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ABSTRACT

This report contains two papers on the dynamic response of aircraft operating from damaged and repaired runways. In
the first paper the response of a simplified representation of an aircraft to two discrete disturbances is analysed to see how
the second disturbance modifies system behaviour caused by the first disturbance. The second paper provides a
mathematical model which can be used for calculation of the dynamic response of aircraft structures operating on rough
surfaces; a comparison is made between theoretical predictions for a YF16 aircraft and typical measurements from
frequency response tests.

RESUME

Deux rapports sont inclus dans cette publication qui traite de la Réponse Dynamique d’un avion opérant sur Piste
Endommagée et Reparée. Dans le premier papier est analysée la réponse a une représentation simplifiée d’un avion ayant

subi deux perturbations quantifiées afin de voir comment la seconde perturbation peut modifier la conduite du systeme
geénérée par la premiere.

Le second papier traite d’'un modéle mathématique qui peut étre utilisé pour le calcul de la réponse dynamique des

structures d'un avion opérant sur des surfaces reparées mais rugueuses; la comparaison sera faite entre les prédictions
théoriques pour un avion YF16 et les mesures significatives prises a partir d'essais de réponses en mode de fréquence.
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INTERPRETATION IN TERMS OF THE RESPONSE OF A ONE DEGREE-OF-FREEDOM OSCILLATOR
TO TWO SUCCESSIVE DISTURBANCES

by

Dr James J.Olsen
Assistant for Research and Technology
Structures and Dynamics Division

Flight Dynamics Laboratory
Air Force Wright Aeronautical Laboratories
Wright-Patterson Air Force Base, Ohio 45433, USA

ABSTRACT

This paper explains the dynamic response of an aircraft that taxies over two arbitrary disturbances, under the assumption
that the aircraft can be represented as a linear, one degree—of-freedom system . That analysis produces the concept of the
BUMP MULTIPLIER which explicitly and simply determines whether a second discrete disturbance will amplify or attenuate
the response from a first disturbance. The BUMP MULTIPLIER also simplifies the understanding and presentation of the
results. While the assumptions are very severe, the resulting formulas can be very useful to guide more elaborate nonlinear
calculations or to plan test programs.

1. INTRODUCTION

The problem of aircraft dynamic response to taxiing over rough surfaces has been a topic of research for many years. For
the most part, the research has been limited to predicting and measuring the dynamic response over the (nearly) random
roughness imposed by the terrain or by wear and tear on runways and taxiways. Within the last several years, however,
concerns have arisen within the Defense agencies of the NATO countries about the safety of aircraft operations over the
discrete disturbances which can arise from bomb-damage to the runways. Those concerns also extend to the dynamic
response due to taxi over repaired runways and repetitive aircraft operations on the (potentially) yielding surfaces.

As a result of those concerns the United States Air force instituted program HAVE BOUNCE which is performing taxi
tests over simulated (relatively mild) runway damage and repairs for several USAl combat and transport aircratt. tne project
also develops computer programs to predict the dynamic response to the simulated runway profiles . Other NATO nations
are performing similar test and analysis programs on their aircraft.

HAVE BOUNCE considers the computer programs to be ralidated when they produce satisfactory comparisons with the
experimental results from flight (taxi) tests. Then the project uses the validated computer programs to extrapolate from
the relatively mild test conditions to more severe operational cases. Since the computer programs account for the nonlinear
properties of the landing gears and tires, the extrapolation of their resuits beyond their validated range of parameters is
always open to some question.

Because the taxi test programs have proven to be very expensive, difficult to control and repeat and (sometimes) danger-
ous, the USAF also created the Aircraft Ground: Induced Loads Excitation (AGILE) facility which measures the dynamic
response of operational aircraft to damaged and repaired runways within the controlled conditions of the laboratory. The
project supports an operational aircraft on its tires on massive hydraulic shakers and drives the shakers vertically to represent
the vertical events of the aircraft taxiing over damaged and repaired runways. Each (of the three integrated) shakers can
sustain a static weight of 50,000 |b, can displace amplitudes of 10 in, can impose dynamic forces up to 50,000 1b and can
be driven sinusoidally (frequencies up to 25 Hz), randomly or to follow prescribed discrete motions. In its first major test,
agreement between the AGILE tests and HAVE BOUNCE taxi tests for an operational A-7D aircraft was excellent.

All three evaluation methods computer programs, HAVE BOUNCE taxi tests on operational aircraft and AGILE tests
on operational aircraft have been dominated by one major consideration-the nonlinearities in the landing gear. As a result,
nearly all of the computations have been done with numerical time-integration of the nonlinear differential equations of
motion. The taxi tests and AGILE tests also have been forced to adopt a tedious approach of repetitive, trial and error test
cases, again because the aspect of nonlinearity has prevented the superposition of simple disturbances to synthesize more
complex responses.

In this paper we contend that the nonlinearities do indeed strongly influence the computational and test results, especially
the exact levels of the loads obtained. However, the qualitative response and the selection of speeds, bump heights. and
bump spacings which prodice large dynamic responses ought to be predictable, for the most part, by simpler linear methods
Nonlinear calculations, taxi tests and AGILE tests all ought to be preceded by a substantial amount of linearized calculations
which can be done rapidly and can yield much physical insight into those conditions which produce extensive dynamic
response. A clever analyst may Bbe able to find the simplicity and intuitive understanding in seemingly complex time
histories, which in fact may be not much more than superpositions of many relatively simple events.

The purpose of this paper is to review those linear methods, to show how they yield an understanding of complex time
histories and how they can be used to plan nonlinear calculations, taxi tests and AGILE tests. The paper illustrates the
principles by treating the response of a linear one degree of freedom oscilllator as it taxies over two successive discrete
disturbances, introducing the concept of the BUMP MULTIPLIER.
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2. THE RESPONSE OF A ONE DEGREE OF FREEDOM OSCILLATOR TO A SINGLE DISTURBANCE

Assume a one degree of freedom oscillator, with damping less than the critical value, receives some excitation over a
period of time, but that the excitation stops at time ¢t = ¢,.

E1(S) v ﬂ&fvﬁyﬂﬁﬁj&ﬁ‘ﬁ

For times after ¢,, when the response is decaying freely, the acceleration response can be written:

E(t)!bh = @t W) {4 sinfw(t - ;)] + Bicos[w(t ~ t,)]} (2.1)

where:

t; = the time the excitation ends

W

damped frequency
aw = damping
A, B, = Constants which depend on a,w, the excitation and the initial conditions

Note that the damping parameter a above is not quite the same as ¢, the frequently used fraction of critical damping,
which comes from the analysis of a classical one degree-of-freedom oscillator. The product aw controls the exponential decay
of the damped system, perhaps as observed experimentally. The use of the parameter a allows us to refer the damping to
the observed damped frequency w rather than the fictitious undamped frequency wg. In the special case of the classical one

degree—of -freedom oscillator & = ¢/y/1 — ¢2.

The decaying acceleration response also can be written as:
E(‘)‘m, = Re (- sin(w(t — 1)) + ¢, (2.2)

where:
R, = \/Af + B,z
tan¢; = By /A,

We loosely refer to R, as the potential amplitude of the acceleration response. It is an upper bound on the amplitude of the
acceleration response to a single disturbance. The phase shift ¢; depends only on A and B, and will therefore be different
for various forms of the excitation.

For small damping (@ << 1) the behavior of the acceleration response will be dominated by the term sin{w(t — t)) + ¢4}
in Equation (2.2}, so we would expect its local maxima and minima to be obtained from solutions of
n

i n=123,.. (2.3)

wit-t)+o=(2n-1)
However, th term e ®*{t "1} causes a shift in the values of time for which the local maxima and minima of the acceleration
response occur. In fact, the third derivative of the displacement (derivative of the acceleration) is:

d3(1)

dt = Rye ot ")W\/l +atcos|w(t — 1) + (6, + 4)) (2.4)

toty

where:
tané; = a

Therefore, the local maxima and minima of the decaying acceleration response will occur at the values of time for which
x
w(l—l,):(Zn—l)z—(¢|+6|): n=123.... (2.5)

The additional phase shift 4, will be small for values of damping that are small with respect to the critical value. (o << 1).
Note, however, that the first phase shift #; need not be small.

We can use these resulis 1o obtain an even hetter upper hound on the amplitude of the acceleration response. If we plug
the above value of »(1 - 1)) into Equation (2.1) for 3(t) e we find that the extreme values for 3(t) - equal:

R
V1 + n?

:
.
-

e olam g @by 223,

Tha larrnet value acenrs for n = |,

A WX




3. TWO SUCCESSIVE DISTURBANCES

Now suppose the single degree of freedom oscillator receives a subsequent excitation over another period of time and
that excitation stops at time ¢ = {,.

_A Z.
t

3

If there had been no previous response from the first disturbance the acceleration response to the second disturbance
would have been:
HO IS awlt=t3) { A, sin [w(t — t3)] + By cos [w(t — t3)]}
>ta

However, because of the presence of the decaying response to the first disturbance, the acceleration response to the combined
disturbances must be written:

2y, L, =e @alt U {4 sinfw(t - 4)] + By cos [w(t — )]} +

(3.1)
e @l 2 { 4, sin [w(t - ty)] + By cos[w(t — t3)]}
For convenience in manipulating the terms in Equation (3.1) we abbreviate:
e, =e aw(t t,)
S, = sin [w(t — ¢,)]
C, =cos[w(t - ¢,)]
Then the acceleration response to the combined disturbances is:
5(1)],,,, = €1(A4151 + BiC1) + e2( 4252 + ByC) (3.2)

The trick is write Equations (3.1) and (3.2) with respect to the time of the most recent disturbance, t;. To that end we
write:
t—tp=(t—ts) +(t2 - 1)
We need the additional abbreviations:
e = e~ owlta-t1}
SQ = sin [U)(tz - l|)]
(«'21 = Ccos [w(fg - tl)]

To obtain:
€ = €€
S1 = §;Cn + CySn
C1 = CCy — 528y

The acceleration response to the combined excitations becomes
20, = e2 (4382 + BiCy) (3.3)

where:
A} = Ay +¢(A\Cyy - B,Sy)

B; = By + €3,(A S + B1Cyy)

Following the same procedure we used for the single disturbance, the acceleration response to the combined disturbances
can be rewritten as:
3(t)|

151, = Rje awlt ta) gin [w(l - tz) + ¢1] (3.4)

where: ~
Ry = /a3 + B} (3.5)
= \/(A} + B}) + 23 [C2,(A Ay + B, By) + 53, (A B, - BIA;)T+63|(;?TB?))
By By +e3(ASy + BCy)

tang; = ¢ = !
2T A} Ayt e(ACy - BiSy)
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Equation (3.5) for Ry, the potential amplitude of the acceleration response to the combined disturbances, is one of the
major findings of this paper. Much of the subsequent work here will be concerned with finding the conditions which mazimize
and minimize R;.

As we did for the single disturbance, we can differentiate Equation (3.4) with respect to time to search for the times for
the local maxima and minima of the acceleration response. We obtain:

s -
| . = R/ § T cos [t — 1) + (61 + 63) (3.6)

where

tané; = a

We see the same phase shift (6, = 6,) in the times for local local niraxima and minima of the decaying acceleration response
to the combined disturbances. which will occur whea

“t—t) = (2n=1)% ~ (62 +6): n=1.2.3.... (3.7)
2

As we did for the single disturbance, we can use these results to obtain an even better upper bound on the amplitude

of the acceleration response. If we plug the above value of w(t — t;) into Equation (3.4) for 3(¢) L find that the local
2

extreme values for (t) - equal:
2

R2~Ae alzn 1)} (#2+62)] yn=1,2.3,...

Vit a?

We have seen how to find the times for local maxima and minima of the decaying acceleration response, assuning we
know Ay, By. A4;,B,.a,«.t; and t,. However, we are searching for the best and worst possible runway profiles. so the most
critical aspect is to find the values of t;, the time of the second disturbance, which will locally maximize and minimize the
potential amplitude R,. We differentiate Equation (3.5) for R; with respect to t, and set the result to zero to obtain:

S'“ [(AlAz + B|Bg) + Q(AIBZ - BlAz)l -+

(3.8)
Cy [n(Ai 42 + By By) - (A1 By — B1Aj)} + a(A? + Bf)ey, =0
or
M Q
in[w(ty — ¢ + etz ) = 3.9
Rygsinfw(ty —t)) + ¥yq) me (3.9)
where

: A%+ B}
Re =\ m
1 i

tan i, = “A1d2 + BiBy) — (A4, B; — B\ 4;)
"7 (414, + B\B;) + (A B, - By Ay)
The exact solution for the time delays (t; — t;) which locally maximize and minimize R, would require a numerical or
graphical solution of Equations (3.8) or (3.9), however for small damping we would expect

w(t, - )~ nr— ¢ n=1,2,3... (3.10)

We will give the determination of the time delays (t; ~t,) an exact treatment in the next Section.

4. THE BUMP MULTIPLIER

Recall that R represented the potential amplitude of the decaying acceleration response to the first disturbance and
that R, represented the potential amplitude of the acceleration response to the combined disturbances, where in each case
we measured time from the time of the most recent disturbance. We call the ratio R,/ R, the BUMP MULTIPLIER, since it
defines the ertent to which the second disturbance amplifies {or atlenuates] the response to the first disturbanee. The BUMP
MULTIPLIER is

Rz - (,‘1§+B§)+2€2| [(’2|(.4|.“2+n Uz)+-'2|(A|Bz~—B|Al)]+f’§l(“‘f+Bll) (41
R\ Al B 1)

To assist in the interpretation of the BUMP MULTIPLIER? we add another set of abbreviations:
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The potential amplitudes and phase angles for the responses to the first disturbance and the combined disturbances become:

R =|AVi+e (4.2)

tan ¢@; = ¢,
R ALV, ;
R‘z:|-42|\(1+f2)+2(;‘282|)[('2|(1+‘1‘z)+521(‘2—‘l)]+(‘42621) (1 +ef) (4.3)

G+ ('};Czl)(su +€1Cyy)

tan ¢y =
I+ (,A{;EZI)(CZI - €15y)

The BUMP MULTIPLIER becomes:

A, (+d)+ %(f:;le) ([Ca(1+aa) + Sula —a)] + 2;{21)727(1 +e}) (4.4)
A 14+ :

R,
R,

Note in Equation (4.4) that the magnitude effects are contained mostly in the term Qﬁf 1, whereas the spacing effects are
in the radical. The spacing effects are dominated by the terms

Sy =sinfw(ts - 1))
Cyy = cos [w(t; — )]
and those terms are always modulated by the combination

41( A
A7 T 4,

aw{fy ty)

When we use these abbreviations in Equation {3.9) to find the time delays (¢, — ¢;} which locally maximize and minimize
the potential amplitude R,, we obtain

) 2
1Az| |1+ ¢ _e aw(tz—t1) — g (4.5)

a
———=sin|w(ty — ¢ +
1+ [wltz = 1) + ¥ Jita?

where
an vy < 2L a%) = (=)
7 1+aa)+alag-q)

A first approximation for a << 1 for the time delays would be:

u(tz—tl)zrm—t/)n ;n=l,2,3,... (46)
To get a second approximation we search for small angles 3, such that
wlty = ty) = nr — g — B (4.7)

With this change of variables Equation (4.5) takes a new form

ae®Pn

Cpsind, = ;== — 4.8
S v e (48

where .

H 2

= (~1)ne(nT 'i'lz)li“}‘ L-f 9
Cn = (~1)" A.‘\}Hrf (4.9)

If we expand Equation (4.8) for small 3,, keeping only first order terms, we obtain

Inx o (4.10)

CoVl+a? —a?
This then is the (hoped for) small correction we use in Equation (4.7) to find the second approximation for the time delays
{ta = ty).
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" 5. USE OF THE AVERAGE SPEED
gl
:,T‘ We have made no assumption of a constant taxi speed between the two disturbances; in fact we will show in this Section
s‘r: that the spacing effects are do.ninated by the average speed between them.
o If l is the distance between the two disturbances, the average speed is
Iy S { p
' V= — (51)
.: -t
:o Then we can express the term
¢ lw -
‘1.: wl(t, =)= =2 (5.2)
X 1%
The usual terminology for A = {w/V", based on the instantaneous speed. is the reduced frequency. Therefore A= l,:/l.' 15 the
;l; reduced frequency based on the average speed between the two disturbances.
’ Amplitude and Bump Multiplier
:' Equations (4.2) and (4.3) for the potential amplitudes and phase angles. and Equation (4.4) for the BUMP MULTIPLIER
L1 remain unchanged. except that now we note
en=e
"“ 52] =sin A
5 ("), = cos A
B
o
"
'l: Best/Worat Runway Profiles
. The process for finding the exact and approximate solutions for the time (elays which maximize and minimize the potential
~ amplitude R, of the decaying acceleration response to the combined disturbances remains unchanged. except Equation (4.5)
N ". now becomes:
( -
> A, 1+¢2 . . ¢ i
Lsin (A 4+ vp) + e =0 (5.3
> » 12 9.
¥ ‘41\1+’f ( ) VI1+a? )
< N
X The first approximation for the time delays becomes an equation for A:
¢ Axnr -y :n=1,23.... (5.4)
'.‘ . . . R . .
I The process of finding exact solutions and second approximations for the time delays also remains unchanged. except
o that Eyunation (4.7) becomes
' .
¢ A= nmw o~y -, (5.5)
Y
LX)
[ . .
:.l 6. SPECIAL CASE: SIMILAR DISTURBANCES
{/
: We now define similar disturbances as diserete disturbances that have the same shape but differ only in magnitude
- and/or sign. Examples would be the entire family of infinite ramps or a family of sine waves of the same wavelength but
b varying heights. The assumption of similar disturbanees is not a very limiting one. In fart. nearly all of the profiles tested

in the HAVE BOIU'NCE program and all of the NATO/AGARD profiles can be broken down into sequences of similar ramp
disturbances. For linear systems with zero initial conditions similar disturbances will produce similar responses, and when

2
q% disturbances are similar ¢ = ¢; = ¢.
4
::: Amplitude
A Under the assumption of similar disturbances, Equation (4.2) and (4.3) for the potential amplitudes and phase angles become:
Ry a1 (6.1
.'
:‘ tano, =«
[
. .
A A
» Ry -4, L eedy 142(7 1+ ( e )2 (6.2)
A 2 PN \ (‘41 nltn A, n
A (M) Sy + O
tan o, — ,/:2 n) '2| lll)
v L (e O = rSp)
.
-
; Bump Multiplier

Equation (4.4) for the BUMP MULTIPLIER reduces to:

B A s A
R, A\ 1 2(‘4;'10(“ + ‘A'lr“)z (6.3)




Figures (6.1) and (6.2 illustrate the BUMP MULTIPLIER versus A with the damping as a parameter for 7he s o
case of equal (or opposite} disturbances at constant speeds.

The major conclusion to be draun ts the dependence of the BUMP MULTIPLIER on the nondirmensional spurivy
speed or frequency) parameter

A=l - ) = ey

The spacing of the disturbanees, the average speed of the vehicle and the natural frequenicy all comhirie into the ore parge eree

the reduced frequeriey based on the average speed. Also, while the BUMP MULTIPLIER clearly diranashes wrth o for wge st o

vadues of . the ralues of A that produce the local minima and marima are seen to he farely weak furictions of o

Best/Waorst Runuay Profiles
In order to find the time delays that locaily maximize and minimze the potential amphtude B, Bguation 5 30 reduces o

: N ae A
l*ln(/\+t,'”)¢ .- 0 6
4, V1oe ol
where
tanty; — o
The definition of €' rednces to:
A .
Cp o 1)mentnm viz) 42 €3
A4y

Tables (6.1) and (6.2) give values of the first approximation, second approximation and exact soihition for cwhirt jocah

maximize and minimize the BUMP MULTIPLIER for the same special case of equal 1or opp-site: disturbances and constane

speeds.

The major conelustons to be draun are:

fa) Again the spacing that marimizea or munimizes the aeceleration response deperids vrry weakly on the damping parar
eter, a,

(b)the First approrimation

Az=nr -y nr o

te an excellent approrimation to the rract solution for reasonably small values of dunping

7. EXAMPLE: THE CLASSICAL. UNDERDAMPED SPRING MASS DAMPER TAXIING OVER TWO
RAMPS.

We consider the example of a classical, single degree of  freedom oseillator that enconnters two ramp disturbances. The
disturbances are separated by a distance [ and orcur at tumes 1 and (5. respectively. The taxi speeds V).V are not necessarnily
equal at the time of the encounters, nor are the ramnp angles 6;.6,.

The differential eqnation of motion s
miteisks-ecg+ky (7.1)
where:

glt) = Voru(t)

u{t] - unit step fnction




By solving the ordinary differential equation of motion for the displacement in response to the ramp inputs (with zero
initial conditions) and then differentiating those results twice with respect to time we find the various parameters to use in
Equations (2.1) and (3.1):

A, = Ve, (1 - 2¢%)
B, = 2V,wyb, (V/l ~¢?

¢ = ratio of damping to critical value, ¢/2mwy

- - 7.2
wo = undamped natural frequency, \/k/m (7.2)
w = damped frequency, Wov/l,,—, ¢?
a=¢//1-¢
We also note the nondimenstonal reduced frequencies :
lu}o
Ao = v
lw /o
A= V = onl - (2 (73)
and the relationship:
aw = ¢wy (7.4)

Note the distinction between the hypothetical undamped frequency wg and the actual damped frequency w. Note also the
distinction between ¢, the fraction of critical damping as related to the hypothetical undamped frequency wp, and a which
we use to relate damping to the actual damped frequency w.

For purposes of illustration we pick the fictitious undamped natural frequency to be
wo = 27 rad/sec

Jo =wo/27r = 1.0H 2,
and we pick the damping value
¢ =¢/2mwg =0.1
so that P
V1= ¢t =0.9950

a = (/\/l - gi = 0.1005

Note that this means the actual damped frequency is:

w = 1.997 rad/sec; f = 0.9950 Hz

All members of the family of ramp inputs are similar. Therefore, For every ramp input {regardless of speed V', frequency
w or slope 8) the similarity parameter ¢ is:

B 2/1-¢
A7 1-22

(=€ =¢= = tan¢; = 0.2030 (7'5)

The second phase shifts for the location of the local maxima and minima of the decaying acceleration response will be
identical:

6, =6, =6 =sin"'¢ =0.1002rad = 5.739°

Figure (7.1) illustrates the two phase shifts ¢; and é versus the damping ratio ¢.

Amplitude

The potential amplitudes of the decaying acceleration responses are obtained by applying the definitions in equations (7.2)
(7.4) to the equations for similar disturbances, Equations (6.1) (6.5).

Figure (7.2) illustrates the decaying acceleration response of the classical spring mass damper for a typical single ramp
input at a constant speed of V' = 10.0 [/ser , where the length units are in any convenient, consistent system. Figure (7.3)
illustrates the sensitivity to speed by plotting the response for a range of speeds V' = 10.11,.... 20 [/sec. Note that the
amplitude of the response to the single disturbance grows monotonically with increasing speed. Figure (7.4) illustrates a
curious feature in the dependence of the response on damping for

¢=0.1.02,...,05

at a constant speed of V = 10.0 [/sec. Large values of damping actually increase the peak acceleration response at the
earliest instants of time. These effects are the result of the term

B, = zvlwooc (\/l -¢?
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Figure (7.5) illustrates the decaying acceleration response for traversing two equal (but opposite) ramps, separated by a
distance of 20.0 [.at a constant speed of 10.0//sec. Note that the maximum amplitude of the acceleration response to the
combined disturbances at a speed of 10,01/ sec is actually smaller than the response to the first disturbance alone at the same
speed. Figures (7.6) and (7.7) show that this will not always be the case. By changing the constant speeds to V" = 8.02 and
13.46 [/sec for the same ramp geometry, we see that the response to the combined disturbances can be markedly greater
than the response to the first disturbance alone. Figure (7.8) further illustrates the sensitivity to speed by plotting the
response for a range of speeds V" = 10,11..... 20 I/sec. While the amplitude of the response to the single disturbance grew
monotonically with increasing speed, the amplitude of the response to the combined disturbances displays a much more
complicated structure.

Figure (7.9) shows the damping effect on the acceleration response to the combined disturbances. Note how the maxi-
mums, zeroes and minimums occur at nearly the same periodic values of . regardless of the value of the critical damping
ratio .

Bump Multipiier
Reverting to the general case of non-constant speeds and ramp angles. the potential amplitude for the dynamic acceleration
response to the combined disturbances is given by:

. . 2
Ry = Visolfniy 1+ 2("‘2';1" )enCu + ("‘2‘0'1“) (7.6)

where: _ .

eq = e 2l ) _, @k, 01008

Oy =cos{u(ty - 4)] = cos A
The BUMP MULTIPLIER from Equation (6.3) is
. . - 2

7= e vz e () )

The term }lef m Equation (7.7) gives the pure magnitude effect of the two disturbances. The radical gives the spacing
effect. The dominant termn is (3, = cos A. which is modified by
1,4, ANt ak 14, 0 10054
(x’,o,)'“ - (\',o,)‘ (V,o,)‘

Equationa (76} and (7.7) are very powerful results which relate the potential amplitude Ry and the BUMP MUL-
TIPLIER to the instantaneous speeds V' V), the arverage speed V. the ramp angles 8,.0,. the damping parameter a and the
arerage reduced frequency A - 1oV

Best/Worst Runuay Profiles
Recall that the equations which determine the best /'worst runway profiles or speeds were:

ae A

A,
sin (A ey « ... 0 6.4)
~4I II) \ 1 ol (
where
tanvy; - o

For this example
vy s 'y 01002 rad 5 739"

For constant speeds and equal (hut apposite) ramps Equation (6.4} reduces to

et han(d v 0 (7 8)
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a. First Approximation
The first approximation to the time delays that locally waxiize and minimize the acceleration response to the combined
disturbances is:
Axnr -y n=1,23... (5.4)

or

A - 3.0414.6.1830.9.3246. 12,4662, ..

b. Exact Solution
In obtaining the exact solttion for the tune delays. the values of O, for n = 1.2.3... are:

(', = 21.04; - 486.9: 11270; - 310.700 . ..
The corresponding exact (rapidly diminishing) values of 4, are:

dy 4779410 Y 206410 Y. 8920410 * -3.855¢10 °

and the exact values of \ are

A . 3.0366.6.1832.9.3246.12.4662. . ..

These small values of 4, dlustrate why the first approximation is such an excellent approximation.

¢. Second Approximation
The approximate solntions for small © would be

n
R A 4.10
TN al - al ( )

These approximations to 4, are
dy - 477410 5 -20644 10 ¢,

They differ from the exart values only for n = 1. and then very slightly. In addition, both the exact solutions and the second
approximations are very small corrections to the first approximation:

A=nr -y xnr—a (5.4)

Earlier in this section. when we found the speeds 8.02and 13.461/sec that increased the response to two equal (but
opposite) disturbances separated by a distance 20.0/, we used the results in Table (7.2). Table (7.2) shows that, for a ~ 0.1,
the exact solutions for the values of the reduced frequency A = 1;/"' that maximize and minimize the acceleration response
to the combined disturbances -re:

Maximize: A/r = 0.9447.2.9538. 4.9616. . ..

Minimize: A/ = 1.9853.3.9774.5.9731. ...

For a length | = 20.0 {. and noting that [ = . /27 = 0.995 H z, these results translate to the following speeds:

Maximize: V' = 42.13,13.46.8.02 {/aec. ...
Minimize: V = 20.05.10.01.6.66 {/sec. ...

Note that Table (7.1) or (7.2) requires the use of the damped reduced frequency, A = lw/V.’ rather than the the fictitious
undamped reduced frequeney Ay = [og/V.

8. APPLICATION TO NONLINEAR CALCULATIONS AND TEST PROGRAMS

a.Three Principles
The first set of basic ideas to keep in mind when when using these results to plan nonlinear calculations, HAVE BOUNCE
{taxi) tests or AGILE tests is that a useful building block is the infinite ramp, that two infinite (opposite)} ramps can combine
to produce an AGARD Bump, and that two (opposite) AGARD bumps can combine to produce an AGARD Repair Mat.
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Second, recall that for two disturbances separated by a distance [, the best/worst combinations tend to occur when:

M
A= Tw= 2—1}‘£%n7r—a;n=1.2,3...
| %
or |
V ~ —2——4;) n=1,23... (8.1)
n-y

Third, the potential amplitudes of the acceleration response of a classical one degree-of-freedom oscillator to a single
infinite ramp and to two combined ramps are:

Ry = Vywelts|

Ry = “’O\K"zf’z)2 +2(V16,)(V20;) e Coy + (V161)?

- Vidien Vidien 2
= Vywolfa| 1+2( Vs )c,, +( Vo ) (7.6)
where: A
€2y = c-uw(tg—tl) - c‘m\

Cy =cosfw(t, — 1))} = cos A

b.The Responseonthe Initial Slopeof a Repair Mat

Beginning with the basic building block of the infinite ramp we have shown that the acceleration response is given by:

()], = Rie Ut tsinfu(t — ;) + ¢y (2.2)

!
ety

—— I —
T

The initial acceleration response at the first corner will be given by:

= R)sin¢, (8.2)

B _ .
t=t]

We have also shown that the local extreme values of the acceleration response are given by:
R
V1+al

e~ el(2n-15-(#1+61)] n=1,2,3,...

and that the peak values occur when
n
W(tpeak — 1) = (2n - 1)5 - (b1 +6) in=1,2,3,...

This translates to distances where the peaks occur of:

1%
Tpeak — £ = ;[(2n—1)%—(¢1+6|)] n=12,3,...
or .
2n - 1}V 2 6
Tpeak — T = ( n4f)_[ - ;(zd;lrt-*._——ll))] n=1,2,3,... (8.3)

where V is the average speed over the initial slope.

These are the expressions for the peak amplitudes of the acceleration response and the locations of those peak responses
on the initial slope of an AGARD Repair Mat. Conversely, if the length of the initial ramp is /;, we know that the peaks of
the acceleration response will occur somewhere on the ramp for speeds:

y 4/
VS ——— 2 1 - :n=1,23,... (8.4)
g 2 ¢ ‘6 Al 3 y Al
(2n ~ 1) [1 - Toeo
Otherwise the peak acceleration responses on the initial slope will ocenr at the second corner. At that point the value
becornes:

= Rie "('t’w) sin (ll(,d + tb|) (8.5)

B ty \
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¢.The Flat Areaof a Repair Mat

We assume that angles 6,,0, are equal and opposite and that [, the length of the ramp, is small enough so that the
speed over the initial slope is constant, V'; = V,. Then the acceleration response to the combined disturbances is:

1)), = Ree @ Dsinfw(t - 1) + 6] (3.4)

where

, P —
Ry =1 |-’o|0||\/’1 —2¢,1Cy1 + €,

-~ en(Sy +<Cy)
tan @2 = 1 ~ €21(Ca1 — €Sy)

The acceleration response just after the second corner is:

2y

= Rysing, (8.6)
ety

The local peak values of the acceleration response on the flat part of the repair mat are given by:

-a [(2"1—1)1 (¢2+62)]
i

2,3,...

and the peak values occur when

[ I NV

This translates to distances where the peaks occur of:

rpeak"IZ:g[(z—n;li-(d)z‘Féz)] n=123,...
or
2n — 1)V 6
Tpeak — Ty = (—n‘iflL[ “%%12))] in=1,2,3,... (8.7)

where in this case V is the average speed over the flat part of the repair mat. If the length of the flat part is I, we know
that peak acceleration responses will occur somewhere on the flat part for speeds:

5 4fl,
V< (2n-1)[1 25?:“)] (8.8)

d. Obtaining the Infinite Ramp Data fromthe Test Results for an AGARD BUMP
Because of the impossibility of experimentally developing an Infinite Ramp, it will be more practical to excite the oscillator
with an AGARD Bump and then infer what the response would be to an Infinite Ramp. We assume that we have excited
the oscillator with an AGARD Bump and, therefore, we will know e3,, S3; and C;; and will have measured R;, a,w, ¢; in the

equation:

5“”»:, = Rye™ -t sin [w(t ~ t;) + &) (3.4)

The potential amplitude R; can be obtained from:

Ri= et R (8.9)
\/» 2€1|(2| + le
Then the phase lag ¢, can be obtained from:
€215
= . 8.10
Q 1~ 82](,“ ( )
_ tanéy + Q
= | _Qtand, (8.11)
tand; = ¢

FOpy

-—

Mofol" s 4% Bemitwr-wr-u— = =




e. Guidelines for Nonlinear Calculations, AGILE Testsand Tazi Tests We begin by calculating or measuring the ac-

celeration response to an AGARD Bump

over a range of speeds V' and angles 8. Since the response will undoubtedly not be purely in a single degree of freedom. we
must process the test data to obtain separate values of R,. a,w and ¢, for each degree of freedom. Then for each speed, angle
and degree of freedom we calculate:

e =€ awtz ), g = cos [u-'(’2 - 'l)]

and we use Equations (8.9) (8.11) to calculate R, and 9, A good test of our assumed linearity is to form "S* The values
should be approximately the same for each degree of freedom. regardless of speed V' or angle 8

The next step should be to test the linear result that the Best/Worst AGARD Bumpas will be those for which

N
A= v ST oain = 1.2.3...

Since [, is fixed by the AGARD geometry. we can accomplish this variation by choosing the speeds to he

Ilu-'

n»x - o

We can interpret the final slope of the AGARD Repair Mat

e 0,2t -
-

L AQ‘_‘,Q‘*Q" :j

|~ iq.

as just the negative of the initia] slope; with the only distinction that it occurs at a distance of {, + [, after the initial slope
Then we can search for the Best/Worst length of the repair mat by setting:

h + 1)
v

A= =nr - a; n = 1,23

In this case we have both the average speed V- and the length I, to use as variables.

Now we note that the total length of the AGARD Repair Mat is 21) + 1, and assume that another repair mat is placed a
distance !} behind the first mat.

Therefore. to look for the Best /Worst spacings we set

.2
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9. CONCLUSIONS

We have treated the dynamic response of an aircraft taxiing over runway disturbances, under the assumption that the

gross aspects of the dynamic response can be found in the analysis of a linear, one degree of freedom system, excited by two
successive disturbances. We have found:

a. There is a great deel that can be learned about the governing physics for aircraft dynamic response to taxi over
damaged and repaired runways by examining the results of calculations with relatively simple, linear models.

b. The seemingly complicated time histories can be merely superpositions of relatively simple, time-phased events.

c. Relatively simple expressions are avatlable for the potential amplitude (an upper bound) of the acceleration response
excited by one or two disturbances. In the (not too) special case of similar, disturbances separated by a distance [, with
nonconstant speeds and ramp angles, the expression for the potential amplitude R; is:

DT . "'101821. . Vidieq !
R,J,wgoﬁ\uz( o0, )(,2,+( Voo, )

where .
P“ = F ar
(') = cos A
:\ = lA'/‘.-

d. The effects of disturbance spacing and variable taxi speed are controlled by the reduced frequency. based on the

average speed between disturbances:

e One need not actually calculate the time histories to find the best/worst profiles and speeds. but can use the expressions
for the potential amphtude R, and the BUMP MULTIPLIER ;’;f

f To maximize/mimnize dynamic response a good approximation for A is
A=nr—-na

g While damping obviously controls the dynamic response to the disturbances, the critical speeds and disturbance
spacings are weak functions of damping

B These results can vasily be extended from two disturbances to an arbitrary number of disturbances and multiple
degree of freedom systetws with maltiple landing gear

. The resnlts of calenlations hased an these linear methods should be compared with results from flight(taxi) tests,
AGILE tests and nonlmear calenlations  This is not to say that the linear results should be relied on to predict detailed
loads: rather the question ~hould be da the somple lnear maodels prediet the eritieal speeds and spacings so that we can use

them to guide our test programs and nonlinear solutions
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(b) ¢ = 0,0.05,0.10,...,0.25

f'°z, R

(a) ¢ =0,0.01,0.02,...,0.05

Figure 6.1 The BUMP MULTIPLIER for Equal Disturbances
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(b) ¢ = 0,0.05,0.10,...,0.25
(2}
8,
fdes
®
] [ P8 3 < s - 6

(.) ¢= 0,0.01,0.02,... ,0.06

Figure 6.2 The BUMP MULTIPLIER fot Equal and Opposite Disturbances
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Figure 74 Acceleration Response to a8 Single Ramp for ¢ = 0.1.0.2,...,0.5
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Figure 75 Acceleration Response to Two Equal and Opposite Ramps at V' = 10.01/sec
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Figure 7.6 Acceleration Response to Two Equal and Opposite Ramps at V' = 8.021/see
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Figure 17 Acceleration Response to Two Equal and Opposite Rampsat V = 13.461/sec

Figure 78 Acceleration Response to Two Equal and Opposite Rampsat V = 10,11, ...,201/sec
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Figure 7.9 Acceleration Response to Two Equal and Opposite Rampsfor¢ = 0.1.0.2.. ..
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AN EXPERIMENTAL-ANALYTICAL ROUTINE FOR THE DYNAMIC QUALIFICATION OF
AIRCRAFT OPERATING ON ROUGH RUNWAY SURFACES

SUMMARY

by

R. Freymann

DFVLR-Institute of Aeroelasticity
BunsenstraBe 10, 3400 Gottingen, Germany

A mathematical model to be used as a basis for analytical investigations to predict the dynamic struc-

tural response of flexible aircraft operating on rough runway surfaces is presented. It is shown how the

structural parameters included in the aircraft generalized equations of motion are determined in a ground

vibration test on the real aircraft structure and in additional tests on components of the undercarriage.

The validation of the developed mathematical model is achieved by a comparison of typical results from fre-

quency response tests and calculations performed on a YF-16 prototype fighter aircraft. Finally. the way

in which the developed mathematical model can be used in combination with various systematic test pro-

cedures for the dynamic qualification process of aircraft operation on damaged/repaired runways is in-

dicated.

LIST OF SYMBOLS

M m
K o>

o 2 X

(kg m?/s?]

(@

[kgm2/s?]

<

{m/s]
w [kgmi/s?]

f [Hz]
f [Hz]

matrix of the factors of a linear combination

diagonal matrix of the modal damping factors

force

preload force

nondiagonal generalized stiffness matrix

diagonal generalized mass matrix

generalized external force

potential of the deformation

velocity

kinetic energy

reference matrix of the unit landing gear elongations

matrix of the structural displacements due to a unit reference displacement st the

different landing gears

diagorial matrix of the unit reference displacements at the landing geat s

diagonal matrix
diagonal matrix
diagonal matrix
diagonal matrix

diagonal matrix
tires

frequency

of the
of the
of the
of the

of the

(nonlinear) landing gear stiffnesses

stiffnesses of the ground vibration test suspensior -vsten
(nonlinear) landing gear tire stiffnesses

(nonlinear) viscous damping factors of the landing ears
(nonlinear) structural damping factors of the landing gear

eigenfrequency of the r th eigenmode

function to descmbe the geometric nonhinearities of o landing ygear

imaginary anit

diagonal matnx of the landing gear unsprung masses

vector of the generalized coordinates related to the rough runway profile




tJ
0
L)

q vector of the generalized coordinates related to global aircraft eigenmodes

q, generalized coordinate related to the r-th generalized degree of freedom

aAqQ vector of the generalized coordinates related to the landing gear (strut) degrees of
freedom

t { sec] time

x [m] structural displacement

axp vector of the landing gear elongations

z [m] runway unevenness

¢ modal matrix

‘L modal matrix of the landing gear displacements

L modal matrix related to the rigid-body eigenmodes

0 (% Dcrit] structural damping factor

w [1s] circular frequency

oy (1/8] circular eigenfrequency of the r-th eigenmode

Indices :

(), value related to r-th global aircraft eigenmode (r = 1,2,...,n)

( )u value related to the u-th landing gear degree of freedom (4 = 1,2,...,m)

( )T value related to a tire parameter

€L value related to a landing gear parameter

(S value related to a suspension system parameter

(gt value related to a landing gear strut

(. denote first and second derivatives with regard to time

1. INTRODUCTION

For many years, the NATO countries have been dealing with the problem of evaluating the capatibilities
of their aircraft to operate from rough runway surfaces. This problem is a primary anticipation in modern
warfare tactics, which foresee an early destruction of the opponent's airfields.

To guarantee the readiness of aircraft even in the case of damaged runways, engineers have con-
centrated on the task of correctly predicting the dynamic structural response of aircraft when taxiing over
rough runway surfaces and to establish, based on these data, guidelines (criteria) for the (rapid) repair
of damaged runway surfaces.

In order to determine realistic limits
of aircraft operational capabilities on the
ground. extensive experimental air-
craft taxi investigations (Figure 1) have
been performed [1,2). These tests, al-
beit associated with many difficuities.
have proven able to realistically deter-
mine the aircraft taxi capabilities on
rough surfaces. But since this testing

i1s also very costly. taxi testing will al-

ways be restricted to a minimum.

On the other hand. the many ana .
lyticai investigations performed in the
past indicate that, for calculation of re-
alistic dynamic response data. it is nec
essary to consider in the mathematical Figure 1: Taxi field testing with F-16 aircraft
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model of the aircraft structure, both the aircraft rigid body and flexible eigenmodes as well as the non-
linear and frequency-dependent characteristics of the undercarriage [3]. This requirement is easily for-
mulated, but is more difficult to realize. For the engineer involved in structural dynamics, numerous
questions result therefrom, such as how the aircraft structural model should be built in order to aliow
easy handling of the structural nonlinearities, and how the (modal) parameters of the flexible aircraft
structure as well as the characteristics of the undercarriage can be realistically determined.

Closer insight into the overall problem indicates the need to develop a practical mixed experimental-
analytical routine which allows experimental determination of realistic structural parameters consistent with
a well-adapted mathematical structural model, to be used as a basis in the dynamic response calculations.

This report gives a description of a newly developed experimental-analytical method which can be
adopted as a routine in the qualification process of aircraft for its operation on damaged/repaired runways.
The practical applicability of the method is demonstrated by the investigations performed on a prototype
YF-16 fighter aircraft. In the following chapters and paragraphs, first a model of the aircraft structure is
presented. Moreover it is shown how the (structural) parameters included in the aircraft equations of mo-
tion can be experimentally determined in various tests performed on the aircraft structure and on its un-
dercarriage. Finally the developed mathematical structural model will be validated by comparing calculated
and measured frequency response results of typical structural data.

The work described in this paper was performed by the author at the Air Force Flight Dynamics Lab-
oratory of the Wright-Patterson Air Force Base in Dayton (Ohio) during a one-year stay as "visiting sci-
entist”. The author wishes to acknowledge the authorities of the Structures and Dynamics Division for
having provided the opportunities to investigate the developed routine on a fighter aircraft of the US Air
Force. Gratitude is also due to the many people at the Flight Dynamics Laboratory who graciously pro-
vided their support during the various tests.

3. THE AIRCRAFT STRUCTURAL MODEL

The generalized equations of motion of
flexible aircraft, as depicted in Figure 2,
were derived from the Lagrange Equations
[4], which are expressed in the form

2,

d (aw)_ W , 13U
aqr aqr r

(D at

(r = 1,2,...,n)

for a set of n generalized coordinates .,
related to n generalized degrees of free-

dom.

Considering n generalized degrees of
freedom of the flexible aircraft structure
and m additional generalized degrees of
freedom for the translatory motion of the

undercarriage, the generalized equations of

motion of the entire aircraft can be formu-

lated as follows: Figure 2: Physical structural aircraft model
Mol | K. ¢ ¢ X
: & m X | (g f 0 : 0 ;é(n g * O e, O X,
___________ P S, R || I HpR
. |
T T Ag(1) T ad(t) T .
XomLQL: X,m, X 0 :xo d, X, X, e é, :Xo(e € X,
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with

(3 AxL(t) = XO - aq(t)

as the landing gear deformations,

€)) E () = ZOL < P(t)

as the runway roughness encountered by the landing gears, and
(5 2(t) = lo * P((t)

as the (rigid-body) displacements at discrete points of the structure induced as the structure encounters
runway roughness. At any given time, the total (absolute) displacement at a well-defined point P of the
aircraft structure is given by superposition of the elastic and rigid-body mode response and of the forced
displacement due to the runway roughness. Thus we can write

(6) xp(t) = OP -q(t) + Zpp B, (P =1,2,...,N)

As indicated by Equation (2), consideration of the landing gear degrees of freedom as "additional" de-
grees of freedom entails that the structural parameters related to the overall elastic aircraft structure are
completely separated from the landing gear parameters. This formulation of the equations of motion is ad-
vantageous if the dynamic structural parameters of the landing gears have to be modified often during cal-
culation, as for example when nonlinear landing gear characteristics must be considered.

In the following chapters the way in which the various structural parameters included in the gener-
alized equations of motion can be experimentally determined will be shown.

4. GROUND VIBRATION TEST

The aim of a ground vibration test is to provide the modal structural data of a flexible structure.
These parameters are

« the eigenfrequencies fr ,

+ the normal mode shapes ¢ (eigenmodes),

+ the generalized masses Mrr'

« the generalized (modal) damping coefficients Drr‘

Common ground vibration test procedures such as the classical "Phase Resonance Method", require the
structure to be nearly linear. This is definitely not true for an aircraft structure supported by its un-
dercarriage. Investigating this aircraft structure by a ground vibration test would entail that the mecas-
ured modal data are a function of the amplitude level of the external excitation applied to the aircraft
structure in the test. As a consequence, experimental determination of a set of normal mode shapes is
not possible for this aircraft configuration.

But, if the basic aircraft configuration is modified such that the relative piston motion in the landing
gear struts is fully suppressed, i.e. that the landing gear struts are locked, the aircraft structure can be
regarded as being nearly linear. The
equations of motion of the aircraft con-
figuration with locked landing gear
struts can be derived from Equation (2)
by setting Aq = 0. Moreover it is as-
sumed that, for simulation of the cor-
rect boundary conditions in the ground
vibration test, the aircraft is supported
at its nose and main landing gear tires
by a soft (pneumatic) spring system

<« ¢ , u=1,2,...,m) with very

(egy <« C1y
low damping properties (dSu -+ 0). The

YF-16 ground vibration test setup [5)
is depicted in Figures 3 and 4.

Figure 3: YF-16 ground vibration test setup
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The condition c << ¢

Su T, <an be easily
satisfled when inflating the aircraft tires
to a "high" pressure. With Q(t) as the
vector of the generalized external excita-
tion forces, the equations of motion of
the aircraft (ground vibration test) con-
figuration with locked landing gears can

be formulated as follows:
. T
(D MED + (K& e @]+
. T
+i[o @ do OL]]q(t) = Q) .

Application of the classical phase reso-

nance ground vibration test method (6]

to this system allows the eigenfrequencies
Soft pneumatic suspension system used in the t‘r. the generalized masses M" (Table 1)
ground vitration test .

and the normal mode shapes Qr (Figures

5 and 6) to be determined directly.

EIGENFREQUENCY | GENERALIZED MASS | DAMPING COEFFICIENT
MODE H
£, [Hz] M, [kg m?] 9. [$D ]
RB 1: Rigid Body Pitch 0.621 1890.0 /
RB 2: Rigid Body Heave 1.410 4611.0 /
RB 3: Rigid Body Roll 2.019 106.0 /
St : Symm. Bending 4.62 870.0 1.6
§2 : Symm. Missile Pitch 7.01 275.0 1.5
$3 : Fuselage Vert. Bending 12.19 317.0 1.7
Al : Asymm. Missile Pitch 5.73 1186.0 1.7
A2 : Asymm. Wing Bending 8.21 346.0 1.4
A3 : Fin Bending 14.10 33.2 1.9
A4 : Fuselage Lat. Bending 16.77 110.0 1.7

Table 1: Modal parameters of YF-16 aircraft

The values of the modal damping coefficients are fixed or derived as follows:

Drr = 0 for all rigid-body modes

and
b mp . (efd o] 29 ~wiM_
rr rr L T "L-rr 100

for the flexible modes, Or being the experimentally determined modal damping coefficients, as denoted in
Table 1. This approximation of the structural damping is permissible, since the values of the coefficients
in ‘L are small relative to flexible eigenmodes.

The coefficients of the (nondiagonal) stiffness matrix K are determined from
_ o [~.2 _ aT
® K = [“’r Mnu] o, 5 ¢,
which is possible when the stiffnesses g, of the aircraft suspension system are known. Determination of
these stiffnesses can easily be achieved in a static loading test (Table 2).
Thus, after completion of the ground vibration test, the following parameters are available:

+ the diagonal generalized mass matrix M,
+ the diagonal modal damping matrix D,
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Figure 5: Rigid-body heave mode

Figure 6: First symmetric wing bending mode

*) *) : ; *)
Nose LG Left Main LG Right Main LG

= 1.56 -10° N/m Cen = 1.50-10° N/m

- . 5
c = 1.34-10° N/m S3

S1 Cs2

" Landing gear

Table 2: Measured stiffnesses of the YF-16 ground vibration test suspension syster

+ the nondiagonal generalized stiffness matrix K,
+ the modal matrix @ and its submatrix ‘L’
+ the diagonal matrix eS containing the suspension stiffnesses.

A review of the equations of motion of aircraft with unlocked landing gears (Equation (2)) indicates that
all parameters related to the overall flexible aircraft structure can be determined from the ground vibra-
tion test investigations as described. The remaining unknown (nonlinear) parameters are all related to the
undercarriage. Experimental determination of these parameters in additional tests, performed on the land-
ing gear struts and tires will be demonstrated in the following two chapters.

5. LANDING GEAR STRUT TEST

A major problem encountered when performing dynamic aircraft taxi response calculations is how to
obtain realistic data for approximation of the spring/damper characteristics of the landing gear (strut) el-
ements. Usually the required data are not available, since the investigations performed by the landing
gear manufacturer normally concentrate on (transient) landing gear drop tests for simulation of the land-
ing impact.

PwWywuUyT ¥R -L-T
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For the performance of dynamic response calculations,
however, we need to know the dynamic stiffness and
damping characteristics of the landing gear strut elements.
These characteristics can be determined by (harmonically)
cycling the landing gear strut in a testing machine (Fig-
ure 7) at various frequencies and amplitudes of its dis-
placement. To obtain correct landing gear data for various
aircraft gross weights, the landing gear strut tests must
be performed at different levels of the static strut preload

force.

For a strut preload force F_, = 75 kN, consistent with

the static loading of the strut ionstalled in the aircraft in
the case of the YF-16 configuration, cycling tests were
performed on a two-stage main landing gear strut. The
experimentally determined values of the (equivalent) dy-
namic stiffness [7] are depicted in Figure 8. The plotted

curves indicate a strong nonlinear but a nearly frequency-

independent behavior of the dynamic strut stiffness. Fig-
ure 9 depicts, at a frequency of 1 Hz, the equivalent stiff-

Figure 7: YF-16 main landing gear strut

ness Cgr of the strut as a function of the amplitude of

test setup
vibration x .
61 16+
Y] S Prelood = 75 kN
m m N\ Frequency = 1 Kz
Xz 25 mm ‘ \
t 2t 74 1\
|
PR 0 { Hormone Balance
Y Gr| , |
ot 81\ |
\
I \
61 75 mm 5mm 6 \ | N
-_— v Corner Pomt \
1 — wom ¢ Aporoxmation
2 2
0 ? ‘ 6 8 H 0 0 2 4 6 § mm O
f————c— N ——a

bad Aol Aot ol aod 44 44 AL o

Figure 8: Experimentally determined nonlinear
stiffness behavior of the YF-16 main
landing gear strut

Figure 9: Experimentally determined equivalent
dynamic stiffness of the YF-16 main
landing gear strut

The dynamic damping characteristics of the strut were obtained from measured hysteresis curves (8},
some of which are depicted in Figure 10. A graph of the viscous damping factor dST is shown in Figure

11. indicating a strong nonlinear and frequency-dependent damping behavior of the strut.

The thus determined strut characteristics cSTu and dSTu (u =1,...,m) are not identical to the

landing gear characteristics ¢ 9y and d[ " considered in Equation (2). But their respective values are in-

terrelated by a factor or a nonlinear function €, - gu(Aqu). which can be derived from the landing
gear geometry. The following interrelations exist:
(%a) cl,u = CSTu . gu (geometry) .,

(b = 1,...,m)

(9b) dLu dSTu -gu (geometry) .,

Thus, after performance of the landing gear strut tests, the following data arc available:
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Figure 10: Measured hysteresis curves on the YF-16 main landing gear strut at a static preload of 75 kN

a) f = 0.25 Hz b) f = 1.0 Hz c) f=3.0Hz

e the landing gear stiffness characteristics
CLy T cLu(FOu’ f, AxLu) , (p=1,...,m)
and
e the landing gear (viscous) damping characteristics

dLu = dLu(FOu’f' AxLu)’ (n=1,...,m)

Discrete values of these different characteristics are the coef-
ficients of the diagonal matrices ¢, and dL , respectively.
With regard to evaluating the coefficients of the landing gear
mass matrix m it has to be mentioned that their determina-
tion is of no difficulty, since the values of the unsprung
masses mp (g =1,...,m) are exactly known by the manu-
facturer.

6. TIRE TEST

To obtain realistic tire stiffness and damping data, tests
must be performed on spinning tires. Dynamic tire stiffi.ess
and damping data can be experimentally determined in a test
setup, as depicted in Figure 12. The operation of the test

setup is as follows:

The runway surface is simulated by the rolling surface of
a wheel, spinning at a high angular velocity and driving the
aircraft tire. A hydraulic shaker (harmonically) cycles the tire

d) f = 5.0 Hz

Preload = 75 kN

6

Experimentally determined
viscous damping factor of
the YF-16 main landing
gear strut

1.

[ A3 e Tt LA

[ pes gRN]

A S AN R, S Iecinddendinin it I N e A0 S iianitinai




1,0
D
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)
:i’"' on the wheel. Tests are performed at
Frequency various wheel speeds V = w, -p, various
N pvsiid [ Potter | =] computer }a={ 4/0-coverter ] o W .
v 5¢ static tire preloads FO and for various
1.4 1 . .
R ) frequencies f and amplitudes x of the
' Orivng Wheel dynamic shaker excitation. Measuring the
‘l'k < Ampliter dynamic force F and the corresponding
3': 7, Servovaive displacement x , allows determination of
’ . the tire stiffness characteristic
L .
o - - i b
L Al . x-y = = \
‘v LT 1 Piotter Cp F/x Cp (F0 vV, f,x)
" Displ. Pickup : measurement of hysteresis curves allows
. Hydrade Schaker Load Lel determination of the tire structural damp-
;‘r : — ’ — ing characteristics
: Figure 12: Setup for dynamic tire testing dT s dT (Fg. V. f.x)
9; Discrete values of the cTu and dTu characteristics (u = 1,...,m), determined for the different tires of
;" the nose and main landing gear are entered as coefficients into the diagonal matrices €, and d,r . re-
DY spectively. Thus, after completion of the tire tests, the matrices Cp and dT are well defined.
3
.
:' Within the scope of the investigations performed on the YF-16 aircraft, tests were only carried out on
the non-spinning tires of the nose and main landing gears. The investigations concentrated on the deter-
> mination of
:f e the (nonlinear) load/stroke tire characteristics from which the (nonlinear) stiffness character-
»
‘o istic can be derived,
™ )
-+ ® (quasi-static) tire hysteresis curves for evaluation of the structural tire damping.
‘.’ For performance of the tests, the different tires were squeezed in a testing machine (Figure 13). As
*g‘ a typical result, Figure 14 depicts the static load/stroke curve of the main landing gear tire. It can be

noticed that, at higher preloads, the tire stiffness is nearly a constant. Tire nonlinearities are of second-

ary importance when compared to the highly nonlinear behavior of the landing gear struts. But, should

4
b
£

the tire load/stroke curve indicate larger nonlinearities, the methods described in [7] can be used for de-

Figure 13: Machine used for the static and Figure 14: Measured load/stroke curve of a
quasi-static tire testing YF-16 main landing gear tire

Ib 20 30 mm 40

]
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termination of an equivalent amplitude-dependent stiffness

Cr = CT (Fo, x) . Figure 15 shows hysteresis curves

measured around a fixed static tire preload Fo = 30 kN.

From the hysteresis curves, an average structural damp-

ing value of 5% Dcrit was determined.

7. DYNAMIC RESPONSE INVESTIGATIONS

As all structural parameters denoted at the left-hand

side of Equation (2) are known after completion of the

ground vibration, landing gear strut and tire tests, dyn-

amic response calculations can be performed for a well-

REh AN
A ka0 3

defined runway roughness input, provided the matrix at

the right-hand side of the equation system is known. At Figure 15: Measured hysteresis curves on
the YF-16 main landing gear

first it seems that the discrete (finite element) mass ma- tire at a static preload of 30 kN

trix of the aircraft structure must be known for determi-

nation of the right-hand submatrix [QT m ZO + Ozm This "problem" can be avoided when writing

L zOL]'
the matrix of displacements lo in a series, as a superposition of the rigid-body mode displacements ‘R

determined in the ground vibration test, as follows:
(10 Z,=0y'a .

the coefficients of matrix A being the factors of the linear combination. Considering the existing ortho-
gonality relations between the (measured) eigenmodes, we can write:

(1n [6Tmz,+ 6lm 2, ] - [%] A

M being the diagonal generalized mass matrix, as defined at the left-hand side of Equation (2). The co-
efficients of matrix M have been determined in the ground vibration test. Equation (11) indicates that
there is no direct external excitation in the elastic aircraft eigenmodes by the runway roughness. The
elastic modes are all excited by their respective rigid-body/elastic mode coupling terms at the left-hand
side of Equation (2).

7.1 Dynamic Response Testing with AGILE

By virtue of the Aircraft Ground Induced Loads Excitation (AGILE) shaker test facility (Figure 16)
now available at the Air Force Flight Dynamics Laboratory at Wright - Patterson Air Force Base in Dayton
(Ohio), extensive dynamic response testing on real aircraft structures has become possible [9]. This fa-
cility allows performance of special investigations which could not be realized in the past. For instance it
is possible to harmonically excite
the aircraft via its tires up to frequen-
cies in t' - vicinity of 30 Hz and to per-
form te. s in a locked landing gear air-
craft configuration. These possibilities
first seem to be of no importance since
neither this type of excitation nor this
configuration are representative. With
regard to the qualification of the aircraft
structural model, however, this special
type of testing is advantageous.

First, excitation of the structure by
a (swept) sine forcing function allows ex -

citation of all eigenmodes in the frequen-

cy range of interest. A comparison be-
tween measured and calculated frequency
Figure 16: The AGILE shaker test facility resporise data {transfer functions) clearly
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indicates which of the modes are correctly modelled and which are not. Secondly, the ability to test the
aircraft in its locked landing gear configuration allows verification of whether the flexible aircraft struc-
ture itself - without consideration of the dynamically very complicated landing gear - has been modelled
correctly. This intermediate verification step is important in a response analysis, since there definitely has
to be agreement between measured and calculated data for the aircraft locked landing gear configuration

before concentrating on the far more problematic (real) configuration with unlocked landing gear struts.

A survey of the experimental and analytical investigations performed on the YF-16 aircraft in both of

the configurations with locked and unlocked landing gear struts is given in the next two sections.

7.2 Locked Landing Gear Configuration

A full description of the AGILE fre-
quency response tests performed on the
YF-16 aircraft (Figure 17) is given in
[10}). Aircraft response data were rec-
orded and analyzed for a series of dif-
ferent shaker excitation configurations,
¢.g. excitation of the aircraft at the nose
or main landing gear tires only or simul-
taneous excitation at both of the landing
gear systems. The aircraft was excited
by the shakers with a constant amplitude

swept sine signal in the frequency Asrciatt g Induced Loads brottion
RC FLT 00N

range from 0.6 to 15 Hz. Plots of typi-
cal dynamic response data, resulting from
a test with simultaneous excitation of the Figure 17: AGILE testing on the YF-16 aircraft
nose and main landing gear tires, are

plotted as dashed curves in Figures 18 to 21. DMoreover these plots depict the corresponding results

from dynamic response calculations based on Equation (2) with consideration of Aq = 0. Only symmetric
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aircraft eigenmodes were taken into account in the calculations, i.e. the modes RB1, RB2, S1, S2 and S3
of Table 1. All calculations were performed on the basis of the true measured structural data, with no up-

dating of any of the structural parameters with regard to an improvement of the calculated results.

The figures indicate good overall agreement between measured and calculated data. Especially the fre-
quencies of the modes are well determined by the calculation. Some discrepancies between the amplitude
data are due to the "bad" resolution (0.15 Hz interval between frequency steps) of the digital Fast Fou-
rier Transform Analyzer used in the data reduction process. The broader "peaks" measured in some re-
sponses (e.g. in the 12.5 Hz mode of Figure 20) are probably due to a nonlinear behavior of the aircraft
structure which was excited at real high g-levels during the response tests.

In general, the agreement between measured and calculated response data was found to be accurate
enough to start the dynamic response calculations on the aircraft configuration with unlocked landing gear
struts.

7.3 Configuration with Unlocked Landing Gear Struts

Analogous to the procedure described in Section 7.2, experimental and analytical frequency response
investigations were performed on the YF-16 aircraft in its (normal) unlocked landing gear configuration.
Figures 22 to 25 depict typical frequency response data for the same shaker excitation configuration as
investigated in Section 7.2, but for a higher amplitude level of the excitation. In the calculations the ex-
perimentally determined nonlinear landing gear characteristics were considered.
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Figure 22: Nose landing gear strut deformation Figure 23: Acceleration at the main landing gear
tire axle
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Figure 24: Main landing gear strut deformation Figure 25: Acceleration at the left wing tip

The figures show that there is reasonable agreement between calculated and measured results. wuxcept
in case of the acceleration value, depicted in Figure 25, the correlation cannot be regarded as satisfactory.
The discrepancy between measured and calculated curves in this plot is mainly due to the fact that two
asymmetric modes (at 6 and 8.5 Hz) are excited by the symmetric shaker excitation. While performing
subsequent tests on the landing gears, it was noticed that this effect has to be attributed to the different
transfer behavior of the left and right main landing gear struts.
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8. CONCLUSION

The many investigations described in this report have shown that the dynamic (frequency) structural
response of aircraft to an external excitation at its landing gear tires can be correctly calculated. To ob-
tain satisfactory results, however, it is required that the mathematical model of the aircraft structure be
carefully adapted to a series of tests allowing experimental determination of all structural parameters in-
cluded in the generalized equations of motion. It was noted that especially the nonlinear-, frequency- and

preload-dependent characteristics of the undercarriage have to be carefully considered in the calculations.

Despite the extensive investigations already performed, further effort is required for the de.cloped
mathematical model to be used in time domain analyses allowing the prediction of the aircraft structural
response to a (discrete) runway roughness, e.g. bumps, repairs. But the entire philosophy of aircraft
testing, as described in this paper, in combination with the developed mathematical structural model can
be used as a basis for a routine allowing dynamic qualification of aircraft for operation on damaged/repaired
runways. Figure 26 depicts in a block diagram the entire qualification process consisting of a series of
systematic analytical and test investigations. The routine makes ample use of the AGILE shaker system as
a qualification test setup. For the validation of the mathematical structural model it is considered to be of
importance to perform AGILE tests on both of the aircraft configurations with locked and unlocked landing
gear struts. But since AGILE cannot simulate spinning tire effects, this facility does not have the capa-
bility to fully replace the taxi field tests, Taxi field tests on real aircraft will remain necessary to com-

pletely demonstrate the aircraft operational capabilities on the ground.
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