o1'2 1~ 1 0

C12(f) 0.25 0
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I(f), yields1

a(R) (rOmI OkIX 2 M j2lfT dt (4-17)%I X2  -0 xIxi(

Equation (4-17) estimates the impulse response of the

optimum linear (Iener-Nopf) filter,

%(f 0 x1 2 (418

which "best" approximates the mapping of x 2(t) to xl(t)

(see. for example, Van Trees (1968), Carter and Knapp

(1975) and the discussion of Theorem 2-3 ). If n1(t)fIO.

as is generally the case for (4-1), then

a0 (f-G al ). af M+ * (4-19)

and Ideally

(R) 50(T D 0(f)aai Mj w r f ( - 0
R1 2 -0 [G aa(f)4G nn (f T

Therefore, except when Gn (f) equals any constant

(including zero) times G a afM, the delta function will

again be spread out. The Roth processor has the

desirable effet of suppressing those frequency regions

lAs discussed earlier, W(f) may have to be estimated
for this processor and those which follow, because of a
lack of a priori Information. In this c~se, (4-16) may
require that 0 x (f) be replaced with Gxx()
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where Ona (f) in large and ax 2()is therefore

more likely to be io error.

From (3-33),

0_______I___x___1_ (4-21)
Var(b)- 0~~

0 1 2 12

In the example of Table 4-2 this becomes

B3 H2
- ' f2  f df+15a f ldf (4-22a)

,2 T[If~241df]2

3 4 34 3
in -P- (4-22b)

w12TBIe

when 3-H (4-22b) agrees with (3-35) as expected; but

if H Is large In comparison with B, the variance of the

Roth processor will be large in comparison to the

Crame'r-Rao bound (3-24).

4M. Smoothed Coherence Transform

Errors In IG (f) may be due to frequency bands

where 0 nn(f) Is large, as well as bands where
n2n2

G 0 (f) Is large. One is therefore uncertain whether

to form W ~)lGx or W R(f)wl/G X2X 2M; hence,
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the smoothed coherence transform (SCOT) proposed by1

Carter, Nuttall, and Cable (1973) yields

W(f) - l/ 4G a (4-23)

This weighting gives the S COT

R ) -f Y Mtei2 fdf ,(4-24)

where the coherence estimate2

8 X (f)
A x
X1 X 2  (f)G (42M

x ax 1  xx

For H f-/adN2ff)in1 the

SCOT can be interpreted as prewhitening filters followed

by a crosscorrelation. When 0 fM-G~ (f), the

SCOT is equivalent to the Roth processor. If n 1 (tWfO

and n (t)fO, the SCOT exhibits the same. spreading as

the Roth processor.

iThe SCOT was originally proposed by G.C.Carter,
A.B. Nuttall, and P.G.Cable in 1972 and successfully
applied to actual data by G.C.Carter and P.G.Cable in
1972 and Brady (1973) for part of his Ph.D. work. .y.A

2more standard coherence estimate is formed
when the autospectra must also be estimated, as is
usually the case. (See Carter, Knapp and Nuttall (1973a).)
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From (3-33)

f* 1[1-C(f)]df
Var (D )- -2(4-26)

ft2T[;f2f3J

Note as CMf-1, the numerator becomes small and the

denominator becomes large. For our example, since

Oxi 1 -G ~x2(f)the SCOT has the same variance as

the Roth processor.

MB. Phase Transform

To eliminate the spreading evident above, the

phase transform (PEAT) uses the weighting1

V1M, 1(4-27)

which yields 
Gx

.(p) x 1(f)jw- (-8
R xix2 x (Ti 12 ilMdf (-8

For the model.(4-1) with uncorrelated noise (that is,

Gn n 2 M-O),

G Gxix 2fMlI MG 'Sill M (4-29)

3The PEAT was originally suggested by G.C.Carter,
A.B. Nuttall and P.O. Cable in 1972.
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Ideally, when 0 fM-G x(f),

OX 1 2M eof)OJwf (4-30)

has unit magnitude and

(r)I 6t-D)2 (4-31)

The PEAT was developed purely an an ad hoc

technique. Notice that, for models of the form of

(4-1) with uncorrelated noises, the PEAT (4-28),

ideally, does not suffer the spreading that other

processors do.

From (3-33),

(p) /:f2 1 (1-C) df
Var(b) - f (4-32)

As C-1, (1C 0, so the processor will behave well

that is, low variance). However, as expected, as C-0

the variance grows without bound. For the example in

Table 4-2, assuming the weighting Is zero for f>H

B 2 3H 2 1- f

Var(D )- 0 1+ ~ 3(-3

8: 2 T faf 2 df]2

Except when H-B, this processor will suffer a complete

breakdown an C tends to zero. When HinD, we obtain the

same variance as the Roth and SCOT processors for then
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(as indicated earlier) G i (f)-G n 2(f)-G 8181(f) and

all processors behave equally well. For models of the

form of (4-1). the poor behavior of the PEAT suggests

that 1(f should not be inversely proportional to

signal power. The croascorrelator is one method of--

avoiding the application of weight Inverse to signal

characteristics. Two other processors in Table 4-1

also assign weights or filtering proportionate to SNR:

the Eckart filter (Eckart (1952)) and the UL estimator

or processor of Hannan and Thomson (1973). We now

examine these three processors in depth.

454. Crosscorrelat ion

The variance of the delay estimate from the

erosacorrelation processor is

XC _ ff 2 GxZxGX2x l...C)df (4-34)
Var(D)in STr2T [;:f2IG 1x x2Ijdf] 2

For the example came In Table 4-2, (4-34) yields

XC A r f .4 .tf+f f ld!
Var(D) 0 o B 71(4-35a)

Sw of .ldf]

B3+ H 3 B3

'S I (4-35b)
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For H=B, (4-35b) agrees with earlier results. The

crosscorrelptir actually performs better than either

the SCOT or the Roth processor for the particular

example came in Table 4-2. In general, one can expect

to find cases for particular spectra where the cross-

correlator performs worse than the SCOT or Roth processors.

435. Eckart Filter

The Eckart filter derives its name from work

in this area done by Eckart (1952). Derivations in

Knapp (1966), and Nuttall and Hyde (1969), are outlined

here briefly for completeness. The Eckart filter

maximizes the deflection criterion, namely, the ratio

of the change in mean correlator output due to signal

present to the standard deviation of correlator output

due to noise alone. For long averaging time T, the

deflection has been shown to be

L[ 1fl(f)H;(f)Gl s(f)df

( uf)~ H 2(f) G n n(f)G nnafMdf

where L is a constant proportional to T, and G a8(f)

is the cross-power spectrum between s1 (t) and s2 (t),

For the model (4-1) G a a(f)caG 5 aa(f)exp(j2wfD).

Application of Schwartz's inequality indicates that

Hl(f)H*(f)-WE(f)e j 2wfD (4-37)
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maximizes df where

1 1 (t) - aG alGa 1f(f) (4-38)

notice that the weighting (4-38), referred to

as the Zokart filter, possesses some of the qualities

of the 3COT. In particular, it act. to suppress

frequency bands of high noise, as does the SCOT.. Also

note that the Ickart filter unlike the PRAT attaches

zero weight to bands where G.f8)-O. Tn practice,

the Zckart filter requires knowledge or estimation of

the signal and noise spectra. For (4-1), when a-1 this

can be accomplished by letting

(4-39)

The variance of the time delay estimate using Eckart

filtering is

G 2

I~ a iTxx G (1C)df

0a(D - 0 'ni n1 n2P 12 2 (4-40)
V ar D) - W 2 r Mf 2 G x x I G a 'd

For the example case in Table 4-2,

Var(D)- o 4 df] (4-41a) -

BW2{ 0 f2 d]
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1 1b)

S2TB3

that is, for this example the Eckart filter aehiev'

the Cramer-Rao lower bound (3-24). In general this

will not always occur. In the next section we spe

that (4-41b) is the variance achieved by the ML

processor. This might be expected since both tho

Eckart and ML processors pass nothing in the signal

frequency band (B,H) and both have constant weighting

over the band (0,B). Actually, the ML estimator is

closely related to the Eckart filter, as will be seen

tn section 4C of this chapter.

4B6. Maximum Likelihood Processor

As shown in Chapter 3 the ML processor always

has minimum variance. For the Table 4-2 example, the

correct weighting from (3-20) is W(f)=l/3 for fc(-BB)

and zero otherwise. Now from (3-34)

-1

Var L(D) -[ Tw2B3  . (4-42)

Thus, the minimum variance depends on a time bandwidth

product, TB multiplied by the bandwidth squared, B2 .

Suppose an error had been made identifying the frequency

band of the signal. Then if we presumed that the

weighting was W(f)=I/3 for, say.fc(-LB,aB), in lieu of

f (-B,B), we would obtain from (3-33)
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Var(d) -. i-J T2B3] (4-43)

which reduces to (4-42) when &-I. For example, in 1.hit-

case, a 10 percent error (that is, a-li1) leads to moure

than an 11 percent increase in variance. If adl then

(3-33) becomes

1 2!
Var(D) - -- L v TB3] (4-44)

a

which agrees with (4-42) when a-i. Thus a 10 percent

error (a-0O.9) leads to an increase In variances of

37 percent. Thus our example suggests it may be more

desirable to let in extra noise than to omit signal

power. Finally, if our error led to processing the band

fc(aSDB) and fc(-B,-aB), we would obtain

~~ 3] -1
Var(D) -- [IT:R B (4-45)

which agrees with (4-42) when a-0.

The ratio of variances (4-45) to (4-42) for

a1 3s
1 l~a3(4-46)

1-a

If we again err by 10 percent (i.e., a-0.1), then (4-46)

yields 1.001 or little change in the variance. (This

ierror la at lower frequencies in the signal h)and and

a. (3-33) suggests, proper weighting is most critical

at higher frequencies.) Thus, for this example,
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depending on how we make a 10 percent error in frcqunc-

band selection, we can have anywhere from 0.1 percent

to a 37.0 percent increase in variance of the time

delay estimate.

4C. Interpretation of Relationship Between
Correlation Processors

For the case where ul.

2

1 G8 8 (f)8

(fs 
a) f

)

11

S (f)p (fI (
S n2 n 2  81(4-47b)0 i(f)4 nn(

(f)r (4-47b)

1+ i + a
nrry

which agrees with equation (28) of MacDonald and

Schultheiss (1969) if In (4-47b) 0 nln (f)-On2n2 f 1

For low SNR,
O ~(f) Gnl (f)

1 << and a1 <<1
nlGn2n2

it follows that

fOss 1(f)

GnNL''; G n (Zjn n WEMf) (4-48)

1Notice that agreement requires awl.
107
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Lhat Is, for rn-i and low SNR, the ML processor is

identical to the Zckart filter. Similarly, for low

SN!"

V*(GM .I a n (f) (-9

Therefore, if rn-i,

WML(f) a W 3(f)* (4-50a)

Furthermore, for Gn (f)-G n2a2(f)-G n(t),

.2

W ~ 1 f (f)u.W1M W (f). (4-50b)

Thus, under low $MR approximations with an-i, both the

Zokart and ML prefilters can be interpreted either as

SCOT prewbitening filters with additional SNR weighting

or PIAT prewbitening filters with additional SNR squared

weighting.

We can rewrite (4-47) an

1 1 2 2(4-51)

+1 nn nI nn n 1 n2 n2 fn~n n 2n 2

for uniformly high SNR,
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i. - 1m
Onnn2 U(f)MGn n +Gnn (4-52)2s2s.4-0 2mm''

that In, giving the weighting characteristics similar

to the SCOT at low SNR. Note that, like the ML processor,

the PEAT computes a type of transformation on

Gx 1x(f) 
G M exp J(f) . (4-53)

However, the ML processor, like the SCOT, weights the

phase according to the strength of the coherence. From

p. 379 of Jenkins and Watts (1968), comparing (B-22)

with equation (9.2.19) and (9.2.20) of Jenkins and Watts

(1968) the variance of the phase estimates is given by

Var ;(f)A L(I..!) 1 (4-54)

where N Is the number of independent FFTs used to

estimate phase. Notice as C-1, Var -.0. Thus,

(ML) a r

R- 1 eX( m - df•. (4-55)

Comparison of (4-55) with (4-53) reveals that the ML

estimator is the PEAT Inversely weighted according to

the variability of the phase estimates.

The ML processor has been compared with five

other candidate processors to demonstrate the inter-

relation of all six estimation techniques. The

derivation of the ML delay estimator (in Chapter 3),
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together with its relation to various ad hoc techniques

of intuitive appeal (in this chapter), suggests the

practical significance of ML processing for estimation

of time delay and, thence, bearing. The remainder of

this thesis deals with extensions of the ML processor

to more complex models and a discussion of the results

and suggestions for future work.

110
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CHAPTER 5

MORE COMPLEX MODELS
.

Chapter 3 answered, for a simple model, the

fundamental question of this thesis: What is the

"best" method of estimating time delay" Chapter 4

compared this method with several other candidate

-processors. Chapter 5 considers three conceptually

straightforward extensions of the problem considered

in Chapter 3: (1) multiple source models, (2) moving

source models, and (3) multiple sensor models. The

"solution" to these problems is more difficult than

the problem of estimating a single time delay for a

stationary source. For example, in the multiple source

and multiple sensor models, there is more than one

delay to be estimated. Indeed, if we treated multiple

sources and multiple sensors together, we would need to

estimate a parameter vector for each source, corres-

ponding to the (relative) delays between that source

and each sensor; thus, a (nonequare) matrix of delays

(comprised of a parameter vector for each source)

would need to be estimated, Finally, it in necessary,

in effect, to estimate the motion of each source so as

to be able to Doppler correct the received signals

prior to crosscorrelation. Failure to apply some sort

11 il
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of Doppler.correction will cause the received signals

to be essentially uncorrelated even if a common (but

frequency shifted) signal i present.

Both notationally and analytically, the methods

applied to estimate the unknown parameters become more

complex than the methods in Chapter 3. Yet even in

Chapter 3 where a "solution" for the ML estimate of

time delay was possible, we noted that, in practice,

it would be necessary'to resort to an AML estimation

technique; for more complex models there is no reason

to expect that the solution will become simpler; indeed,

in this chapter (especially with regard to moving

sources), we appeal more to approximate and ad hoc

techniques based on the ideas of Chapter 3 than tn

rigorous methodologies. The reasons for this approach

are apparent in section B and have to do with the

nonstationarities introduced by the source motion.

5A. Multiple Source Models

The simplest multiple source model is a two

source case where receiving sensors are physically

steered at one source and the second source acts as an

interference. Such a model is depicted in Figure 5-1

(Carter and Knapp (1975)). Mathematically,

xi(t) M- l(t)+s 2 (t)+nl(t) (5-1a)

and

x2 (t) - Sl(t)+s 2 (t-D)+n 2 (t) (5-1b)
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(The effect of an interfering source on detection is

considered by Schuitheiss (1968).) The problem is to

estimate the parameter D. In effect a Mt accounts for

correlated nois Insofar as estimation of D is concerned.

When s1 t ad s2(t) are stationary uncorrelated

signals with power spectra G5 Bif1) and G 2a2(f) and

when ni(t) and n2(t) are stationary uncorrelated noises

with the same power spectrum G n (f), It has been shown

by Carter and Knapp (1975) that

T X 2 (M)4 1+ 81 a1 G 8.1 aD 1 (f)*G 8292(f)+Gnn(f)

(5-2)

In the special case when G (f-O and G (f)inG Mf

1 C- jl e 2 fD imewfowfD (5-3)

and

C (f)mcos 2 wfD - 1 (1+cos2rfD). (5-4)

Because of the sinusoidal oscillation between 0 and 1

of C x x(f), the Fourier tran~sform of (5-3) will exhibit

a peak at the value of time delay. This suggests the

usefulness of computing the Fourier transform of the

coherence or SCOT (Carter, Nuttall andt Cable (1973)).

A more general, multiple source, two sensor model is

x1(t) -E 8 1(t)+n1(t) (5-5a)
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The limit on the m depends on the number of sources.

Sinie each source will be presumed to be independent of

the others, the sources will be mutually uncorrelated.

For the general two source case depicted as a multi4nput,

multkoutput system in Figure 5-2, it follows that

xl(t) *1 (t)+s2 (t)+nl(t) (5-6a)

x2 (t) asa(t+D1 )+*2s2 (t+D2 )+n2 (t) (5-6b)

and therefore

Ox x1 (t) a Gsl (f)+Gss(f)+Gnin1(f) 
(5-7a)

G2x 2(f) - ai 2Gs1 s1(f)u+2
2 0ss2(f)+Gnn2 C) (5-7b)

and

OxiCt) ass1 (f)ej'Jwfl (5-7c)

+ a20 8 (f)eJ 2 wfD2

40 sn2t)

However, we can accommodate coherent noise through the

inclusion of additional sources so that without loss of

generality n(t) for all frequencies. From the

two-source model with incoherent noise, we generalize that

O) ( -G n(f)Z Mf- (a)

zX022 2 1 "i-

and

OX f) EGla (f)e-JwDi . (5-8c)

112 i 1 i
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In the ML estimation procedure earlier the determinant

of Qx could be ignored since it did not depend on D.

Now, however, for the two-source model, we see

(suppressing f) that

0 i 0 0 . GG i-j2fD -2 2 D

I1 CIO lia2G 822 + , x2x2 (5-9a)

does depend on (D1D2 ). For example, even when

On -n M Onn , *a ..ainl and 0G811=G282I-Gs8

IQI.( 2_0.+ - (e -jfDl+e- ,fD,)(.+eij2,,I .+2wtD2 )

(5-9b)

1+40 .2 20 0 4O20 4 -G 2[2.*-j2wf(D2 -Di..,J2wf(D2 -Di -
(5-9)

In general, 1Q1 depends on the parameter vector

(DrD2). Thus, we must be concerned by the IQI as well

as the exponent in (3-9), for the multiple source mo4el.

Specifically, we want to maximize the sum of both (3-17)

and the logo0Q term. The latter is given by

N -I
b m Z IQoelQ (5-10)k=-N

but0IQI- l2O Xzxl xx(1-Cxzx1  . 5-1
lox Oxxl X'

I 12 x x 21Z x 22 12 (5-11)
Zxx 2  22

117



TR 5335

Thus,

lo -ltkv 0G xx1G x2+ log e(1-C )1.x (5-12)

But logGIX2G x x does not depend on (D13D2 ...) so that

the critical parameters In the 1Q1 term are approximately

given by

- -1T f log 0(1-C x(f)Jdf. (5-13)

In practice, xi and x 2 will have finite bandwidth;

therefore the limits of the integral (5-13) will also be

finite. It io noteworthy that the second term is related

to the definition by Shannon (1949) for the amount of

Information about x2 (t) contained in x1(t). More

specifically. Gelf and and Yaglom (1959) and Nettheim (1966)

have shown that the amount of information about x contained

in y (or vice versa) is given by1

Ixyi- floge (1-Cx,(f)I df, (5-14)

where the limits of integration are over the nonzero

range of the integrand. Hence, for C (f)0, there

is no information (in the linear sense) 9 contained in one

'Tho~se results can be combined with (2-79) for
models like Figure 2-5 to show that Ix is the integral
of the logarithm of 1 plus received signal to noise ratio.

2 See Carter and Knapp (1975) or Chapter 2 for a
discussion of nonlinear relations which can yield
Cx (f)inO and yet y(t~ can be entirely due to x(t). as for
example. when y(t)-x ()
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time series with regard to the other. Alternatively, if

C Mf-1, for some particular f'. then there is anxy p
infinite amount of info~rmation about x(t) knowing y(t)

at the particular freauency f P. More generally, for

nonsero C (f)<l, the amount of information depends onzy

the bandwidth (limits of Integration In (5-14)) and the

MSC in that band.

Thus, following (3-15) and (5-10) through (5-14).

we see that it io desired to maximize

I 21 X1 2 X1 2  j . (5-15)
J _ T I X 2 -a x 1  x I z 2  x 2  ( 1 - x 2

For the two source model,

P aG 5 * J2wfDi f

x:2  :6 x: 7  se2 l df (5-11

ME IG a(f)e4jSwfDi

W12 -I Q(f) I Idt . (-7

Thus, the Important regions of the estimated cross

spectrum for determining D I are these frequency bands

where 0 a i(f) is large. However, even when the signal

spectrum is strong, if the intersource interference is

such that the intersensor coherence C (f) is low, the
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weight attached to the estimated cross spectrum is

degraded, a shown above.

While we cas estimate auto spectra and coherence

between sensors, more sophisticated methods must be

applied in order to estimate the source signal spectrum'.

The mathematics shows how to process for known signal

spectrum. In the communications problem, signal spectrum

will generally be known, although a, which more generally

could be a function of frequency, will probably not be

known. In other problems, methods Involving classification

and data bank retrieval need to be studied. In the

absence of a priori knowledge, we might assume that

every frequency band where the coherence was high was

a different source. Tracking (that is, estimating

bearing continuously) for each frequency band then

becomes a classification problem where the number of

sources is ascertained by noting the number of clustered

sources. The fewer the sources for a given total source

power the easier tracking will be. However, repeated

clustering analysis will be desirable to ascertain

whether two or more sources are being classified as one.

In "real world" problems, there may well be more

than one source;hence, the application of Chapter 3

results must include the concepts of multiple sources.

There are other concerns, too, in the practical

application of our Chapter 3 results. The next

generalization which we will discuss is the moving source
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problem.

-5B. Moving Source Models

The model we shall consider Is a simplified

one characterized by the observed waveforms (Carter

and Knapp (1976b))

x 1(t)ms(t)+n1 (t)

y2 (t)inss(Bt+D)4n 2(t) ,(-1h

where 8(t), ni(t) and n2(t) are zero mean jointly

stationary Gaussian random processes which are mutually

uncorrelated. The problem addressed here is ML

estimation of the time compression and delay parameters

0 add D, respectively; the problem is related to the

Doppler shift work by Van Trees (1971). The character-

istics of the signal and noise are such that x 1(M is a

mem ber function of a zero mean stationary Gaussian

random process. Further, despite the attenuation, delay

and time compression. Y2(t) is also stationary and

Gaussian. That Is, both autocorrelation functions given

by

R x x(T) wR nn (T)+Rso (T) (5-19a)

and

R yy(tigt 2)%n 2( t2-t 1 )4cR 8(0(t2-t 1)) (5-19b)

depend only on the time difference t 2-t I'

However, the crosscorrelation for model (5-18)

depends on 0 as follows:

1213
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R37Y(t1 t 2 )MG2[(t)WS( YD)INsR an(ti 4t 2 .D) (5-19c)

As required,

R x7 (t9 t2) * R (t2 -ti) . (5-20)

Notice the crosscorrelation depends on 0 as weLl att1

and t2 , and not simply the difference between t 1 and 92 4

Hence the processes x1(t) and Y2(t) are not jointly

second order stationary, but depend on the absolute time

origin. Thus, the introduction of time compression 0 in

our model thereby complicates the theory through the

Imposition of a second order nonstationarity. [For a

variety of practical reasons, we desire to operate on

y2(t) in order to ensure complete stationarityl)

An ad hoc technique for estimating D is to

operate on 72(t) to remove (or adjust) the time scale

change 0. The result, referred to as x 2(t), may then

be used with x I(t) In the usual UL estimator of Chapter

3. This Indeed turns out to be the ML estimator for this

problem (as is subsequently shown). A major problem,

of course, is that 0 as well as delay D must be estimated

to undo the time scaling Introduced by motion of the

source. Suppose 0., for exampl, is one estimate (or

hypIothesis) of 0 (like T was a hypothesized delay in

Chapter 3) and let

x 2(t) A W2 t/Ba) (5-21a)
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Sas(t/8 a +D)+n 2(We (5-21b)

Now the crosscorrelation of xl(t) with x2 (t) is given by

RxI2( t2,t2 ) E(xI(t1 )x2 (t2 )] (5-22a)

aR an(tjl t2 -D). (5-22b,,

aaThus, for a -0. we see that Xl(t) and xY(t) are second_

order Jointly stationary, for then R XX2(tl,t2 ) depends

only on the time difference Tt 1 -t2 . For 8an8 , it is

possible to compute a single Fourier transformation on

T to achieve

Gx2(f )=R x x (T)'-j2wfT dT (5-23a)

-eG s(f)eJ2wfD• (5-23b)

Similar results can be obtained.using the concept of

locally stationary random processes (Silverman (1957)).

However, in general, when a*gal a two-dimensional

Fourier transformation must be performed. For convenience

let B-S/0 a (where we ultimately hope to make Bil byai
proper choice of BaA; then it follows that

E[ 2(k)X(] - fdtil dt2Ron(tl-Bt 2-D) . (5-24a)
o 0

e-JW0 (kt1 -1t2 )

1 In the following it may be assumed that S al

and i-6 ; that is, that y (t) has not been prepro gssed.
Results can then be applild with 011 (rather than S=l);
for many problems 5;1.
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9quation (5-24) offers a more rigorous interpretation of

(5-23). For large T and 1 near unity, it follows from

(5-24f) (since the discrepancy between the sinc functions

is minor) that

0 (f)X 2 - T 3(Xl(k)X2 (Il (5-25a)

Also,

1 n~n so A(5-25c)

andI

T 3(12(k)X;(l)J- 0 (B kw )+=- ( ,-
2 ~ )a n 2n 2 a a I5a

(5-25d)
0 lfk

Note in (5-25d) 0 nn in evaluated at B a kwa not kw.

Similarly, it can be shown for i&1 and large T, that

Jkw D
1CX (k)X*(l)J a 00* (kw a)e .AD 1k/B

10 -o/ (5-26)

We now proceed as in Chapter 3, Section A. In particular,

we desire to maximize a total award function JA, as

depicted in Figure 5-3, through the adjustment of

hypothesized compression 0 a and hypothesized delay r;

wbe A Is maximized, the UL estimates A and 6 depicted
in Figure 5-3 are achieved.

It is Important to the discussion that follows to

note that if B a is incorrectly selected such that i is
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much different from unity, the processes x1(t) and x2 (t)

are second order jointly nonstationary and the estiinatuts

are not UL estimators. However, once we have begun to

estimate delay and compression correctly, the processor

is an ML estimator; that is, in the sequential estimation

problem where several observation intervals are available.

then ML or at least AML estimation is possible in the last

intervals. Before proceeding, we also note that if

BOI any crosscorrelation (coherence) terms in the award

JA will be zero. 'More specifically, if B is much

different from unity, then time delay cannot be estimated

without some type of Doppler or time compression

preprocessing. The importance of this statement is that

Chapter 3 cannot be applied to estimate bearing to moving

sources which are nearfield (relative to the sensor

separation) unless time compression preprocessing is done.

Denote the Fourier coefficients of xI(t) and x2(t) as in

Chapter 3. The 2N+l vectors X(k)a[X (k),x 2 (Bk)]',k- -N,

-N+l,...,N for Bi, are uncorrelated Gaussian (hence,

independent) random variables. More explicitly, because

of the independence, the pdf for

x=tX,(-N) IX2( -NO))", {X(-N+l),'X 21 (-N+I)il] }... ( Xl(N),

X2(Ni))*

given the true values of attenuation a, delay D and time

compression B (actually we also are given Ba, hence are

"given" B-B/8 ) is the product of the individual

densities.
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Specifically when O.,M1 and 8Z1 the pdf of ~.Is

N 1
p(!Ia,0,D) a tI! [exp(- VO (5-27a,)

k-N

where

i jx k~*k)QX- kw)1lk (5-27b)

and -1

h.k m((2w1)I(kwa)I i ]) (5-27c)

and Q (f) is the power spectral density matrix between

the random processes xi (t) and x 2(t).

For ML estimation, it is desired to simultaneously

choose as 6 and I those values which maximize the pdf

evaluated for hypothesized compression 8 and hypothesized

delay T. Equivalently, 8 and D are selected to maximize

any monotonically increasing transformation of the pdf.

Hence, 0 and D are selected to maximize the log pdf,

namely,
N N

i n p(!Ici,O,D) Flnhk 1 (5-28)
k--N k--N

While the derivation provides sufficient information on

estimating the parameters B and D, it is valuable to

Interpret (5-28) in order to understand both its meaning

and Its implementation. The award to be maximized (5-28)

can be written (assuming large T) as three terms

substituting (5-14) and (3-15)

NMI'
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ax r a x a 1 .A 1 2  C 1 2  *j2wfT

df • (5-29)

Unlike Chapter 3, C1 2 depends on S. Equation (5-29)

is difficult to interpret; it is comprised of three terms.

For ML estimation (versus AML estimation), only the last

two terms of (5-29) depend on the data. However, the

parameters B and D appear in all three terms of (5-29);

hence, all three terms must be considered. The first

term of (5-29) Is small with respect to the second term

(because, from (5-14), the information has a logarithm

in it); also, the first term of (5-29) to small with

respect to the third term. Hence, we might expect that

the first term can be ignored. However, under some

comon degenerate cases (specifically, T-D and T very

large) the sum of the second and third terms does not

depend on the parameters 0 and D. For example, for r=D and

very large T, exii i ul a t x le-

and the sum of the last two terms of (5-29) becomes
-tz, d , which is a constant. This situation is

perplexing since the remaining term in (5-29) (namely,

the information (5-14)) does not depend on the data, but

only on the (assumed known) statistics of the data. It

Is interesting that when this is the case and when we

apply AML techniques (that is, we use estimated data

statistics for assumed known statistics), the data do
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appear in the expression for the information.

Finally, we notice If as a suboptimum technique,

we were to take the first or last term in (5-29) and

simply maziulue It, that to do so would require adjusting

the parameter estimates so as to attempt to increase the

coherence across the entire frequency band; the second

term of (5-29) does just the opposite. Notice when the

time compression is estimated incorrectly, C1 2 =0 and

only the information 112 (or '12) is needed to estimate

compression. Having estimated compression correctly,

only the last term of (5-29) is needed to estimate delay.

This suggests a suboptimum ad hoc technique for estimating

0 and D, namely, maximize the information to estimateAJ
0 then use that B to estimate D with the award function

of Chapter 3. In practice, this suboptimum technique

should compare favorably with maximizing (5-29), since

there are a number of assumptions and approximations

leading to the award function (5-29); most notably,

(5-29) presumes Ba1 so that joint second order stationarity

holds. When this is not the case, maximizing (5-29)

becomes simply an advisable but ad hoc estimation

procedure.

There are some degenerate cases of the model

(5-18) that are easier to work with analytically (namely,

D known and equal to zero, n2 (t)-O and a-l). Such models

have rather predictable results (namely, the cross-

correlation terms are important except as Gn nl(f)--.
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that is, as one of the observation channels becomes

noise dominated; in the later case, the hypothesized

time compression attempts to align the estimated auto

spectrum with the (known) signal spectrum). Thus, the

degenerate cases do not add insight into the fundamental

issue of stationarity. We are thus led to state that

maximizing (5-29) (or first (5-14) and then the last

term of (5-29)) by choice of A and 6 (respectively) is

merely an intuitively appealing ad hoc technique.

5C. Multiple Sensor Models

The problem we address here Is estimation of a

parameter vector D from a set of sensors with received

voltages

xI(t) - a I(t Di) ni(t) i-1,2... (5-30)

Although the notation for Di is the same as Section A,

this model should not be confused with a multiple

source model, since tbis model is only one source but

many sensors. To extend the problem to many moving

sources received at many sensors requires that

x i(t) a It 4i,kS[Oi,kt Di'k]j+ni(t) . (5-31)

In the model (5-30), we assume (without losn of

generality) that al-1 and D1i-0; thus

xl(t) - s(t)+nl(t) (.5-32)

x2 (t)'- 0 2 s(t+D2 )+n 2 (t)

xM(t) - aMs(t+DM) n¥(t)
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and we desire to estimate the U-2 dimension relative

delay vector (D 2-D1 , D3 -D1 I ... ,DN-DI).

The general solution to this problem is simply

an extension of the alternate realization in Chapter 3,

Section 3C. In particular, the steering vector is now

V I,~f -j2wfDM] (--33)

For uncorrelated noises

* diagC%[" i . (S-34)

The lxM vector filter is given by

ft %i an (5 .- 35)

Hence, the generalization is realized by extending

Figure 3-10 to M prefilters with one at each sensor

location as shown in Figure 5-4. A more explicit

realization t given in Figure 5-5,which is the extension

of Figure 3-11.
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CRAPTER 6

DISCUSSION

GA. A22lications and Summary

The purpose of this section Is to briefly

sumarize and discuss the applications of this work.

Most of the applications are intimately tied to the

theoretical results already presented which are summarized

in the subsequent paragraphs. The primary purpose of this

section is to highlight applications of the theory with

a minimum of reliance on mathematical notation. There

are three main applications for the theory of time delay

estimation discussed in'the following three subsections.

First, it is a useful vehicle for parameter identification.

Second, we can use it to obtain bearing estimates.

Finally, under certain conditions we can estimate source

position. These applications rely on the theory

developed in the preceding text,which is summarized in

the following two paragraphs.

This dissertation has investigated methodologies

for passive estimation of the bearing to a slowly

moving acoustically radiating source. As demonstrated,

the mathematics for the solution to this problem Is

analogous to estimating the time delay between two

time series. Because the estimation of time delay is
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closely related to the coherence between two time

series an extensive investigation of coherence has ben

presented. New results on using coherence to provide

information about linear and nonlinear systems have

been presented and proved.

The ML estimate of time delay (under jointly

stationary Gaussian assumptions) has been derived.

The explicit dependence of the time delay estimate 'n

coherence is evident in the estimator realization ir

which the two time series are prefiltered (to accentiale

frequency bands according to the strength of the

coherence) and subsequently cronscorrelated. The

hypothesized delay at which the GCC function peaks is the

time delay estimate. From the 0CC realization the

variance of the time delay estimate has been obtained.

By use of a different interpretation of the MT, astimatnr

derivation, other realizations have been obtained. The

GCC realization with ML weighting is compared to several

other proposed weightings. The estimation formulation

has been extended to three important generalizations:

multiple sources, moving source and multiple sensors.

Nonstationarities introduced as a result of source motion

are studied. These results can now be applied to three

problem aresnof interest.

SA1. Parameter Identification

In the system identification problem we are given

a system with unknown description. We design a probe
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to excite the system and ensure that the probe is

sufficiently rich in frequency content (Gx (f)>O ,

fc(-B,B)). Then we simultaneously observe (perhaps

record) the probe (input) and response (output) of

the system. The objective of these observations is

to characterize the system. In Chapter'2 it has been

shown that there exists a linear filter which will

characterize the system if the USC is unity at all

frequencies. (Appendix C provides a computer program

for estimating USC between two waveforms (input and

output).) When the MSC is not unity, the characteriza-

tion Is considerably more complex. We have looked at

certain no memory nonlinearities and shown how they can

be characterized by orthogonal polynomial expansions.

The main thrust of the dissertation, however,

has been to estimate one parameter (delay) when the

system is linear, but the observations are corrupted

by noise. Proper estimation of just this one parameter

requires knowledge of the magnitude transfer function

a (or more generally Ia(f)I), and finally knowledge

of the noise spectral densities. When this a priori

knowledge is not available, we have proposed estimating

the unknown quantities and substituting them In place

of the known quantities. There is no rigorous

derivation to support this procedure other than to note

that as the observation time becomes large the estimated

quantities converge to the true ones. Thus, the
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methodologies applied to the time delay estimations can

be expected to be even more complex if, for examplP,

the filter output were x2 (t)-a1 S(t+D,)+Q 2S(t+D 2 )+n2 (t).

More generally, if x2 (t) was the output of an FIR

digital filter of unknown order then the problem of

estimating the order, the delays and the attenuations

(see Hannan and Thomson (1971), Hannan and Robinson

(1973) and Carter and Knapp (1976a)) is a more general

problem than the one addressed here. However, to solve

the bearing estimation problem motivating this research,

the added generality is not required. Thus, the problem

considered here is only a subset of the parameter

identification problem. Further, note that the solution

to the time delay estimation problem does not involve

the Fourier transform of the optimum Wiener-Hopf filter

(Roth processor), which maps x1(t) closest to x2(t);

that is, the technique does not look at the peaks or

midpoint of the impulse response of the filter that

in the MUSE sense filters x1 (t) to obtain an optimum

x2 (t). With these comments in mind, we have generalized

our model to an important class of nonstationarities

in order to estimate bearing.

SA2. Bearing Estimation

The bearing estimate follows directly from the

delay estimate according to the simple arccos trans-

formation (3-2). The range does not need to be too

great relative to the sensor separation in order for the
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angle that the hyperbola asymptote makes with the

baseline to accurately represent the source bearing.

For stationary sources or closely spaced sensors, the

relative Doppler (or more generally, the time

compression) can be ignored. However, to apply

these techniques to widely separated sensors and

moving sources, it is necessary to process the data

in order to perform Doppler correction (that is, a

time scale correction or time scale expansion). To

Ignore this processing would result in an apparent

uncorrelated behavior between the two received waveforms.

One contribution of this work has been to specify an

IL estimate of time compression. However, because of

the nonstationarity of the processes involved, the

results tend to be more heuristic and more difficult

to interpret (and implement) than those for the time

delay estimation problem. In fact, the implementation

is hindered by practical computational issues of achieving

the time compression. Nevertheless, in the future as

computational methods allow for broadband time

compression, the methods hypothesized here could actually

be tested in practical environments. This should not

be interpreted to mean that time compression cannot

currently be accomplished. Exact time compression can

be achieved, as for example, with variable speed tape

recorders or with exact DFT's. Approximate time

compression can also be achieved through complex inter-
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polation, of FFT points or nearest FFT bin approaches.

In practice, all of these techniques are Pxpensive

to implement; hence, any production application of the

theory will benefit from advances in methodologies

and mechanizations for achieving time compression.

Having techniques for estimating the bearing to moving

acoustic sources, we can extend the applications of our

theory to estimating range.

6A3. Passive Ranging

In the two sensor models, we are able to estimate

delay from which we can estimate bearing. In the

multiple sensor situation more information is available. F

Indeed, with three sensors we can also extimate source

location. For example, in Figure 6-1 three equispaced

collinear sensors are depicted. As indicated in

section SC, the estimate of eite2 requires simultaneously

processing data from all three sensors (one suboptimum

processor would be to estimate each bearing from

generalized cronscorrelations between only two sensors).

When the sensor-pair midpoints are separated by distance

d (meters), the range (moters) to the source is given by

dsi(ne 2R a- ,sn(m _8 2)• -)

An estimated range is obtained by inserting estimated
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Figure 6-1 Three Collinear Sensors, Single SourceI
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bearings in (6-1).1 The asymptotes depicted in

Figure 6-1 are upper bound@ (biased estimates of

hyperbolic LOPs); hence, the actual source location

wll be slightly "below" the intersection depicted.

For V-3d, the bias will not be a practical concern.

For more complicated sensor geometries (see

Figure 6-2), the bearings 01 and 02 are used to obtain

0Ieffective bearings 1
e and 02e. When the sensor

geometry is known, the effective bearings are easily

obtained by the addition of a correction term to the

observed bearing. Similarly, the effective separation

de Is simply the shortest distance between the midpoints

of the sensor pairs (1,2) and (2,3). The range estimate

Is then obtained by substituting effective measurements

into (0-1). When four or more sensors are used to

estimate three or more LOP's, source position may be

ambiguously specified, as shown by points A, B, C in

Figure 6-3. In such a case, it is reasonable to presume

that the source is the least squares distance from

existing LOP's; although it is possible for two or

three sources to be present.

'The estimated position (range and bearing, in
polar coordinates) obtained by substituting ML
estimates of the bearings Intn (6-1) is not necessarily
the UL estimate of position.
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Figure 6-3 Three Ictied WOPs ttc One Source
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6B. SuiMestions for Future Work

This section suggests four areas for future

work. In a sense, it provides an insight into what

we still do not know about the problem at hand. Or

stated differently, having solved the problem we wet

out to solve, we now understand bow to pose new problems

which we have uncovered. First, in the parameter

Identification area there appear to be several fruitful

research questions: Bow to identify parameters for

(1) general (or particular) nonlinear systems, (2)

multi4nput, multioutput linear systems, (3) general

linear systems, and finally (4) "real world" socio-

economic systems. The complexity of estimating time

delay suggests that the solution to these problems will

be more complex.

The second area t verification of the theory

by simulation. We have already conducted one costly

computer experiment (Appendix D) which substantiates

our belief that insertion of estimated spectra for

true spectra enhances the estimation of time delay.

However, without running many such experiments, we have

no statistical argument to substantiate the theory.

Because the cost of running this analysis in prohibitive

on a large scale, digital computer, special purpose

77T hardware should be used to empirically validate the

theory. The cost of such a system will be significant.
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The third area of Investigation Is an extension

of the theory to sequential estimation. In practice,

our obeervation Interval will not be just T seconds;

rather there will be several consecutive periods of

T seconds. Knowing that the source to constrained in

its rate of apee, we should be able to rule out

certain ambiguous estimates of delay (bearing). More

generally, we could model the ship. track and use

Kalman filter techniques to extrapolate best projected

position (bearing) based on the filter outputs.

Finally, the theory presume. a great deal about

(1) ocean acting as a linear time Invariant filter over

the observation period T, (2) the characteristics of the

noise, and (3) the source motion. Thus, the true

engineering test is to make controlled measurements with

actual acoustic sources in the ocean in order to test

the hypothesis. Based on what we currently know, there

is every reason to believe such an endeavor will be

successful.
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APPUD!K A

?3R3NNQUI3 FOR 8PZCTRAL MSTIMATIQI

The basic objective of this appendix Is to

briefly describe two (similar) techniques used to

estimate the elements of the power spectral density

matrix. The estimates obtained-are then used to form

an AL. estimate of time delay. The two techniques are

the overlapped M7 technique (discussed by Carter,

Knapp, and luttall (1973s)) and the ChIrp-Z transform

(CZT) technique (discussed by Cafter and Knapp (1975)).

The methods discussed are sometimes referred to an

direct methods (as opposed to Indirect correlation

methods) and have been discussed In part by Knapp (1966).

Welch (1967), Bingham, Godfrey and Tukey (1967) ,* Benignus

(1969a), lNuttall (1971), Williams (1971), and Rabiner and

Rader (1972).

Both methods begin with two (one from each process)

digital waveforms (or with analog waveforms that have

been lowpass filtered and digitized). Briefly, there

are four steps In the estimation procedure: First, *ach

time series, is segented Into N segent*, each having

P-data points. Second, each segment is multiplied by

a smooth weighting function. Third, the Z transform of

the weighted P-point sequence Is evaluated on the unit
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circle in the Z-plane. Finally, the Fourier r(,efficienLs

thus obtained are used to estimate the elementn of the

power spectral density mnatrix by averaging "raw" power

spectral estimates over all the N segments. The two

methods of spectral estimation differ in how the Z transform

to evaluated. One method uses the M71; th other uses the

Partitioned and Modified CZT (PA-CZT).

More explicitly, two random processes that are

jointly stationary over N data segments are processed

as follows (Carter and Knapp (1975)):

1. Each of the two time series is segmented

into N segments of P points. The segments may either

be disjoint or overlapped. Then one segment of P data

points with the same time origin in selected from each

of two time records. Even if each of the N data segments

is large (for example, greater than 4096), P should be

selected to ensure that the sampling frequency divided

by P will afford adequate spectral resolution.

2. Each of the two P point segments is

multiplied by a smooth weighting function. Here Rmonth

means that the £-th order derivative is continuous over

the full interval of data points, for E-O, 1, 2, ... up

to some reasonable limit. The smoother the weighting

function, the more rapidly the side lobes of its Fourier

transform, or window function, will decay. The more

impulse-like the window, the less leakage there will be

of extraneous power, which corrupts spectral measurements.

14C
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Hence, good weighting functions result in better spectral

estimates. The price paid for impulse-like window

functions with rapidly decaying side lobes is a wider

main lobe, that is, poorer frequency resolution when

P Is held fixed. Tf better resolution Is desired, more

data points per segment will be required. This in turn

requires both that the data be available and that they can

be efficiently processed. Moreover, from a stability

point of view, increasing P decreases the available

number of independent data segments when the data duration

is finite.

The specific selection of a weighting function

involves a number of tradeoffs. A commonly used weighting

(or windowing) function is the cosine (Hanning) function

defined at the p-th instant in the interval (OP) as

(1-cosA) ;

such a function starts out at zero for p-O smoothly rises

to unity by p-P/2 and smoothly decays to zero at p-P.

The application of a cosine-weighting function,

which is necessary to reduce errors due to side lobe

leakage, has the disadvantage of apparently wasting the

available data. This apparent wastage can be overcome

through overlapped processing. In particular, Huttall

(1971) has Phown that the same stability (as measured by

the number of equivalent degrees of freedom) can be

obtained from a fixed amount of data via overlapped
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processlnt an with lackman and Tukpy (1958) correlation I
processing for both auto and cross spectral density

estimation. (Results on cross spectra processing

followed In a supplemental report.)

Quite naturally, there is an increase in

computational cost associated with overlapped processing.

Specifically, the number of FFTs to be performed (a

measure of the computational cost) increases with the

percent overlap specified. For example, the number of

FFrs required for 50-percent overlap is approximately

twice the number for 0-percent overlap. Increasing the

overlap from 50-percent to 62.5 percent requires

32-percent more FF . For Hanning weighting, the

improvement to be derived from using 62.5-percent overlap,

as opposed to 30-percent overlap, will not usually

warrant the increased computational costs (Carter. Knapp,

and Nuttall (1973a)).

Note that if there is no overlap, each segment

would be virtually independent of the previous one

(except for correlated edge effects). Independent data

segments facilitate certain analytic computations. Hence,

all theoretical results here are concerned with the case

of independent segments; that is, no overlap. This is

true even though overlapped processing is recommended

for-actual data processing. The amount of overlap

desirable can be predicted by picturing the apparent

wastage for a specific weighting.
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3. The transform of the weighted P-point

sequence is evaluated on the unit circle in tho z plane.

The two aided Z-transform of an infinite sequence is

defined by Gold and Rader (1969) and Oppenheim and

Schafer (1975) as

Xn W - Z n(P)C~p, n-1,2....,N ,(A-1)

where z equals any complex variable.

Simiarl, Y, (z) is defined-as the Z-transform

of y (p). When X Wp. y3 (p) are finite in duration, then n
infinite series (A-1) becomes finite. Evaluation of the

Z-transform at P equally spaced points around the circle

yielda the DIT:

P-1

Xn (k x n(p)e-j2wpk/P (A-2)

p-0

Similarly, Y n (k is the DY!' of the n-th weighted data

segment y n p -0.19... tP-1. The DY!' can ravidly,'be

evaluated by two methods: the Cooley-Tukey (1965) or the

PAM-CZT (see, for example, Rabiner, Schafer, and Rader

(1969), Schilling (1972), Ferrie, Nawrocki, and Carter

(1973), and Carter and Knapp (1975)). The F?!' is a fast

algorithm for evaluating the DY!'. If the DY', (A-2),

is evaluated for P frequencies (k-O,10...tP-1) it requires

p 2 (complex) budtiplications and additions (MAD*). The

M~ uses an Ingenious computation method to evaluate

(A-2) in Just P10g2P MADs. Thus, for P-4096, the number

of MADe Is reduced by a factor of more than 340. Thus,
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computations requiring more than 5 hours can be done

in less than 1 minute using FTs in lieu of DFTs.

Specific details of the FFT are beyond the scope of

this dissertation.

The DPT, (A-2), is a srecial case of the CZT, which

was introduced by Rabiner, Schafer, and Rader (1969)

and amplified, including software implementation, by

Schilling (1972)1 and hardware development by Alsup,

Means, and Whitehouse (1973), and Buss, Collins, Bailey

and Reeves (1973). Given sufficient data, it is a fast

and efficient technique for somputing the Z-transform of

a sequence on any Z-plane spiral. The modified CZT

(MCZT) evaluates equispaced frequency points on the

unit circle in the Z-plane. With proper spacing and

starting points, it is equivalent to the DI!T.

Computationally, the MCZT requires three FFTs each of

size greater than N (for example, 2N)to compute the

DFT, (A-2). However, the tradeoffs are really more

complex than this. (For example, if many MCZTs are

to be performed one of the three required FFTs does not

need to be repeated after its first computation since

it is a transformed cosine data table.) The major

advantage of the MCZT occurs when the number of data

points P (in each of the N data segments) is large.

1This work was brought to the author's attention
by Dr. N. Ahmed, Kansas State University, Manhattan,
Kansas.
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In such cases, the original P point data segment can be

again segmented into R partitions each disjoint with

size P/R data points. The R partitions are processed

with R MCZTs; the outputs are summed together with

appropriate phasing to achieve a PAM-CZT that is

equivalent to the DFT, (A-2). The mathematical details

of this technique are covered in length by Ferrie,

Nawrocki, and Carter (1975); their inclusion here does

not appreciably add to the discussion but does considerably

complicate the notation due to conflicts with assigned

symbols. For most broad band cases of interest (and

certainly the example case in Appendix D), the rFT will be

preferable to the PAM-CZT. A complete discussion of the

tradeoffs is given by Carter and Knapp (1975).

Having computed the DFT, (A-2), either by an

MFT or PAM-CZT, we are ready to proceed with the fourth

step in the spectral estimation algorithm.

4. The spectral estimates are

NG(k) - ix X(k)[2 (A-3a) 1

n-1

Gyy'(k) - cg E [Yn(k)I 2 (A-3b)

n-i
N

Wyk - cg ~ (k)Y*(k), (A-3c)
n-1

where the constant
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* 1 (A-3d)

and f5 a sampling frequency. (The estimated cross spectrum

(A-3c) is complex.) The estimate of MUC
2

lG ((k)l
8 (kG (k (A-4)
Gxx kyy~k

The AUL estimation of time delay requires substituting

the estimates Cxy in place of the true (but unknown)

value of USC. Therefore, we are concerned about the

statistical variability of the USC. Further, the

statistical characteristics of C are of interest in their

own right, since a is useful not only in time estimation

(Chapter 3) but also for other applications (Chapter 2).

Appendix B discusses the statistics of the USC estimate.
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APPENDIX B

STATISTICS OF THE MSC ESTIMATE

The WBC estimate, from (A-3) through (A-4), in

N X kY•( 1

C xy(k) a , (B-i)
Ny jX (k)I12 N (k j2

call nul I

where N is the number of data segments employed and

Xn(k), Yn(k) are the DFrs of the n-th weighted data

segments of x(t), y(t), respectively. Under certain

assumptions the statistical characteristics of C can

be evaluated. This appendix is divided into four

sections. The first section gives the pdf, cumulative

distribution function (edt). and m-tb moment of C, given

C and N. The second section gives the bias of the

estimate C including a discussion of when the analytic

results fail and simulations to support the theory.Am
The third section gives the variance of C. The fourth

section gives a computer program for evaluating receiver

operating characteristics (ROC) of a linearly

thresholded coherence estimation processor. The

results In all four sections are based on the derivation

by Goodman (1957) of an analytical expression for the

pdf of the MC estimate and the subsequent extensions to

15
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NBC by Carter, Knapp, and Nuttall (1973a). These

results are based on two zero-mean stochastic processes

that were Jointly stationary, Gaussian, and had been1[
segmented Into N independent segments.I Each segment

was assumed large enough to ensure adequate spectral

resolution. Further, each segment was assumed perfectly

weighted (windowed), in the sense that the Fourier

coefficient at some k-th frequency was to have "leaked"

no power from other bins. The statistics do not hold

at the zero-th or folding frequencies (Hannan (1970)).

Extensions to Goodman's work are given-by Alexander and

Vok (1063), Amos and Koopmans (1963), Enochson and

Goodman (1965), Nettheim (1966), Wahba (1966), Tick

(1967), Carter and Nuttall (1972), Carter, Knapp and

Nuttall (1973b), Halvorsen and Bendat (1975),and Nuttall

and Carter (1976a).

31. Probability Density. Cumulative Distribution
and M-tb moment of C

The first-order pdf, cdf and m-th moment of the

estimate of MSC, given the true value of USC and the

number, N, of independent segments processed, are presented

in this section in closed form.

1Despite the fact that it is only mathematically
tractable to obtain analytic expressions when the segments
are independent, we would in practice use sc-e overlapped
prooessing to regain the apparent data wastage inzurred
by the necessity of data weighting. Carter, Knapp, and
Nuttall (1973a) report the results of an empirical study
that demonstrates how bias and variance decrease as a
function of increased data segment overlap. Fifty percent
overlap is recommended with cosine weighting.
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The conditional pdf for C, between two processes,

given C and N. is (Carter, Knapp, and Nuttall (1973a))

p(6IN.C) - (N-1)(l-C) N (1C)N-2 (1CA -N2F1(-.-;;C)

(B-2)

The 2 F1 is a hypergeometric function with two numerator

terms and one denominator term. (It is a snecial cme nf

(B-7) and is discussed more fully in Section B4.) For

present, we note equation (B-2) is desirable because

2 7(1-N,1-N;l;CC) can be expressed as 
an (N-1)st order

polynomial (Abramowitz and Stegun (1964), Equation (15.5.1)).

A special case of the density function occurs when

C-O. In that event,plOlWC0) - (N-1)(1-C) ' . (B-3

Using a result of Fisher (1950), Carter, Knapp, and

Nuttall (1973a) have determined (in closed form) the

cumulative distribution of the estimate of NBC, namely,

CC-2

A digital computer program to evaluate equation (B-4)

is given in Section 94. In the special case when

C-0, the cdf can be simplified to give

P(CIN,C=f) - ..-(l-)N- (B-5)

Equation (B-5), when differentiated, yields the pdf

equation (B-k). -%

The m-th moment of the USC estimate can be found by

application of Equation 7.512(12) by Gradshteyn (1965) to
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a different form of (1-1) to yield (Carter, Knapp, and

Nuttall (1973a))

r(N rm)

3F 2(m+1, N, N; m+N, 1;C) . (B-6)

These results can be confirmed using Carter (1972a) and

Anderson (1958).

The 3F3 hypergeometric functions (with three

numerator terms and two denominator terms) are given by

(a)k(b)k(c)k  zk

3F2 (a,b,c; d,e; a) k k k (B-7a)3 2 k-O (dk(e) kT

where the (a)k notation is Pochhzmmer's symbol (Abramowitz

and Stegun (1964)) defined by

(a)k A Lf&) ' (B-7b)

where r( ) is the Gamma function. Similarly, the F two-

one function has two numerator and one denominator terms.

82. Dias of C

This section deals with the bias of the USC estimate.

Exact and approximate expressions are presented. In

addition, computer evaluation of the exact expressions

is presented to lend meaning to these results, and two

computer simulations are presented. The first simulation

demonstrates the need to have adequate spectral resolution.

The second simulation verities the theoretical results

for bias (and also variance, which is discussed in the

next section, B3).
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Consider now the first mome'nt of the estimate of

UKC which can be written as

1181NCi - Y ) N 3 F2(2.N.N;N+1,1;C) .(B-8)

which can be manipulated into the form (Carter (1972a))

XCCINIC) 11 + r3-1 1(,;+2C B9

The bias or expected estimation error is defined

an

Bias 0 B(CIN.C) - VICIC) - C .(B-10)

An exact expression for the bias Is
B (CIIC) 0 1 +N-1

(C ~ I pf15 C 271(11,1;N*2;C)-C .(B-11)

The maxi all bias Is 1/1 (regardless of N and C). The

bias Is plotted In Figure B-1. 1tshould be noted that

i. (Bias) a 0 ;(9-12)

therefore, the estimator may be referred to as asymptotically

unbiased. By expanding 2zPI in (51-11) in a power series

In C and retaining term to order rC2 ' the following

approximation is obtained (Nuttall and Carter (1976*3)):

D1(C,N) a*j(l - C)2(.~ (B-13)

Plots of N B(C,N) and N 81(C,1I) are presented In Figure

3-2 for N-4 (they cross near C-0O.4). Approximation

(5-13)'is seen to be excellent over the entire range of

C. Furthermore, the discrepancy between the approximation

(5-13) and the true bias (B-11) Is even less for larger
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values of N.

For large N, (B-13) is further reduced to the

approximation given by Carter, Knapp, and Nuttall (1973a):

a2 (CoN) - (l-C)2 ; good for large N . (B-14)

Therefore, as N leads to infinity, N B(CN) tends to

2(i-C) . which in also plotted in Figure B-2; furthermore,

the approach is monotonic.

In Benignus (1969a), (2), an approximate expression

for the bias, based upon a simulation approach, is

presented as

B3 (C,N) - (11-C) (B-iS)

Whereas the results in Haubrich (1965) and (B-14) dictate

a quadratic behavior for bias, the approximation by

(B-15) indicates a linear behavior. Since (B-11) through

(B-14) is based upon theory and (B-15) is based upon

simulation, it was decided to verify (or invalidate)

(B-11) through (B-14) by a simulation approach. Two

computer simulations were conducted.

In order to verify the theory, the simulation must

preserve those assumptions present in the derivation

of the theoretical expression (B-l) for bias. Specifically,

as pointed out by Carter and Knapp (1975), (B-il) holds

under the following assumptions:

1. Jointly Gaussian stationary processes

2. N independent (non overlapped) data segments
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3. smooth weighting function to reduce side

lob* leakage

4. adequate frequency resolution

When any of the specified assumptions are violated,

analytic results derived for bias (and variance) of

the estimator can be grossly misleading. (The Gaussian

part of the first assumption is weak; see the discussion

after (3-3).) As an empirical verification of this

statement, consider the study reported by Carter and

Knapp (1975), where C xy(f) - 1,Vf. Specifically, consider

a simple linear second-order digital filter of the form

Yn - 1.97 300Yn_ 1 -
0 .9 8 2 0 2Yn-2 * 0.00872Xn • (B-16)

aa
The system behavior was studied by probing the filter

with a white pseudorandom noise source. The sampling

rate was set equal to 2048 Ha; hence, the Nyquist rate

of v radians is depicted as 1024 Hz in the figures that

follow.

The filter phase characteristics were estimated,

Figure B-3, with P-1024, cosine weighting, and 64

independent segments. Despite the fact that the SC

between input and output should equal unity (hence, the

bias of the estimator would normally be zero), the

estimate of NBC is grossly blaed when a rectangular

weighting function Is used. Specific M1C estimates arv

depicted i Figure -4 for the rectangular weighting

case. The bias attributable to improper windowing, while
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severe, can be substantially eliminated through

selection of a leakage-suppressing window. When a

cosine or Banning window Is utilized and the data are

reprocessed, estimates depicted In Figure S-5 are

obtained. Notice now that the bias, though greatly

Improved, still exists in the vicinity of 30 Hz.

Referring to Figure B-3, notice that 30 Hz is the center

of a frequency band in which the first derivative of the

phase Is large. The dependence of the bias of the SC

estimate on this characteristic of phase is predicted In

Jenkins and Watts (1968), Hannan (1970), and Koopmans
(1974).

Once sufficient resolution has been achieved, this

bias no longer exists. To determine whether the bias

in Figure D-6 could be reduced by more averaging, as

analytically predicted by the approximation in tenkins

and Watts (1968), additional independent data segments

were processed in the simulation (that is, N was made

larger without changing P). In this case of insufficient

resolution, the maximum bias error was observed to be

independent of the number of segments averaged; that is,

the estimator is biased an N- when the number of data

points per seSment Is small.

When large amounts of data are used, as in the case

of a computer simulation, better resolution can be

obtained without loss of averaging (variance reduction)

capability. However, when the data are of limited
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duration then--dependent ofn the length of actual data

cuts and the stationarity of events over that duration--

another method can be employed to improve USC estimation

in the race or rapidly changing phase angles. Th, -x

mnkhhods are r,'rerred Lo as alignment, or translation

methods, and are used to remove the time delay or group

delay of a filter. Translation (that is, prefiltering

by a single time delay) of one time series with respect

to another permits the rate of change of the phase In a

particular frequency band to be controlled and reduced

to yield better USC estimates in that frequency band.

The implication is that MSC estimates are valid in

frequency bands where the phase has little or no slope.

Various methods for estimating the time delays are

discussed in Chapter 4.

Translation was applied to align the time series

for the example presented here. After alignment,

unbiased estimates were obtained in a 20 Hz band about

30 Hz; however, as expected, outside that band, biases

were severe, making interpretation meaningless. In

general, translation must be applied for "all" time

delays and the results combined into one result (graph);

hence, when sufficient data are available, the author's

preference is for finer frequency resolution rather than

for the piecemeal approach which may be dictated for -

reasons of limited data or limited stationarity. In the

latter case (of P sufficiently large),C will not depend on D.
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The example used here exhibited biases of one

tenth (see Figure 8-5); furthermore the trend was

clearly Indicative of the fact that any bias (less

than one) could be expected with Insufficient frequency

resolution even when as many an 64 independent data

segments have been processed (Carter (1972b)). The

practical implication of this limitation is that it is

highly desirable that the actual number of data points

per segment, P, be large. For a finite duration data

set, this will mean increased Instability in the

estimator (that is, smaller N and hence larger variance).

It should be noted that one cannot simply increase P

by adding zeros or by increasing the sampling rate

of the original data, for then no additional information

content is added. Quite the contrary, the minimum data

sampling rate should be selected, for this ensures

the maximum amount of actual time per data segment for

a given value of P. Good resolution, that is, large

P, apparently requires computation of a large size FFT.

An alternative computation that reduces the required

FFT size is the PAN-CZT (Appendix A).

The results of the first simulation show two critical

things: first, when estimating NBC (or any spectral

quantities) it is important to'use both smooth weighting

functions and adequate frequency resolution. Second,

simulation experiments to validate expressions for bias

of C can give misleading results due to the sensitivity

169
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of the four fundamental assumptions upon which the theory

rests. Another difficulty in experimentally estimating

bias in that when the assumptions do hold, the bias is

a small quantity to measure. For example, for.

C-0.3, N-32, we find B(CN)0.0156. However, the

standard deviation of C is approximately 0.3. (See

Section 3 of Appendix B.) Thus a large number of

independent trials, in each of which C is computed,

must be used in order to obtain a sample mean that has

statistical significance. We use X0,000 different

independent trials at each value of CO (.1).9; the

results of Benignus (1969a) employed less than 1,000

trials.

Lastly, the smallness of the bias dictates that the

desired value of C be accurately realized in the simulation.

As an example of the danger of not doing so, consider

the following: mppose we believe we have generated

processes with a desired coherence of 0.300, and

subsequently observe a sample mean of 0.315; in such a

situation, the estimated bias is 0.015. But if the

generated coherence is not precisely under the

experimenter's control and is off by only 1 percent

(giving rise to a true coherence in this example of

0.303), then the bias should have been reported as

0.315-0.303-0.012. Thus, a 1 percent error in true r -

coherence gives rise to a 25 percent error in estimated

bias in this example. We generate our correlated
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processes according to

x(t) - a(t) , (B-17a)

y(t) - b(t) + g a(t), (B-17b)

where a(t) and b(t) are uncorrelated complex Gaussian

processes, and

g (B-18)

The statistical characteristics of C in (B-i) are

derived on the fact that X(k) and Y(k) are Gaussian.

This will be the case if x(t) and y(t) are Gaussian;

however, the essence of the theory does not require

X(k) and Y(k) to be DFT outputs but merely complex

Gaussian random variables. Thus, we can simply avoid

the issues of weighting and frequency resolution by

simulating the DTI' outputs directly; this technique

reduces the cost of the experiment (and indeed will

verify the theory). The essential features of the

simulation are given in Figure B-6.

The results of the simulation for N-4 are superposed

in Figure B-7 on the exact bias curve.

In particular, the sample mean of 10,000 independent

trials at each value of C-O(.1).9 is plotted, along with

a vertical bar between the + points of the random

variable. In seven out of the ten cases of selected

MC, the +apoints bracket the theoretical curve, and F

the remaining three out of ten are included within the

±2a points. The possibility of (B-15) falling within
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these tolerances is completely ruled out. Thus, the

simulation confirms the theoretical result in (B-11)

and rules out the approximation in (8-15).

Since we have a simulation technique which corroborates

the theory so well, it is possible to employ-it to

Investigate other more complicated functions of C

which are very difficult (if not impossible) analytically.

In particular, we use a bootstrap idea based upon that

of Benignus (1969a) in an attempt to reduce the bias

of the coherence estimate. Namely, we consider a

modified estimate of USC as

c* =ma [ - j(-C)( I , (5-19)

where we have estimated the bias by means of (B-13) and

the initial estimate C of MeC. The reason for the

0 In (B-19) Is that we are unwilling to accept negative

estimates of coherence. (Without the 0 in (B-19) we

can reduce the bias further at the expense of added

variance.) The estimated bias and variance of C andAm
C are presented in Table B-1. It is observed that the

bias of C is significantly reduced. However, the

variance is increased. In fact, the estimated mean

square error (ME) (which equals the variance plus the

square of the bias) is presented in Table B-1 and is

greatr for C than for C when C is greater than 0.3;

the opposite behavior holds when C is less than 0.3.

(For N-4, C-0.3 is the crossover.) Thus, the choice
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between the two estimators, C and C, depends on whether

one In bothered more by bias or USE.

For larger N, the crossover value of C, at which

or C has lees USE, decreases. For example, at N-B.

it was observed to occur at C=0.2. Thus, for practical

useful values of N (which are usually much larger than

1), the estimator C will have less USE than C over almost

the whole range of C and will probably be preferred.

Also, the bias is quite small for large N. The variance

of C is discussed in the next section. Under the

assumptions of smooth weighting functions and adequate

frequency resolution, we will see variance is a more

significant problem than bias. However, as seen in this

section, when the assumptions are violated, the bias

can be a significant source of estimation error.

B2. Variance of C

An exact expression fo-r the variance of C is

Carter (1972a):

N 2 -)N 3F2 ( N, N;N + 2, 1; C)

N(N + 1)

- 3F2 (2.N,N;N + 1, 1; C)j2 . (B-20)

(B-20) is plotted in Figure B-8. For the special case

of C-O,

v - 0 - 1)2 N 2(N + 1)

and

N1 for large N and C-0. (B-21b)
N 2
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For large N and Cf0,

V a I C -_C)2  (B-22)

which has a maximum value of 8/27NaO.30/N at C-l/3.

Thus the maximum variance is always less than 0.30/N

regardless of the value of C. Hence, the variance of

the estimator in the case where C is unknown (but

nonzero) decreases inversely proportional to N. We

note, by inspecting (B-20), that for larger and larger

N, (B-22) becomes a better and better approximation.

Since, in general, we do not know the true value of

USC, we select N based on a worst case (maximum variance)

analysis.

Provided we have used good weighting functions and

good frequency resolution, the variance has a more

serious effect than bias. For example, if C-1/3 and

N-O0, then the bias of C is less than 0.01, while the

standard deviation (square root of the variance) is

approximately equal to .05. Hence, even when 100

independedt segments are processed, the USC estimate

still has significant variability.

54. Receiver Overatinc Characteristics for a Linearly

Thresholded Coherence Estimation Detector

An algorithm for computing the ROC, or the

probability of detection, PD' versus the probability

of f'alse alarm, P.' for a linearly thresholded USC

estimation detector is presented together with an
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example of a ROC table 1 (Carter (1976). A recent

article (Gevins, Yeager, Diamond, Spire, Zeitlin, and

Gevins (1975)) presents new results on using linearly

thresholded NSC estimates to detect biomedical

phenomena. The desire to establish a threshold below

which USC estimates are not presented to a human

decision maker is an important issue in certain areas,

such as brain wave analysis and sonar, where the volume

of sensor data is large. For a fixed amount of

averaging and a fixed threshold value, E. in the

absence of a coherent source, there is still a certain

probability, PTO that an USC estimate will eiceed the

threshold. Moreover, although the false alarm rate

can be reduced by Increasing E, to do so decreases PDO

when a coherent source Is present. How much it

decreases PD will depend on the strength of the coherent

source, that is, the true or underlying coherence that

is being estimated. This section presents an algorithm

for computing PD versus P7 for a specified amount of

averaging and underlying coherence. The pdf of C,

when CoO, is (from (B-3)):

p(CJN, C-O) - (N-1)(1-C)(N '2) . (B-23)

1 The idea for computing fOC curves was suggested
to the author by R. Trueblood, Naval Undersea Center,
San Diego, California.
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Hence, the probability of false alarm is

P 1 - I (N-l)(1-C) d)cC B-24)

or

E - 1 - *xp~log(P F)/(N-l)); (B-25)

that is, for a specified P F we establish a threshold

according to (B-25). Now the computationally more

complex question is: What probability of detection is

achieved for this threshold value E? The answer, for

a given value of C, is

D- f p(CIC dC-1 - P(C'EIN,C) , (B-26)

E

where P(C<EIN.C) io the cdf. The cdf is given by (B-4),

namely,

P(&LP N -2 rl E L
PCIN.C) - R r 2?F1 (-1, 1-N;1;Z) ,(B-27a)

where

Z aEC (B-27b)

ClN

R-E [" I!1 (B-27c)

2F 1is the hypergeometric function.

The hypergeometric function is, in general, an infinite

series, however, for negative integers, it is given by

equation (15.4.A) of Abramowitz and Stegun (1964) as

L
2F (-E,l-N;1;Z) * Tk ,B-28a)

where
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Tk & (L)k (1 (B-28b)

Pochhaamer's Symbol (z)k (p. 256 of Abramowitz

and Stegun (1964))

(z) a r(z+k) (B-28c)

and where the Gamma function is given by Hankel's

Contour integral (p. 255 of Abramowitz and Stegun (1964))

as

li z -t -1
r(z) a [.IC-t) " etj. IzIc-. (B-28d)

The path of integration starts at +a on the real axis,

circles the origin in the counterclockwise direction,

and returns to the starting point. However, (8-27)

can be computed without resort to complex integration

methods (even when the real part of z0O) by noting for

k an integer that Pochhammer's Symbol,

(z)k ( z + l ) ( z + 2 )  (z+k-1) , k> O

k-O , (B-29)

is t~e product of k incrementally increasing terms.

Now in (B-28b) when Z-ECfO, the first term T 0=1 and

the ratio of the k-th to the (k-1)-st Ve!rm is

Tk k-l-t)(k-1+1 -N)k-1 k 2  " (B-30)

Now each term in the sum can be computed from the

previous term in a simple fashion. Indeed, the actual
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computations can be implemented in BASIC on the

Hewlett-Packard 9830A desk top calculator in less than

30 lines ot code, Figure B-9. For models of the form

x(t) - u(t)*n 1(t) (B-31a)

Y(t) - x(t.D)+n 2(t) ,(B-31b)

where s(t), n1(t), and n 2(t) are mutually uncorrelated,

and when 0 nin (f) UG nn 2(t)=G nn(f), the SNR is

G (f) . 9

X(t) - 21(t)+ni(t) (B-33a)

Y(t) - 22 (t)+n 2 (t) ,(B-33b)

where zi(t) is the output of a linear filter Hi(f)

excited by s(t), iai, 2 and the noises are mutually

uncorrelated and uncorrelated with the signal, then it

can be shown that (2-86)

Cxy(f)C s Mcsyf)(-4

that is, the coherence between two receivers is the

product of the coherence between the source and each

of the individual receivers for the model (B-33).

Substituting for the model in (B-33) results in

G iz1(f) G GZ2 z2 (f) CX, C) (B--.35)

Gnn (f)- Gnn (f) (f _________

1 1 n2 2  FCXs

Now if C 51(f)inC5 s(f)u IC XY(f)]/2 then it follows
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10 N-e
20 Ni-N-i
30 N2-N-2
40 A.1-N
50 CwO. 25
60 PRINT "THIS RUN 1S FOR N-1N" AND NSC-"C
70 FOR 71=0. 04 TO 1 STEP 99
80 E*1-EXP(W0G(F1)/N1)
90 2-Eec
100 C4=(1-E)/(1-Z)
110 C2=I*((i-C)/(l-Z))1N
120 BsO
130 FOR LI0 TO M2
140 C3-C4+L
150 Til
160 Fai
170 17 (L-0) TIME 230
166 FOR K-i TO L
19d KIMK-1
200 T.T*(A+Kl)*(K1-L)*Z/(K*K)
216 F-P+T
220 NEXT K
230 BS4C3e?
246 NEXT L
256 P=C2*S
26P FIXED 3
270 PRINT E;Fl;P,i-P
280 NEX F1

290 END

Figure B-9 Computer Program to Compute ROC Tables
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that SNR Is

11/2
n1 1 (MG 2 2(f ) / y (B-36

Hence, for models of the form of (B-31) or (B-33) if

we want to look at the 0 dB (or equal SNR case), we

must select

10 lOglo , (B-37)

which implies C-0.25. Now suppose we average for

only N-8 independent data segments. Then for

PFaO.04(0.04)1.0O0, the thresholds, PF' cdf and PD

are given in Table 8-2. If a sufficient amount of

stationary data exists, effective performance can be

improved by increasing N; if not, N can only be

increased at the expense of degrading the frequency

resolution with its inherent difficulties. For many

problems, N-8 will be too small and PF=O.0 4 will be

too large or the performance will be desired for a

different value (or family of values) of C. Example

plots are given in Figures B-l0 and B-11; more

extensive results can be obtained by modifying the

program, Figure B-9.
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Table B-2, Threshold., c , andP for N=8 and C=O. 2S

THIS RUN 1S FOR NwB AND N8C-0.25
0.369 9.949 9.90.394
0.303 0.989 0.473 9.527
0.261 0.120 9.389 0.611
0.230 9.169 0.327 0.6730.295 0.209 9.279 0.721
9.184 0.249 0.249 9.760
0.166 9.289 p.208 0.792
0.159 0.320 9.181 9.819
0.136 9.369 9.157 0.843
0.123 9.409 0.137 0.863
0.111 0.449 9.119 0.881
0.100 0.489 0.104 9.896
9.969 9.520 0.90 .910
0.979 0.560 9.978 0.922
0.070 9.69 9.966.93
9.962 9.649 0.057 093
0.054 0.689 0.948095
9.946 0.720 9.039 0.961
9.038 9.769 0.932 9.968
0.031 0.899 0.925 0.975
9.025 9.840 9.919 0.981
0.018 9.8 0.014 0.986
0.012 0.920 0.999 9.991
0.006 0.960 0.994 0.996
0.999 1.009 9.999 1.900

185



Ta 5335

11

C u0.25

00

Figure 0-10 ROC Curves for C-0.25; N-n4. S. IA
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N 8

UU

F zoi t.v W1t I ROC Curves for X=*8; CaO.1. 0.2. 0.3
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APP3WDIX C

COMPUTER PROGRAM TOR SPECTRAL
AND TIME DELAY ESTIMATION

This appendix Is divided into two sections. The

first section is a brief program description. The second

section is a complete listing of the main program and

subroutines necessary for program execution.

Cl. Procram Description

The main program estimates the auto and cross

spectral density functions. These spectral estimates are

used by the subroutine PRCU to estimate six different

AML estimates for time delay (See Table 4-1 of the main

text.) Facilities with spectral estimation programs

can simply augment their computations with a call to

PRICES. Facilities without spectral estimation algorithms

will be able to use the programs listed in Section 2 of

this appenuix. The programs listed are intended to be

general FORTRAN IV programs; they have been compiled

and executed on the Univac 1108, the Control Data

Corporation (CDC) 6600 and International Business Machine

(IBM) 360. The spectral estimation programs have been

used for research projects by: Williams (1971), Carter

(1972a) and (1972b), Brady (1973), Carter. Knapp, and

Nuttall (1973a). Carter, Nuttall, and Cable (1973),

Santopietro (1973), Carter and Knapp (1975), and Appendix D

188



TR 5335

of thim dissertation. These remearrh prolects were

(onducted entirely on the UnJvac 1108 and a significant

program rewrite was undertaken to make the programs

more transferable from one computer system to another.

The programs as a complete data processing system

consist of input, computations and display. We have

concentrated our rewrite efforts on the computations;

both the input and display programs are expected to

contain peculiarities of the particular computer being

used. The input and display subroutines are modular

so that only a minimum rewrite is required to transfer

the program to another installation. The function of

the input subroutine LOAD io to load the XX and TY arrays

with NNN data points. It the data were stored on logical

magnetic tape number 6 in binary format the call to

LOAD could be replaced by the FORTRAN statement

"READ 6, XX(I). YY(I), I-, NNN".

The subroutine LOAD listed in Section 2 is used to

generate synthetic data for a suitable test case

(though not the example for Appendix D). The display

subroutine DPLOT is called either: (1) to initialize the

plotter, (2) to plot the specified array, or (3) to

terminate plotting. The subroutine listed In Section 2

is written for the Stromberg Carlson 4060 plot system.

It must be rewritten for other systems. If a facility

1The programs originally written and documented by
C.R.Arnold, G.C.Carter, and J.F.Ferrie, have been rewritten
and tested oy J.C.SikorskiG.C.Carter and Dr. R.G.Williams.
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has no plotting system, the subroutine should simply be

a subroutine which returns; alternatively, the subroutine

could print the IX array for I-ISTRT to ISTOP. Thus,

for use at a new site, two subroutinee (LOAD and DPWOT)

need to be rewritten.

The main program also calls (in addition to

DPLOT and LOAD): ICIP, .FFT, LIST, LIST2, PRCES, and LREMV.

The subroutine LREMV computes (and optionally removes)

the linear trend and dc for the input time waveforms.

These computations are performed for every time segment

and are printed out by the main program as an aid to

detecting nonstationarities or digitizing errors. The

subroutines LIST and LIST2 are used to print out (list)

results. The subroutine FF T computes the FFT (see, for

example, Cooley-Tukey (1965)); coded and listed by

Singleton (1969). Singleton's mixed radix algorithm has

ben shown by Ferrie and Nuttall (1971) to be .igniricantly

rautor (though less accurate) than other proposed FFT.s.

Singleton's 600 line FORTRAN subroutine can be replaced

with shorter programs (see, for example, p. 332 of

Oppenheim and Schafer (1975)). Because of the availability

of Singleton's listing in the literature, the FIT is not

listed here. Note that the subroutine PRCES and the main

program presume that the FF output array is subscribed

from 1 to NPFFT and not from 0 to (NPFFT-1). The

subroutine PRCES implements the six AUL processors

given in Table 4-1. The subroutine PRCES calls on the

190
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subroutines FFT and DPLOT (already discussed).

Singleton's subroutine performs a mixed radix FFT; I
that Is, the number of data points do not need to be

integer powers of 2 such as 512, 1024, 2048 and 4096

but can have factors of 2's, 3's, and 5's, such as

1000, 1500, 2000 and 3000. Numbers which can be

factored into 2's, 3's, and 5's only are called highly

composite. Given the FORTRAN variable NNN, the sub-

routine HICUP finds the highly composite number closest

to (but greater than or equal to) NNN. The output of

HICMP is NEWNNN. For some applications, the program

user will want NRVNNN to be twice as large as NNN;

this is because the main program fills the data arrays

with zero from NNN + 1 to NEWNNN. Such zero filling

is (theoretically) required to inhibit the effect of

circular convolution; in practice, though, (with

stochastic data) zero filling does not warrant the added

(doubled) computational cost. If it is desired, zero

filling can simply be achieved by adding one line to

ICiP: "NEVNNN = 2*NEWNNN'.

In addition to calling several critical subroutines,

the main program performs computations necessary to

estimate the spectral characteristics of the two wave-

forms under investigation. The computations performed

are briefly outlined in four major steps in appendix A.

When the two input waveforms are complex, one FFT of

each waveform segment is required as specified in
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Appendix A. However, in most (though not all) practical

data collection facilities, the input waveforms are real

(not complex). When x(t) and y(t) are real, one FFT of

the complex waveform x(t) + jy(t) can be computed and

quickly be manipulated to form the FFT of x(t) and the

FFT of y(t). (See p. 333-334 of Oppenheim and Schafer

(1975); see also p. 271-293 of Raoiner and Rader (1972).)

These observations, combined with (A-3) give rise to

the FORTRAN statements used to estimate the spectral

characteristics of x(t) and y(t). The application of

this theory reduces the computation time for two real

waveforms by a factor of two. The rinal comment

necessary before presenting the computer listings is to

describe the input FORTRAN variables. NNN is the number

of data points per segment. ISR is the integer sampling

rate (Hz). NDSJP Is the number of disjoint segments

in the total time waveform. SFX and SFY are scale

factors used to adjust the (voltage) level of the input

waveform to correct for frequency independent attenuations

in the data collection and digitizing process. (When no

correction is desired, the user sets SFX-SFY-.0.)

when the user desires the spectral estimates to appear

3 dB higher, he sets SFX-SFY-2.0.) With these five

sample inputs, the input time data are processed. The

next section gives a complete program and subroutine

listing.
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APPENDIX D

EXAMPLE COMPUTER RUN FOR SPECTRAL AND
TIME DELAY ESTIMATION

Theoretical equations have been derived in

Chapter 3 for ML estimation of time delay. A computer

program to achieve an AML estimate of delay is given.

in Appendix C. Tha purpose of this chapter is to

describe four example cases which were run to sub-

stantiate the theory and validate the computer program.

One computer run was made for each of the cases. Only

one of the runs will be explicitly reported here. In

all of the four cases studied, the true delay was

set equal to zero (without loss of generality). Further,

the signal attenuation was set equal to unity so .that

(3-1) becomes

x1 (t) - (t)+nl(t) (D-la)

x2(t) s(t+D)+n 2(t) (D-lb)

D 0 . (D-lc)

Our desire is to see whether (and "how well") we can

estimate the (assumed unknown) parameter D, given a

T second observation of xl(t) and x2 (t). The variance

of the ML processor (as discussed after (3-34)) depends

on the particular signal and noise spectral characteristics

(in particular, C1 2 (f)). Moreover, the variance of the
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delay estimate can only be empirically determined by

resort to numerous (expensive) computer runs. We have

not done that here (but have suggested further work in

this area (Chapter 6)). We have, however, made four

computer runs for the data cases synthesized by

Figure D-1. As shown in the figure, the signal spectrum

has two nonzero frequency bands. The bands are 10 Hx

wide centered at 5 and 50 Hz. Each of the five filters

represented in Figure D-1 is the cascade of two sections,

each with a 48 dB/octave roll off. The noise generators

generate white noise. Details of the hardware are the

same as described on pages 71-72 of Carter (1972a).

The actual data generation required less hardware than

shown in Figure D-l, but the simulation is easier to

visualize by studying Figure D-1 and is closer to what

would bo done in a real time simulation of the type

suggested in Chapter 6. In our experiment,-we adjust the

SNf by adjusting the gain In Figure D-1.

The digital outputs of the data synthesized are

stored on magnetic tape for use by the computer program

(Appendix C). Longer observation time is achieved by

rea4ing more data from the magnetic tape. In the four

example cases, the ML processor output was examined

for two different signal levels and two different

averaging times T. Expect for absolute SNR level all
ai

four example cases had the same signal and the same

noise spectral densities. As expected, when the SNR
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was low, more averaging time was required to extract 1
a "good" delay estimate; this behavior Is predicted

by (3-34). In particular, of our four cases, the low

811 and short averaging case resulted in unusable delay

estimates. The reason for this was apparent upon

inspecting the coherence estimates used to approximate

the true coherence. As predicted in appendix B with

short averaging times (that is, small N), we were unable

to detect a low coherent source.

This happened to our one trial at low SNR and short

averaging; however, by increasing the averaging time,

an acceptable time delay estimate was obtained. We

were able to increase the averaging time (essentially

without bound) since the example cases were using

laboratory data.

The case which we will report in detail is the

high-coherence, short-averaging case. In particular,

the gain in Figure D-1 is adjusted so that C&O.6 in the

frequency bands with signal power and C&O in the other

bands. The characteristics of x,(t) and x2 (t) were

estimated from 8 seconds of data with 16 independent

segments (each of 1/2 second duration, that is, 2 Hz

resolution).FFTs of 600 samples (1/2 sec times 1200

samples/sec) can be performed using the fast mixed

radix FFT of Singleton (1969).

The characteristics of the noise generators in

Figure D-1 were essentially identical. Thus, for the
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model (D-1), Gxlx (f)-G xx2(f),Vf. The estimates of
1 1 2 2

G11(f) are depicted in Figure D-2. The estimates of

Gx2x (f) were extremely similar and are not repeated.

The extent to which xi(t) and x2 (t) are similar is

measured by the USC estimate in Figure D-3. Since the - -i

CC and delay D depend upon the phase, the phase estimates

are depicted in Figure D-4. The slope of the phase

estimates is an important indicator of delay in those

frequency bands where the MSC is strong (namely, 0-10 Hz

and 45-55 Hz). Using the algorithm discussed In

Chapter 3 and the estimation techniques of appendix A

implemented in appendix C, we havo obtained the delay

estimate given in Figure D-5. From Figure D-5 we see

that the GCC with IlL weighting peaks very close to the

true value of delay, namely, D-0. A blowup of Figure

D-5 given in Figure D-6 shows that the peak is within

10 msec of the true value. Clearly, the Pstlmktion

technique proposed is a viable method for Pstimating

time delay.

1Dimensionally the slope is the phase angle in
radians divided by the frequency in radians per sec.
Thus thc slope of the phase is measured In seconds.
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(SLIDE 1)

THE TERM COHERENCE HAS SEVERAL DIFFERENT MEANINGS AND INDEED

DEFINITIONS. THE ONE WE USE HERE IS THE MAGNITUDE SQUARED OF THE

COEFFICIENT OF COHERENCY DEFINED BY WEINER IN 1930. IN PARTICULAR,

FOR OUR PURPOSES HERE, WE DEFINE THE COHERENCE BETWEEN TWO

STATIONARY RANDOM PROCESSES A AND B AS THE MAGNITUDE SQUARED OF

THE CROSS POWER SPECTRUM DIVIDED BY THE PRODUCT OF THE TWO AUTO

POWER SPECTRA. THE COHERENCE IS A FUNCTION OF FREQUENCY AND HAS

THE USEFUL PROPERTY THAT IT LIES BETWEEN ZERO AND UNITY. IT IS,

IN EFFECT, A NORMALIZED CROSS SPECTRAL DENSITY THAT, IN SOME

SENSE, MEASURES THE EXTENT TO WHICH TWO RANDOM PROCESSES ARE

SIMILAR. FOR EXAMPLE, TWO UNCORRELATED RANDOM PROCESSES ARE ALSO

INCOHERENT; THAT IS, THE COHERENCE IS ZERO BETWEEN UNCORRELATED

PROCESSES. FURTHER, THE COHERENCE BETWEEN TWO LINEARLY RELATED

PROCESSES IS UNITY,
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(SLIDE 2)

THE PHYSICAL PROBLEM THAT MOTIVATES THIS RESEARCH IS A DESIRE

TO PASSIVELY ESTIMATE GEOGRAPHICAL INFORMATION ABOUT THE STATE

OF AN ACOUSTIC SOURCE. IN THE DEVELOPMENT HERE AN ACOUSTIC POINT

SOURCE RADIATES SPHERICAL WAVES, RECEIVED, FIRST, AT ONE SENSOR

AND SOE DELAYED TIME LATER, AT A SECOND SENSOR. THE SOURCE IS

ASSUMED STATIONARY FOR THE OBSERVATION PERIOD AND THE SENSOR

SEPARATION IS ASSUMED KNOWN. EACH RECEIVED WAVEFORM IS OBSERVED

IN THE PRESENCE OF UNCORRELATED NOISE. THE PROBLEM WE ADDRESS IS

HOW TO ESTIMATE THE TRAVEL TIME OF THE WAVEFRONT OR TIME DELAY

FROM ONE SENSOR TO THE NEXT.

THE IMPORTANCE OF OBTAINING A GOOD TIME DELAY ESTIMATE IS THAT

IT CAN BE USED TO FIX THE SOURCE LOCATION ON A HYPERBOLIC LOCUS

OF POINTS. OF COURSE, IF WE HAVE THREE SENSORS WE CAN ESTIMATE

TWO TIME DELAYS AND THE INTERSECTING HYPERBOLIC CURVES CAN BE

USED TO ESTIMATE SOURCE POSITION.

-NEXT SLIDE PLEASE-
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(SLIDE 3)
IN THE GENERAL CASE WE CAN MODEL THE ACOUSTIC SOURCE PROPAGA-

TION AND NOISE CORRUPTED RECEPTION AS SHOWN HERE. IN PARTICULAR,

WE TREAT THE PATH FROM THE SOURCE TO EACH RECEIVER AS A LINEAR

TIME INVARIANT FILTER. THE RECEIVED SIGNALS X ONE AND X TWO

CONSIST OF THE FILTER OUTPUTS PLUS NOISE.

A SPECIAL CASE OF THIS MODEL IS SHOWN ON THE BOTTOM OF THE

SLIDE. THE FIRST RECEIVED WAVEFORM CONSISTS OF SIGNAL PLUS NOISE.

THE SECOND RECEIVED WAVEFORM CONSISTS OF AN ATTENUATED AND DELAYED

SIGNAL IN THE PRESENCE OF NOISE. THE MATHEMATICAL PROBLE1 WE

ADDRESS IS: HOW TO BEST ESTIM1ATE THE TIME DELAY OR EQUIVALENTLY

SOURCE BEARING. FURTHER WE ARE CONCERNED WITH THE ROLE OF COHER-

ENCE IN THIS PROCESS.

FOR ANALYTIC PURPOSES WE TREAT THE NOISE AS STATIONARY AND

UNCORRELATED. LATER WE MAKE AN IMPLICIT ASSUMPTION THAT THE

NOISE IS NORMAL (GAUSSIAN).

-NEXT SLIDE PLEASE-

7



TD 5507

Gni (fM) - 1C x(f)

i =1,t2;*

Ci (f) C~ Mf~ (f)
x12 jxI(f Sa (

SLIDE 4

8

lo



TD 5507

(SLIDE 4)

FOR THE GENERAL MODEL WE CAN SHOW THAT THE RECEIVED SIGNAL-TO-

NOISE RATIO IS A FUNCTION OF ONLY THE COHERENCE BETWEEN THE SOURCE

AND THE RECEIVER. INDEED, RELATIVE TO THE SENSOR NOISE POWER,

THE AMOUNT OF POWER RECEIVED FROM THE SOURCE AFTER IT HAS BEEN

ATTENUATED BY ACOUSTIC TRANSMISSION THROUGH THE OCEAN MEDIUM IS

DESCRIBED BY THE SOURCE-TO-SENSOR COHERENCE DIVIDED BY ONE MINUS

SOURCE-TO-SENSOR COHERENCE. MOREOVER, THE COHERENCE BETWEEN

THE TWO RECEIVED WAVEFORMS CANNI EXCEED THE COHERENCE BETWEEN

THE SOURCE AND ANY SENSOR; THIS IS TRUE WHEN THE OCEAN MEDIUM

IS MODELED AS A LINEAR TIME INVARIANT FILTER.

MORE SPECIFICALLY, THE COHERENCE BETWEEN THE TWO RECEIVED

WAVEFORMS IS EQUAL TO THE PRODUCT OF THE COHERENCES BETWEEN THE

SOURCE AND EACH OF THE RECEIVED WAVEFORMS.

-NEXT SLIDE PLEASE-
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(SLIDE 5)

UNDER STANDARD ASSUMPTIONS, NAMELY, THAT THE TWO RECEIVED

WAVEFORMS, X ONE AND X TWO, ARE JOINTLY STATIONARY, NORMAL (GAUSSIAN)

RANDO PROCESSES AND THAT THE OBSERVATION TIME P IS LARGE, THE

MAXIMUM LIKELIHOOD ESTIMATE OF TIME DELAY CAN BE DERIVED. THE

MAXIMUM LIKELIHOODOR MLESTIMATE OF TIME DELAY CAN BE INSTRUMENTED

INONE OF TWO WAYS. SHOWN HERE IS ONE REALIZATION. THE FIRST

RECEIVED WAVEFORM IS FILTERED BY H ONE TILDE, AND THE SECOND

RECEIVED WAVEFORM IS FILTERED BY H TwO TILDE AND DELAYED. THE

FILTERS MUST HAVE IDENTICAL PHASE RESPONSES. THE FILTER OUTPUTS

ARE SUMMED, SQUARED, AND INTEGRATED AS SHOWN. THE HYPOTHESIZED

VARIABLE DELAY THAT MAXIMIZES THIS SYSTEM OUTPUT IS THE MAXIMUM

LIKELIHOOD ESTIMATE OF TIME DELAY. THE SPECIFIC FILTER CHARAC-

TERISTICS DEPEND ON THE SIGNAL AND NOISE SPECTRA, WHICH MUST BE

KNOWN OR ESTIMATED.

-NEXT SLIDE PLEASE-
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(SLIDE 6)

ANOTHER REALIZATION FOR THE MAXIMUM LIKELIHOOD ESTIMATE OF

TIME DELAY IS A SPECIAL CASE OF THE GENERALIZED CROSSCORRELATION

PROCESSOR. IN THIS PROCESSOR THE FIRST RECEIVED WAVEFORM IS FIL-

TERED By H ONE AND THE SECOND RECEIVED WAVEFORM IS FILTERED BY

H TWO, DELAYED, MULTIPLIED, AND INTEGRATED AS SHOWN ON THE DIAGRAM.

AT THE TOP OF THE SLIDE. BY PROPER CHOICE OF THE GENERAL WEIGHTING

FUNCTION, W, WHICH IS THE PRODUCT OF H ONE AND H TWO CONJUGATE,

WE CAN ACHIEVE THE MAXIMUM LIKELIHOOD ESTIMATE FOR TIME DELAY.

HOWEVER, WE CAN ALSO ACHIEVE A GENERALIZED CROSSCORRELATION

PUNCTION, R OF TAU, BY MULTIPLYING THE CROSS SPECTRUM, G,

BETWEEN THE TWO RECEIVED WAVEFORMS, BY THE GENERAL WEIGHTING, W,

AND COMPUTING THE FOURIER TRANSFORM AS INDICATED ON THE BOTTOM OF

THE SLIDE.

-NEXT SLIDE PLEASE-
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(SLIDE 7)

IF WE ESTIMATED THE GENERALIZED CROSSCORRELATION FUNCTION

FOR SIX DIFFERENT TRIALS, THE PEAK OF THE FUNCTION MIGHT VARY

AS A FUNCTION OF TRIAL. WE HAVE ACTUALLY IMPLEMENTED THE TECHNI-

QUE FOR SEVERAL EXAMPLE CASES ON THE UNIVAC 1108. BASED ON OUR

EXPERIMENTAL RESULTS, WE SPECULATE THAT A TYPICAL GENERALIZED

CROSSCORRELATION FUNCTION MIGHT PEAK, AS INDICATED IN THE HYPO-

THETICAL TRIALS SKETCHED HERE. IN PARTICULAR, THE ABSCISSA VALUE

OF THE PEAK LOCATION, THAT IS, THE ESTIMATE OF TIME DELAY, HAS A

CERTAIN AMOUNT OF VARIATION. NOTICE ALSO IN TRIAL NUMBER 5, NEXT

TO THE BOTTOM PLOT, THAT A NUMBER OF AMBIGUOUS PEAKS CAN ARISE IN

ADDITION TO THE LOCAL VARIATION OF THE TIME DELAY ESTIMATE. THE

AMBIGUITY PROBLEM IS NOT TREATED IN THIS WORK. THE PROBLEM OF

COMPUTING THE VARIANCE OF THE TIME DELAY ESTIMATE IS A DIFFICULT

ONE IN WHICH ONE IS PUZZLED HOW TO PROCEED. HOWEVER, IF WE COULD

COUNT THE NUMBER OF PEAKS THAT OCCURRED AT EACH OF SEVERAL '

ABSCISSA VALUES, THEN WE COULD PLOT A FREQUENCY DISTRIBUTION OF

THE PEAK LOCATION. FROM THIS DISTRIBUTION WE CAN OBTAIN THE

VARIANCE OF THE TIME DELAY ESTIMATE.

-NEXT SLIDE PLEASE-
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(SLIDE 8)

THE VARIANCE OF THE TIME DELAY ESTIMATE IS A COMPLICATED

FUNCTION OF SEVERAL PARAMETERS. IT DEPENDS ON THE LENGTH OF

THE OBSERVATION TIME, P, THE GENERAL WEIGHTING FUNCTION, W, THE

AUTO-SPECTRAL DENSITIES OF THE TWO RECEIVED WAVEFORMS, AND THE

MAGNITUDE CROSS SPECTRUM BETWEEN THE TWO RECEIVED WAVEFORMS.

IT ALSO DEPENDS ON THE COHERENCE, C, DEFINED EARLIER AS THE

MAGNITUDE SQUARED CROSS SPECTRUM DIVIDED BY THE PRODUCT OF THE

TWO AUTO-SPECTRAL DENSITIES. RECALL THE COHERENCE IS GREATER

THAN OR EQUAL TO ZERO AND IS LESS THAN OR EQUAL TO UNITY. WHEN

THE OBSERVATION TIME IS LARGE OR THE COHERENCE IS NEAR UNITY, THE

VARIANCE IS GENERALLY QUITE LOW AND YOU CAN DO WELL IN SPITE OF

THE WEIGHTING SELECTED. OF COURSE, AN IMPORTANT ROLE TO BE

PLAYED BY TH EXPRESSION HERE IS TO EVALUATE HOW DIFFERENT PRO-

CESSORS COMPARE WITH ONE ANOTHER. ANOTHER IMPORTANT USE OF

THIS EXPRESSION IS IF ONE KNOWS THEORETICALLY THE BEST WEIGHTING

FUNCTION TO APPLY, BUT APPLIES AN INCORRECT OR SUBOPTIMUM WEIGHT-

ING, THEN THE VARIANCE OF THE SUBOPTIMUM DELAY ESTIMATOR CAN BE

EVALUATED.

-NEXT SLIDE PLEASE-
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(SLIDE 9)

THE MINIMUM VARIANCE FOR ANY TIME DELAY ESTIMATION SCHEME

CAN BE OBTAINED FROM THE CRAMER RAO LOWER BOUND. As SHOWN HERE,

IT IS A FUNCTION OF ONLY TWO PARAMETERS: THE OBSERVATION TIME P

AND THE COHERENCE BETWEEN THE TWO RECEIVED WAVEFORMS. As P IS

INCREASED THE VARIANCE DROPS; FURTHER, AS THE COHERENCE C TENDS

TOWARD UNITY THE TERM C OVER ONE MINUS C SQUARED TENDS TOWARDS

INFINITY. THUS, AS THE COHERENCE OR C TENDS TOWARDS UNITY, THE

VARIANCE TENDS TOWARDS ZERO. HOWEVER, THE COHERENCE IS NOT UNDER

OUR CONTROL. THE FACTORS WHICH WE CAN CONTROL ARE THE OBSERVATION

TIME P AND THE WEIGHTING. THE MINIMUM VARIANCE IS ACHIEVED FOR

THE MAXIMUM LIKELIHOOD WEIGHTING FUNCTION GIVEN BY C OVER ONE

MINUS C TIMES THE MAGNITUDE CROSS SPECTRUM.

-nEXT SLIDE PLEASE-
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(SLIDE 10)

THE MAXIMUM LIKELIHOOD WEIGHTING MULTIPLIES THE ESTIMATED

CROSS SPECTRUM TO YIELD A SINGLE FUNCTION TO BE FOURIER TRANS-

FORMED. IN GENERAL, WHEN THE TRUE VALUES OF COHERENCE AND

MAGNITUDE CROSS SPECTRUM ARE UNKNOWN, THEY MUST BE ESTIMATED.

ESTIMATES ARE INDICATED BY HATS.WHEN SPECTRAL ANALYSIS IS USED

TO YIELD ESTIMATES IN PLACE OF THE TRUE QUANTITIESTHE FUNCTION

TO BE FOURIER TRANSFORMED IS INDICATED ON THIS SLIDE. THE CROSS

SPECTRUM OVER THE MAGNITUDE CROSS SPECTRUM CAN BE THOUGHT OF AS

E TO THE MINUS J PHASE. IN PARTICULAR, NOTE THAT THE WEIGHTING

EMPHASIZES THE PHASE OF THE ESTIMATED CROSS SPECTRUM IN THOSE

FREQUENCY BANDS WHERE THE COHERENCE IS HIGH. ONE WOULD EXPECT

THE ESTIMATED PHASE OF THE CROSS SPECTRUM TO PLAY AN IMPORTANT

ROLE IN TIME DELAY ESTIMATION, SINCE THE SLOPE OF THE PHASE IS

A MEASURE OF THE TIME DELAY. WE CAN SEE THIS BY NOTING THAT THE

PHASE SLOPE IS MEASURED IN RADIANS, DIVIDED BY RADIANS PER SECOND,

OR SECONDS. OF COURSE, THE PHASE ESTIMATES WILL BE NOISY IN THOSE

FREQUENCY BANDS WHERE THE COHERENCE IS LOW SO WE WILL EMPHASIZE

THE PHASE IN THOSE BANDS WHERE THE COHERENCE IS HIGH.

-NEXT SLIDE PLEASE-
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SUMMARY

o ACOUSTIC SOURCE

e TIME DELAY MODEL

o DERIVED ML TIME DELAY ESTIMATE

o DERIVED CRAMER RAO LOWER ROUND

o DERIVED THE VARIANCE FOR ANY GCC

0 SHOWN ML ESTIMATE IS MINIMUM VAR

0 IMPLEMENTED RESULTS

o APPLICATIONS TO ESTIMATING SOURCE POSITION

SLIDE 11
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(SLIDE 11)

IN SUMMARY, THE PHYSICAL PROBLEM MOTIVATING THIS RESEARCH IS

A DESIRE TO ESTIMATE POSITIONAL INFORMATION ABOUT AN ACOUSTIC

SOURCE. WE HAVE PROPOSED A TIME DELAY MODEL AND DERIVED THE

MAXIMUM LIKELIHOOD ESTIMATE FOR TIME DELAY. ADDITIONALLY WE HAVE

DERIVED THE CRAMfR RAO LOWER BOUND ON THE VARIANCE OF THE TIME

DELAY ESTIMATE. SUBSEQUENTLY WE HAVE DERIVED AN EXPRESSION FOR

THE VARIANCE OF THE TIME DELAY ESTIMATE FOR ANY GENERALIZED CROSS-

CORRELATION PROCESSOR. WE HAVE SHOWN THAT THE MAXIMUM LIKELIHOOD

ESTIMATE OF TIME DELAY ACHIEVES THE CRA14ER PFAO LOWER BOUND AND IS

THEREFORE MINIMUM VARIANCE; AS SUCH THE PROPOSED TECHNIQUE IS THE

BEST PROCESSING THAT CAN BE DONE TO ESTIMATE TIME DELAY OR, EQUIV-

ALENTLY, TO ESTIMATE THE HYPERBOLIC LOCUS OF POINTS ON WHICH THE

ACOUSTIC SOURCE IS LOCATED. THERE IS NO BETTER TECHNIQUE. WE

HAVE IMPLEMENTED THE RESULTS IN AN APPROXIMATE METHOD BY SUB-

STITUTING ESTIMATED MAXIMUM LIKELIHOOD WEIGHTING IN PLACE OF

TRUE WEIGHTING AND FOUND THAT THE TECHNIQUE WORKS ON A LARGE

SCALE DIGITAL COMPUTER. OF COURSE, THE ABILITY TO LOCATE A

SOURCE ON A HYPERBOLIC LOCUS OF POINTS SUGGESTS THAT, WITH THREE

SENSORS, INTERSECTING HYPERBOLIC CURVES CAN BE USED TO ESTIMATE

SOURCE POSITION.

23
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ADDITIONAL REFERENCES NOT GIVEN IN THE CONFERENCE PROCEEDINGS

INCLUDE MY RECENTLY COMPETED PH.D. THESIS AND AN ARTICLE ON GEN-

ERALIZED CORRELATION PROCESSING THAT HAS JUST APPEARED IN THE

AUSUST IEEE TRANSACTIONS ON ACCUSTICS SPEECH AND SIGNAL PROCESSJNG.
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Proceedings Reprint

THE ROLE OF COHERENCE IN TIME DELAY ESTIMATION

6. Clifford Carter

Naval Underwater Systems Center
New London, Connecticut 06320 U.S.A.

ABSTRACT. This paper investigates methods for passive estimation
of the bearing to a slowly moving acoustically radiating source.
The mathematics for the solution to such a problem is analogous
to estimating the time delay (or group delay) between two time
series. Since the estimation of time delay is intimately related
to the coherence between two time series, a sunmmry of the pro-
perties of coherence is presented.

The maximum likelihood (ML) estimate of time delay (under
jointly stationary Gaussian assumptions) is presented. The
explicit dependence of time delay estimates on coherence is evi-
dent in the estimator realization in which the two time series
are prefiltered (to accentuate frequency bands according to the
strength of the coherence) and subsequently crosscorelated. The
hypothesized delay at which the generalized crosscorrelation (GCC)
function peaks is the time delay estimate. The variance of the
time delay estimate is presented and discussed.

INTRODUCTION. An acoustic source whose signal, s(t), is trans-
mitted through the ocean medium and received in the presence of
additive noise can be characterized by

x(t) -5st) S ni(m) , i a 1,2 (1)

For the main purposes of this paper s1(t)-s(t), s2(t),cs(t+D) and
we desire to present an ML estimator for thetimedelay D. The
delay parameter can be used, in a nondispersive medium with known
speed of transmission, to estimate the bearing to an acoustic
source (relative to the sensor baseline) or, more generally, to

25
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estimate a hyperbolic "line" of position. Since the final result
depends heavily on the coherence between x1 and x2, we precede
the development with a concise review of the properties of the
coherence function and of results that bear directly on the esti-
mation of time delay.

THEORY OF COHERENCE. For any two jointly stationary random pro-
cesses x1 and x2. the coefficient of coherency or the complex
coherence has been defined by Weiner (1930) as the ratio

I I 2 M

GXl (3Xl(f)2x2(M

where G xx2(f) is the cross power spectral density function be-

tween xj and x2, and Gxxt (f), i=1,2 are the auto power spectral

density functions at frequency, f.

The magnitude-squared coherence (MSC) or simply the coherence
is defined by (see, for example, Carter, Knapp and Nuttall (1973))

1 ixI M x x 2 M:Cl~f), ~l()G~f) ( 2)

A useful property of the MSC is
0 <, Cx 02 M) <.I

provided the autospectra are positive (in particular non zero).

In order to attach some physical significance to what the
coherence measures, consider that the ocean medium operators M1
and M2 are linear time-invariant filters. Thus sl(t) and s2 (ti
in equation (1) are the respective outputs of filters Ml(f) and
N2(f) when excited by source s(t). When the noise, nj(t), is un-
correlated with the signal, s(t), at the i-th sensor, the ratio
of the received signal power at the output of the ocean channel
to the corruptive noise power depends on the coherence between
the source and the sensor. Specifically, from Carter, Knapp,
and Nuttall (1973)

26
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Gs.s i( ) a1,2 
(3)

Gnini M 1-Csxi(f)

That is, the received signal-to-noise ratio (MR) at the i-thsen-
sor depends on the coherence between the source and the received
waveform. This result has Deen expressed by Carter and Knapp
(1976) more compactly as

Cx 1'2(f) -Csx1 (f) Csx2( M14)

These results apply only to the case where the medium can be
accurately modeled by linear time-invariant filters corrupted by
uncorrelated additive noise.

RESULTS. For the purpose of obtaining an ML estimate of delay,
certain assumptions are required. In particular, for a signal
emanating from a nearfield source and monitored in the presence of
noise at two spatially separated sensors we require in equation (1)
that si(t) - s(t) and s2(t) - as(t+D). Further, we require that 5
isreal-and s(t), nI(t), and n2(t) are-real, jointly stationary,
Gaussian random processes. Source s(t) and noises, ni(t) and n2(t)
are assumed to be mutually uncorrelated.

An estimated value of 0 is the hypothesized value T that maxi-
mizes the generalized crosscorrelation (GCC) function defined by

r G~iU~f j2WfT
R(r) -] ( df. (5)

For xi(t) and x2(t) real, the ML estimator requires a particular
weighting, Cxlx2iM,(,) I~~x,(')l Cxx f)]

W(f) * H1(f)H2*(f) GY 3 12 (f1(6)

A complete derivation is given by Carter (1976).

Note from equation (6) that for the ML estimate of delay that
W(f) is real. The ML estimator is virtually equivalent to one
proposed by Hannan and Thomson (1973). The ML estimator can be
achieved by shaping xl(t) with filter H (f) and x2(t) with filter
H2(f) crosscorrelating the filter outputs, and observing what hypo-
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thesized value of delay achleves a maximum.

The estimator can also be achieved by other methods. For
exmle, Hahn (1975), Carter and Knapp (1976) and Carter (1976)
present a method of filtering and summing the outputs, squaring
and averaging in order to estimate the delay D. The processor
could also be realized as a number of Obestm estimates of 0 for a
variety of frequencies. The ML estimate is then achieved by per-
foning a weighted average across frequency. For example, Clay,

lnich and Shamn (1973) develop ML estimates of bearing (analo-
geus to delay) for each of a number of different frequencies. To
obtain a single estimate of source bearing, these individual esti-
mates should then be combined with weighting dependent upon the
particular underlying signal and noise characteristics.

The role of coherence in the weighting used for ML estimation
of 0 is specified in .equation (6). Note that those values of co-
-herence near unity are most important; conversely, in those fre-
quency bands where there is no source signal power (hence, where
the received waveforms are incoherent), the delay estimate, as
would be expected, receives no weight. The ML estimator is actu-
ally a function of more fundamental spectral measurements than
those specified in equation (6). However, expressing the pro-
cessor in more fundamental but unnormalized quantities can make
interpretation more difficult, though equally correct.

The ML weighting agrees with MacDonald and Schultheiss
(1969), and Hahn (1975) under specific conditions (including when
there are two sensors and no attenuation).

VARIANCE OF GENERAL TIME DELAY ESTIMATORS. The variance of the
time delay estimate in the neighborhood of the true delay for
general weighting function W(f) is given by

Var+D]u 'wf (w)G x fG x x(f) [1 C12(f)]df (7)

p7 f)2 xx(f) W(f)d 2

where P is the observation period (in seconds). From equations
(6) and (7), the variance of the ML processor is

VrLA(2wf)2 C 12(f) -1(8)P C122Pdf
1- c 2(f)
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The ML processor achieves the Cramer-Rao lower bound (see Carter
(1976)). Therefore, the ML processor achieves a varianre less
than or equal to that provided by other correlation processors.

These results for variance can be related to MacDonald and
Schultheiss (1969) as follows. Define the bearing to an acoustic
source, as in Nuttall, Carter and Montavon (1974)

- arc cos (9)

where C is the speed of sound in the nondispersive mediua and d
is the sensor separation. Consider the case where the estimated
D equals the true delay plus a perturbation. By a Taylor series
expansionit follows for the bearing error defined by the differ-
ence between the true bearing and the estimated bearing that the
standard deviation of the bearing error is given by (Carter
(1976)):

Vat (#-A ) d sinO Vat (D- D (10)

The term d sin * can be viewed as the effective array length
(sensor separation) physically steered at the source.

The combining of equations (8) and (10)
suggests that, In order to reduce the variance of the bearing
estimate, the observation period and the sensor separation should
be made as large as possible. This agrees with one's intuition
and the results of MacDonald and Schultheiss (1969). Further,
the fact that equation (10) depends on the effective array length
physically steered toward the source suggests the desirability
of sensor mobility to maximize sin * when d is limited.
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On the Variance of the Phase
Estimate of the

Cross Spectrum and Coherence

A. H. Nuttall

ABSTRACT

The variance of the phase estimate of the cross spectrum
and coherence is numerically evaluated for values of the true
magnitude-squared coherence, S, equal to 0(.1).9 and .99, and
for the number of Independent averages, n, equal to 1(1)500. It
is found that the approximation (1 - S)/(SK), where K - 2n for
independent averages, is a good one for all S and for K > 10,
although the approximation is generally optimistic. A useful
recursion formula for the probability density function of the
phase estimate Is also derived. The danger of employing a
Gaussian approximation is demonstrated dramatically In a
numerical example. An extension of the equivalent degrees of
freedom to complex averages is made and suggested for use
in cross spectral estimation.
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INTROOUCTION

Approximate expressions for the variance of the phase estimate of
the cross spectrum and coherence are given in Ref. 1, pp. 378-9, and
Ref. 2, eq. (25B). However, both of these results are limited in ap-
plicability to the region where the variance is small in comparison
with unity. Here we will use the results of Ref. 3 and evaluate
numerically the exact variance of the phase estimate for the complete
range of possibilities. As a by-product, we will be able to tell ex-
actly when the approximation is accurate.

The method of processing used to obtain the estimates is given
in Refs. 1-3, and will not be elaborated on here, for the sake of
brevity. The reader is referred to these references for additional
details and assumptions.

mo
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RECURSION EQUATION FOR

PROBABILITY DENSITY FUNCTION

We let denote the true magnitude coherence, and +. denote the
true argument (phase) of the cross spectrum or coherence, of two sta-
tionary random processes. Then if # is the estimate of the phase, the
probability density function of *, based on an average of n statistically
Independent pairs of samples, is given in Ref. 3, eqs. 4.100 and 4.102 by
the form

2%iv (6 o22(]i'J111 - 4 ,,7, , ,

where we have added sub-I to the probability density function for dis-
tinction, and where

(2)

In order to develop a useful recursion for (1), let

W Ci= 6 -Cs V. (4)

Then for %xi (Ref. 4, eq. 2.510, line 5),

Therefore

M( )

* )
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and (1) becomes

t-. t-? - _,)

But since (for *&2)

"-t"= ' - )

We can solve for -,I ) and substitute it in 164) to obtain the re-
cursion: I

To start this recursion, we need:

which is given by

• ,- -€)£- •- __

Equations (9) and (11) constitute a useful recursion procedure for eval-
uating high-order probability density functions of the phase estimate.

3
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VARIANCE OF THE PHASE ESTIMATE

For k sO (or for a redefined origin of phase relative to 4
the man of + is zero, since probability density function n) in
(1) is obviously even about zero. Therefore the variance oU i Is

A closed for expression for (12) does not appear possible. Hence,
we use numerical integration to evaluate (12). Let Asw/l" be the incre-
ment in approximating (12). Then k

-- ke (W .,

(ii

where is a general set of integration weights in (13), and where

(14) applies for Simpson weights. A program for the evaluation and
plotting of (14) is presented in Appendix A. The results are given in
Figure :6 where we have defined

5 ,,t,3u;'u4r- sr~avtj A ee , (IS)

Straight lines have been drawn between the Integer valuesof (K-2,4j 61...)
for ease of interpretation. The reason for definition (16) is considered
in the next section.

An approximation for the variance, f, is given by

1r
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as mentioned in the Introduction; this result is claimed accurate if
X3 I . The asymptote (17) for large X is shown as dashed lines in

Figure 1 for S. , .5, .9, and .99, and shows quantitatively when (17)
can be used. In particular, if SK>20, the error in using (17) appears
to be only a few per cent.

USE OF RESULTS FOR OVERLAPPED PROCESSING

In References 2 and 5, spectral estimation via overlapped FFT
processing of windowed data was considered, and an equivalent degrees
of freedom was defined as:

where v is the total number of (overlppped) pieces entering the spectral
estimate, w ) is the data window, I is the autocorrelation of win-
dow v , and s ts the shift between adjacent overlapping windows. An in-
formative Interpretation of (18) for complex averages is presented in
Appendix B.

When shift s is greater than the length of window w, the auto-
correlation %,(ks) is zero except for k-o, in which case-(18) yields
K-2a ; this is the case treated in Ref. 1 and plotted above in Figure 1.
When shift * is less than the length of window w , K decreases below the
value 2ns and in fact as s-.o, K-*2. Thus K is bounded by 2 and 21t
depending on the amount of overlap of the individual windows.

The exact derivation of the variance of the phase estimate of the
cross spectrum and coherence for overlapped processing appears to be
very difficult. However, an approximation is available via use of Figure 1,
if K is computed via (18), for the particular window and overlap of in-
terest; the justification for this approach is presented in Appendix B.
The accuracy of this approximation is unknown.

mils
. .I
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COMMENT

An alternative technique for approximating the variance of the
phase estimate, which utilizes a Gaussian assumption, is presented
In Appendix C. It is found to grossly overestimate the variance in
some cases, and points out the danger of using the Gaussian assumption
without care.

7
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APPENDIX A

PROGRAM FOR EVALUATION AND PLOT OF (14)

PA~sWEH NT=500 a Njci)NT
COJUBLE PFECISIQ14 G(NTl#P(NT)#K~~lP~evo2_Plp

SDELeTL~L3.i~tSieELTAu2PI ,'LTA2,GAMM4APHI PKSO

JCP:5 12
K1JCAP-1
K2=JCAP .*2

Pi=.5z.PI

Lr.L=PI/.JCAP
TUjEL3=2,.*0EL**.!/3*.0
CALL ?40CES.,(ZpC)
CALL SUH3JEW"(Z.v.-J.@3.tI.)
CALL QUJCrGCZD12CO.e335.e29OCe27Z5.)
CALL SETS5mca(Z#30v2*)
00 Li L:=,03
CALL LlP4ESCZOeFLJAT(1)ve3,)

11 CALL LU.J-ESG.(Z,1FL0AT~i)ei.)
00 12 I:-3#j
CALL LlNE354(Zv90..FL0AT(I))

12 CALL LlNLS(Zplve.pFLAT(I))
00 6 NZIPH'T

00 1 JGAMS4:OelC
GAM4SGz *. 1D 0 * iAv.SQ
IF(ZGANSO.E~Q-1) GAia.SJ:.99oO
3ELTA:1,. GAMSQ
02P l:DELTA.0"P*:
OELT AZ:.5*O ZLTA
GAMhA:SQRrf(GAMSG)
PH I :P
CA.L PiRECUR

U) a "JlN

00 3 K=1I~l

CAL-L PRECUR
DO 4~ N:1,NT

3 CONTINUE



TM No0. 771112

5t SN) =a(n) waTOLS

PRINT 88, 6AM'S4
se FOR~MATC/02O.Z)

00 7 tI.NT90LO
7 PRjIiT Go SUl).S(I+1).S(I*2).S(1+3)eS(1"I)e

$SC 1.5) .ScI.6) SCI*7) ,5C~a) .5(1,9)

00 9 121@Nr

CALL LlNE$~G(ZpNTvXvS)
CONTINUE

CALL EXITGM
SI*ROUTIIE PRECUR
UO-JtOLV PRECISIONI ZI Z2vVZo~lELTA4
ZIzmGAM*COS C PHDl

PCJ)Z02PI*Z2* ( .-sIJ'SQRTCZ2) uCPZASIP(Z)))
UZ=OELTA2*ll
DELTAMU:1,
00 1. N=20UT-
DELTANZELTA4.OELTA

RETURN
END

9
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APPENDIX B

EQUIVALENT DEGREES OF FREEDOM FOR COMPLEX AVERAGES

General Definition of Effective Number of Independent Samples

Suppose samples fi!, ' are h complex, statistically independent,
identically distributed, random variables. Define complex sum (average)

Wa

Then its mean is

and its variance is

a

where we have defined

Therefore the relative stability of w is (defined as)

Now when .'1 are correlated, this equation can be taken as a defi-
nition of the effective number of statistically independent terms in the
sum (u-i) ; that is, define (for identically distributed variables)

I-1" / 2.

10
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Equation 6-;) Is a satisfactory definition provided that 6 5 ; if
not, some other approach is necessary, because i, should never be larger
than vi.

Effective Number for Correlated Samples

Let us express each random variable in terms of its mean and a
zero-mean component according to

where

0

Also let the zero-man component of jk satisfy

where 10 can be complex. Then from (9 -i') and 0-7),

and

w V In

Substituting these results In (-i). we obtain, for correlated ran-
dom variables,

- '%11
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This is satisfactory if the denominator of (-12) is greater than
(or equal to) 1. For example, if , 2 ,then N a 2/(1+ ep ,which
dictates that ltep! 0 for a meaningful definition.

As particular examples of (5-12), we have:

(IC ( OJ I e

(c} fl-~ I) b€e= I .

These correspond to (a) uncorrelated, (b) completely correlated, and
(c) one sample; the values of t agree with physical interpretation.

Application to Product of Gaussian Random Variables

Suppose random variables { are given by

where { and are zero-mean complex Gaussian random variables.

Then

and

X7- )b6)

12

*5 5
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Al so Q~ t 2  u * '(-7

wi th

In order to evaluate ,we need the property that

for zero-mean complex Gaussian random variables fe);this property
is derived in the next subsection. Then we have

2~2o

from vhich there follIows

Proof of Fourth-Order Average Property (8-19)

Let

where are zero-mean real Gaussian random variables. Then

13
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+ Ue

- i ' '+' "  -;-. -,,' .__,-_-__
l .,,,- urn...e

•r, -I , r.--

C', - 714-

No special properties forT or 77% need be assuedY7"'or this
prpetytohold.sfo

Specialization to Cross-Spectral Estimation

In order to utilize (I- ,i) , we need to evaluate (v- 21) and sub-
stitute it in (-4) , so as to determi ne ) Now for cross-spectral
estimation, ; and !I are given in Ref.'2, eq. (3) as (suppressing
f-dependence)

1& ",(- 2,r4) x

14- ;

iii ii ]++ 'Saml '
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Then

~|

where 3 is the shift of adjacent data windows. Now if 4is greater
than thi width of window iWr , and if the window width is narrower
than the finest detail in spectrum G,. at frequency 4 , we have

where 4. is the autocorrelation of data window w . In a similar
fashion, there follows

And if + is larger than the width of window 1W1 , it may be shown
that

see Ref. 2, eq. (A14) et seq. Substituting ii- )-(R-2s) in (-21)
we obtain

and therefore, by (a-1)9

15
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Then finally, (9-12) yields

'hueO IL

As noted under -i) ,the denominator of (0-31) certainly satisfies
the requirement of being greater than or equal to 1, for any window w

Equivalent Degrees of Freedom for Cross-Spectral Estimation.

Equation (5-31) gives the effective nmber of independent terms
in the smi (I- i) , when Y. and are given by (12-.However,
to determine the equivalent degrees of freedom, we expand (-)in*
term of its real and Imaginary parts as

Ic.~ (32)

Since the real and imaginary components of w each have Zvi terms in
their averages, it is appropriate to define the equivalent degrees of
freedom of random variable w as

2Co)

16
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As a special case, for non-overlapping windows, K-2 , which is
Je result used in the main text. And if 'I, w i abl" such

, which is the standard quantity for realvariables, such
-eitncountered in auto-spectral estimation. The result (A-3) is the

one presented in Ref. 2, eq. (12). (Equation (9) in Ref. 2 should be de-
fined as a measure of stability, and not as the equivalent degrees of
freedom.)

i7

11 1 1111 15 1 U IZ S I 11 1
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APPENDIX C

APPROXIMATION TO VARIANCE OF PHASE ESTIMATE

Frn Jtef. 2, eq. 22 (suppressing f dipendence), the cross spectrum
estimte can be expressed as

~csj{-'R.) 1  +l +11, 9 1A+ W Ye~q~p ) (C-1)

where P is the true phase, and WG, is the true magnitude of the
cross.spctru. We make the simplifying assumption (of unknown validity)
that & andT are Gaussian; for small this could yield misleading
conclusions. Then from Ref. 2, eqs. (15) and (19),

wr- s
B = 11TJ/. (c-:p)

1 12.1 (C -3)

Then the Gaussian assumption allows us to express the probability density
function of a and v in (-1) as

I ,p 2 - VG J
P(",) L. ,(

18
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where

The probability density function of r and defined in (C-l) is
then

r( ,+)- . - ' "jD°D '  l~fl

The first-order probability density function of itself is available
from (C-6) by integrating on r over the range (0o). By use of the
result

we find, after simplification and use of (C-2),

where

A+
kW(WSb( 2 (c- ,)

19
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The two fundamental parameters of 0 are K and S.

Since M4') is even in #, J-0. The variance iis numerically
computed via

and Is presented in Figure C.1, for 3=0(.1).9. The range of K given
is (1, 1000); however, physical significance should be attached only
to 142 (see (18)).

Comparison of Figure C.1 with Figure 1 immediately reveals that
gross overestimates of the variance can result from use of (C-9) - (C-11).
For example, at K10, S-. , the result in Figure C.1 is ten times greater
than that in Figure 1. The results are in better agreement for small S ,
like 0.1. On the other hand, for Sw."j, the discrepancy would be greater
than an order of magnitude for a wide range of K. For large K, the
asymptote (17) is once again approached in Figure C.1, as Indicated by
the dashed lines.

20
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10
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I\
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Figure C.1 Approximation to Variance of Phase Estimate

21
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Positive Definite Spectral Estimate
and Stable Correlation Recursion

for Multivariate Linear
Predictive Spectral Analysis

A. H. Nuttall

ABSTRACT

The questions regarding a positive definite spectral estimate
and a stable correlation recursion (raised in NUSC Technical
Report 5501) are answered in the affirmative for the particular
choice of weighting recommended in the above reference. A
modified and updated FORTRAN program for multivariate
spectral analysis, which incorporates calculation of the
correlation matricesvia recursion, and the aliased correlation
matrices via a fast Fourier transform (FFT), are included.
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LIST OF SYMBDOLS*

NP1 Auxiliary matrix

R() -tli order correlation matrix

jt~p) Bock Tooplitz matrix

(p)
%Auxiliary block matrix

w k V Trapezoidal weights

Rh Aliased correlation matrix

-Mj)
G1j Element 1~j of G

uk Auxiliary scalar sequence

FFT Fast Fourier transform

This list of symbols is supplementary to that in an earlier report,1

to which this report is a sequel.
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POSITIVE DEFINITE SPECTRAL ESTIMATE AND STABLE
CORRELATION RECURSION FOR MULTIVARIATE LINEAR

PREDICTIVE SPECTRAL ANALYSIS

INTRODUCTION

A generalization of burg's algorithm for spectral Inalysis to the
multivariate case was the subject of an earlier report. All the desir-
able properties of the uwivariate case were shown to hold true, except
that it was not proven that the residual matrix was positive definite,
nor that the correlation recursion was stable. Both of these assump-
tions can be affirmed by drawing on the results in Strand

2 and Burg. 3

In addition to affirming these two assumptions, this report contains
a modified and updated FORTRAN program that supersedes the program pre-
viously reported.1 The modified program incorporates some more-explana-
tory format statements, the calculation of the (normalized) correlation
matrices .via recursion, and the aliased (normalized) correlation matrices
by means of a Fast Fourier Transform (PFT).

This report is a sequel to an earlier report.1 In order to elimi-
nate duplication, that report is referenced for background information,
a list of symbols used, and processing technique. 'We shall draw freely
on that report; for example, equation (5) of the earlier report will be
denoted by (5).1

POSITIVE DEFINITE RESIDUAL MATRIX

The (p-l)-th order forward residual matrix, U.-1, was defined in
equation (9S).1 We wish to show that Up is positi e definite; the
following proof is based on reference 2, equations (3.25-3.32).

From equation (H-S),1 we have, using the Hermitian property of
Up and Vp,

and from equation (137),l eliminating B (p )H ,
p

r1
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Notice that we have made specific use of the inverse weighting in
equation (136).1 Substituting equation (2) into equation (1), we find

therefore,

Taking the conjugate transpose of both sides of equation (4) and
using equations (106)l and (114)1 yields

Adding equations (4) and (5) together and multiplying by -1* there
follows

.5-

:-2' A! " t,'" +A A

the last identity was derived from equation (113).1

Define

M (7)

Then equation (6) becomes simply

Now, Ep is Hermitian and positive definite* (see equation (112)1);

also, -. is Hermitian and positive definite (see equation (114A)1 ).

We assume that U 1 is positive definite. Then, U II is positive

definite, and so U 1  s(Yy) must have all its eigenvalues positivep-l p-i '"

*All of the positive definite statements should be qualified with
the proviso "with probability 1."

2
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(see appendix A). As a result, Hp.l has all its eigenvalues negative,

making it a stablt matrix (reference 4, page 270). Therefore, the
solution of equation (8) exists and is unique (reference S, equation 3).

According to reference 4, page 278, problem 3. there exists a posi-
tive definite solution of equation (8) for U. Therefore, there is a
unique positive definite solution of equatiob (8) for Up. Since

)(g~y%,(9)

(from equations (9S)1 and (82)1) is positive definite, the assumption
above, that UP-I is positive definite, can be justified by induction.

In summary, the residual matrix n, calculated by means of equa-
tion (105)1 or (181),l is positive definite. The quantity VP is also
positive definite; the equation analogous to equation (6) is

v,(-v, 1 1 (10)

and all the coments above apply directly. It is worth repeating that
the positive definite conclusion on and V holds for the specific
inverse weighting indicated in equatil (1361; whether it also holds
for other weightings is unknown.

STABLE CORRELATION RECURSION

The correlation recursion is given in equation (164)1 according to

hi4 Ol (11)

where superscript p has been added to the correlation matrices to indi-
cate specifically their dependence on the p-th order predictive filter; -%

and starting values have been defined, as in equation (D-3),1 namely,

3

% %JJgj.O! 1% -r _%W L O I. it fo" W
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'R~ ~R, ,I'I'r(12)
The latter quantities in equation (12) a"e, according to equation (7$A),i
solutions of

Combining equations (11) through (13), we have

A 0 0)(14)

W6 will show that recursiozl1) is stable; that is, we will show
that (the elements of) matrix %3P) does not tend to infinity as a tends
to infinity, with p fixed. The proof is an extension of reference 3,
section III.C.2 (which was for known correlation), to fit the unknown
correlation case.

We have, from equations (82)1 and (SOA), 1 respectively,

(IS)

For a given value of p, define the (a, 1) x(an 1) block Toeplitz
matrix

.RC0 7

' (16)
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If a < p, the entries in equation (16) are according to equation

(12). wheree; if a > p, the entries are those generated by equation (11).

It follows iumiediately, from equations (16) and (12), that

f ~ (17)

The st-th block of0P) in equation (16) is

00110st "f-s

Also, define a (m + 1) x C 1) block matrix,

- I o 0

I? o~
2R~" 0 I

0 0

(p)p

where we require a ! p Z 1 for this definition. Then, using the nota-

tion established in equation (18).

,, -O:1 (20)

where -

S :4
7/
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Thou, the ru-tb block of the product (Q ) ) ( is

-~~~ AP *- s ie -

(23)

Ire t 3to t

r51b 3& tt l

In the last line, above, we have used equation (21) to simplify equation (23).

At this point, we consider four subcases:

(a) for I < r, u < a. equation (23) reduces toR()

(b) for r *0, u 0, equation (23) becomes

6
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sot-,'I"*--t (24)

but,by use 9f equation (14), the sum on s in the last term of equation
(24) is RJ, in which case the last two terms of equation (24) cancel.
We are left with

'~' A~'~ (25)
Sul 

$ g

using equations (12) and (9S)1;

(c) for r - 0, 1 < u < m, equation (23) yields

14 Sao

using equation (14); and

(d) for u a O, 1 <r <m, equation (23) yields

'R~:WP MirA u (27)

since this is the conjugate transpose of equation (26). Therefore, we
have

wo o .. 0

o:O - . . U.o "
M 0

tv:I (28)

7
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This relation holds for m > p 1 1, as noted under equation (19) (some
relations for determinants are noted in appendix 8).

Now, let fjPkI be arbitrary nonzero complex M x I colin matrices.
Then, using equation (28),

(29)

0,II a?" Q
We recall that Up is positive definite, by the previous section.

Therefore, if 4P is positive definite, then (P) H p) Q(P) is posi-

tive definite, which, in turn, implies that 41(P) is positive definite.
That is, for a p >,

if 40) is positive definite, then is positive definite. (30)

In particular, letting a a p, we see that if ) is positive defi-

nite, then A(P) is positive definite. But , P1 by equation
ppi

(17). Hence, if101) is positive definite, then iP is positive

definite. But R0' R is positive definite (see equation (15)).
Therefore, we coiclude y induction that

i(p) is positive definite for all p. (31)

This statement is used as a priori information in Burg's derivation in
the known correlation case (see reference 3, page 85).

Now, we return to equation (30) with this information and can draw
the conclusion that i(P) is positive definite for all m > p. Finally,
using equation (17), we can state

40) is positive definite for all m and p. (32)

For fipe# p. since (P) is positive definite for all a, (the ele-
Ut s of) %P cannot tena to infinity as a tends to infinity, since
PI a R. is fixed. Therefore, recursion (11) is stable. This implies

(using equation (23)1) that

8
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possesses all its zeros inside the unit circle in the t-plane; that is,
predictive error filterliP)(z) is mitnima phase.

The proof above hinpos critically an the positive definiteness ofUn which was demnstrated in the previous section. In particular, this

cXdition is employed in equation (29) to guarantee that the rilht-hmid
side be positive.

A word of caution about an apparent alternative proof is worth
mentioning here. Having shown that upis positive definite one nightbe tempted to define 440) by the invrse of equation (16S),I

- r t t

according to

It is obvious that G(P)(f) in equation (34) is positive definite for
mny f; and it is now easy to denonstrate that A(P) is positive definite:

- : "V ,t7(i2,-Q4-),,G-(}i/+%
114

ex 2e (il264 > 01

since G(P)(f) is positive definite for any f.

9
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However, the problem is that we now would have to show that gP),
as generated by equation (35), satisfies the recurrence (11). An example
in appendix C shows that for an unstable sequence, the values returned
by equation (35) are not the same sequence; thus, equation (35) should
not be used until after the stability of {RP)} has been ascertained.

ALIASED CORRELATIONS VIA FFT

Based upon the previous results, we know that we can express

d 2 i e (37)

and

24

j fd (i ~2w ,va)4 , Gr 11 m.(38)

We-have dropped the superscript p above, since the results to follow
will hold for any correlation-spectrum pair satisfying equations (37)
and (38).

If spectrum G(f) is calculated only at a discrete set of HF +1

points on (- , ir,) (vAich is a typical practical situation for plot-

ting purposes, for example), a discrete approximation is afforded to
the integral in equation (38). It is, for trapezoidal weights (w%1

N r A zhi/
WK tF i+ i2-y-r Jk M --- (39)

That is, the discrete approximation to integral (38) yields aliased sam-
ples of correlation sequence (Ra) at separations of NF; this is easily
proven by substituting equation (37) into the left-hand side of equation
(39) and interchanging sumations.

The aliased sequence (Pm) has period NF. Therefore, A is a good
approximation to Rm for Iml < NF/2 if (R(m is sufficiently small for

10
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Jul > NF/2. (Generally, NF " PBEST in the linear predictive approach,
and this is true.) The reason for considering this approach to the
approximate evaluation of correlation sequence (Rm) follows.

The left-hand side of equation (39) can be accomplished by means of
an N F-Point FF7 (one FF7 for each element of the N x M matrices involved).

For trapezoidal weights, using the fact that G(L ~-u G equation
(39) is expressible as 20~

AM~ a /4)- G:L +(i 2w 1c.

where we have defined

CT (41)

Letting n a NF a in the first sum of equation (40), and n a in
the second sum, we obtain

jZ1 (42)

where M x M matrix

0's O5In-S

(43)

rW- INSY )-

But equation (42) is recognized as an NF-point FF7 of the matrices

AM~iIIIAI I11

OEM M==MWMM
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thus, we obtain ROD RID . .. A-. 1 by means of tis NF-point FFT, one

FF1 for each element of the N x M matrices. (The quantities (A.)} for
1.1 < Np/2 are available by use of the periodic nature of sequence

(.) This use of an N -point FF1 to obtain (good) estimates of
Jo Mato sequence ( S circumvents the use of recursion (11), which

would yield the exact rrelation sequence (it.) . It can save time in
some cases and uses already available quantities {Gk) , if they have
been computed previously for plotting or observation purposes.

REAL PROCESSES

The preceding results for complex multivariate processes can be

specialized to real processes. We have, from equations (171)1 and (39),

' r4I (4S)

"Therefore, equation (39) becomes

where

1? N4MF2  (47)

Now, let the elements of matrices Gk and R., be expressed as

~ (48)

Then, Gj is real for all E; and from equation (46),

2 N/

12

'Ver d" J I%,b
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In addition, since

the fundamental range of m is [0, NF/2 ] for sequence {R(tZl.

REAL BIVARIATE PROCESSES

We can specialize further to the bivariate case, N = 2, and make
use of some of the properties previously discussed. (The goal of these
manipulations will not be clear until the final result.) Define the
complex scalar sequence {uk ) such that

--- -( 51)

Then,

kno 7

+ (r tX 2 i (, -/",)

kFiao
(S2)

If, on the right-hand side of equation (52), we let n = k in the
first sum, and n = NF - k in the second sum, we get

13
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+

r, - L -GDS 2-yriiliiv/4)(53)

A

the last step by equation (49); that is. using equation (52) again,

4-itr -N (54)

Thus, one Np-point FFT of scalar sequence luk), defined in eq3uation
(5i1 will give both (aliased) real scalar autocorrelqtions (t411~ and
(RI2)); and by the statement wnder equation (SO),( f~l~ need be
printed out only for 0 -cmIC NF/2.

For the crosscorrelation, equation (46) yields

14
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2 Re It X ~x(i 2rk /4)

2, 1

&~ FFT 2-

This NF-point FFT of 4F+I nonzero nubers would yield 1~2) NOl

and from equation (39). since

-a R;ft (for general complex M x M matrices), (56)

it follows (using the periodicity offQt that for the present case

(57) '

Thus, print out of 6,012) and kt(21) for 0 a < _ su ffices to give
complete information about the aliased crosscorrlTvi& n Furthermore,
all this information is available from the single NF -point FFT of equa-
tion (SS).

In summary, only the twoI FFTh indicated in equations (54) and (55)
need be conducted to obtain complete information about the aliased
correlation sequence (A.), for N - 2. These relations, in addition to
the exact correlation recursion (11), have been incorporated in the
FORTRAN4 program listed in appendix D. The coments in appendix K of
the earlier report1 are relevant here also.

isI
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SUIMARY

It has been shown above that, for the weighting introduced in
equation (136),l -~ ' r,. -',.2,(

I T- I . 6,e2

1LndV are guaranteed positive definite, and the correlation recur-
o (11) is stable. Therefore, equation (58) is a sufficient condition

for the desired properties to hold true. It is not known whether this is
a necessary condition, that is, whether equation (56) is the only choice
that results in the desired properties of positive definiteness and
stability.

However, for N = 1, since, by equation (129),l Up_, a Vp , it is
possible to show that

~A M 14 1 (59)

is the only choice that guarantees the desired properties (see refer-
ence 1, page 32). Namely, equations (124), 1 (130),l and (114)1 yield
scalar

a-JAW

r 'i r, q.,i, ,w L (60)

In addition, if the data samples happen to take on values such that*

YSS-1eno nejssr(61)
then

*If the sample msean of the original data is (made) zero, this choice
inopossible for p a 1. For p , 1, the sample mans of (iP')and
4-0) arenot necessarily zero.

16
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which is always larger than I (unless g-1 r-); thenU 3 is negative
mnd on unstable correlatim recwsim 1ults.p Tus, equaion (59) is
the only choice that garmtees positive IID  d a stable correlation
recursion, regardless of the data set, for % - 1.

It should be noticed that the absolute level of the weights is not
specified by equation (SO). Thus, fotr P 2, frodoinm I equation (8),
at least to the extent of a colm scale Yactor, mt be allowed.
Mther this is the only degrpe of frede. allowed to the choice of
A P.1 and rP.1 is imkami for N v 2.

171reverse Ill&
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Appendix A

SOME PROPERTIES OF COMPLEX MATRICES

MA arbitrazy complex square matrix A is called real definite if

where V is a complex column matrix.

It then follows that

A real definite 4 AM - A. (Ak} real, (A-2)

where {Ik) are the eigenvalues of A.

For proof, first take the coanjsgate trnspose of equation (A-I),

VA -a r ; , "y. (A-3)

Subtracting equatioms (A-1) mad (A-3) gives

&Y"A (- , 1W f3 0m- (A-4)

Therefore,

A -As o r A (A-S)

Also, if (Vk } are the eigenvectors of A, them

(A-6)

Since the left-hand side mad O mk e 1eal. ) is real.

If r in equatien (A-l) is peeitivo for my S$them A is said to be
positive definite. It follows that

A positive definite * AM - A, (I) 0. (A-7)

A-1
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The proof is the saw. as the proof above, except that now V'HAVk > 0 in
equation (A-6).kk

Now, we a"e in position to prove that

A positive definite 1 igenvalues of ABlA8

I positive definite are all positive. (4

Fom proof. lot Uk) and (Vk) be the eigenvalues and eigenvectors of Al,;

then, we have

BM \A Vk A9

" -1 \kW 'V 14A(A'V4)9
where we have used A * A (equation (A-!)). Since A and B are positive
definite. the left-hand side and the factor multiplying A k are positive.

eremfOre, kk is positive.

It should be noted that Al need not be Hermitian or positive defi-
nite. For exM~l*, if

1~ ~(A- 10)

then,

A1B d(O -y +PIP(A- 1l)

Since the inain diagonal terms of AS need not be real, AB is not
saecssarily Hermitian. Also, if we assume that Al is positive definite,
equation (A-f) says that Al is Hermitian, which is contradictory.

A umerical exmple follows:

A- 2
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A{~ 1 ;7 , 4 1 (A- 12)I
A and B are positive definite and Hermitian. The eigenvalues of both
are {1k) - 2 tq2>0. Their product is

AB = ~4 1(A- 13)I

with eigenvalues 4 t 2fT > 0, as predicted. But AS is not Hermitian
nor positive definite because, for instance,

The matrix AS in equation (A-13) points out that specifying a
matrix to have positive eigenvalues does not make that matrix positive
definite. However, if the matrix is also Hemitian, we have the genera-
lization of equation (A-7) to

HA positive definite 04 A (1A. > 0. (A-IS)

A-3/A-4
Reverse Blank
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Appendix B

RELATIONS OF DETERMINANTS

Since det 1 (see equation (19)). equation (28) yields

d6tt J e~t Ur Jet g w (-I

Setting a - p in equation (B-i) and employing equation (17), there fol-
lows

at . , t6' (B-2)

Since €t(o) a R a U0 (see equation (9S)'), this recursion may be
written in closed f "rm as(

koO

This relation is given in Burg,3 page 86.

By letting •- p * 1, p * 2,..., in equation (B-1), it follows
imediately that

(8-4)
ha..

In addition, for a < p, using equations (17) and (1-3),

d.. ." : ,+,..+ m u,,<r ,

Combining equations (3-4) and (5-5), we have

(-B-6)

B1/3-2
Reverse Blank

I4
• ll'Ite. q( " t ..',-+,',J.., , t.."b. '..,'J%' +,'tt+.'p.. "t. €" ', .I
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Appendix C

EXAMPLE OF tItSTABLE CORRELATION RECURSION

Consider the univariate (M - 1) correlation values,

R. w r all m, r real and positive. (C-1)

The value of r can be greater or less than unity. The z-transform of
equation (C-1) is

r Xr

sequence ({R) is unstable if r 1. Nevertheless, if we blithely add
terms in equation (C-2), we get

(C)

Then, continuing on, setting z o *xp(i2wfa) and multiplying by 6,

K (C-S)

which. is real, and

C-I

I

-I- "':" 1 q' ' ' 1 i' !~ l'"l' ' V
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4 1 ifma)(C-6)

In the following, lot r a m8in ( , and 0 " (r,7 Then,

f 11M (C-7)

This is a stable sequence for any r. But, notice that if

r', ~r ru# *iRI r ) hj (C-B)

whereas, if

The former sequence is correct; the latter is not. Yet both are
stable. So, although equation (C-6) always generates a stable sequence,
it is not necessarily the original sequence.

C-2
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Appendix D

FORTRAN PROGRAM FOR SPECTRAL ANALYSIS

A FORTRAN listing of the spectral analysis technique is given in
this appendix, in addition to a sample printout of an application. The
'notation and scaling adopted is identical to that given in reference 1,
appendif K. The equation nmbers referenced are those in the earlier
report, except in Subroutine ACM, where they correspond to the equa-
tions in this report.

D- 1

IIf'-I-

M*9

LM.
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Confidence Bounds for
Magnitude-Squared

Coherence Estimates

A Paper Presented at the

1978 lEE International

Conference on Acoustics,

Speech, and Signal Processing

G. C. Carter

E. H. Scannell, Jr.

ABSTRACT

This document presents both the oral and written versions of
a paper presented (in 15 minutes) on 12 April 1978 at the 1978
IEEE International Conference on Acoustics, Speech, and
SignaI Processing, in Tulsa, Oklahoma.
I he main emphasis of the talk was on explaining coherence

and its usefulness. The paper given in the coherence record
emphasizes how to estimate coherence and how accurately
this can be done. In underwater acoustics where signals are
digitally processed at the outputs of two or more receiving
sensors, it is desirable to estimate the coherence spectrum,
both for detection and position estimation.

A processing technique for computing arbitrary confidence
bounds for stationary Gaussian signals is presented. New
computationally difficult examples are given for 80-95 percent
confidence with independent averages of 8, 16, 32, 64, and
128. A discussion of the computational difficulties together
with algorithmic details (including the FORTRAN program) are
presented.
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CONFIDENCE BOUNDS FOR MAGNITUDE-SQUARED
COHERENCE ESTIMATES

PURPOSES, WE DIP tHE THE COHERENCE BETWEEN TWO
* ~STATIONARY RAmom PROCES A me 8, AS THE

e What is cohuerence? CROSS POWDER TU DIVIDED BY THE SQUARE ROOT
OFn THiEi ODU wE AuTo OWER~ SPECTRA. THE
COHERENCE 1S A FUNCT ION Of FREGUENCY AMD HASGI How and how accurately TH usp PRPRY HTIT A'mfsm

do you estimate it? iNRME CROSS SPECTRAL DENSITY THAT, I

I ME SENSE, MEASURES THE EXTENT TO WHICH TWO
RANDOM PROCES ARE SIMILAR. FOR EXAMPLE,

THE PURPOSE OF THIS TALK IS TO ANSWER TWO TWO UN C11RELATED RANDOM PROCESSES ARE INCOHERENT;
FUNDAMENTAL QUESTIONS, FIRST, WHAT 1S COHERENCE, TH4AT IS, THE COHERENCE IS ZERO BETWEEN UNCORRE-
SECOND, HOW DO YOU ESTIMATE COHERENCE MSD HOW LATe PROCES. FURTHER, THE COHERENCE BETWEEN
ACCURATE CAN THIS ESTIMATION KE. IM5 LINEARLY RELATED PRESMS IS UNITY. THE

THE mAI EMPHASIS OP THIS TALK IS THE TO PROCESSES IJIBhR CONSIDERATION CAN S AN
EXPLANATION OF COHERENCE MSD ITS USEFULNESS. UI11E ACOUSTIC SOURCE MSD RECEIVER PAIR
THE PAPER GIVEN IN THE CONFERECE RECmR Em- U TWO RECEIVER PAIRS.
SIZES WN TO ESTIMATE COHERENCE MSD HOW ACCURATELY
THIS CAN KE DONE. THE imPoRTMIC OF DeTERMiNINS -NEXT SLIDE PLEASE
CONFIDENCE BOUNDS FOR ESTIMATES OF COHERENCE WILL
ONLY 3E APPARENT TO SOMEONE MOO WAIITS TO ESTIMATE ACO49fl SVUCI
COHERENCE. THUS, THE TALK THIS MORinS WILL sNow
HOW USEFUL THE COHERENCE IS MSD HOW TO USE THE
RESULTS IN THE COHERENCE RECORD TO DETERMINE THE
ACCURACY WITH WHIC14 THE COHERENCE CAN BE
ESTIMATED.

_NEXT SLIDE PLEASE-

-fob (f) = G. b (f) ] & I
[Ga(V b~f)]Z (ON PHYSICAL PROBLEM THAT MOTIVATES THIS

RESEARCH IS THE DESIRE TO PASSIVELY ESTIM4ATE
2 1, VtEOGRAPHICAL INFORMATION ABOUT THE STATE OF AN

O :S yab f~l S 1 VfACOUSTIC SOURCE. lIN THE DEVELOPMENT HERE, AN

ACOUSTIC POINT SOURCE RAIIIATES SPHERICAL WAVES
THAT ARE RECEIVED FIRST AT ONE SENSOR AND SOME
DELAYED'TIME LATER AT A SECOND SEINSO . THE

&, b *itbr surice, rc ~ve poir SOURCE IS ASSUMED STATIONARY FOR THE OBSERVAT ION

orrc ive eevrp PERIOD MSD THE SENSOR SEPARATION IS ASSUMED
or reeive, recivKNOWN1. EACH RECEIVED WAVEFORM IS OBSERVED IN

THE PRESENCE OF UNCORRELATED NOISE. THE PRO-
THE TEim COHNCE WAS SEVERAL DIFFERENT &IE HE ADDRESS HERE IS THE PHYSICAL INTER-

MEANINGS AND DEINITON. THE on we use HERE PRETATION OF THE COHERENCE FOR THIS MODEL.
IS THE COMPLEX COHERENCE OR COEFFICIENT Of
COHERENCY DEFIN By WItN IN 1930). Foe OUR -NEXT SLIDE PLEASE-



70 Sal

IN THE GENERAL CASE, WE CAN MODEL THE
ACOUSTIC PROPAGATION OF A SINGLE ACOUSTIC SOURCE

. ASi NOISE CORRUPTED RECEPTION AT TWO RECEIVERS
AS SHON HERE. IN PARTICULAR, WE TREAT THE PATH

I ROM THE SOURCE TO EACH RECEIVER AS A LINEAR
* I TINE INVARIANT FILTER. THE RECEIVER SIGNALS r

S...... Sue J AND r J K CONSIST OF THE FILTER OUTPUTS
L ---- PLUS NOISE.

I A SPECIAL CASE OF THIS MOEL IS WHENTHE
rr I " FIRST RECEIVER WAVEFORM CONSISTS OF SIGA PLUS

Or NOISE, AND THE SECOND RECEIVED WAVEFORM CONSISTS

_It I' OF AN ATTENUATED AND DELAYED SIGNAL IN THE
.L PRESENCE OF UNCORRELATED NOISE. THE MATHEMATICAL

rn P M LEM OF ESTIMATING THE TIME DELAY OR EQUIVALENT

SOURCE BEARING AND, THUS, SOURCE RANGE, IS CLOSELY
RELATED TO COHERENCE.

A SOUCE SIGNAL S EXCITES THE MEDIUm TO URNDER CERTAIN ASSUMPTIONS WE CAN SHOW THAT

YIELD AN OUTPUT Z. THIS OUTPUT Z IS CORRUPTED THE MAGNITUDE SQUARED COHERENCE DETWEEN TWO

BY AIITIVE NOISE nl AD RECEIVED AS r. WE RECEIVER PAIRS IS THE PRODUCT OF THE INDIVIDUAL

CONSTRUCT A LINEAR MOEL OF THE MEDIUM THAT SOUNCI-TO-RECEIVER CONINATIONS. Tius, THE
ENERATIES AN OUTPUT U. BY PROPER CHOICE OF RECEIVED SIGNAL-TO-NOISE RATIO IS THE RECEIVER-

THI MOE WE CAN MINIMIZE THE MEAN SQUARE ERO TO-RECEIVER MAGNITUDE COHERENCE OVER ONE MINUS

, OR DIFFERENCI ET WEN THE RECEIVID SINAL THE RECIVER-TO-RECEIVER MAGNITUDE COHERENCE.

r Am moog. OUTPUT . THE Nvmlnmg SUqIm
COHERNCE BETWEEN SOURCI AU RECEIVER IS RIVEN T SIDE PLEASE-
BY THE RATIO OF THE MODEL OUTPUT POWER TO Tno_
RECEIVER OUTPUT POWER. SINCE GAMMqA SQUARED IS Of
SOUNDED IT UNITY, IT PROVIDES AN INDICATION OfA
WHAT PORTION OF THE RECEIVED POWER CAN K E n
ATTRIBUTED TO A 4INIMUM HEAN SQUARE ERRO A not
LINEAR MODEL OF THE OCEAN mEDIUm. THE POWR --
RATIO OF THE OCEAN OUTPUT DUE TO THE SOURCE a1
VERSUS ANIENT IS ALSO DIRECTLY RELATED TO THE JA

SOURCE-TO-RECEIVER COHERENCE. IN PARTICULAR, n
THIS SIGNAL-TO-1101SI RATIO IS GIVEN BY a It I

SQUARED OVER ONE MINUS GAMMA SQUARED.

NOW THAT COHERENCE HAS BEEN DEFINED, IT IS
-NEXT SLIDE PLEASE- APPROPRIATE TO DISCUSS ITS ESTIMATION, FROm EACH

OF TWO FINITE DURATION MEMDER FUNCTIONS OF CAPITAL
N SEGMENTS, HE WEIGHT EACH SEGMENT BY A SMOOTH

S.-- ri WEIGHTING FUNCTION, COMPUTE ITS DISCRETE FOURIER
M TRANSFORM VIA AN FFT, AND DENOTE THEM A SUe n

S n AUND 8U su l n AT ANY PARTICULAR FREQUENCY, THE 11
sI ir COMPLEX COHERENCE IS ESTIMATED DY COMPUTING THE

M kTHREE SUMHATIONS SHOWN OVER THE AVAILADLE CAPITAL

N SEmNTS. THE LOWER CASE n DENOTES THE f1-TN
rt k DATA SEGMENT AND THE FREQUENCY INDICATOR IS NOT

SNOM. IN THE NUMERATOR, WE MULTIPLY THE FFT OF
2 * ~ I...THE A PROCESS DY THE COMPLEX CONJUGATE OF THE

I I 1r k I FFT OF THE 3 PROCESS AND SUM OVER N SEC-MENTS
TO OBTAIN AN ESTIMATE OF THE COMPLEX C'OSS SPEC-

TRUM. IN THE DENOMINATOR WE SUM THE MAGNITUDE

Gs ' I SQUARED FFTs OVER THE M TIME SEGMENTS. UNDER

CERTAIN SIMPLIFYING ASSUMPTIONS GIVEN IN THE

Gn j , 1 i I CONFERENCE RECORD WE CAN DETERMINE THE STATISTICS

IV L OF THIS ESTIMATOR.

-NEXT SLIDE PLEASE-

2
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CONCLUSIONS

e NMORMAUZES CROSS SPGCThIDM

*SWM TO 0NO1E MEASMR

*LINIIAfITY MEASURE

0 ESTIMATION
001 * DIFFICULT

0 ~ 911% ~ s£l * SOUI LAIR"

It 0.7 (0.3,0.66) 1

IN THE CONFERENCE MacOli WE DISCUSS NOW To IN CONCLUSION, WE HAVE LOOKED AT WHAT THE
DETEmmN THE CONFiNCE wOVisS. FOR A PARTICULAR COHERENCE IS. WE PAVE SUEN THAT IT IS A NORMALIZED

HIE Oa FF1 W AVERAGES (N - 8) AMS A PREPtCIFIED CRON$ SPECTRUM THAT CAN PROVIDE A MEASURE OF SIGNL
COuususuc Mow (952), WE OTAIN THE TWO CURVES TO-NOISE1 RATIO AMS THE DITET TO WHICH THE OCEAN
SEETCHED HERE. IENI WE OSTI AN ESTIMATE OF NEDIV14 CAN KE MODELED BY A LIN FILTER. IN
SuNS DnARD PROM THE SAM ~NUE or FTs As TERM OF MEASURINS COHERENCE, WE MAWE PRESENTED
USED TO DRAW THE CURVES, WE USE THESE CURVES To ESTIMATION ZOUATIONS THAT DEPEND ON THE APPLICATION
DETEmIN CONFIDENE BOUMS. IN PARTICULAR, If OF SMOOTH WEIGHTING FUNCTIONS AMS LARRE NUMBERS OF.
WE MAWE AN ESTIMATE DNOTED PT AN X ON TiE OF FFTs. THESE COMPUTATIONAL DIFFICULTIES RESULT
ORDINATE, HE DRAW A HORIZONTAL LINE PROM THE X IN LARGE BUND$S ON THE COHERENCE ESTIMATES.
UNTIL IT INTeRSECTS amT CURVES. THEN aE DeOP IN SUMMSARY, THE COHERENCE IS AN EXTEMELY
TWO VERTICAL LINES TO THE ACISSA AMS THESE ARE USEFUL DESCRIPTOR IN USSERNATE ACOUSTC THAT
THE CONFIDENCE DOM$S. WE CAN THEN STATE THAT CAN N ESTIMATED WITH CAREFUL ATTENTION TO DETAIL
THE TRUE VALUE1 OF $ASMA SQUARED LIES IN THE An LwaN NuISERs OF FF~s.
REGION BOUNDED BY THE TWO ABSCISSA VALUES WITH
THE PRESPICIFIED CONFIDENCE. FOR EXAMPLE, WITH -SLIME OFF-
EiowI FFTs AMS AN ESTIMAT OF 0.7, THE 952 coN-
riDtECE BOUND; ARE 0.3 mS 0.86. WITH In8 FF~s #at THERE Any ws-fTloNw?
AD AN ESTIMATE OF 0.3, THE OiumSS ARe 0.2 AmS
0.38. THUS, THE twoUs ARE LARE EVEN MIEN THE
HUlE OP FFTs is LARGE.

NEXT0 SLIDE PLEASE-
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by

1. N. Smesell. Ti. asi 6. Clifford Carter

Naval unerwter sysem Center
Now London,.C 08M32

A3822ATa smooth weighting funct ion to reduce side-
lobe leakage; ad 4) each data segment in

zn underwater esmaties where o*ua& sufficiently long to ensure, adequate spec-
wre digtally proessned at the outputs ta eouin
of *an or more rasIviag sonaeas. it Is The WC Ine useful In detection. see
desirable to estimate the coherence for emamle E21 and (3] * but is also of

epetvu'. both for detect ion ad posit ion value In estimatinug the amount of coherent
estimation. A processing technique f or power common between two received signals.

ee*In arbitray eoat idenc. bouads Theref ore, it would be desirable having
ien aaloasry Gamasa signals is pre- etimated'a particular value of USC to
mted. Now compaationally difficult state with certain confidence, that the trui
enmles are given for 80 to 99S conS id- coherence falls In a specified Interval.
me with independeat averages of I. Ifie Zany attempts to do this for 99% coaf Id-
2 1 a" 128. A discussion of the eame were accomplished by Kaubrich E4] who

ealtiosal difficulties together With apparently used precomputed CDT curves and
algusithmic detals a"e presented, used a different method of presentation

thems the one used here. Related confidence
work for the magnitude coherence (310) or

nauuareet of (2) in presented by Koopuans
M]I3.rawoioial results for 95% confidence

TViaitd- ae coherence CUMC are gives by Denignus Es I.
betwee two Jointly stat ionary random
Procesese x~t) ad Y(t) Is defined an DUTjX9! G COU7ZDENCZ BOOMS

Lot C be the true but unknown parame-
10 IS f)j 2ter and t be its estimate. Then there

C w(e.)e exi sts a fanily of CDT's such as the two
-1y sketched in Tig. (2) for all valus of C

a"f X. Far a f ixed value of X. a aumber o3

Where, 0".(f) Is the c...e ;:m,.. l density
astfreqilso f ad @,=(f ) A"ad GfP) r ,jO- - -

the antoepetral, dessti e. The WSC can
be estimated S in (1) by

ALt" Z(f)Ya (9)1' a/

obore 0 dnotes cmplex conjugate, ff ios,
the somber of data segments employed. and C-2/3
36(f) sad Ys(f) are the Fast Fourier
Trasform (17T) outputs of the ntb data
segments of x(t) and y(t). both the USC FLT-0. - -

and Its estiates are bounded by sero and- - -

usity. The cumlative distribution . . .3 .4 1
funotions (CDT) for the NSC estimate In (2) 0 1 .oL23) .6 .ONU42/3
have bees determined in (I tIunder theT NL2/)tCN(/3
esumptions that 1) the data are jointly COX(O(3) CO-Nh(l/3)
stationary Gaussian racdom processes: 2) ~ Cl LTO FCRI O
the X data segments are independent; 3) Fa 1.PO FCTCRE O
the data segments have been m~ultiplied by 9-6. C-1/3, &NID X-9. C-2/3

4
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CD? curves,, such an platted in fig. (1), and 126 from outer to inner, respectively.
are generated, for various values of C. Raving made an estimate with a particular
for each of the numerous CDT curves, we value of x. only one pair of curves applies.
select, as closely as possible, the An excellent discussion of the types of
absciss values such that the ordinate val- statements that can be made with coat id-
us, Fno minus FL? yield the desired cob- ence bounds is given by Craznir (7].
fidence. The confidence intervals are not Suppose we obtain an estimated USC of 0.7
unique. since there Is no constraint such from N - S disJoint FFTs, then we draw a
as 7L8 equal FL7. Is have selected 11. holntaJL line f rom 0. 7 on Fig. (3b) f or
equal nL? but could have selected PTA5 and 9V3~ onofidence limits and see where it
FL? such that the difference in abscissa istersects the par of N a 8 (outer) curves
values In Fig. (1) CUUUP(C) ams COKLO(C) This occurs at (approximate abscissa
was minimum. Nowever, as long as no. minus values) 0.3 and 0.86. Thus we state with
FL? equals the desired confidence the 361 confidence that the true but unknown
method Presented here is correct. Now we parametor C falls In the Interval (0.3.
Plot CM(UPMC and COZLO(C) versus C for 0.86). So matter what the true value of C,
this particular value of X. A result is we have a 5% probability of giving an
sketched in Fig. (2). incorrect statement. That Is. if we make

many estimates of ?SIC and keep applying
the rule described (whether or not C is

1 random or constant) we will correctly in-
clude the true value of C in the Interval
that we specify 95% of the time. Some-
time* the method of applying the rule is

C=IU(C) in doubt as for example In Fig. (3b) if
the estimate comes out to be 0. 3 and N - 8
then a horiwatal line doe* not intersect theaupper coat ioeaa limit curve unless we
extrapolate It backwards. Doing this means
making statements like: with 95% confid-

CONW(C) ence the true 3ISC Is in the region (-0.1.
0.62). Since we know apriori that the
true value of C is non-negative, we could
just an esi say (but with no more
coat idencel that with 95P@ confidence (for
X - and C - 0.3) the true USC falls in
the region (0.0. 0.62). Moreover. if both

0 ______________intersections result in negative resions
0 C 1(as for example when C a 0.001 and .1 - 8)

we my have to make statements like with
FIG. (2). ZANUSKITCN OF C0UIFIDNCZ 801 contfidesce the true 15C lies in (0.0.
9OUNDS FOR A PArICU VAL=E OF N 0.0). Eowever. If we continue to apply the

rule and run the experi!Ieatal trials we
will make correction statements '8r" of
the time. it Is interesting to note that
duo to the properties of the estimate and
our selection of 11.7 and no. that larger
values of N do not always result in the

MAKINS CONFIDEIICH STATEMEAWTS upper contfidence bound belar lower. This
ABOUT113C93TIATE3also occurs in XC estimate confidence

A Coputr pogra ha ben wrtte to limits (5]. it is also interesting to
A coputr pogra ha bon wrtt~ to note that while Increasing It is desirable,

evasat 'the CDF and confidence limits, the confidence bounds for N a 128 are still
The mathematical details of the CDP as a very Istge. For example, even when N
finite sum of 121 hypergeametric functions, 128 :if C -0.3 the 95% confidence Intervals
each one a polynomial, are given in E2]. are still (0.2. 01.38) and the We% confid-
For large values of N and C. a brute force ence intervals'(0.44. 0.36) are not much
app~roafb to computing the CDF results in better.
n *ric overflown, attempts to avoid this

At~m can result in underf lows or other .14r~a

inacuracies. The program listed in the 1. 0. C. Carter. C. H. Knapp, and A. ff.
Appendix avoids these difficulties, it also Nuttal. 02#tmatioa of the Magnitude-
incorporates CU? values when C equals zero Squared Coherence Function via Over- *
or unity, sine these can be computed In lapped fast Fourier Transform Proc-
closed form, esag IKIE Trans. Audio lOCtro-

Figures (3a) and (3b) are computer SGOUSt.. Vol. AU-21. Pp. 3537-444, u
generated 8005 and 95% confidence limits.,Y.
respectively. The five pairs of curves 2. G. C. Carter. "Receiver Operating
in each figure are for 9 - 8. 16. 32, 64, Characteristics, for a Linearly Thresh-
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helded Coherence Istimation Detector", ^054F. L[IT-8O.O

ejsfff g. VOL. AZZY-25. pp. 10-92.

3. J7. J7. Gosselln, -Comparative Study o
Tmo-Sensor C1agitude-Squared Whome)
MAn Stngl.-S~naor (Square-Law) lecetw- .00
or Operating Caracteristics',Pgg

a.* A.s5rc,-ac os to 500
XMiLicycles per Second. 1. Spectral
Statioaarity. Normality and Nonlinear-%
it"", J. 00hysical Res., Vol. 70. X0 k I
6f. p. L;7,IG 1 /5. L. K9. 1op s The! Setral.4a An& 1. -4
of Tlke Series, Acamc PressM

6. T. A. Senignus, 112stlmation of Coher- wa
ence Spectrum of Non Gaussian Tim
Series Populations", ImZ Trans. Audio
glectroacoustic.. vol. A-0, pp. LUG-

201 5Vt 1969"(ad Sept 70 correction) / / V
7. IL Cramer, athemnatical Methods of

Static P .1eo university Frogs -7 z-e

0.0 Lta L2a W 9.4 0.5 0.6 8.7 t~ . i.a
SA2WKZ 0UTPUT 710 P10GWE COm Ds4
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£W!PWDX. PRQOA TOR CONffIDUE DOUDS

S20 IF t606G Tr~ O 5 7t
HWL&IF IrI1*.0-LTFt-a) 00 TO~ 57C

.ja 50 40,1 570 C.,04'J

50 CWTI00 O 40 LAZL

4 ~~0 64 liO sM

20d 00 S241 Itt1.1 CO"(CLPL0AT(t.CLI

SR00 9 1 Q?.Js. Gm FZxCOtUP(I.?Jv1C)

1600 00 kij0 1=1.ia. F4=CcNupCZ.ZJ#IC)

M(lia.oo p~nrTA 4.eaLJ.E.r,_ -
bIB O..TN~t 30 FORM.ATIIx,5PS.3 1

f 12f16 afLsh/12Ban CALL COmPAS

C.LPEI. Lwl1xo-iF"*..iIvW pji PORt4ATl'CO,..F. MZ.'1, E)
c~i - CA u??itLAB.I00.'CON l3Nq'l.~i

00 1510 Kj.LG0 - CALL FRAME'
IZ ~0A~~i~iOAd ' CALL RApg4i.0.0.1.1.O00 .O.1*1.OJ~l

Jucoc CAL.L OR10LJ

I CS a to ) Go To 44 0070 C-I#'

QNO3 20 :.14 CALL 0ARKERI TEMP
__________________________ CAL6_CUOVEIXPYISNC.1)

"Ki CALL GURY[(X#TZeNC.L)

OUT ]2 2IL70 CNTINUE I
£PtL.(.iC)Go Ta 45 AA OLI.

41SN2-L CA"L DONZL
VKFtOA~fglI 04
Tstm(LOT A* I I/FK) 0FOAT 191-L) /FK)
1Pt.LTAuflwLl6O TO k89

"S4 CQNItiZU

4i2COtNT!ULT 
I

90 570 121*100
IF (ptil6ageFLY) Go Tm 5~n
IF tA(14l).LT.FL7) GO To 520

C * (~L785n/1O~e2IJREVERSE BLA KI

- ~-V~4',~I%



SUBJECT MATTER INDEX

Bearing Estimation:

TD 5507
TR 5335 (pp 1-6, 71, 140-144)

Bias of Magnitude-Squared Coherence:
Th TC-193-71
Th TD113-19-71 (practical example)
TR 4343
TR 4423 (insufficient resolving power)
TR 5291 (approximation)
TR 5335 (pp 158-176)

Bias of Magnitude Coherence:
Th TD113-48-72
TR 5291 (approximation)

Coherence: TR 5335 (pp 12-13)

Computer Algorithm (FORTANd) for

* Chirp Z Transform and Partitioned and
Modified Chirp Z Transform: TM TC-5-73

* Confidence Bounds: TD 5881

M Multivariate Linear Predictive Spectral Analysis: TR 5729

M Magnitude-Squared Coherence: TR 5335 (pp 193-214)

* Receiver Operating Characteristics (BASK): TR 5335 (p 183)

* Time Delay Estimation: TR 5335 (pp 212-214)

Cumulative Distribution Function of Magnitude-Squared Coherence:
T TC-193-71
TR 4343 -'

TR 5335 (pp 156-158, 180-183)

Cumulative Distribution Function of Magnitude Coherence:
TM TD113-48-72

Digital Computer Algorithm (see Computer Algorithm)

s-1 i .
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Examples of Magnitude-Squared Coherence:
TM TD113-19-71
TR 4423
TR 5335 (p 221)

Fast Fourier Transform:
TM TD113-19-71
TR 4343
TR 4423
TM TC-5-73

Frequency Resolution Effect: TR 4423

Frequency Resolution Computer Algorithm: TM TC-5-73

Generating Specified Coherence: TM TC-187-71

Maximum Likelihood Estimation of Time Delay: TR 533S (pp 50-85)

Magnitude Coherence: TR S33S (pp 12-13)

Magnitude-Squared Coherence: TR 5335 (pp 12-13)

Mean Square Error:
TM TDl13-48-72
TR 5291 (see also Bias and Variance)

Moments of the Magnitude-Squared Coherence Estimate:

TR 5335 (pp 156-158)

Moving Sources: TR 5335 (pp 121-131)

Multiple Sensors: TR 5335 (pp 131-134, 140-144)

Multiple Sources: TR 5335 (pp 112-121)

Multivariate Linear Predictive Spectral Analysis: TR 5729

Nonlinear Systems':
TR 5335 (pp 22-43)
TM TCl-2-74
TD 5881

Partitioned Modified Chirp Z Transform:
TM TC-S-73
TM TCI-2-74

S-2



Passive Bearing Estimation:
TD 5507
TR 5335 (pp 1-6, 71, 140-144)

Phase Transform: TR 5335 (pp 88, 94, 100-102)

Positive Definite Spectral Estimate: 'FR 5729

Power Spectral Density Matrix: 74 TC1-S-73

Probability Density Function of Phase Estimate (see also Cumulative
Distribution Function): TM 771112

Sonar (see Passive Bearing Estimation)

Smoothed Coherence Transform (SCOT):
TM TC-159-72
TR 5335 (pp 88, 94, 98-100)

Specified Coherence: TM TC-187-71

Stable Correlation Recursion: 'R S729

Time Delay Estimation:
TR 5335
TD 5507

Variance of

" Bearing Estimates:
R S335 (pp 71-76)

TD 5507

" Magnitude Coherence Estimates:
TM TD113-48-72
TR 5291 (approximation)

* Magnitude-Squared Coherence Estimates:
TM TC-193-71
TM TD113-19-71 (examples)
TR 4343
TR 5291 (approximation)
TR 5335 (pp 176-178)

* Phase Estimates:
TM 771112
TR S33S (approximation p 109)

* Time Delay Estimates:
TR 5335 (pp 72-76)
TD 5507

Weighting Functions, Effect on Magnitude-Squared Coherence Estimation:
TR 4423
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