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ABSTRACT

This report contains two papers on the dynamic response of aircraft operating from damaged and repaired runways. In
4 the first paper the response of a simplified representation of an aircraft to two discrete disturbances is analysed to see how

the second disturbance modifies system behaviour caused by the first disturbance. The second paper provides a
mathematical model which can be used for calculation of the dynamic response of aircraft structures operating on rough
surfaces, a comparison is made between theoretical predictions for a YF16 aircraft and typical measurements from
frequency response tests.

RESUME

4 Deux rapports sont inclus dans cette publication qui traite de la Reponse Dynamique d'un avion op6rant sur Piste
Endommagee et Reparce. Dans le premier papier est analyse la reponse A une representation simplifice d'un avion ayant
subi deux perturbations quantifides afin de voir comment la seconde perturbation peut modifier la conduite du syst~me
gdnerde par [a premiere.

Le second papier traite d'un modele mathematique qui peut tre utilise pour le calcul de la reponse dynamique des
structures d'un avion operant sur des surfaces repardes mais rugueuses; la comparaison sera faite entre les prdictions

.r. theoriques pour un avion YF 16 et les mesures significatives prises h partir dessais de rdponses en mode de frdquence.
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INTERPRETATION IN TERMS OF THE RESPONSE OF A ONE DEGREE-OF-FREEDOM OSCILLATOR
TO TWO SUCCESSIVE DISTURBANCES

by

Dr James J.Olsen
Assistant for Research and Technology

Structures and Dynamics Division

Flight Dynamics Laboratory
Air Force Wright Aeronautical Laboratories

Wright-Patterson Air Force Base, Ohio 45433, USA

ABSTRACT

This paper explains the dynamic response of an aircraft that taxies over two arbitrary disturbances, under the assumption
that the aircraft can be represented as a linear, one degree-of-freedom system . That analysis produces the concept of the
BUMP MULTIPLIER which explicitly and simply determines whether a second discrete disturbance will amplify or attenuate
the response from a first disturbance. The BUMP MULTIPLIER also simplifies the understanding and presentation of the
results. While the assumptions are very severe, the resulting formulas can be very useful to guide more elaborate nonlinear
calculations or to plan test programs.

.- .

1. INTRODUCTION

The problem of aircraft dynamic response to taxiing over rough surfaces has been a topic of research for many years. For
the most part, the research has been limited to predicting and measuring the dynamic response over the (nearly) random
roughness imposed by the terrain or by wear and tear on runways and taxiways. Within the last several years, however,
concerns have arisen within the Defense agencies of the NATO countries about the safety of aircraft operations over the
discrete disturbances which can arise from bomb-damage to the runways. Those concerns also extend to the dynamic
response due to taxi over repaired runways and repetitive aircraft operations on the (potentially) yielding surfaces.

As a result of those concerns the United States Air force instituted program HAVE BOUNCE which is performing taxi
tests over simulated (relatively mild) runway damage and repairs for several USAIk combat and transport aircratt. tne project
also develops computer programs to predict the dynamic response to the simulated runway profiles . Other NATO nations
are performing similar test and analysis programs on their aircraft.

HAVE BOUNCE considers the computer programs- to be validated when they produce satisfactory comparisons with the
experimental results from flight (taxi) tests. Then the project uses the validated computer programs to extrapolate from
the relatively mild test conditions to more severe operational cases. Since the computer programs account for the nonlinear
properties of the landing gears and tires, the extrapolation of their results beyond their validated range of parameters is
always open to some question.

Because the taxi test programs have proven to be very expensive, difficult to control and repeat and (sometimes) danger-
ous, the USAF also created the Aircraft Ground Induced Loads Excitation (AGILE) facility which measures the dynamic
response of operational aircraft to damaged and repaired runways within the controlled conditions of the laboratory. The
project supports an operational aircraft on its tires on massive hydraulic shakers and drives the shakers vertically to represent
the vertical events of the aircraft taxiing over damaged and repaired runways. Each (of the three integrated) shakers can
sustain a static weight of 50,000 lb, can displace amplitudes of 10 in, can impose dynamic forces up to 50,000 lb and can
be driven sinusoidally (frequencies up to 25 Hz), randomly or to follow prescribed discrete motions. In its first major test,
agreement between the AGILE tests and HAVE BOUNCE taxi tests for an operational A-7D aircraft was excellent.

All three evaluation methods computer programs, HAVE BOUNCE taxi tests on operational aircraft and AGILE tests
on operational aircraft have been dominated by one major consideration-the nonlinearities in the landing gear. As a result.
nearly all of the computations have been done with numerical time-integration of the nonlinear differential equations of
motion. The taxi tests and AGILE tests also have been forced to adopt a tedious approach of repetitive, trial and error test
cases, again because the aspect of nonlinearity has prevented the superposition of simple disturbances to synthesize more
complex responses.

In this paper we contend that the nonlinearities do indeed strongly influence the computational and test results, especially
the exact levels of the loads obtained. However, the qualitative response and the selection of speeds, bump heights, and
bump spacings which produce large dynamic responses ought to be predictable, for the most part, by simpler linear methods
Nonlinear calculations, taxi tests and AGILE tests all ought to be preceded by a substantial amount of linearized calculations
which can be done rapidly and can yield much physical insight into those conditions which produce extensive dynamic
response. A clever analyst may Bbe able to find the simplicity and intuitive understanding in seemingly complex time
histories, which in fact may be not much more than superpositions of many relatively simple events.

The purpose of this paper is to review those linear methods, to show how they yield an understanding of complex time
histories and how they can be used to plan nonlinear calculations, taxi tests and AGILE tests. The paper illustrates the
principles by treating the response of a linear one degree of freedom oscilllator as it taxies over two successive discrete
disturbances, introducing the concept of the BUMP MULTIPLIER.
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2. THE RESPONSE OF A ONE DEGREE OF FREEDOM OSCILLATOR TO A SINGLE DISTURBANCE

Assume a one degree of freedom oscillator, with damping less than the critical value, receives some excitation over a

period of time, but that the excitation stops at time t = t1 .

For times after tI, when the response is decaying freely, the acceleration response can be written:

(t)l wt iti){A 1 sinlw(t -t I )J + Blcosfw(t -t I ))} (2.1)

where:
t= = the time the excitation ends

= damped frequency

o = damping

At, BI = Constants which depend on a, w, the excitation and the initial conditions

Note that the damping parameter a above is not quite the same as C, the frequently used fraction of critical damping,
which comes from the analysis of a classical one degree-of freedom oscillator. The product aw controls the exponential decay
of the damped system, perhaps as observed experimentally. The use of the parameter a allows us to refer the damping to
the observed damped frequency w rather than the fictitious undamped frequency w0 . In the special case of the classical one

degree-of-freedom oscillator a = /0 - _0

The decaying acceleration response also can be written as:

= Rle - ' (t ' ) sin [w(t - ti ) + il' (2.2)

where:

tan¢i = B1 /AI

We loosely refer to RI as the potential amplitude of the acceleration response. It is an upper bound on the amplitude of the
acceleration response to a single disturbance. The phase shift 01 depends only on A, and BI and will therefore be different
for various forms of the excitation.

for small damping (a << 1) the behavior of the acceleration response will be dominated by the term sin (t - ti) + 611
in Equation (2.2), so we would expect its local maxima and minima to be obtained from solutions of

-(t-ti) + 0 (2n - 1)1; n = 1,2,3,... (2.3)

However, th' term ew(t t) causes a shift in the values of time for which the local maxima and minima of the acceleration
response occur. In fact, the third derivative of the displacement (derivative of the acceleration) is:

d (t) Rf t) 0 0dt t,t 1 = R 2e V+ cos[w(t - (2.4)

where:

tan 1 = a

* Therefore, the local maxima and minima of the decaying acceleration response will occur at the values of time for which
7r

*.w(t i-t) = (2n- -( 1 + 6i): n = 1.2,3.... (2.5)

The adlitional phase shift h, will he small for values of damping that are small with respect to the critical value, (0 << 1) '
Note,. however. that the fir't plhase ,dhift 6, need not he %imall. A

We, can usi t S ,ee rq,,u'sis TO obtain an eveui better upper bound on the amplitude of the acceleration response. If we plug

the atbove value Of 11 t-) into Eliiatiou (2.1) f,,r we find that the extrene values for ';(f equal:

R I  1

1+/,I-
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3. TWO SUCCESSIVE DISTURBANCES

Now suppose the single degree of freedom oscillator receives a subsequent excitation over another period of time and
that excitation stops at time t = t 2 .

If there had been no previous response from the first disturbance the acceleration response to the second disturbance
would have been: wole(ent) = e- {(t-t2) (A 2 sin [w(t - t2 )1 + B 2 cos w(t - t2)1}

However, because of the presence of the decaying response to the first disturbance, the acceleration response to the combined
disturbances must be written:

z 1t) _ :e ° I(A, sin [w(t - t)j + B, cos [w(t - ti)I} + (3.1)
0e a.t t2) fA 2 sin [v(t - t2 )1 + B2 cos [w(t - t2) ]

For convenience in manipulating the terms in Equation (3.1) we abbreviate:

S, = sin [w(t - t,)j]

C, = cos [(t - t,)

Then the acceleration response to the combined disturbances is:

e(),t>t2  (AS, + BIC,) + e2 (A2 S2 + B2 C2 ) (3.2)

The trick is write Equations (3.1) and (3.2) with respect to the time of the most recent disturbance, t2 . To that end we
write:

t - = (t- t2) + (t2 - tI)

We need the additional abbreviations:
e21 eaw(t-2 L

S= sin [(t 2 -

(21 = coS (t 2 - t,)
To obtain:

el -- e2e2l

SI = S2 C2 1 + CSIj

CI = C2C21 - S2 -;2

The acceleration response to the combined excitations becomesC t)whee = e2 (A;S 2 + BOCz) (3.3)
where:

A2 = A2 + e2 1 (AIC 2 1 - BS 2 1 )

Bl = B2 + C21(AIS 2 1 + BC 2 I)

Following the same procedure we used for the single disturbance, the acceleration response to the combined disturbances
can be rewritten as:

t) ,= Re ,w(i '2) sin [w(t - t2) + 2 (3.4)

where:

R, = VA22 + B; (3.5)

= \/(A + BB) + 2e 2 , ICzg(A,A2 + B B) + S2 1(A B B, A 2)] + el,(A2 +

tan 02 =l -; B2 + c2I (A IS2 + B, C21)14 A 2'-4 2 + f 2 1(A IC 2 1 A BS?1 )
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Equation (3.5) for R 2, the potential amplitude of the acceleration response to the combined disturbances, is one of the
major findings of this paper. Much of the subsequent work here will be concerned with finding the conditions which maximize
and minimize R 2 .

As we did for the single disturbance, we can differentiate Equation (3.4) with respect to time to search for the times for
the local maxima and minima of the acceleration response. We obtain:

di (t) R 2e-(t-t2)W -+ a2 cos[(t - t2 ) + (€2 + 62)1 (3.6)

where
tan2 =

We see the same phase shift (62 = 61) in the times for local local n1axima and minima of the decaying acceleration response
to the combined disturbances. which will occur whea

(t - t2 ) =(2n - 1)2 - (022+62): n= 1.2.3.... (3.7)

As we did for the single disturbance, we can use these results to obtain an even better upper hound on the amplitude
of the acceleration response. If we plug the above value of '(t - t2) into Equation (3.4) for H(t) we find that the local

extreme values for 3(t) equal:t .

R2 e al(2n 1);n = 1,2.3....

We have seen how to find the times for local maxiia and minima of the decaying acceleration response, assuming we
know A,,. B, A2,. 2 .o, ., t1 and t2 . However, we are searching for the best and worst possible runway profiles. so the most
critical aspect is to find the values of t2 , the time of the second disturbance, which will locally maximize and minimize the
potential amplitude R 2. We differentiate Equation (3.5) for R 2 with respect to t2 and set the result to zero to obtain:

S21 [(A 1 A2 + BIB 2 ) + a(A 1 B2 - BIA 2)] +
C21 [o(AI,4 2 + BB 2) (A 1 B2 - BIA 2)] + o(A2 + B?)e2 , = (

or O ~~tt
or2 sin [w(t 2 - t1,) + 21 + eaW2t1) = 0 (3.9)

+ )2 + a 2

where
fA 2 +B,2

a(AlA 2 + BIB 2 ) - (AB 2 - BIA 2 )
tan t' 2 :(AIA 2 + BIB 2) + a(AIB 2 -BA 2 )

The exact solution for the time delays (t 2 - t1 ) which locally maximize and minimize R 2 would require a numerical or
graphical solution of Equations (3.8) or (3.9), however for small damping we would expect

42 - t1) flr - V'2; n = 1,2,3... (3.10)

We will give the determination of the time delays (t 2 - t i ) an exact treatment in the next Section.

4. THE BUMP MULTIPLIER

Recall that R, represented the potential amplitude of the decaying acceleration response to the first disturbance and
that R 2 represented the potential amplitude of the acceleration response to the combined disturbances, where in each case
we measured time from the tine of the most recent disturbance. lie call the ratio R2/R, the BUMP MULTIPLIER, since it
defines the extent to which the second disturbancer amplifies tor attenuates) the responris to the first disturbance. The BUNIP
MULTIPLIER is

R, (.41 + BI) + 2e 2 1 ('21 (,41A 2 + P, 02) + S21(AB 2 - B1,42) + (.4 1R, :\ .A' + BI (4.1)

To assist in the interpretation of the BI'-P NI'LTIPLIE? we add armother set of abbreviations:

4,

-I ., ,zi2 I .



1-5

The potential amplitudes and phase angles for the responses to the first disturbance and the combined disturbances become:

R, = IAI I I + (4.2)

tan 0 =( 1

R*2 = A21 (I + (2 +2( 1e2i) [C21( + 1 2) + S21 ,(2 - )I + f 1 + f2 (4.3)

tan 02 A, (1Ae2i)(S2 1 + 1C21)

1 + (e 2 ,)(C21 - 11s52)

The BUMP MULTIPLIER becomes:

R2 _A 2  (1 + (2) + 2(A, C21 [C2i1 + I2 2 ( ) + (A, 2 1 )2(1 +(2

R2 AA2 2- -(f2A lA, + 2 -- (4.4)

Note in Equation (4.4) that the magnitude effects are contained mostly in the term A2 whereas the spacing effects are
in the radical. The spacing effects are dominated by the terms

S21  sin [-(t 2 - t)]
C21  cos [W(t 2 - t)]

and those terms are always modulated by the combination

A Ae- 2  A c, (2 i,)

A 2  A2

When we use these abbreviations in Equation (3.9) to find the time delays (2 - tI) which locally maximize and minimize
the potential amplitude R2 , we obtain

A2  21++ a(2 tj
SA1  i-2 sin Iw(t 2  tI) +i+ / a (4.5)

where
tan 012= o(I + (I E2) - (f2 - (I)

(I + (1(2) + Q((2 - (1)

A first approximation for a << 1 for the time delays would be:

L(t - tI) - nr- 012 ;n = 1,2,3.... (4.6)

To get a second approximation we search for small angles such that

L.)(t2 - tj) = - 012 -On (4.7)

With this change of variables Equation (4.5) takes a new form

C.sin3. = -- - (4.8)

where

A, 1) 1+ (4.9)

If we expand Equation (4.8) for small 3n, keeping only first order terms, we obtain

,3n, a / 2_2 (4.10)

This then is the (hoped for) small correction we use in Equation (4.7) to find the second approximation for the time delays

(12 - 11)

V
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5. USE OF THE AVERAGE SPEED

We have made no assumption of a constant taxi speed between the two disturbances: in fact we will show in this Section
that the spacing effects are doninated by the average speed between them.

If t is the distance between tile two disturbances, the average speed is

Then we can express the term

The usual terminology for A IwI/V, based oin the instantaneous speed. is the reduced frequency. Therefore , lw/V is the
reduced frequency based on the average speed between the two disturbances.

Arnplitude and Burnp .tultiplier
Equations (4.2) and (4.3) for the potential amplitudes and phase angles. and Equation (4.4) for the BUMP MNILTIPLIER
remain unchanged, except that now we note

e21  ----e

S21 
= sin

(,1cosA,

Be.st/W4orst Run way Profiles
The process for finding the exact and approximate solutions for the time (elays which maximize and minimize the potential
amplitude R2 of the decaying acceleration response to the combined disturbances remains unchanged, except Equation (4.5)
now becomes:

A2 -± i) o (5.3)

+ 2

The first approximation for the time delays becomes an equation for A:

A ,,7r - ,2 :n = 1,2.3 .... (5.4)

The process of finding exact solutions and second approxiiations for the time delays also remains unchanged, except
that E, 4uation (4.7) becomes

= rlr -n 12 - In (5.5)

6. SPECIAL CASE: SIMILAR DISTITRBAN(ES

WA'e now defin e similar disturbauces as discrute ,listurbances that have tile saine shape bit differ only in magnitude

and/or sign. Examples would he tile entire famiily of infinite ratips or a family of sine waves of the satne wavelength but
varying heights. The assumption of similar disturbatiers is tot a very limiting one. It fact. nearly all of the profiles tested
in the HA VE BOUN'E program and all of the .4 TO/. (;A RD projiles ran be broken dowri into sequenrcs of similar ramp
disturbances. For linear sy-t ems with zero initial conditions imilar dist urbances will prodtice similar responses. and when

disturbances are similar ( I = (2 - f.

Amplitude
Under the assuription of similar (listurbance,,. Etjtiation (4.2) and (4.3) for the potential amplitudes and phiase aigles heroine:

R, \112\ + 21 (6.1)

, + ( 21)(,' 2 + , )
tan t

But p ,%filtiplie r
Eqitation (4.4) for the BUMP MUILTIPLIER reduces to:

R, A A4
1 R .2 \ 1 cii)('i + 142 ), (6.3)
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By solving the ordinary differential equation of motion for tile displacement in response to the ramp inputs (with zero
initial conditions) and then differentiating those results twice with respect to time we find the various parameters to use in
Equations (2.1) and (3.1):

A, = V;,0, (1 - 2c2)

B, = 21,00, V' -

= ratio of damping to critical value, r/2mwo

wo = undamped natural frequency, V// (7.2)

L damped frequency, wOV'l - ¢2

a =i '/,1 - ¢

We also note tile nondimensional reduced frequencies

AO - 1 0O

A = = AoV/I -2 (7.3)

and the relationship:
auw = wo  (7.4)

Note the distinction between the hypothetical undamped frequency w0 and the actual damped frequency w. Note also the
distinction between , the fraction of critical damping as related to the hypothetical undamped frequency W0 , and a which
we use to relate damping to the actual damped frequency w.

For purposes of illustration we pick the fictitious undamped natural frequency to be

)o = 27r rad/ser

o = wo/27r = 1.0 Hz,

and we pick the damping value
= c/2mwo = 0.1

so that
1 - ¢= 0.9950

, -- \~ e -0 = 0.1005

Note that this means the actual damped frequency is:

= 1.997r rad/sec; f = 0.9950 Hz

All members of the family of ramp inputs are similar. Therefore, For every ramp input (regardless of speed V, frequency
w or slope 0) the similarity parameter t is:

B 2q'l -
(I= = A -2C2 =tan il = 0.2030 (7.5)

The second phase shifts for the location of the local maxima and minima of the decaying acceleration response will he
identical:

61 = 6 2 = 6 =sin t.=0.1002rad= i.739'

Figure (7.1) illustrates the two phase shifts 01 and 6 versus the damping ratio ¢.

Amplitude

The potential amplitudes of the decaying acceleration responses are obtained by applying the definitions in equations (7.2)
(7.4) to the equations for similar disturbances, Equations (6.1) (6.5).

Figure (7.2) illustrates the decaying acceleration response of the classical spring mass damper for a typical single ramp
input at a constant speed of V = 10.0 l/see , where the length units are in any convenient, consistent system. Figure (7-3)
illustrates the sensitivity to speed by plotting tile response for a range of speeds V = 10, 1 ... 20 I/sec. Note that the
amplitude of the response to the single disturiance grows monotonically with increasing speed. Figure (7.4) illustrates a
curious feature in tile dependence of the response on damping for

C = 0.1,0.2,...,0.5

at a constant speed of V = 10.0 I/sec. Large values of damping actually increase the peak acceleration response at the
earliest instants of time. These effects are the result of the term



which reaches its maximui value at ¢ "

,0%

"*7 I

Figure (7.5) illustrates the decaying acceleration response for traversing two equal (but opposite) ramps, separated by a
distance of 20.0 !,at a constant .peed of 10.01/sec. Note that the maximum amplitude of the acceleration response to the

combined disturbances at a speed of 10.01/see is actually smaller than the response to the first disturbance alone at the same
speed. Figures (7.6) and (7.7) show that this will not always be the case. By changing the constant speeds to V = 8.02 and1
13.46 i/sec for the same ramp geometry, we see that the response to the combined disturbances can be markedly greater
than the response to the first disturbance alone. Figure (7.8) further illustrates the sensitivity to speed by plotting the
response for a range of speeds V = 10, 11.....20 I/sec. While the amplitude of the response to the single disturbance grew
monotonically with increasing speed, the amplitude of the response to the combined disturbances displays a much more
complicated structure.

Figure (7.9) shows the damping effect on the acceleration response to the combined disturbances. Note how the maxi-

mums. zeroes and minimumts occur at nearly the same periodic values of A, regardless of the value of the critical damping~ratio '.

Bu mp Multiplier
Reverting to the general ca.se of tion-constant speeds and ramp angles. the potential amplitude for the dynamic acceleration
response to the combined disturbances is given by:

R i-o002\ I + 2I( u01e 1  + ( ) (7.6)

where:
e -3' = ee0 os

The BUMP .M'LTIPLIER from Equation (6e3) is

The terni in,,t Equation (7.7) gives t.he pure toagnitude effect of the two disturbances. The radical gives the spacing

effect. The donmutiant term is ('l = cos A. which is modified by
I"le

l  
I'~ I V, a 0 100si

Equations (7 f/ and (7.7; ore very powerful results wchich relate the potential amplitude R, and the BUMP MI'L-
TIPLIER to the instantaneous speeds V,. V ,, the average speed V'. the ramp angles 01. , . the damping parameter a and the
pIierage reduced frequenFY A I 'V

[JBr.*t /'or.st Rt,ito ny Profilr.q

*Recall that the equtat io n' hich determtine t the Jpet woIst rlinway profiles or speeds were:

, , % n) 0A (6 .4 )
.4 , - ,

h ere
tan t , s

F',or tll,, i xauiple

,2 ', r 0 i(1M2 rd 5 739"

For constant speeds anid ei 4,tal I tit opposite) ralnit)p Equation (6 4) reduces to

'in( k + , 0 (7 9)
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a. First ApprtoxiiatiOn
The first approximation to the tinke delay- that locally anxiax i/e an d mininize the acceleration response to the combined
disturbances is:

A\- nxr - t.',: 0 = 1.2.3... (5.4)

or

A - 3.0414.6.1830.9.3246, 12.4(;)2....

h. Exact ;ohltiot
In obtaining the ,xact ohition fior the tinle, delays, the values of ('. for n+ - 1.2.3 ... are:

C 21.14. 486.9; 11270; 310. 7(X)

The corresponding exact (rapidly diminishing) valu,. of .1 are

4.779. Itt . 2A04 • 10 ', 8920.10 6. --3.855. 10 ...

and the exact value- of \ ar.
A 3.0366.6 1832.9.3246. 12.4862....

These small talbin', of .1, jit,trat why the fir,t approxinmatlon is such an excellent approximation.

c. "econld ApproxImiatioll
The approximate oliti nt. for tittall " Wmild b,

(1

C' .(4.10)m ( "n ' / - 1 2

These approximations to .1,, are
n 4774- 10 ): -2.064. 10) ,

They differ from the exact value, only for n- 1. arid then very slightly. In addition. both the exact solutions and the second
approximations are v'ery -siall correction, to the first approximation:

? Ir - n -7 (5.4)

Earlier in this section, when we found the speeds 8.02and13.461/sec that increased the response to two equal (but
ol" opposite) (listurbances separated by a distance 20.01, we used the results in Table (7.2). Table (7.2) shows that, for a 0.1.

the exact solutions for the values of the reduced frequency A = l.,/f' that naximize and minimize the acceleration response
to the combined disturbances -re:

Maximize: A/r = 0.9447, 2.958.4.9616....
Minimize: /r : 1.9853.3.9774.5.9731 ....

For a length I = 20.0 1. ann rioting that f - ./27r = 0.995 Hz, these results translate to the following speeds:

Maximize: V = 42.13. 13.46,8.02 1/.qec ....
Minimize: V = 20.05.10.01,6. /se....

Note that Table (7.1) or (7.2) requires the use of the damped reduced frequency, A = I/" rather than the the fictitious
undamped reduced frequency A0  t

8. APPLICATION TO NONLINEAR CALCITLATIONS AND TEST PROGRAMS

a. Three Prinriple.'
The first set of basic ideas to keep in nind when when using these results to plan nonlinear calculations, HAVE BOU'NCE
(taxi) tests or AGILE tests is that a useful building block is the infinite ramp, that two infinite (opposite) ramps can combine
to produce an .4t;ARD Bunnp, and that two (opposite) AGARD bumps can combine to produce an AGARD Repair Afat.

ii4
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Second, recall that for two disturbances separated by a distance 1, the best/worst combinations tend to occur when:

= lw 27rlf
- = ----- ; nr- a ;n = 1,2,3...V V

or
f7;, 21!) n =1, 2,3 ... (81

Third, the potential amplitudes of the acceleration response of a classical one degree-of-freedom oscillator to a single
infinite ramp and to two combined ramps are:

R, = VIwoI9

R 2 = Wov(v 2 2 )2 + 2(VeO)(V 2e 2)e2 ,C2, + (V,0 1 )2

V2W01021 1 + 2 2  + V ) (7.6)

where:
e21 = e-(t2-t) e- A

C21 = cos w(t 2 - t ) = cos

b. The Response on the Initial Slope of a Repair Mat

Beginning with the basic building block of the infinite ramp we have shown that the acceleration response is given by:

-(t) Rie ",(tIt=) sin juw(t - tj) + 01 1 (2.2)

a

2. 
0.

The initial acceleration response at the first corner will be given by:

iit=t " = R, sin 01 (8.2)

We have also shown that the local extreme values of the acceleration response are given by:

R, e n = 1,(2n-) (¢+ )] n I 2,3 ...

VI + 2

and that the peak values occur when

(tPe4at - ti) = (2n - 1) -(1 +61) ;n = 1,2,3,...

This translates to distances where the peaks occur of:

XP '. o -- X I -- [(2 n - 1) " - ( 0 .+ 6 )] ; = , . .

or

(2 - n- I 4 2 +6) ;n=1,2,3,... (8.3)

where V1" is the average speed over the initial slope.
These are the expressions for the peak amplitudes of the acceleration response and the locations of those peak responses

on the initial slope of an AGARD Repair Mat. Conversely, if the length of the initial ramp is 11, we know that the peaks of
the acceleration response will occur somewhere on the ramp for speeds:

- 4fit
T < 42 n --- -) I ... n(,: i =  1 2 ,3 .... (8 .4 )

(2 -1) 1 ,2C4014

Otherwise the peak acceleration rcsponses on the initial slop, % ill occur at the second corner. At that point the value
becomes:

2, e sin ('," + ) (8.5)
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c. The Flat Area of a Repair Aat
We assume that angles 01,02 are equal and opposite and that 11, the length of the ramp, is small enough so that the

speed over the initial slope is constant, V, = V2 . Then the acceleration response to the combined disturbances is:

R( 2  e , (t t 2 ) sin [w(t - t2) + ¢21 (3.4)

where
R2 = i.o1011 I - 2e 2 lC2 1 + e2l2

- e2 1(S 21 + (C 2 1)
t - e2 1 (C 2 1 - (S 2 1)

~31 M~

The acceleration response just after the second corner is:

i2;- R 2 sin 0 2  (8.6)

The local peak values of the acceleration response on the flat part of the repair mat are given by:

Rv~ 2 e t [L J ;n =+62 1,2,3 .

and the peak values occur when

This translates to distances where the peaks occur of:

•peak-X2 2 n ), (2+62) ;n=1,2,3....

or
22(02 62)1 n 1,2,3_

or ok ,o- = (2"4)V [I r _(2-1) ;, 3(8.7)

where in this case V is the average speed over the flat part of the repair mat. If the length of the flat part is 12, we know
that peak acceleration responses will occur somewhere on the flat part for speeds:

< [I - -62 -i ;n = 1,2,3,... (8.8)
( '2n - ) 20 J6)

d. Obtaining the Infinite Ramp Data from the Test Results for an AGARD BUMP
Because of the impossibility of experimentally developing an Infinite Ramp, it will be more practical to excite the oscillator
with an AGARD Bump and then infer what the response would be to an Infinite Ramp. We assume that we have excited
the oscillator with an A GA RD Bump and, therefore, we will know e21 , S2 1 and C21 and will have measured R 2 , C, W, 6b2 in the
equation:

i(t) = R 2 e-W(,l-t2) sin (w(t - t2) + 02] (3.4)

The potential amplitude R, can be obtained from:

R, R 2  
(8.9),r_ 2

2lC1+ f q

Then the phase lag 61 can he obtained from:
Q - 21 S21 (8.10)

1 - - e2l (.'21

tan 02 + Q (.11 - Q tan 02
ta n ( l t
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e.Guidelinesfor NonlinearCalculations, AGILE Tests and Tazi Tests We begin by calculating or measuring the ac-
celeration response to an A GARD Bump

over a range of speeds V and angles 0. Since the response will undoubtedly not be purely in a single degree of freedom, we
must process the test data to obtain separate values of R.2 , ,.,' and(P2 for each degree of freedom. Then for each speed, angle
and degree of freedom we calculate:

e21 = e n (12  t);(21 
=  

COSI'(t2 - tI)I P

and we use Equations (8.9) (8.11) to calculate R, ondo, A good test of our assuned linearity is to form IRJ. The values
should be approximately the same for each degree of freedom, regardless of speed V or angle 9.

The next step should he to test the linear result that the Best/Worst .4GARD Burnpt will he those for which

ir = n - ;n = 1.2.3.

Since 11 is fixed by the AGARD geometry. we call accomplish this variation by choosing the %peeds to he

1" --- [ I,

We can interpret the final slope of the AGARD Repair Mat

-.

as just the negative of the initial slope: with the only distinction that it occiirs at a distance of 11 + 12 after the initial slope
Then we can search for the Best/Worst length of the repair toat hy setting

({t7 + ) - n 1 2.,3.

In this case we have hoth the average speed V and the length 11 to use as variables.

Now we note that the total length of the A(;.4 RD Repair Mat is 21, + 12 and aSsillle that another repair imat is placed a
distance I behind the first mat.

Therefore. to look for tw hq ,'t / \\'-r,t ,pitrings we set

.21, 1,- 1 2.

A -21 + -I o) w o n : n 1.2.3 '

.W

.K
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9. CONCLUSIONS

We have treated the dynamic response of an aircraft taxiing over runway disturbances, under the assumption that the
gross aspects of the dynamic response can be found in the analysis of a linear, one degree of freedom system, excited by two

successive disturbances. We have found:

a. There is a great deal that can be learned about the governing physics for aircraft dynamic response to taxi over

damaged and repaired runways by examining the results of calculations with relatively simple, linear models.

b. The seemingly complicated time histories can be merely superpositions of relatively simple, time-phased events.

c. Relatively simple expressions are available for the potential amplitude (an upper bound) of the acceleration response
excited by one or two dilsturbances. In the (riot too) special case of similar, disturbances separated by a distance 1, with
nonconstant speeds and ramp angles. the expression for the potential amplitude R 2 is:

,'V 02 1 2

R 1'1-,o to021 I + 2 ( 2 . (+ Oe

where

( =CosA

Ap

The ,ffct, of disturbance spacing and variable taxi speed are controlled by the reduced frequency, based on the

averae speed hetweevi r,t urbances:

4, One need rot actually calculate the time histories to find the best/worst profiles and speeds. but can use the expressions
',," for the potential aniplitid, R, and the BUMP MULTIPLIER

f To maxitimi/, io,.e dvNaRIiic response a good approximation for A is

?I 17r - (V

- While da lmping bvionily controls thv dynanjic response to the disturbances, the critical speeds and disturbance

-pacing, are weak futctiori, (of dlaimping

ih These rsults ran *iu-il , -extvle4-l froti t\,o disturbances to an arbitrary number of disturbances and multiple

,hvgr'v <of fred,on -v-t,'i- wit It niltliph, lar iny, gg'ar

t Th r'.,- i t cliiat'iat, ha,',l ott tlIv linear riiethods should be conpared with results front flight(taxi) tests.

A(;ILE t.,t, and niliniar ahlulatioi, This is riot to say that the linear results should be relied on to predict detailed

load: rather the liu-tmin ihoud Iu, dho thr uriiplo, hirar ryiodrls predirt the critical sperds and spacings so that twe ran use

thrryi to iijid oir to,.t prtgr, ui. iood roilmnear ,ohtorist s
Pq

S.

f.

.

5%
I %ia"



(b) ~-=0,0.05,0.10,...,.0.25

04.

j. 3 .4

(a) c 0,0.01,0.02,... ,0.05

Figure 6.1 The BUMP MULTIPLIER for Equal Disturbances
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F,7

(b) =0,0.05,0.10,... ,0.25

aa a

Figure 6.2 The BUMP MULTIPLIER fat Equal and Opposite Disturbances
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Figure 7.1 The Similarity parameter rand the Phase Angles 0 and 6

Figure 7.2 Acceleration Response to a Single Ramp at V = 10.01/sec
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Figure 13 Acceleration Response to a Single Ramp at V 1 10,1,... ,20 1/see

Fig ur .4 Acceleration Response to a Single Ramp for q 0.1.0.2 ... 5
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Figure 7S Acceleration Response to Two Equal and Opposite Ramps at V' 10.01/eec

Figure-i.e Acceleration Response to Two Equal and Opposite Ramps at V' 8.021/ee



1-20

1il

Figure 1 Acceleration Response to Two Equal and Opposite Ramps at V =13.481/sec

XIl

Figure 76 Acceleration Response to Two Equal and Opposite Ramps at V =10, 11... .201/eec
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Fzurc' "/9 .cel,,ration Respon ,e to Two Equal aned Opposite Ramps for 0=O 1.0. .0 05

1'
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AN EXPERIMENTAL-ANALYTICAL ROUTINE FOR THE DYNAMIC QUALIFICATION OF

AIRCRAFT OPERATING ON ROUGH RUNWAY SURFACES

by

R. Freymann

DFVLR-lnstitute of Aeroelasticity
Bunsenstrae 10. 3400 Gottingen. Germany

SUMMARY

A mathematical model to be used as a basis for analytical investigations to predict the dynamic struc-

tural response of flexible aircraft operating on rough runway surfaces is presented. It is shown how the

structural parameters included in the aircraft generalized equations of motion are determined in a ground

vibration test on the real aircraft structure and in additional tests on components of the undercarriage.

The validation of the developed mathematical model is achieved by a comparison of typical results from fre-

quency response tests and calculations performed on a YF-16 prototype fighter aircraft. Finally. the way

in which the developed mathematical model can be used in combination with various systematic test pro-

cedures for the dynamic qualification process of aircraft operation on damaged /repaired runways is in-

dicated.

LIST OF SYMBOLS

A matrix of the factors of a linear combination

0 diagonal matrix of the modal damping factors

F [N] force

F 0  [N] preload force

K nondiagonal generalized stiffness matrix

M diagonal generalized mass matrix

Q [kgm2/s2] generalized external force

U [kgm2/s-] potential of the deformation

V (MIS] velocity

W [kg m 
2

/S 2] kinetic energy

X X 0  reference matrix of the unit landing gear elongations

Z Z 0  matrix of the structural displacements due to a unit reference displacement "t the
different landing gears

ZOL diagon l matrix of the unit reference displacements at the landif g gear

CL diagonal matrix of the (nonlinear) landing gear stiffnes ...-

CS diagonal matrix of the stiffnesses of the ground vibrat ion tu', jien-,, -,t

CT diagonal matrix of the (nonlinear) landing gear lir' liffri--..

d 11 diagonal matrix of the (nonlinear) visous damping factor.. ,f the landing gearN

dT diagonal matrix of the (nonlinear) structural daml ping factor )t, the landing gear

fr [z] oigenfrequency of the r th eig*,nmolh-

gf function to describe the geometric, ronlinaritlie, 't a landing gear

imaginary tinit

M L  diagonal matrix of the landing gear r i.prungjj rnma,-

p vector of the generalized coxrdinlate, related4 to the rough runwaN pnfile
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q vector of the generalized coordinates related to global aircraft eigenmodes

q r generalized coordinate related to the r-th generalized degree of freedom

Aq vector of the generalized coordinates related to the landing gear (strut) degrees of
freedom

t [see] time

x [m structural displacement

axL vector of the landing gear elongations

z [m runway unevenness

* modal matrix

modal matrix of the landing gear displacements

O R  modal matrix related to the rigid-body eigenmodes

, [1% Derit] structural damping factor

[1/s] circular frequency

Vi r [1/s] circular eigenfrequency of the r-th eigenmode

Indices:

)r value related to r-th global aircraft eigenmode (r 1,2,... n)

) U value related to the u-th landing gear degree of freedom (M = 1,2,... m)

) T value related to a tire parameter

) L value related to a landing gear parameter

)S value related to a suspension system parameter

)ST value related to a landing gear strut

). L ) denote first and second derivatives with regard to time

1. INTRODUCTION

For many years. the NATO countries have been dealing with the problem of evaluating the capatibilities

of their aircraft to operate from rough runway surfaces. This problem is a primary anticipation in modern

warfare tactics, which foresee an early destruction of the opponent's airfields.

To guarantee the readiness of aircraft even in the case of damaged runways, engineers have con-

centrated on the task of correctly predicting the dynamic structural response of aircraft when taxiing over

rough runway surfaces and to establish, based on these data. guidelines (criteria) for the (rapid) repair

of damaged runway surfaces.

In order to determine realistic limits

of aircraft operational capabilities on the

ground. extensive experimental air-

craft taxi investigations Figure 1) have

been performed 112) . These tests, al-

beit associated with many difficulties.

have proven able to realistically deter

, mine the aircraft taxi capabilities on

rough surfaces. But since this testing

is als ) very costly, taxi testing will fl Iit-

ways be restricted to a minimum.

On the other hand, the many anH

-I y t i c investigations performed in the

past indicate that, for calculation of re-

abstic dynamic response data. it is nee

essary to consider in the mathematical Figure 1: Taxi field testing with F-16 aircraft
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model of the aircraft structure, both the aircraft rigid body and flexible eigenmodes as well as the non-

linear and frequency-dependent characteristics of the undercarriage (3]. This requirement is easily for-

mulated, but is more difficult to realize. For the engineer involved in structural dynamics, numerous

questions result therefrom, such as how the aircraft structural model should be built in order to allow

easy handling of the structural nonlinearities, and how the (modal) parameters of the flexible aircraft

structure as well as the characteristics of the undercarriage can be realistically determined.

Closer insight into the overall problem indicates the need to develop a practical mixed experimental-

analytical routine which allows experimental determination of realistic structural parameters consistent with

a well-adapted mathematical structural model, to be used as a basis in the dynamic response calculations.

This report gives a description of a newly developed experimental-analytical method which can be

adopted as a routine in the qualification process of aircraft for its operation on damaged/repaired runways.

The practical applicability of the method is demonstrated by the investigations performed on a prototype

YF-16 fighter aircraft. In the following chapters and paragraphs, first a model of the aircraft structure is

presented. Moreover it is shown how the (structural) parameters included in the aircraft equations of mo-

tion can be experimentally determined in various tests performed on the aircraft structure and on its un-

dercarriage. Finally the developed mathematical structural model will be validated by comparing calculated

and measured frequency response results of typical structural data.

The work described in this paper was performed by the author at the Air Force Flight Dynamics Lab-

oratory of the Wright-Patterson Air Force Base in Dayton (Ohio) during a one-year stay as "visiting sci-

entist". The author wishes to acknowledge the authorities of the Structures and Dynamics Division for

having provided the opportunities to investigate the developed routine on a fighter aircraft of the US Air

Force. Gratitude is also due to the many people at the Flight Dynamics Laboratory who graciously pro-

vided their support during the various tests.

3. THE AIRCRAFT STRUCTURAL MODEL

The generalized equations of motion of

flexible aircraft, as depicted in Figure 2,

were derived from the Lagrange Equations

(4], which are expressed in the form

(1 UW 3W U ,
(1) -dt - 9 q r r =3q q r

r r1 rL

(r X,2 n) '

for a set of n generalized coordinates qr' M-3 .

related to n generalized degrees of free- Cr3

dom. Z d / L 2

Considering n generalized degrees of L, /

freedom of the flexible aircraft structure

and m additional generalized degrees of . r dri
freedom for the translatory motion of the Z

undercarriage, the generalized equations of 7
A motion of the entire aircraft can be formu-

4 lated as follows: Figure 2: Physical structural aircraft model

L. Lx-. .o ,. . .... 46TC 0 T T
T M M aq( [ 0 4 KOT TLI*CX

L OL: X0  m X0 'L X d, xJ " 0 xT$ XoT CXo

i(2) dT
D,0T 1 T I T0 4(t) 1

XT IXT d T X0 L m Lz0 L
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with

(3) AXL(t) X 0 * Aq(t)

as the landing gear deformations,

(4) ZL(t) = ZOL- p(t)

as the runway roughness encountered by the landing gears, and

(5) z(t) = Z0 , P(t)

as the (rigid-body) displacements at discrete points of the structure induced as the structure encounters

runway roughness. At any given time, the total (absolute) displacement at a well-defined point P of the

aircraft structure is given by superposition of the elastic and rigid-body mode response and of the forced

displacement due to the runway roughness. Thus we can write

(6) Xp(t) = #p *q(t) + Zop p(t) , (P = 1,2. N)

As indicated by Equation (2), consideration of the landing gear degrees of freedom as "additional" de-

grees of freedom entails that the structural parameters related to the overall elastic aircraft structure are

completely separated from the landing gear parameters. This formulation of the equations of motion is ad-

vantageous if the dynamic tructural parameters of the landing gears have to be modified often during cal-

culation, as for example when nonlinear landing gear characteristics must be considered.

In the following chapters the way in which the various structural parameters included in the gener-

alized equations of motion can be experimentally determined will be shown.

4. GROUND VIBRATION TEST

The aim of a ground vibration test is to provide the modal structural data of a flexible structure.

These parameters are

• the eigenfrequencies fr

• the normal mode shapes *r (eigenmodes),

• the generalized masses Mrr'

the generalized (modal) damping coefficients Drr.

Common ground vibration test procedures such as the classical "Phase Resonance Method", require the

structure to be nearly linear. This is definitely not true for an aircraft structure supported by its un-

dercarriage. Investigating this aircraft structure by a ground vibration test would entail that the meaas-

ured modal data are a function of the amplitude level of the external excitation applied to the aircraft

structure in the test. As a consequence, experimental determination of a set of normal mode shapes is

not possible for this aircraft configuration.

But, if the basic aircraft configuration is modified such that the relative piston motion in the landing

gear struts is fully suppressed, i.e. that the landing gear struts are locked, the aircraft structure can be

regarded as being nearly linear. The

equations of motion of the aircraft con-

figuration with locked landing gear

struts can be derived from Equation (2)

by setting Aq = 0. Moreover it is as- * I

sumed that, for simulation of the cor-

rect boundary conditions in the ground

vibration test, the aircraft is supported

at its nose and main landing gear tires

by a soft (pneumatic) spring system

(cs, < cT . I 
= 1,2. m) with very

low damping properties (d S..- 0). The

YF-16 ground vibration test setup [5]

is depicted in Figures 3 and 4.
Figure 3: YF-16 ground vibration test setup



The condition cSp << CT , can be easily

satisfied when inflating the aircraft tires

to a "high" pressure. With a(t) as the

vector of the generalized external excita-

tion forces, the equations of motion of

the aircraft (ground vibration test) con-

figuration with locked landing gears can

be formulated as follows:

, ____ (7) N 4(t) + J[K OT ©S L ]

+ i[D+ *T d*.] q(t) = 0(t)

"r -Application of the classical phase reso-

".nance ground vibration test method [61

to this system allows the eigenfrequencies

Fiure 4: Soft pneumatic suspension system used in the f r the generalized masses Mrr (Table 1)
ground vi-"ation teat and the normal mode shapes or (Figures

5 and 6) to be determined directly.

EIGENFREQUENCY GENERALIZED MASS DAMPING COEFFICIENT
MODE fr [Hz] Mrr [kgm] r [% Dcrit]

RB 1: Rigid Body Pitch 0.621 1890.0 /

RB 2: Rigid Body Heave 1.410 4611.0 /

RB 3: Rigid Body Roll 2.019 106.0 /

S1 : Symm. Bending 4.62 870.0 1.6

S2 : Symm. Missile Pitch 7.01 275.0 1.5

S3 : Fuselage Vert. Bending 12.19 317.0 1.7

Al : Asymm. Missile Pitch 5.73 1186.0 1.7

A2 : Asymm. Wing Bending 8.21 346.0 1.4

A3 : Fin Bending 14.10 33.2 1.9

A4 : Fuselage Lat. Bending 16,77 110.0 1.7

Table 1: Modal parameters of YF-16 aircraft

The values of the modal damping coefficients are fixed or derived as follows:

Drr = 0 for all rigid-body modes

and 2 r 2 M

D r $Drr + [ T L]rr r r rr
1rr00

for the flexible modes, 3r being the experimentally determined modal damping coefficients, as denoted in

Table 1. This approximation of the structural damping is permissible, since the values of the coefficients

in * L are small relative to flexible eigenmodes.

The coefficients of the (nondiagonal) stiffness matrix K are determined from

(8) K = [w 2 M ] - OT

which is possible when the stiffnesses csu of the aircraft suspension system are known. Determination of

these stiffnesses can easily be achieved in a static loading test (Table 2).

Thus, after completion of the ground vibration test, the following parameters are available:

* the diagonal generalized mass matrix N,

* the diagonal modal damping matrix D,
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Figure 5: Rigid-body heave mode

A-r10

JKWSMKV W'l "Z

Figure 6: First symmetric wing bending mode

Nose LG* )  Left Main LG * )  Right Main LG *

SI 1. 34*.10 N/m cS 2 = 1.56 '105 N/m CS3  1.50 .10 N/m

Landing gear

Table 2: Measured stiffnesses of the YF-16 ground vibration test suspension syster-

% the nondiagonal generalized stiffness matrix K,

," the modal matrix 0 and its submatrix 4 L ,

the diagonal matrix CS containing the suspension stiffnesses.

A review of the equations of motion of aircraft with unlocked landing gears (Equation (2)) indicates that

all parameters related to the overall flexible aircraft structure can be determined from the ground vibra-

tion test investigations as described. The remaining unknown (nonlinear) parameters are all related to the

undercarriage. Experimental determination of these parameters in additional tests, performed on the land-

ing gear struts and tires will be demonstrated in the following two chapters.

5. LANDING GEAR STRUT TEST

A major problem encountered when performing dynamic aircraft taxi response calculations is how to

obtain realistic data for approximation of the spring/damper characteristics of the landing gear (strut) el-

ements. Usually the required data are not available, since the investigations performed by the landing

gear manufacturer normally concentrate on (transient) landing gear drop tests for simulation of the land-

ing impact.
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For the performance of dynamic response calculations,

however, we need to know the dynamic stiffness and

damping characteristics of the landing gear strut elements.

These characteristics can be determined by (harmonically)

cycling the landing gear strut in a testing machine

ure 7) at various frequencies and amplitudes of its dis-

,I , placement. To obtain correct landing gear data for various
* aircraft gross weights, the landing gear strut tests must

be performed at different levels of the static strut preload

force.

* 2 For a strut preload force F0 = 75 kN, consistent with

1the static loading of the strut installed in the aircraft in

the case of the YF- 16 configuration, cycling tests were

performed on a two-stage main landing gear strut. The

experimentally determined values of the (equivalent) dy-

namic stiffness [7] are depicted in Figure 8. The plotted

curves indicate a strong nonlinear but a nearly frequency-
independent behavior of the dynamic strut stiffness. Fig-

ure 9 depicts, at a frequency of 1 Hz, the equivalent stiff-
Figure_7: YF-16 main landing gear strutoftett anco fth mltd f

test setup ness cST of the strut as a function of the amplitude of

vibration x .

16

kMj 0 10 3kN ftelood - 75 k
IF IN__________ Frqecy - I &k

x. 25mm 2 ii
0 I , HOrrrblonce

CST' CST
6 8.

6 --_-"--5 rin 6 \
7 Corner Point

10 0 mm Approxetton

2 2

26 8 Hz0 0 2 4 6 8 mm i
f . X

Figure 8: Experimentally determined nonlinear Figure 9: Experimentally determined equivalent
stiffness behavior of the YF-16 main dynamic stiffness of the YF-16 main
landing gear strut landing gear strut

The dynamic damping characteristics of the strut were obtained from measured hysteresis curves [8],
some of which are depicted in iure 10. A graph of the viscous damping factor dST is shown in Figure
SII. indicating a strong nonlinear and frequency-dependent damping behavior of the strut.

The thus determined strut characteristics c and dST (I . m) are not identical to the

landing gear characteristics cl and du considered in Equation (2). But their respective values are in-
terrelated by a factor or a nonlinear function g. g (AX which can be derived from the landing

gear geometry. The following interrelations exist:

(9a) cLo - CST g (geometry)

(0i1 . m)

(9b) d Lo dST" go (geometry) ,

Thus, after performance of the landing gear strut tests, the following data are available:
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Figure 10: Measured hysteresis curves on the YF-16 main landing gear strut at a static preload of 75 kN

aZa) f =0.25SHz b) f =1.0Hz c) f =3.0Hz d) f =5.0Hlz

...... ..

* the landing gear stiffness characteristics

CLU CL(F. f.AxL ) ( = . m)

and 2ISthe landing gear (viscous) damping characteristics

-~~~~~~~7 dL. .... o, ,A~) ( ... m

dreld t= x5)k

Discrete values of these different characteristics are the coef-

. -, ~ficients of the diagonal matrices CL and dL  repcilyWL r eviregard to evaluating the coefficients of the landing gear sp

" mass matrix mL it has to be mentioned that their determina- H d )2

i tion is of no difficulty, since the values of the unsprung

masses mLu (u 1 .. m) are exactly known by the manu- 10

a acurr 08

05

A 6. TIRE TEST
To obtain realistic tire stiffness and damping data, tests

must be performed on spinning tires. Dynamic tire stiffness02 n

/ and damping data can be experimentally determined in a test

setup, as depicted in Figure 12. The operation of the test 0 , 3 4 5 Hz 5setup is as follows:

* The runway surface is simulated by the rolling surface of Figure 11: Experimentally determined
a wheel, spinning at a high angular velocity and driving the viscous damping factor of

tirt othe YF-16 main landingaircraft tire. A hydraulic shaker (harmonically) cycles the igear strut
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on the wheel. Tests are performed at

Ploter frrter/y- various wheel speeds V z w-p, various

static tire preloads F 0 and for various

frequencies f and amplitudes x of the

Synamic shaker excitation. Measuring the U
AWItf)i dynamic force F and the corresponding

Wif-e .rvovolve displacement x , allows determination of

the tire stiffness characteristic

cT = F/x = cT (F V, f, x)

DIspI Pckup measurement of hysteresis curves allows

trolc Schoker determination of the tire structural damp-

ing characteristics

Figure 12: Setup for dynamic tire testing dT = dT (F 0 . V, f, x)

Discrete values of the cT p and dTO characteristics ( = 1 . ,m) , determined for the different tires of

the nose and main landing gear are entered as coefficients into the diagonal matrices CT and dT , re-

spectively. Thus, after completion of the tire tests, the matrices CT and dT are well defined.

Within the scope of the investigations performed on the YF-16 aircraft, tests were only carried out on

the non-spinning tires of the nose and main landing gears. The investigations concentrated on the deter-

mination of

" the (nonlinear) load/stroke tire characteristics from which the (nonlinear) stiffness character-

istic can be derived,

" (quasi-static) tire hysteresis curves for evaluation of the structural tire damping.

For performance of the tests, the different tires were squeezed in a testing machine (Figure 13). As

a typical result, Figure 14 depicts the static load/stroke curve of the main landing gear tire. It can be

noticed that, at higher preloads, the tire stiffness is nearly a constant. Tire nonlinearities are of second-

ary importance when compared to the highly nonlinear behavior of the landing gear struts. But, should

the tire load/stroke curve indicate larger nonlinearities, the methods described in [7] can be used for de-

50

40

130-
F

20

" 10

0 10 20 30 mm 40

x -

F gure 13: Machine used for the static and Figure 14: Measured load/stroke curve of a
quasi-static tire testing YF-16 main landing gear tire
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termination of an equivalent amplitude-dependent stiffness U:

cT = cT (F 0 , x) . Figure 15 shows hysteresis curves a-rA- -T

measured around a fixed static tire preload F = 30 kN.

From the hysteresis curves, an average structural damp-
ing value of 5% D was determined.

critwP FA

7. DYNAMIC RESPONSE INVESTIGATIONS

As all structural parameters denoted at the left-hand

side of Equation (2) are known after completion of the

ground vibration, landing gear strut and tire tests, dyn-

amic response calculations can be performed for a well-

defined runway roughness input, provided the matrix at

the right-hand side of the equation system is known. At Figure 15: Measured hysteresis curves on

first it seems that the discrete (finite element) mass ma- the YF-16 main landing gear
tire at a static preload of 30kN

trix of the aircraft structure must be known for determi-
nation of the right-hand submatrix m T 0 + *LmL Z0L] . This "problem" can be avoided when writing

the matrix of displacements Z 0 in a series, as a superposition of the rigid-body mode displacements OR

determined in the ground vibration test, as follows:

(10) ZO = OR'A

the coefficients of matrix A being the factors of the linear combination. Considering the existing ortho-

gonality relations between the (measured) eigenmodes, we can write:

U being the diagonal generalized mass matrix, as defined at the left-hand side of Equation (2). The co-

efficients of matrix M have been determined in the ground vibration test. Equation (11) indicates that

there is no direct external excitation in the elastic aircraft eigenmodes by the runway roughness. The

elastic modes are all excited by their respective rigid-body/elastic mode coupling terms at the left-hand

side of Equation (2).

7.1 Dynamic Response Testing with AGILE

By virtue of the Aircraft Ground Induced Loads Excitation (AGILE) shaker test facility (Figure 16)

now available at the Air Force Flight Dynamics Laboratory at Wright -Patterson Air Force Base in Dayton

(Ohio), extensive dynamic response testing on real aircraft structures has become possible [9]. This fa-

cility allows performance of special investigations which could not be realized in the past. For instance it

is possible to harmonically excite

the aircraft via its tires up to frequen-

cies in t - vicinity of 30 Hz and to per-

form tc- s in a locked landing gear air-

craft configuration. These possibilities

first seen to be of no importance since

neither this type of excitation nor this

configuration are representative. With

regard to the qualification of the aircraft

structural model, however, this special

type of testing is advantageous.

First, excitation of the structure by

a (swept) sine forcing function allows ex-

citation of all eigenmodes in the frequen-

cy range of interest. A comparison be-

tween measured and calculated frequency

Figure 16: The AGILE shaker test facility response data (transfer functions) clearly



2-11

indicates which of the modes are correctly modelled and which are not. Secondly, the ability to test the

aircraft in its locked landing gear configuration allows verification of whether the flexible aircraft struc-

ture itself - without consideration of the dynamically very complicated landing gear - has been modelled

correctly. This intermediate verification step is important in a response analysis, since there definitely has

to be agreement between measured and calculated data for the aircraft locked landing gear configuration

b e fo re concentrating on the far more problematic (real) configuration with unlocked landing gear struts.
,%

A survey of the experimental and analytical investigations performed on the YF-16 aircraft in both of

the configurations with locked and unlocked landing gear struts is given in the next two sections.

7.2 Locked Landing Gear Configuration

A full description of the AGILE fre-

quency response tests performed on the

YF- 16 aircraft (Figure 17) is given in

[10]. Aircraft response data were rec-

orded and analyzed for a series of dif-

ferent shaker excitation configurations,
e.g. excitation of the aircraft at the nose

or main landing gear tires only or simul-

taneous excitation at both of the landing

gear systems. The aircraft was excited

by the shakers with a constant amplitude

"A, swept sine signal in the frequency

range from 0.6 to 15 Hz. Plots of typi- _ .._

cal dynamic response data, resulting from

a test with simultaneous excitation of the Figure 17: AGILE testing on the YF-16 aircraft

nose and main landing gear tires, are

plotted as dashed curves in Figures 18 to 21. Moreover these plots depict the corresponding results

from dynamic response calculations based on Equation (2) with consideration of Aq - 0. Only symmetric

.06 --- - COPEIMlNT - - (IM[NT

CALCUL.ATION .45 CALCULATION

.. ----- ;30 T- --

. -- ------ - I A-

.00 T -

0 I 2 3 4 3 6 7 8 9 10 11 12 13 11 IS . 0 I 2 3 4 5 6 7 1 0 11 1 2 13 14 15 16
FREQUENCY [Hz I FREQUENCY HZ

Figure 18: Main landing gear tire deformation Figure 19: Acceleration at the nose landing gear
tire axle

Eq. - - E._ -. -I:,-- ,% - -
I .4 L C U A IO N --

- - - - - - - -- - - - - - - - - - - - - -
1 - - - - - --2..

.0- .4

. I 2 3 4 3 6 7 9 9 0 11 12 1 14 1 16 0 1 2 3 4 5 6 7 a 9 0 I 12 13 14 5 11
FREOUENC Y .. I FREQUEC.Y [H21

Figure 20: Acceleration at the fuselage nose Fiure 21: Acceleration at the left wing tip
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aircraft eigenmodes were taken into account in the calculations, i.e. the modes RB1, RB2, Si, S2 and S3

of Table 1. All calculations were performed on the basis of the true measured structural data, with no up-

dating of any of the structural parameters with regard to an improvement of the calculated results.

The figures indicate good overall agreement between measured and calculated data. Especially the fre-

quencies of the modes are well determined by the calculation. Some discrepancies between the amplitude

data are due to the "bad" resolution (0. 15 Hz interval between frequency steps) of the digital Fast Fou-

rier Transform Analyzer used in the data reduction process. The broader "peaks" measured in some re-

sponses (e.g. in the 12.5 Hz mode of Figure 20) are probably due to a nonlinear behavior of the aircraft

structure which was excited at real high g-levels during the response tests.

In general, the agreement between measured and calculated response data was found to be accurate

. enough to start the dynamic response calculations on the aircraft configuration with unlocked landing gear

struts.

7.3 Configuration with Unlocked Landing Gear Struts

Analogous to the procedure described in Section 7.2, experimental and analytical frequency response

investigations were performed on the YF-16 aircraft in its (normal) unlocked landing gear configuration.

Figures 22 to 25 depict typical frequency response data for the same shaker excitation configuration as

investigated in Section 7.2, but for a higher amplitude level of the excitation. In the calculations the ex-

perimentally determined nonlinear landing gear characteristics were considered.

W. 2.6 - I I I

jj-I j-I -- 1 - 2.6*-
CAL6L66O 2.2-1p6 ET

12.0 CALCULATION - - - - -

\IA I .i I I"I I
1.2

1.2

M2 .8- - - -- - -

_" .2 " Z

• I 2 q S ? I 9 I t 1 12 13 14 13 16 1 2 3 4 3 6 7 8 o f 10 1 12 13 14 15 16

FREQUECT CHl FRE9 CY CHz]

Figure 22: Nose landing gear strut deformation Figure 23: Acceleration at the main landing gear
tire axle

'I .---- --- ---- --- 6------------------------

1.6 K - CALCULATION

.be4

1001 .2---

M .09 1 2 3 1 3l 6 7 0 9P 1* 11 12 13 14 15 14 6 1 2 3! 4 5 $ ? * 1I 10 11 12 13 14 15 16

FREUCY [KZ4I FR6EGCT EHzI

Figure 24: Main landing gear strut deformation Figure 25: Acceleration at the left wing tip

The figures show that there is reasonable agreement between calculated and measured results. "cept

in case of the acceleration value, depicted in Figure 25, the correlation cannot be regarded as satisfactory.

The discrepancy between measured and calculated curves in this plot is mainly due to the fact that two

asymmetric modes (at 6 and 8.5 Hz) are excited by the symmetric shaker excitation. While performing

subsequent tests on the landing gears, it was noticed that this effect has to be attributed to the different

transfer behavior of the left and right main landing gear struts.
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S. CONCLUSION

The many investigations described in this report have shown that the dynamic (frequency) structural

response of aircraft to an external excitation at its landing gear tires can be correctly calculated. To ob-

tain satisfactory results, however, it is required that the mathematical model of the aircraft structure be

carefully adapted to a series of tests allowing experimental determination of all structural parameters in-

N eluded in the generalized equations of motion. It was noted that especially the nonlinear-, frequency- and

" preload-dependent characteristics of the undercarriage have to be carefully considered in the calculations.

Despite the extensive investigations already performed, further effort is required for the de~eloped

mathematical model to be used in time domain analyses allowing the prediction of the aircraft structural

response to a (discrete) runway roughness, e.g. bumps, repairs. But the entire philosophy of aircraft

testing, as described in this paper, in combination with the developed mathematical structural model can

be used as a basis for a routine allowing dynamic qualification of aircraft for operation on damaged/repaired

runways. Figure 26 depicts in a block diagram the entire qualification process consisting of a series of

systematic analytical and test investigations. The routine makes ample use of the AGILE shaker system as

a qualification test setup. For the validation of the mathematical structural model it is considered to be of

importance to perform AGILE tests on both of the aircraft configurations with locked and unlocked landing

gear struts. But since AGILE cannot simulate spinning tire effects, this facility does not have the capa- P

bility to fully replace the taxi field tests. Taxi field tests on real aircraft will remain necessary to com-

pletely demonstrate the aircraft operational capabilities on the ground.

Aircraft "
~LA L6 Strut r Strut Choracteristics _othemtio"

Tire Tire Characterstks

-er A Strut Ies ts
Tes t s U;

Frequency Response

Vibflaton? - - - - - M d l D t Calculations

I L 16 Struts

Testing_ Hal F Tim Drr*',n
AGILE Tests Anal ses

--I "lse

~~E~<J~IEEEIEEEEE~hI~iCompariso

Io) Frequency Response Tests I _ Frequency _,
I Locked & UnloLed 15 Struts I Response Dota Predict Towx Field

I T rronsient Time Test Responses
Lb) Discrete Bump Tests ._ Domain Resp Doto

Time Dom n Compais"nTaxi Field Tests Resp Data

m..,nway Fully v ,dote
Mothemoticol Model

Repoirs

Fiyire 26: Block diagram of the aircraft qualification routine
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