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PREFACE

The state of the art in axial turbomachinery has advanced to the point where
further impuovements will have to come from a better understanding and eventual control
of the unsteady flow phenomena which occur in turbomachines. These unsteady flows have
a significant influence on efficiency, aerodynamic stability of the compression system,
aeroelastic stability, forced response, and noise generation.

Over the past fifteen years, a number of workshops and symposia have been held to
discuss various turbomachinery unsteady flow and aeroelastic aspects, e.g., the Project
SQUID Meetings on Aeroelasticity Jn Turbomachines 1972 and on Unsteady Flow in Jet
Engines 1974, the AGARD 46th Propulsion and Energetics Panel Meetings on Unsteady
Phenomena in Turbomachinery 1975, the IUTAM Symposium on Aeroelasticity in Turbomachines
1976, the 2nd IUTAM Symposium on Aeroelasticity in Turbomachines 1980 and the Symposium
on Unsteady Aerodynamics of Turbomachines and Propellers 1986.

Tn.* idea for a thorough review and assessment of the current state of the art of
unsteady turbomachinery aerodynamics dates back to the 1975 AGARD Meeting. Such a re-
view was presented by one of the editors (M. F. Platzer) at the AGARD Conference on
Unsteady Aerodynamics 1977 (AGARD-CP-227). A major conclusion of this paper was that
further engine performance improvements and the avoidance of expensive engine modifica-
tions due to aerodynamic/aeroelastic stability problems will not only depend on the con-
tinued systematic research in unsteady turbomachinery aerodynamics. Rather, the need to
transfer highly specialized unsteady aerodynamic and aeroelastic information to the
turbomachinery design community and the introduction of young engineers to this disci-
pline suggested the compilation of-a "Manual on Aeroelasticity in Turbomachines", simi-
lar to the "AGARD Manual on Aeroelasticity" for the aeroelastic design of flight
vehicles, due to the lack of any textbook or other comprehensive compendium on unsteady
aerodynamics and aeroelasticity in turbomachines. It is noteworthy, however, that
several books on this subject have been published in Russia, i.e., Samoylovich, Unsteady
Flow Around and Aeroelastic Vibration in Turbomachine Cascades, WPAFB-FTD-MC-23-242-70,
February 1971, Samoylovich, Excitation of the Fluctuations of the Blades of Turbo-
machines, Moscow 1975, Gorelov, Kurzin, Saren, Atlas of Non-Steady Aerodynamic Charac-
teristics of Profile Cascades, Novosibirsk 1974.

This conclusion was presented to and endorsed by the AGARD Propulsion & Energetics
and Structures & Materials Panels, the U.S. Office of Naval Research, the Naval Air
Systems Command, and the Air Force Office of Scientific Research. The support of these
organizations is gratefully acknowledged. We are especially indebted to the late Dr.
Herbert J. Mueller, Research Administrator and Chief Scientist of the Naval Air Systems
Command, for his encouragement and guidance during the initial phase of the project.
Thanks are also due to Dr. G. Heiche and Mr. G. Derderian (Naval Air Systems Command),
Dr. A. Wood (Office of Naval Research), Dr. A. Amos (Air Force Office of Scientific
Research) and Dr. E. Riester (AGARD) for their continuing interest and support.

The present first volume attempts to review the field of unsteady turbomachinery
aerodynamics. The reader will notice that most methods are still limited to the two-
dimensional (cascade) flow approximation, although great progress has been made in the
inclusion of blade geometry and loading effects. The current status of the underlying
aerodynamic theory and of the major results are described by Verdon and Whitehead. The
importance of three-dimensional flow effects is still insufficiently understood. There-
fore, a special effort was made to include the existing results by Namba and Salaian in
order to stimulate further work on this very difficult problem. Viscous flow effects
are discussed by Sisto in the chapter on stall flutter. Rigorous methods for the comp-
utation of unsteady boundary layer effects are beginning to be developed. However, its
inclusion in this volume was judged to be premature. Great progress has been made in
the field of computational fluid dynamics. Its application to the problem of unsteady
transonic cascade flows is reviewed by Acton and Newton. A separate volume will have
to be devoted in the near future to the numerical computation of unsteady flows in
turbomachines because of the rapid advances in the field of computational fluid dyna-
mics. The final four chapters by Fleeter, Jay, Szechenyi, and Gallus present the status
of the unsteady aerodynamic and aeroelastic measurement techniques and of the available
experimental cascade and rotor results. Whenever possible a comparison between theory
and experiment was attempted in the various chapters. The need for well-controlled
test cases was recognized a few years ago. This effort is currently in progress and the
reader is referred to Fransson's systematic comparison of different experimental data
and theoretical results for nine standard test configurations, presented at the Sympo-
sium on Unsteady Aerodynamics of Turbomachines and Propellers in 1984.

The editors are deeply indebted to the authors for their willingness to contribute
their time and energies to this project in spite of other pressing demands. Our thanks
also go to the authors' employers for their support. Funding limitations made it neces-
sary to limit the number of contributors. Nevertheless, we hope that a fairly compre-
hensive and balanced coverage of the field of turbomachinery unsteady aerodynamics and
aeroolasticity was accomplished-and that the present volume on unsteady turbomachinery
aerodynamics and the second volume on turbomachinery structural dynamics and aeroelas-
ticity will be found useful as an introduction to this important special discipline and
as a basis for future work.

Max F. Platter and Franklin 0, Carta, Editors



NOTATION

The reader is alerted to the differences in notation used by different authors. The

most important quantities are tabulated below. Also note that Verdon and Namba use
dimensionless quantities.

Verdon uses the following reference quantities: reference length = blade chord,
reference time = ratio of blade chord to upstream free-stream speed, reference density =
upstream free-stream density.

Namba uses the following reference quantities: In the section "Subsonic, Super-

sonic, and Transonic Unsteady Annular Cascade Theory", equations (1) through (143),

reference length = tip radius, reference velocity = axial velocity of the undisturbed
flow, reference time = ratio of tip radius to axial velocity of the undisturbed flow,
reference density = upstream free-stream density. This part of Namba's chapter is de-

noted "Namba I" in the list of symbols. In the following sections, equations (144)
through (239), Namba uses as reference length = blade chord, reference velocity = undis-

turbed flow velocity, reference time = ratio of blade chord to undisturbed flow velocity,
reference density = upstream free-stream denisty. This part of Namba's chapter is
denoted as "Namba 2".

V = Verdon W = Whitehead N1 = Namba 1 N2 = Namba 2 S = Salaun

V W N1 N2 S

Circumferential Coordinate n e

Radial Coordinate r y r

Chordwise Coordinate x x x

Normal-to-Chord Coordinate y y y z

Axial Chord Length Ca(r) 21

Blade Chord Length c c c* 2c

Blade Spacing s b

Gap-to-Chord Ratio G s

Stagger Angle 0 e Y y

flub Radius rl rl

Tip Radius rT r2

Blade Number N N

Time t t t t t

Vibration Frequency W C

Reduced Frequency W wR

Axial Wave Number k. a

Circumferential Wave Number kq 8 n

Interblade Phase Angle a a *a 2wa

Axial Velocity w. V.

Speed of Sound A A a 0 (xy) a

Free-Stream Density e 0

Angular Velocity of Rotor C *

Free-Stream Speed U U



CONTENTS

PREFACE - - -------------------------------------- ---- -- - - - - ----- i

NOTATION ----------------------------------------------------------------- iV

TABLE OF CONTENTS -V---------------------------------------------------------

I. INTRODUCTION AND OVERVIEW

F.Sisto, Stevens Institute of Technology

Introduction --- - -------------------------------- -- - ------ --- - -------- 1-1

Historical Perspective - - - ---------------------------------------------- 1-2

Overview of the Manual ------------------------------------------------- 1-8

II. �-LINEARIZED UNSTEADY AERODYNAMIC THEORY

J. M. Verdon, United Technologies Researlah Center

Introduction ----------------------------------------------------------- 2-1

Problem Description ---------------------------------------------------- 2-2

The Full Time-Dependent Governing Equations ---------------------------- 2-5

The Small Unsteady Disturbance Approximation ------- ------------------- 2-8

The Linearized Unsteady Flow ------------------------------------------- 2-11

Aerodynamic Response Parameters ---------------------------------------- 2-16

Numerical Examples ----------------------------------------------------- 2-18

Limiting Forms of the Governing Equations ------------------------------ 2-25

Concluding Remarks ----------------------------------------------------- 2-30

iii. CLASSICAL TWO-DIMENSIONAL METHODS- It I Il( ,: -• • X " -•(9 V17

D. S. Whitehead, Cambridge University

Introduction ----------------------------------------------------------- 3-1

Unsteady Thin Aerofoil. Theory., Bound and Free Vorticity ---------------- 3-2

Kernel Function for Incompressible Flow -------------------------------- 3-3

Fundamental Acoustic Wave Solutions ------------------------------------ 3-4

Vorticity Wave Solutions ----------------------------------------------- 3-5

Kernel Function for Subsonic Cascade ----------------------------------- 3-6

Solution for Subsonic Cascade ------------------------------------------ 3-7

Sc) -tions for Supersonic Cascade----------------------------- ----- 3-8

Transonic Theory ------------- ----- ----------- ------- 3-12

Actuator DiSc Theory- ---------- -------------------- 3-14
Singularity Thoory ----------------- ---------------------- 3-16

Specimen Results for Flat Plate Cascades- -------------- 3-18

Conclusions -------------------- ------------------ - 3-20

Prograw Listing for Unsteady N.o-Dimensional Linearized Subsonic - - - - - 3-22
Flow in Cascades



IV. THREE-DIMENSIONAL FLOWS

M. Namba, Kyushu University

Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-1

Model and Mathematical Formulation ------------------------------------- 4-2

Finite Radial Mode Expansion ------------------------------------------- 4-4

Acoustic Field Expressed by the Finite Radial Mode System -------------- 4-6

Disturbance Pressure Induced by Unsteady Lifting Surfaces -------------- 4-7

Upwash Velocity Induced by Lifting Surfaces ---------------------------- 4-9

Integral Equation -------------------------- -------------------------- 4-11

The Discrete Element Method -------------------------------------------- 4-12

The Mode Function Method ----------------------------------------------- 4-12

The Hybrid Method ------------------------------------------------------ 4-15

Example Calculation and Trends of Three-Dimensional Effects ------------ 4-15

Unsteady Cascade in Spanwise Nonuniform Mean Flow ---------------------- 4-20

Model and Mathematical Formulation ---------------------------------- 4-20

Disturbance Pressure ------------------------------------------------ 4-22

Disturbance Velocities ---------------------------------------------- 4-22

Integral Equation for Unsteady Loadings ----------------------------- 4-23

Numerical Examples and Effect of Mean Flow Shear Upon Unsteady - - - - 4-24
Blade Loadings

Effect of Wall Linings ------------------------------------------------- 4-25

Model and Mathematical-Formulation -------------- ------------------- 4-25

Disturbance Pressure ------------------------------------------------ 4-27

Disturbance Velocities and Fluid Particle Displacement -------------- 4-28

Determination of Unsteady Blade Loading and Mass Source ------------- 4-28

Numerical Examples and Effect of Wall Linings upon Blade Loading - - - 4-29

V. THREE-DIMENSIONAL FLOW
Piero Salain, ONERA

Subsonic and Supersonic Unsteady Annular Cascade Theory ---------------- 5-1

Formulation of the Problem --------------------------------------------- 5-1

Pressure due to N Monopoles or N Dipoles -------------------------------- 5-3

Pressure and Velocity Potential due to N Sheets of Pressure Dipoles - - 5-4

Analysis of the Velocity Potential and its Derivatives ------------------ 5-6

Integral Equation of the Problem --------------------------------------- 5-6

Use of Nondimensional Quantities, Method of Solution of the ------------ 5-9
Integral Equation

Generalized Forces ----------------------------------------------------- 5-12

Numerical Result- ------------------------------------------------------ 5-12



VI. 'NUMERICAL METHODS FoR UNSTEADY TRANSONIC FLOW

E. Acton, Topexpress Ltd and
S. G. Newton, Rolls-Royce p/c

Introduction ----------------------------------------------------------- 6-1

Solutions of the Potential Equations ----------------------------------- 6-3

Time-Marching Solutions of the Euler Equations ------------------------- 6-8

Implementation of Boundary Conditions ---------------------------------- 6-12

Application of the Methods to Flutter Calculations ------------------- -- 6-15

Concluding Remarks ----------------------------------------------------- 6-21

VII. STALL FLUTTER

F. Sisto, Stevens Institute of Technology

Introduction ----------------------------------------------------------- 7-1

The Role of Mach Number ------------------------------------------------ 7-2

Choke Flutter and Supersonic Stall Flutter ----------------------------- 7-2

Nonlinear Phenomena---------------------------------------- ------ 7-3

Empirical Correlations------------------------------- ---------- 7-5
Separated Flow Models -------------------------------------------------- 7-7

Recent Trends, Modern Approach to Stall Flutter ------------------------ 7-9

Concluding Remarks ----------------------------------------------------- 7-11

VIII. UNSTEADY AERODYNAMIC MEASUREMENTS ,I FLUTTER RESEARCH C•-I I
S. Fleeter, Purdue University and
R. L. Jay, General Motors Corporation

Introduction---- --=--- -------------------------- 8-1

Experimental Objectives ------------------------------------------------ 8-1

Experimental Facilities and Techniques --------------------------------- 8-2

Experimental Reaults --------------------------------------------------- 8-8

Summary ---------------------------------------------------------------- -8-18

IX. UISTEADY AERODYNAMIC MEASUREMENTS IN K FORCED VIBRATION RESEARCH.-] (0, )
R. L. Jay, General Motors Corporation and
S. Fleeter, Purdue University

Introduction-------------------------------------- ---------- 9-1

Problem Defined -------------------------------------------------------- 9-1

Experimental Facility Requirements ------------------------------------- 9-9

Experimental Research - - ------------------------------------------------ 9-12

Calibration and Data Acquisition ------------------- ------------------- 9-15

Examples of Investigations Regarding Aerodynamic Damping and - ----- 9-21
Gust Loading

Date Presentation -.-.----------------------------- --- - -------- - ---- 9-37

Summary --------------------------------------------------- 9-37



X. UNDERSTANDING FAN BLADE F "UTTER.ROUGH LINEAR CASCADE AEROELASTICXESTING , IV7

E. Szechenyi, ONERA

Introduction --- -------------------------------------------------------- 10-1

Aeroelastic Testing -------------------------------------------------- 10-2

Sub/Transonic Flow Flutter in Torsion --------------------------------- 10-5

Supersonic Flow Started Flow Flutter ---------------------------------- 10-10

Some Ideas on Supersonic Unstarted Flow Flutter ----------------------- 10-14

Cascade Results and Predictions --------------------------------------- 10-14

The Future -I--------------------------------------------------------0-15

XI. -UNSTEADY AERODYNAMIC MEASUREMENTS,.ON ROTORS.

H. E. Gallus, Technical University of Aachen, FRG

Introduction --------------------------------------------------------- 11-1

Objectives of Experimental Rotor and Stage Unsteady Aerodynamic Research - 11-1

Measurement Techniques on Rotors of Turbomachines --------------------- 11-3

Techniques for Displacement and Vibration Measurements on Rotor Blades - 11-3

Techniques for Unsteady Flow Measurements on Rotors -------------- ----- 11-4

Examples for the Application of Unsteady Flow Measuring Techniques on - - 11-5
Rotors

Unsteady Blade Static Pressure Measurements --------------------------- 11-5

High Response Pressure Transducers for Unsteady Pressure Field --------- 11-8
Measurements on the Casing Wall

Rotor Flow Field and Rotor Wake Studies with the Aid of Rotating Probes - 11-9

Measurement of the Rotor Flow by High Response Stationary Probes- -- -- 1

Optical Methods for Rotor rlow Investigations ------------------------- 11-13

Flow Visualization --------------------------------------------------- 11-13

Schlieren- and Shadowgraph Techniques --------------------------------- 11-14

Gas Fluorescence Technique -------------------------------------------- 11-15

Holographic Interferometry -------------------------------------------- 11-15

Laser Velocimetry --------------------------------------------------- 11-15

Summary -I- -------------------------------------------------------------- 11-18

ALPHARETICAL LISTING OF REFERENCES ------------------------------------- --- R-i



INTRODUCTION AND OVERVIEW

F. SISTO
Department of Mechanical Engineering

Stevens Inititute of Techology
Hoboken, New Jersey 07030

USA

INTRODUCTION first important documentation of axial
compressor blade flutter as reported by

Definition. The engineering science of Shannon (1945).
aeroelasticity has been described by
Collar (1946) as the study of the mutual The development of aeroelasticity in axial
interaction of the inertial, elastic and turbomachines has been stimulated mostly,
aerodynamic forces on structural members although not exclusively, by problems
exposed to an airstream and the influence related to aircraft gas turbines.
of this study on design. In Collar's tri- Typically, the working fluid is referred
angle of forces each of the three types of to as air. The twin desiderata of light
forces occupies a vertex of the triangle weight and high isentropic efficiency in
and the three sides constitute the sub- aeronautical applications led to the de-
fields of static aeroelasticity, dynamic sign of axial-flow compressors with air-
control and structural dynamics. This is foils of fairly high aspect ratios.
an excellent mnemonic device for helping Moderate thickness ratios were required
to characterize the field and organize the by the high subsonic relative Mach num-
literature. The full aeroelastic self- bers. Under high stage loading condi-
excited instability is termed flutter; in tions these machines experienced either
axial turbomachines the structure is typi- severe bending or torsional vibrations of
cally the bladed rotor and only infre- their cantilever blades, then termed
quently the stator vanes. "stalling flutter." This behavior was not

to be tolerated since it led to fatigue
Background. Aeroelasticity as an empiri- failure of the blades.

eld of enquiry extends back in time
with accounts of flutter occurrences on It is probable, in retrospect, that dy-
the early "iron" bridges in England, ca namic aeroelastic instability had
1818. The vibration of tall smokestacks occurred earlier in compressors of more
and other bluff structures by Karman vor- robust construction and in the latter
tex excitation are further examples of stages of condensing steam turbines.
dynamic aeroelastic phenomena of the type Blade vibrations attributable to partial
that persist to the present day, cf. the admission of steam in impulse turbines
Tacoma Narrows Bridge failure in 1940. (Campbell 1924) were correctly treated as

forced vibration, but without emphasis on
Aircraft empennage and wing flutter became the aeroelastic nature of the problem.
a recognized problem at the time of World It is interesting to note, however, that
War I, and analytical prediction became many of the fundamental concepts related
possible using the then-new theories for to the vibration mode of bladed-disk
nonsteady aerodynamics. Major advances in assemblies, currently being intensively
the structural description of the aero- researched, have their genesis in that
elastic system were not required at that earlier steam turbine experience of the
time. Static aeroelasticity, as exempli- 1920's.
fied by the torsional wing divergence of
the early monoplanes, was properly diag- The development of axial turbomachine

nosed contemporaneously. Subsequent de- aeroelasticity since World War II is set
velopment of the field as applied to the out briefly in the remainder of this
external aerodynamics of lifting and con- chapter. At the outset, however, it is
trol surfaces of aircraft and missiles important to summarize the basic differ-
continued into the early 1960's. More ences that give rise to new phenomena not.
sophisticated analysis of the structural encountered with fixed lifting surfaces.
systems became necessary as sweep, mono- Clearly, the major feature differentiat-
coque construction and other geometries, ing the aircraft wing and the axial flow
materials, and methods of fabrication were turbomachine is the large multiplicity of
introduced, evenly spaced and mutually interfering

airfoils in the latter. The aerodynamic
A summary of this previous experience was coupling amongst the airfoils in an annu-
documented in an earlier Manual on Aero- lar row of vibrating blades is extremely
elasticity (Jones, ed. 1961) issued by the complex and depends on many governing

Advisory Group for Aeronautical Research parameters, not the least of which is the
and Development of the North Atlantic interblade phase angle, a (sigma). The
Treaty Organization. The present. Manual structural coupling is also uniquely dif-
derives a great deal of strength and ferent in the turbomachine, being strong-
continuity from that prior documentation ly affected by the twist of the airfoils,
of the then current state oT-the art, their attachment to the hub and to each
which subsequently has continued to mature other, and, in the case of rotor blades
with emphases on supersonic flow, transon- which are more prone to vibrate than eta-
ic flow, missile skin panels, control tor blades, by operation in a strong ro-
surfaces, and helicopter rotors. tational body force field. The impor-

tance of modeling the rotor structure as
Axial-FIow Turbomachines. The first. suc- a bladed-disk assembly has already been
cessfu? gas t.ut F6---e•ngines were the tur- alluded to.
bojet, poverplants developed in England and
Giermany during World War It and These major complicating factors, attrib-
irmedlately afterwards in the U. 3. and utable to the multiplicity of coupled
U.K. This development coincided with the and annularly cascaded airfoils arranged
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in alternately fixed and moving rows, have This graphical representation of compres-
characterized the development of aeroelas- sor performance, with its aerodynamic
ticity in axial turbomachines, as con- parameters of aeroelastic significance, is
trasted with that in aeronautics in explained in Chapter 6 of Dowell et al
general. (1978). (For example, contours of the

first rotor tip incidence may be plottedin Figure 1.) However, the compressor map

1HISTORICAL PERSPECTIVE identification of flutter regions cannotpredict the type, or occurrence, of flut-
EarlI MRnifestations in Axial Compressors. ter with complete certitude. The map is

h n pioneering report it wa purely an aerothermodynamic descriptor and
noted that axial flow compressors were gives no information abolzt structural dy-
prone to stall flutter vibrations in which namics.
the blade mode was usually fumrdamental
flexure, although lesser stresses were Forced vibrations were also observed where
sometimes encountered in torsion. The there was a clear coincidence of the

""compressor rotor blades being unshrouded natural frequency of the rotor blade with
and only slightly twisted had natural the frequency of encountering disturbances
modes in which either flexure or torsion in the airstream, or with the rotor pass-
predominated. (The typical predominance ing frequency in the case of a stator vane
of the flexural mode was to be reversed at vibration. Although aerodynamically
a later time in the evolution of compres- forced vibrations of blades and vanes at
aor design.) These cantilever rotor blade integral multiples of synchronous speed
oscillations occurred at part speed when have continued to be important aeroelastic
the operating line, during oscillation or occurrences, the diagnosis and cure have
otherwise, traversed a region of the com- been straightforward. (The magnitude of
pressor map where high incidence on the the excitation must be reduced and/or the
first several stages was combined with coincidence of frequencies moved out of
Region I in the schematic compressor map, few exceptions, this type of aeroelastic

or characteristic, comprising Figure 1. vibration has received relatively les

PRESSURE
RATIO

I Subsonic / Transonic Stall Flutter
la System Mode Instability

11 Choke Flutter
Ill Low Incidence Supersonic Flutter V
IV H4igh Incidence Supersonic Flutter
V Supersonic Bending Stall Flutter

'NA

100% speed
'Inereasing ln

CORRECTED MASSFLOW

Fig. 1. Axial compressor or fan characterist~ic map showing principal types of flutter
sn/I toyionfl of occurrence.
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attention in the literature and in this certain critical values which were not to
Manual. One development has been in the be exceeded in order to achieve freedom

41, application of unuteady aerodynamics to from flutter. (A rather fanciful depic-
relate the magnitude, frequency, orienta- tion of an empirical flutter boundary
i-ion, and phase of the periodic gust to appears in the artistic rendering of

*N the resulting unsteady blade lift and Figure 21 the disadvantages and advan-
moment and hence, unsteady stress. tages related to crossing or non-crossing

of the boundary are graphically por-
An exception to these observations con- trayed.) Although flutter in those sub-
cerning aerodynamic forcing occurs when sonic compressors was not encountered at
ithe resonant. frequency is at a non- design speed, the specification of maxi-
integral engine order which is the situa- mum allowable reduced velocity was made
tion when rotating (or propagating) stall at design speed to assure that the criti-
is present. This is touched upon later cal values would not be exceeded at lower
and discussed again somewhat more fully in speeds in Region I. The qualitative
Chapter, "Stall Flutter." (Similarly, explanation rested upon the previous
static aeroelasticit.y has only a minor single wing experience with stall flutter
exposure in the turbomachinery literature, documented and explained by Studer
the chief applications being to blade (1936), Mary Victory (1943), and others.".,"untwist" and "lean" which stem from the Although the design rules ignored the
combined offects of steady aerodynamic importance of aerodynamic coupling noted
and centrifugal loadings. The perform- before, they were moderately successful
ance of horizontal axis wind turbines, in delineating the region between flutter
for example, is strongly affected by and no flutter for similar designs. This
static aeroelastic deformations.) was primarily due to the fact that the

rules were empirical to begin with, and
The early attempts to predict and thus also, that at the inception of flutter,
avoid stall flutter in practice resulted stresses are low and all blades vibrate
in empirical "design rules" which limited at their individual "as manufactured"

. the reduced velocity* at design speed to frequencies with disparate amplitudes.
Before entrainment of frequencies occurs

-. at higher flutter stress levels a unique
interblade phase angle cannot be defined
and the aerodynamic coupling, when aver-

-iRelat.ive airspeed normalized with re- aged over time, is not a strong influ-
"spect to blade frequency and-aemichord, a ence. The stress level for entrainment
parameter of great importance in dynamic is subject to the degree of mistuning
aeroelasticity. present.

:4

SoTo

.. U4

0I~0

R,~DUCK5 VELOC,.Y L

0. 4. A• all JoAic al trnuyaJ (circa 1954) of the perils encountered when f
(.:pre~or (orating line penetrates the stall flutter boundary.

kArti st inknown.)



SQcond Decade Developments. Beginning in lished at that time, continues to the
the early 1950's the research on blade present day. Thus, for the first time,

flutter was advanced by Billington the interblade phase angle was conceived
(1949). Lilley (1952), Pearson (1953). of as a variable, or a parameter, with a
Carter (1955), Kilpatrick & Burrows strong influence on the aerodynamic reac-
(1958), and others in England, and tions. Before this development at MIT,
Mendelson (1949), Sisto (1952), Carta 0 had been considered to be roughly 180*,
(1957). and others in the United States. more or less specified in advance of any
This work had several thrusts, not the predictive calculation and denoted as
least useful of which was the extension "antiphase" behavior.
of the earlier design rules to include
correlations for the effect of blade The entire question of the influence of
geometry, such as aspect ratio, thickness interblade phase angle was put on a firm
and aerothermodynamic quantities such as analytical basis with the publication of
stage pressure ratio, number of-stages what might be called a "phase theorem" by
and, most particularly, incidence. Much Lane (1956). In this elegant analytical
of this work was proprietary, treatise, written at New York University,

the following proposition was proved, sub-
Another important thrust in the 1950's ject to the assumptions of linearity and
was hardware development with the objec- identical blades equally spaced about a
tive of avoiding stall flutter, or miti- common rotort i) permissible values of
gating its harmful effects. One such the interblade angle are a - 2w n/N, where
item was the part-span shroud, or N is the number of blades in the annular
snubber, introduced to control the vibra- row and n is an integer, 0•n<N; and ii)
tions of higher Mach number compressor the flutter inception point may be deter-
blades and the fan components of the then mined by minimizing the flutter speed of a
nascent turbofan engines. Some contro- simple equivalent blade with respect to o,
versy exists as to the reason for the a discrete variable. Actually, when N is
effectiveness of these devices. There is large, 0 may be considered to be a
an unquestioned stiffening effect on the continuous variable with slight error.
structure, thus providing an increase in These formulations put the flutter predic-
reduced frequency and modification of the tion of turbomachinery stages on a ration-
vibration mode, both aeroelastically im- al foundation upon which later develop-
portant. However, during vibration it is ments could be firmly based.
also true that the interfacial surfaces
between butting shroud segments may intro- As the second decade of turbomachine
duce mechanical damping. It is possible aeroelasticity drew to a close the ana-
that both benefits accrue and that one lytical/theoretical body of knowledge and
effect or the other may be optimized by the practical/experimental developmentsthe particular philosophy employed in the were quite unrelated. it was not possible

shroud design. It is important to ob- to use the incompressible small incidence
serve that the turbine component has made theory to predict flutter and elimination
use of tip shrouds as a viable option from of stall Zlutter relied almost exclusively
the earliest gas turbine engine develop- on empiricism. The transonic compressor
ment, probably as a natural carry-over made its debut in this time period and, as
from prior steam turbine practice. supersonic tip relative Mach numbers

appeared, so also did supersonic flutter.
In this same time period the significant With the introduction of compressibility
use of variable guide vanes in compressor in the analysis (Carta 1957) (Lane &
components was introduced, following an Friedman, 1958) theory and practice began
intensive period of research and develop- to intersect. In subsequent years 'the
ment. The research on the aeroelastic treatment of subsonic, supersonic and
implications of these devices was largely finally transonic (M - 1) flows have
experimental and improved stall flutter characterized the more practically useful
avoidance was one of the major practical analyses that have appeared.
results. Rotating Stall. In continuing to trace
Another major thrust was the analytical the development of aeroelastiticy as ap-
formulation of the unsteady incompressible plied to axial turbomachines, the phenom-
aerodynamics of two-dimensional cascades enon known as rotating stall, or propa-restricted to conditions of small thick- gating stall, should be mentioned. Ro-
ness, camber and incidence. It did prove tating stall was observed experimentally
to be possible to include the important by the Whittle Jet Engine Group in 1938
interblade phase angle as a parameter in and proceeded to be involved in an inter-
the analysis. Although flutter -was not esting and important controversy.
being encountered in practice under those
restrictive conditions (low incidence and A row of blades does not stall uniformly
subsonic flow) it was possible to study as the incidence is increased. Instead,
the effect of interblade phase angle ana- zones of low velocity or even reversed
lytically and observe the strong, even flow appear evenly spaced about the annu-
dominant effect of this parameter on aero- lus. These zones are not stationary
dynamic work* and the related aerolastic relative to the bladest the patches ro-
stability. The central role of sigma (a) tate in the annulus in the same direc-
in cascade aeroelasticity, firmly estab- tion as the rotor, but at lower speed.

It is clear that the loading on rotor
'Flutter my pe"predicted by an energy blades and stator vanes will change with
method in which the work done by the a frequency that depends on the relative
aerodynamic forces on the assumed vibra- angular velocity of stall propagation and
t•ion mode, less the energy consumed by the number of patches. This frequency is
mechanical damping, goes from zero to a in general non-synchronous, i.e.. it does
small positive quantity at the flutter not coincide with an engine order line on
point. the Campbell diagram.
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[This diagram, a typical example of which Propagating stall, identified in this man-
appear's as Fioureý 3, i,. now a classical ner, was researched initially by groups at
device for diagntosing roi:or blade vibra- NACA (Hupert & Benser 1953), CalTech (lura
tions. With the abscissa of rotational and Rannie 1953) and Harvard/MIT (Emmons
speed and ortiirite of vibration fre- 1954). A strong controversy arose con-
quency, blade natural frequencies may be cerning the relative significance for
plotted as a function of rotor speed. blade vibration of propagating stall via a
Straight lines radiating from the origin via stalling flutter. At one time Mere
corretpond to engine order lines. Forced was a serious question whether separate
vibration will usually occur where the mechanisms were involved and whether, in
nat-ural freqtiency line of the resonating fact, there was such a distinct phenomenon
rotor blade crosses the integral engine as stall flutter. The controversy contin-
order line, High vibratory stress at the ued to find expression well into the
natural frequency and between integral following decade. General agreement now
order lines may be due to rotating at-all distinguishes between the two types of •

or else a self-excited instability such stall-provoked vibrations by noting that
as fluttor. propagating stall may occur without any
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significant blade vibration, or may result "mistuned" bladed-disk assemblies rests
in forced ro;or blade vibration much as upon this prior work on system modes.
any other non-axisymmetric flow in the
blade annulus. The vibration of the annu-
larly cascaded blades usually exerts The SST was a strong stimulus to the
little or no influence on the propagating growing concern with aerodynamic noise,
speed of the stall zones, and hence on the which in turn gave rise to the modern
forcing frequency. Stalling flutter, on field of aeroacoustics. Although this
the other hand, is a true self-excited Manual is not concerned directly, with
vibration, as is conventionally implied by aeroacoustics it is notable that the
the term "flutter," and may occur with acoustic approximation (i.e. pressure and
steady, uniform mean flow. velocity changes across a sound wave are

infinitesimals) can be effectively em-
This resolution of the controversy is not ployed in the perturbation analysis of
wit.hout its paradoxes. Since the nonsta- unsteady compressible flow through cas-
tionary stalling process is nonlinear cades. Virtually the same formulation
there is a small interval of frequencies that describes acoustic radiation, see
bracketing blade resonance within which Goldstein (1976), also predicts the un-
entrainment of frequency takes placel the steady flow field properties of cascades
stall frequency departs from its contin- at small incidence. Thus the 1960's
uous dependence on rotor speed and "locks development of unsteady compressible flow
in" to the blade natural frequency. Fur- in cascades was reinforced by the growing
thermore, a stall flutter condition in a field of aeroacoustics. At a particular
blade row, with time invariant 4nterblade subsonic Mach number, the phenomenon of
phase angles, will generate a periodic "cutoff" to describe frequencies below
pattern of strong flow perturbations (sep- which disturbances do not propagate up-
arations) that may be viewed as a travel- stream, is an acoustical concept. So
ling wave propagating peripherally rela- also is the phenomenon of aerodynamic
tive to the blade row. resonance, where disturbances from one

vibrating blade arrive in phase with the
This subject is developed more fully later similar vibration of the neighboring
in the Manual since it is the basis of a blade. Both types of behavior have im-
modern formulation and analysis of stall portant consequences in the formulation
flut.t er. of unsteady pressure distribution and"* hence unsteady lift and moment.

System Modo Instabilities. The following
Sdecade o the 1960's was notable for the The entire lift engine development, with
introduction of the turbofan engine, the all its variations, peaked out during
supersonic transport (SST) and realization this decade. Many interesting composite
of the lift engine, blade materials and types of construction

were tried: the aeroelastic benefits in
The fan component of turbofan engines and the area of flutter prevention were
the front. stages of transonic compressors apparently insufficient to overcome the
have rotors of low hub/tip ratio. The aeroelastic disadvantages with respect to
rigidity of these disk structures is much foreign object damage (FOD) and fatigue
lower than the drums of high radius ratio behavior in forced vibration. These lift
stages. Furthermore, despite the intro- engine developments were later abandoned
duction of titanium alloy as a front-stage (with the vectored-lift Pegasus engine an
blade material, further decrease of the exception). Nonetheless a great deal was
reduced velocity is found to be aeroelas- learned about the aeroelastic features of
tically necessary and one or two rings of FOD, other transient loadings and, m7st
part-span shrouds are routinely applied to particularly, the inlet distortions en-
these front end rotor rows. The resulting countered with these special engines.
structural system is one in which the Although the aeroelastic implications of
vibration modes of the entire blade- operating in distorted flow were recog-
disk-shroud system must be considered. nized in the late 1940's, probably as a

consequence of earlier experience with
Although steam turbine designers have ana- partial admission in steam turbines, the
lyzed this type of structure, in which the intensive study of aeromechanical re-
modes are identified by the number of dia- sponse to flow distortion took place late
metral and circumferential nodal lines, in the decade (Armstrong and Williams,
Carta (1967) first reported the signifi- 1966). This was due mainly to the severe
ficant. application to aeroengine compo- distortion presented to the wing-mounted
nents. It was shown that if the intra- lift engine, and also in some measure, to
blade phase angle between pitching and the increased use of buried engine
plunging is -,/2 (i.e. the torsional installations requiring bifurcated and/or
motion lags the bending motion by 90'), tortuous inlet ducting, supersonic inlets
then instability is observed to occur operating off design and a trend to lower
typically with an intermediate number, cantilever blade frequencies. Stemming
say 4, of diamotral nodes between 2 ard from the limitations to, and deterioration
8. The particular choice of intrablade of, engine performance in distorted flow,
phase angle corresponds to displacement the intense research of this subject pro-
waves relative to rotor coordinates tra- vided a stimulus for paralleling the on-
velling In the direction of roF-r rota- gins performance studies with investiga-
tion, i.e. "forward" travelling waves. tions of aeroelastic response.
Thin Initial investigation of system mode
instabilities has led subsequently to a
great proliferation of important Investi-
gations and results. in particular, the Modorn Developments. In the modern era,
later and very significant aeroelastic taken to mean ron about 1970 onward,
developments associated with so-called several important. trends may be noted.
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the aerodynamic formulations have attemp- aerodynamic damping. It seems that these
ted to keep pace with and explain the instability mechanisms (separation, os-
newly observed phenomena. In particular, cillating shocks) may both appear in this
kka number of supersonic flutter regimes general region of the fan or compressor
have been encountered in practice, see map, although not both at the same time
Regions III, IV and V in FPgure 1. Only in a particular machine. Thus the non-
Reegion III flutter, in either pitching or aerodynamic factors, which are not
plunging, will usually be encountered revealed by the map parameters and are
along a normal operating line, and then discussed in Section "Introduction", may
only at. corrected overspeed conditions, determine which, if any, of these flutter
Supersonic aerodynamic theories were de- types will manifest itself in any par-
"veloped that were adequate to explain and ticular instance. The clarification of
confirm Region III flutter. Low incidence this matter is still required so that
formulations were reported by a number of Region I is now provisionally labelled
investigators (Verdon, 1973), (Brix & Subsonic/Transonic Stall Flutter and Sys-
Platzer, 1974), (Kurosaka, 1974), tem Mode Instability.
(Nagashima & Whitehead, 1974), (Adamczyk &
Goldstein, 1978), and others, with great- Region II, of relatively lesser impor-

Sest. interest being attached to the onset tance, is associated with choking of the
,i flows having a subsonic axial component. passage and is labelled Choke Flutter.

rThe survey paper by Platzer (1977) at the As such the role of oscillatory shock
Ottawa Meeting of AGARD gives an excellent waves is again indicated to be important.summary of the aerodynamics literature and Hlence for relatively low negative inci-experience up to that time. The AGARD dence and high enough relative subsonic

paper was preceded by a briefer survey in Mach numbers, appropriate to a middle
IPlatzer (1975) and updated in succeeding stage of a multistage compressor, the
papers (Platzer, 1978, 1982). This group mechanism of choke flutter has many simi-
of papers provides a recent historical larities to the transonic stall flutter
perspective of this modern aspect of tur- of Region I. In addition, some authors
bomachine aeroelasticity and form--a prime (Fleeter , 1979) add a second sub-region
bibliographic reference to the unsteady at a larger negative incidence and lower
aerodynamics sections of the present relative Mach number, and term it nega-
Manual. It is important to point out that tive incidence stall flutter. The choke
the cummaries of relevant papers by flutter mechanism is still controversial
authors in the Soviet Union are a unique and is discussed more fully later in the
contribution of the Platzer surveys. No Manual. It may involve the type of
further reference to the somewhat less machine (fan, compressor or turbine),
voluminous Soviet literature is required type of stage (front, middle, or rear)
here. and structural details (shrouded vs un-

shrouded, disk vs drum, etc.).

Regions IV and V in Figure 1 are at higher Three-dimensional unsteady cascade flow
compressor pressure ratio, above the nor- was first formulated in this decade
mal equilibrium operating line, and, in (Namba,1972), (SalaUn, 1974), and this
Region V, may involve stalling at super- important area continues to receive sig-
sonic blade relative Mach number. Un- nificant attention. In order to apply
steady aerodynamic analyses appropriate to two-dimensional theory to the aeroelastic
this regime have been presented by problems of real blade systems one must
Adamczyk (1978) and (1982). For the first either use a representative section anal-
time account was taken of the effect of ysis or else apply the strip hypothesis;
shock waves which may appear when the sur- the aerodynamics at one radius is uncou-face Mach number exceeds unity. Flutter pled from the aerodynamics at any other [
observed in those regions has been mostly radius. In particular, it is known thatflexural, although not exclusively. In at "aerodynamic resonance" the strip
Region V stalling of the flow has been im- theory breaks down and the acoustic modes
plicated since the region is in the neigh- are strongly coupled radially.
borhood of the surge or stall limit line.
fHence Region V is provisionally termed
"supersonic bending stall flutter" and it Along with aerodynamic advances the
is assumed that there is a detached bow structural description of the bladed-disk
shock at each blade passage entrancer assembly (Ewins, 1973), (Srinivasan ed,
i.e., the passage is unstarted. By con- 1976), has received a great impetus, and

U treat, the flutter mechanism in Region IV the importance of forward and backward
is thought to involve an in-passage shock travelling waves has been firmly estab-
wave whose oscillatory movement is lished. Within a particular number of
essential for the instability mechanism. nodal diameters, coupling between modes

has been shown to be significant (Chi &
SSrinivasan, 1984) and the role of the

A counterclockwise continuation around "twin modes" (i.e. sin no and coo n#) inOw Figure I returns one to Region I which,it determining propagation has been clarn-
nvo appears, should be divided into more fied. Ford & Foord (1979) have used the
than one subregion. The so-called system twin mode concept in both analysis and
"",•mode instability seems to be associated flutter measurement. Furthermore, the
with the upper end of this region, and number of nodal diameters affects the
although the blade loading is high, flut- fundamental natural frequencies slightly
ter may not involve flow separation as an so that they cluster together. Coupling
aessential part of the mechanism. Instead of modes with closely spaced frequencies
it has been hypothesized (Stargardter, by aerodynamic moans therefore becomes

9M 197I) that even with a subsonic onset appreciable and the resulting flutter mode
flow the surface Mach number can exceed may contain significant content from two
unity locally and oscillating shocks may or three modes with consecutive numbers of
help explain the appearance of negative diametral nodes.



Recently, the concept of mistuning intro- ficial in high vibratory environments.
duced by Whitehead (1966) has been studied This new knowledge has resulted in the
and exploited most intensively. Small application to turbines of mechanical
geometric and structural variations from dampers and special high damping mate-
blade to blade naturally give rise to an rials, such as chromium-based stainless
aeroelastic system in which these multiple steels, and to compressor/fan blades built
element '..'e not quite identical nor pern- up of laminates and composites. Although
odicall- lisposed, and to which Lane's of importance when operating In regions
Theorem ,.tnot be applied directly. The of potential flutter, the influcence of
nonuni:ý,nities of spacing and setting damping is most highly critical in the
angle in the blade flow annulus imply that presence of forced vibration. In the
mistuning also may be aerodynamic in na- latter case the accumulation of fatigue
ture. The general conclusion seems to be damage due to lightly damped resonant or
that mistuning is generally a favorable near-resonant operation can occur in a
effect in that it raises the critical very short interval of time.
flutter speed (Whitehead, 1966)
(Srinivasan, 1980) (Kaza & Kielb, 1982).
[Purthermore, a mistuning strategy (Crawley Other developments not introduced in the& Hall, 1984) has been developed to opti- preceding sections are dealt with in the
mize the distribution and degree of mis- Overview which follows. In addition, re-
tuning of a basic set of blades under cent topics that require fuller treatment
certain simplifying assumptions. The or that otherwise should be covered in
analyses have usually employed the rravel- future editions of the Manual, are
ling wave modal description although the described in the Overview.
standing wave approach common to propeller
and helicopter rotor work has been intro-
duced to turbomachinery by Dugundji
(1983). OVERVIEW OF THE MANUAL

General Comments. Volume I of this AGARD
Manual is concerned mainly with the un-Practical Developments. Engine and rota- steady aerodynamic aspects of aeroelas-

ting rig experiments have continued to ticity, one vertex of Collar's "Triangle
provide important information for direct of Forces." An overview of these topics,use in design and also for guiding analyt- as they appear in Chapters 2 through 11,
ical work. The output of such analysis, forms the concluding section of the pre-
when codified into design procedures, thus sent introductory chapter.
also provides an indirect connection be-
tween experimentation and design.
Stemming from the high cost of obtaining In Volume II, which deals with strtictural
on-rotor data most of these programs have dynamics an-1 aeroelasticity (the rimain-
been conducted by NASA and the turbine ing elements of the Triangle), a separate
engine manufacturers. Especially to be Overview is provided for those topicv, as
noted is the pioneering work of they are set out after Chapter 11.
Stargardter (1979), Kurkov (1981), and
Nieberding & Pollock (1977) in the use of
sophisticated optical and electronic Chapters 2 through 11 in the current
methods for gathering data from fluttering volume provide an excellent foundation
rotor blades. A smaller amount of more for the present status of knowledge
fundamental data has been obtained at the in the unsteady aerodynamics of axial
necessarily more modest university labora- blade rows. The contributors to these

P" tories in the U.S., Western Europe, and chapters are recognized authorities whoSJapan. have individually and collectively
helped to lay that foundation and estab-
lish that status. From the rapid rate

panuof growth of the field one may anticipate
SImportant advances in the structural dy- the need for new chapters to be commis-
namics of axial-turbomachine blading have sioned for future editions of the Manual.
continued over the past 40 years. Sta-
tionary laboratory experiments have
usually simplified the structural features Subjects receiving attention very re-
of the nonrotating blade i:odels so that. cently that have not been treated fully,Sthese apparatuses tend to emphasize the if at all, include such topics as finite

Saerodynamic information related to aero- shock motion, variable shock strength,
Selasticity rather than structure. How- thick and highly cambered blades in a

ever, the modal description (eigenfre- compressible flow, and the effects of
quency and cigenfunction) of tapered curvilinear wakes and vorticity
twisted blades of thin but arbitrary transport.These and other large amplitude
cross-sections in centrifugal and gyro- and therefore nonlinear perturbations
scopic fields (Sisto & Chang, 1981) has which prevent the linear superposition
kept pace with the need for increasingly implicit in classical modal analysis have
accurate information of this nature. The certain implications relative to the tra-
finite element method has been of great ditional solutions of the aeroelastic
u•.tility in mst of this structural eigenvalue problem. Although n linearized
description of blades, vanes, and disks, treatment of three-dimensional unsteady
particularly when numerical methods must flow is provided in Chapters 4 and 5,
be resorted to early in the analysis. future editions of the Manual will profit

from the inclusion of some of these
expected refinements, presumably first

ritudies of material damping and slip damp- to be developed for two-dimensional
ing have led to increased understanding flow and subsequently for the annular
of these effects which are usually bone- geomel;ry.
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Unsteady Aerodynamics. The first contri- and small reduced frequency is discussed.
ktAion in this sect. The ability to adapt semi-actuator disk

Linearized Unsteady Aerodynamic Theory by theories to stalled flutter analysis is
Joseph Verdon. This theoretical treatise introduced; in Chapter 7 this discussion"sets the stage for the unsteady aerody- is continued.
rnamic formulations which follow it. The
general importance of unsteady flowz isrnoted, the extreme complexity of the full The compressible flow solutions (subsonic
problem is described and the usual approx- and supersonic relative Mach numbers)
imations found to be necessary are delin- provide for incident acoustic and vor-
eated. E.g. classical theory (the subject ticity waves and thus allow for the aero-
of Chapter 3) is concerned with an iso- dynamic responses to these types of flow
iated two-dimensional cascade of unloaded disturbances in addition to the usual
flat plate airfoils in which unsteady responses to plunging and pitching of
components of the fluid velocity are small the airfoils. Aerodynamic "resonance" is
perturbations on a uniform onset flow. exhibited by these theoretical models and
All of these specifications depart from the phenomena of "cutoff" and "propaga-
the true state of affairs in an axial tion" show the connection with the field
"turbomachine to an appreciable extent.. of aeroacoustics. A very useful FORTRAN

program is supplied for the subsonic case.
fHence, in Chapter 2, the specifications of Finally, some basic concepts in the

two-dimensionality and isolatedness are method of distributed singularities are
retained but the effects of blade geome- introduced for modeling incompressible
try, finite mean pressure ratio across the flow through cascades of thick, highly
blade row and transonic mean relative Mach cambered blades. These methods are im-
number are taken into account. The un- portant because they relate to realistic
steady disturbances are considered to be compressor and fan blade roots, as wellsmall-amplitude fluctuations about a non- as turbine geometries. In addition, the
uniform steady potential flow. The small concept of replacing the blade surface by
disturbance unsteady flow is then governed a vortex sheet with a notional velocity
equations in which the variable coeffi- model that is finding further development

cleats depend on the underlying steady in the so-called vortex methods for
flow. analyzing unsteady separated flows in

cascades. These, and other field methods,
are conceptually related to the surface

SThc: principal applications of the-equa- singularity methods introduced at the
tions are to the aerodynamic response end of this very important chapter.
resulting from prescribed blade motions
and from incident vortical, entropic and
acoustic disturbances. The use and prin- Annular Cascade Effects. In Chapter 4,
ciples of aerodynamic work are elucidated Three-Dimensional Flows by Masanobu
succinctly. Also, the two special cases Namba, the method of distributed singu-
of classical linearized theory and tran- larities (monopoles and dipoles) is used
sonic small disturbance theory are re- to find the blade loadings arising from a
covered by appropriate simplification of variety of radially-varying nonuniform
the general result. effects. In Chapter 5, bearing the same

title, Pierre SalaUn deals with a
similar problem for the annular cascade,

Chapter 2 is thus the foundation upon differing mainly in the particular method
which rest most of the succeeding aerody- chosen to solve the integral equation for
namic formulations, particularly those the unsteady blade loadings.
parts that have proven in the past to be
of direct, practical use in the applica- The full three-dimensional unsteady aero-
tions. dynamics problem is extremely complex

since many of the governing parameters
may vary along the spans cascade geometry

Classical Theory. The second contribution (profile, chordlength, pitch, stagger,
A in unsteady aerodynamics is Chapter 3, sweep), degree of fixity, amplitude and

Classical Two-Dimensional Methods, by phase of vibration modes, unsteady (gust)
Denis Whitehead. This chapter deals auth- and steady incident flow velocity
oritatilely with the first development of vectors, fluid properties, and steady
two-dimensional cascade theory reduced to blade loadings. In addition, the endwall
useful tables of coefficients (Whitehead, surfaces at the hub and casing impose im-
"1960) and the subsequent enlargement of portant boundary conditions. When casing

*1 the area of applicability to include sub- treatment is used for sound absorption or
" sonic and supersonic mean flow. The stall, margin enhancement these boundary

general theory developed in the previous conditions become a generalization of the
Schapter is here made explicit for the classical nonpenetration condition. It

important applications to the practical is fortunate that the authors have been
systemal aeroolastic studies using two- able to present solutions for linearized
dimensional aerodynamics via the strip small disturbance models with many
hypothests remain the predominant method of these effects taken into account.
'7 f analysis up to the present time, The results demonstrate that three-

dimensional treatment is essential in
certain instances where a strip theory

It, addition, the actuator disk and semi- approximation is shown t.o be inadequate,
* actuator disk theories are introduced by

professor Whitehead for the first time Three-dimensional effect.s on unsteady
in the Manual, and their applicability in blade loadings are found by Professor
the case of small interblad. phase angle Namba to be small in most cases of



supersonic flow and large in most cases of st-ate of development of these numerical
subsonic flow, although the differences in methods for unsteady cascades, only two-
the latter are more of degree than in dimensional inviscid flows are considered.
kind. In particular, the disturbance flow
near the sonic span is quite different Based on the potential flow equations
from quasi-two-dimensional flow and the developed in Chapters 2 and 3, various
presented three-dimensional treatment is mesh generation schemes are describedtherefore essential for analyzing the rad- along with the appropriate discretizationially transonic stage. These results are of the governing equations. Both finite
confirmed by computing the flutter bound- element and finite volume formulations are
aries based on aerodynamic work. Dr. presented and also considerations concern-
SalaUn demonstrates that certain subsonic ing mesh refinement, periodicity and
torsional flutter occurrences over narrow boundary conditions and the underlying
ranges of interblade phase angle, c. may steady flow. Only linearized unsteady
be missed entirely with strip theoy. flow formulations are developed and

special considerations are discussed for
Another important difference occurs near tho guarantee and accceration of conver-
the resonant state of the predominant gence to the unsteady solution. With the
acoustic mode. Thus aerodynamic resonance, finite volume method no special treatment
as predicted by quasi-two-dimensional of the shock is adopted; it shows up as a
strip-type analysis, does not properly region of high gradients dependent on the
describe the variation of unsteady blade mesh size and the particular choice of
loadings with spanwise radius. artificial viscosity. With the finite

element solution the shock is "captured"
Chapter 4 is concluded with two studies, in the steady flow solution and then aone on the effect of a mean flow with different discretization and mesh, fitted
spanwise shear, and another on the effect about the mean shock position, is adopted
of sound absorbing wall liners. In the for the unsteady flow. These methods are
first study, with the incompressible flow shown to be quite robust and useful design
velocity increasing toward the cantilever tools for application to flutter studies
blade tip of a linear cascade, there and are now being adapted for application
results a decrease in overall aerodyanmic with a nonsteady inflow to the cascade
work compared to a strip theory solution. (the forced response problem). r
In the sound absorption study a linear In the second general class of problems an
cascade again is analyzed, this time with attempt is made to allow for rotational
a portion of one of the endwall boundaries flow by solving the Euler equations by
lined with a locally reacting sound ab- time marching techniques. The conserva-
sorbing material of uniform admittance. tion form of these equations is used and
The remainder of the sidewalls is perfect- the steady solution is first obtained.
ly rigid (i.e. of zero admittance). It is Either differential (finite difference) or
found for a typical example that the integral (finite element) methods may be
acoustic treatment exerts a considerable adapted to time marching. After trans-
influence on the unsteady local lift in forming the computational mesh from the
the vicinity of the lined wall. The physical plane to a cartesian grid, time
effect is highly localized, however, and stepping schemes such as the predictor-
the change in the overall blade lift is corrector method are then applied to the
small. Similarly, the effect of nonzero finite difference equations in the trans-
acoustic wall admittance on the aerodynam- formed variables. Many refinements of
ic work, a discriminant of flutter, is this concept are discussed by the authors
also small for a practically reasonable including the basic explicit scheme
extent of wall treatment. described, semi-explicit and implicit

schemes as well. The finite volume
The material presented in Chapters 4 and 5 (integral) methods using time marching
is unique in that it presents authorita- have been proved successful for steady
tively the most current information con- flows, including three-dimensional flows
cernJng unsteady three-dimensional flow, a for both aircraft and cascade applica-
field about which too little is known and tions. Although the unsteady cascade
which is extremely important for aeroelas- solution is not yet successfully achieved,
ticity in axial turbomachines. It is an work is proceeding in that direction at
area worthy of intense continuing effort many centers. Success in this area, it is
and one which hopefully may be expected to felt, will lead subsequently to the
be enlarged and reported upon in future eventual solution of the Navier-Stokes
editions of this Manual. equations, and hence the inclusion of

viscosity and turbulence in field
Field Methods. Recently a number of methods.
studies based on numerical solutions of
the unsteady Navier-Stokes and Euler The importance of the proper formulation
Equations have appeared in the literature, of the boundary conditions cannot be over-
In Chapter 6, Numerical Methods for Tran- stressed. In these numerical methods they
sonic Flow, the authors Elizabeth Acton literally drive the iterated solutions
and Stephen Newton discuss the physical toward convergence. For both the poten-
and mathematical bases for 4iscretizing tial and Euler equations the upstream and
these equations and solving them using downstream conditions, the repeat or peri-
so-called field methods. Particular odicity conditions and the blade surface
attention is giver, to the proper numerical (t.he so-called internal boundary on the
treatment of shock waves, the uses of fluid) condition are treated carefully
artificial viscosity, formulation of the and exhaustively in this Chapter. Three
unsteady boundary conditions and a compar- examples are discussed. 1) Compressible
ison of the various methods with each fluids allow wave propagation and it
other and with some limited experimental is found necessary to prevent spurious
results. in keeping with the initial reflections from the edge of the



,omputational domain. 2) A wake of shed Experimental Results. Chapter 8, Un-
vorticity is present downstream of each steady Aerodynamic Measurements in Flut-
trailinC edge and the proper jump condi- ter Research, has been prepared by
tions across the wake must be satisfied. Sanford Fleeter and Robert Jay. This is
3) The vibrating blade is moving relative the earliest chapter in Volume I devoted
to inertial coordinates and either the to the role of experimentation and some
boundary conditions must be expanded in fundamental experimental flutter results
Taylor series about the mean position or are described. The emphasis here is on
the computational grid must. be formulated self-excited instability; the subject of
to move with the surface, aerodynamically forced vibration is re-

served for the following Chapter 9.

Chapter 6 closes with a brief comparison
of results from the potential flow Professor Fleeter properly emphasizes the
methods. It is shown that these methods important role of experimentation inagree quite well with each other and with guiding the development of analytical
experiments in general, particularly at models for flutter prediction. Other
low Mach number. The comparisons are also objectives of experimental programs are
better in general for flat plate cascades the acquisition of a flutter boundary
as opposed to thick, curved blades. Pre- data bank and the verification of new
cise shock positioning is also shown to be concepts for flutter stability enhance-
extremely important for accurate predic., ment. Omitting full scale component test-
tion of surface pressures. Finally, the ing, the principal experimental facili-importance of relying on the aerodynamic ties are high speed rotating rigs, linear
work for stability prediction, rather than cascades and stationary annular cascades.
the aerodynamic reactions at one blade Typical strain gage, optical and other
radius, is emphasized. instrumentation (and the data acquired

therefrom) are then described. Tie
features and importance of high speed

in the conclusion the authors noted th&t. digital data processing are discussed.
the methods so far developed are limitedi••to unsteady flows which are small linear Considerable attention is given to the
perturbations about a nonlinear steady fundamental data acquiied in a dviven
potential flow. This implies in turn that oscillatory airfoil cascade with imposed
the shock movement is not too large. interblade phase angle, a, as a primary
Solutions of the Euler equation, although independent variable. By contrast, the
rnot as well advanced, hold greater promise importance and limitations of free flutter
for lesc simplified modeling of the flow. testing are discussed from a research

vantage point. Chapter 8 concludes with a
survey of the key experimental results for

Stall and Separation. The earliest mani- stall flutter, supersonic flutter, choke
Yostation of aeroelastic instability in flutter, and negative incidence flutter.
axial turbomachines was stall flutter. These results may be identified with the

* This phenomenon, in which flow separation flutter regions on the compressor charac-
plays a crucial role, continues to be teristic map, Figure 1, and profitably
important and the subject of analysis for compared with the analytical, or theoret-
application. In Chapter 7, StalT--Flut- ical, discussion in Chapters 2, 3, 4, 5,
ter, this experience is summarized by 6, and 7.
Fred Sieto and the methods of treating
periodically stalled flow are desribed.

Forced Vibration Experiments. Chapter 9,
The theories ate somewhat heuristic, Unstead Arodynamc measurement in Forced
based strongly on empiricism, and there Vibration Research, is a continuation of
is a great. observational reliance on the previous chapter on experimentation
aeroelasticity, the coupling between un- and penetrates the important area of aero-
steady aerodynamics and structural dynam- elastic forced vibration (as contrasted
ics, to explain stall flutter experience, with the self-excited instability known as
Thus the older design rules for avoiding flutter). Robert Jay and Sanford Fleeter
flutter are given the historical impor- continue their collaboration as the
tance tney have earned and physical in- authors.
sight into flutter behavior is provided.
E:mphasis is given to recognizing t.he Solution of the forcad response problem
nonlinear nature of the unsteady aerody- requires that a balance be struck between
namic loads when periodic separation is the aerodynamic work done by the unsteady
present. "1gust" acting on the airfoil and aerody-

namic damping work resulting from the
subsequent vibration. Mechanical forms of

Chapter 7 closes with a note on the damping may be added to the latter. After
"Random Vortex Method of Chorin (1973), defining this problem and its dependence
as further developed by Spalart (1984), on the flow field, airfoil geometry, and
one of the newer field met-hodr, as pre- mode shape, the importance is noted of key
nsently applied to propagating stall in parameters such as reduced frequency and
" cascades. With the introduction of small interblade phase angle. Typical facilities
iamplitude motion of the internal bound- in which experiments are conducted are
aries (i.e., the airfoil upper and lower linear cascades, annular cascades, low
cambers) the RVM holds great. promise for speed rotating rigs, and high speed rotat-
yielding the first, quantitatively reli- ing rigs, as introduced in the previous
able theory for unsteady separated flow Chapter. Nine typical investigations in
in two dimensions, a minimal requirement. linear cascades are briefly summarized, as
for aeroelastle modeling. It is another are four in annular cascades, seven in low
area where consider&I.le future growth is speed rotating rigs,and four in high speed
anticipated. rotating rigs.



Familiarization with various instruments surface of the airfoil becomes separated.
and data recording components is pro-vided, "But what causes this change of direction
including hot wire anemometers, pressure when the flow separates?" This question
transducers, Schlieren systems, analog- is posed, but remains to be answered
to--digital converters, tape recorders, os- perhaps in the future.
cilloscopes, and their dynamic calibration
and asnembly into useful data acquisition Other major parametric influences refer-
systerms. ring to shock structure and shock move-

ment in supersonic flow, the role of back
The Chapter closes with very detailed and pressure and the influence of mode shape
useful descriptions of two specific exper- are addressed by this unique approach.
imental programs and the facilities in Comparisons with cascade and rotating rig
which tney were conducted. For the aero- measurements, the influence of frequency
dynamic damping study a linear turbine (rather than reduced frequency or fre-
cascade tunnel is described in which the quency parameter) and other interesting
bladea are oscillated electro-mechanically applications of the transfer function
and the resulting pressure distribution is method of data reduction are presented in
measured on the center blade. Dynamic this Chapter. This new method of experi-
calibration of the Kulite pressure sensors mentation should prove increasingly valu-
is critical. able as i' becomes more refined and more

widely applied. For its general applica-
For the stator vane gust loading study a tion the transfer function formulation
single stage low speed compressor rig is relies on the principle of superposition.
instrumented with an inter-row hot wire Although the validity of superposition in
anemometer and the stator vanes following this specific application has not been
the rotor are pressure instrumented. The proven, the practical resolution of the
data wzre acquired and processed to yield question seems to be that it works with
very useful and informative distributions acceptable accuracy for drawing qualita-
of unsteady flow fields and the related tive conclusions.unsteady. aerodynamic forces. One may also discern a possible feedback

in suggesting new analytical models for
Experimental Aeroelastic Transfer unsteady cascade aerodynamics based on
Function. In Chapter 10, Understanding these ideas. Thus the placement of this
Fan Flutter Through Linear Cascade Aero- Chapter near the end of Volume I is
elastic Testing, the author, Edmond indicative of its potential for stimulat-
Szechenyi, describes a unique combination ing new initiatives.
of experimentation and data processing.
The linear cascade simulating turbofan Unsteady Aerodynamic Measurements on
blades is provided with the capability of Rotors. The eleventh and final Chapter of
forced oscillation of two blades in any Volume I contributed by Heinz Gallus bears
position in the cascade, one of the two the above-captioned title. The simulationSblades is heavily instrumented with up to of unsteady flow in axial turbomachines by
26 pressure transducers. These measured linear cascades, and to a lesser extent in

pressures may be integrated to yield lift stationary annular cascades, is usually
and moment. The outputs from the blade deficient in several important respects.
pressure and blade position transducers Furthermore, it is difficult and expensive
are Fourier transformed so as to output a to attempt such experimentation on the
transfer functions the pressure and full multistage turbomachine due to the
phase produced by a particular oscilla- inaccessibility of instrumentation and the
tory blade motion. inability to isolate the effects of indi-

vidual parameters. For this reason the
using this complex transfer function testing of rotating annular cascades, or
parameter, an extensive study is con- "rigs," is extremely valuable. In par-
ducted of the direct influence of the ticular, unsteady interaction attributable
blade upon itself and the "coupling" or to the relative motion of rotor and stator
aerodynamic influence of one vibrating can only be obtained experimentally in
blade upon another. Assuming the valid- rotating rigs. rhis is particularly
ity of superposition, the local pressure important for forced vibration experiments
coefficient, the lift coefficient, and where it is desired to vary gust ampli-
the moment coefficient may then be syn- tude, reduced frequency, and interblade
thesized for a complete (presumed infi- phasing in a parametric fashion. Rotating
nite) cascade of fluttering blades. rigs also allow the immediate study of
Stability is discriminated by the phase realistic three-dimensional effects asso-
of the force response with respect to the ciated with large aspect ratio, tapered,
n otlon inducing it. twisted blading. Other effects which may

be studied, and which are not yet fully
An interesting, if controversial set of accessible to analysis, include tip
parametric studies are conducted with leakage , secondary flow, fluid viscosity
this apparatus and the associated data and separated flow.
reduction technique. Particular concern
is given to the influence of separation Professor Gallus discusses briefly the
on flutter in Regions I, 111, IV, and V types of Instrumentation used in rotor
of Figure 1, Which correspond with Re- testing, with principal emphasis on the
gions 1, 3, 4, and 2 of Chapter .10 (no aerodynamic meaourement devices: pressure
separation in Regions III or 3). The taps, pressure kransducers, hot film
prediction of flutter is subsumed in the gauges, hot. wire anemometers and multi-
statem-ent that. "propagation" (as defined element probes. Optical systems discussed
tby the variation along the chord of the include the laser doppler velocimeter, the
tranisfer function phase angle) shifts to schlieren shadowgraph, the holograph in-
a direction from leading edge to trniling terferometer and various visualization
Sad'e as sown as the flow on the suction schemes using smoke or dye injection or
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gas fluorescence. Additional information readings to yield time-resolved data rela-
is given on data conaitioning and data tive to the rotor. It is noted that laser
reduction techniques. velocimetry has turned out. to be the main

tool for flow field research in high speed
Ahe ,uiajor portion of Chapter It -4-s then rotors.
iven over to discussing a large represen-

tativ., sample of the specific applications This final Chapter of Volume I closes
of uasteady flow measuring techniques on appropriately with some general observa-
rotors which appear in the literature. In tions concerning the methods available for
addition to presenting the specifics of determining the unsteady flow in axial
the instrumentatoin and the associated turbomachines. These methods, when taken
measurements, considerable attention is together with the structural information
paid to the transfer of the signals from to be discussed more fully in Volume I1,
rotating frame to fixed frame by slip allow a complete aeroelastic description
rings, scanivalves and telemetering. The to be developed experimentally. Finally,
subject of rotating probes, unique to the and most importantly, the roles of experi-
problem of on-rotor data acquisition, is mentation as the final arbiter of design
covered and contrasted with the alterna- and as the method for guiding and checking
tive of interpreting stationary probe theoretical analysis are once again noted.

0I1j
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LINEARIZED LITEADY ARODYWAIC THEORY

Joseph M. Verdon
United Technologies Research Center

East Hartford, Cr 06108
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INTRODUCTION tion of a considerable number of simplify-

ing assumptions to make the problem mathe-
Overall Background matically tractable and to render the

resulting solutions useful to the design-
The impact of flow unsteadiness on er.

the performance, efficiency and, in parti-
cular, on the reliability of axial-flow For the most part, theoretical un-

turbomachines has been widely recognized steady aerodynamic formulations have been
and documented both in the present Manual directed toward predicting the aeroelastic
and in a number of earlier publications or aeroacoustic response phenomena associ-

(e.g., see Mikolajczak 1975: Platzer ated with self-excited or forced vibra-
1975, 1977; Sisto 1978; Fleeter 1979; tions of the blades of an isolated array.
Whitehead 1980? and Greitzer 1985). Im- In the former circumstance the elastic
portant current design concerns directly motion of the structure and the aerodynam-
associated with unsteady phenomena include ic forces are inseparably coupled, whereas
the following: the effects of aerodynami- in the latter, the forces initiating the
cally induced and self-excited blade vi- motion of the structure are independent of
orations on aeroelastic response and sta- that motion. As noted by Whitehead (1980)

bility, the effects of blade row inter- to determine the unsteady response charac-

actions and turbulence on efficiency and teristics of interest for an isolated

noise generation, the effects of inlet blade row, aerodynamic theories must be
flow nonuniformities on compressor and capable of predicting the unsteady forces

engine aerodynamic stability, and the acting on the blades, the entropy and

nature and flow structure of general post- vorticity fluctuations convected down-
stall engine transients, stream, and the static pressure or

acoustic waves radiated away from the

In the past very successful turbo- blade row, for prescribed (self-excited)

machines have been developed by compen- blade motions and externally induced
asating for an inadequate understanding of (forced) aerodynamic excitations. Sources

"unsteady flows with extensive empirical of forced excitation include variations in

correlations. However, the continuing total pressure and total temperature
demand for increased performance has re- ("entropy and vorticity waves") at entry
sulted in design trends such as higher tip and variations in static pressure (acous-
speeds and higher loadings which aggravate tic waves) entering the blade row from
dynamic problems in the various components upstream or downstream. Although beyond
particularly the blading. Further, re- the scope of this chapter, it should be

quirements for increased efficiency and noted that the determination of the'

noise suppression will impose additional forcing functions is a difficult but very

and important constraints on future de- important aspect of the overall problem.

signs. Thus an understanding of unrteady Unfortunately, because of the assumptions

flow phenomena and the developmert and used in the development of unsteady aero-

application of theoretical procedures for dynamic analyses for aeroelastic or aero-

predicting such phenomena has become es- acoustic applications, the foregoing re-

S. sential to the successful deci.gn process. sponse information is only available in a
limited sense. In such analyses viscous

The development of theoretical models effects are usually neglected at the out-
to predict unsteady flows in axial-flow set, the flow is usually regarded as two-
turbomachines is a formidable task. The dimensional, and unsteady fluctuations are
analyst is confronted with determining the assumed to be of sufficiently small magni-
time-dependent, three-dimensional flow of tude that a linearized analysis of the
a viscous compressible fluid through a unsteady flow is justified.
geometric configuration of enormous com-
plexity. Phenomena of interest include Many of the unsteady aerodynamic

potential flow Interactions between close- analyses currently used in turbomachinery
ly spaced blade rows, intricate shock aeroelastic or aeroacoustic design appli-
formations and reflections, shock/boundary cations are based on classical linearized

layer interactions, vortex shedding at theory. Here both steady and unsteady
blade tips, boundary layer sepacations, departures from a uniform free asream are
wake formations and cuttings, and wake regarded as small and of the same order of
transport, spreading and decay. Moreover, magnitude relative to the free-ntream
theoretical models must be formulated so speed. Thus classical unsteady analyses
that reliable design predictions can be are essentially restricted to unloaded,
achieved efficiently and economically. flat-plate cascades which operate in an
This task clearly requires the introduc- entirely subsonic or entirely supersonic



flow environment. Very efficient semi- dimensional cascade will be derived in
aliatic solution procedures have been some detail. Further, the governing equa-
developed for Lwo-dimensional attached tions of classical linearized subsonic or
subsonic (Whitehead 1970; Kaji . Okaraki supersonic theory and, for the most part,
1970; Smith 1971; and others) or super- those of time-linearized transonic small-
sonic (Kurosaka 1974; Verdon 19771 disturbance theory (see Tijdeman & Seebass
Nagashima & Whitehead 1978; Adamczyk & 1980) will be recovered as special cases
Goldstein 1978; Ni 1979; and others) flows of the more general linearized formula-
and applied in flutter (self-excited blade tion. In this manner the basic equations
vibrations) and resonant stress (forced underlying the most important unsteady
vibrations) design calculations. More- linearizations that have been proposed for
over, the classical supersonic analyses dealing with airfoil or blade vibration
have been found to be quite successful, problems can be determined from within a
when bolstered by empirical infor1fttion, unified theoretical framework. This
at predicting observed flutter behavior in author's previous experience has been
the fan stages of modern high-bypass ratio primarily concerned with developing un-
engines (see Snyder & Commerford 19741 and steady aerodynamic analyses for fan or
Mikolajczak, et. al. 1975). Models based compressor blade flutter applications.
on variations or extensions of the two- Therefore, in preparing this article heavy
dimens!)nal classical linearization have reliance has been placed on the work of
also been developed for treating separated Goldstein (1978, 1979) in an effort to
subsonic flows (Perumal 1976; Chi 1980), provide a complete linearized formulation
high-frequency transonic flows (Surampudi in which forced excitations due to inci-
- Adamczyk 1984), supersonic flows with dent vortical, entropic and acoustic dis-
"strong in-passage normal shocks turbances are included along with those
(Goldstein, Braun & Adamczyk 1977) and due to prescribed blade motions.
three-dimensional attached flows (Salaun
1976; Namba 1977; and Namba & Ishikawa In this chapter we are primarily
1983), but these have received only lim- concerned with the derivation of the equa-
ited application in the design process. tions governing the steady and unsteady

flow phenomena associated with the blades
The classictl linearization does not of an isolated two-dimensional cascade.

account for Interactions between steady Semi-analytic solution methods for classi-
and unsteady disturbances and such inter- cal linearized two-dimensional cascade
actions are crucial to the successful flows are discussed by Whitehead in the
prediction of a wide variety of turboma- following chapter of this Manual, and

chinery unsteady aerodynamic phenomena. extensions of the classical formulation
It is thus important that more general along with the description of solution
"unsteady aerodynamic models be developed methods for three-dimensional flows are
which include the effects c.: realistic given 'i the chapters by Namba and Salaun.
design features, such as biade geometry, For a description of the semi-analytic
finite mean pressure variation across a surface-integral and the numerical field
blade row, and operation at transonic Mach methods that have been proposed for
numbers, on unsteady aerodynamic response. solving the steady and the linearized
The present chapter will focus on the unsteady equations, derived herein, the
derivation of such a model in which reader is referred to the report by
unsteady disturbances are regarded as McNally & Sockol (1981), the text of
small-amplitude fluctuations relative to a Gostelow (1984) and the unsteady cascadefully nonuniform steady (in a coordinate analyses cited above.
frame attached to the blade row) potential

Sflow. As a result of the foregoing as-
sumption, the small-disturbance unsteady PROBLEM DESCRIPTION
flow is governed by a set of linear vari-
able-coefficient equations in which the We consider the time-dependent and
variable coefficients depend upon the two-dimensional adiabatic flow, with
velocity potential of the underlying negligible body forces, of an inviscid
steady flow. This type of model and its non-heat conducting perfect gas through an
application to turbomachinery blading has infinite and isolated array of airfoils
received considerable attention in recent (i.e., a cascade such as the one shown in
years (see Atassi & Akai 1978, 19801 fig. 1). Although we are restricting our
Carstens 19011 Caruthers 19811 Whitehead & consideration to two-dimensional flows,
Grant 19811 Whitehead 19821 Caspar & with the exception of the surface and far-
Verdon 1981; and Verdon & Caspar 1980, field conditions, most of the governing
1982, 1984), and solution methods are equations presented below are valid in
gradually reaching the stage where it will three spatial dimensions. The time-depen-
be appropriate to consider them for design dent or unsteady fluctuations in the flow
applications, are assumed to be of small amplitude and
cCto arise from one or more of the following
Scope of this Chapter sources (c.f. fig. 2)H self-excited blade

.111 motions, upstream and/or downstream acous-
%, tIn the following presentation the tic disturbances which propagate toward

equations governing the steady and lines- the blade row, and upstream vortical and
riged unsteady flow for an Isolated two- entropio disturbances. It is assued
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from zero at the "wall" to the inviscid
value at the "edge* of the boundary layer.
Further, the vortex-sheet unsteady wakes
"emanate from the blade trailing-edges and

Sm= Wextend infinitely far downstream.

rn-2 ••~COThe description of the foregoing
' 41 assumptions brings us to a convenient

I starting point for presenting the equa-
tions governing the flow through the cas-
cade. As we proceed with the development

x of these equations, additional assumptions,
for example, restrictions on shock

Mao strength and on the temporal and spatial
behavior of the unsteady excitations, will
be introduced to further simplify the
theoretical model.

r i. - In the following discussion all vari-

ables are dimensionless. Lengths have
- -been scaled with respect to blade chord,

time with the ratio of blade chord to them-2upstream free-stream speed, and density

with respect to the upstream free-stream
density. The scalings for the remaining
variables are readily determined from the
equations given below which have essenti-

ally the same form as their dimensional
Figure 1. Two-dimensional transonic com- counterparts. In anticipation of the
pressor cascade; M. < M-. < I. small-unsteady-disturbance approximation,

which will be introduced below, the symbol
that, in the absence of these unsteady - is used to denote a time-dependent fluid
excitations, the blades are equally property. With the exception of density,
spaced, identical in shape and their chord upper case letters are used below to rep-
lines are each inclined at an angle e resent the various nonlinear flow varn-
relative to the axial flow (or positive ables, and lower case letters will be
E-) direction; and that beyond some finite introduced to represent their small-dis-
distances upstream (say C < C-) and down- turbance counterparts. Thus, for example,
stream (1 C• +) from the-blade row, the P and P denote the full time-dependent and
flow is at most a small (steady) perturbs- the steady-state fluid pressure respec-
tion from a uniform free-stream c:ondition. tively, and D and p will denote the time-
For aeroelastic investigations, the appli- dependent small-dLsturbance unsteady pres-
cation of primary interest here, the goal sure and its complex amplitude. The cor-
is to predict the unsteady pressures and responding symbols for the fluid density
the global unsteady airloads acting on the are , •, and p, respectively. The
blades and arising from various prescrip- subscripts -- and +- will be used to de-
tions of the foregoing excitations, note the uniform flow properties far up-

tsream and far downstream from the blade
", $w For flows of practical interest the row.

Reynolds number (Re) is usually suffi-
ciently high so that viscous effects are In addition to these notations for
concentrated in relatively thin layers the fluid dynamic variables, upper-case
across which the flow properties vary
rapidly but continuously. Provided that
large scale flow separations do not occur,
these layers generally appear adjacent to WR o

the blade surfaces (boundary layers),
downstream of the blades (wakes) and in
the vicinity of rapid compressions
"(shocks). In the inviscid approximation NXpP YO)

S(Re * -) their thickness becomes zero and )
they are modeled as surfaces across which P1•_,t_(,
the flow variables are discontinuous. In

particular, boundary layers and wakes are
regarded as thin vortex sheets which sup-
port a discontinuity in tangential velo-

V. city, and shocks are regarded as thin - P.
V surfaces which support a discontinuity in

normal velocity. Here we assume that the Figure 2. Unsteady excitationst blade
Sboundary layers remain attached to the motion (rotation and translation), inci-

94 blade surfaces. Hence, the vortex-sheet dent vortical and entropic disturbances
boundary layers coincide with the blade from upstream, and incident acoustic
surfaces and support a jump in velocity disturbances from upstream and down-

.~, ~,.stream.
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script letters denote instantaneous sur- 7
face (blade, wake or shock) locations, SL [f d dc+ V~(~ h7* M
while corresponding upper-case block let- dt at
ters refer to steady-state surface posi-

tions, and the vector, ,c, measures the - - p2
displacement of a point on a moving sur- and
face relative to its mean or steady-state
position (see fig. 3). The unit vectors ?i d_ f
and t are normal and tangent respectively dt 'y
to a *.urface and directed such that 'h x

"" z points out from the page. Finally, r ( -

as in fig. 1, the steady-state positions + f (1V2/2) 7 '-ft d.
of the blade chord lines are assumed to at

coincide with the line segments n c C tan
0+ mG, 0 < E < cos e, m a 0, ±1, ±2..., V -h PV.t da , (3)
where E and n are the cascade axial and
"*circumferential* coordinates, m is a
blade number index, 0 is the cascade stag- r -

Srespectively. Here o V, P and 9 are the
ger angle, and G is the cascade gap vector fluid density, velocity, pressure and
which is directed along the n-axis with specific internal energy, respectively,

magnitude equal to the blade spacing. + +Sk(X,t) defines the displacement of points

I on the control surface, t is a unit out-
ward normal vector at this surface and S

/ denotes the tensor or dyadic product of
f / two vectors.

- The first and second terms on the
/I left-hand-sides of (1), (2) or (3) repre-

sent the time rate of increase of a quan-
I tity (i.e., mass, momentum or energy)

within the control volume and the efflux
of that quantity through the control sur-

Sface, respectively. The terms on the
right-hand-sides of (2) and (3) represent
the external force acting on the fluid
within the control volume and the rate at

*/ which the surface pressures do work on

that fluid. Since discontinuities in the
S.,flow variables will generally occur, the

/ integral forms of the conservation laws
are required to describe the flow over the

/ entire domain of interest. These forms
provide corresponding differential equa-

-tions in regions where the flow variables
are continuously differentiable and "Jump"
conditions at surfaces across which (in
the inviscid approximation) the flow vari-

S• •ables are discontinuous.

'1 In addition to the foregoing conser-
vation equations, some relations from
classical thermodynamics are needed to
complete the specification of the fluid
mechanical problem. In particular, we

Figure 3. Steady state, -, and instan- require the equation of state for a ther-

taneous, ------, blade, shock and wake mally perfect gas,

positions.

Conservation Laws and Thermodynamic
Relations and the relation between the internal

energy and the temperature for a calori-

The equations governing the flow cally perfect gas,
follow from the integral forms of the mass
momentum and energy conservation laws. * - . P/3, (5)
ror an arbitrary moving control volume

e•jt) bounded by a control surface .1(Xt), rHere T is the temperature and Y is the
where X is a position vector and t is specific heat ratio of the fluid (constant
time, these laws are written as pressure to constant volume).

d- Jg d&v f (V - -). d-. O, It will also prove to be useful to
dt ( introduco the fundamental thermodynamic
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identity and some algebra that

TdS; dE + Pd(;-1 ), (6)
where S is the specific entropy of the - - - V (P V) - V-D ,--V - +v •v -".

fluid. It then follows from (4) through -t Dt
(6) that the entropy is related to the
pressure and density by the differential P - D p D (13)
expression Dt Dt

dS - 1 dP/P - d . (7)
or after introducing the fundamental ther-

Equation (7) can be inteQrated to relate modynamic identity (6) that
the change in entrop*; C:,Iween any two
equilibrium states to the corresponding DSchanges in pressure and density. t 0. (14)

THE FULL TIME-DEPENDENT GOVERNING Thus the entropy of each fluid particle
EQUATIONS must remain constant in continuous regions

of the flow. From (7), in such regions
Field Equations the pressure and density of each particle

are related by the isentropic equation of
The field or differential equations state; i.e.,

which govern the flow variables in contin-
uous regions of the flow are obtained by - constant. (15)
applying Green's theorem (see Ar-is 1962,
p. 58) to the surface integrals in (1),
(2) and (3) and taking the limit as 01(t) For turbomachinery aeroelastic appli-
approaches zero. It follows that cations, we require solutions of the fore-

going mass (8) or (11), momentum (9) or
(12) and energy (10) or (14) equations

p +0subject to boundary conditions at moving

at blade surfaces, jump conditions at moving
wake and shock surfaces, and appropriate
conditions far from the blade row. First,

S÷+ - ( we consider the flow behavior in the far
+t field by making use of the assumptions

that steady and unsteady disturbances are
and small (i.e., of 0(t)) relative to the

uniform free-stream conditions. Thus, to
-- (;(+v 2 12)] + v.[$ V (E+V 2 /2)] within first order in c, these distur-

bances are not coupled, and hence, they

can be examined separately.

Far-Field Behavior
These (conservative) forms of the

governing differential equations corres- The character of a small-amplitude
pond to the integrated forms (eqs. (1), unsteady motion imposed on a uniform flow
(2) and (3)) and are often required for has been described by Kovaznay (1953) and
the numerical treatment (i.e., shock cap- more recently by Goldstein (1978). The
ture) of shocks. But for other purposes velocity field can be decomposed into
the equations may be simplified. Thus the distinct vortical-, entropic- and acous-
mass conservation equation can be written tic-type modes. The vortical disturbance
as (often called a gust) has a divergence-

free velocity field and is completely
D; decoupled f rom the f luctuations in pro@-

-- + .V 0, (11) sure or any other thermodynamic property.

The entropic disturbance is decoupled from
whcre the symbol D /Dt is used in place of the velocity and pressure fluctuations,
d /dt to emphasize that the latter is now but is directly related to the density
a material or convective derivative opera- fluctuation (c.f., eq. (7)). Both the

1 vortical .- d the entropic disturbance are
tori i.e., D /Dt a d /dt * S /lt + V.V . convected without distortion by the uni-
Further, it follows from (8) and (9) that form mean flow. Finally, the acoustic
the momentum equation can be written as disturbance produces no entropy fluctua-

tion and is therefore directly related to
D -an irrotational velocity fluctuation,V OV

0- + v P a 0. (12) which implies that its kinematic behavior
Dt is quite different from that of the vorti-

Finally, The energy equation cam-be ,writ- cal and entropic disturbances. Each of

ten In various alternative forms. For these modes of unsteady motion is a solu-
esample, it follows from (10) through (12) tion of the governing equations and can



therefore be super-imposed on a uniform The foregoing results, which have
flow independently of the others, been determined on the basis of a small-

disturbance approximation, indicate the
It follows from the foregoing discus- far-field conditions that must be imposed

sion that the velocity field far upstream in the nonlinear time-dependent problem.

(c < c.) of an isolated blade row must oe In particular, information on the far-
of the form upstream and far-downstream uniform flows

and the incident acoustic disturbances,
along with information on the far-upstream

V -rotational velocity and entropic distur-
V(Xt) VW + bances, must be given. Far-field distur-

bances caused by the blades and their
+ (X,t) + ... , (16) motions, i.e., irrotational disturbances

which propagate away from the blade row
where and vortical and entropic disturbances

which are convected downstream, must bev. 0, (17) determined as part of the nonlinear time-

dependent solution.
V(X) is the steady velocity, V is the
upstream free-stream velocity, "R is the Surface Conditions
rotational velocity associated with the
imposed vortical or gust disturbance, and Conditions at vortex sheet boundary
Sv is the irrotational unsteady velocity layer and wake surfaces and at shock sur-
associated with the acoustic disturbance, faces are obtained from the integral con-
That part of the irrotational disturbance servation laws by considering a control

1. velocity which is associated with inward volume which contains an element of such a
propagating acoustic waves is known (or surface and taking the limit as the length
prescribed), but the portion of V; assovi- normal to this surface element approaches
ated with outward propagating waves must zero. The resulting jump conditions for

be determined as part of the overall solu- conserving mass momentum and energy at a
tion. Similarly, the entropy far upstream surface, across which the flow variables
of the blade row must be of the fori-- are discontinuous, are

Fj o, 20
S(,t) a (X + ;(*V.)+(8)[J 02)

where S is the entropy of the steady flow and~Mf -V]+[P]• (20
and i is the imposed unsteady entropic
disturbance. Expressions for the time-
dependent velocity and entropy fields far Vf [E + V2/z] + [P v • * 0 (22)
downstream of the blade row are of similar
form. However, it is to be emphasized
that the downstream rotational velocity respectively. Here [ ] denotes the jump
and entropy fluctuations are not pre- in a flow quantity experienced by an ob-
scribed, but must be determined as part of server when moving across the surface of
the unsteady solution. Finally, the pres- discontinuity in the A-direction and
sure far upstream 9 < C_ or far downstream

> c+ from the blade row is given by - , -

fat (3

at + ,(Xt) + is the mass flux through the surface.

* Although the viscous displacement and
S-~ ,. t *V..Y) (X,t) ... ,(19) curvature effects associated with actual

it boundary layers, wakes and shocks are
where P is the steady pressure, 5;. is the neglected in the present analysis, since
uniform !ensity, far upstream or down- by assumption Re + -, changes could be
stream, and D and I are the pressure and made !a the foregoing jump conditions to

Sthe velocity potential fluctuations asso- accommodate them. If so, it would then be
clated with the small-amplitude acoustic necessary to match the inviscid or "outer*
disturbances. solution sought here to "inner' viscous

solutions in order to provide a solution
By assumption, steady disturbances in for the complete flow field. We refer the

the far field must originate at the cas- reader to the articles by Melnik (1980),
cade. Therefore such disturbances will be Lock and Firmin (1982), and Lenalleur
isentropic and irrotational far upstreami (1984) for comprehensive reviews on the
i we.e, 5,) *S, anedd- #itrac p oen- + pplication of such viscid/inviscid inter-
hoe. X) is a steand- ditubac p.ot+n-(), action concepts in steady-state aerodynam-

tial. However, in general, steady rota- ics.
4 tional velocity and entropic disturbances Since tie vortex shoets, which repro-

rmay also be present in the far-downstream sent the boundary layers and wakes, sup-
flow. port a jump in tangential velocity (i.e.,

S 7,,,,......... ..... •................... ....I. .............
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* - solution. There has been, as yet, little"• V .3•0), it follows from (21) that Mf" Vis)attempt to solve the resulting nonlinear
must equal zero. Hence, the conditions time-dependent equation set for blade

vibration or noise applications, not only
because of the associated numerical com-

Mf - 0, (24) plexities, but primarily because the com-
puting time requirements of such solutions
would prohibit their use in detailed aero-

"[P] 0 (25) elastic or aeroacoustic investigations.
Thus, in the next section we will make use
of additional simplifying assumptions with

a [v] the intention of providing a useful analy-
V 0 (26) tical model for turbomachinery aeroelastic

applications.

prevail at vortex sheet boundary-layer and In particular, the small unsteady-
wake surfaces. In the inviscid attached- disturbance approximation, which at this
flow approximation the vortex-sheet bound- point has been invoked only to specify the
ary layers coincide with the blade sur- flow behavior in the far field, will be
faces. Thus it follows fr-!m (23) and (24) applied throughout the fluid domain to
that the flow tangency condition provide a linearized unsteady boundary-

value problem. In addition, we will -re-S+ strict our consideration to temporally and

(V - it 0, (27) spatially periodic unsteady excitations.at That is, we will consider blade motions of

which applies at the "outer edges" of the the form

viscous layers, must also apply at the
"solid blade surfaces, am, and on the + + + +
upper and lower sides of the thin vortex
wakes, c'm. In the present application

the surface displacement vector9Z(X,t) is +
prescribed at blade surfaces, but at wake for X on B, (28)
surfaces it must be determined as part of
the overall time-dependent solutior- where r(X) is a complex displacement-am-

plitude vector, w is the (reduced) fre-
At shocks, S~mpn' where the sub- quency of the blade motion, a is the phase

scripts refer to the nth shock associated angle between the motions of adjacent
with the mth blade, the mass flux is gen- blades and RefJ denotes the real part of
erally n(i.e., Hf 0). e and incident disturbances of the

follows from (21) that the component of form
fluid velocity tangent to a shock surface
must be continuous across the shock. The jR (X-v.t)
remaining jump conditions, along with the
thermodynamic equations of state, are then .R. p + (29

Srequired to determine the shock velocity, a Re v e,

ag /at, and the changes in the normal R
component of the fluid velocity and in the where v and k_. are the amplitude and
thermodynamic properties of the fluid as wave number vectors of the incident rota-
it passes through the shock. In the usual tional velocity disturbance. Finally, we
situation the flow anead of the shock is will restrict our consideration to flows

" -. known, and the Rankine-Hugoniot condi- in which any shocks that might occur re-

tions, i.e., (20), (21) and (22), are used main weak, and we will neglect changes in
to determine the flow behind in terms of vorticity across these shocks. In gener-the shock velocity, or to determine the al, the discontinuous changes in the flowSshock velocity and the remaining flow quantities across shocks are proportional
quantities in terms of one of the flow to the shock strength, but the increase inquantities behind, entropy across a shock is proportional

Pd only to the third power of the shock

Discussion strength (Whitham 1974). Thus it is a
reasonable approximation to neglect the

Our derivation of the equations gov- changes in entropy across a shock of weak

erning the time-dependent inviscid flow to moderate strength; i.e., one for which
produced by prescribed blade motions and the Mach number of the normal velocity

small-amplitude incident vortical, entro- component on its upstream face is less
Splc and acoustic disturbances is now com- than about 1.3. With the foregoing shock

plete. The problem posed is a formidable approximations and in the absence of un-
one, consisting of nonlinear time-depen- steady excitations the (steady) flow
dent field equations along with conditions through the cascade will be isentropic and
imposed on moving blade, wake and shock irrotational. In this case V(Xpt)
surfaces in which the instantaneous posi- -"tio. lung of the wake and shock surfaces must, velocity potential
in p le we nde termi .. supars of :th of the nonlinear time-independent flow.T•I,.•'•in principleo, be determineo an part of hn



The isentropic and irrotational mean and
flow assumptions preclude the possibility 1
of simultaneously conserving mass, momen- S x * [ - .v S
turn and energy accoss a shock. Therefore, (
we will require only that mass and the + [(S.v)] z + (35)
tangential component of momentum be con-
served across shocks; i.e.,

After substituting the foregoing series
~ •,expansions and surface vector relations

[ (V - - 0 (30) into the full time-dependent governingat equations, equating terms of like power in
and [£] and neglecting terms of higher than

LVj 1 . (31) first order in e, nonlinear and linear
variable-coefficient boundary-value pro-In principle, an Euler-equation descrip- blems are obtained respectively for the

tion of the mean flow would be required to zeroth- and first-order flows.

analyze inviscid flows in which strong
shocks ar- present (but see Hafez & Lovell A significant advantage offered by
1983 and Klopfer & Nixon 1984 on methods this linearization is that unsteady ef-
for approximating strong shock phenomena fects arising from self-excited blade
within a potential flow analysis). How- motions and from the various incident
ever, the weak shock assumption should disturbances are not coupled and hence can
suffice for most aeroelastic applications. be determined separately. Indeed, it is
Therefore, we shall follow the usual prac- sufficient to develep solution procedures
tice in deriving unsteady aerodynamic only for a single harmonic component of a
equations and limit our consideration to given disturbance (c.f. (28) and (29)).
flows containing, at most, weak shocks. Solutions for arbitrary disturbances and

arbitrary combinations of the various
THE SMALL UNSTEADY-DISTURBANCE disturbances can then be obtained by
APPROXIMATION Fourier superposition. Note, however,

that the present linearization does limit
Mathematical Preliminaries the unsteady response phenomena that can

be analyzed since nonlinear unsteady phe-
We now seek an approximation to the nomena, such as the influence of inlet

foregoing nonlinear, time-dependent, distortion on blade flutter, are he-
boundary-value problem which is appropri- glected.
ate for small-amplitude unsteady excita-tions; i.e., [II, ItR-=, etc., ~ 0(c) < As e + 0 the blade surfaces collapse

1. For this purpose the flow variables to their mean positions and the incident
are each expanded in an asymptoticseries vortical entropic and acoustic distur-
in c; e.g., bances vanish. Hence, the zeroth-order

terms of the asymptotic expansions (32)
are the fluid properties corresponding to

- + t + .. , (32) the steady flow past a stationary cascade.
P(Xlt) 0 P(X) + D(Xt) Since the equations governing the first-

where P and? are of order c0 and I, order or unsteady properties will be line-
ar, the fluctuations in these propertiesrespectively, and the dots refer to the induced by a harmonic unsteady excitationremaining terms which are of higher thanf firot order in c . in addition, Taylor must have harmonic time dependence. We

ferirs erpansions, eg., ncan take advantage of this feature by
series expansions, e.g., introducing a complex ripresentation,

e.g., p(X,t) a Re(p(X)e ), for all
-•first-order flow properties and adopting
• - (P +R.v P + IS ' (33) the convention that the real parts of the

a various complex parameters represent the
are applied to refer information at a actual time-dependent physical quantities.
moving blade, wake or shock surface to the Here w is the temporal frequency of the
mean position of this surface. In (33) blade motion or of an incident distur-
the subscripts al and S refer to the in- + 4

thesubcritseS nd reerto he n- bance; i.e., *-k_...V_.. (c.f. (29)).stantaneous and mean surface locations
respectively, and, as illustrated in fig. The complex representation servos to re-

3, t measures the displacement of a point move explicit time dependence from the

on the moving surface relative to its mean linearized unsteady boundary value problem

position. The unt tangent and normal thereby facilitating the determination of
a solution. in addition, the cascade

vectors at a point on a moving surface are
related to the unit tangent and normal geometry, the prescribed form of the un-

of this point on steady excitations (c.f. (28) and (29),
vectors at the location ot and the linearity of the first-order equa-thn mean surface as follows: tions require that both the steady and

unsteady flows exhibit blade-to-blade
S" -v periodicity. Thus, for example,

- p~x)(36)
( .) ... 

+ M4 and

11 n
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p(X + MG) pCX)eimO, (37) +
V. VS 0, (40)

where a is the phase angle between the
motions of adjacent blades or the scalar
product of the far-field circumferential where in view of the weak-shock assumption

numricl rsoltio ofthestedy nd he hnl fonr athe mass eq atio (38). Setincedwwave number and the cascade gap-vector G the conlf ervation form has been retained

(i.e., a = k;.,.G) for an incident distur- are restricting our consideration to weakbance. Conditions (36) and (37) allow a shocks and, as a consequence, neglectingnumerical resolution of the steady and the changes in entropy and vorticity acrosslinearized unsteady flows to be limited to shocks, the uniform free-stream conditions
a single extended blade-passage region of far upstream of the blade row will give
the cascade and permit fluid properties at rise to an isentropic (VS a 0) and hence,
the mth blade or wake surface or the m,nth + + aa(vov(Vshock surface to be evaluated in terms of an irrotational (V ano t the )"information available at the corresponding V(VT) 2 /2) steady flow through the cascade.
reference (m - 0) surface. For simplicity Therefore (38) and, after integrating,
the subscript m will be omitted in the (39) and (40) reduce to
following discussion when referring to a
reference surface. V.(•v.) a 0, (41)

Solutions based on the foregoing V2/2 + A2 /(Y-1) =
linearization must be interpreted care-
fully to provide the correct response - V2./2 + A!./(y-1) (42)
information in the neighborhood of a
moving shock (see Hounjet 1981). The and
zeroth and first-order solutions will be
discontinuous at the mean shock location; S - S_. - 0, (43)
therefore, they do not account for the
fact that an observer situated between the where * and A u [(y-I)T]1 / 2  (

...,,extreme shock positions will experience are the mean-flow velocity potential and
large-amplitude jumps in the flow vari- speed of sound propagation respectively,
ables as the shock passes by. Such local the subscript 0 denotes the stagnation
anharmonic effects can be accommodated by condition and we have, without loas in
analytically continuing the zeroth and generality, set the mean entropy equal to

%% first-order solutions from the upstream zero.
and downstream sides of the mean shock

I. locus to the upstream and downstream Convenient relations between the
sides, respectively, of the instantaneous mean-flow variables can be determined from
shock locus (see Williams 1979). This Bernoulli's equation (42), the isentropic
procedure essentlally transfers the dis- relation (15) and the conditions
continuities in the flow variables from p_.=V..=1. Thus after some algebra, it

the mean to the instantaneous shock loca- follows that
tions. Thus, local anharmonic-effects

'" have no impact on the solutions to the
nonlinear steady and the linearized un- ( (
steady boundary-value problems but only on
the physical interpretation of the re-
sulting unsteady solution. Hence, we

IV' defer a more detailed discussion of the
analytical continuation procedure to the . M2  [rv,2-,]
subsequent section on unsteady aerodynamic 1 - 2--_
response.

The Steady Base Flow 2+(Y-1)M!.

The field equations governing the 2+(Y-1)M 2  
'

-' zeroth-order or steady background flow
follow from the nonlinear field equations where M a V/A is the local steady Mach
given in the previous section after re- number. Equation (44) can be applied to
placing the time-dependent floo variables, eliminate the density from (41) and obtain
Ste zrtoa differential equation containing the

"V, P, , +, etc., by steady velocity potential as the only
counterparts, V. Ps, i, S, etc., and set- dependent variablel i.e.,
ting local temporal derivatives equal to
zero. Thus, thd differential mass momen- !2
tum and ene-4y or entropy transport equa- 11 - -, |2

rises for the mean flow are 2

S- -V#.V(V)2/2 - 0. (45)
V. (1; V) a0, (38)

However, the conservation form (i.e9,
(41)) of the governing differential equa-

ý(ý •V. V + P- 0 (39) tion in the one usually preferred for a



numerical resolution of a flow containing and exit free-stream velocities will be
shocks because it is more convenient to subsonic; i.e., V = V.cosfl. < AF..
"capture" shock phenomena rather than to Thus the steady velocity far u, -tream and
"fit" shocks into the nonlinear steady far downstream from the blade C.. will be
solution, of the form

*+ , i--

Surface conditions for the zeroth- lim V(X) - V. + vX(X), (52)
order or steady flow follow from eqs. + :F.
(20) through (27) and are imposed at the where T(X) is the velocity potential asso-
mean positions of the blade (Bm), wake ciated with small steady perturbations of
(Win,) and ock (Shm n) surfaces. Blade the upstream and downstream free-stream
mean positions are prescribed, but the flows and must be determined as part of
mean shock and wake locations must be the overall steady solution. Although the
determined as part of the steady solution. +
In the present development it is assumed steady disturbances described by' ;(X)
that the mean wake locations coincide with originate at the blade row, their behavior
the steady-flow stagnation streamlines in the far field depends largely upon
downstream of the blade row. whether the relative free-stream velocity

VF. is subsonic or supersonic. In the
Since the steady flow remains at- former case steady disturbances attenuate

tached to the mean blade surfaces, it exponentially with increasing axial dis-
follows that tance from the blade row (and hence + + 0

as 10 + -); in the latter, they are small
V.n = V+.n = 0 on +m (46) but persist as ICI + -. In general, threeof the uniform velocity components in

In addition, the steady pressure and nor- (52), or their equivalents (e.g., Mach

mal velocity component must be continuous number MT,, flow angle nFl., etc.), must be

across blade wakes. Hence, the condi- prescribed to specify completely the

tions steady boundary-value problem. The fourth
or remaining component is determined in
terms of the three prescribed by using

[P Vl 0 on (47 (44) and the integral form of the mass[47 Lconservation law, c.f., (1). Since ý_. -
V_. a 1, the latter provides the following
relation between the inlet and exit flow

apply at the mean wake locations. For variables:
two-dimensional mean flows the tangential
component of the mean velocity must also
be continuous across blade wakes since no 'c, P.Vs con 0.

vorticity is generated in the mean flow.
Therefore, it follows from (44) and (47) M. 2 + (y-1)M_..-
that Cos n.

M.. 2 + (Y-1)Mc

[4] - [#J TE on Wm1 (48)-
-= cos A-.. (53)

where the subscript TE refers to the
trailing-edge point of the mth blade. Numerical solution procedures for

determining two-dimensional steady poten-

Finally, the requirements of mass tial flows through cascades have been
conservation and continuity of tangential developed extensively, particularly for

velocity across shocks provide the follow- flows with subsonic relative inlet and
ing conditions at the mean shock loca- exit Mach numbers (i.e., M.. < 1). For
tions more complete information we refer the

reader to the report by McNally and Sockol
(1981), the text by Gostelow (1984) and

[I ~ - 0 on Shmn (49) the recent papers by Caspar (1983),

and Whitehead & Newton (1985) and Habashi,
Hafez & Kotiuga (1985). In such calcula-

[V ]. 0 on Sh (50) tions far-field boundary conditions are
imposed at axial stations placed at finite

Equation (40) can be Integrated to yield distances upstream (say at C - C.) and
downstream (at 4 a C+) from the blade row
where linearized solutions describing the

U] U ~ on Sh, (51) behavior of the disturbance potential T inref mthe far field (i.e., for C 4 C,) can be
whore [J Ref - 0 If the shock terminates matched to nonlinear near-fie1d solutions.
in A continuous region of the flow. In addition, conditions are often Imposed

at the blade surfaces (e.g., a unique
in addition to the foregoing surface incidence condition at a sharp leading

conditfons, conntraints must be placed on edge and/or a Kutta condition at a sharp
the steady solution far from the blade trailing edge) in lieu of prescribing an
row. For the cascade flown of praettcat inlet and/or an exit free-stream flow
Interest the axial components of the inlet property. Finelly, the usual practice in
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to express the mass-baldnce equation in tions can be applied to simplify the dif-
conservative form (c.f. (41)) and to solve ferential equations (54) through (56). In
this equation throughout the entire fluid addition, the thermodynamic relation (57)
domain, while allowing for a discontinuity can be used to eliminate the density p
in the velocity potential at blade trail- from the linearized momentum (55) and
Ing edge points and along arbitrary ptri- continuity (54) equations. First, the
odic lines (c.f. (36)) which emanate from linearized energy or entropy transport
these points and extend downstream. Thus equation can be reduced to
in steady potential-flow calculations,
shock-jump conditions are usually not DS
imposed; rather shock phenomena are cap- - 0. 58)
tured through the use of special differ-
encing techniques. It appears that such Further, it follows from (57), the mean-
procedures can lead to reasonably accurate flow Bernoulli relations (44) and some
predictions of mean shock locations and of algebra that the linearized momentum equa-
mean flow behavior in the vicinity of a tion can be written as
shock. The mean wake locations Wm,i
i.e., the downstream stagnation stream-
lines, are determined a posteriori from D w-- + (,0.v)V4 sv(v#)2/!2 .- V~p/F). (59)the resulting steady solution. Dt

THE LINEARIZED UNSTEADY FLOW
After we combine (58) and (59) and rear-

Field Equations range terms, the latter equation can be
expressed in the form

The differential equations governing
the first-order or linearized unsteady
flow in continuous regions are determined D
by substituting the asymptotic expansions - (-sVO/2) + I(%-sVO/2)oVIVe -
for the flow variables (e.g., (32)) into
the full time-dependent equations derived (60)
from the mass momentum and energy conser-
vation laws (i.e., (8), (12) and (14)), Finally, after we combine the steady con-
subtracting out the corresponding equa- tinuity equation (38) with the correspond-
tions for the steady background flow ((38) ing first-order equation (54), it follows
through (40)) and neglecting terms of that
higher than first order in e. This proce-
dure provides the following system ofD ( + v.(• ) -D0 (61)
linearized (Euler) equations: /)

ip + V.U • + -V= 0, (54) and, after combining this result with (57)
and (58), we find that the linearized
continuity equation can be expressed in

( + 01.V)+v) + P (V.V)V + vp - 0 (55) the form
Dt

a n - [p/(t A2 )] + -"V. (• ) - 0, (62)
X, Dt

+ V.vs 0 0. (56)
Dt where A a (yp/F) 1 / 2 is the speed of sound

He t, p and s are the complex apli- propagation in the steady background
4WHere , flow.

tudes of the first-order density.,- velo-
city, pressure and entropy respectively, Thus the linearized unsteady flow can
and D /Dt - iw + V.V is a mean-flow con- be determined by solving the system of
vective derivative operator. To complete equations (58), (60) and (62), subject to
this system we require an additional equa- the appropriate surface and far-field
tion for the first-order flow properties. conditions, for the complex amplitudes of
This is obtained by integrating the ther- the first-order unsteady entropy, velocity
modynamic relation (7) from the state and pressure. If the only source of un-
occupied by the steady background flow at steady excitation is a prescribed blade
the point X to the actual state of the motion (i.e., the flutter problem), then
fluid at that point, It follows that the the linearized unateady flow will be imen-
first-order entropy, pressure and density tropic (s - 0) and irrotational () )
must satisfy the relation and it follows from the momentum equation

(60) and the far-field condition (19)
s - y p/P - 0/1. (57) that

.(63
In the present development tho steady P - (63)

background flow is assumed to be isentro-
0 pic S - 0) and irrotational (V w v# and In this case the continuity equation (62)

hence (V.7)V - iVY#)2/2). These condi- reduces toreue to



D (A- 2 D _, (64) turn equation (60) and the far-field condi-
Dt Dt tion (19) that the pressure and velocity

potential fluctuations are related accord-
and i is only necessary to solve (64) ing to (63). Further, upon substituting
subject to conditions on the mean blade, this pressure-potential relation along
wake and shock surfaces and an outgoing with the velocity decomposition (65) into
acoustic wave requirement for E . ;- to the continuity equation (62) we find that

completely determine the linearized un-
steady flow. A similar conclusion holds
if incident acoustic waves are included as D __--)

a source of unsteady excitation, but in D- A- 2 ( Dt

this case the far-field condition-on *(X)
must account for such incident waves. The (68)
general unsteady problem (s, V x V * 0) is
more complicated since, as presently for- Except for the source term on the right-
mulated, the linearized momentum and con.- hand-side, (68) is identical to the fieldequation (64) which governs the flutter
tinuity equations must be solved simultan- Golein T y decompstion of te j

cousy. oweerit s sillposibl to problem. Thus the introduction of theeously. However, it is still possible to Goldstein velocity decomposition has led
simplify this general problem by introduc- to a system of field equations, i.e.,
ing a suitable velocity decomposition as (58), (67) and (68), which describe the
discussed below. general linearized unsteady flow in con-

tinuous regions and which can be solved
The unsteady perturbation velocity sequentially to determine the complex

can be represented as the sum of an irro- amplitudes of the entropy, rotational
tational part and a rotational part; velocity and velocity potential fluctua-
i.e., tions, respectively.

V + (.165) Surface Conditions

* Conditions on the unsteady perturba-
Hence C = V . VR, where € is the complex- tion at the mean positions of blade, wake
amplitude of the perturbation vorticity. and shock surfaces are obtained by substi-
Since this velocity decomposition involves tuting the asyiiptotic (e.g., (32)) and
the introduction of the additional depen- Taylor (e.g., (33)) series expansions and
dent variable VR, an additional constraint the surface vector velations, (34) and
is required to close the linearized un- (35), into the full time-dependent surface
steady problem. One possibility is to conditions, subtracting out the corres-
impose the zero-divergence condition, ponding steady conditions and neglecting
i.e., terms of higher than first order in c.

Thus it follows from (27) and (46) that
0 (66) the linearized flow tangency condition can

he expressed in the form
on the rotational part of the perturbation
velocity. This leads to a compressibleunsteady analysis (see Caruthers 1981)
which is a natural extension of earlier
incompressible analyses (e.g., see

Adamczyk 1975) but one which entails Bmp (69)
rather complicated numerical and analyti-
cal solutioin procedures. Although it has t com
not yet been used in' detailed unsteady whore r(X)nr i t

cascade calculations, it appears that a amplitude of the mth blade displacement
n'ore natural anJ convenient velocity de- vector (c.f. (26)). Further, it follows
composition is the one suggested by from the irrotationality of the mean flow

Goldstein (1978, 1979). Here, the rota- and the decomposition of the fluctilating

tional velocity trR is taken to beJ.ndepen- velocity according to (65) that the fore-

dent of the pressure fluctuations and going condition can be written as

dependent only on the prescribed upsteeam
rotational velocity and entropy distor-
tiona and on tne mean velocity field. In J0 * [.R, iLAr + (9#*-)
addition, the irrotational velocity 9V is
related di:ectly to the pressure fluctua- - (t.v)VOIh on a.. (70)
tions by (63). This is accomplished by
requiring that the rotational part of the
unsteady velocity be a solution of the Equation (70) provides a relation for the
equation normal component of the irrotatlonal part

of the unsteady velocity fluctuation At
the mean blade surface. The first term on

-v*/2) +( - s71/2)VV* 0. the right-hand-side of this equation is

the normal velocity (directed inward) at
S(67) the blade surface due to the conveocted

fe drotational gsti the second term is theSit then follows from the linearised momen-
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"normal velocity of the moving blade sur- linearized mass and tangential momentum
"face; and the third and fourth terms ac- conservation conditions have the form"count for the effects of a variation in
blade-displacement along the blade surface + V + (.v)"V - i•t 0  .•and of blade motion through a spatially
varying mean velocity field respectively.
Note that the blade displacement vector is + . [(t.v)rXez] 0 on Shm,n (76)prescribed and that for rigid motions
(c.f. (102)) (vt.4 ) (--)v t - x 74 where and

Sis the complex amplitude of the
angular displacement vector. [0 + (f.V)V]. +[V].v(.V) - 0

The linearized wake-jump conditions on Shm,n (77)
follow from (25), (26) and (47) and are
give-, by respectively, where 1r is now the complex- r

amplitude of the shock-displacement; i.e.,[ .• = -• (*V.'h . o n Wm (71) 4,(X,t) = Re[r(X-mG,)e for *X on
ndShmn. After performing some vector alge-

and bra and making use of the steady continu-[Lp) -?.'• [vPI " on Wm, (72) ity equation (38) and the shock-Jump con-
ditions (49) and (50), we can reduce the

where t is the complex-amplitude of the foregoing expressions to
wake displacement vector and the mean
positions of the unsteady wakes, Win, are + 0 " [1]ir +
assumed to coincide with the mean f low [P
stagnation streamlines. Since mean tlo: +
properties and their derivatives at,- cov' + t.).V( p .r) on Shmn (78)
tinuous downstream of the blade row, 'e
right-hand-sides of (71) and (72) are a.d.64 identically zero. Thus the two-dimension-
al unsteady solution will be independent fV] .[V.h] tV(ct )
"of the actual form of the wake displace-
"inent. It then follows fro,, the Irrota- on Sh . (79)
tionality of the mean flow, the velocity m,n
decomposition (65) and the lin;Žarized
pressure-potential relation (63) that F a c # +,OR,Finally, a fter combining V V , % V + R

A.(yP/•)1/2, the thermodynamic relation
lv. on~W (7) (57) and the pressure-potential relationon W.(63) with equations (78) and (79), and

and neglecting changes in the unsteady entropy
and rotational velocity perturbations; [i0+(v*.st.v] 

oeakshocks 
we find that

Equation (74) can be integrated along the +[1 (iW + (v*.t)ov7) (0.)
wake to yield a condition on the jump in [r]
the potential across the wake; i.e., + (r.n)T.V[ o V.T o Shm~n

and
J-,l ~ exp - iW(v74) 1- on W[v . - - t.v(•.i .N) onS

,d TTE

"(75) (81)

Note that for a normal shock Vot n 0SThUS (73) and (75) provide two relations along the mean shock surface, so that (80)Sfor determining the jump in th--normal can be simplified, and for a shock which
component of the irrotational part of the terminates in the fluid, (81) can be into-
unsteady velocity and the jump In the grated along the shock to yield

" , ,nsteady velociLy potential across each
w'.ke. These quantities depend upon the r ] [ 2
juffp in the normal component of the rota- ( - - , .] on si,. (82)
tional part of the unsteady velocity
across the wake and upon the mean velocity Equations (80) and either (81) or (82)
along the moan-flow stagnation streamlines provide two relations for determining ttL#4103respecthvely, 

discontinuity in the unsteady potential J!at the mean position of a shock and t ,
SAt shock mean positiors it follows shock displacement normal to the mean

~# fr ,em (30), (31 ), (49) and (50) that the shock locus 1,fi Moreover, these equ&-
-vS



tions illustrate that ] and 1.-i depend sa. and R_ are prescribed quantities and
on the mean flow proper ies and the first- that, by prescription, the rotational
order rotational velocity fluctuation at velocity fluctuation is divergence-free
the mean shock location. Shock mean posi- far upstream; i.e.,
tions are determined by the zeroth-order
or steady-flow solution and, whereas blade k_.# R 0. (88)
displacements are prescribed, shock dis-
placements must be determined as part of
the unsteady solution. The far-downstream entropy and Rrotational

velocity perturbations, s. and v., must be

Unsteady Far-Field Behavior determined as part of the overall unsteady
solution. We suspect that., the rotational

We have assumed that in the far- velocity fluctuation will have zero-diver-
field, i.e., beyond some finite distance gence far-downstream and also that thisfiteld, i(e., beyond somewfinitrea distanc velocity fluctuation will be continuous
upstream Q< c-) and downstream Q ) ars ld ae. Btsneteecn
from the blade row, the irrotational across blade wakes. But since these con-

steady flow is at most a small perturba- jectures have not been demonstrated, the

tion (i.e., of 0(c)) from a uniform flow. constraints k..O!= 0 and • .i = 0 on
Therefore, far from the blade row and to Wm will not be imposed in the present
within the first-order unsteady approxime- formulation.
tion Ponsidered here, the linearized un-
steady equations can be reduced to con- Similarly, in the far-field (Q > C
stant coefficient equations for which the linearized continuity equation (68)
analytical far-field solutions can be can be written as
determined. In particular, for C >;, the

differential equations (58) and (67) gov-
erning the entropy and rotational velocity t2 2 R
fluctuations reduce to 14. • - V * - V.4 (89)

*Ds where
S-"(ia + VT..V)s(X) - 0 (83)

Pt 0 for c < C_,

and v.'R - (90)
a (i + vT.';)R(C) - 0. (84) k exp[i~k.(*C-cX)] for C >

'I. Pt
We seek a solution to (89) subject to the

Eq n (blade-to-blade periodicity condition (37),Equations (83) and (84) have solutions of tewk-upcniin 7)ad(5 nthe wake-jump conditions (73) and (75) and
the form the requirement that acoustic responses

either attenuate or propagate away from or
parallel to the blade row. Note that in

s(X) s. expfik;.(X-X,)J (85) the far-downstream region (75) reduces to

and
O OR exp [ik((8)

on Wm for T > T+, (91)

where s., �.R and k;. are the complex
amplitudes and wave numbers of the far- where !(C) is a coordinate measuring dis-
field entropic and rotational velocity tance downstream along the wake and v +
fluctuations and X - (C;,n). By defini- T(E+). For the present purpose it is
tVaconvenient to set

therefore the far upstream and far down-

,0 stream axial gust wave numbers are given H(X) for C <
by 4 ( (•)

*(X)+) *) (92)>•÷

k& - + o G 1 V;., sin n..) 4 X (x) for C >

/(Vc. Cos nQ.J, (87) where *H(*) is a continuous function which

accounts for the fluctuations in velocity
The foregoing equations i-l-ustrate potential due to. acoustic or pressure

that the small-amplitude entropic and waves, and *P(X) is discontinuous at
blade wakes and accounts for the fluctun-

tortlon by the mean flow in both the far- tlons in the potential due to rotational
*• upstream (Q < r.) and far-downstream (Q > velocity fluctuations and counter-vorti-

'i,) regions of the flow. Recall that the city convected along the blade wakes. The

regia n fd te aflo utse caln haec the latter disturbances do not give rise to

wave numsber k.,and the complex amplitudes pressure fluctuations, and therefore
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erning the small-disturbance unsteady flow
- 0 for < • . (93) is now complete. These equations account

for the effects of blade geometry and mean
blade loading on the unsteady fluctuations

The continuous component of the po- arising from small-amplitude harmonic
tential, i.e., the solution to the homo- excitations. The unsteady equations are
geneous equation corresponding to (89), linear and contain variable coefficients
can be determined conveniently in terms of which depend on a fully nonlinear isen-
the cascade axial (E) and circumferential tropic and irrotational steady background
(n) coordinates using Fourier methods. We flow. Because of the assumed form of the

excitations (c.f. (28) and (29)), a nume-
refer the reader to Verdon, Adamczyk & "cal resolution of the time-independent
Caspar (1975), Verdon & Caspar (1980),
Caruthers (1981) or Whitehead (1982) for
more complete details. The homogeneous only over a single extended blade-passage
solution has the form region. In addition, since analytical

far-field unsteady solutions have been

determined, the numerical solution domain
÷ + * can be further restricted to a single

x= a;. exp [ik .X-X;)] extended blade-passage region of finite
. extent as shown in fig. 4.

+ bj,. exp
j-. The linearized unsteady boundary-

value problem has been reduced to a system
• l .(X-X;)I for (< (94) of three field equations, i.e., (58), (67)' Ffand (68), which can be solved sequentially

The first term in (94) accounts for a to determine the complex amplitudes of the
prescribed incident wave coming from far entropy s(X), rotational velocity t/R(+)
upstream and/or far downstream of the and velocity potential *(X) fluctuations.
blade row, and the infinite series ac- It has been assumed that the entropy and
counts for acoustic waves which originate the rotational part of the fluid velocityth rothena blare ofw the fluidnt velociany
at the blade row. The constants 01mandj, a are continuous across weak shocks. There-
PC,;. depend upon the far-upstream or far-

downstream uniform mean-flow conditions, fore, the entropy fluctuation s(X) is

the blade spacing and the frequency and determined as a solution of (58) for a
interbiade phase angle of the unsteady prescribed upstream entropy distribution,

motion. The complex amplitudes a.. and i.e., s(&_,n), and the rotational velocity
+

the wave numbers k.. of the incident waves
are prescribed, and the Fourier coeffi-
cients bj,;. are determined by matching
the analytical far-field solutions to a

numerical near-field solution for #(X) at
the inlet C - •. and exit C - + axial
stations.

Wm+1

The particular solution *P(X) of (89)
can be determined conveniently in terms of
Cartesian coordinates Tm and nm, where the
'm axis is parallel to the far-downstream Wm
uniform flow direction, and the origin of
the Tm, nm-axes coincides with the inter-
section of the axial line C - &+ and the
mean' position of the mth wake. It then
follows from (93 that, for Tm > 0 and 0 <
n. < G cos n, * must be of the form

~iW M/V.C•OPlX') - (nmlei•/" (115)

The function P(nm) is determined to
within an arbitrary constant by substi-
tuting this expression into (89) and solv-
ing the resulting ordinary differential
equation subject to the wake conditions
(73) and (91). Once P(nm) is determined
in this manner, the arbitrary constant is
determined by matching to the near-field
numerical solution.

&iscussion Pigure 4. Numerical solution domain -
extended blade passage region of finite

The derivation of the equations gov- exteft.
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"�flctuation •R(X) is determined as a solu- moving blade surface and outside of the
tion of eq. (67) for this entropy fluctua- small intervals bounded by the mean and
tion and a prescribed upstream rotational instantaneous shock locations. These
velocity distribution, i.e., OR(C_,n). components of the pressure acting at the
Convenient formal solutions for the linea- moving blade surface, Sm, are evaluated
rized entropic and rotational veloclty in terms of steady and first-harmonic
fluctuationo have been determined by unsteady information supplied at the mean
Goldstein (1578), .nd it should be possi- position, B, of the reference blade. The
ble to apply these results to reduce the third term represents the anharmonic con-
computational effort associated with the tribution to the unsteady surface pressure
unsteady cascade problem. Finally, the caused by the motions of shocks along the
e +(• surface of the mth blade.

velocity potential fluctuation #(X) is
determined as a solution of (68) subject
to conditions imposed at the mean blade, After expanding the pressure P in the
wake and shock surfaces and the far-field mannez indicated by (32) and (33) and
behavior indicated by (94) and (95). The making use of the unsteady pressure-poten-
flow tangency condition (70) applies at tial relation (63), we find that
blade surfaces; the jump conditions (73)
and (75) apply at wake surfaces! and the
jump conditions (80) and either (81) or P +0
(82) apply at shock surfaces. * V -- + ' (97) .

For the general linearized unsteady
problem, the rotational velocity appears where F and P are detarmined from the
as a source term in the differential equa- steady solution (c.f. (44)) and 1B is the
tion (68) and in the various surface con- complex amplitude of the reference blade
ditions. If self-excited blade motions displacement. The first term on the
are the only source of unsteady distur- right-hand-side of (97) represents the
bance, i.e., there are no incident rota- harmonic unsteady pressure acting at the
tional velocity or entropy fluctuations mean position of the reference blade, and
and no incident acoustic waves (a;., = 0 in the second term represents the harmonic
(94)), then the unsteady problem is saim- pressure produced by motion through a spa-

* plified considerably since only a single tially varying steady pressure field.
field equation must be solved. In any
"event, a numerical resolution of the The local anharmonic effect caused by
linearized unsteady flow is required to the motion of a shock is determined by an
determine the response parameters of inte- analytic continuation of the solutions to
rest for aeroelastic or aeroacoustic de- the steady and the linearized unsteady
sign applications. boundary-value problems (see Williams

1979). Thus, for example,

AERODYNAMIC RESPONSE PARAMETERS

Surface Pressure ý (r't) "Rershe}

The unsteady pressures and the global x Hi (T-rSh)(`TJ-T)]Q(Tt), (98)
unsteady airloads acting on the moving
blade surfaces are the important results where rSh a (IShB).T is the complex-
of an aerodynamic analysis intended for amplitude of the displacement- of the shock
blade aeroelastic response predictions. foot in the counterclockwise or 1,direc-
In particular, for flutter applications, a tion along the moving blade surface, the
knowledge of the unsteady airloads permits subscripts A3 and Sh refer to the initan-
the evaluation of aerodynamic wrk per taneous and mean shock locations r~spec-
cycle and/or aerodynamic damping; either tively, H is the unit-step functions i.e.,
of which can be used to determine whether
the airstrcam tends to support or suppress
a prescribed blade motion. The pressure j0, T < 0
acting at the instantaneous position of H(T) 1, (99)
the mth blade surface is given ny I,1>0

N m (Tt) w PB(T) + Re (p ,( T)ei( Wt+mo )) and

P (tt) +... , (96)

n
+ Re I IPAJhei(t+mo (100)

vwiere t is a coordinate measuring distance
in the counterclockwise (or I-) direction The discontinuous terms on the right-hand
along the mean blade surface. The first side of (100) are evaluated at the mean
two terms on the right-hand-side of (96) position of the shock foot and by moving
are the steady aod first-harmonic compo- across the shock in the I- directioni

"IA nents of the pressure acting at the mth i.e., 1[,i ) h a P80'8h0 - P('Bh')' The10'. . .
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first two terms on the right-hand-side of reference blade chord line (Fig. 1) with x

(96) are discontinuous at the undisturbed increasing from the leading to the trail-

% shock locations. The third term cancels ing edge of this blade.
these discontinuities and transfers them
to the instantaneous shock locations. The force and moment acting on the
'rTis can be seen it we set T in the mth blade are given by
foregoing relations to determine that

li [ [ ('09 + Sh) [a ] Fm 5 dMS1~103)

Re pIshei(W t+m) .... and

"(101) "m - p .dt M + Rel me (Wt+Iu +

It should be noted that the relative (104)

displacement of a normal shock along a
blade surface is readily determined in

terms of the prescribed blade motion and
the linearized unsteady solution for the The components of the force vector Fm are
shock displacement (c.f. (80) and (81) or taken as positive in the positive coordi-

(82)). However, the steps required to nate directions, and the moment Mm is
determine rSh,B for an oblique shock must taken about the moving pitching axis of
still be determined. Finally, although the mth blade and as positive in the coun-

the unsteady pressure disturbance is not +
everywhere harmonic, its regions of anhar- terclockwise direction. The vector Rpin
monicity are small. Consequently (see (104) extends from this pitching axis to

Tijdeman 1977 and Ehlers & Weatherill points on the moving mth blade surface.
1982), the first-order global aerodynamic After some algebra, it follows that
coefficients are harmonic in time.

Unsteady Force and Moment, Aerodyna-iT-c f - a X - P f pa dr + rSh,B LPBiSh tB
Work per Cycle

(105)
Up to this point we have placed no

"restriction on the mode of the blade mo- and
tion. But we will now limit our consi-
:•, deration to the condition usually consi- 1 • - Bi
dered in turbomachinery aeroelastic appli- m • pd rSh,B Sh
cations wherein each incremental blade

. section undergoes a rigid-body motion. In (106)
this case only the unsteady force and•'moment must be determined to analyze the4
stabi lit of deperibed b lad e tio where f and m are the complex amplitudes
stability of a prescribed blade motion orrespec-
the response of the blade to external ti the usa is the compex
aerodynamic excitations. For rigid blade vely. Recall that ph is the complex
motions the first-order displacement-am- amplitude of the harmonic component of the
plitude vector is given by uneteady surface pressure, the subscript B

refers to the mean blade surface, rSh,B is
. the relative shock displacement in the
r(X) a h + R for X on B, (102) counterclockwise or t-direction along

4this surface, and P51Sh is the jump in

where h defines the Amplitude and direc- the steady pressure [in moving across the

tion of blade translations (positive in shock in the 1-direction. The summations

the positive coordinate directions), r in (105) and (106) account for the concen-

"" define3 the amplitude and direction of trated loads due to shock motion and con-

blade rotations (positive counterclock- sist of terms that are evaluated at the

J wise), and R is a position vector extend- mean positions of the shock roots.

ing from the mean position of t'ie refer- A useful parameter for blade flutter
ence blade axis of rotation (i.e., from a u seful aerorybade wlutter
the point Xp, Yp) to points on the mean investigations is the aerodynamic work per
position of the reference blade surface. cycle, We cl which is the work done

These rigid two-dimensional motions model by the lujdcon a given blade over one

rendinq and torsional vibrations of actual period of its motion. By definition

rotor blades. The components hx, h. and I
are, in general, complex to permi phase
differences between the translations in dt d(t),
the x- and y-directions and the rotation. per cycle *odt 0 dt
H ere the Cartesian x,y-coordJnate axes are Jr

"taken to coincide with andl ie normal to, (107)
ww respectively, the mean position of the

where

• . _ ' _ _ . • !• • • . . .- • .. . • ,,•. .. • • . ... . .. •:,-• • . ... : ............ ...... ............. 7... ......:T



"dW tThus, if the out-of-phase (with blade
S. V.-h dt (108) displacement) component of the lift for a

(it f.pure bending motion, or the moment for a
ptire torsional motion, is less than zero,

is the rate at which this work is done this motion will be stable according to
(see (3)). A prescribed blade motion is linearized theory. For the foregoing
classified as stable, neutrally stable or single-degree-of-freedom motions the aero-
unstable, according to linearized theory, dynamic work per cycle is often expressed
depending upon whether the aerodynamic in normalized form as an aerodynamic damp-
work per cycle is less than, equal to or ing parameter T (see Carta 1983)1 i.e.,
greater than zero, respectively.

-4 Wper cycle
At the instantanteous position of a Eh - - Imlfyl (114)

blade surface y

and
Wper cycle

V. Re (-}'h2 + .... (109) -Imimi. (115)
at

Therefore for a i'igid motion, it follows
from the definitions for the aerodynamic Hence, the aerodynamic damping is positive
force and moment that the rate at which for a stable motion.

'A' work is done on say the reference blade is
given by

-( NUMERICAL EXAMPLES:• •,•j dW Re
--- = iheit}. +Re~iwaei~} (110)fdj As a consequence of the linearization

introduced in this chapter, the nonlinear
After we substitute this expression along time-dependent unsteady aerodynamic prob-
Swith the expansions (103) and (104) into lem has been reduced to two time-indepen-

1(07) and carry out the integration, it dent boundary-value problems -a nonlinear
follows that one for the zeroth-order or steady flow

and a linear one for the first-order or
unsteady flow. Moreover, numerical reso-
lutions of the zeroth-and first-orderWper cycle f t lhxllfxlsin of h flows are required only over a single

i:J7:i fy:hy extended blade-passage region of finite

y + hextent (fig. 4) to provide the type of
response information needed for turbo-

onm.]' (111) machinery aeroelastic or aeroacoustic
design applications. Thus the restriction

where j I denotes the magnitude of a com- to small-amplitude harmonic unsteady exci-
plex quantity and fre denotes the angle by tations has permitted a substantial aim-
which a complex response quantity r leads plification of the original unsteady prob-
the corresponding complex excitation quan- lem. However, the resulting steady and
tity e. Equation (111) illustrates that, linearized unsteady problems still pose
if a complex response term lags its cor- severe challenqes to numerical analysts.
responding excitation, the effect is a
stabilizing one, since this phase-lag A detailed discussion on the numeri-
provides a negative contribution to the cal field methods that have been proposed
aerodynamic work per cycle, thereby indi- for solving the compressible steady and
cating that the airstream is removing linearized unsteady problems is beyond the

% energy from the vibratory motion, scope of this chapter. However, limitedI• numerical results will be presented for
For single-degree-of-freedom bending subsonic compressor-type (M. < M. < 1)

or torsional vibrations - usually only cascades to partially reflect the current
bending normal to the blade chord is con- status of such solution methods and to
sidered - stability is determined by the illustrate several important offects on
phase angle between the lift force fy unsteady aerodynamic response associated
and the normal displacement hy or be- with features of nonuniform steady flows.
tween the moment m and the angular dis- For a description of the field methods
placement s. In particular, for pure used to obtain these results we refer the

i(normal) bending with h taken as a posi- reader to Caspar (1983) and to Verdon &Stireý real quantity, yCaspar (1982, 1984). In additiong, for a

description of some alternative numerical
"field methods along with their applica-

Wper cycle a f ; (112) tions to unsteady cascade flows involving
"y forced aerodynamic excitations, turbine

cascades and supersonic inlet and/or exit
Se for p,.Jc t(oraion with rI real and Mach numbers see Caruthers (1981),

Whitehead & Grant (1981) and Whitehead
(1982) respectively. Finally, for a de-
ocription of the semi-analytic surface-

Wper cycle a wrImlfi"ll (113) integral mathods used for analysing incom-
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pressible steady and unsteady cascade inlet flow angles (A_.). In each case a
flows see Atassi & Akai (1978, 198M) and Kutta condition, i.e.,
Carstens (1981).

We will consider three simple cascade Vdt (116)configurations each with blades undergoing B_ +
prescribed self-excited motions and oper-
ating under uniform subsonic mean inlet has been imposed at blade trailing edges
and exit conditions. In each case the in the steady calculation, and hence, exit

( cascade stagger angle is 45' and the gap/ mean-flow conditions (M., f ) %re deter-
chord ratio is unity. The first cascade mined as part of the steady solution. The
consists of modified NACA 0012 airfoils mean position of the reference blade is
and will be used primarily to illustrate defined byeffects of a relatively thick blunt-nosedblade geometry and mean blade loading on

unsteady response. The second consists of y,(x) - ±5T [0.296901/2 - 0.1260x
sharp-edged double-circular-arc airfoils
and will be used to illustrate the effects _ 0.3516x 2 + 0.2843x3 _ 0.1036x4]
of shock phenomena. and mean blade loading
on the unsteady response at high subsonic for 0 < x < 1, (117)
inlet Mach number. Finally, for purposes
of comparison, results will also be pre-
sented for a flat-plate cascade in which where T - 0.12 is the nominal blade thick-
"the blade mean positions and the mean ness and 1.1019T2 = 0.015867 is the lead-
inlet and exit flow directions are ing edge radius. Note that the coeffi-
aligned. In this case the steady flow is cient of the x4 term in eq. (117) has been
uniform throughout the field and hence, changed from the coefficient (i.e.,
there is no coupling between steady and -0.1015) used in the standard definition
unsteady disturbances, of a NACA 0012 airfoil (see Abbott and Von

Doenhoff, 1959) so that the example blade
Numerical results for steady Mach profile will close in a wedge-shaped

number M, first-harmonic unsteady pressure trailing edge.
p and pressure-difference (i.e., Ap -

, _ ) distributions along the reference Steady Mach number distributions
bftde surface, unsteady aerodynamic along the reference NACA 0012 blade sur-
moments m and unsteady shock displacements face for prescribed inlet flow angles of
rSh,B will be presented for blades under- 486, 50', 52" and 54' are shown in fig.
going single-degree-of-freedom torsional 5. The calculated exit Mach numbers are
vibrations about their midchords (i.e., respectively 0.595, 0.557, 0.522 and
XY a- 0.5,0). The unsteady results have
been determined by setting the complex
torsional amplitude a in (102) equal to i&
one. Hence, the real or imaginary parts

of a complex response parameter represent
the response component that is in- or out-
of-phase, respectively, with the reference 0.8
blade displacement. It is also important
to note that the aerodynamic response to a M
prescribed blade motion depends, to a
large extent, on the behavior in the far 0.6
field of the acoustic waves generated by
that motion (see (94)). For subsonic mean
inlet and exit conditions blade motions
are classified as subresonant if all 0.4
acoustic waves attenuate with increasing
axial distance (I'i 1 1 ) from the blade 0.8
row, or as superresonant if at least one (b)
such wave persists far upstream or far
downstream and carries energy away from

* the blade row. At the boundaries between 0.6
the different regions an acoustic reso-

7 nance occurst i.e., at least one wave M
Spersists ir the far field and carries

energy only in the circumferential ot' n- 0.4
A' direction (see fig. I).

NACA 0012 Cascade:0"0 0.2 0.4 0.6 0.8 1.0 -Steady and unsteady flows through the .

staggered cascade (with g- 450 and 0 a 1)
of modified NACA 0012 airfoils have been Figure 5. Steady surface Mach-number
determined for a prescribed inlet Mach distributions for the example NACA 0012
number (N.., of 0.6 and four prescribed casoadej M.. a 0.6. (a) suction surtacei

(b) pressure surface.
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0.490, and in each case the calculated 0- a-
exit flow angle is approximately 47.7%.
These steady flows are entirely subsonic
with a peak Mach number of 0.789 occurring
at x - 0.113 on the pressure iurface of -2*_

the blade for fln. = 48%, and 0.8, 0.86 and 46 ..
0.96 occurring at x n 0.07, 0.05 and 0.03 Z

on the suction surface for n- - 50", CACADE
52" and 5V" respectively. In each case NNACA 0 0.3

the mean flow stagnation point occurs 50 0.78

within 0.2% of blade chord downstream from 5 * 0.7

the leading edge. FLAT PLATE 45 0.68

Unsteady response predictions for the
NACA 0012 cascade are shown in figs. 6
through 9. Corresponding results are also
given in figs. 6, 8 and 9 for the flat-
plate cascade operating in a uniform I0 CASCAOE 0.. lm

steady background flow with M - 0.6, and NACA012 48" -0.16

are indicated by the dashed lines in these 62 -0.0o
figures. Unsteady pressure difference 5. _-o0.03

distributions and aerodynamic moments for \D. FLAT PLATE 4 -0.42

the NACA 0012 and flat-plate blades under- 4qV6

going unit-frequency (w - 1) torsional -
motions at a = 90' are shown in fig. 6. 0 -
In addition, the unsteady surface pres-
sures acting on the reference NACA 0012 \2.
airfoil for w = 1 and a a 90* are plotted 5"

in fig. 7 versus the square-root of the 0 0.2 0.4 0.6 0.8 1.0
distance along the chord to emphasize the x
surface pressure behavior near the leading
edge. The unsteady pressure is singular Figure 6. Unsteady response to torsional
and behaves like a multiple of x-1 / 2 near blade vibrations; M_. a 0.6, w - 1 . 0 , a
the leading edge of the flat plate airfoil a 90"s (a) in-phase component; (b) out-
(see fig. 6). In contrast, the unsteady of-phase component. - NACA 0012 cas-
pressure is analytic in the vicinity of cade; ----- flat-plate cascade.
the NAC?. 0012 leading edge (figs. 6 and
7). In this case both the real and imagi-
nary components of the unsteady pressure 1$
difference are zero at the leading edge
and reach local extrema very close to the f-'" - (a)
leading edge. The results in figs. 6 and , 4"

7 also indicate that for w a 1 and a - 90O 10 92-

the coupling between the steady and un- ,4,
steady flows, because of blade geometry
and mean loading, leads to a reduction in
the out-of-phase pressure differences
(Im(Ap(x)}) over the forward part of the
blade and therefore a reduction in the 4

moment opposing the blade motion.-- 0 o.

Unsteady moments acting on the refer- -.----

ence blades of the NACA 0012 and flat- - F

plate cascades undergoing unit-.frequency -5 6\ -
torsional vibrations are shown in fig. 8 -

for the entire range of interblade phase I , [
angles, i.e., -180' < a < 180%. The
abrupt changes in the moment curves are
indicative of an acoustic resonance at the
inlet and/or exit. The blade motions are ,IL.'_
superresonant at phase angles lying be- 0

tween the lowest and the highest resonant
phase angles and subresonant at phase
angles outside this range. The extent of
the superresonant region will increase -.

with increasing frequency and/or inlet 0 0.3 0.4 0.6 0.6 1.0

Mach number. The motions considered in
fig. 8 are stabley i.e., the out-of-phase Figure 7. Unsteady surface pressures due
component of the unsteady moment, !m~ml, to torsional vibrations of the NACA 0012
is less than zero and therefore opposes blades M-.., 0.6, u a 1.0, e * 90"1 (a)
thg blade motion for all valutes of o. in-phase componenti (b) out-of-phase
Hfovever, the results in fig. 8 indicate component. - suction surface, -----

that for a given a tht effect of an in- pressure surface.
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crease in men. blade loading (i.e., r_ . )
is usually deotabilizing for the NACA 0012 0.25 (8)
cascade, since the out-of-phase moment 0.5curves move closer to the stability bound- UNSTABLEary as the inlet flow angle A-. is in- 0 RE-G-ION
creased. In addition, the stabilt mar-STALE
gin at w - I is greater for the unloaded REGION
flat-plate cascade with n_. = 45* than it -0.25
is for the NACA 0012 cascade operating at E o..
the inlet flow angles reported -in fig. o.5
8. -0.5- 0.75

The effect of frequency on the out- 026 t.0.5
of-phase unsteady moment due to torsion -0.75
about midchord for the NACA 0012 cascade
operating at n_. a 540 and for the flat-14plate cascade with n-. - 45 * is illps- - .
trated in fig. 9. It can be seen that the
NACA 0012 blades experience a region of 0.25- b
subresonant torsional instability at w -
0.25, 0.5 and 0.75 and that the extent of UNSTABL
this region decreases with increasing C0 SE --

REGIONfrequency. The subresonant torsional REGION
motions of the flat-plate cascade are 0.75
unstable only at the lowest frequency -0.25 0.26
considered, w - 0.25. E-

- 0.5 .75-

1. (')1.
-1010-120 -60 0 60 120 180

a(dog)a-.- 46* 48
0.75 42 52* Figure 9. Effect of frequency on the out-

. . 6 4 of-phase component of the unsteady moment
.) due to torsional blade vibrations at

- 54"; (b) flat-plate cascade, n_. = 45%

0.26 - IIDCA Cascade

For a cascade of sharp-edged double-
0circular-arc airfoils the mean position of

the reference blade surface is defined by

-0.25 I , ,gn(H H +[ -_x_0.5)2]1/2

(b)) UNSTABLE

REGI ON for H± 0
SREGION 92'--: ,

-0.25 - 0, for H± - 0, (119)
E-. go.__- -

- .- " Iwhere 0 < x < 1, H is the y-coordinate of
92 the surface at midchord, R = HI-1 (H2.+

- - 500.25)/2 is the radius of curvature of the
-0.75 surface, sgn(H) - +1 for H > 0 and the

subscripts + or - refer to the upper or
lower surfaces of the blade. Here we
consider a cascade (with e a 45" and 0

-100 0 60 120 180 1) of 5t thick, flat-bottomed OCA airfoils
(i.e., H+ a 0.05 and H.. 0). Pull-poten-
tial steady and linearised unsteady flows

8iq9re S. Unsteady moments due to tor- through this example configuration have
sional blade vibrations at H_.. - 0.6 and been determined for prescribed inlet Mach
,u 1.0, (a) in-phase componenty (b) numbers (N14.) of 0.5, 0.7, 0.8 and 0.9.

'* oat-of-phase component. - MACA 0012 In each came the requirement (116) has
cascadel ---- flat-plate cascade, been imposed at blade leading (zero load-



1.2- upstream or supersonic side and 0.871 on
the downstream or subsonic side.

First harmonic pressure difference
1.0 distributions and aerodynamic moments for

the exaiple DCA and flat-plate cascades

operating at an inlet Mach number of 0.9
are presented in figs. 11 and 12, respec-

M 0.8

30

0.s)

20-

M0.4 os

I0.1

-10o

0.77 2..40.5
0.0 

1.80.

M M~ N
-10 0.1 ? -, R0

I 0.1 4.61 1.13
0.21 -20_______________________ 0.25 -1.4U 0.44

0 . .06 Oe. 0.6 -1.75 0.24
0 02 04 .6 .8 .00.75 -2.14 0.32x 1.0 -2.63 0.33

Figure 10. Steady surface Mach-number -30 -.-L I-_.
distributions for the example DCA cas- 0 0.2 0.4 0.6 0.6 1.0
cade: (a) auction surface; (b) pressure x
surface.

30
Ing condition) and trailing (Kutta condi- (b)
tion) edges in lieu of prescribing an
inlet flow angle and an exit Mach number 20
or flow angle, respectively. Numerical a
results for thls configuration and for a
corresponding flat-plate (H, w 0) con-
figuration are given in figs. 10 through 10
16. Those depicted in figs. 10 through 14 I.0
have been taken from Verdon & Caspar 0.1(1984). 0.

The predicted surface Mach number E 1.0distributions for the DCA cascade are

shown in fig. 10. For the prescribed
inlet Mach numbers stated above the calcu- -10
lated exit Mach numbers M. are 0.43,
0.57, 0.62 and 0.64, respectively. In
addition, the calculated inlet flow angles 20
(I.. are 49.0', 49.2*, 49.40 and__49.6, -.

respectively, and in each case the calcu- .! -5 ,-m
lated exit flow angle is approximately 0.21 -4.U -0I

0.5 -51 :0.2643.00, The steady flows at M_. a 0.5, M.- 0.1 -14 - 043
w 0.7 and M.. - 0.8 are entirely subsonic 1.0 -0.0• -0.41
with peak se-tion-surface Mach numbers of
0,561, 0.804 and 0.941 occurring at re- 0 0.2 0.4 0.6 0.8 1.0

spectively 40.0, 38.5 and 36.5% of blade
chord downstream from the leading edge. Figure 11. affect of frequency on theThe steady flow is transonic for M... - iue1. Efc ffeunyo hunsteady response to torsional blade
0.9 with a supersonic region extending vibrations for the DCA cascadet M.- a
from 16.5 to 52.5% of blade chord along 0.9, a . 10"s (a) In-phase component
the suction surface and terminating at a (real part) of the unsteady responsey (b)
shock discontinulty. The Mach numbers at out-of-phase component (imaginary part)
the foot of the shock are 1.193 on the of the unsteady response.
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0.1 ard 0.25 and superresonant for
0 -0.5, 0.75 and 1.0. The resulting differ-

ence in far-field acoustic-wave behavior
has a significant impact on the unsteady
response at the blade surface.

The effect of Mach number on the
response to unit-frequency in-phase (a -0 0) torsional vibrations of the DCA and

-0- R flat-plate blades is illustrated in figs.
0.1 1.63 13 and 14. These motions are superreso-
025 1.12 nant, and hence, acoustic waves persist in0I .a -0 .1 220.75 0.12 the far field and propagate away from the

- 1.0 0.15 blade row. For the flows at M_. - 0.5,
0.7 and 0.8 two such waves persist - one
upstream and one downstream. For the DCA

XI I I cascade operating at M_. - 0.9 three waves

persist - two upstream and one down-
2 )stream. Finally, for the flat-plate cas-

W mImI cade operating at M_. - 0.9 there are four
\ 25 0.1 -0. such waves - two upstream and two down-

i\0.s 0 -o.48 stream.10• 0:o.5 -0.44
"•1.0 -0.45 The pressure difference distributions

0.5•0. and moments reported for the DCA (fig. 13)
E 11 0and flat-plate (fig. 14) blades reflect

0-. this change in character of the unsteady1.0 flow in the far field; in that, the trends
indicated by the results for M_. - 0.5,

-10 L L 0.7 and 0.8 are not maintained at M. -
0 0.2 0.4 0.6 0.A 1.0 0.9. Also, a comparison of the OCA and

x flat-plate pressure-difference curves for
in-phase motions suggests that the influ-

Figure 12. Effect of frequency on the ence of mean-flow gradients on the un-
unsteady response to torsional blade steady response becomes more pronounced
vibrations for the flat-plate cascade;
M. - 0.9, a - 180": (a) and (b) as in
figure 11. 0

tively. Here the blades are undergoing
out-of-phase (; - 180*) torsional vibra- M_.lRemltions at different prescribed frequencies. 11-2.5 00.,. 0.32

As mentioned previously, in a discontinu- 0.7 o.31
ous transonic flow there are two contribu- 0.6 o.8 on

tions to the unsteady moment: cne arising 0.9 0.10

from the harmonic unsteady surfaoce-pres-
sure response and the other from the an- 5.0
harmonic surface pressures produced by()
shock motion. However, for the example
DCA cascade with M_. - 0.9, the mean shock
location is only slightly aft of blade 2.5
midchord, and in this case, therefore, the
anharmonic surface pressures produce rela-
tively small contributions to the unsteady
moments. 0

A comparison of the DCA and flat-
plate results depicted in figs. 11 and 12 -F
clearly demonstrates a dramatic impact of -2.5

nonuniform steady flow phenomena on the 0.1
unsteady response at transonic speedsv in M
that, the amplitudes of the harmonic pres- -6.0 U I-IT
sure fluctuations on the DCA blade surface V -W
become quite large near the shoc-k discon- eU '
tinuity. A second interesting feature,
illustrated by these results, is the -?.IF
change in the character of the pressure 0 0.2 0.4 0.6 10
difference curves and in the magnitude of X
the unsteady moments aS the blade vibra-
tion frequency Increases from 0.25 to 0.5. Figure 13. If fet of Mach number on the

94rhes* changes occur because the out-of- unit-frequency response to in-phase (a a
phase blade motions of the example DCA and 0") torsional blade vibrations for the
flat-plate cascades are subresonant for a DCA casoadet (a) and (b) as in figure

11,
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with Increasing inlet Mach number. The 1.0 ,
pressure-difference distributions for the (a)
DCA and flat-plate blades are very similar
for M_. a 0.5 and 0.7, differ somewhat for 0.5 - ---

-_. a 0.8 and differ substantially for M_. -...

0.9. The differences at M_. = 0.8 can
be attributed partially to the relatively m t
large gradients in the subsonic mean flow 0
that occur along the suction surface of
each DCA blade, while the substantial
differences at M_. - 0.9 are caused by -0.5
the transonic effects associated with the
DCA cascade.

0.5 - 1.0

o~s % o.

0.75 0.21

03 0.143
-5. 0.3 -0.07

I II I I

-180 -120 -60 0 60 120 180

5.0 (b) 6 (dog)
_ Impim Figure 15. Unsteady moments due to unit-

0.7 -0 frequency torsional blade vibrations at
0.g l-°'4 M_. = 0.7: (a) flat-plate cascade; (b)

2.5 a.9 -0.20 DCA cascade. ---- in-phase component;
-out-of-phase component.

E- -. 2.6 1.0 ..

(a)

0.5 -- 0.5

0 0.2 0.4 0.6 0.8 1.0 m 0

Piciure 14. Effect of Mach number on the
unit-frequency response to in-phase tor-
sional blade vibrations for the flat-
plate cascades (a) and (b) as in figure1 1. - .

Predictions of aerodynamtic moment 1.0 (b)
versus interblade phase angle for torsion-
al motions of the flat-plate and DCA cas- -%
cades are shown in figs. 15 and 16. The 0.5
results in fig. 15 are for a prescribed
inlet Mach number of 0.7 and those in •..
fig. 16 are for an inlet Mach number of M 0 N -
0.9. The unit-frequency torsional motions
of the two cascades are stable (i.e.,
Ir(m) < 0) at both inlet Mach numbers. -0.5
Those angles at which an acoustic reso-
nance occurs are Indicated by the arrows
at the top of each figure. For the un- - _.____, ______

loaded flat-plate cascade the same reso- -180 -120 -00 0 80 110 11I
nonce conditions apply at inlet and exitr
however, quite different conditions apply
for the ICA cascade because of the differ- Figure 16. Unsteady moments due to unit-
onces between the inlet and exit mean-flow frequency torsional blade vibrations at

properties. Thus, for example, for the M_, a 0.91 (a) flat-plate caScadel (b)
flat-plate blades operating at MI. a 0.7 DCA cascade. ---- in-phase component!

- out-of-phase component.
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and 11.. , 45" one acoustic wave propagates LIMITING FORMS OF THE GOVERNING EQUATIONS
away from the blade row in both the up-
stream and downstream regions when -29.4 in this section limiting forms of the
•< c < 107.3. The situation for the DCA foregoing aerodynamic equations will be
cascade is slightly more complicated, determined for cascade flows in which
Here M_ - 0.7, 0-. - 49.2", M. - 0.57 steady departures from a uniform upstreamSand n. - 43%, and one acoustic wave propa- condition can be regarded o- small. One"gates away from the blade row in the far- purpose here is to demonstrate that theupstream region if -28.2' < a < 111.6, steady and unsteady equations derived

Sand one such wave exists in the far-down- above can, for the most part, be reduced
N stream region if -29.7" < a < 74.8% The to the familiar small-disturbance equa-

moment curves for the two cascades in fig. tions of inviscid aerodynamic theory (see
15 show similar trends with interblade Miles 1959; Landahl 1961; Ashley & Landahlphase angle except over range in which 1965; and Tijdeman & Seebass 1980). This
different far-downstream acoustic-wave- demonstration will also provide a conveni-
propagation characteristics exist, i.e., ent opportunity to discuss several of the

* in the approximate range 74.8* < a < important theoretical analyses that have
107.3. At the higher inlet Mach number been developed for turbomachinery aero-
the trends exhibited by the flat-plate and elastic applications. We assume that the
DCA moment response curves are quite dif- blades and their motions produce only
ferent over the entire range of interblade small and very small disturbances respec-
phase angles. These differences occur tively in an otherwise uniform flow and,because the mean flow through the flat- for simplicity, that self-excited blade
plate cascade is purely subsonic while motions are the only source of unsteady
that through the DCA cascade is transonic excitation. The equations governing the
with a shock discontinuity, and also be- steady and unsteady disturbances are
cause of the substantial differeri- be- usually derived by starting from the full,
tween the exit Mach numbers for the two time-dependent governing equations; but
cascades. Recall that M. is 0.9 for the here we proceed from the steady and lin-:1 flat-plate cascade and 0.65 for the DCA earized unsteady equations which have been
cascade which implies that the two cas- provided in the previous sections of this
cades operate in very different far-down- chapter.
stream acoustic environments over almost
the entire interblade phase angle range. Preliminaries

The foregoing numerical results have Consider two-dimensional flow through
been presented to demonstrate several a cascade of thin airfoils (fig. 17)
important features associated with un- undergoing identical small-amplitude har-
steady linearizations relative to nonuni- monic motions at frequency w but with
form mean flows. These include the abil- constant phase angle a between the motion

* ity to predict: (1) unsteady pressures in of adjacent blades (c.f. (28)). The uni-
the vicinity of a blunt leading edge and +
the effects of mean incidence on unsteady form inlet flow velocity V_.. tx is
Aaerodynami response; (2) steady and un- directed along the positive x-axis. Fur-

INproperties in the vicinity of a ther, blade mean positions lie mainly
Snormal shock and the displacement of this along and are defined relative to chord

' 61' shock along the blade surface; and (3) the
effect of blade lo&ding, i.e., a differ-
ence between the inlet and exit free-
stream conditions, on the unsteady re- A-• -
sponse at high subsonic inlet Mach number. -, -'t

These results are indicative of the pro- ,
gress that has been achieved during the - x

apast decade on the numerical resolution of
two-dimensional steady and linearizedunsteady cascade flows as well as the y-I+(x)
limitations of current numerical-solution 4
methods.

Important advances in numerical field
methods are still required to meet the y-T_(x)
goal of providing engine designers with
reliable and efficient unsteady-aerodyna-
mic prediction schemes which can be ap- -- -

plied over a wide range of operating con-
ditions. In particular, such schemes V4
should be applicable to fan, compressor / 0
and turbine cascades operating in low
subsonic through low supersonic flow re-
gises and subjected to various types of

014 unsteady eXcitations occurring over anFgure C?. Cascade of thin-airfoilsb rrundergoing small-aplitude motions normal

to the free-stream (or x-) direction.



lines which are parallel to this axis, and and

their unsteady displacements are normal to an(
it. Thus (see fig. 17), the instantaneous •B(x) ; t g x t + "" (124)

ln:7ation of the reference (m 0) blade is
g-lvei. oy

where 6x and 4. are unit vectors directed
in the positive x- and y-directions and

S(x,y,t) yt(xtt) ft(x} the prime signifies differentiation with

ff iwt .respect to x. In addition, the complex-
- Re1 ft(x)ei t• 0 amplitude of the reference blade displace-

ment vector has the formfor 0 < x < 1, (119)

where the subscripts + and - refer to the stB W M agt(X)hy. (125)
upper and lower surfaces of the blade. We

set ft(x) - a t(x) and f±(x) W- ag(x),
where 0 < 8 << 1 and 0 < 6 << T are char-

s lAfter substituting (121) through (125)acteristc lengths measiuring the proJec- into the steady (46) and unsteady (70)
tion of the mean airfoil surface on the y- flow tangency conditions for the referenceaxis and the amplitude of the unsteady blade (m a 0) and referring the resulting

displacement, respectively, and the shape blade Cd the resulting
functions §±(x) and gt(x) are smooth with
x-derivatives of order unity everywhere
along the chord.

Under the foregoing assumptions it is
reasonable to expect that the flow, except for y a ±0, 0 < x < 1 (126)
in smalV regions near the leading and
trailing edges of each blade aad near and
shocks, can be described by a velocity Ai1g± + g±
potential of the form Y A

for y - ±O, 0 < x < It (127)
;(x,y,t) - #(x,y) + Refo(xy)ei't} + ... we- -

S(120) where the subscript ý indicates partial

differentiation with 'respect to ý and ±0
where denotes the limit y + 0 from above or

below. It follows that
*(x,y) - x + -(xy) x + e#l(x,y), (121)

y - 0(5/r) - 0(6/c) (128)#(x, y) 4 €•(X,;) (122)

for the expansion (120-122) to be meaning-
ful.

and F << 1 and e << i are positive func-
tions of 8_and 6, respectively, such that Similarly, upon substttuting (121)
c + 0 as 6 + 0 and e + 0 as 6 + 0. In and (122) into the steady, (44) and (45),
addition, the coordinate scaling NY - y and the linearized unsteady, (63) and
has been introduced and it is assumed that (68), field equations and neglecting terms
#1 and #1 and their derivatives with that are definitely small, as 6 << 6 + 0,
respect to x and ý are of order unity. compared to those retained, we are able to
The relative magnitudes of the parameters determine tho following approximate equa-
1, 6, c, 6 and e will be determined from tions for the emall-disturbance steady andthe boundary conditions at the reference unsteady flowst

blade surface and the differential equa-
tions governing #1 and #1. (t4_.A)2 ; (Y-') _ (•.M2 p (y-1)/

Equations govbrning the steady and
the linearized unsteady potentials have . 1"r(y-1)M2 flx' (129)
already been derived for a fully nonuni-
form mean flow. We now seek consistent
approximations to these equations for ( 11M)2 r1.M2. -(Y+1)M

2 ai]•i
flows in which the steady and unsteady
departures from the urniform stream V.. are + 01; ,(1)

regarded as small and very small, respec-
tively. In this case trw unit tangent and
normal vectors to the mean reference blade p + -e(iu ÷ (131)
surface are given by

a( ) I 94 8 ' * *." (123 ) and
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Itcy&)2 (1-M2 - Ilx]$lxx cations. In this approximation first-
order steady and unsteady disturbances are

"+ - 21wM!. independent of each other and can be re-yy 1x garded as being of the same order of mag-
nitude (i.e., 6 - O(T)). Thus the linear-"_(;3/j2)M!- [21-;lx + (Y+l);ixx]#lx ized unsteady flow is identical to that
produced by a vibrating flat-plate cascade

+ w2M4 " *2 in which the blade and wake mean positions
are aligned with the free-stream flow.

-i(The following equations govern the harmon-
--1),Ixx - 0. (132) ic unsteady disturbance:

The important nondegenerate forms of the
differential equations (133) and j132) are (DE) (I - + Myy + 21wM! #x.• ~obtained if either (c/i)' 1--.1~ and w 1H-

are all of order 1; or (c3/62) is of order + W2M2 # - 0; (133)SI and I 1-M-.1 and w are both of order T.
In the first case the equations of class- (FT) #y m f+ + 1 (134)
ical linearized subsonic or supersonic(a 0

flow theory are recovered; in the second, (W) 4y]= 0 (135)
those of time-linearized transonic flowStheory. and

The resulting equations are given
below in terms of the original variablesf, 4, a and y. The differential equa- [.] [4] TE exp[ i. (x-l) (136)

tions (DE) and flow tangency conditions
(FT) follow from (130), (132), (126) and
(127); the wake-and shock-jump conditions (ShJ) 0 -2

(WJ) and (ShJ) and the surface pressure
relations (SP) follow after the foregoing +sh y] 0 (137)
small-diaturbance scalings are introduced
into the corresponding nonlinear steady and
and linearized unsteady relations derived
in this chapter. Note that steady and (dx/dy)sh [#x]+[#y]-0; (138)
unsteady fluid properties must satisfy the
periodicity conditions (36) and, (37), and and
thus it is sufficient to state surface
conditions only for those surfaces associ- (SP) p - -(#X + iw+). (139)
ated with the reference blade. Also, to
within the order of approximation used
here, the flow tangency, surface-pressure The corresponding steady-disturbance equa-
and wake-jump relations can be transferred tions can be obtained from (133) through
to a flat-mean surface representation (139) by simply setting w - 0 and replac-
(i.e., the x-axis) of the steady-state and ing #, f and p by F, f and • - P-P.. - P-
instantaneous reference blade and wake (YM2.)"l.
positions. Thus the flow tangency condi-
tions and surface-pressure relations apply Weak oblique shock (or Mach) waves
on the line segments y = t0, 0 < x < 1, occur if M_. > 1. These shocks, which
and the wake-jump conditions apply on y - emanate from blade leading and trailing
0 for x > 1. The shock-jump conditions edges, and their reflections off neighbor-
apply at the mean positions of the ing blades, lie on the characteristic
shock(s) and shock reflection(s) that lines x ; (M!. - 1)1/2 y - constant, and
originate at the reference blade. In each therefore they remain stationary in the
case below the first shock-jump relation classical linearized approximation. Be-
follows after relations based on the mass cause of this, and if we exclude the phys-
conservation and irrotationality condi- ically unrealistic situation of an impul-
tions are combined, while the second rela- sive change in velocity along a blade
tion follows from the irrotationality surface, the steady and unsteady distur-
condition alone. In addition to the sur- bance potentials will be continuous across
face conditions, the small-disturbance the shocks. Finally, it in worth noting
equations must be solved subject to the that response phenomena associated with
requirements that disturbances must either incident vortical and acoustic excitations
attenuate or propagate away from or paral- are easily incorporated into the classical
ll to the blade row in the far field, formulation (133) through (139). In par-

ticular, it is only necessary to add terms
Classical Linearized Theory to the right-hand-sides of the flow-tan-

gency equation (134) and pressure-poten-
The classical linearized equations tial relation (139), which cancel the

apply at subsonic (H.. < 1) or supersonic normal velocities induced at the reference
(4 1) Inlet Mach numbers and at the blade surfac.c by the Incident waves and

vibration frequencies of Interest (i.e., w account for Lhe pressures due to incident
001)- o ( 6r turbomachLnery flutter appli-
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acoustic waves, respectively (see small compared to those remaining. Hence,
Whitehead 1970 or Smith 1971). this term can be formally neglected to

recover the linearized equation of high-
Over a period extending from the late frequency unsteady transonic flow theory

1960s through the 1970s, a significant (see Landahl 1961). Surampudi & Adamczyk
level of research activity was focused on (1984) have recently developed a Wiener-
the development of semi-analytic solution Hopf solution technique for the resulting
procedures for the classical linearized unsteady cascade boundary-value problem.
equations. This work (see the introduc- With this procedure they have determined
tion to this chapter for a partial list of analytical results that are in agreement
references) has resulted in the availabi- with classical subsonic results for M_. a
lity of very efficient solutions which are 0.9 and classical supersonic results for
now used extensively in turbomachinery M_ - 1.1. Hence, their unsteady tran-
flutter and resonant stress design predic- sonic analysis may bridge the gap near M,
tion systems. The development of super- - I between separate subsonic and super-
sonic methods was motivated by the occur- sonic unsteady cascade analyses.
rence of so-called "supersonic unstalled
torsional flutter" in the fan stages of Finally, Goldstein, Braun and
modern high-bypass ratio jet engines. Adamczyk (1977) have provided an analysis
This type of flutte, occurs at design of unsteady flow through a supersonic
operating conditions and therefore imposes cascade in which a strong normal shock
a limit on the high speed operation of the appears in each blade passage. These
machine. Unsteady supersonic solutions shocks extend frow the lower surface and
for unloaded flat-plate cascades operating near the leading edge of each blade to the
at supersonic relative but subsonic axial upper surface of the adjacent blade below.
inlet velocities have been found to give The resulting flow configuration approxi-
conservative estimates for the onset of mates that observed in the tip region of a
supersonic unstalled torsional flutter, loaded supersonic fan rotor.
and have therefore provided engine design-
ers with an effective means for predicting The free-stream flow upstream of the
and controlling its occurrence. This normal shocks is supersonic, w'th subsonic
capability has proved to be one of the axial velocity component, while that down-
most significant practical benefits gained stream is subsonic. Away from the shocks,
from the use of theoretical. unsteady aero- the steady and unsteady disturbances pro-
dynamic prediction methods. duced by the blades and their motions are

regarded as small, relative to the uniform
Related Theories supersonic and subsonic free-stream flows,

and independent of each other. The flow
Modifications to the foregoing clas- upstream of the strong normal shocks is

sical formulation have been -groposed to irrotational, while the unsteady flow
treat separated subsonic flows, hiqh fre- downstream contains both a rotational as
quency transonic flows and transonic well as an irrotational component. The
(i.e., supersonic inlet/subsonic exit) upstream supersonic and the downstream
flows containing strong In-passage shocks. irrotational subsonic unsteady flows are
In the flow-separation model (Perumal determined as solutions of the classical
19761 Chi 1980) the flow is assumed to linearized supersonic and subsonic equa-
separate at a prescribed point on each tions respectively, and the unsteady irro-
blade suction surface. The only change tational and rotational solutions in the
required in the foregoing unsteady formu- subsonic region are connected to the un-
lation to accommodate this separation is steady solution in the supersonic region
the Imposition of a constant surface-pres- through jump conditions which are applied
sure condition, in lieu of the flow tan- at the normal shocks.
gency condition (134), on the suction
surface of the reference blade from the Analytical predictions based on this
point of separation to the trailing edge strong-shock model indicate a greater
(i.e., on y - +0 for x e < x < 1). Solu- torsional stability margin than those
tions based on this modPel-(see Chi 1980) based on the completely supersonic model.
have been found to be in qualitative This result is consistent with experimen-
agreement with experimental measurements tal observations of an increased super-
of unsteady lift and moment Nnd they tend sonic torsional stability margin when back
to predict observed flutter In fans in pressure is increased. In addition, the
cases where subsonic attached-flow analy- analytical results indicate the occurrence
ses indicate stability. Thus, although of pure bending flutter at lower frequen-
this simp!e flow-separation model ignores cies. This flutter is partially attri-
many of the complicated features of un- buted to the destabilizing effect of the
steady separated flow, it may contain an concentrated shock loads, and It has not
essential mechanism for the occurrence of been revealed by purely supersonic analy-
subsonic flutter in cascades of thin high- ses.
ty-loaded blades. Time-Linearised Transonic Plow Theory

For free-st *am Mach numbers close to
one (i.e., I11-0,1 - O(E) << I) the first The time-linearited transonic small-
term in the differential equation (133) is disturbance approximation applies formally

-r A~
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at free-stream Mach numbers close to one and
aind at low vibration frequencies. Here
9,ýeady and unsteady disturbances are as- [#] -r [;x] (152)sumed to be small and very small respec- 1
tively relative to the free-stream flow. and
The steady disturbance potential is deter-
mined by a nonlinear field equation, and (SP) P + X- (x,t) =-iw. (153)
the harmonic unsteady disturbance poten-
tial is determined by a linear equation
with variable coefficients which depend on Here the symbol < > denotes the average
the underlying steady disturbance field, value of a quantity at the shock, rx is
The following equations govern the steady the shock displacement in the free-stream
and unsteady transonic disturbances: direction and the anharmonic shoc% load

5A is evaluated in the manner indicated
Steady equations by equations (98) through (100).

(DE) [1 -!. - (Y + 1)M!. Tx];xx Two features of the foregoing tran-
sonic equations require further comment.

+ ;yy u 01 (140) First, the terms on the right-hand-sides
of (147), (148), (150) and (153) are for-

., mally of higher order than those on the
(FT) *y - , (141) left. Hence, the former should be elimi-

nated for a strict observance of the
transonic order -of-magnitude analysis.

(WJ) [*yJ" 0 (142) However, these terms are often retained in
time-linearized transonic approximations

and in an attempt to extend their range of
application to include moderate vibration

[L - [L TO (143) frequencies (see Fung, Yu & Seebass
1978).

(Sh) [I 2M!.. <;x>] [;] Second, the jump conditions (144) and

- X .X (151) have been derived by enforcing the

0 (144) mass conservation law at shocks. However,
-;j (cx/)Sh 0 (14) these conditions differ from those usually

and imposed in time-linearized transonic
analyses because the latter are derived

Sfrom a different conservation requirement.
[;x] (dx/dy)Sh + LyJ - 0 or LJ 01 In particular, the steady and time-linear-

(145) ized unsteady shock jump conditions are
usually derived from a conservation law

and based on the nonlinear transonic small-
disturbance equation; i.e.,

(SP) P - P..- *;x. (146)

, - M!. - (Y+,)M. ;*l;xx + #yy
Unsteady Equations 2 M2 M2 [;tt + -;xt

(OD ) (1 - M2 - (Y + 1)M2 Fx]'xx + #* xt

"- 2iwM2 #x " (r + 1)M2 ;xx~x + cY-');t.xx1 (154)

where ;(x,y,t) is the time-dependent dis-
ig.M2 (2;xx - (y - 1)fXx#l -w 

2M2.l turbance potential. The resulting jump
conditions (see Hafez, Rizk & Murman 1977

(147) and Ehlers & Weatherill 1982) are

(,T) #y - f; . i.f±, (148) (1 - ._ - (y+1,)M <;x>] [;x]

,J, [,J .0 €(149) [;y] (dx/dy)5h - 0 (155)

and and

[,..(5)(I[ (150) t, - .2 + (dx/dy)h, 1 [ + ,,;,,1

-i.. [;r(,x + -x;x [],,hJ+,I, M.L * (dE/dy)BhJ [,x]
(S I -042 a+M LzxI) 1h] [4[x] + 2 [;X] (dx/dy)ih drx/dy

-(151)• [; ".,.. [21, N!.101
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respectively. Equations (152) and (156) blade, shock and wake surfaces and along
are the ones usually imposed in the time- axial stations placed at finite distances
linearized transonic approximation to upstream and downstream from the blade
determine the jump in the unsteady poten- row. The unsteady equations are linear,
tial at the mean shock location and the time-independent and contain variable
shock displacement in the streamwise di- coefficients which depend on the underly-
rection. ing steady flow. These equations can be

solved sequentially to determine the en-
Numerical field methods for solving tropic, vortical and velocity potential

the transonic small-disturbance equations fluctuations throughout a single extendedhave received extensive development since blade-passage solution domain. This solu-
the early 1970s. In particular, time tion then provides the necessary informa-
(Fung & Yu & Seebass 1978) and frequency tion to predict the unsteady responses at
(Ehlets & Weatherill 1982) domain finite- a blade surface (surface pressures, rela-
differtnce methods have been determined tive shock displacements and global un-
for time-linearized transonic flows, with steady airloads) and in the far field
movinc shocks, around isolated airfoils. (outgoing acoustic waves and convected
Unforcunately, such developments have been entropic and vortical disturbances) which
directed primarily toward external aero- arise from prescribed unsteady excitations
nautical applications and solution methods (self-excited blade motions and incident
fer cascade flows are only beginning to entropic, vortical and acoustic distur-
appear (see Kerlick & Nixcn 1982; Vogeler bances).
1984; He & Zhou 1984). It should be
noted, however, that the large mean-flow The intention here has been to pro-
gradiants and high-frequency unsteady vide a relatively complete linearized
fluctuations typical of transonic flows in inviscid unsteady aerodynamic formulation
turbomachines may limit the usefulness of for isolated two-dimensional blade rows
the time-linearized transonic approxima- which could serve as a basis for future
tion for turbomachinery aeroelastic appli- research on the development of numerical
cations. solution methods and more comprehenriveSlinearized aerodynamic formulations.

However, a number of issues still persist

CONCLUDING REMARKS relative to the two-dimensional inviscid
problem, which require further study and

In this chapter we have outlined the clarification. A partial list includest
importance, complexity and variety of the the approximation of strong shock behavior
unsteady flow phenomena occurring in axi- within a potential mean-flow formulation;
al-flow turbomachines, the major assump- the prediction of oblique shock motions;
tions used in theoretical aerodynamic the inclusion of closed form expressions
formulations intended for aeroelastic for the linearized entropy and rotational
investigations, and the requirements velocity fluctuations in the unsteady
placed on such formulations. Because of formulation, and the determination of
their extensive development for aeroelas- useful analytical representations for the
tic applications, the emphasis here has unsteady potential in the far field at
been placed on the description of linea- transonic (M - 1) and supersonic free-
rized two-dimensional unsteady aerodynamic stream Mach numbers.
theories and, in particular, on the deri-
vation of a rather general linearization Numerical results have been presented
which fully accounts for the--effects of in this chapter to demonstrate several
blade geometry, mean blade loading and important effects, associated with nonuni-
shocks and their motions on the aerodyna- form steady flow phenomena, on the linea-
mic response to prescribed structural and rized unsteady response at a moving blade
aerodynamic excitations. The equations of surface and, to some extent, the current
classical linearized subsonic or superso- status of numerical solution methods for
nic flow theory and, for the most part, steady and linearized unsteady cascade
those of time-linearized transonic flow flows. It is again to be emphasized that
theory have been recovered as special significant improvements in such methods
cases of this general linearization, are required before reliable and efficient

linearized unsteady response information
In the more generel theory, the un- can be provided for the wide rang* of

steady flow is regarded as a small-ampli- geometric configurations and flow condi-
tude harmonic perturbation of a nonuniform tions of interest to turbomachinery de-
isentropic and irrotational steady flow. signers. Some needed capabilities include
Thus steady-state values of the fluid the ability to predict transonic flows
properties are determined from the solu- (i.e., subsonic flows with embedded super-
tion of a nonlinear boundary-value problem sonic regions) through fan and compressor
containing only a single differential cascades operating at high mean incidence,
field equation (i.e., the full-potential supersonic flows with complex moving shock
equation). The boundary-value problem for patterns, and the high-frequency unsteady
the linearized unsteady flow contains a flows associated with Incident vortical,
system of three differential field equa- entrople and acoustic disturbances.
tionas. In both problems boundary condi-
tions are imposed at the mean positions of An important step has been taken
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recently to assist in the validation of ability to predict turbomachinery aero-
the results of future theoretical and elastic behavior should result if future
experimental unsteady aerodynamic research research is directed toward including, in
programs. This concerns the establishment a rational manner, the effects of viscid/
of a theoretical and experimental data inviscid interactions and large-scale
base for a series of nine two-dimensional flow-separations within a linearized un-

and quasi three-dimensional standard cas- steady aerodynamic framework. Ultimately,
cade configurations. The reader is refer- linearized analyses, which account for
red to the reports by Fransson & Suter nonuniform steady flow and, perhaps, via-
(1983) and Fransson (1984) for detailed citi/inviscid interaction phenomena should
information on this effort. Hopefully, it be extended to treat three-dimensional
will be continued and expanded upon in the unsteady flows.
future.
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CLASSICAL TWO-DIMENSIONAL METHODS

"by

D.S.Whitehead
Whittle Laboratory

Engineering Department
Cambridge University

Adingley Road
Cambridge CB3 OEL

UK

INTRODUCTEON In this chapter no attempt is made to
show how the theory has been built up by

This chapter presents some solutions many authors over several decades.
of the basic equations derived in the Here, only references to primary
previous chapter using methods which have sources will be quoted. During the
become rather widely used and accepted. earlier part of the chapter many of
The flow is assumed to be two-dimension- these references are to the work of the
al, reversible, ani isentropic. The author of this chapter and his students,
methods rely on being able to build up and this calls for some apology. But it
the required flow from simple analytical was felt that only in this way could this
solutions, and this can be done if either author give a reasonably connected ac-
the fluid is incompressible or if the count of the theory. There are many
flow contains only small perturbations of other equally valid ways of presenting
a uniform flow. In the latter case the the material, and the literature is sub-
blades are assumed to be flat plates stantial.
operating at zero incidence, so that the
effects of camber and thickness cannot be UNSTEADY THIN AEROFOIL THEORY, BOUND AND
treated. FREE VORTICITY

The notation used is essentially the Consider a cascade of flat plates
same as was used in the chapter operating at zero incidence (Figure 1)
"Linearized Unsteady Aerodynamic Theory" so that the unsteady effects are small
by J. Verdon. But the technique of making perturbations of a uniform flow. There
all variables dimensionless, by scaling is a jump in vx across each blade, and
with respect to the blade chord (c) and the blades are therefore equivalent to
the far upstream velocity (V., will not vortex sheets. If Yt is the total
be used in this chapter because it is strength of the vortex sheet
felt that in this context there is a gain
of physical understanding by working with yt - Vx-'Vx+ (1)
the dimensional variables, w is there-
fore the angular frequency of vibration where the - and + suffices refer to
in radians per second, and a non-dimen- lower and upper surfaces of the blade.
sional frequency parameter X will be
used, given by A a wc/V. . In the The total circulation round the

linearized theory the symbol U will be o
used as an alternative to V, • blade is I yt dx , and since this.

0

C x

Fig. , Notation.

fly r



varies sinusoidally with time there will + 3 e iWt
be a vortex sheet shed from the trailing at + U X+){Vx_ - Vx+e
edge which is convected downstream at the
mainstream velocity, U . 13 it

*i(P-- P+) ei
The whole flow may be considered as

being due to the vorticity which replaces £ dc ei~t
the blades and their wakes. The essence - {iw(y+c) + Ua + U dx
of the thin aerofoil theory is to find
what vorticity distribution will give the U eitt
correct upwash velocity so as to satisfy dx
the boundary conditions at the aerofoil
surface and in the wake. from Equation (4).

Although it is perfectly legitimate Integrating, and noting that the
to regard the total strength of the constant of integration is zero since
vortex sheet yt as the primary vari- both y and (p. - p+) are zero off the
able, there is another way wbi±.h is in blade
practice more convenient. Consider an (p. - p+) - -,UY . (6)
element of bound vorticity y(x-)-6x eiwt
at a point (x,o) on the reference aero-
foil. Since the strength varies sinu- It can now be seen why bound
soidally with time, there will be a sheet primary variable than total vorticity
of free vorticity e eiwt shed from the pm var e t to vorticityelement and extending far downstream. Yt • In the wake y is zero whereas Yt
Durieng and smltimen intarvl d strea. is not. Also, in subsonic flow a KuttaDuringtha of smallthe elementervalof tboundthe condition is applied so that (P_- P+) isvorticty changes by an emount zero at the trailing edge, and thereforey is also zero there. In addition, the

r(x) ax eidt iW at force and moment on the blade are readily
obtained from y

This is equal in magnitude and opposite c (
in sign to the free vorticity appearing f f (p- +) dx ;U f ydx (7)
in the time 6t, during which the shed y 0 o
sheet moves back a distance U at. and
Hence just behind the element of bound
vorticity, the strength of the sheet of c c
free vorticity is m -f (p_- p xdx -u f yxdx . (8)

Y(x) ax eiwt iw at Since bound vorticity is equivalent
- to pressure jump across the blade,U6t theories presented in terms of pressure

Since the whole sheet of free dipoles, or dipoles of accelerationvorticity moves back at the speed, U potential, are formally equivalent tothe strength at (ac 0 O) s d theories presented in terms of bound
vorticity.

C(xl) eiwt - If an element of bound vorticity
(2) y(x) dx at the point (x,O) on the

+ reference blade is considered, together
y(x) 6x e t (x-xU)iU). with corresponding elements on all otherblades, and also the sheets of free

of vorticity shed from all these elements,At the point (x c 0) the sheetfo then the velocity in the y directionfree vorticity gets contributions from induced at the point (x',O) may be
all the elements of bound vorticity up to written
that point. Hence

SI .wxxi I X,.-

wx1 ) If y(x) ei0 (X-X)/Udx. (3) v (x') * K ( )y(x) dx • (9)X U- 0y

Integrating for all elements along
Multiplying by eiwXi , differ- the chord

entiating with respect to x, and
simplifying gives

devX') fo j K (X X)y(x) dx ( (10)
+ (y+) -0, 0(4)

The evaluation of the kernel fune-
or tion K will be the main concern of the

nbxt six sections, but for the present it
de + may be assumed to be known.

The upwash velocity v (x') is also
since the total vortiity yt is given by known. There are two tases of main

I ainterest.
For bending vibration normal to the

VrItLnq the linearised x momentum choMd, if the blade displacement is
equation for a point just below the h * then velocity must match the up-
blade, and for a point just above the wUsh velocity, so that
blade and !ibtracting gives
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V(W) ihy hy •iThis may be written

r
Bending vibration parallel to the chord vy -0 VX ) (13)
has no effect in thin aerofoil theory. Y c c

For torsional vibration of the where
blades about the origin at the leading
edgge, if the angular displacement is V(z) • e mO (z - m sine s/c)
a eitt (anticlockwise positive), then the 2 =-'(z-m sines/c)2+(m cos2s/c)2velocity normal to the blade at a
distance x' from the axis is

(V W) - aU) eiwt . d iwt This series can be summed analyti-

y cally. The result for 0 < a < 2 w is

Hence

V(z) (14)
v Wx') = a (U + iwx') (12)

c exp{- (w-0)(cose + isine)zc/s + ie)
There are other upwash velocity 4s sinht( (cose + isin0)zc/s)

distributions which are often ofinterest, due to incoming acoustic waves
and incoming vorticity waves. - These +
waves are considered in the sections a - ie}
"Fundamental Acoustic Wave Solutions" and 4- sinh[• (cose -sine)zc/s}
"Vorticity Wave Solutions".

In Equation (10) therefore the vy The case of zero phase angle is
function and the K function are known. special because a row of unsteady vor-
Equation (10) is therefore an integral tices produces non-zero induced veloci-
equation for the unknown bound vorticity ties far upstream and downstream. In
distribution y . It will be solved order to deal with this case, and have
numerically by specifying y at N zero induced velocity far upstream of the
suitably chosen points along the chord, row of vortices, it is necessary to re-
and then making the upwash velocities place V(z) by {V(z)-V(--)).
match at N other suitably chosen
points. More particulars of a solution
procedure will be given in the sections Equation (13) may be used to evaluate
"Solution for Subsonic Cascade" and the upwash velocity induced by both the
"Solutions for Supersonic Cascade", but elements of bound velocity ydx, and
first the calculation of the kernel also the corresponding sheets of free
fun,:tion will be considered. vorticity given by equation (2)

KERNEL FUNCTION FOR INCOMPRESSIBLE FLOW .(x '-x•

If the fluid is assumed to be c c

incompressible, the velocities induced
by vortices may be calculated by the -
Biot-Savart law. The vy velocity in- Uc cx
duced at the p~int (x' , 0) by a vortex
of strength rm e1wt at the point (xm, yi)
is Comparing this with equation (9) and

r (x' - x) rearranging gives
v ?0q m ______
v• 2 y2

bladea has -m + K(z) = V(z) - iXe-ixz eiXzi V(zi)dz1

If the vortex on the reference
Sblade at (x ,) has strength r 0 , then
the strength of the corresp:,nding vortex where X - wc/U is the frequency para-
on the mth blade is given by meter. This is the required expression

for the kernel function in equation (10).
rm = r eim° The first term gives the effect of the

0 bound vorticity, and the second term

S iidgives the effect of the shed sheets .fwhere CT is the inter-blade phase free vorticity.
angle. The position of this vortex is
given by

This is as far as the incompressible
Xm ms sinO + X solution will be taken, since it is

regarded as having been superceded by the
Ym - me cos 0 • methods for subsonic compressible flow.

4 Techniques for solving the integral
Summing the effect for al- blades equation will be discussed in the section

givee "Solution for Subsonic Cascale". A series
method for evaluating the infinite

mc, ,•integral in equation (15) has been given
r 0 e x,' - x - ms sine) by Whitehead (1960).

Y (x'-x-ms sino)2+(m, co"O) 2
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FUNDAMENTAL ACOUSTIC WAVE SOLUTIONS or

The equation governing the unsteady AS (24)velocity potential for small deviations - ± 2)from a uniform mean flow has been derived
in the previous chapter by Verdon (equa- then the waves are just on the verge oftion 133) and is propagating. This is known as the "cut-

_A •2 off" or "resonance" condition.!4- 2) 0+ iM +_ ,
ax 2  ay2  A ax A2  In order to apply the boundary condi-

tions correctly it is necessary to deter-
where x and y are measured parallel mine the direction in which the propagat-
and perpendicular to the mean flow. ing acoustic waves carry energy. To do
Referred to the axial and circumferential this it is convenient to consider axes
axes, cocrdinates • and n , this O&'n' , which are parallel to the O~n
equation becomes axes, but which move with the mean velo-

city of the fluid. Relative to these
211ý +2 (_2 &na 2ý axes, the wave propagates at a speed A 0
3&2  na 2  Baan and at an angle * as shown in Figure 2.

The velocity potential is therefore of
-2 {M •2 the form-2 ( A+M A (16)

where eiw'(t cos*/A - 'sin*/A) (25)

M c M Cos 8, where w' is the intrinsic frequency, thefrequency seen by an observer moving with
and Mn M sin 6. the fluid. Note that the angle * gives

the inclination of the wavefronts, and is
The required solution is of the form not the direction of energy propagation

relative to fixed coordinates.# =@ i~ Sn B) (17)
On switching to fixed axes, E - +

where a and B are the wave numbers in M At, n - n' + MeAt , so that the poten-
the axial and circumferential directions. tfal is

!Substituting this in equation (16) * eiwt = * ei(wt + at + On)gives give ei{(( + aMcA + OMNA)t + W• + On')
.s2 + 2 _ (sN + 8Mn + w/A) 2 

= 0 . (18)
Comparing this with equation (25) gives

The solution being looked for has a
phase angle a between any blade and its w' - w + aMtA + OMnA , (26)
next above neighbour, so that all vari-
&bles are multiplied by exp(io) on a - - w'cos*/A , (27)
going a distance s in the circumferential
direction. Hence 8 is always real and 0 - - w'sin*/A • (28)is given by

yIf a and are eliminated from these
0 - (0 - 2sr)/s (19) equations the result is

where r is any integer. W, - uE/{l + M Cos (0-*)) • (29)

This equation bhows that in subsonic flow
Equation (18) is then a quadratic w' is always positive, but that in super-

equation for a , and the solution for sonic flow there are some directions of
a is wave propagation (for instance G = 0+w)

for which wl becomes negative.
a - [M&(OMn + w/A) ± ((OMn + w/A) 2 -

112

(I-M0 2 )8 2) 1 /(l-M& 2 ) • (20) wave
If (SMn + (/A)2 

- (_ - M&2 )02> 0 (21) crests

there are two real roots for a *This
corresponds to waves propagating with
constant amplitude, and it will be shown "
that one root corresponds to waves
travelling upstream and the other root
corresponds to waves travelling down-
stream (provided Mr ' I).

If 4B + w/A) 2 
- (I - M&2)0 2 < 0 (22) 4 _

there are two complex roots for a • One
root corresponds to a disturbance which
qrows exponentially in the axial (posi-
tive P ) direction, and the other root
corresponds to a disturbance which decays
exponentially in the axial direction.

It (M,, ./A)z - (I - M&2 )02 -O (23) Fig. 2. Wave Propagation.



The grou:p velocity in the axial vndirection, which is also the rate of "n - i (36)
axial transfer of wave energy, is thengiven by the sum of the convection The pressure perturbation may be ob-
velocity and the axial propagation tained from the momentum equation
velocity, and is

= + (30) ( + V, a + I ') 0 (37)

= MýA - A2 */w' and is

((w + 6 MnA) 2
- 2)1/2/,'(31) IiS-- l - n .(38)

where equations (26) and (20) have been
used. Since the fluctuations are isentropic

the density perturbation is given by
At the resonance or cut-off condition

given by equation (23) p - p/A 2 
. (39)

ME + cos. = 0 If the effects of incoming acoustic
waves are to be calculated, then the sum

so that equation (30) shows that c& 0, of the upwash velocities normal to the
and the waves carry energy in a purely chord due to the bound and free vortici-
circumferential direction, so that in a ty, vy(x') and due to the incoming wave
machine the energy propagates round the must be zero. Hence
machine but none is lost by radiation in
an axial direction. It will be found vy(x') - v~i sine + Vni cose = 0
that at this point the acoustic waves can
reach large amplitudes and the solutions where the suffix i refers to the in-
become singular. coming wave. Using equation (38)

In subsonic flow, propagating Pi Bc cose - ac sine
acoustic waves occur over the range of a Vy(x,) -.F A + ac cose + Oc sine
given by

Mn -(I - M 2 )1/ 2 A$ Mn +(l - M&2 1/2  This can be evaluated for each of the
L < .(32) pair of the waves corresponding to a

1 M2 1 1 given value of 0 . For unit value of

Outside this range decaying waves occur. pi/FU at the origin
Within this range, since w' is always
positive, equation (31) shows that the Vy(X,) Sc cosO - ac sine
upper sign in equations (20) and (31) v A + ac cose + Oc sine
corresponds to waves carrying energy up- (40)
stream, with negative cx exp i(a cose + Osins)x'

If the flow is supersonic (M>1), but VORTICITY WAVE SOLUTIONS
with subsonic axial velocity (Mol),
then propagating acoustic waves occur In addition to the acoustic wave
over the ranges of 0 given by solutions discussed in the last section,

the continuity and momentum equations
2 1/2 also admit of solutions which include

A$ -1- ME vorticity, but have no pressure or
A M - (33) density perturbation. For these solu-

2 1/2 tions the velocity potential does not
As -M + ME 6exist and the disturbances are convectedA+andM) (34) downstream at the mean fluid velocity.

M2 -1 These solutions therefore have

Between these two regimes a range of
decaying waves occurs. Assuming that p - 0, p - 0 . (41)
Mn>O , within the rango given by
equation (33) some analysis shows that The required solution is of the form
W. is negative for both waves, so that
the lower sign in equations (2)) and (31) vteiwt - const ei(wt + at + On)
corresponds to waves carrying energy up-
stream with negative cx . Within the Putting these in the momentum equation
range given by equation (34), w' is (37) gives
positive for both waves and the upper
sign in equations (20) and (31) cor- W + VCs + V - 0,
responds to waves carrying energy up-
stream. so that

If the axial velocity is supersonic a - - (• + Vn O)/VC, (42)
(ME > 1) the waves always propagate, and
since cx is always positive they always Since there is no density perturba-
carry energy downstream and there is no tion, the continuity equation can be used
resonance condition. in its incompressible form

Por these acoustic waves the velocity In' + gn . 0
perturbations are given by at n,

& - . ia , (35) to give

i!0 vt + ovn - O. (43)



Since these vorticity wave solutions
have no pressure or density perturba- - re eina/5 8 8(n-ms)
tiona, they are unaffected by compres-
sibility effects and apply at all Mach
numbers. since the delta function is only non-zero

when n-ms - 0 . Hence
The force and moment on the blades,

due to wakes from some obstructions up-
stream which are in motion relative to y - rO eila/s (1/s) • e-12wrn/s
the blades, are often required in order r---
to calculate the forced vibration. A
Fourier analysis of the wake profile in by example 38 of Lighthill (1958). Hence
the n direction may be carried out, and
each term corresponds to a vorticity wave ° = ei(a-2wr)n/s (46)
of the type considered in this section. s ri-ft
The sum of the upwash velocities normal
to the chord due to the bound and free Each term of this series is sinu-
vorticity.0 v (x') and due to the in- soidal in the n~ direction, and there-
coming vorticlty wave must be zero. fore the solutions of the sections

"Fundamental Acoustic Wave Solutions" and
Hence "Vorticity Wave Solutions" may be matched

to it. Upstream of the row of vortices
vy(x') - vti sine + vni cose - 0, only the upstream going acoustic wave, or

alternatively the wave which decays
where the suffix i refers to the in- exponentially upstream, can exist, and
coming wave. this will be distinguished by the suffix

I. Downstream of the row, only the
Using equations (42) and (43) this downstream going acoustic wave, or

gives for a velocity vw normal to the alternatively the wave which decays
chord at the origin exponentially downstream, can exist, and

this will be distinguished by the suffix
vy(x') - - vw exp (-iwx'/U) 2. In addition, downstream of the row

(44) there will be a vorticity wave, and this
- - vw exp (-i~x'/c), will be distinguished by the suffix 3.

showing how the waves are convected along Considering then just one term of the
the chord at the mainstream velocity, series in equation (46) three conditions

are necessary to find these waves.
KERNEL FUNCTION FOR SUBSONIC CASCADE Firstly, continuity may be applied across

the vortex sheet at • - 0 , so that
The incompressible kernel function

which was derived in the section "Kernel
Function for Incompressible Flow" of this (VE + vC1 , (r + ;d
chapter was based on the replacement of (VI + ;2 + VC3) ( + ;2)#
the aerofoils of the cascade by a number
of bound vortices. In that case the or, to first order in the perturbations,
effect of a row of bound vortices, with
the spacing and stagger corresponding to
the cascade in question, could be ob- ;v&1 + V&PI = ;vE 2 + r v&3 + Vt ;2 .(47)
tained by summing the series analytical-
ly. The corresponding solution in sub- Secondly, the velocity jump across
sonic compressible flow for a single the row in the n direction must be
bound vortex involves Hankel functions,
and When the series for a row of such bound vortichty, so that, for a sheet of
vortices is written down it appears that unit amplitude
it cannot be summed analytically, and if
numerical evaluation of the series is + v 1. (48)
attempted the series is found to converge vn2 vn3 n I
very badly. The approach that will be Thirdly, the strength of the vortici-
used in therefore to build up the solu- Thirdly, the strength oftionfortherowof vrties romthe ty wave may be related to the strength of
tion for the row of vortices from the the sheet of bound vorticity from which
acoustic and vorticity wave solutions it is shed. In a time interval at , the
given in the sections "Fundamental circulation shed from an element of bound
Acoustic Wave Solutions" and "Vorticity vorticity y dn is
Wave Solutions". 'The presentation largely
follows the paper by Smith (1972). d

Consider therefore a row of vortices - J (y dn) at - C dn (VE at)

spread along the n axis with spacing a where C3 in the vortioity just down-
and phase angle a . This may be con-
sidered as a distribution of bound stream, and this is spread over an area
vorticity along the n axis given by dn in the n direction and (V& 6t) in the

÷I a( direction. Hence* - ro •tiee 8[,-ms). (45)

ma-- C " iWy/V •

This series of delta functions may be But

transformed to a Fourier series as av' avc
follows c * "

-ro etd/fs & *-i(n-ms)V/s 8(n-ms) en - iBv•
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lenkce, for a sheet of unit amptitude, It has been shown that propagating
waves only occur for a limited range of

N 1,4 - v 3 = W/V . (49) a , and that outside this range the waves
decay. Hence large values of r (positiveor negative) give large value of Jol, andEquations (47), (48) and (49) may now negtive)agive ralu of g1and

be solved to give the velocity perturba- the effect decays very rapidly on going
tions for the acoustic waves and the away from the row of vortices. The two
vorticity wave just upstream and down- series for the acoustic waves thereforeaof the = 0 axis. Equations show good convergence, with terms de-.N stream (f 38e & = 0 elate.)Eqaonstic caying exponentially as Irn increases.
"and (39) are used to relate the acoustic However, the convergence is less good
perturbations, and equation (43) is used w
for the vorticity wave. The wave numbers satismacttiy.
in the axial direction are given by satisfactory.
equations (20) and (42). The results are The second series for the vorticity

waves in equation (56) does not show
satisfactory convergence. However, Smithvn3 = (X2 + xc sine)/A' , (50) (1972) shows that this series may besummed analytically. The result for theV =(Bc/2A') (-(Bc + A sin 0)S-~ (sc cos(-Eac +2 A (51) )kernel function may then be writtenSXBe cOSO(-E)- / ) .1 1

v (2 B(c/2A') (+(Bc + X sin 0) K(z) = r4-• (vn 2 cose - v• 2 sine)
+ ABe cos (-E)- 1/2 } (52)

2
where A sinh (X cose s8c) exp (- iXz)

wh ereh 82c2 + ::Bc sine 5)s(A c)se+sn c)
and for z > o.

and

SOLUTION FOR SUBSONIC CASCADE
Equations (51) and (52) are written In order to complete the analysis it

fr propagatings waves (E < 0) For de- is necessary to solve numerically the
caying waves (E > 0) (-E)-1 /2  is re- integral equation (10). In subsonic flow

d Tthis has to be done subject to the Kutta
vo velocity perturbations are obtained condition at the trailing edge, which
from equations (38) and (43). says that the pressure difference across

the blade must tend to zero as theThe velocities induced in the y trailing edge is approached.
direc:tion normal to the blade chord at
the point = x'cose, n x'sin , by theSrow of bound vortices at • a 0 may The bound vorticity, y , will betherefore be written, for x' < 0 (up- specified at N points and perhaps thestream of the row) obvious way to do this would be to takethese points equally spaced along the

r, chord. But it has been found that a
Vyl cos0 v&, sine) great increase in accuracy, using an-- modest value of N , can be obtained

ei(alcose + osin+-Yx' . using the transformation (as in the
classical thin-aerofoil theory ofisolated aerofoils).

Comparing this with equation (10)
shows that the kernel function is given I
by X nT C (1-cos j). (58)

K(z) S O (vnl coso -v, sino) Then y is specified at points given by

() wIN (59)
ei(aicos0 + 8sin8)cz where x is an integer 0 c 1 4 (N -1).

__ for z O. tt will be noted that this does notfor z < 0. include the point at the trailing odge
down- (x - c, i - -, I - N) , since, by theiThe correoponding expression for down- Kutta condition y i zero there.

stream of thu row of vortices includes
the effect of the vorticity waves, so The upwash velocities will then be

.4w; that matched at points given by

K~ ) - mi eV 1 ( 0X (V2 cosn - V 2  (1 - con g) (60)
ei(a2 coae + 6sino)z w

Swherer (v.3 coso- v: sing) (56) n t c 12m + l)/12N) (61)

and m is an integer 0 4 m % (N - 1).

i E These points have values of C halfway
Sbetween the values of * at which the

for bound vorticity is specified.



Making these substitutions in of the vortex sheets shed from the
equation (10) gives blades, and outgoing acoustic waves.

Vy(c) - (62) Equation (65) may be formally solved
for I , and substituted into equation

S, K cd(68) to give the final result2 !o K (•(cost - cosc))-y(y) sin* d*.

C = U- . (71)

These substitutions remove a difficulty One important complication concerns
at the leading edge (x - 0, * - 0), the singularities of the kernel function
since in the solution y becomes infinite K(z) at z = 0 Smith (1972) shows
at t.'at point. But by regarding that these are of the form
'rsin* as the fundamental variable this
product remains finite at the leading b 2  +
edge and causes no numerical difficulty. 2wz 7 ( i + a1wz - ia 2b 2 z 2

These substitutions also remove the
singularity at the leading edge in - a X3 z 3 + .... )LoglzI
integrals for the blade force and moment 3
in equations (7) and (8), which were where

I - xa, = 1 - M2/2b2fy = - c ow y(%) sin * dt (63) a

M -
a 2 = 1 - 1/2b2 + M2 /4b 4

m =--- pU c 2 ]' y(,)si sinlcs (Ii-c)d•h.1
a 1 (1 - I/b2 + M2 /6b 2 + 1/3b4(64) 23 3M4 /8b 6 + M6 /6b 6 )

With the reservation to be male
shortly the integrals in equations (62; and
(63) and (64) may be evaluated by the
trapezoidal rule. Expressing the results b2 - 1 - M2

in matrix form, equation (62) becomes
Whitehead (1960) has shown that

= • L (65) integration of the l/z singularity is
accurately handled by the trapezoidal

where ! is an upwash matrix having N rule, but that a correction is required
rows and 2 columns. The first column for the Logizi singularity if accurate
gives the.upwash velocity due to bending results are to be obtained with modest
for unit (hy/U) and the second column values of N . Reference may be made to
gives the upwash velocity due to torsion the original papers for the details of
for unit a • According to equations this correction.
(11) and (12)

A Fortran computer program for the
E (1, (1 + ixx'/c)) • (66) implementation of this subsonic solution

is given in Appendix A.
Further columns may be added for incoming
acoustic waves from upstroam or down- SOLUTIONS FOR SUPERSONIC CASCADE
stream, and for incoming vorticity waves,
if these results are required. When the mainstream is supersonic,

the same general approach may be used as
I is a kernel matrix (N x N) where ele- in the subsonic case, but there are a
ments are given by K(1l2(cos* - come)). number of. features which make the

solution very different. There are also
Sis a bound vorticity matrix having N fundamental differences between the case
rows and two (or more) columns whose when the axial velocity is subsonic and
elements are given by when the axial velocity is supersonic.

If the axial velocity is supersonic the
£ [(w/2N)(y/U) sin*] (67) effects of an element of bound vorticity

or pressure dipole introduced at any
except for the first row which has half point are entirely downstream of that
weight, point. There is no effect upstream of

the leading edge plane, and the flow can
Equations (63) and (64) may similarly in principle be calculated by the method

be written in matrix form of characteristics. But if the axial
velocity is subsonic, then a pressure

- • £ (68) dipole introduced on one blade implies
other pressure dipoles on the blades be-

where low it, and the effects of these dipoles
r c 1go upstream of the original dipole. The

[(fy/;UcAy (fy/;Uca) (69) flow is therefore one in which upstream
L(/•c 2Cý y (m/;u 2c2 a) effects are possible and it has some of

the features of a subsonic flow. There
and is an effect upstream of the leading edge

plane, and the flow cannot be calculated
(I coa)] in a straightforward way by the method of

)(70) characteristics since there is no region
of known flow from which to start. The

,urther columns may be added to $ for supersonic axial velocity case very
additional Input waves, and further rows seldom occurs in real turbomachines, and
may bo added to a and to give in therefore of mainly academic interest.
A•ditionali outputs, such as tIe strength Attention will therefore be concentrated

here on the subsonic axial velocity cases
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Another diffetc:ýe between thb sub- there is no interference between blades
sonic and supersonr. cases is that in the which all behave like isolated aerofoils.
dupersonic case r Kutta condition is Figure 3(f) shows one reflection of a
applicable. The • essures across the leading edge wave, and Figure 3(g) shows
wake are equalize by waves emanating one reflection of both of the leading
from the trailing u.-jO, and just upstream edge waves, and Figure 3(h) shows two
of the trailing edge there is a finite reflections of both of the leading edgepressure jump across the blade. Con- waves. Again there are theoretical
versely, at the leading edge the pressure possibilities with large numbers of re-
jump is finite, and not infinite as it is flections.
in subsonic flow.

In order to illuminate the most
Waves of finite strength originate important features of the flow we shall

from the leading and trailing edges of start with a simple quasi-steady ana-
the blades. These waves may be reflected lysis. Torsional vibration is consider-
from the surfaces cf adjacent blades, and ed, and it is suppoiied that the blades
some of the patterns which result are have noved to a position consistent with
illustrated in Figure 3. Dingrams (a) to a prescribed phase anagle u between blades
(d) apply for the subsonic axial velocity and are then frozen in that position.
case, and diagrams (e) to (h) apply for
the supersonic axial velocity case. In Standard supersonic thin aerofoil
Figure 3a all the waves from one blade go theory will be used, so that the rela-
ahead of the blade above it and behind tionship between the pressure change (Ap)
the blade below it, so there are no across a weak wave and the corresponding
reflections. In steady flow there is no deflection (AO) of the flow is
interference between blades, but in un-
steady flow each blade can influence the A A(
flow over the blades above it. Figure 3b 2 (72)

shows a trailing edge wave reflected
once. Figure 3c shows a trailing edge where B2 - (M2 - 1) and the positiveSwave reflected once and a leading edge sign applies to an upward going wave and
wave reflected twice: this is the usual the negative sign to a downward going
design case for a fan tip section. wave.
Figure 3d shows four reflections of a
leading edge wave, and by extending the Since the blades are flat plates,
blade chord the number of reflections can waves originate only from the leading and
be increased indefinitely, but these trailing edges of the blades. They mayi cases are not of much practical impor- then be reflected from the adjacent
tance. blades, as already discussed and il-

lustrated in Figure 3.

Figures 3(e) to (h) show the super-

sonic axial velocity cases, and the A wave starting downwards from the
trailing edge waves always go downstream leading edge of one blade hits the next
of all other blades. In Figure 3(e) the blade below at a point distant dl down-
leading edge waves also go downstream and stream from its leading edge, where

(a) NO INTERFERENCE d2>c (b) d2<c, d1>c (c) d, c,(2d,-d 2 ) > C

SUBSONIC AXIAL VELOCITY (d2>0) Ar
(d) (2di-d 2)<c, (3d 1-2d 2) > c

SUPERSONIC AXIAL VELOCITY (d12 '0)

(e) NO INTERFERENCE (f) (g) Ch)
(-d 2) >c (-d 2)<c, d1>c di-ec, (d 1-d 2)>c (d 1-d 2) dcCd1 -2d 2) c

Fig. 3. Wave Reflection Patterns.
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s(sino + B coso) (73) Bearing in mind that a wave isreflected from a solid surface as a waveSimilarly a wave starting upwards from of the same strength, the pressure inthe leading edge of one blade reaches the each area between waves may now bey position of the next blade above at a written down, and these are shown inpoint distant d2 upstream of its leading square boxes on Figure 4 relative to theedge, where pressure ahead of the blade m - 0 . It
will be noted that the pressure jump

d 2 = s(sino - B coso) (74) across each blade has three discon-tinuities along the chord.
If the axial velocity is supersonic, d2
is negative. The strength of the trailing edge

wave, T , may now be determined from theWe consider first cases with a sub- condition that the pressures on each sidesonic axial velocity, such as (b) and (c) of the wake behind the blade must bein Figure 3, but exclude case (a). Case equal. This gives
(c) is illustrated on a larger i-ale in
Figure 4. Let L be the strength, mea- L - 2L eia + T - 3L + 2 Te-ia - T
sured by the increase in pressure, of the
wave going upwards from the leading edge Hence
of blade m = 0 , and let T be the
strength of the wave going upwards from 2 - eis
the tra'ling edge. Then waves of 1 - e-'a L . (76)
strength -L and -T go downwards from the
leading and trailing edges respectively. If a - 0 , then L - 0 and T

becomes indeterminate. The case a - 0Just ahead of the blade m - 0 , the must therefore be excluded from theflow angle must match the angle of blade present analysis. It will be handledm = -1 , just below, and is a exp(-ia) . by actuator disc methods in sectionJust behind the wave of strength L going "Actuator Disk Theory."
upward from the leading edge blade m - 0,
the flow angle must match the angle of Apart from this case equations (75)
blade m = 0 , and is a . Hence from and (76) give
equation (72),

L T (2-av)(7
.L a - a exp(-io) ( -exp(-io))- (2 - ei) (77)

;u2 B B
The force on the blade m - 0 may

(75) now be determined, and is
This determines the strength of the fy = - L(d - d ) - 3L (c - dleading edge wave. It is zero if a - 0.
It does not depend on the number of + (- 3L + 2Te-ia)d - Ldinternal wave reflections. 2

- (L - 2L eia) (c-d

Le 1
Le-1w L

M=4- Le1-

""\e L
--21& -21

dt (c-d) #

1d,-d 2 ) A

-L Via , ~ Iu -

To"~

-to.

Fig. 4. Detail of Pressure Field for Case (c).



This gives for case (c) The results are essentially those
derived by Kurosaka (1973) and by Strada,

fyM 2 Ca 2 - Chadwick, and Platzer (1979) and by
e-io(l-d2 ic) (78) Nagashima and Whitehead (1977), using

different methods. These papers also
+ 2 (l-cosa)(1-d1 /C)} give formulae valid when the frequency is

small, but not zero, and correct to firstdis order in w . However, it appears thatsimilarly given by some of the terms in these formulae are
not entirely in agreement between the
three papers.I2

in/•UOc- - (1 - e-eo(I-d 2 /c)
2(l-cosa)(- d1/c)(l + dl/c-d2/c) Nagashima and Whitehead (1977) alsogive formulae for force and moment in the

- 2i sine (I - dL/c)(d 2 /c)} . (79) case of W - 0 for supersonic axialvelocity.

Results for other cases of wave re- Turning to the full unsteady case
flections may be obtained in a similar with a frequency which is not small, all
way. For cases (a) and (e) in Figure 3, the available theories are complicated., when there is no inter-blade effect, Therefore, only a brief qualitative

f2introduction to these methods will be
fy/5U2c 2- (80) given here. The most straightforward

approach is to use a semi-infinite
and cascade, assuming that there is no per-

turbation upstream of a first blade. The
flow may then be solved by the method of

m/UU 2c 2 a = - 1 (81) characteristics, (Brix and Platzer,
U 1974), or by finite difference methods

(Verdon, 1973). The number of blades in
blad sbelowndc Ratimes byteloriitanal aprahlmtigvleoThs ivleFor subsonic axial velocity and for the cascade must be chosen sufficientlythe general case when a wave starting large for the blade force and moment todownwards is reflected R times from theblade below and R times by the original laprgoah utimtiong vaiues, Thsince ves

large computation times, since theblade, R is an integer given by convergence with increasing blade number

c-d1  is slow. Also it appears that the(R-I) < ( . R . (82) results for the unsteady pressures on the
surface of the blades converge much
more slowly than the results for the

R- 0 corresponds to case (b) (Figure blade loadings (Strada, Chadwick, and
3), R - I corresponds to case (c) and R Platzer, 1979).
- 2 to case (d).

Calculations for an infinite cascade
The strength of the leading edge at realistic frequencies must include two

waves is given by equation (75), and the physical effects. The first of these is
strength of the trailing edge waves is the reflections of the leading and

trailing edge waves from the adjacent
- 2 (1 + R (1 + eta)) • (83) surfaces, as already discussed in theTB case of steady flow. The second is the

acoustic resonance effect, as discussed
The blade force is given by in the section "Fundamental Acoustic Wave

Solutions." For a certain range of
2 e-iO(l-d2/c) phase angles, all possible acoustic waves

fy/;U2c5 - - l - eio~lwill propagate, and this regime is some-times called the "subresonant" regime.

+ (1-cosa)R(2(1-d 2/c) (84) The range of the phase angles where one
or more of the possible acoustic waves(R1)dId2/CIIare of exponentially decaying type is

? 'then called the "super-resonant" regime.
and the moment about the leading edge is This regime normally occurs for negative

interblade phase angles, when the wave of
= - l - e'io~l-d2/c) 2  elastic vibration of a fan rotor travelsm/BUZc2 - d in the opposite direction to the direc-

tion of rotation, and is therefore clam-+ (l-coso)R(2(1-d 2/c)-d 2 (d,-d 2 )(R+l)/c 2  sified as a "backward-travelling" wave.

- CcI1-d2)
2CR+l)C2R+l)/(3C2)) A calculation in a single blade

- (i sina)R(2(1-d 2 /c)(d 2/c) passage, with the correct blade-to-blade
periodicity condition, has been given by
Verdon and McCune (1975). The solution
is formulated in terms of the velocity

These results have been written for potential, and the kernel function is
torsion, but they also apply, to bending evaluated as a series of bessel funm-
with Ua roplaced by h , since tions. The internal reflections are
equations (11) and (12) saow that when treated explicitly, and iteraticn is
S- 0 the upwash velocities are then necessary to deal with the influence of
identical. They also apply to the effect the wake from one blade on the rear part
r'f wakes from upstream obstructions, of the lower surface of the blade above.
since equation (44) shows that when This convergence fails in the "super-
S• 0 the uVwash velocity is also uni- resonant" region. This limitation has
form, been removed by Verdon (1977) by using a

formulation in terms of pressure to find
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the unsteady loading on the lower surface This equation is also valid for
behind the point at which the Mach wave blades of small thickness, provided
from the trailing edge of the next blade (3f/3x)steady << wc/U
be'•. hits the lower surface. which leads to

Wc/u >> 62/3.
Formulations in terms of pressure,

which relate more closely to the sub- This argument shows that the tran-
sonic solution given in the previous sonic equation is at least as good an ap-
section, have been given by Nagashima and proximation as the original acoustic
Whitehead (1977) and by Ni ('979). If an equation. In fact Landahl (1961) has
attempt is made to calculate the kernel argued in detail that for isolated aero-
function by the series given in (55) it foils in the transonic range the acoustic
is found that the series does not con- equation leads to physically inadmissable
verge. This behaviour is related to the solutions, whereas the transonic equation
jump changes in pressure across the waves gives the correct small pertubation solu-
propagated 0:om the sources. The tech- tion. These arguments will be summarized
nique used is therefore to subtract out here.
the steady and quasi-steady terms from
the series in (55), to leave a series The one-dimensional solution of the
which does converge, and this is done acoustic equation, Verdon , equation
in two different ways in these two (133), for flow in the chordwise direc-
papers. It is also necessary to allow tion shows two waves, one, the 'advancing
for the reflections of the waves within wave', traveling forward at a speed of
the blade passage explicitly. In super- A(M+I), and the other, the 'receding
sonic flow there is no point in using the wave', traveling at a speed of A(M-l).
transformations given in (58) and (60), The transonic equation (86) on the other
and uniform spacing along the chord seems hand just shows the advancing wave
to be best for the points at which the traveling at a speed of 2AM, and no
bound vorticity is specified and for the receding wave. Disturbances do not prop-
points at which the upwash velocities are agate upstream in the transonic solution.matched.

Looking at the solution of the acou-
A quite different approach has been stic equation near M=1 one sees that the

used by Alamczyk and Goldstein (1978). receding wave has a low velocity, and
The problenm is split into two parts. The therefore a short wavelength. If there
first part consists of the inlet region, is a smooth distribution of sources along
followed by A cascade of plates having the chord, the effects of the receding
the same spacing and stagger angle as the wave will tend to cancel, as M÷l, but
actual cascade, but with the chord this cancellation will not operate at the
extending to x = + a . The second part leading and trailing edges where there
consists of the exit region, preceded by are discontinuities in the source distri-
a cascade of flat plates with the chord bution. If the Mach number is just above
extended back to x - - a . These two 1, the solution of the acoustic equation
parts are then solved by two separate will show large short-wavelength oscilla-
applications of the Wiener-Hopf tech- tions propagating back from the leading
nique. The solutions are then combined edge. If the Mach number is just below
to give a solution of the complete 1, the solution will show large short
problem. wavelength oscillations propagating up-

stream from the trailing edge. These
Computer programs based on these last oscillations are not present in the solu-

four very different methods have been tion of the transonic equation.
shown to give identical results. Some
specimen results will be presented in the Now consider the actual steady flow
section "Specimen Results for Flat Plate over an aerofoil with small but finite
Cascades." thickness just below M-1. The flow will

be subsonic near the leading edge, sonic
STRaNSONIC THEORY near the maximum thickness point, and

supersonic up to the trailing edge where
The equation governing small devia- there will be attached shock waves. Un-

tions from a uniform flow has been given steady receding waves generated at the
Sby Vordon, equation (133). If the main- leading edge will go upstream, and reced-

stream Mach number is near unity the term ing waves generated at the trailing edge
cannot go upstream, so no receding wave
effects appear on the aerofoil from the
leading and trailing edges. This
behavior is quite different from the

is negligible compared to the term solution of the acoustic equation, but is
matched by the behavior of the transonic

21w * . equation. If the freestream Mach number
a-x is slightly above one, there will be a

shock wave ahead of the leading edge, but
This is true provided the flow over the aerofoil will be the

same, and the argument is unaffected
fl-MI 'c€a,/U (Mach number freeze).

Sso the approximation is valid provided At a somewhat lower Mach number the
the frequency is high enough. Th9 tran- trailing edge shock will move upstream
sonic small perturbation equation is onto the aerofoil, and its position will
therefore oscillate due to the effect of the un-

steady flow. This situation will not be
2-J4 3' ÷ - (86) well modeled by either the acoustic equa-
A Ti +A tion or the transonic equation.
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Landahl (1961) also shows that due (Ua/w) - (coso E(Uo/w)sine + 1) ±
to a variation of Mach number along the
chord, the amplitude of the receding wave [2(Us/w) sine + 1]1/2)/ ain 2e
varies strongly, growing in a flow de-
celerating through M=1, and decaying in
an accelerating flow. This is in con- and resonance occurs when (U0/0)
trast to the solution of the acoustic -1/(2 sine).
equation which shows a wave of constant
amplitude. The transonic equation, which There is therefore only one value of
shows no receding wave should be a better phase angle for resonance. If 8 exceeds
model, this value, (assuming positive stagger

angle), a is real and propagating waves
Finially Landahl (1961) considers occur. If 0 is less than this value,a

"nonlinear unsteady effects, and concludes is complex and decaying waves occur.
that these will prevent the amplitude of This resonance is associated with the ad-
the receding waves from becoming large vancing wave. The multiple resonances
and will cause them to damp out within a associated with the receding wave havefew wavelengths. been suppressed.

Ini cascade geometry the acoustic The transooic solution for zero stag-
OIequation becomes unusable between Mach ger angle and 180" phase angle has been
numbers of approximately 0.9 and I.I. If given by Savkar (1976) using Laplace
the Mach number is raised from 0.9, main- transform methods. This is the case of a
taning the phase angle constant, an in- single aerofoil vibrating in a wind tun-
i:n ito a, I tir o of ro"Moitiiloi ia ptfindoil . ),1 li e), Ila 0011oliid0a t0at. L)Ih dagroa rf
ipwalptia:hl nIl M., I, ndll another infinite in-terference from the tunnel walls is

Horton i s found just above M-I. Also, in weaker than would be thought of at first.
the tsuporuonic range, the number of
wave reflections becomes infinite as M A transonic solution for general

4 approaches 1 from above. These features stagger angle and phase angle has been
make the programs discussed in the pre- given by Surampudi and Adamczyk (1984,
vious two sections unusable in the tran- 1985) using the Wiener-Hopf procedure.
sonic range. It is shown that the transonic solution

joins on smoothly to the subsonic and
"It is concluded that the transonic supersonic solutions at Mach numbers of

"theory should be used for thin blades of 0.9 and 1.1. It is found that bending
* small camber between Mach numbers of vibration is always stable, but that

about 0.9 and 1.1, but that its use torsional flutter is predicted. It is
should be confined to cases when there found that increasing the frequency para-
are no significant shock waves on the meter and decreasing the stagger angle

) blade surfaces. and solidity have a stabilizing effect on
torsional flutter.SThe effect of Mach number in the

4 transonic equation (86) can be removed by The transonic solution therefore
a transformation similar to the Prandtl- fills in the gap between the subsonic and
Glauert transformation used in subsonic supersonic solutions. It is however
flow. All dimensions in the y direction likely that real effects such as shockSare scaled by the factor M. The trans- waves and boundary layers will have a
formed cascade therefore has a different much larger effect than in the subsonic
spacing and stagger angle, but frequency and supersonic regimes.
parameter and phase angle are unaffected.
The transonic equation then becomes A transonic solution for zero stagger

) and arbitrary phase angle was developed
32 2 +2 by Schlein (1975) and Platzer et alJ ~ ~ ý 1W 'A 4+---=O (87)

-y u 0x u (1976). This approach was based on the
time-linearized transonic flow theory de-

It is therefure only necessary to con- lineated by Verdon in this volume. Ne-
sider the case Mal in the following dis- glecting the product terms on the right-
cussion. hand side of Verdon's equation (147) and

introducing the approximations
Switching to axial and tangential

axes r and n, the transonic equation be-
comes - 0 and (y+l) *xx - Const - X 0

2 2
sinO cosO f a linear parabolic equation is obtained,

- snfollowing Oswatitsch and Keune (1955) and
e21w (2 2 Teipol (1964).SU • coo o + ýn sin 0) + 0- .

Three different methods of solution
If we now iook for a solution of the wore developed using Laplace and Fourier-

form 0 - f exp i(a& + On), we find that transform techniques as well as a collo-
;J the wave numbers are related by cation technique. The inversion technique

]due to Ilamamoto (1960) proved to be the
(UA S§Jri'` - 2a11 sinO cos 0 + 02 uoso0 computationally most efficient procedure.

The collocation technique was based on
2w 2 previous work by Oorelov (1966) for

S- i•-(,, c, 0 + t6 sin ,) - j - O. supersonic oscillating cascades. Computed
stability boundaries showed increased

Sith co is doteotnined by the phase regions of instability with decreasing
, 4r'rjle, this is a quadratic, equation for blade spacing.

.,, and rAy ho solved to give
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ACTUATOR DISC THEORY The condition for deviation in sub-
sonic flow is obtained by applying the

Actuator disc theory applies to Prandtl-Glauert transformation to get ancertain special cases of the more general equivalent cascade in incompressibletheory discussed in previous sections, flow, and then using the known analytical

and in these cases it will be found result for incompressible flow in cas-
possible to derive analytic results in cades of flat plates given by Durand
closed form. There are two fundamental (1934). In the Prandtl-Glauert transfor-
limitations, mation all distances parallel to the

chord are unchanged, but all distances
The first of these is that the time normal to the chord are reduced by a fac-

taken for the fluid to flow through the tor B, where B2-l-M 2 . Using a * to indi-
cascade must be small compared with the cate quantities in the transformed
time for one oscillation of thq flow. plane, the stagger and space/chord ratio
This is equivalent to assuming that the are given by
frequency parameter A must be small,

tan (0*) - tan (6)/B , and
A = Wc/U << 1. (89)

(s*/c) - B (s/c) cos(e)/cos(e*)
The second fundamental limitation is

that the interblade phase angle must be The deviation is then given by
small,

l ol << 1. VrY2 = b vry 1 . (90)

This equation holds in both the original
In general A and a will be of the and the transformed planes. The constant
same order of magnitude. The wavelength b is related to the space/chord ratio and
of the disturbance in the chordwise (x) the stagger angle in the transformed
direction is 2mc/A and the wavelength plane as follows
in the tangential (n) direction is
2%s/a , so that these wavelengths are wc/s* - - cos 6* in b + 2 sin 6* tan-1
comparable.

{(l-b)tane*/(l+b)) (91)
These assumptions enable the flow to

be considered from two viewpointu. First For closely spaced blades, b - 0 is a
there is a picture (Figure 5), drawn to a good approximation.
scale comparable with the wavelength of
the disturbance, in which the blades are The condition for zero stagnation
very small, and the cascade is equivalent pressure loss is
to an actuator disc. A second picture,
similar to Figure 1, may be drawn to a Pro2 - Prol (92)
scale comparable to the blade chord, and
this just shows a few of the blades near where the suffix zero means a stagnation
the origin of Figure 5. In this second pressure.
picture the flow may be regarded as
quasi-steady, and any kind of steady flow Equations (88), (89) and (91) apply
cascade data can be used. for the flow relative to the blades in

the cascade plane. Waen these equations
In the actuator disc plane, and up- are combined with the actuator disc plane

strem of the actuator disc, the pertur- equations, the whole set may be solved.
bations consist of just one of the
acoustic wave solutions discussed in
"Fundamental Acoustic Wave Solutions,"
with r - o in equation (19). The
solution carrying acoustic energy up-
stream is required. Downstream of the
actuator disc, the corresponding solution
carrying energy downstream is required,
plus a vorticity wave as discussed in the
section "Vorticity Wave Solutions."

The solution for incompressible unA
stalled flow through a cascade of flat , oeit 1
plates at zero incidence has been given
by Whitehead (1959), and for stbsonic
flow by Whitehead (1986). Three condi-
tions from the cascade plane are re- (
guired. These are for continuity, devia-
tion, and zero stagnation pressure lose.

, The continuity equation is

02 Vr C2 , 0 (88)r'r

Where the suffix r refers to conditions
relative to the blades, and suffices 1
and 2 refer to conditions just upstream
and downstream of the cascade, but very
near the origin in the actuator discII plan Pig. S. Actuator Dime Plane.
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K esuIts Irom actuator- disc theory if
depoend on the ratio of phase angle to
"" requency, although both of these M/{-M sin 0 + (l-M 2cos 2 0) /2} <

quant ities -ire individually small. It is
therefore convenient to write < M/(-M sin 8 - (1-M 2 cos 2 e) 1 / 2 )

ii o= U/us cc/Xs. (93) case of decaying waves,

T=+ {(W2 + 2p sin 0 + 1)M2 p 2}1/2
The result for the blade force.due toMlade vibration with velocity hy in

•iithe y direction is then if

Mi{- M sine - (1 - M2 cos 2 0) 1 /2) < ',u/n _ _-2T E (1-b) (94)
I + K case of propagating waves.

where
The force is zero at the cut-off or

(is +2usinO + resonance points, where T = 0 . The
force is also zero when the axial

H = (P-Tsin0)(-R+pcos6) velocity is sonic, M cose 1

I - (P+TsinO)(P+ucos0) These results also apply .to torsional
Sotion of the blades, with hy replaced

K =2Tcoso(l-M12COS 2 0) by Ua , and to the effect of wakes
being convected into the cascade. This

p = 1icos6(l-M 2 cos 2 0)-sin0cos0 M2 (l+psine) is because at zero frequency the upwash
velocities given by equations (11), (12)

R = T(u+sin0) and (44) are all uniform.

and These results can also be used to
find the moment acting on the blades.T (( 2+2usin0+l)M2-v 2 }'' 2  Since the cascade operates in quasi-

steady flow, the force acts at the centre
for propagating waves, of pressure for steady flow in the

cascade. In subsonic flow this point can
T = -i(-(u 2+2usin0+l)M2+P 2 ) 1 / 2  be found by using thin aerofoil theory

for cascades (Pistolesi, 1937). In
for decaying waves, supersonic flow the centre of pressure

is a distance (c - d2/2) downstream of
the leading edge, as in the section

The corresponding result for super- "Solutions for Supe;rsonic Cascade."
sonic flow, with a subsonic axial veloci-
ty, has been given by Whitehead and Actuator disc theory can be extended
Davies (1983). in a number of ways. For instance,

results have been obtained for incompres-
sible flow through cascades of closely

In supersonic flow the continuity spaced blades having large amounts of
equation (87) is unchanged and there is turning of the mean flow. (The results
no Kutta condition at the trailing edge. given in the paper by Whitehead (1959)
But provided the axial velocity is are wrong in this respect. The correct
subsonic, and that case (a) in Figure 3 results are given in an appendix to the
is excluded the incidence angle of rela- paper by Whitehead (1962) . Results have
tive flow into the cascade is zero also been obtained for incompressible

__ (Kantrowitz, 1946). This condition is flow through cascades of closely spaced
used instead of the deviation-condition blades having a stagnation pressure loss
(90), and gives which varies with incidence.

Vyl .hy (95) The most important extension of
actuator disc theory is when the
restriction to small frequencies is

'VMThe result of the elimination is relaxed, but the restriction to small
phase angles is maintained. This Is now

2sTE called semi-actuator-disc theory. This
fy/hy • (96) method was developed by Sohngen (1953)

and by Tanida and Okazaki (1963) for
•. E (V

2 + 2v sin 8 + 1)(1 - M2cos28) incompressible flow and for translational
p - [M2cos 9(sin 0 + v)-mcos 0 + T sin 0] motion of the blades.
G - [Ijcos 0 - (u + sin OT)T The equations for the actuator disc
where plane are the same as in actuator disc

theory. The three equations required
v - +(U. + 2. sin e + l)M 2 

- t,2)1 2  from the cascade plane are obtained by
considering the control surface shown in
Figure 6. The control surface is the
space between two blades, 13'344'21, and

' q/(- M01in 0 + (I-M 2CoS•2 )I/ 2 ) moves at a constant speed equal to that
at which the blade 12 travels at that

... case of propagating waves, instant. The sides of the control sur-
"face 331 and 44' are the displacement of

--l (W + 2p sin 0 + I)M2 + 02)/2 blade 34 relative to the blade 12, end
- rare given by
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a - hy ei(wt + 0) - hy ei wt i cihy eiwt The relationship between the relative
stagnation pressure at cascade outlet

since o is small. (plane 2) and at plane 3 is obtained by
integrating the equation of motion in

Applying continuity to this control the x direction along the passage
nurface gives the result between two adjacent blades to give

& - V2 + (VI Vnd)(a/ws)hy sin 8 Pro3 - Pr02 i io)c vrx . (99)

With the addition of a momentum
- i(c/s) ohy - 0 . (97) equation in the w direction, which.

relates the blade force to the flow
Here v"l and vC2 are the absolute un- variables, a complete set of linear
steady axial velocities. The third term equations is available and may be solved.
arises from the change of steady tangen- The result is too lengthy to give here,
tial velocity giving a net flow through but may be found in the paper by Tanida
the sides of length s', and is an and Okazaki (1963).
actuator disc term. The last term arises
from the change in gap between the blades Semi-actuator-disc theory has been
and is a semi-actuator-disc term. extended to compressible subsonic flow.

The case of transmission and reflection
The second equation from the cascade of sound waves by a cascade, and the

plane is for the relative flow exit generation of sound waves due to an in-
angle, and equation (90) for the relative coming vorticity wave, have been treated
velocity normal to the blades is un- by Kaji and Okazaki (1970). The effects
changed. The usual approximation is of compressibility on flutter in subsonic
b - 0. flow have been considered by Kaji and

Okazaki (1972).
The third equation relates the pres-

sure at outlet from the cascade to the Semi-actuator-disc theory has been
pressure at inlet. This relationship is extended to supersonic flow by Kaji
derived in two stages. It is presumed (1980), and in a somewhat different way
that a loss of relative stagnation pres- by Adamczyk (1978).
sure occurs at the inlet to the cascade,
so that The semi-actuator-disc theories are

probably the most useful available for
-

2 Z (98) stalled flow. But they do require
Proi - Pr03 - 2 P Vr•i experimental or empirical input giving

the nature of the loss function Z
where the suffix 3 refers to a plane just Actual stalling processes take a finite
behind the leading edges of the blades, time to develop. The theories can be
and Z is a stagnation pressure loss extended to allow for a time lag, but
coefficient which is a function of the again experimental or empirical informa-
inlet angle of flow relative to the cas- tion must be provided to determine the
cade or vrnl/vr~l. time constant.

SINGULARITY THEORY

h e } We now turn to a quite different wayy e t) of building up solutions for the unsteady

flow through cascades by the super-
position of simple analytical solutions.
In this case, the solutions are
restricted to loseless incompressibie
flow, but they apply to blades with large

Smaounts of thickness and camber. The
particular method which will be sketched
in the following is largely taken from a
paper by Atassi and Akai (1980).

The potential flow past any number of
3 two-dimensional bodies of arbitrary shape

may be represented as being due to a
distribution of singularities placed
around the boundaries of the bodies. The
singularities may be either a distribu-
tion of sources and sinks (plus at least

is one vortex for each body if that body has
h circulation) or a distribution of vor-S~yet t ices (plus at least one source or mink

if the body has a net flow out or in from
the surface). A further alternative is
to use doublets. A distribution of doub-| | •lets placed around the boundary and di-
rected along the boundary is equivalent

to a distribution of sources and sinks,
and a distribution of doublets directed
normal to the boundary is equivalent to a
distribution of vortices (provided there

rig. 6. Control Surface for Semi- is no net flow out or in from the surface
Actuator-Disc Theory. and no net circulation). The well-known

Martensen (1959) method for steady flow
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in cascades uses a distribution of vor- 1 1
ivy lV + I zPdztices round the surfaces of the blades. - y Z - Z + Um(I)

In this case the notional flow inside the (104)
contours of the surfaces has zero velo-
city, so that the strength of the vor- The extra terms on the right hand side of
tices can be arranged to make the tan- these equations give a jump in tangential
gential velocity just inside the contour velocity across the surface equal to the
equal to zero. For the unsteady case how- strength of the vortex sheet at the sur-
ever, the velocity normal to the surface face and a jump in normal velocity across
just outside the surface is used as a the surface equal to the strength of the
boundary condition. Also, since in the source-sink distribution along the our-
unsteady case there is vorticity shed face.
from the blades into the wake, it is nec-
essary to use an additional distribution Since the cascade is assumed to be
of vortices along the wakes of the vibrating with an inter-blade phase angle
blades. a , the singularity strength on the mth

blade at z + mseie is given by
In order to handle singularity theory

it is convenient to work in a complex z um . Po eJmO
plane where z = x + iy . It is then
necessary to change the notation slightly Hence the velocities induced just outside
and make all the unsteady variables a point zI on the reference blade are
proportional to exp(jwt). The unsteady
variables are then hypercomplex numbers, v .-" Un(z)ejmadzwhich have four components, a real vx -iy TW M=M z+msi I

component, an i component, a j com- 1 (105)
ponent, and an ij component. (i2 = - • (

1, j 2  = - 1, but we must not write

tj = -1). where the contour integral is now taken

If there is a source density distri- round the reference blade m = 0
bution m on the surface at the point z , Tha series can be summed analytically
so that the source strength for a length to giv¶ the induced velocities just u
of surface 6T is m6T , then the side z as
velocities induced at a point zI not on
the surface are given by 1vx - iV Y = 2r fl K(z -zl)uo(Z)dz

vx - iVy = m T (100) (106)
2ir1jJJi 1

where the integral is taken over the sur-
faces of all blades and their wakes. where

Similarly for a vorticity distribu- J(w-c)z*
tion Yt , the induced velocities at zi K(z*) - IeJ0 -)z* 0 2 (
are given by

This is a more general form of equation
vx - ivy . L f Y . (101) (14). The integra., in equation (106) is

2wi taken round the reference blade and its
wake.In general any combination of source

and vorticity distribution may be used. The contour integral of po round
Equations (100) and (101) may therefore the reference blade isbe combined to give terfrnebaei

i =Iý (Ut+im)dT #odz - f(Yt + im)dT - ro (108)

-y -2 ,Y (-z where re is the circulation round the
S(102) reference blade, and the integral of theU mdz

source term is zero since there is no net
2111 -flow out of the blade surface.

where the integral is now a contour Verdon's equation (75) gives the jump
integral taken anticlockwise round the in potential across the wake as
blade surface. Pm is a complexsingularity strength. If Mmdz is real N,1 m f (0

iI -e-Jw(A ATE) (19it corresponds to pure vorticity, and if 'JJ TE
umdZ is imaginary it corresponds to a

pure source-sink distribution, where a is the drift function, defined
so that the difference in A between any

Equation (102) gavoe the induced two points on the same mean streamline is
velocities at a poiqt zl which in not on equal to the time for a particle to move
the surface. If z is on the surface the from one point to the other under the
integral is singular and the induced influence of the mean flow. In this case
velocities just outside the surface aregiven by I .mzd T •

v b(zdA - ATE - V" 1  dt (110)

SVX - IV Y Z r um.2 -(3 0 ITE
- (10) which gives the time taken for fluid to

flow from the trailing edge to the point
and the induced velocities just inside in question on the wake, end the integral
the surface are givan by is taken along the wake line.



The Jurqp in potential across the wake The complex singularity strength po
it the trailing edge is just the circula-
t ion, so that may in principle be any combination of

i source and vorticity strengths. This

•(11) arbitrariness corresponds to the ideaT E' that whereas the flow outside the blade
surfaces is fixed by the physics of the

Differentiating equation (109) with problem, the notional flow inside the
respect to distance along the wake then blade surfaces may be chosen in any
gives convenient way. Atassi and Akai (1980)

therefore choose to make 0 real with
St= - w 3-• respect to the space variables. The

SH( 12) singularity therefore corresponds to pure
STATE) vorticity when the surface is parallel to

the x (chordwise) axis, and to pure
source or sinks when the surface is

This equation gives the strength of the parallel to the y axis.
vortex sheet at any point in the wake.

The integral equation (115) is solved
The boundary condition to be satis- numerically by matching the normal

fied just outside the blade surface is velocities at N points round the blade
given by Verdon's equation (69). For surface, where N must correspond to the
rigid body motion of the blades, the dis- number of points at which the singularity
placement vector is given by Verdon's strength is specified. Once theequation (102) and the normal velocity singularity strength has been found, thejust outside the blade surface reduces to velocity and pressure distributions justoutside the blade surface may be found.

The pressure distributions are then
. + oV - (+.V +).n, (113) integrated to give the aerodynamic forces,=jrn +and 

moment.
where Due to a programming error, the+ h + . X Rp • (114) results for the real part of the pressurer h a* distributions given in the paper by

The integral equation for u0  is Atassi and Akai (1980) are not correct.
Stherefore Results for which the error has beencorrected are given by Akai and Atassi1 1 jsro1 ( 1981 ).

1 0 K(z-z )p o(z)dz - - o 1 K(z-zl)
e ( Ti 4 SPECIMEN RESULTS FOR FLAT PLATE CASCADESI ZI

V1 i ) 2 In order to specify the unsteady

+jr.n + - C- ( V.n (115) performance of cascades of flat plates,five independent non-dimensional vari-
ables are necessary. These are the space

where the first integral is taken anti- to chord ratio, the stagger angle, the
clockwise around the reference blade, Mach number, the frequency parameter, and
and the second integral is taken along the interblade phase angle. Excluding
the wake of the reference blade from the the acoustic information, and the detail
trailing edge to dowrztream infinity. ro of the pressure distributions, there areis related to d0 by equation (i08). twelve dependent variables of interest.
This equation has to be solved, subject These are the real and imaginary com-
to the additional Kutta condition at the ponents of the force and moment for
trailing edge, which specifies that v bending, torsion, and wakes. This numbermust not be infinite at that point, of variables makes any general presenta-tion of the results totally impractical,

Details of a solution method are and it is only possible to present speci-
given in the paper by Atassi and Akai men results. It is therefore necessary
(1980). The first move is to solve for to have computer programs available so
the steady flow. Then for the unsteady that any particular cases of interest can
flow equation (115) is solved numerical- be calculated.
ly. The last term on the right hand side
of equation (115), which arises from For incompressible flow, tables of
the translation of a point on the blade specimen results have been made by
surface through the mean velocity field, Whitehead (1960). Figure 7 illustrates
may be singular at the trailing edge and the force coefficient due to bending for
exhibits large values round the leading a space to chord ratio of unity and a
edge. This is a source of numerical stagger angle of 60*. In this and the
('iZficulty. Ataz.i and Akai (1980) over- following figures the axt, are the real
came the difficulty essentially by and imaginary parts of the force
writing coefficient, and lineo of constantfrequency parameter and phase angle are

shown. In general the lines of constant
(z) - o (z) + r. V V (116) frequency parameter form closud loops as

the phase angle is varied. However, the
irline of zero frequency parameter is not

fy usln'J no the primary measure of closed for finite phase angles. In order4 the t.nkn•wn singularity strength instead to close the loop actuator disc theory,
Sf , the awkward last term on the with various values of a/X in the limit
righthand ide of equation (115) may be o.0 and X+*O must be used, and theSc tanc1leds result for this is shown on Figure 7.
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Fig. 7. Force Coefficient due to Bending. CFA
a/c-1.O, 8-60*, M-O.O.

Similar results for the same cascade Specimen results for two supersonic
in subsonic compressible flow are shown cascades are shown in Figures 10 and 11.
in Figure 8 (for a Mach number of 0.5) These cascades are examples used by
and on Figure 9 (for a Mach number of Verdon and McCune (1975) which have been
0.8). The presentation of results for rather widely used as test cases. Cas-
compressible flow is made difficult by cade A (Figure 10) has the wave pattern
the very wild behaviour of the illustrated in figure 3b, whereas Cascade
coefficients which occurs near the B (Figure 11) has thQ additional internal
acoustic resonances. For this reason wave reflections illustrated in Figure
the real and imaginary parts of the force 3c. On these figures the wild behaviour
coefficient are plotted separately near the acoustic resonance has been
against phase angle on figures 9a and 9b. largely suppressed, but on Figure 10 the
One resonance on these figures at X - 0.5 complete loop for a frequency parameter
and a - 102.45* is shown in detail. The of 0.602 is shown and illustrates typical
other resonances are merely indicated as behaviour.
discontinuities in the curves. Only the
parts of the loops of constant frequency Pure bending flutter of a system with
parameter which are in the well-behaved no mechanical damping is predicted if the
sub-resonant region are shown on the real part of the force coefficient due to
figures. Figure 8 also shows the actua- bending is positive. Figures 7 to 11 show
tor disc caset there is also a range of that the real part of this coefficient is
valuos of a/ A fi r which CF1• is purely alway negative, so that pure bendling
real, so that the line lies along the vibration is damped. This behaviour ham
real axis;. Fig;ure 9 at the higher Mach always been found for flat plate cascades
number of O.P.1 llustrates the wild fluct- at zero incidence. However, actuator-
uat ions whb'Th nccur near. the resonance disc and semi-actuator-disc analyses
point at the frequency parameter of 0.5, allowing for steady deflection of the
Sut at the higher frequency parameters steady flow through the cascade do show
the results steady down and become the possibility of pure banding flutter.
much lesn dependent on frequency para-
meter and phase angle.



-,iVe torsiona1 flutter depends on a tained by the superposition of elementary
,urther parameter, which is the position analytical solutions. This has enabled
zilong the chord of the torsional axis. cascades of flat plates to be treated up
TorsionaIl flutter is predicted by these to Mach numbers at which the axial
theories if the frequency parameter is velocity becomes sonic. Also, singular-
sufficientlv low. The effect of compres- ity theory, valid for incompressible flow
sibility of the fluids is generally found through cascades of thick cambered
to be stabilizing as the Mach number blades, has been discussed in the section
increases in the subsonic range. But "Singularity Theory" and actuator disc
there is also a theoretical possibility theory, valid at low frequencies and for
of "resonance flutter", over a very small phase angles, in the section
narrow range of interblade phase angle "Actuator Disc Theory." These methods
close to the acoustic resonance condition enable useful predictions to be made for
ýtO comparatively high frequency para- the vibration characteristics of real
n1eters (Whitehead 1973). Whether this is blades. But for turbine blade sections
• real danger on practical machines is with a lot of turning and with high Mach
not known. numbers or for compressor blades having

strong shock waves in the flow, these

CONCLUSIONS methods are hardly adequate, and it is
necessary to go to field methods. These

This chapter has presented what are will be discussed in the Chapter,
reqardoi as the most important two- "Numerical Methods for Unsteady Transonic
dimensional solutions which can be ob- Flow," V

S• I ~(CF•) 2~0 ',
q Actuator

Disc

4 'N

/ ,- I
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%%%% %%=i

* ~R(CFO)
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-4*5
0

?.'00

Actuator,'"
Disc -.- 2.0

Fig. O. Force Coefficient due to Bending. CFA
a/co1.0, ow60*, M=0.5.
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TURIEE-DIMENSIONAL FLOWS
by

•Masanobu Namba
Depairtment of Aeronautical Engineering

Kyushu University
1lakosaki, lligashiku, Fukuoka 812, Japan

INTRODUCTION tially extensions of the linearized small
disturbance compressible flow theories for

iUnsteady aerodynamic and aeroelastic a rotating annula2 cascade of lifting
phenomena in axial turbomachines are more surfaces with steady loadings, which
or less three-dimensional. Fortunately, originated from the work of McCune (1958,
1however, many of the essential features 1958) and have been developed by Namba
of the phenomena can be accounted for on (1972) and Okurounmu and McCune (1974).
the basis of two-dimensional cascade4 models, and many useful papers on two- The theories given by Salaun (1979,
dimensional cascade theories and experi- 1976) and Namba (1976, 1977) or Namba and
ments are available. Then what we should Ishikawa (1983) deal with exactly the same
do when we apply them to axial flow tur- model. However, there exists an important

' 14,bomachines is to correct for three- difference between both theories in mathe-
dimensional effects. There are, however, matical treatment of the kernel function
some types of three-dimensional effects in the integral equation for unsteady
which give rise to very large deviations blade loadings. SalaUn (1976, 1979) com-
from predictions by two-dimensional cas- putes the kernel function in its exact
cade models, and hence the three- form. On the other hand, Namba (1976,
dimensional correctiun concept cannot be 1977) and Namba and Ishikawa (1983) com-
justified. puts the kernel function by applying the

method of finite radial mode expansion
The three-dimensional effects on un- which has been developed by Namba (1972).

steady blade loadings in turbomachines This method enables us to extract singular
result from the following causes: terms quite easily. Owing to this ad-

vantage it proves to be a powerful tool
A) Annular geometry of cascades. for dealing with a rotating transonic
Li) Spanwise nonuniform amplitude of annular cascade in which flows relative

blade vibration. to moving blades are subsonic at radii
"C) Spanise nonuniformity in the near the hub and supersonic at radii

unsteady component of the incident near the tip.
flow velocity (spanwise nonuniform
gust). The unsteady three-dimensional flow in

LD) Spanwise nonuniformity in the a rotating transonic annular cascade is
steady component of the incident not only of practical importance but also
flow velocity, of great aerodynamic interest. Namba and

E) Spanwise variation of the blade Ishikawa (1983) have shown that the dis-
geometry, e.g., swept blades. turban'.e flow features near the sonic span

VIVO F) Spanwise nonuniformity in the are far from quasi-two-dimensional.
steady component of blade loadings. Another important finding by Nanmba is that

G) Presence of sound absorbing walls. the three-dimensional effect on unsteady

loading* is quite small if the predominant
It is a formidable task to theoret- acoustic modes generated by blades are of

Ically deal with all of these three- cut-on stale.
dimensional effects in a general foL-m.
As the first stage in the process of re- In the following chapters Salaun's and
search we have to develop particular Namba's and his colleague's theories are
theoretical methods based on simplified described in some detail.
models which can exclusively deal with
some types of the three-dirrmnsional It should be noted that Namba'a and
effects. As the second stage we should SalaUn'a annular cascade model also in-
proceed to more realistic models taking cludes the effect of type 8), and further
into account various effects such as the effect of type D) in a special form
shock waves, boundary layers and blade since the resultant velocity of the
profiles. Our goal is to establish prac- approach flow relative to rotating blades
tical rules of correction for the three- is naturally non-uniform along the span.
dimensional effects or practical methods
of predicting the three-dimensional As far as a linearized small distur-
effects which are far beyond the concept bance theory is concerned, it is merely a
of correction. At present we are still matter of substitution to transform the
at the first stage, and some types of the formulation for the vibration problem
three-dimensional effects remain to be into that fa: the gust problem. In fact,
studied. Namba (1977) and Namba and Abe (1984) deal

with interaction of an annular cascade

The objective of the present article with nonuniform gusts, i.e., the effect of
it to outline the available theoretical type C).
methols which can predict various three-
dimensional effects upon unsteady blade The simplest model to exclusively deal

f,. loadings. It is also attempted to do- with the effect B) tr C) will be a
scrib* typical features of the three- linear cascade betweeat parallel walls.
dimen'ionfil effects revealed by those As to this model papers by Nishiyama and
theoretiral methods. Kobayashi (1977) for subsonic flows and

Ktkuchi (1980, 1981) for supersonic
The effect nf the annular geometry flows are available. Description of this

has beaen studied bi Namiba (1976, 1977), model, however, is omitted, since it can
If Namba and Ishikawa (1983) and SalaUn be regarded as a special case of the

"(1979, 1976). Their theories are @seen- model described in "EFFECT Or WALL

_ I
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SLIN INGS". to be a uniform axial flow with velocity
SW *and density po* Hereafter we use

in crdez" t b study the effect D) ex- dimensionless quantities with the refer-

cl1uding all other types of the three- ence length rT* I velocity Wa* densityIN dimensional effects, we have to deal with o , pressure po*Wa* 2 and time rT*/Wa*
a linear cascade .n shear flows. In this Let us assume that the angle of attack,
ease the time mean flow is rotational. camber and thickness of blades and am-

Then solvinq the governing wave equation plitudes of blade motions or incident
becomes very difficult. Kurosaka (1978) disturbance flow velocities are small so
conducted a preliminary study on a vi- that disturbances induced by blades are
bratino sicadle airfoil in supersonic small ant isentropic. Let (r, t, z) be
shear flow. Kaji et. al., (1981) studied a cylindrical coordinate system fixed to
the vascade flutter in incompressible the rotor and t be a time coordinate.
shear flow on the basis of the semi- Then the position of blade surfaces can
actuator disk model. Recently, Yamasaki be represented by
awl Namba (19•,2) developer] a lifting
surface theory for a cascade of oscil- (-- Z- 2"rA/N (r, ), /Vr
Lat ing blades in incompressible shear (1)
flow. This work is outlined in the bL(r) 5 Z e bT.1(r,), • r• ;
section "LNSTFADY CASCADE IN SPANWISE
NONUNIFORM ME.AN FWOW", YA=O,1,"',N-f

Current. turbofan engines are equipped
with sound abzorbing liners on engine Hence 8' = e - w z = constant gives
duct. walls in order to attenuate scunds. an undisturbed helical streamsurface,
The princi!al pa.-t of disturbances gtner- fm(r,z,t) denotes a circumferential dis-
ated by blade vibration propagates as tance of the m-th blade surface from the
sound waves and interacts with the sound helical surface 8' = 2nm/N , and bL(r)
absorbing liners. It is then needed to and bT(r) denote axial positions of
know how this interaction with the liners leading and trailing edges of blades re-
will influence unsteady blade loadings. spectively. Furthermore, w = w*rT*/Wa*
Especially, our interest is whether the denotes the dimensionless rotational speed
wall liner can be an efficient suppressor of the rotor, i.e., the ratio of the cir-
of the cascade flutter or not.. cumferential rotor tip speed to the axial

flow velocity.
A preliminary research on this prob-

lem also has been given by Kurosaka and Now the presence of blades can be
Edelfelt (1978). A more extensive study described by body forces acting on the
has recently been conducted by Yamasaki fluid as counter action of aerodynamic
and Namba (19P2). They developed a lift- forces on blades and mass sources repre-
ing surface theory for a cascade of os- senting the displacement effect of the
cilating blides in a parallel walled blade thickness. Then the linearized
channel treated with sound absorbing lin- equations of continuity and motion are

,. Kings. The section "EFFECT OF WALL given by
.LININGS" dealb with the effect. of type D)

by describing Yamasaki and Namba's theory VP .
with some new findings. V

N-1 k
Recently, swept-back blades have be- (2)

attractive in the development, of ad- Z 0(
vanced turbopropellers. Application of ,i=O ,A)
swept-back blades to turbofans, however,
remain, unexplored. The effect of the w h(- Zo-21TK/N)W(Z- zO) 2 dz,
blade design E) will deserve to be inves-
tigated, especially from the standpoint. (3
of suppressing noise generation. (3)

Vt
it. is now widely accepted that the N- T rsteady component of blade loadings has an r r

important effect on the cascade flutter. rb
Then the nonuniformity in steady blade bLtrO
loadings, i.e., the effect of type F), , /p j ,2r.d_70.

eq will give rise to modification of un- X •• -Z0T.N) ( -4)
steady blade loadings. Some recent works
on the effects of typea E) and F) are re-
ported by Namba and Fan (1985) and Namba,
Yamasaki, and Kurihara (1984).

SUBSONIC, SUPERSONIC AND TRANSONIC UN-
STEADY ADNULAR CASCADE THEORY BASED ONu j
'ifE FINITE RADIAL MODE EXPANSION METHOD

MOrEL AND MATIIEMATICAL F})RMULATION

we consider a single annular cascade
composed of N bladus rotating at a con-
stant angular spoed * in an inviscid
perfect gas flowing in a rigid walled

anotilar duct of infinite axial extent
with the outer radius rT* and the hue,-
to-tip ratio h as shown in Fig.l. The FIG. 1. ANNULAR CASCADE AND DUCT
undieturbed StJte •f the fluid is ausumed GEOMETRY
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SHere . and denote the disturbance where ^ denotes the reduced frequency,
fluid density and the disturbance fluid and 0 = 2wo/N is the interblade phase
velocity respectively, and C denotes angle. We should note a is an integer
the unit veztor normal to the helical between -N/2 and N/2 Substituting
surface 0' = constant , i.e., Eqs. (10) and (11) into (8), we can

easily find that the disturbance pressure
can be expressed in the formJ.6ýr (-(A)r e, + e().

~'rier - and,-e 0X (4) "f(r,o,z,t) = pr.r,oz)e (12)
Further

+ +L(,8 )e/t12

% e0 ÷r 50 3 (5) where

+ ((4)

15- •) a 5T 
13%' deoeA:

where T(Pand er)deote unitZ(r

Urespectively. In Eqs. (2) and (3)

T~p,, O, t) and F.Pj r 0,t) pr. )KLr&-o )d .
denote respectively the mass source den- r0r KPL(r~3'0'- 4O VO.
sity and the pressure difference across f0
the m-th blade surface. The relation of
isentropic flow is given by

Here kernel functions Ka(r, egi venb)P• _ P-2- = ( (7) and are given by
Dt M pt )

where Ma is the axii,:'. flow Mach number.
Eliminating F and ..• from Eqs. (2), K.V,9,1 o10(3) and (7), we obtain'the equation for

Sas follows (15)

KPL(r.&'4-L_,O~rO)b (

Tm,(rC'pt) r T r,-0 r ) FP671

F r az.- 7•rr)r -

'I+io r• (r• A, ,.~r-) where •(', -8 .-0e, I r0 .)e[• denotes

.'•.•;';t X\ z~•('a, z, t)$(Zfo)the pressure field induced by a row ofmonopoles located at (ro0 ro* *o$" J ) 2rm/N) with the strength

'!•I t is the solution to the following
equations :"0he boudary condition at the duct walls o

a/a=0 at r 1 and A. (91 (- 17)

bLr. 2 w (m-) with the stength O-z /l)
X 2-rX t )[0+W i

ar" 0 at 1a 1 and A. (1()

l uo lot uo assume the unsteady state

of the flow to be of harmonic time dopen- As shown by Namba (1972) the solution is
dence with a constant intL'rblade phase expressed as follows#
angle. Then we can put

ii For subsonic axial flows, i.e.,
,,o At.LO- (10) Ma ( I,

P,,SIZI,-Ft) (IL#
Oj69 F-- (10 r

47 x 1+ 0 AzKV A
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ii) For supersonic axial flows, i.e., Furthermore as i increa sewith n filed,
Maa>l, radial changes in Rl n7?r are con neu

to an increasingly narrow region near the
inner wall. On the other hand, as n

G(reA(r0) (20) increases with X fixed, radial variation
in Rt(n)(r) becomes larger near the outer

N 0 wall.-=Hz YY R, (r)r'' 0;
:H -W - As Eqs. (19) and (20) show, the pressure

field induced by a row of monopoles is
1/a2 composed of an infinite number of acous-) p + +, tic modes, which are specified by the

"circumferential wave number n and the
where radial order, i.e., radial node I . The

circumferential wave form given by eine is
vn N + (21) sinusoidal and independent of the radial

order, while the radial wave form de-
2 M2 scribed by RI(n)(r) is heavily dependent

Sa = -a (22) upon the circumferential wave number n as," pointed out above.
and H(z) denotes the Heaviside step func-
tionr. Furthermore, the axial wave factor FINITE RADIAL MODE EXPANSION

ft7)is defined by The pressure fields induced by rowsA: 0, of discrete monopoles and dipoles given

by Eqs. (15, 16, 19, 20) are singular at
f• A A o (123) monopoles and dipole positions, and hence

* and (x)2 2 7tl >0 acoustic modes of large n and i play an
,n ->0 important role, especially near the sing-

ular points. We should note, however,A<0 "that the radial variations of the pres-
sure fields induced by sheets of dipoles

, and 2)2-?•t!M/•<O, and monopoles representing the cascade of
blades are no longer singular, and hence

SA= t" 2 _ lX).. 2M. / 1/ 2 the contribution of acoustic modes of• large radial orders is expected to be
Further Rt(n)(r) and kl(n)(t - 0.1 ... ) small. This suggests that the pressure
are orthogonal radial eigenfunctions and fields given by Eqs. (13) and (14) can be
eigenvalues respectively of the following approximated by a sum of acoustic modes
Sturm-Liouville boundary value problem: with finite radial orders from I = 0 up

to I = L-1, say.

r r I r J6( r2 R We should note, however, that simply
(24) to truncate the series while keeping the

0 exact values for Rt(n)(r) and k,(n)
fails to reproduce proper behaviors of
the field. Therefore, truncation of the

'Ihe eigenfunctions are normalized as t series must be accompanied by modifi-
follows2 fication in R (n)(r) and k£(n) so that

the contributLoa of large circumferen-
r'r.'r 25 tial wave numbers is properly realizedr - over the whole radial position. This is

aLcomplished by the following method.
where &tm denotes the Kmonecker delta.
The elgenfunctions R (n (r) are Let Rt(n)(r) be approximated by a
equivalent to the symbol Rn(kg(n)r) used finite series expansion in the form

,* by McCune (1958) and they are constructed
by combining the Bessel functions of the) L-
first and second kinds of order n -Bt*, R• ) I (28)

JNote that for n - t - 0 M-O

0 - O, R (a) r2 T ) where Rm(O)(r) (m - 0 1. ...I ) are
exact solutions for n - 0 . Substi-

iherefore each set of orthogonal functions tuting Eq. (28) into Eq. (24), multiply-
,,(n)(r) (t - 0, 1, ... ) is complete. ing the resulting equation by rRk(O)(r)

and integrating with respect to r from
A*Dng various properties of RI(n)(r) r -h to I, we obtain

dJ kt(n), rention should be made of L-1

(26) -A 0Ri( r) 10, rma .

0,# - ,,.. .,L-l, (29)

where

R ... d ( ( 0) (30)ii"•,4i ;•1t-! if s rixed. (27) •

Ii�.. .....-
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Eq. (29) implies that 6±(n)2 and

Bmn (,m 0, 1, .... L-l) are respec- ,(,, r)
tively eigenvalues and eigenvectors of the (00) "-
symmetric real matrix

(32) 2. 0
0., 1 ,l .. L-1). -2.0k. #: -2.0

4= 6
Furthermore Eq. (28) implies that -4.0

B) = r Rr) ^( (r>) cr (33) 0
'Nqi.

Then it holds that -2,0
() L-I

Rm(F) = : T •° "(r.), (34)0/
and hence

Z : t n .2 (-A) L- 0 0t=0 - 2.0 -2.0

F= o

A remarkable advantage of the finite
radial mode expansion is that we can ob-
tain limit eigenfunctions Rl(-)(r) and
limit eigenvalues Kl(,) by applying n÷- 2.0 2.0 1 4
to Eq. (29). Furthermore, asymptotic
"behaviors for n+- are

S- "'0 ' :N 4ýN0
(r)+ 0(7-2), (36) 0 ... 7,1.0 0.7 0.4 1.0 0.7 0.4
KO t00t- 2). () ad ZEFUCISK•' K=+ ('2.r r

This fact enables us to extract the sing-
ular parts of the kernel functions very
easily. Figs. 2 and 3 show _..(w) and FIG. 3. LIMIT EIGENFUNCTIONS Rl(-)(r)
R,(')(r) computed by the present method. FOR h-0.4 and L-7

The behavior of Rt(-)(r) shown above|.OF • , • " ,suggests . ..to use a si et of Rj(u )(r ) (I l-Or 50,1 ... , L-l) as the basis function

system. In this reepect the following
0.8' , relations are useful.

(7 (7t)
di06 ' Ri (r) (37)b K.()

rF2 it 2 cBL' 1<f(r) (38)

0.2 J-o
where

0.0-3 1-2 3 45 - - - 91" -
3 1 26 9 LIM '=ZB t P (39)

FIG. 2. LIMIT EIGENVALUES q(() FOR h-0.4 Cn(i) I
ANSD VARIOUS L (number of rutained I RMO"-' a"
radial nrdors) k

- a) 
t..t (40)

We should note that xt(") are no rn-c
longler equal to unit contrary to (27).
Furthermore, l/" C m 0,1.... ,L-1) C(R) Mot
constitute e finite c of numbers . -li Ro
w? hich are equally spaced between I and h. (41)
We should note further that each of

sha)r)aovs a highest extremum at k"
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Furthermore, it holds that

ýIk ~ (42)15 150

~ - (46)
1=0

-10 10 20 30

ACOUSTIC FIELD EXPRESSED BY THE FINITE n
RADIAL MODE SYSTEM

The concept of the finite radial mode FIG. 4. CUT-OFF BOUNDARIES OF ACOUSTIC
system given in the previous section lies MODES IN A SUBSONIC FLOW
in condensing all acoustic modes into a Ma=0. 2 5, h=0.4, w=2.4744, L=7
finite number of families with radial Hatched regions denote cut-on
orders from t = 0 to t = L-1 rather than state.
in simply omitting modes of radial orders
higher than L . This 'rearrangement' of When the relative Mach number at the
acoustic modes allows us to classify the hub is larger thae unity, i.e.,
acoustic mode families into supersonic and
subsonic types as follows. ML(i +OA2)'A > 1 all mode families satisfy

Let •70 be defined by i/412>e , since r 2<h 2. Then as

shown in Fig. 5 a mode (n,l) is cut-on if
A( n) n>n+(LX) or n<n_(1,X). Therefore, in

) = 1/in. (47) this case there exists an infinite number
of cut-on modes for a given frequency A

Then

K00)2 - (48) "

1*0
where 1 2

i's = {fa2/(,(A)2 12  (49) '2503

is the sonic radiuQ At~ tjh the resultantN1
Mach number M - MTrl+w r is unity. Then
we can state that a mode family of the
radial order I is of subsonic type
if > 0 , i.e., • /)T)Z< While I-012

a mode family is of supersonic type if 6 10

hW2 ý,0 i.e., 1/K",2> I. n

The rationality of this statement is
supported by the following demonstration. FIG. 5. CUT-OFF BOUNDARIES OF ACOUSTIC

MODES IN A SUPERSONIC FLOW
When the relative Mach numbE.L.± 2less MaX0.8. Other conditions as in

than unity at the tip, i.e,) MJal+w )01, FIG. 4.
the cut-off boundaries 011n) * 0 of each
mode family become as shown in Fig. 4.
In this case all mode families satisfy When the relative Mach number is

IIKJ1/K , since rl , 1 . We can larger than unity at the tip and less
see that tnere exist only a finite number than _nit at the 1,ub% i.e..
of cut-on modes for a given f.equeney A. Ma(t4'h ) 1 4 1 (l+.2) , mode
Denotinq the roots of i(n .- 0 by n- families of subsonte and supersonic
n.(t,A) and n,(tA) , we can state that a types coexist. In fact, as shown in

0moe (n,t) is of cut-on state if Fig. 6, cut-off bguoary curves for
n_(t,)ncgn+(t,0) The critical circum- families of l/w 10 to reor are of
ferential wave numbers nj(#,A) decrease subsoni? )type, lWhie those for families
as I decreases end/or a increases, of M/Ai's ) r9 are of supersonic type,

.... ....
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A" '0where

The exrsino pL given in Eq. (52)
is convenient for imodal analysis of the
acoustic pressure field. In fact, sub-
stitution of Ec. (52) into Eq. (14) leads
to

(53)

-10 0 ,,10 20 30 =~ ~ 4k~x{~ 4it}1 ]~)

FIG. 6. CUT-OFF BOUNDARIES OF ACOUSTIC for axial stations downstream or upstream
MODE INA TRNSOIC FOW:of the cascade * Here FP(+)(n.l) and

FP(_j(fl,t) denote pressure amplitudes of
Ma=0.48 (~ cutc md t dwsra nOther conJitions as in FIG. 4.(,j aosi oe t dwsra n

upstream stations respectively, and they
are given by

We can define a critical radial order 1ýi -

such that l1V< s Thus mode +11 7T, , r. ir
Sfamilies of t = 0,1, .. .' t.-l are of ro

supersonic type, while those of X L.t, XI ~ (~ 0 ep-&~m)Od 0
..,L-1 are of subsonic type. it is

noteworthy that a basis funqtion Rt(-)(r) n
of the subsonic family possese a highest The subscript () or () of DB k(n)
peak at a subsonic radius rMlic(a) r. (n)
while that of the spr n
possesses a hi?hest peak at a supersonic snd zt(±) impie thor- rsectvely.s o

radius r=l/eCt(- >r,. snzz -+ r- epciey

-, In the case of transonic or super-I
DISTURBANCE PRESSURE INDUCED BY UNSTEADY soi flw th innte erswth ea

LIFIN SUFAESpact to v in Eq. (53) is divergent, since
Heraftr w liit urslve tothe t,(n) for I < 1. becomes imaginary forHereafte w liiousle tote lrev Frhro ,vn in the came

case of blades with zero thickness in arov* Fthmre eenL
suboni axal low (M ( ) . Subti- of subsonic flow, the v-series is of non-

ito E.(6,w oban uniform convergence, since the kernel
tutin Eq.(19)function is singular at dipole locations.

To extract the singular parts we can re-
write Eq. (52) into

KPL Ie' z- ZOIr')

- T Rg ~~(r) (r,) (55)~z~OrO

5 Cjl t Eq -fin) rw ) Z)+ r e obai

(52)6

(3) rro --- - r

(52) (2) A) +jeL (57

(81 0r pb+Kjp XL



where ($)

(IV) (W (65)-•,•f •z'R t (rPR, ( r) e•C /)•z••• • zz) -
e-a- - -- • PO (65)

as &.*2?rm/N±O
K , -) (58)

On the other hand Kp(S possesses
pLp

-- e-VtA z-JZ the delta funtion singularity along
+- 6+ Sj(x characteristic lines

X-Z-o + 6'- 2.rm/N )/At (66)

-Kýp(ty,' 2!-Z, r~o') (59) These characteristic lines can be inter-
preted as Mach waves of the 1-th radial

S -(W) 0) 0 mode family. In fact, as Fig. 7 shows,
- >1 •R ()') 2 (p ,t(6'-21 /N) they emanate from dipole points on the

=0- (6,z) plane, and the Mach angle Ux
e i.e., the angle between the Mach line and

, •(?-iZo e' '-ZJ~l/N]/AO, a streamline e -,z - 0 , is given by

= ± i-+r ("Z

'(R (67)

(60) ± + 0. + Kj'):f

4xN L-1(-

and

= e~/(e~~ 0(61)

A, I jS1.c~-6 1~', (62)

1 otherwise, (63)

0 + = z-) O t"

FIG. 7. MACH LINES OF THE 1-th RADIAL

S, t (n)( d,,/•. V,) t MODE FAMILY AND DEFINITION OF

V, (64 We easily see that

5t fmv/(A, Ior), as h + I , where MT MI7l+OC isi
(s ()l ,the tip Mach number. In Table I the

The cromponents and modal Mach angles are compared with the
pib pip

dorote singular parts of subsonic and quasi-two-dimensional local Mach angle

supersonic types repoctively. We should p(r) defined by

note that the special function 1l(n,o)(x)
defined by t.r (61) behaves

I/(NX) +00)

*s x u 0 • Therefore
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•i~I. Mth ofles oeach radial mond

family W and P1 , and quasi-two- %L(r,&' )-
dimiensional lot.al Mach angle u(r). (69)

(a) Ma= 0.8, h = 0.4, u 2.4744, L = 7. Y e[ -4)r)P(ro,z 1
r p(r) 0+8

1 .Substituting Eq. (14) into Eq. (69), we

0 28.58* 27.94' 1.0 27.93' obtain

1 30.83" 27.08g 0.9 30.790 x

2 34.13* 28.03* 0.8 34.32* (70)

3 39.32* 28.11' 0.7 38.68' \st ro)r \ P(r.) K.TL( r, 9;Z-2 ._•olZ,

4 48.20° 28.24" 0.6 44.29" & )
where the upwash kernel function K is

5 64.72* 28.45' 0.5 51.77' obtained from TL

6 94.11° 28.87° 0.4 62.66' Kt.(", ', -•o Ir) :-a--A

(b 
(71)

(b)Ma= 0.48, h = 0.4, , = 2.4744, L = 7. oA
+ r u(r) = r 7, T p8=66at0i

Substitution of Eq. (55) into (71) and

0 53.78' 51.97" 1.0 51.38' integration give

1 63.27' 54.60' 0.9 58.57'

2 80.86' 60.60' 0.8 69.87 N L L) (

(72)

In general,the inward Mach angle • is .t &I f

larger than the outward one "ya-0 too

The difference between ]4; and as

well as the deviation of "or C . - ,
from, (y(r) at r - I/<X(') increases as VIL-0 1='0 V
I/itr approaches rs.

It should be emphasized that the sub- where

3onic singular part KPL( and the super- =

sonic singular part KP r dmnntU i L(3

at subsonic and supersonic radial stations =
respectively.

Finally (R denotes the regular (n)mm irl I pL, The asymptotic behavior of BM lkfor
part, which is composed of v series of Ttr

uniform convergence, as shown in Eq. (60). large n in found to be

UJIWAS11 VELOCITY INDUCED BY-- LIFTING x W ~ Q3-s -. ~)
SURFACES

The disturbance velocities are ob- - +, Ool -"( ). (7)
tained by Integrat..ng the equation of 11 + ')

p Irtio (2). Let -•" . (r,,/z)elM• Then separating singular parts, we
L can rewrite Eq. (72) into

,4 b•. the disturbance velocity associatedwith the disturbance pressure (3)() (0()) (75)
Pj(r, -,, z)elkt and let q L(r, 0', z) be KU a + '•Lp + Kq o I u 7.
the ctnmpon.nt of q, normal to the hell-

14. * liftlng-surfaceW. Then
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K.L.-I

wher) --- ,

((70
IK �(r, e4, -4 ((7) a (N , )W

)7• '= (r0 fo.ow :

o) KO BtV1 1 ( L7-2~8~( )~)4a~

1.K Ksw)(--,e') J - 1T(l•(rX)l ',- (7_ t_). 2 "C.. -

K08( " e(81)

(77)
Furthermore, special functions

,, t,' 0 K~i(7 , 60, ER(N.o)(X) and K(NeO)(X) are defined asr 0 ) Azo I) r ,P ) r0 .~ 1 ~ , follows:

Ii$~ - Y-<X 7(~

K 0•(JT m tL

KQ(SW)(_OO) 8T(O)(X)= I7TN N N N

- U-1/) (78) A ad 8 d, N (82)

-2ý +0 pR(Nt) 21rth nosOtNx) _ la- sisturNx)ce

N m)-)(XN e-r-X (83)

N k080 7e~x

KQ Pl(sk(z- ,o, 6) ae-O entX (84)

a P IV~ (yZ.(-Zo + 0'- ZYrMN )/A1

Ths first component KL defined
(79) by Eqs. (76) and (78) denotes the main

part of the nonacoustic disturbance
which is not 'accompanied by pressure

S-L•IAII V-41 + flO'+e-W•-zoAIJ fluctuation. The second term on the
right-hand side of Eq. (78) possesses
the delta function singularity at wake

f ~4~ - -_)~~ ~. ~ 7T N~isurfaces. We can omiit this term, minceV-',•I ,Ii p~~i- i•,Ji s i(i0) -- ST (&-zo)A¢) the state at a wake surface should be
evaluated by a limiting process 0 1
2*m/N t 0 0 ( d

t The second component KLp defined
by Eqs. (76) and (79) is the singular
part of supersonic type. We should note

that the special function ST(N)(X) de-KOý (•-z )-- z0 fined by Eq. (82) is the so-called saw-tooth function. Therefore, we see that
the supersonic singular partSP4:lL34" flo (,.e)$,Ai.,} (,)
K(Lp shows singularities of the delta
function and finite discontinuity across

e)C 'AIU 1 ¶ l-Z,-Z#) Mach lines given by Eq. (66).

N•V The third component definedk~s t-6)-4It(-A~r~e4 Lp(80) by Eq.. (76) and(8o) is the singularpart of subsonic type. In fact, noting
S " "( the properties of the special functions

I1(N :0)(X) and K(N, e)(X) such that
lI(No)(X) l/X and K(0,o (x)W logX as
X 0 we easily see that

+ +)
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b,(r,) • Z'o, "IC) < bTr,). (91)

2, (85) Other components of the disturbance

-- () K/7
2  

-1vi1 + ) O(f) velocity 2L are obtainable in the same
OA ) way as qTL . The resulting expressions* a Z-Zoo t are given by Namba (1986).ia INTEGRAL EQUATION

The last component K (R) defined by
TL

Eqs. (77) and (81) denotes the regular Here we confine ourselves to the bladepart. The first and second terms on the vibration problem. It is required toright-hand side of Eq. (81) give non- evaluate unsteady loadings on blades whose

acoustic and acoustic disturbances circumferential displacement is given by
respectively. Both v-series are uniformly
convergent. = 8(92)

As the supersonic singular part
KLp involves the delta function term, Then the boundary condition on the blade
we can partially intergrate with respect surfaces can be described by
to zo in Eq. (70), obtaining 0(

9,•(r~oz)_ •6(,0,z) btr z)/i+r•, (93)
______ rwhere

Ap8(rOK~rfr,-I~Z
A, bSi) (86) b&,L 10 W, A + (94)
I 1.-1

+- rr, T 2 w),Rjw()5
4' Substituting Eq. (86) into Eq. (93),

we obtain an integral equation for the
x'•?'3 oZ~(z•)e'))(o, unsteady loading function APB(ro,zo) as

where KTL* implies KTL without the follows:
delta function term of Eq. (79), i.e., K. r , r( d($W) =S) (sw) .m , (R) • r° \ . f(r, z.) (. Cr,0o, 2-2,1l r, )d~z,
K4L Kr-L + K;p+Kl + I~ bJ ) (I;)

",V ,ft J-I' ,•(8,, ,.*) (87) + 0 rr •oR(r)R•r)(,
Kj~p+ r , R1(95)

N (oL K
47rq rr, F: R (r) (~r,) KOPI (.z-zo j&'), ý'()t (Y ~ r 0 90r(zo)

'4' (88)'IIT

+b

r Analytical inversion of the integral
x- (T)A e 11St() equation is generally impossible, and

hence we have to solve it numerically.
For convenient numerical treatment let us
use a locally normalized axial coordinate

N 7 defined by
Further (89)

AJIV- - C(r)/C() (96)

Z! M_ . Z + W- ,,IVIA•, (90)
At. , s _ where cM(r) denotes the mid-chord axial

ML J position and ca(r) denotes the axial
As shown in Fig. 7, the function chord length, i.e.,

S1(i(%,61) implies that the Mach line Im(r), .ti(r) + 6L(r))/2)
of the 1-th mode family passing (9"))
through a field point z-zI and CW(])m br(p)- K(0).,
& . 91+ ZI in the (9,z) plane starts

from a point, of z - Z(m)zl,8l) on
the m-th blade. Moreover, m+ and m'- Then Eq. (95) can be rewritten into
denote, respectively, the upper and lover V
limits of the blade number m that {r, , b(r,0, $0,1)satisfelsla



SNow substituting Eq. (102) into E q.
(98) and approximat ng the integrals by

+ R numerical integrations, we obtain a set nf
algebraic equations for P( fZ)

" ~(i 1,2,....,I; j = 1,2, ..... J)s

Im!Zr' (~r r., mkrz 1(rr
rhroe rgexpB)&F(ro,zo ) )• a b*ro are

X K•pLa b, y, 3¢r..,I-7P) a(nbo loWhere ii k- o 1ý r

ete~~~P elmn metod th moe"ucto

Pmct ) t h(r) t Cmi(r), (99) mto r 8  = (106)

Furthermore, APB(ro,t Z) and b(r,z) arewi s
replaced br ' ,o ) bi ,(rirespectively. =br,•)

Various numerical methods developed (=1, 2,.. ,j; 1, 2, J...j
for solving the integral equation for a
single airfoil will be applied et the (10)present problem. These methods are clas- Here fomuis a tin ofter disfunctionsified into three categories; the dia- such that
crete element method, the mode function

method and the hrbrtd mthod. sbnota hi acurc in P(rh,%), (eic)
rtHE DISCRETE ELEMENT METHOD JI;-

The method consists of determining

Ap?( ro, z) at a finite number of load and Al and Ar• are weights of
ponts r(i P Zoj related numerical formulae. The Kutta
1,2,...,J) by maing Eq (98) satisfied condition (m04) should be taken into
at the same number of control points account an determination of uncion.(ra, zh) (a - 1,2,...,. ; a - 1,2,...,J). A
We asould note here that the load fun- The formulation of the discrete ele-
tion Apn(ro, Zo) has the singularity of ment method is simple, but in order to
inverse square root at the subsonic attain high accuracy in the numerical
leading edge. Thus evaluation of integrals a large number of

control points is needed.
at the subsonic--- =0 I/l/2+4) leading edge,(101) THE MODE FUNCTION METHOD

at the subsonic
S( ,)-f0 --4) trailing edge, In this method Aea.ro,) is

at the super- expanded with appropriate mode functions.[00|) sonic edges. In the present system the most suitable

.. radial mode functions will be R 0)(r)
Therefore it is better to put L .et us put A, • r , ) 107•0 R "( ° (• •

P 7,,114- P(rl/ • 72 (102)

Substitution of Eq. (107) into Eq. (98)and deterutine numerical values of gives
which is bounded everywhere.

Forthermore since ,repetv-o

at the subsonic

-l at the subsonic J (zi(P~r°,tD o /(F, z-_-,) lt tonicth t.e.se"'•

[O(,•/VT-• at the ,sper-= r, ,
sonic I.e.

where
4we ,:tih ano,," the Kutta condition _

P(ra, l/2) - (104) KTk,(r)& . ()(o)
uo the ,wo.l, span irrespective of: K; rt.0 P, PY

odae *r supersonic. J .. -.
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ITR~r,~')+ R~r) K01(301~ , (115)

(110) 0:0At-

~ c~"(r,~~..)dr + Rk'(P) LQ~Cc~cX,) ~A~-

and is defined by I7f'(r,7) jP RJ1T') (O). (116)"I TR z Tg(O) : r'<-- •<'. 11n)

- 0 o<nt Or 7n > wl. Therefore Eq. (108) becomes

Eq. (108) is the integral equation L-t(1)

for Gj(2 ) . We can further expand the 1/2 JU0

unknown functions with suitable - I P, rAwith suitableR•Ckr) I I eL•IT G-(Z~'krD
chordwise mode functions. However, 2 0 '

special attention should be paid to the
fact that chordwise pressure distribu- =
tions at subsonic spans are of different
form from those at supersonic spans. where
In this regard we should recall that

the radial mode function Rk ()(r) of the _ 27Ti ?%107 (118)

k-th order is dominant near the radial -N {o-s (in)}?-0
station r= /X).Consequently ••

i oThe functions Gk(O) of subsonic radial

for 0 4 k 4 1.-l should be of supersonic mode families (k - le,...,L-1) are expec-
ted to be of subsonic profile. On the

profile, while Q ?) forT. c k -( L-1 other hand each Gk(M) of supersonic radial
mode families (k O,l..0.,L.-l) will

should be of subsonic profile. be of supersonic profile with discontinu-
ous variation at reflection points of the

Another difficulty with respect to k-th mode Mach waves coming from the lead-
the chordwise mode function expansion ing and trailing edges of adjacent blades.
arises from the fact that the chcrdwise The 1 coordinates of the reflection points
variation of APB(ro,7o) is in general shown in Fig. 8 are given by
discontinuous at supersonic spans because
of reflection of Mach waves emanating (119)
from leading and trailing edges of ad- ri 1/2-- '919) P
jacent blades. One of the ways to over- () •_(_1,2,...
come this difficulty is to apply 1wDn -1-/2 i-me,(-t i "i,
Nagashima and Whitehead's technique
(1977). Application of this technique to tLm -1#2# +..
the case of unswept blades is described
below.

In the case of unswept blades, i.e.,

bT(r) - bT - constant,,' L
(112)

bL(r) - bL - constant, L01

cM(r) - 0, and Ca(r) - ca - constant, LO?

LUI LD0
the function g(r,i) defined by Eq. (99) L D.03
becomes independent of r , i.e.,

(113) LU1 U30

Furthermore m+ and m- which are respec- I U 1
tively upper and lower limits of integer
m that satisfies ,_J LU3

bt. < Z(7kcO 0) ! bL. (114) ri r

are nw longer dependent upon r and r 0 .
Then integration with respect to re in
Eqs. (109) and (110) is easily carried
out, giving

1 04 F.a. s. RPLIUCION PATIRN o0 MeA LINZ$
r (r')Ij 04d14O THS 1w-th RADIAe MODW PANILY
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where Table 2. Definitions of factors rWela-ated
to Mach wave reflection.

(k) !k)
ýwf± (120) a9 G zu

m r-i -(k)-_lm0 I-(k)
2m-l U D z z

m ml 5(k)
2m UkDk -m

Their physical meanings are indicated in
•m(Fig. 8. GD(k) ZD (k)

Now applying Nagashima and Whitehead's
technique (1977), we express Gk(E) of
supersonic mode families as a super- m m-l -(k)+ -(k)
position of continuous functions, putting 2m-1 D U ksz -(m-z)dk k

for J6<S4• L- 1, (121 m (k)2m DkUk -m dz

(122) (k)- (k)+

rn~(k ).,A)- zzVz" ()+
.1K

for 0 < k< 2,- 2, -(k)++(l -)(k)S2P 1/2

where the special function D(z;zIz 2 )
is defined by )+

(I (13) a ZDa ZD0
DQ zT<,or -> (k)+ -( k0 2 2m-1 -1/2+sz +(m-l)d 1/2

Definitions of GU (k), GD , ZU(k , -(k)

a a 2m . -1/2 + m dz 1/2 -

D(k), U(k)± (k)± X
ZD ZU and ZD are shown in

Table 2. Furthermore, integral numbers +(k) (k) -+x(ikDk -epi•)
(k and a, are defined in Table 3. Uk- - exP(-i=k). Dk exp(i~k

m , 1,2...

It is easy to see that Eq. (122)

leads to Table 3. Definitions of aU and QD •

f. e',,a , = •,). (14) (k) (k,)
""ZA- CONDITION aU aD

Therefore Eq. (117) becomes (k)-) 0 0

1/2

Z p() .) Klfs* 1 ()>0 and

L-I (125) -(k)+

- *~.--1.; b r t~ •(rj ;) d'

ko -) -(k)-
>m 8z -(m-1)u 5  -0 and

)k(126) ()+ -(k)- 2m+1 2m

(m)l 8lz -m tmg i
where.

Kr ( -7) m. 0,1,2, ...

WA)ZJ).ZOA,,ZLJ, 
(127)+ j"D Tk crhz•"-z"°• r,-+z ', Z Lf"=ZUIC +zw j.q =P(17
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Eq. 1125) is an integral equation for respectively. Here an(d) d (r)

continuous functions C(k) () and denote the spanwise mode shapes of the
b j-th order bending and k-th order tor-

9(k)) .7 We can further expand them in- sional vibrations respectively, and H
P and 0 denote the circumferential dis-to chordwise mode function series, e.g., placement amplitude and twist angle

amplitude at the tip respectively. As to

% '•) COS77 O• 0 .,,-a (r) and a(P) , the natural mode shapes
i-i (128)2 o L. ' Simnx of a uniform cantilever beam are assumed.

This problem has been treated by
where £.< &• L-I Namba and Ishikawa (1983) and Namba

(1976), where R (r) used as basis
x = Arccos(-2Z) 0 xw. (129) functions instead'of R1 ?r). Further-

more, Namba (1976) employed the mode
function method with L x I = 7 x 6 con-
trol points to treat the subsonic bladeThen Eq. (125) becomes row, while Namba and Ishikawa (1983) used

L-I I-| the hybrid method with L x I - 7 x 8 con-
( trol points to treat transonic and super-

L.. 1(r, b(r, v) (130) sonic blade rows.
A-0 Pt=o

Recently, calculations using basis
(131) (,

functions R (r) as described here and
2,K *I , -co S l . s the mode function method have beenperformed by the author and his col-
_ , jcsx:~leag,..e. From the mathematical point of_ - 2 - view the present method is expected to

"give more reliable results than previous
(132) ones. It has been revealed that

I r.) the numerical results of Namba and
Ishikawa (1983) and Namba (1976) are all

r in good agreement with those obtained by
-•K (, k z tco0 the present method except the local load

distributions APB(r,z) in the case of5isi Aý Sint: transonic flows. Disagreement in this

case, however, has been found to give no
kS, <fatal difference in the integrated total

- load on a blade. Therefore, all examples
except Fig. 11 are quoted from Namba
and Ishikawa (1983) and Namba (1976). In

Making (130) satisfied at LxIfcontrol general, for the cascade geometries of
points (ra,! 0 ) (a - 1,2,...,L * practical interest, e.g., the hub/tip

0 a 1,2,...,I), we can determine ratio h . 0.4 #ethe number of blades N
P(k) ( lo....L-1 30, the axial chord to blade height

m ratio ca/(l-h) a 0.1 and the circum-
m -ferential tip speed to axial flow velo-

city ratio w a 2.5 , the mode function
THE HYBRID METHOD method described in the previous section

will give results of reasonable accuracy
We can determine Gk(Eo) (k - 0,1 .... with 7 x 8 control points as long as the

L - 1) of Eq. (107) at a finite number of frequency parameter ACa is at most of
chord points 70 ° 1oi (i - 1,2,...,) by order 1.
making Eq. (108 satisfied at L x I
control points (r,,10 ) (a - 1,2,...Ly 0 - As a measure of the three-
1,2,...,(. This may well be called the dimensional effect we adopt the differ-
hybrid method. ence between prediction by the present

lifting surface theory and that by the
EXAMPLE CALCULATION AND TRENDS OF THREE- strip theory.
DIMENSIONAL EFFECTS

At this stage particular mention
Hero we limit ourselves to unswept should be made of predominant acoustic

blades and two types of vibrations: pure modes. As shown by Eq. (53), blade vi-
bending vibration and pure torsional vib- brations give rise to disturbance pro@-
ration about mid-chord axis, for which sure fields composed of an infinite
the normal displacement of a blade number of ncoustic modes (n,i) , where n

and I denote the circumferential wave
ra) t/ 117-67r7f is specified by number and radial node number respec-

tively. We should note that allowed n
H C,6)r/;_73 (133) are such that n a vN + a (v n 0,

SI,. -i ' "tlst 212,.,) , where N denotes the number
of blades and 2*o/N denotes the inter-

UIg\Itj'MYiq a®(tl(r + rp1)I1/ F (134) blade phase angle. in general, (o,O) is
J•.'If the most dominant mode and (o,1) is the

second most for the first order of
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bending or torsional vibration. On the Figs. 9. 10. and 11 show the distribu-
other hand (a,l) is the moat dominant and tions of the blade loading APB(roz) in
Ca.O) is the second most for the second subsonic, supersonic and transonic flows
oecond order bending or torsional vibra- respectively. For comparison the strip
tion. As shown below the blade loading theory predicitons are also shown by
becomes very sensitive to change in para- dotted lines. In these figures Re[ ] and
meters near the resonances of the predomi- Im[ I imply real and imaginary parts
nant acoustic modes. Furthermore, the respectively. Furthermore po and 0 denote
magnitude of the three-dimensional effect the fluid density and relative flow veloc-
largely depends upon whether the predomi- ity at the undisturbed state, and hence
nant acoustic modes are of cut-on state or 1o and Q 0 +.r according to the
not. Ppresent nondimensionalization.

02

c~~~~~ 7.4S- .3
- 0.665 ý

-~ 0.700 .600a

r 0 . 0 M=0.422

-0.5 0 ZICa 0.

\-0.05

12.'

0.0 .77

0.732 --. 600

0,2 .432-'0.0

tc -600 01Z/270

E 0537 0.5

PI.9. UNSTEADY BLADE LOADING DISTRIBU-
TION FOR TIE FIRST ORDER DIMNING
VIBRATION IN A SUBSONIC FLOWS Fla. 10. UNSTEADY BLADE LOADING DISTRIBU-
h=O.4, w*2.4744, Ic~aUO. 2, TION FOR TIME FIRST ORDER BENDING
a/N=O.2, N-30, NCam2, Ma-.3 VIBRATION IN A SUPERSONIC FLOW$
M4 denotes the local relative
Pqacli number. a0 -

lifting surface theory, Other conditions an In FIG. 9.
---- strip theory
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First it must be noted that the dif-
ference between the lifting surface
theory and strip theory predictions is

•e -supersonic flow (Fig. 10) except near the

root r = 0.4 , where the strip theory
gives APB(r,z) - 0 because of zero blade

1.0 displacement.

In the case of the subsonic flow
I (Fig. 9), the three-dimensional effect

07 appears in the same fashion as in the
steady flow, Namba (1972). Thus the
three-dimensional effect reduces the span-

i I wise gradient of the blade loading dis-
I tribution, decreasing the loadings near

04 ...- the tip and increasing those near the hub.

, \ <, .# '-• ........ . [- This phenomenon can be attributed to
"V ~ ~..M the effect of upwash velocity induced by

- the streamwise component of trailing vor-
10 I-- 1.281 ticities, as is well known in the steady

.171 three-dimensional wing theory. Further-
/ 1065 more, this effect generally decreases as

the frequency increanes. To prove it,

.. '- 0960 let us consider a lifting line placed
along the y axis in an incompressible0859 flow with velocity U as shown in Fig. 12.

S.0764 Let the circulation of the lifting line be
0/. . .. 0.675 r()eiwt at y = n . Then the streamwise
0.5 0 0.5 component of the trailiný vorticity at

_05,... (ý,n,O) is (dr/dn)eiw(t-EU) • Then the
"" ca upwash velocity d2v at (O,y,0) induced by
"�"/ a vortex line y = n is given by

S2 Ar = - 61 3)
d22r--~eia (Y-'?) LA(I-,n (13)

where X = w/U and

-I 2 0t 2)~
. A(x, A) (136)

1.0 ( 2tk)

r We easily find that
.I -, A(x,?3, JX,,, • .L

A .A,2 X31 7r (137)

+ O •'A,
r. r M
io1- L - 1.281 as o * whereas

4' i - --" -o o.7 1

I. ::::::::::: : - :: - o--075

.0 0.5 ,.,

F•,,•' I . UiI:JSI;T AIh IhLADE fIOADIN4G DI STR I fU--
•.,"'S ~~TIfO/J kOR TIlE FIRST ORDER • 1• •-

ll TORSIOtJAI, VIIPRATION4 INJ A TRA•'J-

SOm5IC PILOWI Nc5 -2.2, N..35,

•:Other conditions~ as In FI.9 VORTEX LINE

0.6
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as A * 0 . Thus d2 v decreases 02
exponentially as x . - , while it in-
creases and approaches the steady value
as X .0. +o., - .

In the case of the transonic flow, -
(Fig. 11). tho local blade loAdings pre-
dicted by the lifting surface theory 0-
markedly deviate from those by the strip Pua.t j
theory especially near the sonic span and -0.1 AC.0.5 .2
at subsonic spans. Mem0 o2

At this stage it must be pointed out O • i itIlat. l~oth of Mh, a~ouistio modoo (a,0) and

(,.I) nra rf vut-orr wt~ate in the ease or 0.4 0,7 I 0.7 1,0
F' I q, ') hil rit. (it 00,0f IoN t~tf 11 i 010

1*111 fit 10) im fo Il w il. s1 ta ite I~ll ile I t I, N11PANlW .111,11411,11 CNY'I I I N'V IO,4 YOH TiW t",sii I• I l,tI2 Lw *tit tli•,gli~ff iMtNiU I IbMU WVMlIAIY MOMMIN'I' I•J•VVWMNTI lfUN TIIK

11AMfI or VIqII. 11 pi~t, lot mv make all JOINNT AND) WNOO 0#01111 TORNIONAbiattempt to (iorrleats tile imgnittudi of the VIBRATIONS IN AN INCOMPRESSIBLE
three-dimensional effect to the state of FLOW.
the predominant acoustic modes. Ma-O, moos, AC-a0.5, h-0.4,

w-2.4744, N-40, Nca-2.2.
Figs. 13 -16 show spanwise distribu- Lifting surface theory,

tionu of the unsteady aerodynamic moment -------- strip theory.
in torsional vibrations, where the moment agn(R.P.) a sgn(Re[ ])

coefficient cMt) (r) is defined by
F I I I

W 1/Z 0.2-
S~-3o

Ckt~) ~I Af~r~z~d~/{~t~()}.(139)0

010.1 / 0

O04 0.140

N N -0.1 -"6

0.4 -0O4 -,5

S-0.2 M 0.250.2 / to 1 . 1 -0.2 Acz 2.0

002 " L 22 0/, 0.7 r 1.0 Oh 07 to

". 2 02 14. SPANWISE DISTRIBUTIONS OF UN-

14/ ,I-. STEADY MOMENT COEFFICIENT FOR THE
-Q 0.2.: FIRST AND SECOND ORDER TORSIONAL

VIBRATIONS IN A SUBSONIC FLOW.
o.. .lMa'O..o, Xca 2 .o, (oo) AND (al)

,. .' .4"- MODES ARE CUT-ON.

"---0o"• • --:-,° Other conditions as in FIG. 13.

E0, 111 - 0. 40
, 0.4 --004  w

I' -02 4=

r r -0• .-0

1---- -- ---- 04

-02- H -02 'I -- 0.2 5/ -------
-02 02 0\ 0

:4-022

007 1.0 0.l 07 1.0 y
r r -0014 0 -0014 -0.2

014 0.7 t0 0.A 0.7 1.0
r r

FIG. 15. SPANWISE DISTRIBUTIONS OF UN-
P'IG. 16. SPAtIWI; DISTRIBUTIONS OF UN- STEADY MOMENT COEFFICIENT FOR

STEADY MOMENT COEFFICIENT POP THE FIRST ORDER TORSIONAL
TIlE FIRST ORDER TORSIONAL VIBRATION IN A SUPERSONIC FLOW.
VIPRATION IN A TRANSONIC FLOW. MaO.B, Ncel.8, AC&-,2, hoO.4,
M00.48, NCe"22.2. C ;4744' NS.

(O.her conditions as in FIG. 15. -,lifting surface theory,
-------- strip theory
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Fig. 13 shows the case of an incompres-
sible flow where, of course, all the
acoustic modes are of cut-off state, while & '.655
Fig. 14 is the case of a subsonic flow, 0.693
where both of the pre-dominant acoustic q-5
modes (o,0) and (0,1) are of cut-on state. Moa0.25
It is evident that even in the case of - , O.25
subsonic flows the three-dimensional -3d
effect becomes small if the predominant o.3- 1•a0.65
acoustic modes are of cut-on state. .6593 '• U

We can extend this rule to the case of 0• /- -" '
supersonic flows as is seen from Fig. 15. al
Ir this figure the differences between the ,
lifting surface theory and strip theory I -
predictions are generally small except the
case of o = 0 , whore the (o,l) mode is -9•' of cut-off state. I I t l•l

04 0.7 r 1.0 0.4 0.7 r 14 ,
In general, the region of a where both 0.0

of (a,0) and (Cl) modes can be of cut-off
state is quite small in the case of super-
sonic flows, whereas the possibility of FIG. 17. SPANWISE DISTRIBUTIONS OF UN-

(a,0) and (o,I) both being of cut-on state STEADY MOMENT COEFFICIENT FORA
is confined to a small region of---o in the THE FIRST ORDER TORSIONAL
case of subsonic flows, as seen from Figs. VIBRATION NEAR RESONANCE POINT

4 and 5. consequently, the three- ( ca-0.683) OF THE (o,0) MODE.Other conditions as in FIG. 14.
dimensional effect is small in most cases
of supersonic flows, whereas it is large unsteady flow field predicted by the

strip theory gives discontinuous vari-
ations with change in r near the sonic

Before proceeding to the case of radius. This is the reason for not plot-

transonic flows, mention should be made of ting the strip theory results near the

the behavior of the unsteady blade loading sonic radius r - 0.738 in Fig. 16. Con-
near the resonance state of the predomi- trary to the quasi-two-dimensional aero-

nant acoustic modes. Fig. 17 shows the dynamic moment predicted by the strip
variation of the local moment distribution theory, the aerodynamic moment pre-
for the first order torsional vibration in dicted by the lifting surface theory

a subsonic flow with a change in the re- shows a smooth variation across the sonic

duced frequency from below to above the radius.

resonance point Aca - 0.683 of the (a,0)
mode. As it shows, the aerodynamic moment It is noteworthy that all resonance

predicted by the lifting surface theory is r(udii which satisfy Eq. (140) tend to rs

subject to a large decrease over the whole as A + 0 . As a result the linearized
span as Aca changes from 0.65 to 0.693. quasi-two-dimensional theory breaks down

This behavior, however, cannot be predic- at the sonic radius.
ted by the strip'theory. Finally, let us investigate how the

Accordi~ng to the strip theory, which flutter boundaries can be affected by the

assumes a two-dimensional flow at each three-dimensional effect. In Figs. 18

cylindrical surface r - constant, an and 19 the aerodynamic work per cycle

acoustic mode of circumferential wave )and .t)p

number vN + a in the corresponding quasi- .W a are plotted against the

two-dinensional acoustic field at radius
r is of resonance itate if it satisfies frequency parameter Wca . Here

and Wt) denote the dimensionless aero-

r =I y N + a./I vN+ o, +7,16 (140) l
dynamic work for the j-th order bending

where rs - Ba/(Maw) denotes the sonic and k-th order torsional vibrations,
radius. Concequently, the local blade defined by
loading predicted by the strip theory 0(b) */ijH'I/jkI

gives a sharp drop at the 'resonance W(
radius' as seen in Fig, 17. Furthermore,
a change in Aca from 0.65 to 0.693 only and (t) (142)
gives rise to a shift Of the resonance wk7',(142)
radius, resulting in no substantial change
ii the overall aerodynamic force predicted
bi the %trip theory. Thus the strip respectively, where W is given by
theory approximation is far frcm reality Cwt
around the resonance state of the predomi- W = Jdr J-CX
iant acoustic modes.

It can easily be found that the (143)

resonance radii at which any vN + a +(4
modes satisfies Eq. (140' are concen-
trated around the sonic radius rp . in•',fact in the case of ?tg. 16 n which rw s, eotnh

o 0.739, all modes Oa v + O/N P 0.6 or v "or@ h•(r,3) and I(r..) denote the

+ o/4 c -0.4 satisfy Eq. (140) in the complex conjugates of Apn(r,:) end f(r,a)
rang* 0.7 t r 4 0.8. Consequently, the repectively.
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In the case of the supersonic flow
shown in Fig. 18 the predominant acou-
stic modes (0,0) and (o,l) are of cut-on (o.6)Mode
state for the whole frequency range. Cut-off
Although the strip theory slightly under-
estimates the aerodynamic work, it turns 1.0"

U out to be an excellent approximation,
giving no substantial error in estimation
of the flutter boundaries. It should also -.

be pointed out that the aerodynamic workis quite insensitive to change in the • [)"
state af higher order acoustic modes such 2W; 0Ia s ( a, 5 ) a n d ( a,6 ) . 0 0..fb . 0 . ...C

On the other hand, the difference WL
between the strip theory and the lifting - -------
surface theory predictions can become £fatal in the case of transonic flows as .(0.5)Mode w•/#)
shown in Fig. 19. The total aerodynamic "Cut-off
work on a blade shows a sharp variation "
near the resonance state of a predominant
acoustic mode. This phenomenon cannot be
predicted by the strip theory. FIG. 18. VARIATION OF THE TOTAL AERO-

DYNAMIC WORK WITH THE REDUCED
It should be noted further that the FREQUENCY IN A SUPERSONIC FLOW.

state of the acoustic mode (o,l) gives a h-0.4, ot,2.4744,
greater influence on the aerodynamic work N135, f/N0.2, Ncagl.8, MasO.8.rfor the second order vibrations than that lifting surface theory.
for the first order vibrations. Especial- strip theory

ly a sharp decrease in W-2  at the
resonance frequency of the (,l) mode
results in the stability boundary of 40r
Aca . 0.35, whereas the strip theory pre- 0 2)Mode
dicts the stability boundary as high as Cut-off
ACa- 1.2.Cu-f

S2.0[ - ,-r,

UNSTEADY CASCADE IN SPANWISE NONUNIFORM W2 -"tV"sf W
MEAN FLOW 0,5 '*-. Ca

MODEL AND MATHEMATICAL FORMULATION

A linear cascade of thin blades ex-
posed to incompresnible flow sheared along -2.0 (0.I) --.. b2
the spanwise direction is considered in Mode
this chapter. First, however, let us de- Cut-off
rive fundamental equations from a more
general point of view.

In the following, velocities , lengths FIG. 19. VARIATION OF THE TOTAL AERO-
and time t are made dimensionless using DYNAMIC WORK WITH THE REDUCED
a reference velocity U0 * , the blade FREQUENCY IN A TRANSONIC FLOW.
chord c* and c*/U 0 * respectively. The Ncahe2.2, Hu'0.48 i
fluid density and pressure also are made Other conditions as in FIG. 18.
dimensionless using a reference density
po and 0eoUo* 2 respectively.

Now let the undisturbed flow be a
sheared unidirectional flow with non-
uniform velocity U(x,y) , nonuniform
density oo(x,y) and uniform pressure Po.
here the Cartesian coordinate system
(x,y,z) is taken so that the x and y
axes ore oriented in the undisturbed flow + D + w (144)
direction and the spanwise direction -v' (IN (144)
respectively. Let us consider that the 0
disturbance velocity a . (u,v,w), dis- (4+ (2.V)U +_- (145)
turbance pressuro p and disturbance D + ( )V P +o
density p are caused by disturbance 0
so8rces compo30e of distributed body DAP-E - 1 (M V) P0 " 0, (146)
forces F (x,yrt) and mass sources Dot

A(x~y~z~t) Assuming that the disturb- DOL
ances are smail and isentropic, we obtain
linearized equations of continuity, otion where
find energy as follows Do -t 6 + U a/o... (147)
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and ao(yz) denotes the dimensionless
local speed of sound at the undisturbedn+
state, i.e.,

S(148) (152)

O0('yV.P (~i Y' ) (148) 71
Here K denotes the ratio of specific
"heats. Furthermore ex denotes the unit for a cascade of blades and a single
vector in the x-direction. airfoil. In his theory the undisturbed

flow is allowed to be transonic, i.e.,Elimination of 9 and % from Eqs. Me(y) is allowed to be unity at a span
(144 - 146) gives an equation for p as under the restriction of dMo/dy * 0 at
follows: the sonic span.

_(V2 aU_.0•U To deal with unsteady flow problems
S-[2•2 t a 2 is much more difficult, since the dif-C ferential equation to solve is of the

(149) third order. This difficulty orginates
from the fact that acoustically propa-
gating disturbances and convected vorti-
cal disturbances are ýlocally coupled inot Psheared flows. Available papers dealing
with an unsteady cascade in a shear flow
is restricted to incompressible fluid.

* p " Kaji et. al., (1980) treated cascade
= -P. V( flutter in an incompressible shear flow

Swith a uniform density using a semi-
actuator disk model, while Yamasaki and
Namba (1982) treated the same problem bywhere Fx , Fy and Fz denote the x , y a lifting surface method. Hereafter in

and z components of F . this chapter we outline the theory de-
veloped by Yamasaki and Namba (1982).Eq. (149) is an equation of acoustic

waves propagating in a flowing nonuniform Let us consider a cascade of thin
medium. To solve Eq. (149T- in this blades between two parallel rigid walls
general form is a formidable task, and with a wall-to-wall distance h as shown
until now only some special cases have in Fig. 20. Further let the undisturbed
been treated successfully. flow be an incompressible flew sheared in

the spanwise direction with velocity U(y),
In the case of steady flows, DO/Dot - which is disturbed by blades vibrating

WUa/x , and hence Eq. (149) degenerates with a common reduced frequency w , a con-
to a second order differential equation stant interblade phase angle 2wo and zeroas follows: steady loading. In this case Eq. (149)

becomes
%x2  ý2 _e

where Mo(y,z) = Uly, zl/aoly, z) denotes

;Lx~i + + az

the local Mach number Of the undisturbed U••!flow. As one of the earliest studies re- Uy
lated to Eq. (150), we should refer to
von Karman and Tsien (1945) who treated a Xlifting line in an incompressible flow

Ssheared in a spanwiss dircction with auniform fluid density. In thi. case Eq. • -•Z

(150) further reduces to •

aYa ala ] (151) -to

whenda ( 0, 1961) sOlved problems Of U dno
three-dimenaional steady dioturbanc, flows _,d

caused bt a single airfoil and a carcade
of blade, in an incompressible shear flowin the spanwise direction with a uniforr

uenifr l u.idL desintye aIni thi aeor En--. 1Z•9eiti

clude( the thickness effect, i.e., tht2last term in 6. (150).

.• Extension toi compreusibl.esheer f lows PIG. 20. THE C ASCADE MODEL IN A SHEAR
Hos n de by (1960 a (1969, 1969) pro solved oLOW
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SFurther the unsteady loading distribution where Yu(yga) and ku(•t -O .1,...) are
on the m-th blade can be denoted by orthogonal eigenfunct~ons and eioenvalues
,(&,n)eiwt + i2wam , where & and n de- defined by Namba (1986). In the case of

note local chordwise and spanwise coordi- Eq. (158) they are given by
J nates respectively. Then denoting the

pitch/chord ratio and angle of stagger by Y0(ý;) = (a+)(c -U,•).
s and y respectively, we can express the
body force F. by (160)

( l a4 ) U - u S k( ý Y A
A (/ (161)

T -- 1/2 (X - /A = t 2,... &sJ 'l .
y+ • +(~~?)S.' Cos JoI,) e•-+'+cdE

44 Here 6( ) denotes the Dirac delta Furthermore
.4 function. M(Y) = w/U(j), (162)

z Ilmst(163)
DISTURBANCE PRESSURE X = X -x Z t Z/COs A

Let the disturbance pressure (164)

• (XqvZeiC be represented by an s(i,= %S tr I spc4os0. (165)

integral form of
(155).Z Note that )y)dnts helocal reduced

11- (155)• xz) deoe=h

,,1YQ, 1) )Kp(X- 19 )• (55) frequency at each span.

One of the special characteristics of
Substitution of Eqs. (154) and (155) into unsteady disturbances in shear flows isS(153) yields a differential equation for local coupling of acoustically propagating(5 t yipreldsu akfernefntial equatdisturbances with convected vortical die-the pressure kernel function turbances. It is due to this phenomenon
'i that the pressure kernel function poo-

- asesses the second term on the right-hand(2L + K 0(x ,),z'I•[) side of Eq. (159) in the form of convected(X ' (adisturbances. In fact this term is ab-
; , (156) sent in the case of uniform flow (Ul - 1)

-_56 or steady flow w - 0),.. as seen from Namba
(1986).

DISTURBANCE VELOCITIESS~~x RX 8-MS sin M)CJ•s• s cost) e•"
m- ..~ T1: disturbonge velocitySX (,y,•) e r can be obtained by

in addition the boundary condition at the substituting Eq. (155) intn Eq. (145) and
wall surface is given by integrating it. The result is expressed

dK}xviZ171u)/)dl = 0 at = 0 and •. (157) in the form

In order to make the problem mathe-
matically tractable, we further assume a (166)
uniform shear flow and put

U (Y) I+ (Li1 - 1)Y/& . (158)
where the velocity kernel function is

N Then applying the Fourier integral method given by
(Namba 1986) 'e obtain the solution to
Eqs. (156) and (157) in the form (X7 e 1!1

Kp (z,'Y, Z 17) eUCY) j) 1. !A-y)Cvk (1L

(7 t KOe 'ao e IcL X (iN eOL~ X (167)

~~~'k 0~ a)+/~Y -m orft s(YM) CtJ-W

S- + Isanx) eli•z The second term in( ) of Eq. (167)
k vc-' stands for the streamwise acceleration

yf of flow caused by transverse displace-
Y',(7ýCK) emont of streamlines.

T The upwash velocity Z(x,,)e

(c,22yL1fltflk2t* 't•Jc•...•(, i.e., the &-component of the disturbance
"velocity, which is of moot interest In
this problem, tI given by
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2(x,y? (168 KiI2 \X- r;Iý,0 1dc
J12- h (172)

" 0i ax
The best method to solve Eq. (172)

where will be the mode function method, which
consists in expanding A^rj(xy) in terms of

Kw (,' Y,, J , (169) appropriate chordwise and spanwise mode
.fX functions likee II X t0

UQ)'Cyy = _00 A.R ,,S(x) tm(V), (13
Substituting Eq. (159) into Eq. (167) and M-0 t-0
carrying out integration with respect to
x', we obtain and determining coefficients Amn

Applying the Glauert series expansion
form, we set

K((X 'Y 71) (170) (174)
00 63 1,x(X)= silt n (-A•0

- I • y• e i'~z y';%Av)'1•(';cx ) where

2sAU y) o -, 10)+ U (1)or4?}= 0- Arccos(-2x). (175)

+ rL÷ X) e'0()X ( I. iOn the other hand there are various
choices of spanwise mode functions #m(y).
A guide line is that *m(y) should be

?X Aýr- INV + Cwt closely related to characters of the flow
+(+ e field. Here we adopt orthogonal functions

associated with the eigenfunctions Yu(yia)
+ LAI2LX.. I At• £Zeibz and set

J0-O 2 S-(176

which in the case of Eq. (158) becomes

~~ U (y4iu) Cos (miry/P)
X M[A~) U,•'e-•) - I )•, Sz•) i •.sL -u-s(MfrYA/0/o : At, .

Substitution of Eq. (173) into Eq.

eiA (YA IRY (168) gives an expression of the upwash
+ -•(I (X)( velocity in terms of Amn as follow7s

-(QL (178)I~ (e ,1
+ ef ') - e-•• ,(I•W,•x,', E) - ' 4,,•(7)Kia•(X,Y, • I 't)S'i178

e- 0

where Ivp(y) , Jvt(y) , Rvl(y/n) and The detailed expression of Wm(xeyzl) is
S..(y/n) are defined by Namba (1986). given by Namba (1986).
Týe second term on the right-hand side of
Eq. (170) originates from the second term As shown there, Wm(x.y,z) can be
on the right-hand side of Eq. (159). We divided into three partsI WmI(x,yz).
can recognize that this term stands for WmlI(X042) and WmllI(x,y,z) . The first
the effect of nonuniform convection velo- part WmI 9ivcs the quasi-two-
city of unsteady free vortices, dimensional disturbance field which

neglects interference between different
INTEGRAL EQUATION FOR UNSTEADY LOADINGS span stations. The second part Wmi!

stands for the 'primary' three-dimensional
Let the z-wise displacement of the effect. It takes the form such that the

zero-th blade he denoted by a(x,y)eiwt . three-dimensional effect at a spanstation
Then the boundary condition at the blade y in the shear flow U(y) caused by
surface to given by dipoles and free vortices at other span-

stations appears an if the flow is uniform
y•(,1, ) . (tw Uoz_ •(Aff. (171) with a velocity equal to U(y) over the

whole span. The third part Wmill gives an
Su~sk~s~obof Fq. (160) Into Eq. (171) additional three-dimensional effct which

glivej an integral equation for the un- accounts for the nonuniformity in the con-
sten4y Ioa•1ing function Aj)(Cn) in the vection velocity of free vortices. It
for, has been revealed that the numerical
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c. ontribution of Wmlll is generally small local lift advances at a higher velocity
oompared with those of Wmi and WM 1  span, but lags at a lower velocity span

compared with the strip theory prediction.We should note that Kw(x-Ey,Oj n )
possesses singularities due to dipoles
and free vortices, which can be extracted
from the quasi-two-dimensional part Wmi
in the form of (x-E)-l and loglx-El.- . .
Chordwise integration in Eq. (177) for Q 0.4 0.6 0.2 '0.2 0.2
these parts can be analytically performed. " 0 . 20.0
Furthermore Kw(x-&,y,O I n) possesses also . -. .--- , .

the horse-shoe vortex singularity in the -1.0 00
form of (y-n)-2 which is included in the E 0.. 0..
first term on the right-hand side of Eq. -

(170). As to this singularity, the ex- -0.2 -
pression of WmiI in the form of Eq. (A.15)
given by Namba (1986) implies that the 0.4
spanwiso integration for this part is -a-o.o 0. -0.4 0.8

automatically performed. It is required
to numerically evaluate the integrals in 0.0
the expression of WmIII given by Namba's
(1986) Eq. (A.16) and the chordwise inte- 0.0 0.5 1.0 0.0 0.5 1.0
gration for the regular parts in Eq. y/h y/h
(177).

NUMERICAL EXAMPLES AND EFFECT OF MEAN
"FLOW SHEAR UPON UNSTEADY BLADE LOADING FIG. 21. SPANWISE DISTRIBUTIONS OF UN-

"STEADY LIFT COEFFICIENT FOR
Numerical examples shown below have TRANSLATIONAL OSCILLATIONS.

been obtained by truncating the series in UI-2.5, w-0.5, h-3, ym4 5 *.
Eq. (173) or (177) into a finite series s-1.O.
with 6 spanwise and 4 chordwise mode lifting surface theoui•
functions. The coefficients are deter- strip theory
mined by making Eq. (173) satisfied at 6
x 4 control points. The control points We should note that the :.'.'ect of
are selected at the mid points of six spanwise nonuniformity in tt. •, aration
equally divided spanwise subsections and amplitude 'r(xy) also appe, .u in the
at the three-quarter points of four equal- same fashion as the effect ot notuniform
ly divided chordwise sub-sections. mean velocity. Thus the local lif. forces

at large amplitude spans are :educed,
We consider bending and torsional while those at small amplitude spans are

vibrations for which a(x,y) is given by increased compared with quasi-two.
dimensional values. Consequently, quite

(X, 5"(1'(),- (179) large deviation from the strip theory pro-
and dictions takes place in the case of the

S ((180) first order bend.lh'iw vibration (k - 1) of
blades which fixed at the lower

respectively. flare S(B,k)(y) and velocity side wall, since effects of non-
S(T,k)(y) denote the k-th order bending uniform velocity and amplitude are super-
and torsional modes of a uniform canti- posed as shown in Fig. 22.
lever beam, which are normalized by

* * - , } -(18

SI 1*t 5-

* j ' •2.0 0.4

Furthermore let s(B,O)(y) - 1 and -0.6
S(TO)(y) = 1 mean translational and CE 0.22pitching motions respectively. - • 0 ... ..

Fi. 21 shows spanwise distributions 0.2 04
of the local lift coefficient for trans- 10 o00

lational motions (k 0 0) , where * - 0.0
Ct(Bk)(y) is defined by

,i/2 (182) 1or o I -C (', ) AU.. 1, , (X, 7)dX N"- .4
V) 0.6 10.BN4A

'The results are compared with those of 0.0 -

the strip theory prediction which are __,
shown with broken lines. The effect of 00 05 ,h 10 0.0 05y/h 1.0
nonuniformity of the mean flow upon the
magnitude of the unsteady local lift force
appears essentially in the same manner as
in the cane of steady flows, i.e., the
magnitude of the local lift at a higher PIG. 22. SPANWISE DISTRIBUTIONS OF VN-
velocity span is decreased, while STEADY LIFT COEFFICIENT FOR TIlE
that at a lower velocity span is in- FIRST ORDER BENDING OSCILLATIONS
creased. Furthermore, the phase of the WITH THiE BLADE ROOT AT y-O.

Other conditions as in FIG. 21.
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Fig. 23 shows the dimensionless aero- 1.0
dynamic work per cycle on a blade in tor-
sional vibrations. Here W(Tok) is given
by 

(r,,

W(Tj) = 21/o 112 fl Re[A unstable

*(183) (

No change in the sign of W(T,k) r e.g., ----------------
from uegativo to positive or vice versa 00 0.25 0.5 0.75 1.0
is brought about by the spanwise nonuni- 0
formity of the mean flow velocity. How-
ever, it can generally be stated that FIG. 23. VARIATION OF AERODYNAMIC WORK
the spanwise nonuniformity in the mean COEFFICIENTS WITH THE INTER-
flow velocity reduces the absolute value BLADE PHASE ANGLE FOR PITCHING
of the aerodynamic work. Furthermore, the (T,O), FIRST (T,l) AND SECOND
spanwise nonuniformity of the vibration (T,2) ORDER TORSIONAL VIBRATIONS
amplitude adds a great deal to this ABOUT THE MID-CHORD. Ul-4.0,
effect. ui-0.5, h-3.0, Y-45", swl.0.- lifting surface theory

- strip theory

EFFECT OF WALL LININGS We further assume that the blade
thickness and the steady blade loading

MODEL AND MATHEMATICAL FORMULATION are zero. Then the presence of blades in
the flow field can be represented by body

As a model that can clearly account forces F(xyzt) given by

for the three-dimensional effect due to
the presence of oound absorbing wall
liners, we consider a linear cascade of Fcx,',t) (
blades spanning between p.arallel walls. 112
The time mean flow is uniform and blade -AeP e (x • ')ISx.msSi-')
geometries are uniform in the spanwise 14-0 / 0
direction too, but a part of a side wall
is lined with acoustically admittive X SC-')6('--sc0t) Y'ctE
materials, while the remaining part of
the wall and another side wall are rigid wherect dno
everywhere. Hereafter using the undis-turbed flow velocity U' the undis-

turbed fluid density Po* and the M-4,21
blade chord c* as reference quantities, owvs use nondimensional velocity, density, l]////

length, pressure and time which are MR
scaled with respect to U*' Po"' -|'Oo'U' 2 and c'/U' respectively.

We take the Cartesian coordinate M
system (x,y,z) with x and y axesoriented in the undisturbed flow and

span directions reupectively, a&&shown in //////1
Fig. 24. Furthermore, we use theinclilned coordinate system (X,Y,Z) where Z

x )- I tan" , Z " Z/cos'), (184) r

and y denotes the angle of stagger. We
assume that the cascade of blades with .- 1
the angle of stagger y , the pitch/chord JXZ/
ratio S and the aspect ratio h which is /
equal to the wall-to-wall distance is M
vibrating with a common reduced frequency -
0 and a constant interblade phase angle
2wa . Consequently, the unsteady blade 5fd:
loading on the m-th blade can be denoted
by Ap(x',yf)it + 12wom , where x' and y'
denote local chordwise and spanwise oo-
ordinates respectively. The wall at y '
0 Is rigid everywhere. On the other
hand, another side wall at y n h is rigid
except a strip section di 4 x 4 d2 where
it Is lined with a locally reacting sound
absorbing material of a tiniform admit- 0 24. THE CASCADE MODEL IN A CHANNEL
tence Ow .• ote that the wall sdmitlanWe4 T" A PADE MOD ED WAL
ow to scaled with respect to l/(poI U )• WITh A FAI'IALLY LINED U.LL
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On the other hand, the presence of where n(x,y,x,t) denotes the y-component
the lined wall surface at which the of Z. Special attention should be paid
normal fluid particle displacement is not to the parametric dependence of the wall
zero can be represented by surface mass admittance $w * Here we neglect the non-
sources. This concept has been applied linear effect and hence ow is independent
successfully to the duct acoustic of the sound pressure level. However, Bw
analysis by Namba and Fukushige (1980). is generally a function of the sound fre-
In the present system the flow distur- quency. Therefore it is necessary to
bances originate from the blade vibra- decompose Eq. (193) into frequency com-
tion. Therefore, the mass sources re- ponents. In this regard discrimination
acting to the disturbances are periodi- between stator and rotor cascades is
cally distributed in the blade-to-blade needed.
direction, and we can represent the mass
source strength in the region dl ( X < d2 In the (x,y,z) coordinate system which
ms c Z < (m+l)s bY m(X,Z -ms)eiwt+i2wom . is relatively fixed to the time mean
Then the mass source distribution position of the cascade, the disturbance
Q(x',y,zt) in the flow field can be given quantities induced by a simple harmonic
by oscillation of blades can be expressed asZ(xfyfzot) a P(x,y,z)eiwt and n(Xeytztt)

n(x,y,z)eiwt . Furthermore, because of
• Q(x),E,,t) = (186) of the z-wise periodical variation, the

disturbance flow field can be expressed in
lo e Co S (X,/)s(x.)s(•-) the (x,y,z) system as

J(194)
Now we can consider that the distur- [ I

bance sources in the present flow field Wt Tt
consist of the body force F and the mass e 1)
source 0 • Assuming disturbances to be
small and isentropia, we can express the where
linearized acoustic wave equation for the
disturbance pressure p by qv - 2w(v + O)/s. (195)

(v2 - M2 p2/1)p v'f - PQ/Vt, (187)
Therefore, in the case of the stator cas-
cade where the lined wall is stationary

where with respect to the (x,y,z) coordinate
system, Eq. (193) is rewritten as

D/Dt - a/Ot + a//x (188) (YY)

(196)

and M denotes the Mach number of the un-
disturbed flow. The disturbance fluid V - O,±l,.
velocity q is related to p by the
equation of motion On the other hand, in the case of the

./L - +. (189) rotor cascade where the lined wall is
relatively moving in the (xy,z) system,
disturbances sensed by an observer eta-

Furthermore, the disturbance fluid par- tionary with repespect to the lined wall
ticle displacement -Z is related to q by are no longer of a simple harmonic time

variation, but are generally composed of
(190) an infinite number of frequency compo-

S=Inents. In fact, let the lined wall be
moving in the negative z direction with a

The above differential equations constant speed V , and define a coordinate
should be solved under the boundary con- system (xs,yo,zs) which is stationary with
ditions at the blade and wall surfaces. respect to the moving wall by
Let the t-wise displacement of the--zeroth
blade be denoted by "X(x,y)eiwt . Then
the boundary condition at the blade sur- X., X Z.- Z " Vt. (197) 7
face is expressed as Then we can write

w(x,y,O,t) - (D/Dt)(W'(x,Y,)eiut)' (191) ei)t

where w(x,y,t,t) denotes the z-component J (198)
of the disturbance velocity q .

On the other hand, the boundary con- Dy F S I,)
dition at the waill surfaces in described Z
ase v.'~(xs, f,)J

- 0, (192) where A w + yV. (199)
o 0 for X<d, and X d,

for d,< dt 1193)
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Therefore Eq. (193) should be rewritten as where = 1, •&•)=f• cos(•), (A= 1,2...)

,w() o ) 5 k) Q..'xs0.); , , o ... , 206)

.< X0+l ... and expressions of K(v'u)(X-X') and(vIJ.. pd
Our ultimate purpose is to determine Kpm (X-X') are given by Namba (1986).

the blade loading A?;(x,y) for specified
blade vibration mode •(x,y) and wall ad- From the standpoint of numerical work
mittance aw For this purpose we first it is convenient to expand the loadingsolve Eqs. (187), (189) and (190) to ex- function p(x,y) and mass source function
press p , w and n in terms of Ap(x,y) and m(x,Z) into the double series forms
m(x,z) which then are determined by
Eqs. (191) and (196) or (200). Hereafter (
we confine ourselves to subsonic-flows 0 0(X'V T AA (x)e<M < I t: .

D)ISTURB3ANCE PRESSURE (X Z)= 7 BIN QN(X) e-) (208)
N-I y=--.',

Expressions of F and Q given by A[ -

Eqs. (185) and (187) suggest to represent
the disturbance pressure '(x,y,z) in the
integral form

In the case of subsonic flows the chord-
wise mode functions *n(x) defined by

j0(X) = cot(&/2),
(201) (209)

X-/2)0 x= -(1/2)cos 0 C,, ig7r,

-rn(XI, Z') Kp•(X-X , ZZ) CZ'dX1" are recommended. On the other hand, the
4, suitable form the streamwise mode

,0 functions QN(X) for the mass source is
Substitution of Eq. (201) into Eq. (187) still the subject of controversy, see
gives equations for the kernel functions Koch and Mohring (1983). The point at
Kpd and Kpm as follows: issue is singularities at edges X - dl

and d 2 . Here we assume the fluid par-
SV2-6) +. • K 1, tice displacement to be continuous across
.VL .- x ..p-iI -X,-,Z--d/ the edge lines X - dl and d2 . and put

=-• ~~~Q 8(-si'x>(1•) (o) Q(X) = (1a)+ a)yl(×, (210)

S• • z -ms ••) e , &(X) - sin N6,

X (d,+d 2 )/2 - [(6(2-o()/2Jcos@, (211)

(23) as adopted by Namba and Fukushige (1980).

Substitution of Eqs. (204), (205),ax )(207, 
and (208) into (201) gives•,~~ ~ 8 (Z - Ks-z')e~z"

' (212)

Applying the Fourier integral method q 
(212

employed in "UNSTEADY CASCADE IN SPANWISE t ':ýA., ý -Y
,JONUIIFORM MEAN FLOW", .e can derive the k5L K('Y)
solutions in the form of Fourier double '-V2
series as follows: 

, Lv ) " X-X )dXX Ni Kd(/X'•I l• =(204) where

0 K \dQN' -x;) ~x;

17", (V Y- ,wU (213)

K , ()(- .X"', , Z -2 ') - (205 ) SO

t PK0
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Once the disturbance pressure is given -0 NIQ
ini the form of Eq. (201), we can formally
integrate Eq. (189) and further Eq.
(190), obtaining explicit expressions

of I and . Here we limit ourselves (222)

to' sL(wimbJ expreissions of Ur M xq a)e' It, T 7 Aux 1'gh) YnW K ( X X~') z d X
and -'Z'(•,"y,)eit which are given as PV1 f0

fol lows: + S B (y)

,-y' (215)
wherei" I'"<,',,•-,,,'•,• K•'(x--',• = •_ •z3• '-K<A,(×-×),' (223)

1Z IL 00

S•(x',)K•(X-X'JZ-Z')c Z'dX"T K, f) e KX')() ((223)

(26 00

.,/2 \ A0(x; ?') K.(x-[" •J Z I ;-) Wd'Xx ) (226)

\iidz S 5j(XZ') K1(X-X 1' z-Z') dtdx:

Here kernel functions can be expressed in
Fourier double series form as follows:

K,<,( -.e, 7, 7 1 V) =
DETERMINATION OF UNSTEADY BLADE LOADING

-x (217) AND MASS SOURCE

:.o /.-t Now we are in a position to determine
Ap(x,y) and "M(X,Z) , or in other words,the coefficients A and B N so that the

1 (218) boundary conditigns (191Y, (192). and
a~ ~ '(ZjjI Kk',y)(~ (193) should be satisfied.

V= -C pcFirst it is easy to see that the
first term on the right-hand side of Eq.

(219) (222) vanishes at y - 0 and h . In
other words, the transverse component of

ev_,the fluid particle displacement inducede K( , (X^I.,(V ý.(, by pressure dipoles representing blades
Y-0 )AZI becomes zero at both side walls including

(220) the lined section. On the other hand, as
K,(X-X' ', Z-Z') shown by Namba (1986)

Ki,,,(x-x, 0 -- o, (227)

K(y) "X-'A)

Expressiono of Kwd

K (X-X) (V') (X-X') and Consequently, it holds thatK w m X - ' ) n d

K('VW) (X-XI) are given by Ntmba •(x,&,•) =rAn

(1986). 0 : X< c,

.uosItution of E,.,s. (207,o (208), (228)
(217) -(220) into (215) and (216) leads [
us. to ,-#1

"(221) d ie

'X.. V1, . , -v K ft, N td < X,
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Then it is evident that the boundary con- On the other hand, in the case of the
dition (192) is satisfied, since YN(X) rotor cascade, we should use Eq. (200).
defined by Eq. (211) satisfies which becomes

yt N()= 0 (229) 00 00 1/2[.iZ ,~& ~'K~"~Xx x
Next, substitution of Eq. (221) into K JAr

Eq. (191) gives -V2
11,,2 (, (235)

pn3 9y) Y QN(X') 0(' " -XAL) 23AX
0 5. ,c o, ý d -X ( 1 n X -Xd XE N t , 1 1. )

> (-I - = = 
dO.

(230) Again we note that the series expres-
(ie+ 33 X),'). sion of K(V)(X-X',y) given by Eq. (214)

Wih ris of nonuniform convergence, and hence we
With regard to fuiuctions K X-,0) should separate the singular part,as shown

by Namba (1986), before performing the in-
and 19(X-,y) involved in Eq. (230), tegration involved in Eqs. (234) and

(235).
we should note that the Fourier series
given by Eqs. (223) and (224) are nonuni- Eqs. (230) and (234) or (235) give a

set of linear algebraic equations for an
formly convergent, since Kw(d(X-_,0 infinite number of unknowns A n and BVN

Actually, we shculd truncate the series
and Kw0(o ) are singular at x-x' = 0 into finite ones by taking up to p - L-l,

n - I -1, v - ± (K -1)/2 and N - J , say,
and y = h respectively. Therefore, in where K is an odd number, and determine a
numerical work it is necessary to separate finite number of A n and B N by making
singular parts as shown by Namba (1986). Eqs. (230) and (2N4) or (235) satisfied

at a finite number of control points
Finally, inspection of Eqs. (212) and (xi,yj) (i - l,2,...,I: • - 1,2,...,L)

(222) enables us to find that p(V)(x,y) and Xj(j . l,2,...,J)
and •(v)(x,y) defined by Eq. (194) are
expressed as

NUMERICAL EXAMPLES AND EFFECT OF WALL
,') (•231) LININGS UPON UNSTEADY BLADE LOADING

Here we limit ourselves to the case of
W" (_ l ,.u, 7 1') X" the stator cascade, i.e., Eq. (234), with)P( the lined section confined to the cascade

ju2o n= -'/2 region, i.e., di . -1/2 and d2 - 1/2 .

t All examples are quoted from Yamasaki
+ S B 2 ') and Namba (1982).

! I,( ' YThe dependence of the admittance ow of
currently used lining materials upon the

(232) sound frequency is well investigated.
S(X (232) llowever,in the present study we specify ow

independently of w . We should note that

,X X')cOXI Ow i, a complex number in the possible
A-i/z ) range 0 4 lwlt - and -w/2 < arg(ew) • w/2.

Fig. 25 shows how the spanwise dis-
Z(' tribution of the local lift force for the"+s ~jBVII Q14(X') K1n[•(X' •)cX'. translational vibration a(xy) - -l can be

Jlt. modified by the presence of the wall
liner, where the local lift

Further, Eqs. (228) and (229) give (BIO)
10 (233) coeffcient CIB (y) is defined by

,(, ~ Ct o \ ~ x , (236)

CTheri the boundary condition at the lined
wall surface for the stator cascade given
by 1,j. (196) becomes Note that Ow - 0 implies a rigid wall. As

Fig. 25 shows, the wall liner has a large
influence on the unsteady local lift force

p) in the vicinity of the lined wall, but theA? .r (.) K(' 0(-.,')dx" influence upon the overall lift forcep:b. r.-,, -I/ seems rather small. Attention should be
(234) paid to the scale of the ordinate.

,trQj-C, KP([ t1X0 " Next, in order to see whether the
S•• Q,/ )Kpresence of the wall liner can be bene-

ficial for suppressing the cascade flut-
ter, let us investigate how the aero-

S-•5 > E ,(') - 0 0 , +1, 4 Z-. dynamic work on a vibrating blade given by
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\~"' \~\" R [pX, J)' eiý)t Q ý 0 0.02
k J-' J0 (237) a

depends upon Ow o Iere we define the 1.2 IBwI =0.05. 100
dimensionless work for translational __ 0.02
oscillation 'a(x,y) x -1 and pitching 0-.0
oscillation a(x,y) x by

C W/(7r2w ) (238) / 0
".B'WP )_ ,//.r 21() 1.0 0.1 0 0250 05and 5

r t 
0.5 "'=0"

respectively. Figs. 26 and 27 show that 0.

or monotonously de-ww
crease as jolW increases if arg(Bw) o.8 00
is negative. For positive arg(o-) f

however. I CB'O)I or I CT'O)iincrease, 't.w w 0 0.5 1 0--.
decrease and again increase with increase 0yh 1,h
of Jowl, asymptotically tending to the
values for IowI= . . Increasing | Bwlover 1
no longer give significant changes in
the aerodynamic work, at least for small FIG. 25. EFFECT OF THE WALL LINER
reduced frequencies relevant to flutter. ADMITTANCE Ow ON THE SPANWISE

DISTRIBUTION OF THE UNSTEADY
Generally speaking, the effect of the LIFT COEFFICIENT FOR THE

wall liners on the aerodynamic work is TRANSLATIONAL VIBRATION.
small, and we can hardly expect the wall M = 0.6, w -0.2, h - 2.0,
liner to play a decisive role in suppres- S = 1.0, y - 450, 2wo - 6 0 *,

sing the cascade flutter, at least if the arg (86) = 300.
wall liner is confined to a short section
as in the present examples.

[ .098 argý =_600

09 0

FIG. 26. DEPENDENCE OF THE
TOTAL AERODYNAMIC
WORK FOR THE TRANS-
LATIONAL VIBRATION -110
UPON THE WALL LINER
ADMITTANCE W" 30
M a 0.6, 6 - 0.2, 0
h - 2.0, S - 1.0, 60
y - 450, 2wo0 - 600.

FIG. 27. DEPENDENCE OF THE
TOTAL AERODYNAMIC 60°
WORK FOR THE PITCHING
VIBRATION ABOUT t1ID-
CHORD UPON THE WALL 0,10 30
LINER ADMITTANCE BW. ,0

OTHER CONDITIONS ARE 0
SAME AS IN FIG. 26. k

0.083

0 06 0 .50105 1 jw



TIIREE-DIMENSIONAL FLOW
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SUBSONIC AND SUPERSONIC UNSTEADY ANNULAR CASCADE THEORY

FoflMULATION OF~ THlE PROBLEM

Consider a single annular blade row with a finite number N of vibrating blades
which are rotating at a constant angular velocity 9 in an infinitely long cylindrical
duct of radii rl and r2 Cr1 r2)

The fluid inside the duct is an inviscid perfect gas.

The uindisturbed flow is a uniform axial flow with a subsonic velocity V. and
density p . This means that the blades are parts of helicoids whose equations are,
in cylindrical coordinates (r, 0, z) fixed to the rotor, a' being a constant (Figure 1).

+o N- 2w (J-1,2,.. .,N) (1)

rl<r 4 r2 Z1 4 z 4 z2

Z1 and Z2denote the axial positions of leading and trailing edges.

I Fig. 1 Geometry of Blades

VIP
The arc a on a helix defined by a constant value of r in, ml being the value

of s corresponding to zl

The blade spacing b and the stagger angle y which is the angle between the
tangent to the helix and the z-axis, are defined as followes

b 2 t _y (3)

The axial codlength 2tof teblade s

and the blade chord 2c io

2c 211 V2, csy (4)

Tfý& relative Mach number M is expressed in term of the axial Mach number M, an

.45

Th* corty cames considered here are those where the relative velocity to either sub-
e 6~l r supersonic all over the blades.



ihe -luations of the vibrating blades are taken in the form:

j J- (6)

. N -W(r IN, r (J-l,2.N)

where ai (r, z, t) is a function of the normal deflection fj (r. z, t) of the jth
blade; tj (r, z, t) is supposed to be so small that the theory can be linearized
about the undisturbed flow previously defined; in this case, fj(r, z, t) is related
to aj (r. z, t) by the approximate expression

r oj(rz't)

+.v ~ t - a l 4 (j-1,2 _. N) (7)

A perturbation velocity potential p(r,0,z.t) is supposed to exist; if a- de-
notes the velocity of sound in undisturbed flow, p satisfies the wave equation, where

V

.1a" +.__l2ý' #2- - 2" 2 2' - 2 0 (81)

• +I + :- + 2 • ; •+ + V- ••- -• "-l•
r2 0( 0aZv

3r r 1r cal 2e • Oeaz 0z + 2 • a2 OO r a =® Ozat a2® 8t2

The perturbation pressure p is

p --p O® - + v= 191

The bo~undary condition on the blades is:

Doj Do ( 10 )

r= ae V® az "aT

Furthermore, the normal derivatives of w0 must vanish on the two cylinders:

2V•-'91z't) - 0 (1-1,2) (11)
Or I

It should be noted that p satisfies the same equation as c , and the same
boundary conditions on the cylinders. The new variable defined by

"a..0 ÷12
a-6+ a z (12)

allows the boundary condition on the blades to be written for constant values of a
the equations of the problem are nowt

a i7W + L+ V 02-w + 2 +-- (l.M2) 2 ak. L !Oa r Or [r V0ja2 V Oadz Wz a2 Ozat al tl2 
-

p---p., + V. Z(r,o,Zt) - 0 1-11,2) (13)

L a &+o aoS+ Veon te J-th blade

The motion of the blades is supposed to be time harmonic dependent, with

frequency - and constant interblade phase angle 2 . 1,2,...,N). oj(r.z,t) is
then written as 0 (r,z,t) - o(rz) Re exp(twt - i(J-I)N2 ] (J-1,2,....N)

i I N )](14)
o and p are then of the form Re(,Ioeiwt) and Re(poeiwt) and, omitting the sub-

script 0, the formulation of the problem is nowt

Or r r Vr Oar V Onaz Or2-2l OZ 2-

p-- p* 1[W + V 15)

1,2,I
S so .a'I V - or] 'XPA-l(-) N]I on the J-th blade

The blades are equivalent to N sheets of pressure dipoles satisfying the boundary
.conditions on the cylinders. The velocity potential is then computed in terms of an
Integral over the blade number one, and the boundary conditions on the blades give an
Integral equation where the unknown function is the pressure difference A? between the
two aides of the blade number one, the right hand side being a known function of a.



HRk SSURU DUE 'IV1 N MONOPOLES OR N DIPOLES

If L1 denotes the partial differential operator of the problem, the pressure p
•' ~~~~~2Ki w hs oriaeae

A due to N nxnopoles vibrating with a phase shift L whose coordinates are
2a

"..',& + -- (j-l) (j-l.2.....N) satisfies the equation

N
"is] _ - ) - ) vN (J-1) [ - a' - N (j- )1

J-1 
(16)

ape -
O(r ( r ) - 0 (1-1,2)

The right hand side being periodic in a with period 2w * is expanded in a
Fourier series:

1 s] "r 8(r-r') 6(z-z') ) exp[-in'(a-a')]r" n-- (17)

where n' - nN + K

This form shows that p can be represented by a Fourier series whose co-efficients
are Fourier-Bessel series of the radial eigenfunctions Rn'm(Xn m r) (m-1.2... assoc-
iated with eigenvalues Xn'm(m=l, 2 ..... ) defined by:

R' + 1 RI + 02, -2) - 0 (18)
Sn'm r n'm (1n M r2 ) R ni 0(18

-4

R', m(A n r.) - 0 (1-1,2)

These eigenfunctions are normalized as follows (Salaun 1986)
(19)

J r Rn ,A r) Rn 0(A, r) dr - 8

no that Rn'm (An'mr) is given by
•i% ~ ~Rn' At' n'A'r,) n(nmr) - " rl20

"Win - A, LYý'(An r .n,(An'nm - '(Anlmr:) Yn'(An'mr)]

4, where
12 A r 2

- ([1A2,sr~n'2l I~r,.lii,r:) J' m,(nir) - ,(An,mrj)Y(Ar ])21

The coefficients Zn'm(z) in Ps

4m 4m

Su"Z ~ Zn'm(z) Rnm(An~mr) exp[-inl(o-W')]2Sn--® rn-i

j are solutions to the ordinary differential equation

- [ -
21i Qi.L . i n i 2 M n' Q 

2  
Z 5(z-z) Rnr (A,5 r o) (23)

1)2' V" .1 -• _1 .ý . nmr ~

It is equivalent to find the solutions ( and Z to the homogeneous equation=n'm =n'm

for z<z' and z)z' respectively, with the two conditions

Z(1) - Z(2)n'm"') n (Z (24)

M i, ()'M ,.A )- ZAm(z.•-2/r •,(nm

the wrtture of these solution'; depends on D2 defined as

)If 2  Is p•ositive, the solutions wuich increase infinitely with J&I do not
ID• ,tcisr.

,'4:



If D2  is negative, Z( and Z(2) are both linear combinations of two waves
n'm - n'm

which remain undamped at infinity, and a choice must be made such that one wave only
occurs both upstream and downstream. The complexity of the waves makes it difficult to
select them by the Sommerfeld condition. It is better to use an alternative al[proache
the time dependence in eiwt is replaced by e(a+iw)t(a~o)l all the functions of time
are zero for t--* and increase in absolute value, when t increases and the condition
to apply to the new waves is that they remain zero at infinity both upstream and down-
stream. Afer that, a is made equal to zero.

The case where D2  is equal to zero is not examined here.

Finally, after some developments given by Salaun (1974), ps is given bytp r r. oo . -- -- + • x (-i ' ++ .I 0 -

j T 0 . r - N Rm(Anr) R, (A, r') Izol)

n---I A (26)

where a0 - a - o' and z0  - z - z ,

wV

"V ' a

P2\,r.n 1 2\2 ,+,]2 (27)" n' M a®. Wi"n'm > I[a.-m 1
--

2 ,• > 2•

sgn(w+n'f) 2 2 n' < Ln ]2

The possible existence of undamped waves at infinity both upstream and downstream is
one of the features of the problem.

* 4. 2K x
The pressure due to N dipoles vibrating with a phase shift -- located at the

the same points as the preceding monopoles, and having their axes normal to the blades,

is a

P (r'r''a 'z° " + a z

that is to says
+W 4W

'(r, r- ' aZ Rn 0 nr) R (An, r') exp(-inlao) x
D PDr'rn'mP n'nz n"m n4m

n-.m m--

* ( (28)
X in'" + ++1 -L -ir + A sgn(zo ] " exp(i 0  ,2 Iz,

PRESSURE AND VELOCITY POTENTIAL DUE TO N SHEETS OF PRESSURE DIPOLES

The presstire discontinuities across the blades are taken into account by distribu-
ting over the blades N sheets of pressure dipoles having an intensity proportional to
1H(r ,z) on blade number one. The pressure obtained is expressed as

p(r,•oz) - J , P(r.r',o.zo) ,+ r' dr'dz' (29)

r1 Z3

and it can be shown that l1(rz) is equal to the pressure difference between the two
sides of the blade number one.

The method used for this is useful in the next paragraph, it consists of analyzing

the Fourier series in the neighbourhood of the blades (so J-N 2,, J-l,2.....,N) , by

the knowledge of the first term of the asymptotic expansion of its coefficients for
large values of n'. This term can be obtained when summations and integrations are
made in the following order: z'-integration, m-summation, r'-integration, n'-summation.
n' being fixed, the first term of the asymptotic expansion of the z1-integral for large

values of m Is first computed. Thereafter, the first term of the asymptotic expansion

of the m-integral for large values of n' is computedi then, the first term of the
asymptotic expansion of the r' -integral for large values of n' is computed.
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It •',{ be Shown, SalaIn (1986), that

/V I-l'" * A sgn(z 0 )-
,X))(I r #A- 2 ,Z o,) dz '

A

lH 11(r .z) (30)
-~ jr'Sn+ . + daE

2  30
n' m

in both subsonic and supersonic relative velocity.

Also, it can be shown, Salaun (1986). that

+ ý- { 2" n R n'm(A n'mr) R n'm(An, Mr' ) 21ri 31
SII(r",) + V22n' A + • dr' •n----I(r,z) (31)

j [m-1 nm

Therefore, p(r,ao,z) can be written
- +2 exp(-ina 0 )

PO, a (r,z)L n + regular terms -0,r n-- n (32)

211
M - 2w llfr,z) exp(-iwa 0 ) N exp(iKM0 ) + regular termsS2s exp(21m) - 1

whore the notation (F) means the periodic function of period 2w whose value between
2N

0 and 2N is F. This expression has a jump equal to the pressure difference 6p between
the two sides of the blade number onet

H(r,z) - ap - p(r,2w,=) - p(r,O,z)

The pressure p due to the N sheets of pressure dipoles is thent

p(r,%z) - r Z 6p(r',z) PD(rr',0 0 ,z0 ) i + j dr'dz'

r, z,

It is to be noted that, due to the possible existence of undamped waves, p may

not vanish at infinity (z - ± -) so, the velocity potential which is a solution to

the equation

icp + V - - 1
8z p. P (34)

cannot be expressed as an integral taken from -a to z , as it can be done in the classi-

cal wing theory. The z-integration constant C(r,a) is determined so that v is a

solution to the partial differential equation of the problem. v can be written as

dr'2 I2 + Ga~Ll1/2 Zorlzl N 0) PD

p~, J + 8p(r' p(-W to) exp(i (lr.)D r,op)dp +
r, z , Z V0 (3 5)

+ C(ro) exp(-IV z)

The term arising from the lower limit in the i-integral provide@ in v a term pro-

portional to exp(-iez/V.), which is not a solution to the partial differential equation,

but is it possible to choose C(r,a) such that this term disappears.



Then, denoting by F1 (rr', ou p) an indefinite integral in 11 of

exp(i P/V)pD(r,r',a.,u) for M<o and F2(r,r',ao, u) an indefinite integral of the same

expression for p>0 , 'p can be expressed as

2 P' z exp(p ) zo) G(r.ra 0,z) + 1/2 dr'dz (36)

whre:r z

qG(rr, "n (r~r (37)

Fj(r,r',a 0 ,O) + F2 (r,r',a 0 ,z0 ) - F2 (r,r'o. 0 ,O) (zo > 0)

'rh.se long but easy calculations give, denoting by E the unit step function:
Sr p r2  z') 4-

-' 4:•r 9 pav JJ .prz' R,(Xn,mr) Rn,(An,r') exp(.in'a 0 ) x

rI ZI It--avm-i

+ +or A2,m + i sgn(zo) A + +V

A[~.+(n-)2] exp(iI:-3 z0  Izol) +

ai V (38)

, + V2 r n' + r' r

+ 21 mo 2 exp(--i z0 ) E(ZO) dr'dz

4V

S;t~~2, + (-•-- V r'z

ANALYSIS OF v AND ITS DERIVATIVES z
8am az

INIEGRAL EQUATION OF TIHE PROBLEM.

The application of the boundary condition on the blade number one implies that co

is given the value of zero in & and AT It is then necessary to know the nature

of the Fourier series which appears in w • The method of analysis is the same as in

the preceding paragraph.

The z'- integral in the first term in the parenthesis in p gives

Z2 -LCwn + 01V X2,4 + s gn(z0) A 11

apr r . V a Ir VW ae ,p ...
- 6p

1
r', ) ® "]Lxp(l zo- Izol)dzt

,.A + (•-+n 2)P 
0

(39)

2 ( z+ 4,6p(rz) rL + n'2] n]S-- r'z)V 2i +lr V•nm•V

Furthermo re, it can be shown, Sal~a[n (1986), that

a-1Vn + "VVVV

Fim f'5 t 'dr' -2 rrj )p(rz) n

V ý + afti l I + uV! '
I; M V2V

2

iWPM, F

i I
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Th se~ries eontaininj E(z~, in v gives:

rL V2, _1

_ Ir}M i +1 m ~ n' m

flL.. . +r np(r',z') exp(-I zo) E(zo) dz'dr' (41)

+ .6p(r,z) exp(-iO zo) E(zo) dzI

ZI

Keeping the term in in w in view of the analysis of , the follow-~n-2

ing result is obtained:

Vi. exp(-in'ao)
S-V •Sp(r,z)

(42)

6p(r,z') exp(-ivzo) dtz' - ecp(-in'eo) + regular terms

V2

Incidentally, this shows that the discontinuity 6, across the blade number

one is given by
z

b - w(r,2x,z) - (r,O,z) - S p(r'z') exp(-iw z S ez. (43)

The term in I" makes impossible the term-by-term derivation with respect to

Ca in p I to avoid this trouble, this term, whose sum is known, is written in the

form of a double m,n -series which is subtracted term-by-term from the series

A in 4® e

6 6p(r,z') exp(-IW zo) E(zo) dz' exp(-in'&,)- z: n--o

r2 z 40 x( i'o (44)

49- ____ I--
"2pr J r J Ep(r',z') exp(r-IZ) exZ(

Z ~4, ex(n-' 0
rl 2

?i 21r V'" 6pr°z°exp '~ 7,

,( Rm Ws 01nmr') n. Lo) r'dr'dz'
SI--"' m'.1

STheist is obtained by applying the relation (100) of Salafln (1986). ' then in

written in the following forms



•"•• 6rz) Rn m (A n'mr) R n~m(A n. r') exp(-inlao) x

r1 zi n--• m-l

,,m + ( sgn(zV ) A L+ +iS- ex(- exp(i t2 o) Izoz) +

AL [V n' + ~

r 2r

r V2'ý rl ol+V

exp(-iKao) (exp(oKx0)) Z2
-+ ) p(rz) exp(-iW zo) E(zo) dz'+PWVWo 1 Cxp( t N2 ) ztV

is calculated starting from the expression (38) of V , and it is easy to
az

see that the terms arising from the derivatives of sgn(zo) and E(zo) cancel each

other: , thus takes the following form:
Oz

r2 Z2  4 -

az 4wr~p V z Rn'm(n'mr) Rn~m(An'mrt) exp(-innno) x

r, z n---* M-I

ELL ;ionp I nz + +io0 W A2, +gn
V V, -+[ (46)

A2 + (k. +,,I. .,

, + r' nt ]

X XP+tpjij]) + 2 exp(-t z 0 ) E(z0 ) dr'dz'
'0O po 2  ,..Jn' 2

IzI V.o A2, 5 +(-)

An analysis similar to that of qp shows, after some calculations, that

'+ oxp(.in'oo)•+ ''2 •0Z " •2"V [p(r,z)-1W j 6p(r,z') exp(-iW to) dz'] .

az 2rp V L ''' Ix~1 Zonpt)Je..u.~ *

zI n--

+ regular terms

, is calculated from the expression (45) of V , which gives,

r2 Z2  +0

r, z, n--. M-1

EL rn OL 2 1  aniz) 5~i +(7

r' V- V. n' m sgnz 0ul cInf O.2['V., V L A47
A bn~m* (i?~l~lj X,(i r~- 20 12l) +

A A2 + 2' 1 

2 0)

SW V.

r V2. n' r

2W~ e,,(~f~ xp(-Ifd t) E(ro) dr'dilL V
The rAture of the n-series In 1 is immediately deduced from the analysis

of * erag it it aeon that the series
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exp(-in'a) in +

cancel each other. Tho normal derivative is continuous on the blades and ao can

be given the value zero to apply the boundary condition on the blade number onel

this gives the integral equation of the problem which takes the following form

4ifter some manipulation and rearrangement of terms:

r2 Z2  
4.4"JJ p(r'.z') Rn,,(An.mr) Rn.,(Xnmr')ri ~~X z.n- •I • + ( w + ,n')iv 218

(48)

X{ oxp(i Z0 -o Izol) i. n: n' 1 - I agn(zo)] +

'8 r~, r[A .

V + i sgn(zo) (k vJ n' -111 + sgn(zo) +

oi -fr )k2 + H2 ,won 2] +-"

iV.+ V p sgn(zO ) + 2  ( ) + (2 H2-l)A 2 + M2( .. 2)1] +

+ 2 exp(-I z°) E(z°) V r V rl 2, + Jl

V VVr' V rf~l.lf~f~ [In' v Vý
_ 2~i n' n: drld

V V AV . ' r dr'dz-

- N r (iW0 + V
N 8Z

USE OF NONDIMENSIONAL OUANTITIES4--METHOD OF SOLUTION OF THE INTEGRAL EOUATION

Nondimensional quantities are defined by the equations.

Z2*Z , Z÷Z+2  +

- 2 + 2 . +

r - r2 r rsr 51 (49)

r, - r2 r,

W1 Ul ? 1 (50)

SCp (r ,z * (51)

. -n M - A* (A* real) I

"If, - n't% + mlt - 0.

Then the Iftteqral equation takes the following forms



R L .% ,n r )n* • x pn m r

z'* * r * *
_ A _ Ir t h e 0 1 ) n2

intesboi cas,£ C is~ exande+i serie o- ok I*k ) an oyoil

*N r, A- rn- + s +n'O )2

*2

ugn(z*)] + T" O - 4gn(z*) (wR+nOR) +
A_ 0 

72T*

t' r 1 * 2 ,[i"n

* * A

teea ar w s t 1 (wen o [Ated W On thre e y

n2r r A + *2 + dr' dz'.R r' r r' *

An thWupro niL caseL: t * and w m and, t he Galeardii methodi giVb ad t4reaiyling edge

whose unknowns are the coefficients in CP

In the subsonic case, Cp is expanded in series of Roki*okr*) and polynomials

Ge(z*) defined by

+1 rl 1/2  *

f1G11( GP2(Z dz* -56AP (54)

The expansion of the right hand side uses Gb(Sz*) ml,2.....a. It is known that

theme polynomials are well suited for an isolated airfoil and therefore they are used

here.

In the supersonic case, the Mach waves emanating from the leading and trailing edge

of a blade reflect on adjacent blades, such that Cp has simple discontinuities. To

take into account these discontinuities in the pressure representation is a difficult

task in a three-dimensional analysis (see Namba's analysis in the present volume).

Here CP is approximated by continuous functions. Comparisons between the results

dimensional analysis, and it is shown that the generalized forces are in good agreement.

In the supersonic case, Cp and the right hand side are thus expanded in a series

of Legendre polynomials PU defined by

+1
flP/ P dz* "--2-" (55 )

2p-l 2

Let Ypk(V-l,2,...1 k-1,2,...) be the coefficients of the Cp expansions

1/2 (56)

lfz iP #'*Yk GP(Z*) Rok(A~kr*

in the subsonic caset



- Y -Y p(z*) * *k( k
pk

in-the supersonic case.

Let X", (v-1.2....; 1-1,2 .... ) be the coefficents of the right hand side

expansion :

iwRO + 'Off X G( R r**
Oz a ) k( xr)

in the subsonic case (57)

""wo X P,(z ) R (A kr)

az I k(O

in the supersonic case.

The Fourier and Fourier-Bessel series are integrated term by term, in order to

avoid the treatment of the kernel singularities.

The following integrals then appear:

+1

Pkn'm" ,r Rk(Akr) R,(nmr ) dr

j ~ +1

(=knJ*-R (X*r* * * * (58)
r*- ok okr ) Rn (A:,mr)dr*r

+1 1/ 1* ]/ * r

Pvn'm - dz* [ ,]('z*) flLl C ) exp(i Zo - zo) dz'

in the subsonic case

+1 z * * A
U -r dz* * r zI-.8 * z)dz*-I .2 0(59)

in the supersonic case

+1 r* 1/ 2  +1 1,/2*

ju Jdz* 1 -Z1  V(.z) frLGL A I e ~ z* + * dz*
.1 + Qz*

in the subsonic case (60)

+1 +1ii , Vvn,- d* P~z*); ep( L * A*. * *

dz P .P, 1(z'*) I p Zo + fi2 z.) dz'
.1 z

in the supersonic case

W dz' F v1/2
1AZ*) a* / (Z' *) xp(-i z

in the subsonic casei (61)

~. w~I+1SWp f dz* P (*) p P(z'*) P-W z

in the supersonic case



V1 Th linezar system of equations takes then the following form:

4-. 4oý"4 Y

*Y k A T2 + W O, 2

,uk n--Rm-l R

-(U nm-V inm fR (U +{V Q + QWO)(U+ i( Uvn'm+ (U V

R• knU 111I 11Pmkn 'mP tvI jn'm* uv'mjv'

+ i " + M(W +n'O1)2] V +

A* (U Uvn , m+Vpn

- PTh7Pn' •n'[Qn'm I~ wNr mXwnm 62
**-) (1WR+f'R Q 2 (Rn U n'2m~j V.) +i 1

mi' R1' R4-' 0R R n'mm +l' N'(wT2O

" The flutter mode which is examined is only one degree of freedom flutter, and

the generalized force on blade number one is

r2 Z 1/2+1 +1') --- M 1+0ýý[•] I/drd:z - Irl 6p ardr* dz*

jr , z , r -1  -

Sthat is to say, When sp is replaced by tts expression,

G - I Z.. I i Ak
V2  I rk p (64)

pk

Swhere Auk are the components of the expansicn of a in the orthogonal sets

Rok(okr*), G,(z*) in subsonic flow, P,(z*) in supersonic flow.
/,

A• ^ Jd iaz* G• z) * (* *) d
o1 Z [z Gz r RoA(ok r o dr (subsonic)

* +1 +1-

' dz Pz r* R (A *r )a dr (supersonic)
$ -t r

Details of the numerical evaluation are given by Salaun (1986).

i! WIMURICAL RESULTS

The motions examined here are bending and torsion, with the nodal line defined
fb constant value of z • Let th*(r*) be the normal deflection of the mid-chord
point and 8(r) the angle of rotation of the chordi f(r,-) is taken in the form



5-13

t )- 6r* I s + h (r*) - (r* z + I + / h*r*
V2 ((66)

is gjiven by *1+A- 1/2 (7
02~r o2l,• o-r [1+ r'j8 z+ 1. + ,,j Lh* (67)

% r r

it is easily shown that Xvt and Auk have the following expressions in the subsonic

case:

r +1 2] [1 02 *2]1/2 }drk . RokXor ) + 6+ + iRh dr*

ifA 0- 0 * * {112 *2] F2 h*1i r

( 68r)2 (69)

X 21 t J 1 [i + 6 dr*
r,

X - 0 v>
2

r"I

+1 J 1 [ + 2 *2,1 +[1 +F J 0r* 1/

1k lk R1 k(o r' 2' R 2o RF 21/ h dr*

+1 *2(69)

"" R )> 1+f, *

A 1 - R r) 2ý1 6 dr
2Ak " 2 .

r,

Ak - 0 p>
2

In the supersonic case, they take the following form:t

na2r ot+1 o )e + rl * e + forRe ' 
1/2 h drd

r, (70)

+I [ flr*• ,dr
1. •I R' (A R°( r* l+ R, j

r, *VS ~,

X" I - 0 P>2

+ 0 2 **, 1 /1 7 1 )
A lk `-•2 " . Rok ( A°k r )1+ 21 ] dr*

R (A- I o(or 1 + 5 dr*
A2k .3• J*O O

A jk - 0 p,>2

tin the case of a bending motion, th*(l) is taken equal to c(r2) ,and in the case of

a trrsional rw)tion 8(l) Is taken equal to 1. S being the area of the blade, the non-

i! cllmensionakized generalized force G* is defined by

S2 V! 9 e (rt)
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There is flutter when Im(G*) is positive.

rhe numerical results presented here refer to a cascade having a hub to tip ratio

equal to 0.398.

No flutter has been found in the pure bending motion in both subsonic and ,uperaonic

relative velocity.

In the pure torsional motion about the mid-chord axis, it is difficult to find

flutter in the subsonic case. However, Figures 2 and 3 give two examples of torsional

flutter, for reasonable values of the parameters. The cascade has 21 bladesy the

Figures 2 and 3 differ by the values of y(r2), respectively equal to 50* and 550, but

the value of the axial Mach number is kept constant, equal to 0.459.

The reduced blade spacing, defined by

2wr 2
(r2 ) - Nc(r 2 ) (73)

is equal to 1.728 . The other parameters are indicated on the figures. The points are

joined by solid lines, which is meaningless, but gives more clarity. The flutter occurs

occurs for values of the interblade phase angle such that there is no undamped wave at

infinity. In each case, one interblade phase angle only gives instability.

2
1~ a dgroes
0 360l .o o 2 0 0 3 00-x 2 o ~ / •

~M1

Sim.ensioiless Generalized Force as Function of Interbtade Phase Angle

(Torsional Motion)

r;.b.39f8 v-0.111 y(r2).50 N2 wR-.~R375  M-*0.459 M(r2)-0.714 f*(r2)-l.720

-ig.-en -nl -- Generhliree dimensional theory

Strip theory
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5- 19.,

S~ no disturbanc e

2 at-tnt

d degree, s doe,,•.•

SFig. 3. Dimensionless Generalized Force as Function of Interbiade Phase Angle
(Torsional Motion)

rl=0.398 T=0.099 y(r2)-55* N-21 f*(r2)-l.728 wR-1. 2 2 7 M.-O.459 M(r2)-0.8

This flutter disappears when y(r 2 ) increases to 60*, as shown in Fig. 4

In the case where y(r2) is equa4 to 55*, the flutter disappears also when the number

of blades decreases to 20 or increases to 22, the reduced blade spacing and the reduced

thickness being kept constant, this latter constraint is obtained giving a convenient

thickness to the blade and using a finite element program for the determination of the

!. ,new frequency (Fig. 5 and 6).

It should be noted that the strip theory gives no flutter in this case, and this

fact shows the importance of the three-dimensional effects (Fig. 2).

Similar results have been found by Salaun (1974), in a case which was not so close

to the actual fans.

2 2

-i 200 300 660

-- 5.

Fig. 4. Dimensionless Generalized Force as Function of Interblade Phase Angle
(Torsional Motion)

* rl-O.398 Y=0.086 y(r2)-60* N-21 f*(r 2 )-1.728 wR-1.070 M.-0.459 M(r2)-.918
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A quite different situation is encountered in the supersonic case where torsional
flutter is easily found for many interblade phase angles, as shown by Salaun (1979).

The difficulty seems to make it disappear and this can be achieved, in the particular

example of Fig. 7, by shortening the number of blades, the reduced blade spacing and the

reduced blade thickness being kept constant. It is seen that this gives a spectacular

effect.

The number of blades seems thus to be a very important parameter in the study of

supersonic instabilities.

F l * I g I ±

2

30 36 I6 200 31\ 360)

Ai

Fig. S. Dimensionless Generalized Force as Function of Interblade Phase Angle
(Torsional Motion)

r:-0.398 T-0-104 y(r2)055* N-20 f*(r2)-l.728 wR-1. 3O5 M..-O.459 M(r2)-O.8

im 191b

'" 
A 2 2

.4 

.

W1 300 W6 W 2b0 0 360

0I,

1 '/

i 

o d.ifor t 
wKr#

at mwtriy

lPk:j. £6 ~ ,k rmsIt•anlq Generalized Force an Function of InterbInde Phase Angle
(Tornional Motion)

:I r ;-0.9d ,-.0.95 y(r2)-5" Nm22 f*(r 2 )0l.728 wRI1.l1 5 2 M.=0.459 M(r2)-O.8

A ") 5Y'2 -5 N2
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Ia,(g.)

to
45

UJNSTAOLt: 75o
UNSTABLE #(g2 ) Fig. 7. Dimensionless Generalized Force as

"Function of Interblade Phase Angle

'3 ' 5 2Kit (K =1,2 ...

44 .
I••• "-30 *

15 ri=0.398 T=0"099 y(r2)=55*

$TABLE f* (r 2 )=l.728 M.=0.917 M(r2)-l.6

L •/5- C•R= 0.613 if N=21

to 0.221 if N=50
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NUMERICAL METHODS FOR UNSTEADY TRANSONIC FLOW

E Acton
Topexpress Ltd., Cambridge, CB5 8AD, UK.

S G Newton
Rolls-Royce plc., Derby, DE2 8BJ, UK.

INTRODUCTION
'11 - 9 '/7

In this chapter, we review some of the
numerical methods used in aeroelastic
problems to calculate unsteady transonic
flow. We have restricted our attention to
two major aeroelastic problems - blade
flutter and what is known as forced -. '

response. In both problems, the purpose o ,,
of the calculation is the prediction of z
unsteady loading on the blades so that the D
unsteady lift and moments may f;.rm the W
forcing terms of a separate analysis of LL . ,
structural vibration. It is usual in J •" "

turbomachine calculations to assume that
structural and aerodynamic behaviour can -
be decoupled; that is the unsteady aero-

dynamic forces have an insignificant effect
on the blade vibration characteristics. --- .
Although this is certainly justified for ROTOR SPEFO
conventional turbomachinery designs it
could possibly be less well satisfied by
future propeller blading.
In forced response, the unsteady loading

arises from incoming unsteadiness in the j,,
flow, usually due to the wakes of -pstream
blade rows. Some engine vibration is then FREOUENCG'
observed at frequencies corresponding to
each engine order. In response to a given
periodic forcing of this type, away from Figure 1 Campbell diagrama for a model
resonance the blade amplitude will be rotor
fairly small and depend little on the
aerodynamic and mechanical damping.
Flutter, on the other hand, is an instabil-
ity arising when the aerodynamic response FLUTTER
to blade motion causes resonant self-ex- |.
citation, so that the amplitude of the / ,e'"'
motion increases. This is illustrated in ,
Figure 1 which shows a Campbell diagram
for a model rotor. The intensity of -

shading on the diagram corresponds to .,
vibration of the rotor. The odd engine + ' ,
orders are shown as dashed lines and at W7 -

the lower orders these are accompanied bya / / -

the vibration that is termed forced res- I 7 , - -

ponse. The lines at nearly constant , - ,'
frequency which cross the engine order • -

lines correspond to structural modes 7 - -
excited In flutter. Resonances occur where
the engine order lines and the structural .-
modes cross. Considerably more blade
vibration can occur in flutter; this Is
shown more clearly in Figure 2. ROTOR SPEED

The onset of flutter may be determined by

evaluating a work integral, and flutter Is
said to occur when energy is being trans- _
ferted from the flow to the blade motion (
rather than vice versa. This is often . . . .
referred to as negative aerodynamic FRQUENCY
damping. At resonances, where forcing
frequency coincides with a blade natural
frequency, the response will also depend
on the aerodynamic (and structural) Figure 2 Campbell diagram for a model
damping. Thus to predict the amplitude at rotor showing strong flutter
r cr nnance aerod yn amic a olutions o f both



the forced response and flutter problems that the flow is inviscid. An important
are needed, aerodynamic assumption being made is that

both the steady and unsteady flows are
These physical differences between the two attached. The solution is usually obtained
problems of forced response and flutter for a two-dimensional strip of the blade
give rise to corresponding differences in where each section is assumed to move as a
the model problem attempted in each case. rigid body; although it may be reasonable
In both problems, the flow through the to model steady flow as two-dimensional
blade rown is unsteady and periodic, but between stream surfaces there is less
only in calculating aerodynamic damping is justification for assuming that the
it necessary to allow for any interaction unsteady flow is also two-dimensional.
between the blade motion and the flow. The most commonly-used methods for unsteady
Away from resonance in forced response flow assume potential flow through the
calculations, aerodynamic damping is un- cascade, and these methods are described
important and the blades may be assumed to in detail in the next section.
be stationary. The unsteadiness in the
flow arising from incoming wakes may be
large, whereas for flutter, initially at
least, this will not be so. During flutter SUPERSONIC
the blade amplitude will be limited event- UTTERually by non-linear structural damping,

but this is not usually of interest:
flutter calculation methods are required PRESSURE
simply to predict the onset of flutter RATIO
(and so determine the flutter boundaries A
in an engine operating map as shown in
Figure 3). For this reason the unsteady STALLFLUTTER
flow during flutter may be assumed to be a
small, linear perturbation of the steady
flow through the blade rows. Consequently,
the flutter problem in some guises is SPEE
amenable to analytical techniques, and SPEE
these have been described in earlier R
chapters of this volume. The analytical MASS FLOW
problem is not easy, particularly when
shocks are present, and is only tractable
when further simplifying assumptions are Figure 3 Typical engine operating map
made concerning the steady flow through

,the blade rows, in particular that the We consider only field methods here and do
flow is uniform and the blades themsolves not describe those methods that produce
are represented as flat plates. Numerical series or closed form solutions which are
methods become necessary when these assump- then computed numerically (for example
tions are relaxed. Similarly analytical Atassi & Akai (1978), Goldstein, Braun &
calculations of forced response have been Adamcyzk (1977), et alia). The two major
made by Nagashima & Whitehead (1978), and contributions to field methods for potent-
Smith (1971) but field methods have been ial flow are due to Whitehead (1982) and
developed for the usual case where the Caspar & Verdon (1981,1982). Both these
aerodynamic fluctuations are large. These methods solve the potential flow equations
methods are not usually applicable to the and yet are capable of treating transonic
resonance problem since for non-linear flow. An outline of the two methods is
incoming perturbations, the blade motion given in the next section where their
and forced response problems cannot be differences and similarities are ident-
decoupled. ified and discussed. Both methods adopt a

linearized approach in which the flow is
in this review we shall describe attempts decomposed into a steady component and a
to predict both flutter and forced res- small unsteady perturbation which is linear
ponse, although the majority of the work in the blade motion amplitude. This allows
reviewed is concerned with flutter; few a simple harmonic time dependence to be
successful attempts at calculating forced assumed for the unsteady flow and the time
response have been made. As mentioned derivatives to be eliminated from the
earlier, although numerical methods have governing equations.
been used when the steady flow is non-
uniform, many restrictive assumptions If wake vorticity and unsteady shock waves
remain necessary. The development of are to be treated, then the inclusion of
numerical methods to calculate unsteady rotationality even in an otherwise inviscid
flow in turbomachines has followed on from flow Is necessary. In this case numerical
calculation methods available for steady solutions of the Euler equations are
flow, but in both cases are perhaps less required. Methods for solving these
developed than the corresponding methods equations have now been developed for
used in external aerodynamics. A useful steady flow and have been extended to
account detailing many numerical methods include unsteady flow. These methods are
for computing steady and unsteady flow in described in the third section of this
a wide range of applications is given by chapter. With time dependent terms
Psyret s Taylor (1985). In turbomachine included, the Euler equations are hyper-
applications most methods to date have bolic and provided that the equations are
assumed a two-dimensional unsteady flow written in terms of conserved quantities
tftrough a linear cascade, and furthermore (mass, momentum and energy) shock waves



6-3

may be found in the numerical solution. ficients can be applied to mistuned assemb-
These appear in the flow solution and are lies.
said to be 'captured'. The presence of a
shock wave does however require some Finally, there are boundary conditions on
viscous dissipation and so it is necessary the blade surfaces; these conditions must
either that the difference scheme is be modified in the flutter problem to take
constructed so that the truncation error account of the blade motion. In a linear-is predominantly dissipative or some form ized approach, the perturbed conditions
of artificial dissipation must be added to are applied about the mean position of the
the scheme. (In calculations where the blade and although this is not without its
conservation form of the equations is not problems as will be discussed later, it
used, it is necessary to treat the shocks has the advantage that it is not then
as internal boundaries across which the necessary to incorporate moving grids.
Rankine-Hugoniot conditions hold: this is
known as shock 'fitting' (de Neef & In the final section we show some examples
Moretti, 1980)). of the solutions obtained for unsteady

flows using numerical methods. These
Time marching solutions of the Euler results are unfortunately restricted to
equations by finite difference methods the potential methods readily available to
have followed two computationally distinct us, and where applicable the results are
approaches. The first is a differential compared with analytic solutions obtained
approach where the physical region in which for flat plate cascades. Some comparisons
the equations are to be solved is mapped are also made with experimental measure-
into a rectangular region in the computa- ments.
tional domain using a suitable transforma-
tion. Both steady and unsteady solutions
have been obtained, using explicit differ- SOLUTIONS OF THE POTENTIAL FLOW EQUATIONS
encing schemes such as MacCormack (1976)
or Lax Wendroff, or implicit schemes such In this section, we first review some of
as the factored algorithm methods described the methods for calculating flutter thresh-
by Warming & Beam (1978). Alternatively olds by numerical solution of the equations
the Euler equations are solved in integral for potential flow. We concentrate on the
form in the physical domain on a grid of methods developed by Caspar (1983), Casparelementary control volumes. These 'finite & Verdon (1981), Verdon & Caspar (1982,
volume' schemes for steady flow have been 1984) and the finite element method of
the subject of considerable development in Whitehead and co-workers (Whitehead & Grant
recent years; in external aerodynamics (1980), Whitehead (1982), Whitehead &
most notably by Jameson and co-workers Newton (1985)); both approaches have led
(for example Jameson, Schmidt & Turkel to programs that are now mature and have
" (1981)) and in turbomachine applications been well tested in different configura-by Denton (1975, 1983). The method is tions. For this reason we discuss them in
such that there is no difficulty in some detail. In common with most numerical
principle in treating unsteady problems, methods described here, both methods are
and these methods are under active develop- applicable to flows that are subsonic

Sment. With the Euler equations written in relative to the blades at inlet. Whitehead
conservation form both the differential however uses a flexible, although somewhat
and integral approaches should produce the indirect, set of inlet boundary conditions
same flux-conserving steady state to allow also the solution of supersonic
solutions; a detailed comparison of the inlet flows.
methods and the relevant spatial differ-
encing for steady flows in turbomachine Discretization and solutions of the steady
cascades is given by Thompkins, Tong, Bush, flow

4*, Usab & Norton (1983).
The equations governing the mean steady

The boundary conditions necessary for the two-dimensional flow are used in the form
computation of unsteady flows are discussed of the mass conservation equation given by
in detail In this chapter. It is necessary Verdon, Chapter I1, equation (41)
to apply boundary conditions to prevent V.(pv®) - 0. In Whitehead's formulation
spurious wave reflections at the inlet and this is written for quasi-three dimensional
exit planes of the computational domain, flow along a stream-surface (where varia-

4 These unsteady boundary conditions arein streatube height
necessary in timn marching methods even in for, but variation in radius is not) as:

• calculating steady flow, but may require
more careful implementation in the genuine- v.(p h O) - 0 (1)
"ly unsteady case. In cascade aerodynamics
it is necessary to apply conditions on the where p ia the density, 0 the steady

repeating boundaries of the flow upstream velocity potential and h is the streamtube
and downstream of the leading and trailing height ratio. The relationship between
edges. For steady flow the flow conditions density and local sound speed A is given
are identical from blade to blade but this by (Verdon, equation 42):
in modified in the unsteady flows to
include the changes in phase from blade to (P )7-1 -:-') A' (2)
blade. These are usually foiemulated In a p0  2 As' A."
way that is particularly convenient for Ae A0
"the application to tuned rotors, but is
not limited to this and combinations of where Pe' Ae are stagnation quantities.
the resulting unsteady aerodynamic coef-



This pair of non-linear equations for the e Calculationpoints

two scalar functions p, 0 is solved in the 0 Neighbours
blade tq blade domain on a suitable grid.
An example of the mesh used by Whitehead
for a compressor cascade is shown in Figure
4. The mesh covers an area one blade
spacing in height, with one blade profile
in the middle, and extends one or two
chord lengths upstream and downstream of
the leading and trailing edge planes.
Lines are drawn from specified points on
the blade profile, which may be clustered
in regions of greater interest, to the
outer boundary. The space between the Figure 5(a) Global mesh
rays is filled with triangular elements
built up in layers round the blade profile,
as shown in the figure.

Repeatingpe

Figure 5(b) Local mesh with attraction at
shock

The differences are best identified by
describing the two numerical approxima-
tions to the mass conservation equation
for internal points. Figure 6 shows part

Figure 4 Typical finite element mesh of the local mesh in Caspar's method: the
flow equation is approximated as follows

80 - -0
Caspar & Verdon, however, use two meshes 0 - f1r 2-" do - Er m 0 Q 1(3)for the steady flow: a global mesh which an m m IFM0 -1

allows the implementation of repeat, inlet
and exit boundary conditions, and a local where r is the modified isentropic density
mesh to allow more detailed resolution, as ro)-l, and IP P I and
illustrated in Figure 5. The global mesh 0 m o
might be described as quasi-streamline; I are the distances between the
the local as a C-type grid. An important IQm wm-l
feature which the global mesh has in common corresponding points marked in figure 6.
with Whitehead's approach is that points
are identically reproduced on repeat bound- Equation (3) may be written
aries. This means that no interpolation is
required for the repeat boundary condition.
Although matching between the glOlal and 0- E rm m(0 m - 0o) (4)
local meshes would In principle be an m
iterative procedure, it is in practice
only a one-step process (the global where r (r+r 0 )/2 (5)
solution imposing boundary conditions for m
the local solution). A further feature of
Caepar & Verdon's local grid is the ability or Tm - m-1 + rm)/l (6)
to provide finer step lengths in the - .
vicinity of a shock. However, it may be and m-
noted that when artificial viscosity is m I* P - 1'
Implemented so that its effect diminishes

with step life, mesh refinement can then Quantities carrying a tilde denote values
load to shock overshoots. at the cell centre and those with an
Soth methods solve the governing differ- overbar denote neighbour mid points. TheBoth meuations forve ms fovring cner- approximations (5), (6) are termed "neigh-vation form. Caspar ss Vrdom use a finite bour averaged' and *cell centre averaged'volume fothod, whereas Whitehead applies a respectively. The latter produces a more

Oalerkin finite element approach. compact difference scheme and is found to
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An obvious similarity between the two
methods is that they both lead to basic

numerical schemes which are elliptic in
P., character (i.e. offer no preferred direct-

ion). This is strictly applicable only to
subsonic flows and is unsuitable for
supersonic flows, where the equations are
hyperbolic in nature, if the supersonic

Pregion extends over more than a few mesh
points. To overcome this problem and bias

the information in favour of the upstreamNdirection, both Caspar and Whitehead employ
upwinded densities using an artificial

, ,viscosity.

"Although the grid elements are of different
P • shape, both methods apply a bilinear

variation of velocity potential. However
whereas Caspar has interpreted the mass
conservation equation directly, Whitehead
in applying the Galerkin method has a
weighted integration placing higher depen-

0 CENTRE MESH POINT dence of the mass flow on its values at
O NEIGHBOURINGMESHPOINT the 'centre' node being considered. Caspar
O CELL CENTRES
A NEIGHBOURLINEMIDPOINTS solves the non-linear difference equation
u CORNER NEIGHBOURS by a direct iterative scheme:

-7 in(An+l .An+l . -n n n
m mm m 0m mm m 0

m m
Figure 6 Local mesh polygon

r 6where &0 is the iterative difference
give more sharply defined shocks in super- n-l n+l n
sonic flow. AO -n -0,

In Whitehead's method on the other hand, a (where On is the nth approximation to 0)
linear variation of potential 0 is assumed in used instead of *n+l directly to
over each triangular element: minimise the effect of rounding errors.

0 E 0 Z () By reference to a model problem he
identifies two possible difficulties with
this numerical solution: non-uniqueness of

where ( - are the shape the solution and non-convergence of the
-ZI() YI(x)/Y Taylor iteration (9). The former arises

functions or area co-ordinates as indicated from the use of centred difference approx-
in Figure 7. imations in regions of supersonic flow,

and the latter from the explicit treatment
of the density. The non-uniqueness is

1 cured by artificial viscosity, whereas
non-convergence is treated by the intro-
duction of an "implicit artificial time"
term.

3 Whitehead solves the set of non-linear
STi equations (8) by the Newton-Raphson method,

expressing each variable as the currentvalue plus a small correction and solving

the linear equations for the correction

3 terms. Setting 0- + O', p - p + p',

- k + Q1 where the primed quantities

refer to correction terms (and the overbar

In the Galerkin approach, the mass conser- to denote steady flow has been dropped),

vation equation is multiplied by the shape we may linearize in primed quantities, and

functions - giving three equation (8) may be writtenintegrated over the element. Integration K 0 m + 0 (10)
by parts transfers the derivative to the em mm P)well-behaved (bilinear) shape functions, e
and sumnation over the elements surrounding where
a node leade to , Am A m 2 A am 1

2:£ Y(Q.Y)z, -m ao A2

elements and
(for internal nodes) (8) -nd Z

- - Y
where the mass flow rate 2- is defined IA p av x vh
in terms af 2 1 by equation (7) and VO * V. i

.~~~~~ . .



is the error term at each step of the Figure 8 shows how the shock shape depends
iteration. In some cases the Newton- on x in Caspar's solution. The larger x,
Raphson rcheme is relaxed in order to the less overshoot is achieved, but the
improve stability: shock does not appear to become smeared as

n+l 0 n + n 0 ( A ( X. (11) x is increased. This is due to the
b + 0introduction of the locally finer mesh in

It is found that values of the relaxation the shock region which causes the effective
cootficient A of the order of 0.2 are truncation error (or damping) to be reducedin proportion to the grid size. Figure 9
required for supersonic inlet flows with ipoportionWto theg d's Figrea9
shocks. This relaxation is equivalent to shows how Whitehead's approach
Caspar's "implicit artificial time" treat- approximates the shock (isentropic jump)

menti from a similar moderately high Mach number.

As mentioned earlier, both methods modify

the essentially elliptic schemes by the
use of an upwinded dewsity in which p is a FINSUP HIGHDAMPING'

by (v - 0., v, 1.6.h -1.0)replaced in the conservation equation by 1.4
(vpa (1 -+ v)p), where v, an artificial - FINSUP u- 1.0 EVERYWHERE
viscosity, is a function of Mach number, 1.2 0  EXACTISENTROPIC SHOCK'
and p* is the density of the element
upstream of that under consideration. = 1.0
Caspar has v - XM where x is a constant z
whose magnitude is greater than 0.5 and X

S- max (0,1-1/Ma). Whitehead defines the 0.8 .

artificial viscosity to be 0.6 REFERENCE UPPERBLADE
-4 B L A D E ....

0 v(l - 1/M4), M > 1 (12) - AO
2v vo e0.1 0.3 0.5 0.7 0.9 1.1 1.5 1.7

and v. v M° 0 eXp[-(M - 1)21 AXIAL CHORD FRACTION
(13)

which gives continuity of v and dv/dM at
1- . This continuity is necessary Figure 9 Effect of artificial viscosity

because the introduction of *v(M) leads to on shock smearing
additional terms in the Newton-Raphson
solution. Clearly in the supersonic region An additional technique used in Whitehead's
the two forms are similar although the numerical scheme is the variation of
constant v term means that Whitehead's artificial viscosity as convergence

t c proceeds. The values given above are the
artificial viscosity is non-zero at M - 1 limiting values as convergence is approach-
(and indeed non-zero for high subsonic ed, but considerably greater dissipation
Mach number). is put in at earlier stages. As the

solution proceeds, and the position of the
smeared shock has been located, the defini-

1.5 x=0.75 tion sharpens as v is reduced. A typical

0x2 convergence history is shown in Figure 10.
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Solution for the unsteady flow LLli,j -L* Oi,j if Mi ( 1

The unsteady flow Is determined from the LIif NO > 1. (17)
linearized continuity equation (Verdon, oli-i

G1 uation (64)) with harmonic time depen-
dence: Unsteady shock waves are captured on the

global (cascade) mesh, but then fitted on
inhp + V.h(pVO + pv) -0 (14) the local mesh, i.e. the appropriate

*, unsteady shock jump conditions are applied
and from Veidon, equation (57) and (63) across a grid line (normal to the blade

surface) in the local mesh.
p . _P (iflo + vo.vo) (15)

R2 Therefore Caspar & Verdon's approach to
the unsteady flow differs from Whitehead's

where p, * are the perturbed quantities; in two important features. Firstly the
velocities have been scaled by the steady shock fitting means that the correct jump

2 conditions are applied to the unsteady2 2 - -

inlet speed; n - w(U + V ) 2, and the shock reducing concern over the use of an
u artificial viscosity. Shock fitting can

unsteady pressure may be obtained from the provide an accurate description of the
local sound speed: p -shock jump conditions but it is usually
the steady flow field has now been deter- computationally cumbersome because of the

mined, the coefficients P, vo in equations difficulties in initially locating the

(14) and (15) governing the unsteady flow shock. However this difficulty is overcome
are known. Both methods discumved here if the shock can be captured in the steady
solve the same differential equations for calculation and then the unsteady shock
the unsteady flow but their numerical fitted about this position. This is a

implementations differ somewhat more than useful approach that may be adopted in

in the steady case. other methods such as the finite volume
schemes discussed in the next section.

Whitehead continues with a finite element
formulation entirely analogous to his Secondly, the discretization for the

steady solution. The scheme is upwinded unsteady flow is not the same as for the

in a similar manner to the steady flow: steady flow. In some circumstances, this

the rationale behind this is discussed could have undesirable consequences

later in this section. Furthermore his because the computed steady flow will

solution to the resulting (complex) linear result from a particular discretization
equations is very close to one iteration and with a different numerical schemv, the
of the steady Newton-Raphson scheme. No perturbation will not be about this
special treatment of the shock is adopted: solution but about a different unknown

it is merely a region of high gradients state. This will happen to some extent
resulting In 'pesky' unsteady pressures, anyway because even with the same numerical
and the local shape near the shock solution scheme the steady state residual will have

is dependent on the particular choice of been set to zero, but when the numerical
vA-•osity, schemes differ the new unsteady solutionwill also contain terms correcting the
By compar!son, Caspar & Verdon adopt a discrepancy between the two. This may be

different discretiration for the insteady illustrated by supposing that (p,u) is the
flow. They have a quadratic variation of exact solution of the governing equations,
0 over the mesh, and require a least- e srn ations

squares fit for the interpolation to the and (Pu, Uu) that obtained from a given
mesh point values: numerical scheme for example with upwind-

00 .n fn ing. If we write the continuity equation
n (16) for the unsteady flow

!a-S + v.(pM) -0 (18)

where ?n are the complex coefficients which 4(

define the surface over which O0 is
n and put p - + p', u " L + ul we obtain

approximated and (in) are the five inter-
polating polynomials: f ( f 8p' + V.(p + (19)
fa- O12 ; f' - 0(0i ft 8.7?2 where at -- )(

etc.[
neglecting quadratic and higher orders in

This approximation to the unsteady potent- primed quantities. If the timte-dependent

lal is applied to a rotated difference perturbations are about the numerical

scheme following Jameson (1974). The diff- approximations then the right hand
erential operator for the continuity
equation for the perturbed quantities (14) side would be replaced by v.(;uu). Thus
is 'split' into streamwise and normal
couponents, L1 and i2 respectively. L3 is in regions where upwinding has significanteffects (such as near shooks) the solution
always approximated by central-differ- contains a response due to the error in
encing, whereas the treatment of L, depends the steady approximation. This has been

on local Nach numez, and is upwinded in confirmed by numerical experiments using

s"personic regions. Whitehead's program. In Caspar & Verdon's
method, however, this will be most import-



ant close to a shock, and the problem is applied at the mean position of the blade.

avoided due to the shock fitting that If the motion is not linearized then the

takes place. blade must be allowed to move and its
motion must be large compared to the local

TIME-MARCHING SOLUTIONS OF THE EULER mesh size in order to be resolved, or the

EQUATIONS grid must move with the blades. If a
linearized approach is adopted, a harmonic

We now turn to the second general class of unsteady component of the form U'exp(iwt)

iethod3, not based on potential flow, but may be substituted additionally into the

attempting instead to allow for rotational equations, and then in principle the

flow and obtain solutions of the Euler time-marching may proceed in the usual way
equations. The conservation form of to calculate the (eteady) complex amplitude

Euler's equations for unsteady, inviscid, U'. This approach has been investigated
compressible flow has been given earlier by Hobson (1976) and also by Ni & Sisto

by Verdon (Chapter II, equations (1976), in a method in which the equations
(8),(9),(10)), and may be written for two applied to a flat plate cascade are solved
dimensional flow as in differential form. This class of method

is described next, and then we go on to •1
a--t +ý- F + a G -0, (20) discuss integral (finite volume) methods.

ax ay - - A discussion of the implementation of the
boundary conditions in both these methods

where is given in the next Section. 1
U (Pu Differential Methods

- ~ In a differential method, the system of
differential equations are solved using a
finite difference scheme on a convenient( pu Prectangular grid. Details of such schemes

F - - PU 2 + are given for example by Smith (1985),
puv - Peyret & Taylor (1985), and Richtmyer &

((pe + p) Morton (1967): the application to time-
marching has been described by
Gopalakrilshnan (1973). In geteral the

and method involves transforming the physical

pv region (the blade passage) into a rectang-
puv ular computational domain with the blade

"(U) pv 2 + p surfaces lying along sides of the

((pe + p)v) rectangle. The transformed co-ordinates

may be obtained numerically from a potent-
Here the equations are in dimensional form: ial solution in the physical plane. The
(u,v) are the velocity components, p is differential equations (20) are more com-
the density, p is the static pressure, and plicated when written in terms of the
a is the specific stagnation internal transformed variables, but are solved in
energy, so that (e + p/p) is the stagnation the rectangular region by discretizing the
enthalpy. For a perfect gas, the pressure equations on the transformed rectangular
is given by: grid.

p - (2 - l)(pe - .p(u2 + v2 )) (21) Several attempts have been made to solve

equations (20) for flutter thresholds using

where Y is the ratio of specific heats. explicit time-stepping schemes, in partic-
ular the two-stage predictor-corrector

In many time-marching solutions of equation scheme of MacCormack (1976). The scheme

(20) for steady flow, the full equations is basically of the form of a predictor

for unsteady flow are solved subject to step:
boundary conditions that do not vary with
time. The calculation proceeds until a ~n n _ .. 80 n

steady state is reached and the time-de- U ij Uij - ((j a 4 )iJ), (22)

pendent terms are approximately zero. The

unsteady flow computation may then start followed by a corrector step:
with the steady solution 'driven' by
unsteady boundary conditions corresponding )n+l +1un j)n 1 8P n 8Gn
to either a periodic inflow condition (in uj "(Ui, + -t((i)ij (•)iJ)
the forced response problem), or periodic (23)

blade motion (in the flutter case). -n . (On
where Fi ?Un

As described earlier, it is permissible in i

calculating flutter thresholds to linear- and a+n a O(Un (24)

ize the equations and boundary conditions. i) (24)

This is not essential in time-marching
methods as the calculations may proceed In the first step one-sided spatial differ-

until all flow variables become truly onces are used with the second step then

periodic in response to the driving bound- correcting the predicted values using

ary conditions. However, linearization of opposite one-sided differences. This

the moving blade conditions allows the gives a method that is second-order accu-

blade to be assumed stationary, and cor.- rate overall. Again, suitable 'splitting'

ditlons on the unsteady flow may then be of the spatial operators into streamwime
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and normal components is possible and this For the Euler equations, F - AU and C - BU
allows the method to be readily combined which simplifies equations (26) so that
with one-dimensional characteristic equation (25) becomes:
solutions at the boundaries; this will bediscussed later. (I + 8- (a + a Bn)]

2t ax A y ~
Preliminary results for this method in
subsonic flow have been given for example t a n a
by Pandolfi (1980) and for quasi three-dim- - [I - A- ( A + B n)]Un + O(At3) (27)
ensional transonic flows in fans by Joubert x
(1984). Joubert used two-dimensional cyl-
indrical co-ordinates, and added a further The most important step in the method is
step to the scheme to allow shock waves to the introduction of a third-order term to
be captured by providing dissipation in equation (27) to derive a factored schemeura
the form of a numerical viscosity as for (27), with the same temporal accuracy:
described in the previous section. A at a n AtaBn)Un+l
linearized approach was not used (although (I + ay- A
the results for bending and torsional Ata n n + O(At3

motion were shown to be linear and there- - (I A )(I -t Bn)u
fore superposable): the results were 2 ax 2 ay

obtained by allowing the grid to move with (28)
the blades. For the example given by The algorithm (28) can be rewritten in the
Joubert, the computation of unsteady lift
and moment coefficients settled down to a
periodic solution after about three periods U* At a n (29a)
of the blade oscillation. 2 ay

An explicit MacCormack scheme was also
used by Ni & Sisto (1975) in their (I + - An )
linearized calculation of flutter over
staggered flat plates. Again a rectangular -(,t a n t
grid was used in the computational domain 2 A -- + O(At 3 ) (29b)
but the linearization allowed the blade At 8 nU+l a
boundary conditions to be applied at the (I + - - B )!In+ U (29c)
mean position of the blades and the mapping
did not change with time. -A more general form of the algorithm
" In explicit methods, the time-step is written in 'delta' form is given by Warming
restricted by the CFL condition (see for & Beam (1978), where the factorization of
example Smith (1985)) which gives a maximum equation (25) is written as
allowable time step limited by the propaga- (I + At a n At ann
tioe of information in the physical domain. 2-- A )(I + y- •B)An
This time step restriction in purely -At(8F7 + am)n +
explicit methods led to the development of a ay
a semi-implicit' method for low frequency
applications (Ballhaus, 1978) but diff- where A is defined as the forward differ-
iculties were again experienced near the ence operator
leading and trailing edges of the aerofoil.
Subsequently fully-implicit schemes were AUn n+l n
developed, most importantly the factored
algorithm approach of Beam & Warming The factored scheme (30) can be implemented
(1976), and its developments given in as
Warming & Beam (1978), which allows the At _an)* 87 80
computation to be 'split' into two one-dim- (I + _- -A A _ A - (_ + a)n, (31a)
ensional problems. A non-iterative
second-order time-accurate formula may be At a n n a
derived for the solution of equation (20) (I + •-y _ _ ,
by first using a trapezoidal formula for
the time-differencing to give: Un~l - U~ + AUn, (31c)

n+l -Un I OF aoGn +F a8n+l
U - - t (a + (x + a where AU is a dummy temporal difference.

0(60). (25) The scheme (31) reduces to the form (29)when the assumptions F - AU and 0 - By are

and then allowing a local Taylor expansion again made, but aa it stands it in

n n+1 n+l computationally more efficient. This delta
about U to obtain _ and - : formulation is also used in the factored

n*1 n .Anll .n1 n algorithm for the Navier Stokes equations
r. n+ (+ -! ) + O(At2), (Beam & Warming, 1978).
n~l -n Bn n(0ln)
0 - n nU~-) + O(AtZ) (26) The factored (or alternating-direction

1'1 * (ADI)) scheme reduces the large matrix
where A Is the matrix Aik(U) - UWi(U), inversion problem to small bandwidth matrix

94 - k inversion problems for which much more
= a.- j(U), and U~t) * U(nAt) •*n efficient solution algorithms exist. To

jk auk j produce block tridiagonal matrices, three-
wthere at is the discrete tim. increment, point spatial difference approximations
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are used. This scheme is non-diesipative Steger (1978) also described the applica-and consequently large amplitude oscilla- tion of the method to the 'thin layer'

tions appear in the solution in the Navier Stokes equations in which the
,neighbourhood of any shock waves. The use viscous terms are retained only in deriva-
of centred differences (to give second tives normal to the boundary. This
order spatial accuracy) necessitates some approach with an iterative AD! scheme has
arfificial viscosity to damp spurious been used in a forced response problem by
numerical oscillations, and to reduce these Rai (1985) to calculate two-dimensional
oscillations a fourth order dissipative flow through a rotor-stator stage. Patched
term may be added to each of the equations and overlaid multiple grids are used in
(29) or (31). However Warming & Beam which the patched boundaries are allowed
report that this did not eliminate the to move relative to each other. This is
shock oscillations and considerably again computationally expensive,
greater reduction can be achieved by restricting the number of blade passages
switching from centred spatial differences that can be treated.
to upwind (one-sided) differences whenever

the flow is locally supersonic (leading to Finite Volume Methods
the solution of block bi-diagonal
matrices). Beam & Warming (1976) describe For solution by finite volume schemes,
a hybrid scheme that enables this to be equation (20) is written in integral form
done whilst maintaining a proper conser- (see Verdon, Chapter If, equations
vation form of the difference scheme. (1),(2),(3)) over a stationary finite area
With this scheme it is shown that fourth E:
order dissipative terms were not required a
in the shock neighbourhood, although they atf U dA + • (Fnx + On )ds - 0(32)
were required elsewhere. E OE

Solutions of the full unsteady Euler where (n , n y) are the components of the
equations for subsonic flow have been normal to the boundary curve OZ. For a
obtained using this implicit method by given cell denoted by ij, (32) may be
Holtmann, Servaty & Gallus (1984). Their approximated by an ordinary differential
paper also provides comparisons between a apxatenrr
Maccormack scheme, an ADI scheme and a
characteristics method for computing the Aud (U,) + RijQ) - 0. (33)
transient flow in a duct connected to a ij"dt
steady reservoir, following the rupture of
a diaphragm at one end. The resulting Here R (U) represents the net flux of
one-dimensional wave motion was computed conserved quantiiiee out of the cell, which
until the steady state Was reaced. This is balanced by the rate of change of U
is a problem that may be solved successful- within the cell. In predicting steady
ly using the method of characteristics flows, equation (33) for unsteady flow is
throughout the computational domain, and solved with steady boundary condition
comparisons were made using MacCormack's until the net flux in each cell reduces to
method and Beam & Warming'3 ADI method for
the interior. It was found that these
methods followed the characteristics Time-marching solutions of this equation
solution fairly closely, although in- for steady flows can be very efficient,
clusion of the dissipative terms in Beam £ particularly when it is recognised that
Warming's algorithm produced a smoother since only the converged steady solution
transient flow. is required it is not necessary for the

The ADI scheme was therefore combined with calculation to proceed in a 'time-accurate'
Th manner. In explicit schemes, where the
appropriate characteristics solutions at time step is restricted by the CFL con-
the boundaries to calculate bending flutter dition, it is usual to allow the time step
of a flat plate cascade and a compressor to vary over the computational region
cascade. This work is a development of according to the local CFL number. This,
that of Steger (1978) who obtained and other features such as multiple grids
solutions of the Euler equations for an or the use throughout the calculation of
oscillating isolated aerofoil using a an energy relation restricted to steady
similar implicit factored algorithm with a flow, means that the transient behaviour
time-dependent grid. Whilst it is likely of the flow has no physical meaning and
that this is the most ambitiý;.s of the the time-marching takes place in 'pseudo-
published difference methods described, time'. Application of the method to a
the authors indicate that the computation general unsteady flow requires the removal
is very expensive, and it may be that an of these devices, which considerably slows
explicit method would be quicker. In their the computations, although of course the
review of transonic flow past oscillating steady flow may first be calculated in a
isolated aerofolls, TiJdeman A Seebas 'pseudo-time' manner.
(1980) suggest that for reduced frequencies
(based on semi-chord) below 0.2, implicit The flux term R (y) in equation (33) may
methods converge faster than explicit
methods, but otherwise the numerical effort be approximated in different ways depending
is about four times less for an explicit on the storage scheme within the cell.
method. This value of reduced frequency Is The choice determines the order of accuracy
close to the lower limit of interest in of the scheme. The differential equation
turbonachine problems. (33) may be solved using standard tech-

niques such as predictor-corrector or



Mi11ilt -Stage Runge Kutta. In the methods computation the steady flow was first
developed by Denton (1975, 1983) a more ad established and then the unsteady boundary
hoc scheme is used in which the fluxes conditions were introduced. Convergence
R (U) in time at are calculated and these of the program occurred when the flow

then determine the changes in conserved properties became truly periodic. This did
quantities U within the cell. These not happen rapidly: for the example given
changea are "distributed* by updating the by Hodson it appeared to take at least
values stored at the cell corners in such twenty periods of the wake passing freq-
a way as to ensure stability. This uency. More recently, a forced response
first-order scheme is modified by second- calculation for three-dimensional flow
order correction terms as the solution is through a turbine stage has been reported
approached. In Denton's method for two- by Koya & Kotake (1985). The blade to
dimensional flow the unsteady energy blade periodicity is again inposed so that
equation is not solved but is replaced by only a single blade passage need bethe astismption of constant stagnation considered but in this case both bladenthealpy (or constant roshalpy ginuasion rows are included in the computation zoneenthalpy (or constant rothhalpy in quasi
three-dimensional flow). For the momentum although once more the flow is assumed

variables, the downstream nodes are updated invisci.,
with the cell changes but an element of
upwinding is introduced depending on the Independently of the above, solutions of
local Mach number by distributing the the Euler equations by finite volume
density changes between upstream and down- techniques have been highly developed in
stream nodes according to a weighting based aircraft applications. Some of the most
on the local static temperature. The efficient methods are based on the multi-,
pressure on a given face of the cell is stage Rungs Kutta schemes of Jameson,then also calculated as a weighted average Schmidt & Turkel (1981). In this method
from these densities. Central differences centred spatial differences are used and
are used to obtain the values at the cell the numerical smoothing required to
faces, resulting in a method that is second suppress oscillations in the solution isorder accurate in space. In common with incorporated explicitly into the model by
other methods, further numerical damping modifying equation (33) with the addition
ois required in order to capture shock of a dissipative term. This is constructed

waves. In Denton's method this is in- so as to be fourth order in smooth regions
Scorporated as an extra pressure term of the flow but in the neighbourhood ofproportional to the square of the density shock waves a second order term is used

gradient in the streanwise direction. The related to the local pressure difference.
"resulting method has been successful in This smoothing enables shock waves to be

predicting steady flows in two-dimensional captured fairly cleanly. The revised

cascades and is widely used. A boundary equation (33) is integrated by multi-stage
" layer calculation has been added to the methods which are simplified versions oflerby Calvert & Herbert (1980). standard Runge Kutta schemes designed for
method bstability rather than order of accuracy.
The method has been extended to three-dim- Aqain, there is no concern for 'time-ensional flows by Denton himself ,t nd also accuracy' in a method devised for steadyeto periodic unsteady flows by Mitchell flow, and convergence is accelerated by

(1980) and further developed by Hodson the use of multiple grids. These methods
(1984), in attempts to predict a wake- were developed originally by Jameson (1979)

generated unsteady flow. This is a forced for potential flow calculations ar.d sub-
response problem in which the blades are sequently applied to solutions of the Euler
"Iassumed to be stationary and an upstream equations by Ni (1981) and Jameson (1983).absundar't condition corresponding to a The use of mult~grid methods with Laxtime-periodic mass flux Is imposed. The Wendroff as well as multi-stage Runge Kuttaflow at inlet is also spatially periodic, time-stepping has been investigated inflwa•ne sas ptal eidc some detail for single aerofoils by Hall
not necessarily over the rotor blade
spacing. In extending Denton's method to (1985).
unsteady flow, it is necessary to remove
the restrictions which prevent the method these me devlo ed b a s
being 'tLime-accurate'. The time step must 'cell-centred' storage scheme is used (as
therefore be the same at all points and opposed to the 'cell vertex' schemes used
also an unsteady energy equation must be by Denton (1983) and Ni (1981)), and

quantities required at a face are evaluated
re-intfoduced• as the averages of the values in the cells

Apparently, attempts to provide a stable on either side of the face. This again

differencing scheme for the full set of reduces to a central difference scheme and

equations were not successful, and Hodson is second order accurate provided that the

instead replaced the energy equation by grid is smooth enough. Cell vertex schemes

the relation that the convective derivative are not as restricted to smooth grids and

of entropy is zero (Verdon, Chapter I1, away from shock waves will require less

equation (14)). Use of this equation does artificial dissipation. They may in par-
not of course imply that the flow is ticular be expected to be more efficient

homentropic, and if a non-uniform source for three-dimensional grids.
of entropy is present upstream, or is In
allowed to arise due to dissipation in the external aerodynamics, where much of
numerical scheme as would be the case for the work is aimed in the long term at

a non-uniform strong shock wave, then the predicting three-dimensional flow about

downstream distribution of entropy may complete aircraft under cruise condition@

still be treated correctly. In Hodson's where viscous effects may be negligible,



methods of solution of the Euler equations the appropriate conditions are met along
for inviscid steady flow are well advanced the boundary itself. Together with the
and more recently applications of the appropriate Euler equation for momentum,
method to steady viscous flow have been n.V - 0 implies
made (Swanson & Turkel, 1985). In turbo-
machine applications, Jameson's methods lJnl - Kp(u

2 
+ V2 ) (34)

have been applied to steady cascade aero-

sby Thompkins and co-workers at where K is the curvature of the boundary.MIT, in developments in which the Reynolds
n been The condition for no flow through a moving

u model, surface is obtained by setting the normalA! In this work convergence is accelerated by component of the fluid velocity equal to
the use of implicit smoothing (Jameson & the blade velocity at that point:
Baker, 1983) rather than multiple grids,
but in common with multigrids the technique (35)
is applied to the residuals (changes) in a't(L) - n'at
dependent variables and not to the depend-
ent variables themselves, thus reducing in Here j is the displacement of the surface;
effect as the steady state is approached. V is given on the wall and is thus
Such methods are currently being extended evaluated at I.
to full unsteady solutions at many centres,
although it will of course be some time For a fixed mesh, Taylor's theorem may be
before they are readily available as design applied to give values for V in terms of
tools, its values at the mean displacement, L - 0,

to give V(j) - V + (J.V) +. ..... (where
we adopt the notation that everything is

IMPLEMENTATION OF BOUNDARY CONDITIONS evaluated at I - 0 unless otherwise
stated). If the displacement L is small,

In a numerical method, boundary conditions then equation (35) can be linearized in
must be applied at the edges of the the usual way by writing E - l'exp(iwt),
computational zone. In steady flow n - n 0+n'exp(iwt), V 0 +V'exp(iwt), to
"problems with identical blades, the comp- give
utational zone extends over a single blade
passage and this is usually also the case n .V' - no.(ia'-(j'.v)Vo) - n'.V (36)
in unsteady flow. Suitable repeat con- - . -0 - o
ditions need to be specified on theseboundaries, and also suitable conditions This is equivalent to Verdon's equation
on the solid blade surface. Whilst in (69), which is written in terms of mo, the
analytic solutions of un• ' dy problems unit vector tangential to the surface:
the solution domain may extend to infinity
upstream and downstream, a computational n . n
domain would normally extend only one or '-0 - -0 -o
two chord lengths upstream and downstream +(V*o.o)(,o.V)V). (37)
of the blade row. Again, suitable boundary
conditions are needed at the edges of the Other variable- required on the bladedomain. surface may be similarly written in termsof a Taylor expansion, so that for the
The detailed implementation of the boundary surface pressure for example we have
conditions depends, of course, 6W- the
numerical method employed in solving the 2
equations. However, the physical prin- P() - p + (L'')po + 0( ) " (38)
ciples to be considered are the same for
all methods, and need to be clearly It is known that difficulties may arise in
understood to allow suitable implement- evaluating (38) when the two terms on the
ation schemes to be developed: an unequiv- right-hand side of the equation are
ocal statement of the problems which can comparable, in particular when Vp is
arise from a negligent treatment of the large. This is most likely to be in
boundary conditions has been given by regions where the aerofoil has largeI Moretti (1969). surface curvature, specifically at the

leading edge. For oscillating cascades of
flat plates (for example Ni & Sisto, 1975),Blade surface boundary conditions the term is zero. The problem is confined
to methods where a linearized solution is

In an Inviscid model of a real flow, the sought, most notably the potential methods
usual condition is that the velocity normal described earlier. In their solution,
to the surface is zero, but slip tangential Verdon & Caspar (1982) show by reference
to the surface is allowed. On a stationary to a model incompressible problem that the
wall, this boundary condition is simply expansion in terms of the blade amplitude
n.V - 0, where n is the unit vector normal is regular provided that the displacement
to the wall and V is the velocity vector is small compared to the surface radius.
(u,v). In the case of steady potential They perform inner and outer expansions in
flow this equation is written as p.VO - 0. the vicinity of the leading edge for the
In many numerical schemes, this condition mo{el problem and conclude the need for a
is implemented by defining dummy cells local C-type grid to resolve the behaviour
outside the computational zone and assign- around blunt leading edges.
Ing values to the nodes of the cells such
that under the difference sct,eme concerned tn his potential flew solution, Whitehead
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adopts a different approach whereby he ensure that the wake discontinuity occurs
retains his original cascade grid, but on the boundary; this enables the dis-introduces a modified potential #' given continuity to be 'fitted' exactly, as isby 0' - 0 + J.V, where V-Vo and * is the shown for example in the forced responseunsteady perturbation of-O. This is equiv- calculation by Erdos, Alzner & McNallyalent to working in a frame of refesence (1977) of flow through a fan stage. Whenmoving with the blade. After some algebra a time dependent grid is used (for examplehe obtains: Holtmann, Servaty & Gallus, 1984) the grid

is adjusted even in computing steady flow
P'(1) - -P(ino' + (V.v)*, - ini.v ), (39) to ensure this. Pandolfi (1980) uses

techniques analogous to those developed by
de Neef & Moretti (1980) for shock fitting.so that the numerically difficult term has It is also necessary that the Kuttabeen eliminated. (This modification condition is satisfied: in steady flow

changes the finite element formulation for condi tion s t is fi e s l in te rpreted*'). It may be noted that this approach calculations this is usually interpretedcannot readily be applied when the section as ensuring that the flow leaves thedoesnnot readilybe applried whn thedr strailing edge smoothly whilst in unsteadydoes not move as a rigid body (Cedar, flow it is assumed that the flow is1986). tangential to the upper or lower surfaces

The use of this modified potential is depending on the sign of the shed vortic-
ity. In finite volume solutions of theanalytically equivalent to allowing the Eulty. equatinit treat men t of

grid to move, and this is the approach er equations, no explicit treatment ofshadopted in some 8studies, (for example the wake is necessary although a sharpaoptednn, soea t ud&ies, (f984r dexample velocity discontinuity cannot be realisedHoltmann, Sevt al ,(1984) describ- an th reuigwke il besmhted earlier), following the method developed and the resucting wake will be somewhatby hom son Th mes & M stt (1 77) In smeared; discontinuities at a sharpby Thompson, Thames & Mastin (1977). in trailing edge may not be apparent partic-
this differential method, the physical ularly with a cell-centred scheme.
domain is transformed in the usual way
into a rectangular region, and the solution inflow and outflow boundary conditions
is calculated in the transformed planewith a time-varying co-ordinate transform At the inflnw and outflow boundaries it isthat ensures that the rectangular grid desirable to prevent spurious reflections
remains unchanged with time. from the edge of the computational domain,

S'Repeat' boundary conditions since these contaminate the solution inthe interior of the region and considerablyAesdelay or even prevent convergence. It isAs described earlier, in steady flow usual to apply non-reflecting boundary
compupstemationd dostreamofthe bludades conditions by establishing the character-upstream and downstream of the bladesequations, and thnshould be identical at corresponding points imposing conditions on those characterist-
across the computational domain. In forced icpvaial whicho propgte intoateic variables which propagate into theresponse problems ia may be necessary to computational zone. Equivalent consider-
include more than one blade passage (but ations in analytical aeroacoustics (the
still an integral number of them). In radiation condition) lead to choosing thecomputations of flutter, the travelling branch of the solution to disallow incomingwave nature of the motion around the disc waves from infinity (see for exampleiwve fromibe inint (seedin for exampleassembly is described by including an Goldstein, Braun & Adamcyzk (1977)) It is- interblade phase angle a in a factor also usually necessary in implementing the
exp(io) between the variables from blade numerical algorithm used in the interiorto blade. This is applied to the stream- of the computational zone to require valueswise boundaries of the computational of all variables on the boundary so that
region. all cells may be treated in the same way.

This is a quite separate matter from theIn unsteady flow and during time-marching physical problem we are considering here,to a steady solution a wake is present and the relevant variables may be extrapo-4 downstream of each blade and it is nec- lated from values in the interior. Theessary in some implementations to take extrapolation has its own problems, inspecific account of this. An inviscid particular stability of the numerical
wake consists of a vortex sheet across schemes, and this is discussed in some"which the pressure and velocity normal to detail by Yee, Beam & Warming (1981) and"" the sheet are continuous, but the tangent- Gottlieb & Turkel (1978), but is not
ial velocity is discontinuous. In the considered further here..- potential methods discussed earlier, an
unsteady wake jump condition is explicitly To establish the relevant characteristic
included of the form; (from Verdon, variables, it is necessary to write4 equation (75)): equation (20) In quasi-linear form

t P(40) + a- N + S B - 0 (41)i0.k t ax ay
wtire S ,v the distance from the trailing where as before A Is the matrix
edqe and fv-u/q. where q.19 the downstream A(Q) - 8p (U)/SU and B(U) to similarly
steady speed. defined.

/ Ivy the differential schemes where the For computations of steady flow, It isequations are solved on a transformed usual to assume quasi one-dimensional flow
roctnqgulr grid then care to taken to



at the inflow and outflow boundaries so assumption of locally constant coeffic-

that equation (41) may be written ients is only strictly appropriate in a

U+ A U (2) linearized problem, but nevertheless
- A- - 0 (42) appears to be widely used (Yea, Beam &

Warming, 1981). In the linearized problem
where the flow field may be decompoaed as

In order to derive the boundary condition, U - U + U1 etc the characteristic
we obtain the left-hand eigensystem of A. -0 -o
The results are familiar if we change the variables for the unsteady problem are
dependent variable from the conservation given by equation (48):
variables and define U simply in terms of 2

density, velocity and pressure i.e. w f (aoP-pi, vi, ul ± pl/poao). (49)

= . (43) Equations (46) also reduce to the form of

v (47) when the flow is isentropic. In that

U - PP case the characteristic variables corres-
pending to X - u * a are the well-knownSThe eigenvalues X remain Riemann invariants.

{u, u u ±a} .(44) In general however the characteristic form

cannot be written so simply and the
Assuming that 0 ( u ( a, conditions at boundary conditions take the form given by

inflow must be supplied for the character- Hedar o ns tehfmin

istic variables corresponding to Hedetrom, (1979):

Sc (u, u, u + a); and at outflow for T aU
a. At inflow, these eigenvalues •t 0 (50)

relate to entropy and vorticity convecting
at the stream speed u, and an incoming This leads to boundary conditions at
acoustic wave propagating at sonic speed a inflow:
relative to the flow. Similarly the con-dition at outflow relates to an incoming a2 a• P . 0 (entropy) (51)

Sat at

acoustic wave. av 0 (vortlcity) (52)

The characteristic form (see for example -t 0

Richtmyer, 1978, §17.8) of equation (42) an+ at 0
is given by p i-t at (acoustics) (53)

T
.• • ~(a-t + ax U"0 (5 and at outflow:

""u ea.0 (acoustics) (54)

where a is the left hand eigenvector of A a •
corresponding to X, and T denotes the
transpose. With U given by equation (43) In strictly one-dimensional flow with

this leads to dependent variables (p,u,p) then equation

a a 8 8 (52) is omitted from the boundary con-
a2( + u -)p + u )p - 0 ditions.

a + u8)v - 0 If we again assume locally constant coef-
(Ft ax ficients then equations (51)-(54) reduce

and to -w . 0, where w is given by equation

o(48). In a linearized problem with
,at + (uta)a)u 1 (a- + (uta)a)p -0 go + U, 20!o + U'exp(iwt), the unsteady

S(46) boundary conditions reduce to

corresponding to the eigenvalues (44). It a 2p' - p' - 0 (55)
may be noted that only in special circum- o
stances may equations (46) be wr4tten
simply as v 0

S+ )w - 0 (47) p a u I p' " 0.
at ax 0. 00

where w is a straightforward characteristic

variable corresponding to X. If the Unfortunately direct implementation of the

coefficients in equations (46) are assumed boundary conditions is not always possible

locally constant then the equations may be in practice because the relevant character-

written in the form (47) with characterist- istic variable or function is not known at

ic variables the boundary. In particular, at the
2 outflow boundary often only the far field

w 4 1(& p - p), v, (u ' p/poal)). (48) static pressure is known. Whilst the
problem is still well-posed with this

boundary condition, it does mean that the
In these circumstances the required char- characteristic variable cannot be specif-
acteristic variable given by (48) is a led but must be partially constructed using
specified constant (the boundary con- values from the interior. In their
dition) whilst the remaining characterist- work on outflow boundary conditions for
Ic variables may be extrapolated from the steady flow solutions, Rudy c BtoikWierd
interior of the computational zone. The s
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(19c1) modify equation (54) to form:
.• ap pa Suap + -t.0 (60)

at - a a- + 4(p - P.) - 0 (S8)
Su at

where a is a chosen constant. Use of
equation (58) ensures that at a steady a + 1 a- t - 0 (62)
converged state when the time derivatives at at pa at
go to zero, p p." There are optimal These boundary conditions have been In-

values of a to improve the speed of vestigated by Berry (1984) for a flow
convergence depending on the Mach number field which may be linearized as before,
and problem geometry. This method Is with U - U + U'exp(iwt), where it is
employed by Jameson, Schmidt & Turkel -- -t -U i(1981) with locally constant coefficients assumed that U is uniform at the boundary.

pea and a typically set equal to _V8. Under this assumption, Berry adopts the
0 0 interpretation that I a a/aX and 71 m a/ay.

A comparison of these boundary conditionsapplied in a steady flow calculation in a Unfortunately, C - 112 +712 cannot be
cascade has been given by Berry (1984), given exactly and must be approximated inand the convergence histories are given in some way. Berry suggest two approximationsFigure 11. The calculation method is an taking successive terms in the TaylorFimpurei facto1 escheme based on Steger, series which result in the unsteady bound-

Jh Pulliam &Chima (1980). ary conditions:
2aP' - p' - 0, (63)%0 0

a u' + 2 v' 0 (64)
ay ax

and either

IMPOSING PRESSURE a .a ap (5
icy U'±

10'Po 0e u-- • -o0 (65)

which is a first approximation, taking
c -PLO a/ax; or second approximation:

PUYSRKEO a82 8s+ 2 82 18a2w \ \ RUDY & STRIKWERDA Peas (TX'2U' -xayV') 2 + 1 v' )*j ' ÷ - 0
(66)

These are the two-dimensional equivalents
of equations (55)-(57). The conditions
were not implemented by Berry in his

IMPOSING CHARACTERISTIC implicit method but were suggested as being
more suitable for an explicit method. It
is possible that particularly with the

10, second approximation problems may arise in
getting good estimates of the spatial

500 1 00 derivatives.# -. TIME STEP
TIESPBoundary conditions analytically equiv-

alent to those given In equations (Sl)-(54)
Figure 11 Effect of outflow boundary and (63)-(66) may be obtained for the
conditions on convergence history (Berry, conservation variables (p,pu,pv,pe),
194)although the expressions are more complica-

ted: the conditions will of course not be
The conditions derived above are applicable identical once discretized, Analogous

___ to flows that may be approximated as quasi boundary conditions were used by Whitehead
one-dimensional at the boundary. Whilst (1982) in matching his solution to a
this is usually appropriate in computing alculation of the unsteady far field,
steady flow, it is desirable for unsteady based on a small perturbation solution of
flow to relax the assumption that U to a uniform flow.

uniform at the boundary and consider the
full equation (41). In this case we APPLICATION OF THE METHODS TO FLUTTER
require t0e left-hand eigensystem of CALCULATIONS
(A + :B where ( and v are independent
Svariables. The eigenvalues are In this section some examples are presented

of application of the numerical methods
S((u * (,•u * iv, (u * l•v a a4) described earlier, but the results present-X(59) ed are regrettably restricted to potentialflow calculations. Some results from the

- .method of Caspar & Verdon have been given
earlier In this volume by Verdon (Chapter50 oldte 11) and here we Include some additional

Thee boundary coexamples taken from Verdon & Usab (1986).
tk t m The remaining results given here are

obtained from the program *Pinsup* develop-



ed by Whitehead (1982) and Whitehead £

Newton (1985). Comparisons are given with
linear analytic solutions, such as
Goldstein's (1977) normal shock method and pu'
its extension to strong oblique shocks I
(Acton, 1981). However, the real test of IMAGINARY PART

any prediction is comparison with experi-
mental data and some cases are shown here.

0Fransson (1984) has initiated a very useful
study by establishing a database of
"standard configurations" upon which
numerical (and analytical) methods may be
asuessed. Broadly, his initial findings
indicate that although most methods agree
for low Mach number flows, there are large 5
discrepancies in the high subsonic, or AP
supersonic regimes even for a flat plate pula
test case. 4 o FINSUP

& LINEARIZED ANALYSIS
4--

P - -- x--UNSTEADY PROGRAM

DIFFERENCE BETWEEN

-a--+- STEADY PROGRAM RESULTS
3 ----- FOR (=39-50 AND 1.35.50

SUCTION REAL PART
SURFACE 2-

0 0.2 0.4 0.6 0.8 1.0
0 202 04DL.E. T.E.~AXIAL CHORD FRACTION

. Figure 13 Comparison of the pressure
• - Ijump across the blade with a linearized

analytic solution (Smith, 1971) for
PRESSURE unstaggered flat plate cascade (interblade
•SURFACE -2-I- phase angle a - 30*, reduced frequency

wc/U - 0.5, M - 0.8)

Figure 12 Unsteady pressure coefficient 20--
in the low frequency limit (Joukowski Program Fnsup.
profile, stagger angle I - 37.51, space- h--Ahs.I
chord ratio s/c - 0.99, inlet flow angle Atassi.

# - 53.50; torsional motion of amplitude a Caspar& &Verdon.

about mid-chord). __ ____
10-

The first two figures show the behaviour
of Whitehead's program Finsup in two
limiting cases. First, in the low freq-
uency limit for torsional blade motion (as SUCTIONSURFACE
the frequency tends to zero with zero
interblade phase angle) in incompressible
flow, figure 12 shows that the unsteady -
solution for a cambered blade agrees well .- PRESSURESURFACE
with the difference between two steady
solutions obtained for slightly different
stagger angles. It may be noted that the
unsteady pressure changes rapidly near the
blade leading edge, and this is why special 0.0 0.2 0.4 0.6 0.8 1.0

treatment Is required in that region. AXIALCHORDFRACTION

aecondly, in the limit of uniform subsonic
flow through a flat plate cascade, the Figure 14 Imaginary part of the unsteady
pressures predicted by the finite element surface pressure coefficient. Flat plate
method are compared in Figure 13 with those cascadel bending vibration of amplitude h
from a linearized theory (Smith, 1971), normal to chordi (a/c - 1. ( - 45*,
and this again shows good agreement. " 45", ic/U - 1.0, 0 - 180").

Figures 14 and 15 (taken from Whitehead, (Atassi & Akai, 1978): both examples are
1982) compare Finsup with Caspar and at low Mach number, the first corresponds
Verdon's finite difference calculation and to a flat plate cascade and the second to
Ataseite incompressible flow solutions a cascade of thick aerofoils. All three
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methods agree well for the flat plate lower downstream Mach number; or to the
cascade but for the thick cascade aerofoil wrong pre-shock conditions - or both. The
Verdon's prediction differs somewhat, overall conclusion is that although the

(This difference is greater in the real trends are similar, the precise details
part of the pressure where the method differ considerably.
predicts high loading toward the trailing
edge, which may be attributed to numerical

singularities in the steady gradient terms 4. 875
used in the computation of unsteady pres-
sure.)

3Re(•

Im (h ) Program Finsup. 2 SUCTION SURFACE
Im -4 •AtassI. 00 i

-,--Caspar & Verdon.
..'0

o- LEoc TE
SUCTION SURFACE -. 4 . T

_ _. . ..._ -_ _ 0 /.
Or-1 0

0 0/
.U0 /0

PRESSURE.SURFAE 0 0 PRESSURESURFACE
-2 0 /J*

0-10- 0 do
O 0 / GOLDSTEIN-3- 0 .0 ---

-e2- -S 0 FINSUP
-20 

-4

0.0 0.2 0.4 0.6 0.8 1.0

AXIAL CHORD FRACTION

4

Figure 15 Imaginary part of unsteady =885
surface pressure coefficient. Bi-convex
profile, 10% thick, zero camber; bending 3
vibration normal to chord, (s/c - 1.0,

-45', - 47.1., -c./U - 1.0, a - 10).
2

In Figure 16 the unsteady surface pressure SUCTIONSURFACE
computed by Whitehead's method is compared
to Goldstein's normal shock theory for a 1
flat plate cascade in torsional motion, /0
with inlet Mach number M - 1.34. In Finsup LE :,60. TF
the parameter A is used to control the -.4 -.2 a ..
isentropic shock position in the steady 07;
flow. It is a measure of the change in -1 0/
potential between inlet and outlet and so 0 0

is related to the lift generated by the 0 /J
blading. Two finite element solutions are -2 0 0
shown: in the first (A - 0.875) the shock 0 00 O
is on or just forward of the pressure 00
surface leading edge; in the second -3 /
(g - 0.885) the shock is just within the
passage. There is a noticeable difference "PRESSURE
in the pressure surface unsteady pressures -4 00. SURFACE
near the leading edge and this highlights
the importance of establishing the precise 0 (-4.67)
steady flow conditions, and geometry. In
an inviscid calculation of a uniform flow Figure 16 Unsteady surfaces pressure

in a parallel passage with a normal shock coefficients for torsional motion about

wave, the precise position of the shock is mid-chord (Verdon" and McCune (1975)

undetermined by the inlet and exit con- cascade, M - 1.34)
ditions. In Goldstein's analysis there-
fore a strong shock is assumed to be at Comparisons with experimental data are now

the leading edge of each flat plate and briefly considered. Figure 17 shows how
lie normally across the passage. On the well Whitehead's method performs on Carta's
suction surface immediately ahead of the low Mach number (N - 0.18) DCA blade, for

shock the numerical method differs from which good experimental data are available.

the analytic solution: this-As probably Caspar & Verdon's predictions for the same
due to smearing of the shock by artificial cascade (at a different interblade phase

viscosity. Discrepancies downstream of angle) are shown In Figure 18 (taken from

the shock may be due to differences in the Verdon & Usab, 1986). These are also in

shock strength cases, since the isentropic good agreement with the experimental data.

jump in Whitehead's method produces a much Figure 19 shows an application to the DOA



A turbine cascade (Jay, Rothrock, Riffel &
Sinnet, 1979) which has thick blades with - FINSUP -40
110° of turning. The comparison has been W ! Experiment -
made over a range of exit Mach number and a -30

interblade phase angle, and this case is _.15 3L
typical (rather than showing best agree- 8ment), although agreement generally ci worsens with increasing exit Mach number. X.10 .20

Figure 20 shows a second application to a (n
turbine test case which illustrates good
agreement with the EPFL test data (Bolcs 0 .05 0
Franason, 1986). 1

u 0 0

i 0 0.5 1.0,,• FINSUP -

O"pAXIAL CHORD FRACTION
•.. I0Expor~monT

LL 05 m ,',Cp' 6

0

SU
IIl

W wZ _ • . 100-

S10 0i 02 03 04 0506 07 08 09 ¶0 I:
a.

"• ~AXIAL CHORD FRACTION 0

*• Figure 17 Unsteady pressure distribution 0 0.5 to0
i fre 'Standard Configuration 1' (Carta DCA

blade, blade incidence i - 6', AXIAL CHORD FRACTION
}!! wc/2U - 0.122, o - -45').

• *40Figure 19 Unsteady suction surface pres-
0• sures for DDA turbine (o - -45", M - 0.78)

' -- CASPAR & VEROON, It 27 8"FISU

-- I I

,o ~~~~~20.0 .,--I ..... .....

10 0

W .0

0 0

-- -9 . ..... 20..0 . ... . ...... . +

4 ,n.. . . I
'1 -1 0

.• +!80

0O 01 02 0 4 0 6 7 0 9 t

oo AXIAL CHORD FRACTION

Figure 1 Unsteady pressure di r n Figure 20 Unsteady uface preuecoefficient for *Standard Configuration 1' (Carts Dor AXIAL CON

(H * 0.17. uc/2a - 0.122, a.--135',

4 Fiur 19 Used")cinsrfc rs
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Caspar & Verdon's prediction for "Standard
Configuration 5" is shown in Figure 21 - SUCTION SURFACE + SUCTION SURFACE

where it can be seen that there is 20 -- PRESSURE SURFACE >,PRESSURE SURFACE

significant difference between the ampli- CASPAR&VERDON EXPERIMENT It37"

tude of the predicted pressure difference I ANALYSIS II 33 22

coefficient and the experimental values. to
In the experiment only one blade in the

cascade was vibrated but in the theoretical
modelling only a single value of inter-
blade phase angle was used (a - 180"). ( 0 X +

30~~ -IX

30

-CASPER & VERDON It - 28.8-

25 E EXPERIMENT 1 -. 26.7 -20

20 .

01

Xo. -X 1ý.. ... ... .. ..
0 0.2 0A4 0.6 0.8 1.0

AXIAL CHORD FRACTION

5 V 0 0 Figure 22 Unsteady pressure coefficient

for NASA Lewis Cascade (M - 0.65,

0 w - 200 Hz, a - 90").

360 
CASPAR & VERDON EXPERIMENT

10 -SUCTION SURFACE I SUCTION SURFACE
0--.PRESSURE SURFACE X< PRESSURE SURFACE

t.

-1

-2o

S. .. . I I

060 04 06 08 10

AXIAL CHORD FRACTION -30

Figure 21 Unsteady pressure difference
for aStandard Configuration 50. (M - 0.5, -40
wc/2U - 1.02, o - 180e, a - 0.3")

Verdon & Usab also report predictions with 30

measured data for a cascade of symmetric
bi-convex aerofoils. When the blades are

unloaded in steady flow, inlet Mach number 20

M - 0.65, the agreement is moderately good 2
as shown In Figure 22. In the second

example shown in Figure 23, in which the

steady flow is at incidence with a leading 10
edge shock, the prediction differs con-

siderably from the measured data on the
suction surface of the blade.

0

,I -,c, . .. . .. .....~~ 0 2| . .. 0 4t ... .. 0 6l . . ... 0 8 . .... 0o

AXIAL CHORD FRACTION

Figure 23 Unsteady surface presmuril
vv~ coefficient for the NASA Lewis Cascade

(H-0.68, fl 30, W 200 "1u o 900)



In Figure 24 we return to Finsup and the obtaining the correct mean flow. The

Carta DCA blade to assess the importance steady flow is incorrect in at least three

of geometry: the flat plate, zero in- important ways: (i) incorrect shock jump
cidence, case shows a much greater sens- conditions, (ii) no boundary layer growth
itivity to interblade phase angle than downstream (especially on the suction

does the full geometry solution. This surface) and (iii) artificial viscosity
could be important in a stability calculat- giving shock smearing.
ion application to a more marginally
unstable blade, where a flat plate calcu- The first of these could be tackled by

lation might predict instability at providing an entropy increase such that
o - 45", whereas the full geometry might the potential flow gave the correct Mach
remain stable. Figure 25 shows that this number downstream of the shock, (or by
behaviour is not a general rule, since the changing streamtube height); neither
situation is reversed for the DDA turbine Caspar's nor Whitehead's method has this
blade. facility at present. An Euler method would

clearly be preferable. To cure the second
shortcoming requires either a boundary
layer treatment to cope with separated

FINSUP flows or streamtube contraction to provide
Full geomty 223-- a passage averaged approximation. The

0 / -Fla-plale "... latter technique has been successfully
0• Er o0 o\ ,0s used in Finsup to vary the pressure ratio

Se/ o across the cascade. The third problem

remains in Whitehead's method but has been
eliminated by Verdon who uses shock fitting

0_ W,•__ in the unsteady calculation to obtain the
U :orrect shock jump conditions.

M- BLADE
HEIGHT(% 0,o

IS 18 35 0 i
INTERBLADE PHASE ANGLE (degrees)

90

Figure 24 The effect of geometry and
incidence on aerodynamic dampTng for / Measuredtotalwork
"*Standard Configuration 10 (Carta DCA /- Fnsup

blade, wc/2U - 0.122) Normalsck w)

Sunstable
* 70

35

-60 -40 -20 20 40 60 80 100
S0 ...... WORK (Ibf.IMn span)

S2 Figure 26 Total unsteady work

The above discussion is entirely concerned

os...... with unsteady pressure coefficients# but
Feewad wave of course, when the unsteady aerodynamics

o ........ methods are applied to, a complex disc mode
d u s/ (for example for a ,nubberell (clappered)

¶0, . -O s 6 s ,• rotor) it is the overall work or stability

INTERBLADE PHASE ANGLE (degrees) which matters. The sensitivity of the
predicted overall work to changes in its
components requires careful study: it is

Figure 25 Variation of aerodynamic not enough that the agreement of pressure

damping with interblade phase angle (DDA prediction with experiment is good. What

turbine, wc/2U - 0.273) is needed is an objective assessment of
the quality of the prediction in the light

Having presented comparisons with experi- of the application for which It Is to be

sent for low and high subsonic Mach numbers used. Figure 26 shows the variation of

there remains the more difficult case of total section work against radius for a

"supersonic inlet flow. Fleeter and Jay model fan (Brooker and Halliwell, (1914))M

have shown in chapter VII how Whitehead's although Finsup does not agree entirely

"method performs for such a flow and they with the measured data, it is closer than

/ have comented upon why the predictions of the normal shock predictions. The reason

each numerical method differ from the for this is more clearly seen in Figure

measured unsteady pressures. One diff- 27. By running the finite element method

iculty in solving an unsteady flow with a for a range of streamtube height ratlos,

shock by a potential method lies in pressure ratio across the cascade is
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varied. Results from Finsup are compared ment both for unsteady and 6-

with predictions from the normal shock al flow. The methods are computationally
model of Goldstein (1977) and its modifica- very expensive at present and it will be
tion to oblique shocks (Acton, 1981) and a some time before they are regularly used
linearization about supersonic uniform in design. But as we have seen in the
flow with unity pressure ratio (referred previous section continuing progress isto as Lineup in the figure), in addition vital to achieve a flexible numerical fieldto an experiment at a flutter condition, method capable of examining all the import-The source of increasing instability with ant flow parameters.
reducing pressure ratio lies in the con-
tribution to the work Integral from the
unsteady moment due to torsional motion. Acknowledgement
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aerodynamics is given by Tijdeman & Seebass
(1980). Other reviews Of interest are
nallhaus (1978) also concerning trAnsonic

flows about aerofoil., and MacCormar Z
Lomax (1979) who review computational
methods in compressible viscous flows.

much of the work we have described concerns
t-e numerical methods devised to calculate
aro unsteady flow which has been assumed a
steall linear perturbation of a non-linear
steady potenatial flow. These are the only
methods that are sufficiently well-de-
veloped to be used in design calculations
even though they are limited by the
assumption of potential flow and include a
linearization which is only valid if the
shock movement is not too large. It is
clear that solutions of the Euler equations
are to be preferred because they provide a
less simplified modelling of the flow.
However, although methods to calculate the
Euler equations are now well advanced it
is only in computing steady flow that they
are regarded as sufficiently robust for
regular use in design. For unsteady flow
most of these methods may be regarded as
research tools, even for two-dimensional
flow. Happily many of the methods for

developed will be readily extended to
include the extra terms necessary for
solution of the Wavier-Stokes equations,
and these methods are under active develop-
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STALL FLUTTER

F. Sisto

Department of Mechanical Engineering
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Hoboken, New Jersey 07030
USA

INTRODUCTION stalling is triggered by oscillatory
changes of effective upwash attributable

As with other topics of aero- to airfoil vibration*, then cascade
elasticity in axial turbomachines, the flutter is a by-product of the
subject of stall (alternatively stalling, self-excited aeroelastic instability,
stalled) flutter has its roots in not its cause. On the other hand, if
antecedent experience related to air- the airfoils resonate structurally with
craft wings, control surfaces and the frequency of encountering stall
propellers (Dowell et. al., 1978). Thus zones, this is properly termed an
the key characteristic, that this aerodynamically forced vibration. There
particular self-excited aerelastic in- is obviously a grey area between these
stability occurs with a periodic separa- types of blade vibration, at the one
tion of the flow from the airfoil extreme flutter occurring with temporal-
surface, is a carryover from a confirmed ly uniform onset flow, and at the other
type of behavior with isolated airfoils extreme resonance occurring upon the
(Studer, 1936) (Victory, 1943). coincidence of frequencies.

Two caveats relative to stall flutter Propagating stall, or rotating
in turbomachines must be stated before stall, is a subject of considerable
continuing with the development of this importance aside from the possibility of
chapter. In the first place the flutter producing a damaging blade resonance.
speed of a wing in subsonic flow varies If the frequency of encounter is low
and then typically drops as a continuous compared to the blade natural frequency
function of increasing incidence. The the blades may flutter within the stall
changes become most precipitous as the cell whbfe low throughflow velocities
incidence approaches the value for static exist. If the increase in stall flutter
stall as defined by maximum lift amplitude while residing within the cell
coefficient. This behavior seems also to is greater than the decay that takes
be the case in the axial flow compressor place when the blade is outside the
stage operating subsonically, although cell, then quite appreciable amplitude
flutter at low incidence (low loading) and blade stress may build up in a short
has not been a problem in practice period of time. There are indications,
because the required relative velocities in fact, that there is an actual flow
are much higher than those existing in reversal within strong stall patches, so
actual machines. Hence, a more cautious that the stall flutter alluded to above
description of the stall flutter may occur by separation of the flow from
phenomenon might be flutter at high the trailing edge of the profile, which
incidence or at high aerodynamic loading, temporarily has become the "leading

edge".
The second remark relates to the fact

that the axial-flow turbomachine stage is Propagating stall cells usually
characterized by a multiplicity of air- decrease in number as the incidence
foils, rather than a single wing, with increases, so that typically one stall
the unavoidable mutual aerodynamic inter- cell appears in the flow annulus just
ference that this implies. This inter- prior to encountering surge. This
ference may inhibit airfoil -stall and single cell exhibits very large flow
delay steady separation to very high perturbations, although the throughflow
incidence, even to the point where the averaged over the annulus area remains
annulus flow may exhibit wall stall constant with time. At surge the flow
before any separation from the airfoils in the entire annulus is perturbed at
is encountered. The aerodynamic inter- any instant and hence the throughflow
ference will lead also to unsteady varies with time in either an oecilla-
separation of the cascaded airfoils and a tory or transient fashion, reaching
phasing between the stalling events at negative values at some instants of
adjacent airfoils, or an apparent time. The periodic loading and unload-
"propagation" of the unsteady flow ing of all the blades in a row during
perturbations along the cascade, i.e., in surge constitutes an aeroelastic event
the peripheral direction. For these of considerable importance. Not only
reasons the stalling behavior of isolated is the gas bending load reversed with
airfoils will be referred to only a frequency of the order of several
minimally in the sequel. Hertz, but hundreds of cycles of stall

flutter fatigue damage may be accumu-
The flow perturbation zones rotate in lated during each of these surge cycles.

the same direction as the rotor, but at a
fraction of the rotor speed; hence stator The transient counterpart, often
vanes also experience the flow perturba- termed "hung" stall, is attributed to
tion at a frequency equal to the absolute the pumping system characteristic of the
pattern rotation rate times the number of
such zones in the annulus. If the air-
foils do not vibrate then this latter Sma amplitude vibrations may always
behavior is properly termed propagating be assumed to be present due to
or rotating stall since it is purely an turbulence, acoustic radiation, bearing
instability of the flow. However, if roughness and so forth.
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compressor or fan installation (Koff and instability is described qualitatively
Greitzer, 1984). In such cases the in Dowell et. al., (1978), including
reduced throughflow velocities may possibly unsteady separation bubbles.
persist indefinitely and, in addition to
the transient change in mean aerodynamic Considering a single airfoil with
loading, appreciable periods of stall thickness oscillating in a wind-tunnel
flutter self-excitation may be encoun- of small height, Tanida and Saito (1977)
tered. The subject of blade response were able to demonstrate both analyti-
to transient stall was broached-formally cally and experimentally that choke
by Sisto (1974) and is currently flutter is a distinct possibility,
receivini a great deal of renewed critically involving shocks which
attention. fluctuate in position and strength. The

analysis is based on one-dimensional
THE ROLE OF MACH NUMBER unsteady flow with oscillation limited

to torsion.
Before proceeding with the quantative

exposition of stalling flutter it should An earlier note by Savkar (1976)
be noted that subsonic relative presented an analysis of the same
velocities conventionally are under problem, limited however, to shock-free
discussion. Thus even if a transonic solution of the linearized equations of
axial-flow compressor, fan or turbine is transonic flow. In both these
under scrutiny, the stall flutter will references the comparison with the
occur usually at part-speed operation cascade is valid only for unstaggered
where the relative velocities are assumed cascades at a - 180 deg. Although other
to be subsonic. That some local analyses of this problem had been made
supersonic flow is necessary for stall previously, also showing the possibility
flutter to develop, or that there is no of torsional instability at low super-
such occurrence as subsonic stall flut- sonic Mach numbers, this note presented
ter, are not supportable statements at the first solution of the unsteady
present. transonic equation for the windtunnel

(i.e., cascade) problem. In this sense
Clearly, for some more modern "transonic" is equivalent to "choked"

designs, stall flutter may not be since M - 1.0 can be treated for
explained until the additional in- sufficiently high oscillation frequen-
stability attendant to shock wave cies.
oscillation is considered. However, for
low-speed and other designs, "flutter at Micklow and Jeffers (1981) con-
high incidence" has been recorded where sidered a semi-Actuator disk representa-
the occurrence of local superscnic Mach tion of phases cascade blade oscilla-
numbers could not be observed or tions and developed a choke flutter
justified (Carter and Kilpatrick, 1957). analysis. Since one-dimensional channel
And there are many linear cascade data, flow connected the upstream and down-
including measurements in water tunnels stream flow fields it was possible to
(Yashima, 1977) (Tanida et. al., 1963) consider flutter modes not only with
and in an air tunnel (Arnoldi et. al., flexure but with pitching components as
1977) showing that negative aerodynamic well. The method of solution limited
damping coincident with flow separation the interblade phase angle to o - * 90*.
in cascaded airfoils occurs with
essentially incompressible (i.e., shock- Tang and Zhou (1983) used a finite
free) flow. Chi and Srinavasan (1984) difference method to solve the perturba-
note that the role of flow separation tion equations of an oscillating stag-
during subsonic stall flutter needs to be gered cascade with finite blade thick-
justified; predictions based on compres- ness and arbitrary interblade phase
sible separated aerodynamics of Chi angle. The assumed flutter mode was
(1980) give encouraging agreement with confined to flexure.
diverse stall flutter experience on a
shrouded fan. In accuracy these choke flutter

analyses might be expected to improve
In the next Section two exceptional with year of publication. Since the

cases of flutter are treated in-,which the possibility of flow separation is not
presence of shock waves is of transcen- admitted in any of these models, they
dent importance. Following that treat- are most applicable to low values of
ment the remainder of this Chapter will steady incidence. As noted in other
be devoted to stall flutter as ordinarily Chapters of this Manual there continues
defined, to be a trend in unsteady cascade aero-

dynamics to treat finite thickness,
CHOKE FLUTTER AND SUPERSONIC STALL transonic flow with moving shock waves
FLUTTER of variable strength. The analytical

treatment of choke flutter in a middle
Choke Flutter stage represents a point in this para-

meter space corresponding to the stage
This type of flutter (alt. choking operating at or near its choke line.

flutter, choked flutter) occurs in Region (In a multistage compressor this
II near the choke line on a typical may not correspond precisely to the
compressor operating map (see Figure I of choke line for the compressor as a
the first chapter). It is associated with whole). The choke flutter mechanism is
incidence and passage area schedules such comparable to stall flutter in the sense
that a choked throat is formed, followed that both phenomena are induced by large
by a passage shock downstream of the flow and loading anomalies, or non-
throat. With relative motion of adjacent linearities, controlled predominantly by
blades the shock becomes nonstationary. the time-dependent relative positive of
The subsequent mechanism of the flutter adjacent blades. Classical flutter# by
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corMlarison, depends to a greater extent possible. However, since the supersonic
o01 the relative vibratory velocity of the bending stall flutter may be expected to

cascaded airfoils. It is probable that occur in unshrouded fan (and possibly in

the two phenomena can merge, or coexist, free-standing axial flow turbine) blades
so that shock waves begin to play a role at fairly low reduced frequencies, the
in stall flutter and conversely flow limitations of quasisteady actuator disc
separation is induced by periodic shock analysis are not entirely debilitating.
movement. with shock-wave boundary-layer
interaction and "shock stall". The existence of this type of stall

flutter is corroborated experimentally

Experimental documentation of choke by Loiseau and Maquennehan (1976) and
flutter is contained in Ellis et. al., seems to require a detached leading-edge

(1978), Lubomski (1979), Jutras and bow shock wave which spans the passage
Stallone (1980) and Lubomski (1981). The to the suction surface of the adjacent
mode is usually flexure but may-.Also be a blade (compressor convention). Its
coupled mode involving some torsion. In prediction is beat performed using the
this sense the early torsional theories method of Adamczyk et. al., (1982).
and supporting wind tunnel experiments
were not capable of demonstrating STALL FLUTTER
flexural choke flutter stemming from the
restrictions of the analyses and design Nonlinear Phenomena
of the experimental apparatuses. For
this reason the method of Tang and Zhou As contrasted with classical flutter
(1983) is recommended since they assume a (i.e., flow attached at all times) the
flutter mode in flexure. mechanism for net energy transfer from

the airstream to an oscillating blade
What is ultimately needed is an need not rely on elastic and/or aero-

extension to cascaded airfoils of the dynamic coupling between two modes, nor
methods used for computing unsteady upon a phase lag between a displacement
transonic flow over isolated airfoils and its aerodynamic reaction. These
using the full Navier-Stokes equations latter effects are necessary in a
and including the possibility of linear system tc account for an air-
capturing shocks of variable strength and stream doing positive work on a
position. Verdon and Caspar (1984) are vibrating blade. The essential feature
in the process of developing such a of stall flutter is tbJ nonlinear
method, but restricted to inviscid flow. aerodynamic reaction tL the motion of

Most likely analyses of this type will the blades. Coupling and phase lag may
prove adequate for choke flutter and alter the results somewhat; the basic
system modes instabilities. Continuing instability mechanism and its principal
to larger negative incidence values a features are explicable in terms of
transonic "stall" flutter may occur once nonlinear normal force and moment
again. For this regime a return to the characteristics. See Chapter 5 in
full Navior-Stokes equations becomes Dowell et. al., (1978).
necessary in order to treat shock-induced
separation. Such methods are currently In that reference it is shown that
under development for single airfoils, analysis of stall flutter of an isolated

see Chyu and Kuwahara (1982). airfoil based on purely theoretical
considerations is not quantitatively

SUPERSONIC BENDING STALL FLUTTER useful. Nonetheless such an analysis is
instructive, an d illuminates the

As indicated by the title, this type mechanism of instability.
of flutter occurs with a combination of

'Ihigh loading (i.e., near the compressor For plunging, displacement of a
or fan surge line) and high relative Mach two-dimensional typical section" it ishigh ~ ~ ~~ asue toaain thee, nertecmrso o nig dstatcenoment force

number associated with high rotational assumed that the static normal force
speed. Adamczyk (1978) and Adamczyk et. coefficient, C, including penetration
al., (1982) have developed an actuator well into the stall regime is given by a
disk quasisteady analysis in two-dimen- polynomial approximation in powers of A
atonal flow for supersonic bending
flutter and have achieved considerable n
success in predicting the relative C - • a(n, a)An
instability in several supersonic fans.
Rotor-loss and deviation-angle cor- where A is the instantaneous departure
relations are obtained for NASA trans- from the steady state value of angle of
sonic compressor correlations (M ( 1.15) attack. A is attributable to the

it ~and together supply the effectof flow plunging velocity acting normal to the

separation or "stalling" behavior in the onset flow. The mean angle of attack is
model. a' Assuming that the single-valued

static characteristic of normal force

These Incremental stagnation pressure versus angle of attack continues to be
and flow angle changes are applied down- operative in the dynamic application,
stream of the actuator disc, the upstream the work per cycle done by this force
flow being irrotational. By its nature acting on the displacement may be

an actuator disc model cannot predict calculated and is given by
unsteady moments, hence only flexural
flutter may be analyzed. Since blade I
bending (in two orthogonal directions) is p V3 b ( A(-y/V)2 + BCuy/v)2 )

2

observed in this regime this limitation
of the analysis is not a detraction + Dt(uY/V) 2 ] 3 * . • • ]
although the model would fail to yield a
prediction for torsional flutter where The constants A,9 and D depend on
this mode of instability was physically a through the a-coefficients of the
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C-characteristic. • is the fluid circular path will result in monotonic
density, V is the velocity, W is the spiralling away either to a larger or
plunging frequency and Y is the smaller radius. The examples of stable
amplitude of the bending displacement, limit cycles are labelled S The
y. The cubic dependence of P on V origin is either stable (hard flutter) or
is a natural consequence of the dimen- unstable (soft flutter). It is a theorem
sions of power, or work per unit time. in nonlinear mechanics that the con-

centric circular limit cycles of a given
In general A , B and D individually system are alternately stable and un-

may be either positive or negative. The stable. See case v.
eight sign combinations are of funda-
mental interest in describing possible For torsional flutter the analysis is
stall flutter behavior. These cases have more complex since the upwash, propor-
been sketched in Figure la, excluding tional to the local effective angle of
the case of A, B and D being all negative incidence, is compounded from the in-
since this does not lead to flutter. stantaneous angular displacement plus the

instantaneous tangential velocity in a
Cases i and ii are examples of "soft" direction normal to the chord. The first

flutter; given an airstream velocity V effect is independent of chordwise loca-

and mean incidence a such -- as to tion; the second is linearly dependent
produce values of A , B and D correspond- upon the distance along the chord from
ing to cases i or ii, the vibratory the elastic axis and the angular velocity
amplitude of flutter grows smoothly from of vibration. Both incidence components
zero. In case ii the amplitude of stall vary harmonically with the flutter fre-
flutter reaches a steady value and does quency and are in quadrature with each
not increase further. In either case i other.
or ii a plot of y versus y/w with time as
a parameter produces a "trajectory" of As a result, in the analogous
the "characteristic point" that is a modeling of torsional stall flutter
spiral departing from the origin at t = (Dowell et. al., 1978) a key difference
0. In case ii the spiral asymptotically emerges when compared with bending
approaches a circle for very large time. flutter; an aerodynamic moment appears
In the language of nonlinear mechanics which is out of phase with the angular
the circular path is a "limit cycle" and velocity of pitch. Torsional stall
hence most instances of stall flutter may flutter is therefore found to be a more
be termed limit cycle vibrations, complex phenomenon, with a greater

sensitivity to the time lag between the

Cases iii and iv describe a type of oscillatory motion and the periodic
behavior termed "hard flutter". In these aerodynamic moment considered as the
cases when flutter appears as a self- response. Furthermore, torsional flut-
sustaining oscillation, the amplitude ter exhibits a strong dependence on the
jumps to a large finite value. In case effective position of the axis of
iv the motion spirals to - circular limit twist.
cycle at a larger stablc amplitude in
the phase plane (i.e., the y , Y/w In qualitative terms it is concluded
plane). If the limit cycle is unstable, that the behavior in torsional flutter
labelled U on Figure la, the slightest is intermediate between quasisteady
perturbation from an initially purely behavior and a type of behavior typical

I) A, B & D all positive
II) A>O, B•O, D<O
II) A< 0, BW0, D>0

p Iv) A<O, 8>O, D<0
S0v) A>O, 8<0, D>O

SPV'b
III V

S %tUW U .0.1 U S% W Y

II

Fig. in Aerodynamic Power as a Punction of Amplitude of Flutter Motion.
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of bending stall flutter, i.e., critical A deficiency in the expository
dependence on the local slope of the theory outlined here is the absence of
moment characteristic, frequency dependence in the aerodynamic

normal force, moment and drag character-The ability to predict the flutter istics, e.g., the C-characteristic inamplitude or flutter stress stems from the bending flutter example. The actualthe nonlinear nature of stall flutter. characteristics may also be double-By contrast, in linearized formulations valued, having two different magnitudes
of the flutter problem only the stabi- at the same angle of incidence depending
lity boundary may be determined. The upon the direction of approach. The
condition for constant flutter amplitude moving shock waves discussed in the roleis that the work per cycle, or power, be of Mach number are one cause of such
null. Finding the roots of the equation dynamic hysteresis.
P = 0 yields the dimensionless flutter
amplitude wY/V as a function the mean The greatest deficiency in this
incidence a since the "constants" A, B immediate discussion of stall flutter is
and D are parametric functions of a • the fact that the cascade environment hasA, B and D depend on the point of the been neglected. Cascaded airfoils stall
C-characteristic chosen for expansion in differently from a single airfoil, notpolynomial of powers of (wY/V)2 . In only because of the channeling influence
Figure lb hard and soft flutter of adjacent blades, but also due to the
amplitudes are displayed as presumed strong variation of aerodynamic inter-
functions of the mean incidence, a . ference with interblade phase angle, a
Hard flutter displays a sudden jump to The experimental quasisteady moment loops
finite amplitude as a achieves a obtained at stall with different a by
critical value and "quenches" at another Sisto and Ni (1972) demonstrate the
lower absolute value of a • The two effect of cascading on stall.
features taken together produce the
characteristic hysteresis loop indicated EMPIRICAL CORRELATIONSby the arrows. The earliest experimental identifi-

Motion in a third degree of freedom cation of turbomachinery stall flutter
is practically important. Oscillatory (Shannon, 1945) was in a World War II
surging of the blade profile in the axial compressor and occurred in the
chordwise direction can be related to a fundamental bending mode of the canti-
nonlinear behavior of the aerodynamic lever rotor blading. Although torsional
drag. Although blades are locally very mode flutter also appeared with sub-
stiff structurally in the chordwise stantially lower stresses, the early
direction, the drag/surging mechanism experience seems to have been pre-
will nonetheless be of importance for dominantly in flexure (Pearson, 1953).
highly twisted blades where the local Later, as typical cantilever aspect ratio
surging displacement will be a con- increased, blade thickness decreased and
sequence of the radial distribution the center of twist moved toward the
of twist and the radial distance from trailing edge, the torsional mode became
the flexural node. The coupling between flutter-prone at high incidence.
vibratory surge displacements and the
drag (rotor-loss mechanism) has been In hither fundamental flexure or
considered in the earlier reference to twist, the earliest attempt at flutter
supersonic bending stall flutter correlation for economy of testing and
(Adamczyk, 1978). Under these circum- for subsequent application to design
stances stall flutter with several consisted in plotting incidence versus
degrees of freedom may occur. The relative velocity at constant levels of
assumption of a system mode that couples flutter stress from experimental data.
bending-bending-torsion in a prescribed By assigning a threshold value of

Sfashion is an example of stall flutter alternating root stress for flutter to be
with multiple modal components. present, one of these stress contours

became the flutter boundary. Instead of

WY2

0

NotN

o a

Fig. lb Hard and Soft Flutter Amplitude Dependence on a Critical Parameter
(Mean Incidence)



velocity the nondimensional reduced An important use of these data is the
velocity, V/(wc/2) , provided a more implicit suggestion they contain for
compact correlation. The tests were corrective design changes. If a
usually conducted with single stage rigs compressor is built and encounters stall
and the aerodynamic data set, V and a, flutter in a particular front stage, it
were usually measured or inferred at a will usually be beneficial if the
representative station at 80% span, or stage's operating line can be lowered
thereabouts, of the free-standing rotor and/or moved to the left by changes
blades. In addition to aerodynamic external to the rotor itself, e.g.,
variables, the critical flutter condition guide vane or throttle schedules. By
is affected by a host of geometric the same token on-rotor modifications
parameters such as stagger, solidity, such as increasing the natural frequency
profile, fixity (or structural restraint) by changing the blade material will move
and their radial variations. It is clear the value of V/(wc/2) toward lower

therefore that a data base from which one stall flutter stress.
would hope to predict the flutter
behavior of a completely new stage design Figure 3, taken from Carter and
is too large to be economically or Kilpatrick (1957). shows the experi-
physically feasible. The result was that mentally obtained stage pressure rise
the actual data bases were much more and stator flutter stress in bending
modest and their use was confined to plotted against the flow coefficient in
qualitative estimates of expected a single stage compressor. The correla-
behavior of stages thert were not too tion of high stall flutter stress with
radically different from previously blade stall (as defined by peak stage
tested configurations. pressure rise) is dramctic. Since

incidence and flow coefficient are
The earliest "design rules" were inversely related, th' critical

statements that the reduced velocity dependence of stall flutter on operating
based on the semichord should -be kept near or above the "stalling incidence"
below 1.25 using the torsional frequency is clearly demonstrated. Some mention
and below 5 or 6 in flexure. In these should be made, particularly in annular
rules there was the implicit assumption cascades, that the stalling incidence
that the flutter frequency was equal to measured or inferred from low response
the natural frequency of the blade instrumentation may mask the fact that
(accounting for centrifugal stiffening the flow velocity vector is fluctuating
if the blade was rotor-mounted). Since rapidly between "unstalled" and "fully
blade mass ratios were high and observed stalled" values; the stage may be in a
flutter frequencies were close to the rotating stall condition.
natural frequencies, this was a
reasonable assumption. Later versions In this early experience the flutter
of the design rules added correlations mode was usually fundamental bending,
with respect to design pressure ratio of the amplitudes were modulated with
the stage, solidity, etc.. However, apparent randomness and non-identical
those were all empirical results, in frequencies of adjacent blades were
most instances proprietary, and, in any observed. At high stress amplitude, or

event, not valid for extrapolation to alternatively when the flutter was pre-

now conditions, dominantly torsional, the frequencies
would lock into a common value and then

In Figure 2 a typical single stage unique interblade phase angles could be

experimental correlation is presented. defined.

VI
-- J"b Increasing

-1',

Blade Incidence

rig. 2 Lxperimental Stall Flutter Stress Contours on a
"Plot of Incidence Versus Reduced VeloCity
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It is most likely that the axial SEPARATED FLOW MODELS
compressor designs whose behavior has
been characterized above are subjected A number of attempts have been made
to a form of buffetting at high to capture tl.e essential features ofincidence. The turbulent, separated unsteady stalled flow starting from free-wakes of these low solidity front stages streamline theory (Helmholtz or Kirchhoff
give rise to a blade normal force which Flow). In these two-dimensional incom-
contains sufficient energy content at pressible models there are usually one or
the blade bending frequency for each more parameters that are supposedly to be
blade to resonate at its own natural supplied by correlation with key experi-
frequency value. At somewhat higher ments. Usually these parameters will
blade bending amplitude, or alternative- relate to the movement (or non-movement)
ly if the torsional mode was selected, a of the separation and reattachment points
"locking in" of shedding and oscillation on the profile, or closure of the regions
frequencies occurs for the entire an- of separation. The implication is that
nular cascade. This nonlinear effect of in applying the theory to a new design
"entrainment of frequency" represents situation the constants are to be
the threshold of true stall flutter. The supplied by the geometric and aero-
torsional behavior is more descriptive of dynamic parameters of that design as they
modern designs and the increased appear in the correlation.
coherence of the vortex shedding of
adjacent blades is also enhanced by the A substantial number of single air-
smaller blade spacing (high solidity) of foil investigations and results are not
these designs. The trend in compressor discussed here because of the strong
airfoil sections toward more rearward, indication that cascading is the pre-
maximum thickness and maximum camber has dominant controlling parameter in turbo-
the effect of displacing the elastic axis machine stall flutter. A brief summary
(or torsion center) toward the trailing of the earliest cascade solution (Sisto,

Sedge. In almost every variety of flutter 1967) is given here in order to demon-
it has been found that this trend is de- strate the type of assumptions found to
stabilizing. A particularly clear ana- be necessary in order to produce a
lytical exposition of the effect of tractable model.
torsion center location for a fully

* separated flow about a single airfoil Considering incompressible flow about
appears in Natesh (1967). - a two-dimensional cascade of flat plate

-... 0.8 airfoils, the minimal empiricism neces-
sary relates to the shape of the separa-
tion streamlines and the (assumed

.6 constant) pressure within the separated
- • \region downstream of each airfoil formed

-L0 by theses streamlines. In turn, the
:0.4 simplest specification is that the

1 'separation streamlines emanate from the
leading and trailing edges of each

- - -0.2 Wprofile and that the pressure within the
V) /separated "wake", including the complete
0suction side of each airfoil, is equal to

30 0 the upstream st-itic pressure. Since the
w wake boundaries are assumed in the model

to extend indefinitely far downstream,
~25

Athis wake configuration is tantamount to
assuming a zero steady incidence and an

120 - infinitesimally thin wake. That the
ý 20- -magnitude of the steady wake pressure
0 may prove to be incorrect is of little

15 direct concern since the unsteady lift
and moment acting on the profiles is
sought. Of greater concern are the

1l0 assumptions of constancy of that
pressure and of zero mean incidence.

*__5 . With the previous set of simplifying

I. i assumptions the cascade appears as
m 0-depicted in Figure 4a. The wakes are

reduced to semi-infinite slits, the
0 0,2 0.4 0.6 0.8 .0 pressure surface of each foil coinciding

now COEFFICIENT AT INLET TO ROTOR (V a/1m) with the lower edge of the local slit,
and the suction surface of each foil

0 Flutter ;trerses and Aerodynamic IPerformance lying within the slit but not touching
0 Recorded in Single-stage Compressor Tests it. With mean mainstream velocity and

pressure UP and perturbations u, v
Pressure rise measured from inlet to rotor and p , the Euler equations reduce to
to, exit from ctator. the Laplace equation for the accelera-
rpeed, r.p.m.: a 7,500. v 15,000. tion potential, or pressure function

* 10,000. + 17,500.
o 12,500. 9 20,000. f(x,y,t) - p(x,y,t)/p

Hear air density at inlet to stator The boundary conditions are mixedy on
i0.0706 lb. per cu.ft. the suction surface of each profile

rig, 3 Dependence of Flutter Stress on 0- , Whereas the upwash satisfies
Stage Pressure Rise Coofficient
(Carter & Kilpatrick, 1957) Vn(x,) - DYn/Bt + U DYn/SX



01 the pressure surface. The subscript
ti refers to the nth airfoil and Yn
is its displacement normal to its chord.

rhe. method chosen for the solution
makes use of the complex function W o

+ i and a conformal transformation of
the domain from z - x + iy to = - F +
i,• such that the entire region exterior
to the slits in the z-plane is mapped
onto the upper half of the c-plane.

w, Figure 4b shows tlhp't the images of the
wake boundaries and the foil chords lie U
on the real axis ir. the C-plane in a
periodic array with period 21 and with n-0__ _ _

the leading edge of the zeroth foil at
the origin.

4 The boundary and side conditions may
now be listed.," . n--7

i) The pressure being zero in the I
wake requires

;-• € = 0forr 1 =O,
44 =Fig. 4a Physical Plane

2nn < .c < (2n + 2)w - rc

where Fc is the absolute chord- 4 (., T1, t) n i(c, n) exp(jwt), etc.
length in the c-plane.

where the barred quantity may 1.c' j-
ii) The upwash boundary condition complex* to account for phase difft'.!jaces

stated in the z-plane is and w is the common frequency of all
blade motions. A further assumption of

v = DYn/Dt + UaYn/3x for y - ns cos$ and constant interblade phase angle, a
Sns sino < x < c + ns sino. between the motion of adjacent blades

then takes the form
iii) Replacing the perturbation pres-

sure by * in the Euler equa- 0(&, n, t) - * (F. + 2nw, n, t + na/w)
tion results in

Yn(t) - Yo(t) exp(jna)
,/ U xSubsequent modification to account for

on the same intervals as the finite thickness of blade and wake
second boundary condition. provided good correlation with low speed

stall flutter experience (private com-
iv) The requirement that the pres- munication from DDA Division of G.M.).

sure perturbations approach zero
at great distances from the cas- This model was extended by Perumal
cade, (1976) to include a fixed point of

separation on the suction surface, not
lir W - 0, necessarily at the leading edge. Yashima

S÷ - and Tanaka (1977) considered a thick.
fully separated region of constant shape

v) and the satisfaction of the Kutta and obtained the unsteady pressures as a
condition perturbation about the steady flow solu-

tion.
W(z) finite for z - c + Ins exp(-is)

Chi (1980) reformulated the problem in
'4 completes the statement of the boundary terms of two simultaneous integral equa-

and side conditions. Harmonic time tions. By eliminating the need for a
dependence is assumed of the form conformal transformation it was thus

PiU. 4b Transformed Plane.

S ju-tities i (I) andJ -(-i) cannot be mixedi that is
. ij does not equal -1
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P possible to treat subsonic compressible (blade surfaces) the boundary layer
. flow. Reasonable predictive agreement equations may be applied there. The

was obtained with torsional stall flutter flow away from the solid surfaces may be
,data from a high speed fan experiment, considered inviscid and then the "inner"
Were this work to be extended to include and "outer" flows are solved simulta-C po.vin in-passage shock waves and time neously with proper patching conditions

i'le:,e:t separation, it would constitute (i.e., proper asymptotic behavior for
the needed analysis for transonic stall the inner flow). Normally the unsteady
flutter alluded to earlier in this boundary layer equation is solvable
" ohapter. provided the time dependence of theouter flow is specifiedl i.e. pressure
Attempts to treat moving separation and velocity at the outer edge of the
points it cascades have so far not met boundary layer.
with success. The single airfoil with
suction surface open separation has been This level of simplification has not
rported by Sisto and Perumal (1974) and proven to be sufficient to yield a
the leading edge separation bubble with tractable system of governing equations
t irme dependent reattachment is reported for cascades with appreciable unsteady
in Tokel and Sisto (1978). Although the flow separation. More recently so-
aerodynamic reactions resulting from called vortex methods are beginning to
these analyses display some validity with be used to model two-dimensional un-
respect to experimental comparisons (see steady cascade flows with the effect of
P Powell et. al., 1978), they were not viscosity confined to the boundaries and
extended to cascades of airfoils stemming to the diffusion of discrete vortices.
,largely from the difficulty of represent- As yet these methods have not been

ing the separation (or reattachment) applied to the flutter situation where
point movement with an arbitrary inter- the boundaries are executing small
•blade phase angle. (This specific ques- harmonic displacements.
tion is addressed in the closing sections
of this chapter.) The criteria for Lewis and Porthouse (1982) describe
periodic boundary layer separation, their vortex method as one of calculat-
gross flow separation with local flow ing the potential flow past the cascaded
reversal and the formation of vortical profiles under the influence of the mean
structures cannot be satisfactorily flow and the previously shed and dis-
"predicted other than by addressing the cretized vorticity distributed through-
full Navier-Stokes equations or other- out the domain. This is followed by cal-
wise recognizing the viscous nature of culation of the drift velocity of each
the flow near the profile surface. free vortex element in the field, and

hence its displacement over a time in-
Thus, the separated flow models crement t . New elements of free

described above are qualitatively vorticity are shed (over the same time
interesting and give promise of being increment) from the separation points.
useful when the parameters describing Viscous diffusion calculations result in
separation are known a priori. llowever, a random redistribution of all shed

, reliable quantitative results cannot be vortices and the entire sequence of com-
> expected without further research to putations is repeated for each subsequent

entablish the separated flow patterns time step. Stemming from the large
with mo;re realistic modelling, computer storage requtrements, the small

number (3) of blade passages studied and
P 1Ci,; JT"RENDS the limited elapsed time, Lewis and

Porthouse were not able to detect flow
1A`)EPRJ APPROACHI TO STALL FLUTTER periodicity along the cascade, or rropa-S' gating stall.

Stall flutter with entirely subsonic
flow is now taken to mean that a radical Spalart (1984), using a similar
lowering of the flutter speed with vortex method, couples it to an integral
increasing incidence brings the critical boundary layer solver to determine the

* speed within the realm of attainable instantaneous separation points, and with
values in the compressor. The strong several other innovations is able to
ir",plication is that time-dependent flow attain a condition of propagation of the
separation on the suction surface is stall zones in an infinite two-dimension-
present. Without regard to the location al linear cascade with periodicity
of the separation region(s) this fact of enforced over each subset of either 3, 4
separation makes it necessary to or 5 blades. The solution displays
recognize the role of fluid viscosity moving separation points with a definite
tinnl consider the full Navier-Stokes interblade phase angle. Thus the
eqi:ations to be governing. In their velocity of propagation is predicted.
r.v.. f general form these equations
reci,'jnlze unsteady time dependence. For In executing these vortex methods
5 s:j EficIe ntl y high Reynolds numbers the steps have to be taken to limit the
rtr,-et of tirbu lent flow, or transition number of discrete vortex "blobs" that
'terete,, if beset by the problem of can be tracked on the finite computation-;. 1,r, nj a turbu lence model, or al domain, although periodic extension to
tirbdent 'closa•ri", in order to be able produce an infinite two-dimensional cas-

',,ivi the navier-Stokes equations. cade does not pose a strong limitation
oe fl:,l It general is compressible. since the induction functions are wellf- i gknown. The discretization scheme is

t•ts. "rl•orne'l dliffi•t•ltien have led important in limiting this total number
Sr tt sirplify the compute- of free vortices, as is the consolidation

"n it,'Ale• in noveral respects. fly of multiple elements into fewer elements
. , th. effet of vlncoalty to the downstream of the cascade. Other details

llogo.,rb'•', of the fluid boundaries and cautions may be found in the



reforences. However, the indications are is less than desired for application to
that the method is viable for predicting design. Other limitations are related
periodically stalled flow about cascades to assumed flow incompressibility and
subject, naturally, to some limitations. two-dimensionality; propagating stall in
A time sequence of instantaneous stream- multi-stage machines is known to exhibit
lines in rotating stall is reproduced strong radial components of velocity.
from Spalart (1984) as Figure 5. The
stall cell definition and propagation are However, the most important limita-
dramatically portrayed. tion from the vantage point of the aero-

elastician is thr complete fixity of the
Propagation rates for an imposed airfoils comprising the boundary. In

wavelength along the cascade can be the vortex methods reported, no pro-
4 computed, as well as the critical in- vision has been made to allow, or

cidence at which the instability appears. prescribe, vibratory displacements.
Time dependent components of the aero- Although the present vortex methods will
dynamic moment and normal force can be have some validity for predicting non-
calculated. By considering multiple resonant (low amplitude) vibration due
wavelengths in successive calculations a to propagating stall, they will fail to
stability criterion could be developed account for the aeroelastic coupling
relating both propagation rate and wave- between blade structure and blade aero-length of the stall zones (and hence fre- dynamics. This coupling is critical for

quency of encounter) to cascade geometry near-resonant forcing and becomes
and incidence, crucial for predicting stall flutter.

One limi-tation is related to ac- In the near term attention should be
curacy. Since the smallest turbulence devoted to refining the vortex method for
scales cannot be modelled and other linear cascades to increase its speed,
approximations must be introduced to efficiency and accuracy. Additional
make the method computationally model features should be considered that
practical, the precision of the results have proven useful in potential,

'IIWIE: 149.04 TI ME: 150.)04
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IFig. 5 Streamline Patterns at Four Successive Instants of Time, Showing Stall

Propagation, Computed by the Vortex Method (Spalart, 1984)
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- attachedl flow. (Anl example is the use analytical method of description leading

of summed aerodynamic modes to represent to completely reliable prediction has
"a continuous distribution of bQ~und evolved between 1945 and 1985. Some
vorticity.) Following this step it is semiempirical methods have achieved
necessary to allow for small harmonic limited success in isolated instances
motion of the airfoils in plunge, surge and the purely experimental methods ofand pitch. flow such a computational prediction (actually verification) arealgorithm could be incorporated into a too expensive and therefore considered
stall flutter prediction system is unsatisfactory. The effective modus
speculative. Several possibilities come operandi has been to use experimental
to mind but these are best left to correlations as design criteria followed
future research. by a development phase in which per-

ceived deficiencies are corrected.
CONCLUDING REMARKS In the future, with the development

This exposition of stall flutter, of the vortex method and its logical
and the closely related phenomena of extensions, the engineering aero-
choke flutter and supersonic bending elastician charged with stall flutter
stall flutter, has been largely avoidance may conceivably be more
qualitative of necessity. No purely analytical and therefore more cost

effective.

Ix.
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I INT LIUCT I ON relative Mach number or the incidence
angle, for example.Under certain conditions, a blade

row operating in a uniform flow field can Advances in technology have required
enter into a self-excited oscillation the designer to predict the flutter free
known as flutter. The blade motion is operating range of new rotor configura-
sustained by the extraction of--energy tions for conditions beyond the experi-
from the uniform flow during each vibra- ence levels inherent in available design
tory cycle, with the flutter frequency systems. As a result, flutter is often
corresponding generally to one of the encountered during initial rotor develop-
lower blade or coupled blade-disk natural ment testing.
frequencies.

To provide the designer with a valid

The outstanding feature of flutter flutter predictive design system, two
is that high stresses exist in the approaches are being pursued. One ap-
blading, leading to short term, high- proach involves the development of
cycle fatigue failure. Because flutter advanced empirical or semi-empirical
is encountered over a relatively wide design systems, accomplished by means of
range of operating conditions, i.e., a a systematically obtained extensive flut-
flutter boundary, it is a problem which ter boundary data bank. The second

must be solved before continuing in the approach, made possible through the
engine development. The solution often recent advances in capabilities for
involves rotor blade modifications which computational fluid dynamics, involves
decrease engine performance. Hence, the replacing the empiricism of current
design of flutter free blading in the design systems with unsteady aerodynamic
development of a gas turbine engine is a mathematical models developed from first
very significant problem. principles. This requires the acquisi-

tion and analysis of unsteady aerodynamic
Compressor blade failure due to data appropriate for directing the

flutter has been recognized as a major development of these models as well as
problem almost from the beginning of the for determining their validity prior to
development of the axial flow compressor. being implemented in the design system.
Failures of turbine blading, on the other
hand, have generally been associated with EXPERIMENTAL OBJECTIVES
aerodynamically induced forced vibra-
tions, although limited cases of flutter There are a number of different over-
in high aspect ratio aft stage blading of all objectives which must be considered
power turbines have occurred. However, in defining a flutter experiment. These
with the aerodynamic performance design includes the acquisition and analysis of
trend toward higher flow velocities, the data to validate and/or to direct the
reduced fequency of turbine blading is development of advanced models: the
approaching that of compressor blades. generation of a flutter boundary data
Also, at these higher velocities, shocks bank; and the investigation of new
are present in the turbine blade concepts to affect the flutter character-
passages. As a result, the flutter of istics of a rotor.
turbine blades, including shock-induced
flutter, may become increasingly impor- Analysis Validation and Direction
tant.

The development of an analytically
Until very recently, it was not based design system is directly dependent

feasible to develop mathematical models on the availability of models which ac-
to predict the unsteady aerodynamics curately predict the unsteady aero-
appropriate for the various flutter flow dynamics in the various flutter regimes.
regimes. This necessitated the develop- Thus, detailed data are necessary to
ment of empirical design systems for experimentally determine the range of
flutter prediction. The limited flutter validity of existing unsteady flow ana-
data available upon which to base these lyses and to direct the development of
empirical systems were acquired -during advanced models. These data must be
exploratory component testing directed at obtained 4!om experiments which model the
measuring aerodynamic performance. As a fundamental phenomena inherent in turbo-
result, these flutter data tend to be machinery flutter. Thus, the parameters
haphazard and somewhat random in nature. which must be modeled characterize both
If flutter was encountered, the aero- the steady and the unsteady flow fields.
dynamic and flutter characteristics,
including the incidence angle, were A description of the steady state
determined. Flutter boundaries were then aerodynamics of a typical inlet stage
established for each flow regime by cor- compressor, mid-stage compresmor, and
relating the reduced frequency at a inlet stage turbine are described in the
specific blade spanwise location with the next ehapter "Unsteady Aerodynamic Ma

,"p r-7-777
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surements in Forced Vibration Research." aerodynamic and mechanical conditions, as
SThe steady aerodynamic data of interest well as the corresponding flutter

are the inlet flow field and the detailed boundaries, provide the ultimate in flut-
blade row characteristics including the ter boundary data as well as the final
surface static pressure distributions and test of advanced concepts. However, such
regions of flow separation. These data full-scale data are very costly, particu-
are acquired with standard steady state larly in a quantity sufficient to provide
instrumentation, a minimum data bank. Hence, it is neces-

sary to consider other than full-scale
The unsteady data quantify: the test vehicles.

harmconic surface pressure distributions
and its phase relation to the motion of
the blading; the unsteady aerodynamic One alternate test vehicle is a high
lift, moment, or aerodynamic damping; and speed scale model rotor. Certainly, the
the unsteady characteristics of the scale model rotor flutter boundaries are
separated flow regions. Dynamic instru- appropriate for use in a flutter data
mentation used to acquire these data in- bank if the flutter boundaries correspond
clude strain gages, light probes, hot- to those of the full size rotor. This
film gages, and miniature high response requires the scaling of the parameters of
pressure transducers, significance to rotor flutter, including

the reduced frequency and the steady
Flutter Boundary Data Bank aerodynamic performanc~e.

The development of an advanced To scale a full size rotor and main-
empirical or semi-empirical design system tain Mach number similarity, the blading
requires an extensive and systematically must be geometrically consistent with
obtained flutter boundary data bank, with regard to blade profile, blade angles,
operating conditions and geometries solidity, and spanwise thickness-to-chord
extended well beyond current experience ratios. If the model and the prototype
levels. The parameters which wiat be operate under identical inlet conditions
considered in the data bank include the in the same working fluid, then the
flutter mode, the reduced frequency, the relationships presented in Table 1 are
blade incidence angle or loading, the maintained. As indicated, maintaining
inlet Mach number, the blade and cascade Mach number similarity results in a lower
geometry, the surge and choke margins, Reynolds number for the model. However,
the air density ratio, and the tempera- as long as the Reynolds number is on the
ture. order of 200,000 or greater, no signifi-

cant losses result. Also, the aero-
The primary data of interest quanti- elastic characteristics of the full size

* fy the effect of these parameters on the and model blading should be identical as
flutter boundary characteristics in- the reduced frequency is unaltered by the
cludings the aerodynamic operating scaling.
conditions at the flutter boundary, the
flutter frequency, and the interblade
phase angle. These data are acquired by
means of standard instrumentation, in- Parameter Full-Size Scale Model
cluding blade mounted strain gages. Prototype

Concept Investigations Corrected 2
New or advanced concepts for flutter Mass Flow Wc/R

stability enhancement must be experi- Rotor Speed N N.R
mentally verified before they can be
utilized in an engine design. Depending Blade Chord C C/R
on the particular concept, the necessary
experiments may involve the measurement Blade
of the flutter boundary and/or validation Thickness T T/R
of mathematical models.SBlade Span a S/R

EXPERIMENTAL FACILITIES AND TECHNIOUES
Blade

The overall objectives of the flut.- Frequency F F.R
ter research experiment specify the
appropriate facility. Linear cascadeD, Mach Number M M
stationary annular cascades, and high
speed rotating rigs have been widely Relative
utilized. Low speed rotating rigs, al- Velocity V V
though used for forced vibration
research, are not used for flutter Reduced
experiments because they offer no Frequency 2.1T.C.F/V 2.-I.CP/V
significant advantages over linear
cascades. The particular experiment Reynolds
objectives specify the required data and, Number Re Re/R
thus, the necessary instrumentation and
experimental techniques..

where R is the scale factor, defined
Flutter Boundary Data as the ratio of the full-sie. to model

4 rotor tig diameters.
4 liqh Speed Rotantin Riqs

PUll scale, high speed rotating rigs Table 1. Rotating Blade Row Sealing
Instrumented to establish both the basic Parameters



The scaling of rotor flutter was linear airfoil cascade, with the airfoils
experimentally considered by Jay (1975). modeling the tip section of the rotor
The objective of these experiments was to blading. The reduced frequency at flut-
determine if a substantially reduced ter can be maintained in the cascade.
diameter fan (1/5 scale with an 8 in. However, because free flutter testing has
(20.32 cm) diameter model) would exhibit no provision for maintaining a constant
the same aeroelastic charactertistics as interblade phase angle, the cascade and
the prototype full size fan. the corresponding rotor will lizcly havcV different interblade phasing.

This model fan flutter program

demonstrated that excellent correlation The free flutter testing of a linearbetween the model and the prototype fan cascade of five airfoils to determine the
could be obtained with regard to blade supersonic unstalled flutter boundaries
natural frequency, fatigue strength, of a rotor was experimentally investigat-
blade frequency variation with rotor ed by Snyder and Commerford (1974). The
speed, static stress field, blade un- data demonstrated non-uniform airfoil
twist, and aerodynamic performance. The phasing as well as a large factor differ-
possibility of using such amode-"-... ence- . n ........
parametrically defining stall flutter fan and the cascade data. This relatively
boundaries and creating a stall flutter poor correlation is attributable to the
data bank was also indicated. Both the nature of free flutter testing in a
model and the prototype exhibited finite cascade. In particular, the first
qualitatively similar first torsion mode airfoil is near to an isolated airfoil
stall flutter in the part speed, high and, therefore, more stable than an air-
loading region of the compressor map, foil in an infinite cascade. As a re-
with this model and prototype flutter sult, this first airfoil does not set
characterized in terms of reduced fre- up the correct unsteady upstream flow
quency and tip Mach number in Figure 1. field to the next airfoil in the cascade.
However, the high amplitude, constant As this finite cascade effect progres-
phase torsional stress typical of the sively decreases through the cascade, it
supersonic flutter found in the prototype might be overcome by utilizing large
fan was not found in the model fan. numbers of airfoils. However, this is

not typically practical in a linear
Linear Cascades cascade.

For reasons of cost and geometric Stationary Annular Cascades
flexibility, the use of a stationary
cascade to parametrically investigate A stationary annular cascade elimi-
flutter boundaries for a flutter data nates many of the problems associated
bank is highly attractive. However, the with using a finite linear cascade to
relation between the flutter boundary represent a rotor experiencing flutter.
determined from a stationary cascade and The annular cascade not only eliminates
that for the corresponding rotor must be the free flutter interblade phasing and
considered. the finite cascade considerations, but

also offers reduced cost and increased
The simplest and most convenient flexibiity as compared to a rotor. Thus,

cascade experiment to obtain qualitative it can be used to provide a data bank for
rotor flutter boundary data involves the the development of engine flutter design
free flutter testing of a two dimensional criteria.

A Prototype Flutter Points
0 Phase I Model Data
o Phase f Model Data

10- No 0 Phase M Model Data
tr NoFlutter

tt 105-

1l00 A
S95- 0 0 o

g 9- Flutter Region 00

I I __ __ __ __ __

95.0 975 100.0 102.5 105.0
% Design Mach Number

Fig. 1. Operation of Modei and Prototype Fans*(Jay 1975)



[he siumuldition of rotor flutter with A method for the direct measurement
.n stat i,,nary Enn1 lar cascade has been of aerodynamic damping in stable regions
addressed by Ellis, Rakowski, and of the rotor performance map wasBankhead i1978) and Jutras, Stallone, and demonstrated using a transonic rotorBankhead (1980). This flutter annular instrumented with strain gages, Crawleycascade was conceived on the basis of (1982). In this method, an upstream
two-dimlensional data referenced to the disturbance is created by the interaction
0,.51 span. The cascade aerodynamics of the primary flow with a series of
'111d, therefore, the compatible airfoil small jets injected normal to the surface
desiq1n, are not truly two dimensional due of inlet struts. After the sharp termi-
to the axisynunetric flow field. The nation of this disturbance, the subse-
primary aerodynamic parameters are con- quent free vibration ring down of the
trolled to be constant over the outer rotor is a measure of the aerodynamicairfoil half span. These include the plus structural damping. Analysis of the
cascade loading, the thickness-to-chord strain gage data in terms of multi-blade F
ratio, the airfoil camber and solidity, modes led to a direct measurement of
the throat tllargins and the incidence aerodynamic damping for three interbiade

.i. . IL Luil btayger is varied phase angles, all of which indicated high
along the airfoil span to provide the levels of aerodynamic damping.
desired incidence angle, with the radial
variation of the Mach number a result of
the facility aerodynamics. To allow
precise tuning of airfoil natural fre-
quency while maintaining compatibility Analysis Validation and Direction
with the facility flow field, variations
are present in the modeling of the inner
half-span of the airfoils, primarily the In the development of an analytical-
thickness, chord, and camber. ly based design system, it is necessary

to experimentally verify the unsteady
T[his annular cascade exhibited a aerodynamic models. The fundamental

wide range of instabilities, including dependent variable is the airfoil surface
choke and stall flutter. Excellent cor- unsteady pressure distributions. Ideal-
relation was obtained between the annular ly, this experimental verification pro-
cascade flutter and that of the modeled cess is accomplished by correlating pre-
rotor, as demonstrated in Figure 2 in dicted complex surface unsteady pressure
terms of Mach number and incidenee angle. distributions with analogous data ac-

quired on a rotor blade during flutter.
Aerodynamic l)awping Data Such rotor flutter unsteady pressure data

are difficult and costly to acquire
A limitation of flutter boundary because of the accuracy required for

LuLtimlt is Lhat no unsteady data is model verification and refinement, and
obtained until flutter is encountered, the number of operating conditions, geo-
If the blade row is stable over the test metrical configurations, and mode shapes
operating conditions, no information of vibration, which must be investigat-
about the location of the flutter bound- ed.
ary is obtained.

1.0
* Cascade Design Point
* Engine Data

0.9 0 Cascade Data

Flutter

Region

0.8

-o

0.7 No Flutter
Region

_J Flow Properties
at 87,5% Span

6I I0 -2 -4 -6 -8 -10

Incidence (degrees)

Fiq. 2. C(.mparisori of Midstage Verification Annular Cascade
Instability Results with Engine Data (Jutras,
Stallone, and nankhead, 1980)
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Linear Cascades
Wk

Two dimensional controlled oscil- Type of Flutter Reduced Frequency
lating cascade experiments are the most (k - 21Tf/V)
widely used and accurate means for
establishing the validity and directingrefinements of unsteady aerodynamic flut- Unstalled
ter models. Cascade experiments provide Supersonic Torsion 0.7 to 1.3
increased flexibility as compared to
rotor investigations in terms of varia- Supersonic Bending 0.2 to 0.5
tions in aevnplastic and flow conditions
as well as experimental objectives. This Subsonic/Transonic
increased flexibility introduces complex- Torsional Stall 0.4 to 1.6
ities in that the oscillating cascade
must simulate the significant rotor flut- Choke Bending 0.3 to 0.5
ter phenomena.

The simulation of rotor flutter with
a finite two dimensional cascade must be Table 2. Typical Flutter Reduced
carefully considered. In addition to the Frequency Ranges
usual concerns associated with steady _

cascade testing, there are several ad-
ditional considerations for unsteady cas-
cade flows. Some airfoils in the cascade
may be either more or less stable than
others. With a supersonic inlet flow to
ar, airfoil cascade with a large stagger Flutter of rotor blades is modeled,angle, for example, the bow wave from the both analytically and experimentally, by

second airfoil in the cascade will not considering harmonic cascade airfoil
intersect the first airfoil, Figure 3. oscillations with a constant interblade
Hence, the first airfoil acts as an phase angle. Two experimental approaches
isolated airfoil. For Mach numbers are utilized to achieve these controlled
greater than 1.58, this "isolated" cas- airfoil cascade oscillations.caded airfoil is stable at all frequen-
cies of oscillation. Thus, in this case, One approach directly simulates the
it is unlikely that the finite cascade flutter aerodynamic modeling by harmoni-
corresponds to a section of an infinite cally oscillating all of the airfoils in
cascade where there is no first blade and the cascade with a constant interblade
the aerodynamics and motion of each blade phase angle. An oscillating centrally
are identical. The airfoil cascade must located airfoil in the cascade is instru-
be a valid representation of the mented to measure the unsteady airfoil
phenomena existing in the rotor blade surface pressure distributions, the un-
row, with the unsteady data obtained at steady lift or moment, or the aerodynamic
the high reduced irequency values cor- damping. Airfoil cascade driving
responding to flutter of the rotor. mechanisms include bar linkage systems,
Ranges of reduced frequency values of Carta and St. Hilaire (1976), cam
significance to rotor flutter are arrangements, Boldman and Buggele (1978),
indicated in Table 2. It should be noted and computer controlled electromagnets,
that data obtained at lower reduced Fleeter, et al (1975). The latter drive
frequencies and Mach numbers, for system is further considered in the next
example, are still of great value in the chapter "Unsteady Aerodynamic Measure-
assessment of modeling assumptions and ments in Forced Vibration Research."
predictions.

SBow Waves

Airfoil3

Airfoil 2

u,' Aifol.

Fig. 3. Sipersonic Flow Field Schematic for
Lai we Stagger Angle Cascade



I' e 1, ccz.| lIpporach is based on The objective of the two dimensional
Ole airfoil unsteady forces and cascade experiment must also be consider-
'11t,. the surface unsteady pres- ed. For example, if the cascade experi-

.:irt, distrihutions using an influence ment is intended to provide data solely
cooeff Icient technique, Ilanamura, Tanaka, to validate analyses and quantify signif-
anl. Ya::maquchi (1980), and Ewins and icant unsteady flow features not analyti-
Hillary, (1980). This requires the cally modeled, then the cascade geometry.
oscillation el only one airfoil in the flow conditions, and reduced frequency do""ascade, i.e., only the center airfoil in not have to correspond to those of anthe ca-sc.ie is oscillated with the other actual rotor, although it may be desir-
airfoils fixed. The unsteady influence able. It is only necessary for the cas-co•effic-ients are then determined by cade experiment to simulate the assump-

mea.suring3 the resulting unsteady forces tions inherent in the model and for the
or surface pressure distributions on all reduced frequency to be high enough so
of the airfoils in the cascade. The that unsteady data, not quasi-steady
unsteady forces or pressure distributions data, are obtained.
for any specified interblade phase angle
are then determined from these influence Two dimensional linear cascade ex-
ooefficients by means of vector addition. periments can also be used to determine
Thus, such unsteady data are equivalent the stability of a rotor. As previously
to the case where all of the airfoils in noted, the finiteness of the linear cas-
the cascade are oscillating with an cade precludes free flutter testing as
arbitrary interblade phase angle. a means of measuring a rotor flutter

boundary. However, if the unsteady aero-
Another consideration is the un- dynamic work or damping is measured, not

steady cascade periodicity. For example, the flutter boundary, then the finiteness
in a steady cascade flow with a subsonic problem can be overcome and the modeled
axial Mach number, the inlet flow condi- rotor stability determined. In this
tions to any airfoil passage are deter- case, the two dimensional cascade experi-
mined by the stationary position and ment must model the significant unsteady
profiles of the preceding airfoils and steady features of the rotor.
roiaelti•v Lo Llhe utdiisLtrbed flow ahead of
the first airfoil, Figure 4. Under this The unsteady features of the rotor
condition, the periodicity in the flow can be modeled using a driven oscillating
field of succeeding airfoil passages is airfoil cascade, appropriate instrumenta-
achieved after a relatively few airfoils. tion, and data acquired over a range of
In an unsteady flow, however, the inlet interblade phase angles. Either every
conditions to any airfoil passage depend airfoil in the cascade can be harmonical-
Oc) both the position and the motion of ly oscillated with the interblade phase
the preceding airfoils. Analytical re- angle controlled by means of the driving
suilts indicate that the number of air- mechanism, or- influence coefficients can
foils required to achieve a periodic un- be measured using a single oscillating
steady flow field is a function of fre- centrally located airfoil, with the
quency, even if the motion of the air- interblade phasing accomplished analyti-
foils is uniform with a constant inter- cally.hI ade phane angle. In addition to simulating the un-

Unsteady cascade periodicity in a steady aerodynamics of the rotor during
suubsonic flow field has been addressed, flutter, it is also necessary that the
Carta (1982). These experiments involved experiment closely model the rotor oper-
measuring the unsteady pressure along the ating conditions at the flutter boundary,
leading edge plane of a linear cascade of with the cascade design based on a re-
eleven airfoils oscillating in torsion. presentative rotor blade section. How-
Unsteady cascade periodicity was achieved ever, due to the radius change and area
over the range of parameters considered, convergence of the rotor, it is not
,s ir•licatedr in Figure 5. possible to maintain the inlet and exit

Mach numbers and flow angles in the
corresponding two-dimensional cascade.

Bow Waves

j U0

Ftij. 4. cascade Supersonic Inlet Flow with Subsonic
Axial Component Schematic



A viable two dimensional cascade of Mach number, shock system, and loading
representation can be achieved by pre- distributions, even though the cascade is
serving the critical elements of the not a geometrical scale of the rotor
rotor section flow field. For supersonic section, Riffel and Fleeter (1981).
inlet rotor blade sections, the flow
field is critically affected by the shock Instrumentation
system, and to a much lesser degree by
the specific blade geometry. To preserve Strain gages are the primary sensor to
the shock system, the two dimensional indicate the onset of flutter, as well as
cascade must maintain the corresponding the amplitude, frequency, and interblade
rotor element values of the following phase angle of the blade vibration. The
parameters: the inlet and exit Mach strain gage waveform is the result of the
numbers; the starting margin (A/A*); and response of the airfoil to the instanta-
the rotor critical incidence angle, de- neous flow field. Thus, it is indicative
fined as the angle between the upstream of the physical mechanism of the flutter.
air angle and the blade suction surface Also, strain gages can be used to measure
angle at a point midway between the the unsteady aerodynamic lift, moment,
leading edge and the intersection of the and damping. However, limitations in the
first covered characteristic and the suc- application of strain gages currently
tion surface. The stagger angle, start- exist. In general, strain gage data give
ing margin, deviation criteria and para- no measure of stability prior to the
meters such as the thickness-to-chord onset of flutter. However, techniques to
distribution, maximum thickness, solid- accomplish this are being developed,
ity, and leading edge radius-to-chord Loiseau, Nicolas, and Maquennehan (1980).
ratio are also maintained. This results Also, they cannot measure blade load dis-
in a cascade that is representative of tributions, although efforts to accom-

the modeled rotor blade section in terms plish this are continuing, Ewins (1980).
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Licht probe systems have proven to be form (FFT) based computer techniques.
Invaluable as a supplement to the strain Carta and St. Hilaire (1977), Fleeter,
gaqe in measuring the passage and non- Jay, and Bennett (1981), and Capece and
synchronous vibration of every blade in a Fleeter (1984) utilized similar tech-
rotor. This is of particular -value in niques for unsteady cascade data ana-
detecting instabilities where there is a lysis. Detailed examples of unsteady
high degree of circumferential response data acquisition and analysis techniques
variability. A constant spatial interval are presented in the next chapter "Un-
yields a constant output reflection, but steady Aerodynamic Measurements in Forced
flutter, which involves variable spatial Vibration Research."
intervals, yields a variable output re-
flection. Casing mounted light probes
are used to measure airfoil tip static
and dynamic displacements and have also EXPERIMENTAL RESULTS
been used to resolve flutter into its
principal bending and torsional contribu- Positive Incidence Stall Flutter
tiorns, Kurkov and Dicus (1983),
Nieberding and Pollack (1977), and Rothi At subsonic relative Mach numbers,
(1980). Another optical method to positive incidence stall flutter may
resolve flutter involves the placement of occur. It is generally attributed to
mirrors over several points on a blade blade stall and surface flow separation,
surface and illuminating these points caused by operating beyond some critical
with a short duration pulse of laser airfoil incidence angle. However, in
light once per revolution, Staigardter some instances, it has been reported that
(1977). the stall flutter boundary has been found

near maximum compressor efficiency. This
Miniature high response pressure indicates that stalling may not be es-

transducers with a flat frequency re- sential for stall flutter, although it
sponse in excess of 10 Khz are used to could be the most severe condition.
measure unsteady surface pressure distri-
butions. Typically these transducers are Bending, torsion, and coupled modes
embedded in an airfoil, requiring the of vibration have been noted when this
airfoil surface to be machined. The type of flutter is encountered at part-
electromechanical configuraton of the speed in a high-speed fan, and at or near
pressure transducer is similar to the the design speed in a low or high pres-
basic strain gage in that the sensing sure compressor. In an unshrouded rotor,
element consists of a four-arm Wheatstone it is generally unphased at low ampli-
bridge bonded to a thin flexible tudes, with the possibility of a constant
diaphragm, Armentrout and Kicks (1979). interblade phase angle at the large am-
An extensive calibration is required to plitudes of vibration which occur deeper
account for the effects of centrifugal into the flutter region. With a shrouded
force on the sensitivity and zero offset rotor, interblade phasing is enforced by
of the transducer as well as for the the part-span mechanical ties.
effects of mounting induced strain,
Minkin (1976) and Grant and Lanati A comprehensive series of experiments
(9978). directed at investigating the subsonic

unsteady aerodynamics of an oscillating
High response hot wires and films are airfoil cascade subjected to aerodynamic

used to measure instantaneous flow loading has been performed by Carta and
velocities, with hot films being more St. Hilaire (1977, 1979). A linear
durable but having a decreased frequency cascade of 11 NACA 65 series airfoils was
response. Films attached directly to a coherently driven by means of a
surface measure skin friction, thereby mechanical linkage system in a sinusoidal
determining the nature of the surface torsional motion with an amplitude of 2".
flow. Specifically, the hot film can be The center airfoil of the cascade was
used to identify laminar, turbulent, or instrumented with miniature high response
separated flow, as well as the transition pressure transducers and hot film gages.
from one flow regime to another. The unsteady surface pressure distribu-

tions were measured for mean incidence
A more detailed description of hot angles to 10, reduced frequencies to

wires and films, as well as a discussion 0.386, and interblade phase angles from
of the dynamic calibration of pressure -60* to + 600, and analyzed to determine
transducers is presented in the next the stability parameters. These include
chapter "Unsteady Aerodynamic Measure- the complex unsteady torsional moment
ments in Forced Vibration Research." coefficient and the aerodynamic damping.

Data Analysis Techniques Aerodynamic loading was found to be
significant, with the interblade phase

Unsteady flow experiments, including angle the principal parameter affecting
flutter investigations, generate large stability, Figure 6. Specifically, at
quantities of data which require high the low loading conditions, the reduced
frequency transmission and recording. frequency had only a small effect on the
These data involve a wide band of fre- unsteady aerodynamic moment and damping.
quencies, with the amplitude and phase However, at high levels of loading, but
relations between frequency components of with no indications of airfoil stall
importance. Hence, high speed, digital apparent from the steady airfoil surface
dIata processing is essential, static pressure data, large reduced fre-

quency effects were evident.
Gostelow (1977) describe,] several

techniques for the analysis of unsteady The cascade was unstable over the
turboeachinery data, including the use of entire range of loading and reduced
signal averaging and fast Fourier Trans- frequency values for interblade phase

........................ .. .... ~
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zingl&Žs greater than 100. This result is parison of Figures 6 and 7 reveals that
similar in behavior, but not in magni- the onset of instability closely co-
tude, to predictions from potential flow incides with the second harmonic becoming
cascade models and lends support to the dominant over the first harmonic for
previous observation that airfoil stall interblade phase angles greater than 5*.
need not be present for stall flutter. Also, there is a phase shift from lead to
For negative interblade phase angles, lag with decreasing interblade phase
cascade stability was more dependent on angle values in the 6.2% chord data, with

loading and reduced frequency, conforming the cascade instability a direct conse-
more closely with conventional stall quence of this phase shift. Thus, cascade
flutter behavior. In particular, for stability is seen to be related to the
interblade phase angles less than 10*, unsteady aerodynamics in the leading edge
stability increased with frequency and region of the airfoil.
decreased with loading.

The effect of the torsional elastic
The effect of interblade phase angle axis on the unsteady moment of oscillat-

on the pressure time histories in the ing isolated and cascaded airfoils at
leading edge region of the airfoils is high incidence angles with leading edge
shown in Figure 7. As the interblade separation was investigated in -a water
phase angle increases, the second tunnel by Tanaka, Shinohara, and Hanamura
harmonic of the leading edge pressure (1976) and Yashima and Tanaka (1977),
response exhibits an increasing respectively. A crank mechanism was used
dominance. This second harmonic has the to drive the airfoils, with the unsteady
characteristics of the loss in suction forces measured by means of strain gages.
peak associated with dynamic stall, with They found the critical reduced frequency
the minimum at peak incidence. A com- to be larger for the stalled case than

the unstalled one, with the critical re-

22x/c=0.0i2 x/C =0.062

Stoble-m
.1 Pressure

0. 00 -Bo Logs
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Fig. 7. Time-Averaged Pressure Wave Forms from Airfoil Suction Surface
for Several Interblade Phase Angles (Carta and St. Hilaire, 1979)
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A series of fundamental unsteady The classical airfoil translation
a•erodynamic experiments to provide data mode investigation utilized a graphite/
to validate and direct model development epoxy composite airfoil with a maximum
in the unstalled supersonic with a sub- thickness of 0.22 cm (0.087 in.). The
sonic axial component flow regime have composite airfoils enabled a two-dimen-
been performed. Both torsion and sional airfoil mode shape to be main-
translation mode cascade oscillations tained at a translation reduced frequency
have been investigated, with the frequen- of 0.2, a value corresponding to that
cy of oscillation and the interblade characteristic of rotors experiencing
phase angle precisely controlled by means bending flutter. For example, Figure 12
of electromiagnets under the direction of shows the translation mode shapes for B
a minicomputer. The unsteady airfoil both a steel and a graphite/epoxy com-
surface pressure distributions were mea- posite airfoil. As seen, two-dimension-
sured by means of high response dynamic ality in the test section is maintained
pressure transducers. These data were only with the composite airfoil.
analyzed to determine the unsteady pres-
sure magnitude distribution and its Figure 13 shows the translation mode
phase relation to airfoil motion. The pressure surface aerodynamic phase lag
parameters varied included the inlet Mach data correlation with the flat plate
number, the interblade phase angl•a the theory at an inlet. Mach number of 1.35
reduced frequency, and the steady aero- for two levels of steady aerodynamic
dynamic loading, loading. These data generally exhibit

very good correlation with the flat plate
A cascade of classical airfoils was predictions. The phase lag and the

utilized to obtain fundamental data to unsteady pressure coefficient remain
verify supersonic inlet flat plate cas- nearly constant between the leading edge
cade models. These airfoils have a flat and the mid-chord region shock wave
suction surface and a wedge-shaped pres- intersection location. The theory pre-
sure surface. Correlation of the un- dicts the intersection location to be at
steady data obtained for harmonic tor- approximately 70% chord, with the unity
sion, Fleeter, et. al., (1977), and pressure ratio data indicating the
translation mode, Fleeter, et. al., presence of a shock in the region between
(1978), oscillations with predictions the 60% and 75% chord transducer loca-
obtained from a flat plate supersonic tions. The effect of increasing the
flutter model, Caruthers and Riffel steady loading is to move the shock
(1980), verified this fundamental model. intersection forward.
The torsion mode data were obtained at a
reduced frequency of 0.32. These tor- Graphite/epoxy composite airfoils
sional data exhibited excellent correla- were also utilized to measure the un-
tion with the flat plate preditions on steady aerodynamics in experiments which
both the pressure and the suction sur- model the geometries and operating condi-
faces when the variation in the blade-to- tions of the second stage of the five
blade amplitude of oscillation was con-
sidered, as demonstrated in Figure 11.
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Fig. 11. Classical Airfoil Torsion Mode Aerodynamic Phase Lag Data
Correlation for a Mach Number of 1.55, an Interblade Phase
Angle of 14.75' and a 1.0511 Static Pressure Ratio
(Fleeter, at al, 1977)
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stage rV41-AlO0 IP-iP compressor rig Whitehead, et. al., (1976) described
whioh experienced torsion mode supersonic an experiment to measure the unsteady
flutter and the second stage of the NASA torsion moment coefficients on an oscil-
two stage fan which experienced super- lating flat plate annular airfoil cascade
sonic bending mode flutter, Riffel and for subsonic and transonic Mach numbers.
Rothrock (June and December, 1980). The The sixteen airfoils are driven in tor-
pressure ratios investigated correspond sion at constant interblade phase angles
to rotor operating points which are: far by electromagnetic exciters, with tne
removed from the flutter boundary, im- aerodynamic moment measured by means of
mcdiately adjacent to the boundary -one strain gages. The data exhibit trendwise
inside and one outside the flutter agreement with subsonic, Smith (1972),
region: and deep into the flutter and supersonic, Nagashima (1974), un-
region. stalled predictions, although there are

differences in magnitude, as seen in
Figures 14 and 15 present examples of Figure 16. However, there are also

the torsion mode cascade results. Figure differences, in some cases substantial,
14 shows the effect of cascade loading on in the values of the moment coefficient
the aerodynamic phase lag data. Predic- measured on different blades.
tions from the variable amplitude flat
plate model are represented by the shaded Halliwell, Newton and Lit (1983) pre-
region. As seen, the correlation is sent a comparison of experimental and
excellent at the low pressure ratio, theoretical results for a transonic
with the exception of the 40% chord research fan vibrating in a coupled flut-
position, where the data indicates the ter mode. The unsteady pressure measure-
presence of a reflected passage shock ments on the blade surfaces are accom-
wave. As the cascade pressure ratio is plished by instrumenting two pairs of
increased, the deviation between the blades, each defining a blade passage,
prediction and the data increases, par- with high response pressure transducers.
ticularly over the aft portion of the On one of these pairs, transducers are

airfoil behind the reflected shock. installed on the rear half of the blade
chord, with the front half of the chord

Figure 15 presents the imaginary part instrumented on the other pair.
of the torsion mode unsteady moment co-
efficient determined from the surface Figure 17 shows the correlation of

pressure data. For the lower two pres- the unsteady pressure amplitude data with
sure ratios, the cascade is stable for three theories: Goldstein, Braun, and

all interbiade phase angles, in agreement Adamczyk (1977), Acton (1981), and

with the rotor test. At the higher two Whitehead (1981). As seen, the predic-
pressure ratios, corresponding to condi- tion of both the amplitude and the phase
tions wherein the rotor was immediately of the surface unsteady pressures is
adjacent to and deep within the flutter generally good for the supersonic section
region respectively, the cascade data of the blade. For the subsonic part on
demonstrate a supersonic unstalled tor- the suction surface, the comparison is
sion mode flutter region for negative less favorable. This might be expected
interblade phase angle values. Also, at due to the limitations of inviscid flow

the highest pressure ratio, the most un- theory. On the pressure surface, the

stable cascade data point is in agreement comparisons are reasonably good, except
with the A100 rotor test data.
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Fiq. 14. The Effect of Loading on the Torsion Mode Aerodynamic Phase Lag
Data for a -90" Interblade Phase Angle (Riffel and Rothrock, 1980)
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in . the c'o:.qplex flow regJion just behind tudes of vibration, with the possibility
the shock. Thus, the role of the shock of a constant interblade phase angle
i s seen to be important, both with existing at larger amplitudes.
respect to its steady state position and
the unsteady flo.w changes across it. A study of some of the basic un-

teady aerodynamic phenomena of interest
Choke and Negative Incidence Flutter to choke flutter in turbomachines has

¾ been reported by Tanida and Saito (1976).
Choking flutter in the bending mode A single airfoil is mounted between ad--

usually occurs at negative incidence justable parallel walls and oscillated in
angles at a part-speed condition with the torsion about its midchord in a subsonic
blade row operating either subsonically flow field.
or transonically. In a choked flow con-
dition, the blade passage inlet flow is Typical complex aerodynamic moment
constrained to pass through a decreased data, measured with strain gages mounted
stream area; Thus, Mach numbers which on the torsion rod driving system, are
"are greater than the inlet Mach number presented in Figure 18. The shocks, par-
"can occur in the blade passage, thereby ticularly the weak ones, were observed to
leading to the possible existence of oscillate in a somewhat random manner.
passage shocks which can cause flow Thus, these data are averaged over a
separation or perhaps couple adjacent number of cycles, with the shaded regions
blades. The physical mechanism of choke indicating the range of data. As seen,
flutter is not fully understood. High the distance to the wall has a signifi-
negative incidence angles and choked floa cant effect. Thus, these results indi-
are both viable candidates. Choke flut- cate the possibility of choking flutter
ter is generally unphased at low a-ipli- in a transonic internal flow.
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An experimental !;tudy directed at
providing choke and negative incidence
flutter boundary information is also Cascade Solldity.
being conducted, Jutras, Stallone, and 0 1.48
Pankhead (1980). The stationary annular 3 0.88
cascade facility previously noted for 0 .
quantifying stall flutter boundaries is A 1.14
also being used to map the choke and 0 Open-Instability

.ý.r4negative incidence flutter boundaries as T
a function of the following variables: >- Closed-Choked
reduced frequency, solidity, incidence, U.. 1.48 Flow
Mach number, air density, and inlet pres- +34%sure and temperature. =1 Flexura) M 3d /

The results indicate definite trends LI Instabilities 088
in flutter boundary migration and extent L-23
due to blade stiffness (reduced frequen- _234

cy), solidity, and inlet conditions. For ,U 1.14
both choke and negative incidence flut- 0(ter, an increase in these parameters was •%TrinlMd

shown to be destabilizing. Figure 19 W TorsioaliMes
demonstrates the effect of solidity on M.b
both bending and torsion mode choke
flutter in terms of the inverse reduced
frequency (the reduced velocity) and the I.20..
incidence angle.

INCIDENCE, degrees
-Shock

Fig. 19. Choke Flutter Sensitivity to
Cascade Solidity (Jutras,

MI 8.Stallone, and Bankhead, 1980)
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. r ',, le F'luttel SUMMARY

Although tlutter IS not currently a This chapter has considered the
ptoblemr in turbines, as previously noted, various aspects of unsteady aerodynamic
harm'onically oscillating data for turbine flutter experiments. Overall objectives
type airfoils, i.e., thick airfoils with considered included the validation and
la re flow turning, are of fundamental direction of analyses, the development of
interest with regard to validating and a flutter boundary data bank, and concept
directinrg analyses. investigations. Experimental modeling

requirements, and the applicability of
~othro,:k, Jay and Riffel ',1982), high speed rotating rigs, stationary an-

me.Tsured the torsion mode subsonic and nular cascades, and two-dimensional
transonic unsteady aerodynamics in a linear cascade facilities, were discussed
linear cascade of five highly cambered, in terms of these overall objectives.
thick, airfoils instrumented with dynamic The data requirements, as well as the
pressure transducers. Specifically, the associated instrumentation and data
effect of steady operating condft-ons and acquisition and analysis techniques,
interblade phase angle on the time were considered as a function of partic-
variant surface pressure distributions ular experiment objectives. Following
were determined, this, a brief overview of experimental

research results for each type of flutter
Although the unloaded flat plate cas- was presented.

cade analysis of Smith (1972) predicted
the trendwise variation of the unsteady In aeroelastic problems of gas tur-
data on the highly loaded, large turning bine engine blading, flutter and forced
airfoils, the data consistently exhibited vibration have a common background. The
a larger pressure coefficient. Also, the difference is that flutter is self in-
unsteady flow field appeared to be a duced whereas forced vibration is not,
function of the averaged flow properties and involves a forcing function. As a
rather than the inlet flow conditions, as result, there is a commonality in funda-
evidenced by the better phase angle mental research in these two areas. Both
correlation of the data with a meanline are directed toward unsteady aero-
analysis. An interesting result was the dynamics, including the measurement of
almost exact correspondence of the in- the aerodynamic damping and unsteady sur-

phase surface pressure trends obtained face pressure distributions. This chapter
from quasi-steady data and unsteady data has considered the experimental flutter
at a reduced frequency of approximately research. Forced vibrations is discussed
one, Figure 20. Thus, this experiment in the next chapter "Unsteady Aerodynamic
quantitatively demonstrated the coupling Measurements in Forced Vibration
of the steady and unsteady flow fields. Research."
Further discussion of this turbine un-
stept'y aerodynamic experiment is found in
the next chapter "Unsteady Aerodynamic
Measurements in Forced Vibration
Research."

05.0 0 Quasi-Static Data

a Dynamic Data

o 0.0

4 0 10.0-
4)

5.0-

z

tO 20 30 40 50 60 70 80 90 100
Percent Projected Chord

fig. 20. Comparison of the Quasi-SteadY and Unsteady Suction Surface
Data for a 2,0 Zupansion Ratio (Rothroex, Jay, and Riffel, .1932)
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INTRODUCTION a physical sense of the nature of flutter
and forced response investigations.

Blade and vane failure due to flutter PROBLEM DEFINED
and forced vibration is a continuing
costly problem in turbomachines with re- Forced response is defined as the
sulting time delays, redesigps and part resulting action of a system due to an
replacement. Flutter, as discussed in input forcing function. A single degree
the previous chapter entitled, "Unsteady of freedom elastic system can be de-
Aerodynamic Measurements in Flutter Re- scribed by the familiar equation,
search," is defined as the self-excited
oscillations of a blade row occurring as
the blading extracts energy from a uni- MX + CX + KX = f(t) (1)
form flow field. Forced resonant vibra-
tion occurs as a result of non-uniformi- The response of the system described
ties in the flow field being periodically can be measured in terms of acceleration,
applied to the blading at frequencies velocity or displacment, for different
corresponding to its structural modes of forcing functions f(t) • Should the
vibration. In this case, the blading forcing function be periodic at a fre-
dissipates energy into the flow. Since quency of ff , a resonant condition will
both flutter and forced vibration require exist when ff is equal to the natural
quantification of the unsteady aerodynam- frequency of the system. The response of
ic loading created by oscillations of the the system at this condition will be dic-
blade row, the experimental efforts de- tated by the damping and the magnitude of
scibed in the previous chapter are useful the forcing function.
in describing the aerodynamic damping
portion of the forced vibration problem. Sources
However, in the forced vibration problem,
a quantification of the unsteady loading A turbine engine blade has many
acting on the blading as a result of a degrees of freedom, hence many natural
non-uniform flow field must be made. frequencies. Additionally, excitation

forces which can create resonant response
Research to quantify and understand of the blading in their multiple modes of

the mechanisms of forced vibration has vibration are many. Both periodic and
required innovative and unique approaches non-periodic, aerodynamically and mechan-
to reproduce the turbomachinery environ- ically induced forces can be present in
ment and aeroelastic behavior of the com- the turbine engine environment. Non-
ponentin facilities which allow meaning- periodic forces such as foreign object
ful measurements of aerodynamic and impact and surge can create large har-
structural response. This chapter is de- monic oscillations of the blading in mul-
signed to give those considering involve- tiple or single modes of vibration.
ment in forced vibration research a know- Periodic forces arising from distortion
ledge of various aspects of such investi- of the aerodynamic field and mechanically
gations. For those actively pursuing induced sources such as tip rub and gear
forced vibration research this chapter tooth excitation provide the forcing
will serve as a review of the approaches functions necessary to allow blading to
used by others. operate in resonance.

The forced vibration problem will For this discussion, the forces
first be defined and critical parameters acting on the blading will be restricted
requiring measurement and simulation to those aerodynamically induced forces
identified. Four types of experimental which result from geometrically traceable
facilities which have been useful in in- sources in the aerodynamic flow path.
vestigating the unsteady aerodynamic as- Therefore, by definition the forces cre-
pects of forced vibration will be dis- ated by aerodynamic distorted regions en-
cussed. The advantages and limitations countered in rotating stall will be ex-
associated with each type of facility cluded, although the techniques to exper-
will be addressed. Next, a brief review imentally study these forces are the same
of recent research investigations will be as for the forces which will be dis-
presented for familiarization with each cussed. The geometrically traceable
type of facility and methods used to sources which create distortions in the
acquire unsteady aerodynamic data. The aerodynamic environment of blading can be
concerns of data acquisition and calib- identified. Excitations due to adjacent
ration will then be examined. This sub- blading rows, differences in the number
ject ts vital to ensure correct acquisi- of upstream blading rows, bleed slots and
tlon of quality data in a judicious and ports, combustion or burner distortion*
timel manner. Finally, two examples of and burner cans have been major sources
reciv't, progress will be reviewed to give recognized to date.



To illustrate potential resonant Flow Field, Airfoil Geometry and Mode
conditions due to this class of excita- Shape
tion, Campbell diagrams for an unshrouded
inlet fan rotor, a low aspect ratio mid- Figure 4 presents the requirements
compressor stage, and an inlet turbine for obtaining the necessary aerodynamic
rotor blade are presented in Figures 1, parameters needed to address the forced
2, and 3, respectively. As shown in vibration problem. Definition of the
Figure 1, frequencies of a fan rotor spacial variations in the inlet and exit

Sblade are such that low engine order flow fields requires steady flow calcula-
excitations (2,3,4 of the fundamental tions or measurements, while quantifica-
mode are possible. Inlet struts, if pre- tion of the forces acting on the oscil-
sent, can be numbered such tha excita- lating airfoil requires time based cal-
tions of the firs torsional and second culations or measurements. To illustrate
bending modes will occur. Chordwise the various inlet and exit flow fields
bending mode excitations can result due which must be studied, the resonances for
to the proximity of the downstream vane the fan stage rotor, the midstage com-
row. For a midstage rotor blade, the pressor rotor, and the inlet turbine
frequencie are higher than the fan stage stage rotor shown in Figures 1, 2, and 3
as illustrated by the proximity of the will be examined.
first bending mode with eighth engine
order as shown in Figure 2. Bleed ar- In Figure 1 resonances occur at
rangements create second bending mode speeds below idle, in mid-operational
excitations in this example. Adjacent range, and near maximum speed. Figure 5
vane rows provide excitations to the se- presents inlet and exit relative veloc-
cond torsional and chordwise bending ities (relative to the airfoil section)
modes. In Figure 3, the turbine blade at these resonances in the hypothetical
natural modes can b excited -by burner example. Transonic velocity in these
distortion, burner patterns resulting examples implies a Mach number between
from discrete burner cans, and adjacent 0.95 and 1.05. Thus, as the fan rotor
vane rows. encounters various resonant conditions,

the attendant relative flow fields range
From these diagrams it is readily from totally subsonic to totally super-

seen that aerodynamic distortion from sonic at the tip streamline, with mixed
many sources can create potentially haz- subsonic and transonic flow present
ardous excitations to the rotor blades. radially inward from the tip. For the
Restricting from discussion an over the midstage compressor rotor, Figure 2 de-
blade tip bleed slot allows categoriza- fines the resonant speeds and Figure 6
tion of all the sources into two primary the rclative velocity flow fields at
areas, upstream and down-stream. Circum- these reconances. Generally, the tip
ferential variation in the aerodynamic Mach number will be less than 1.0 due to
state, either upstream or downstream, increased temperature effects resulting
result in periodic forces being generated from the forward stages compression of
on the rotor blading which can create the air. In both examples of compressor
resonant responses of failure level stages, the inlet and exit absolute ve-
magnitude. This simplistic statement de- locities are subsonic.
fines the problem whic motivates experi-
mentalists and analysts in the area of
forced vibration research.

OSwNSTREAI4
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F£.1. Typical Campbell Pli.-t~am for Unshrouded Inlet Pan Stage. ••
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* Fig. 2. Typical Campbell Diagram for Low Aspect Ratio
* Midstage Compressor Rotor Blade
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Fig. 3. Typical Campbell Diagram for Inlet Turbine
Rotor with stiff Wheel
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OSCILLATING

AIRFOILS

INLET FLOW FIELD EXIT FLOW FIELD

DEFINE SPATIAL DEFINE SPATIAL
VARIATON INVARIATION IN

FLOW FIELD FLOW FIELD

DEFINE INDUCED FORCES DEFINE FORCES INDUCED
DUE TO FLOW FIELD BY AIRFOIL MOTION
VARIATIONS

Fig. 4. Requirements for Aerodynamic Quantification of Forced Vibration.
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:SUBSONIC

SUBSONIC

SUPERSONIC SUPERSONIC. S IN
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8 EO

TRNOIC,
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Pig. 5. Transition of Inlet and Rxit Relative Flow Fields
as Various Resonances occur on Inlet Fan Rotor.
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SUBSONIC ABSOLUTE FLOW SUBSONIC ABSOLUTE FLOW

SUBSONIC SUBSONIC • a. SECOND TORSIONAL RESONANCE
WITH DOWNSTREAM VANES

SUBSONIC SUBSONIC

TRANSONIC SUSOI b. CHORDWISE BENDING, SECOND
TORSIONAL, SECOND BENDING

SUBSONIC. SUBSONIC RESONANCES

Fig. 6. Inlet and Exit Relative Flow Fields at Various Resonances
of Midstage Compressor Rotor Blade.
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SUBSONI SUBSONIC; TRANSONL,, OR SUPERSONIC
"' (ASED UN TURBINL LQUIVALENT

WORK)

Fig. 7. Inlet and Exit Flow Fields at Various Remonance of
Inlet Turbine Rotor Blade



The inlet stage turbine rotor re- flections in the first four modes pic-
sonances shown in Figure 3 can occur in tured can be approximated as in and out
relative velocity flow fields as shown in of phase rigid body rotations or deflec-
Figure 7. The exit relative velocit.y tions. The chordwise mode cannot be
could range from subsonic to supersonic created by superposition of rigid body
at either idle or high speed based on the rotation and deflection since the mode
particular turbine design. The inlet shape indicates deflection pattern normal
relative velocity is totally subsonic. to the chord.
Unlike the compressor, the absolute flow
at the rotor inlet can range from sub-
sonic to supersonic, again dependent on Reduced Frequencyparticular turbine design.

Forces induced on the airfoil sur-
Therefore, referring to Figure 4 faces by either the spatial variation in

which portrays the requirements for aero- the flow field or by oscillations of the
dynamic quantification of forced re- airfoil in the airstream are functions
sponse, the inlet and exit flow fields of the non-dimensional reduced frequency.
to be examined have been shown to be The reduced frequency is defined as the
highly dependent on the particular compo- product of the airfoil chord and the
nent of interest. However, not only the frequency divided by the relative veloc-
flow fields, but also, the blade shapes ity of the flow. For compressor rotor
on the three examples cited are highly stages reduced frequencies based on 3/4
varied. For the fan rotor tip section, span parameters at design speed can range
cambers of slightly negative to slightly from 0.30 for fundamental mode up to a
positive would not be uncommon. At the value of 20 for first chordwise bending
pitchline the camber would be on the modes. Part speed operation can increase
order cf 15 to 30 degrees, while at the these reduced frequencies by virtue of
hub, camber of up to 50 or 60 degrees the decrease in relative velocity from
would not be unreasonable. For the mid- design speed. For turbines, reduced fre-
stage compressor the camber range over quencies can range over approximately the
the airfoil span would be in the area of same range when midapan inlet velocities
15 to 30 degrees. The inlet turbine and chords are used. It must be noted
rotor blade typically could have between that geometrical considerations such as
80 and 130 degrees of turning. Thick- aspect ratio, spanwise taper of chord and
nesses of the compressor airfoils at the thickness, and other considerations can
tip could range between 2.5 and 6 percent affect these approximate ranges.
of blade chord tapering toward the hub to
values of 8 to 14 percent of blade chord. To establish a range of reduced fre-
Thickness/chord ratios for an inlet tur- quencies where forced vibration problems
bine stage could range from 10 to 20 per- have been noted, several compressor and
cent based on cooling requirements and turbine stages were evaluated. Based on
other considerations. Identification of this evaluation, the following ranges are
blade profiles into categories such as sugqested.
double circular arc, multiple circular
arc, and NACA Series 65 is no ltmger pos- Modee Reduced frequency range
sible due to the arbitrary blade shapes
resulting from improved computational First bending 0.30- 2.0
codes. First torsion 0.8 - 4.0

Second bending 1.0 - 6.0
The forces induced on the airfoils Second torsion 1.6 -10.0

by the spatial variations in the inlet or Chordwise bending 2.0 -20.0
exit flow fields are dependent on both
the flow field and blade geometry. The These values are for rotating
aerodynamic forces created by airfoil blades. For compressors the values are
motion are also dependent on these para- based on 3/4 span parameters and for tur-
meters and, additionally, the mode shape bines, midspan parameters. Coupled
of a resonant response. Figure 8 pre- wheel-blade modes of most interest, gen-
sents sketches of modes of vibration dis- erally will fall into the reduced fre-
cussed in the three example cases. De- quency range encompassed by 0.30 to 6.0.

FIPST Rf1I FIRST TORSIONAL SECOND BENDING SECOND TORSIONAL FIRST CHORDWISE BENDING

- -------- NODE LINES AND DEFLECTED
MODE SHAPES

piq. 8. Pictorial Representation of First Five Mod•s of Vibration.
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For compressor stator vanes, which also Interblade Phase Angle
experience significant forced vibration
problems, reduced frequencies are higher Having defined the forced vibration
because of the decreased velocities. For problem in terms of these parameters,
this discussion, only the rotating com- consider now the type of interactions
ponents are considered. which can result in spatial variations of

the flow fields surrounding a row of
In defining the forced vibration rotating airfoils. In Figure 9 are shown

problem in terms of flow fields, blade the major interactions between rotating
geometrical considerations, and reduced blade row and upstream/downstream sources.
frequency in various modes, a summary of The potential flow over upstream and
parameter ranges for investigation can be downstream stationary vane rows create
defined. Table 1 presents such a sum- unsteady disturbances on the airfoils.
mary. Likewise, the wakes created by the up-

stream vane row are convected into the
blade row creating a source for un-
pressures along the rotating airfoil
surfaces.

Table 1.

Summary of Parameter Ranges for Forced Vibration Investigations

Parameter Compressor Turbine (inlet stage)

Absolute velocity
Inlet Subsonic Subsonic - Supersonic
Exit Subsonic Subsonic

Relative velocity
Inlet Subsonic - Supersonic Subsonic
Exit Subsonic - Supersonic Subsonic - Supersonic

Camber
Hub c60* e1300

Tip Near zero - 20* <80'
Thickness/chord

Hub 0.14
Tip 0.025

Reduced frequency range
First bending 0.30- 2.0
First torsion 0.80- 4.0
Second bending 1.0 - 6.0
Second torsion 1.6 -10.0
Chordwine bending 2.0 -20.0

POTENTIAL FLOW INTERACTION POTENTIAL FLOW INTERACTION
VISCOUS (WAKE) INTERACTION

SI "

Zj FLOW

STATIONARY ROTATING STATIONARY
VANE AIRFOILS VANE

ROW ROW

rig. 9. Interactions Creating Aerodynamic Forces on Rotating Airfoils*



Figure 10 illustrates the change in the same perturbation as did the m air-
the relative velocity at the rotating foil at t = 0 . Occurrences then on the
airfoil inlet as a result of a velocity m+l airfoil would lag the occurrences on
defect created, in this example-._by the the m airfoil by time t = SR/Ss x T
upstream wake. The retarded velocity in and t < T . When M = N, SR = SS , and
the wake gives rise to unsteady perturba- the occurrences on the m+l airfoil lag
tion velocities both normal and tangen- the occurrences at the u vane location
tial to the undisturbed relative velocity by the time t = SR/Ss x T = T . Thus
vector. These in turn create a time they lag by one full period. For the
varying flow field around the rotating case M < N the lag time t = SR/SS x T

airfoil surfaces resulting in a periodic is greater than T since SR > SS
forcing function. The presence of the Thus, occurrences on blade m+l due to
downstream vanes creates a time varying vane n lag by more than one full
exit boundary condition for the flow a- period.
cross the rotor airfoils. Readjustment
of flow through the rotating airfoil row Assuming that alignment of any vane
induces time varying loading on the rotor and rotor airfoil yields equal inter-
airfoil surfaces. actions and that all airfoils have equal

frequencies and damping implies that a
The time varying flow field around phased relation between the motion of the

each rotor airfoil is *periodic with a airfoils exists. The phasing between
frequency equal to the product of the rotor airfoils is classically defined as
number of vanes (distorted regions) and the interblade phase angle. Therefore,
the rotational speed expressed in revo- in the forced vibration of tuned airfoil
lutions per second. Dependent upon the systems, the phased relationships ex-
number of vanes (distorted regions) and isting between airfoil motion are depen-

rotor airfoils, there exists a phase dent on both the number of periodic
relationship between adjacent airfoils. disturbances per revolution and the num-

In Figure 11, upstream vanes of number N ber of airfoils. In turbomachinery, the

are assumed to create wakes which are numbers of distorted regions, vanes, and

reacted in an airfoil row having M blades are varied and, hence, inter-blade

elements. The spacings, S5  for the phase angles can range over almost any

stator and SR for the rotor, are value.
inversely proportional to their respec-
tive numbers. Choosing a reference Consequently, in defining the aero-

alignment occurring when vane n aligns dynamics of ;he forced vibration problem,

with blade m and a reference period, T, the parametric ranges discussed in Table

which is the timt required for a blade to 1 must be evaluated in the presence of

traverse one stator passage, allows the potential and viscous distortions of the

m+l airfoil to be examined. In the case flow stream and over a wide raiage of

where Ss > SR (M > N), the m+l blade interblade phase angles! Other blade row

comes into the alignment with vane n at characteristics such as airfoil circum-

a time t = SR/Ss x T 'ater than the ferential spacing and setting angles of
reference alignment. At this instant of the airfoils relative to the centerline

time the m+l airfoil would experience must be included in these evaluations.

VABS OUT OF WAKE
.VABS

IN WAKE

VABS

4AVABS

9 u

U

ri'g. to. unsteady Perturbation Velocities created by upstream
Generated Velocity Defect.
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EXPERIMENTAL FACILITY REQUIREMENTS aerodynamic damping. For this discus-
sion, the aerodynamic gust will be de-

4 From the definition of the forced fined as the time varying loading of a* vibration problem presented in the pre- cascade of arbitrary airfoils which is
ý4 vious section, it is readily obvious that independent of airfoil movement and whichSthe measurements needed in forced vibra- is created by upstream or downstream

tion research are most properly made in phased periodic listurbances. The aero-
an operating engine environment. How- dynamic damping dill designate-the timeever, this environment is hostile with varying loading of the cascade due to
regard to instrumentation and is6lation harmonic, phased motions of the airfoils.
of parameters is difficult. To circum- The superimposing of these two fields
vent these problems, experimental inves- then yields the total time-varying aero-"" tigators have turned to specialized dynamics in the forced vibration problem.
facilities and rotating rigs in which the
essential features of the flow are
preserved, yet the environment and
conditions for acquiring meaningful Linear Cascades
measurements are much more favorable.
For purposes of this discussion, four Representation of a spanwise section
types of experimental facilities are of a turbomachinery blade by a finite
considered: (1) two dimensional recti- number of two-dimensional airfoil sec-
linear cascades, (2) stationary annular tions has been accomplished in facilitiescascades, (3) low speed rotating rigs and defined herein as linear cascades. The
(4) high speed rotating rigs. Advantages finiteness of the cascade introduces theand disadvantages of each type of problem of periodicity, which has been
facility will be discussed and their role discussed in the previous chapter"in defining the aerodynamics of forced (Unsteady Aerodynamic Measurements in
response outlined. Flutter Research). Examples of cascades"J featuring supersonic and subsonic inlet

In order to define these advantages Mach numbers are shown in Figures 12 and
and disadvantages, it is useful to define 13, respectively. The cascade picturedtwo quantities, the aerodynamic gust and in Figure 12 was designed to simulate an

M>N M=N M<N

ROTOR ROTOR ROTOR

STATOR
STATOR

STATOR
n+2 +• • n+3

m+2 n+2 m+2 m+2
- n+2

m+1 n+1 M+1Pl
- - ALIGNMENT OF REFERENCE AIRFOILS -

n m n m n m

n-1

M-1 n-1 m-1 rm-1

n-I TVt -h
ST SR %S R2S

" sss .L. -L .SS<CSR ._L

__L--,,n-3U n-2
m-2 n-2 m-23 m-3

TATION OTATION ROTATION

t•i1 . it. Phasing Relationships Baoed on lumbre of Rotor and Stator Airfoils.



outer span airfoil section ot an inlet have been developed. Data obtained from

%• fan stage, while the cascade pictured in high response pressure transducers embed-
iFigure 13 was designed to aerodynamically ded to preserve airfoil contour have beensimulate the mean section of an advanced used to determine aerodynamic damping co-

turbine airfoil design. In both cascades efficients as a function of airfoil
the flow exits the cascade at approxi- motion.
mately 3:00 o'clock. For the compressor
cascade flow entry is from approximately The major limitation in obtaininq
9:00 o'clock, while for the turbine cas- aerodynamic damping data by testing in
cade the flow enters from approximately linear cascades has been proper simula-
1:00 o'clock. Thus, the flow turning of lation of reduced frequency. This limi-
each cascade is consistent with the tation has arisen due to the spanwise
engine environment. The cascades are dynamic deflections of the airfoils
designed to simulate the velocity- fields becoming non two-dimensional, i.e., non-
relative to the airfoils. Proper design rigid body motions. Also, increasing the
of upstream nozzles and the ability to reduced frequency by increasing chord
control inlet and exit plenum pressures lengths presents difficulties in obtain-
furnish precise control of these velocity ing required tunnel mass flow rates to
fields. Sidewall and nozzle bleeds are achieve proper inlet velocities. De-

used to ensure two dimensional flows creasing the inlet velocity to increase
through the cascades. reduced frequency results in nonconform-

ance to desired test goals.

The linear cascade provides an a!

excellent optical path for examining both Achieving proper input gust loading
steady and unsteady effects in the air- for a linear cascade is extremely dif-
foil passages and near their surfaces. ficult, unless extremely low reduced

Lack of centrifugal and untwist stresses frequency data is desired. A method to
allow static pressure taps or high oscillate the inlet flow direction at an

response pressure transducers to be loca- extremely low frequency and measure the

ted much nearer critical leading and resulting time varying pressures on the
trailing edge regions than in a rotating airfoil surfaces has been used by Ostdiek

environment. This allows more precise (1976). The phasing requirements, as

quantification of both the steady and discussed in the previous section, are a

unsteady fields. prerequisite for proper gust input load-
ing to the cascaded airfoils and are not

Aeroelasticity research in linear met in oscillating the inlet velocity

cascades has been generally limited to angle. To achieve proper phasing of gust

the aerodynamic damping portion of the loading in the linear cascade would

forced vibration problem. Techniques to require varying inlet or exit conditions

oscillate cascaded airfoils at precise to each airfoil at controlled frequency

frequencies and interblade phase angles and phasing.

ULiper Bleed -
System

* 11111upper Splitter Bleed

- - - Wedge,.

Supersonic Nozzle Plenum

Porous Sidewoti
Bloed Strip -I

Lower bleedS Item I
rig. 12. Octiematic of Cascade Facility.SPig.
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Stationary Annular Cascades be simulated, with the exception of shock
impulses from supersonic exit tvrbine

"Representation of a spanwise section nozzles. Specially fabricated scr,,ens,"of a turbomachine blade by stationary rods, and vane rows can yield variatiunsairfoils arranged in an annulus has been in gust amplitudes, reduced frequencies,accomplished in facilities defined herein and interblade phasing relative to theas stationary annular cascades. The rotating airfoils. Variations in num-
annular arrangement circumvents the peri- bers of rotor and stator blades can be
odicity question arising in linear cas- used to investigate interblade phasing
c ades. and reduced frequency effects on either

the blading of rotor or atator airfoils.
Stationary annular cascades can be Spanwise effects present in rigs of this

designed to simulate inlet flows ranging type present challenges in measurement
from subsonic to supersonic, depending on not encountered in two dimensionel linear
the manner in which flow is delivered to and annular cascades. The major disad-
the cascade. Annular cascades retain vantage of low speed rigs is the low Mach
several advantages of the linear cascade number range available for investigation.
such as optical and instrumentation ac-
cessibility, centrifugal loading on the
airfoils, and control of the velocity High Speed Rotating Rig
fields. However, they suffer from the
same type of limitations as do linear High speed rotating cascades, which
cascades, i.e., obtaining proper reduced encompass a range from single stage rigs
frequencies at realistic velocities and to full engines, are the ideal vehicle in
proper simulation of the gust loading, which to make measurements of quantities

pertinent to forced vibration under
Low Speed Rotating Rig realistic inlet and exit flows, reduced

frequencies, and interblade phasing. In
This category is used to define both this environment, hiowever, optical and

the rotating blades and stationary vane instrumentation accessibility presenat
rows in single or multiple stage test major difficulties. The high centrifugal
vehicles which have low through flow fields in which the rotating airfoils
velocities, with axial Mach numbers in operate limit locations of instrumenta-
the range of 0.1. Loadings in terms of tion. Concepts to oscillate airfoil., in
pressure ratio and equivalent work are this environment to obtain aerodyna,.:.ac
usually extremely low. Primary advan- damping information require unique at-
tages in low speed facilities include tachment designs. Requirements for
optical and instrumentation accessibil- multi-channel rotating, high speed
ity, low centrifugal loadings on rotating sliprings to provide transfer of signals
airfoils, and low horsepower required for and refeirence power across the stationarydrive considerations. In low speed rigs, to rotating frame of reference introduces
both upstream and downstreasý. sts can additional complexity.
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Each type of research facility were used to obtain aerodynamic damping.
currently used to obtain experimental A special control circuit was developed
data relevant to forced vibration of to trigger inteferograms to be taken at a

. blading has both advantages and dis- specified energy flou and at specified
advantages. Experimentalists have taken airfoil cycle positiono.
advantage of the uniqueness of each
facility and have designed controlled Loiseau (1980) used measured cascade
experiments to obtain basic data over unsteady pressures from airfoil embedded
parametric ranges offered by the fac- transducers to calculate aerodynamic
ility. Examples of the forced vibration damping for comparison with bandwidth
research being accomplished in the four damping measurements on the blades of a
types of facilities illustrate the dis- working compressor. The cascade para-
cussion presented. meters were set to be similar to those of

the compressor and encompassed the stallEXPERIMENTAL RESEARCH flutter region, Mn from 0.5 to 1.0 .
Good agreement in damping was noted at

In spite of the limitations asso- subsonic Mach numbers and at Mn - 1.0
ciated with each type of facility, signi- However, large differences were obtained
ficant research data have been acquired in the transonic region after separation
and measurements made for correlation incidences had been reached.
with theory and experience. Through use
of unique and varied driving mechanisms, ONERA's linear cascade capabilities
measurement techniques (pressure, dis- are described by Szechenyi (1980). Two
placement, velocity), flow mediums, dimensional periodic flow is simulated
visualization methods, and data acquisi- for Mach numbers 0.4 through supersonic
tion and reduction schemes much insight with variations in Reynolds number ob-
and information on the aerodynamic gust tained by varying tunnel pressure between
and damping of turbomachine blading has 1.4 and 3 atmospheres. The cascade con-
been acquired. The following is a review sists of six airfoils with the two
of a small portion of what has been done central airfoils having the ability to
to obtain these data in each type of fac- vibrate in torsion (75-550Hz) or bend-
ility. ing (80-330 Hz) at resonance using a

shaker. One of these two airfoils is
Linear Cascades instrumented with embedded dynamic pres-

sure transducers. Data acquisition and
As mentioned earlier Ostdiek (1976) treatment of vibratory motion and pres-

investigated the effects of an oscillat- sure measurements is obtained immediately
ing inlet flow at low reduced frequencies in the form of a print-out.
on a five bladed cascade. This was done
in an attempt to relate the pressure Steady-state, time-variant and
fluctuation on the center airfoil to the quasi-static pressure data were obtained
varying directional change of tht con- by Rothrock (1981) from a linear cascade
stant magnitude inlet flow. Th~s ad- of five turbine airfoils undergoing
dresses the input gust loading of the torsional oscillation. Unsteady pres-
airfoil independent of airfoil ,imvement. sures were obtained from embedded trans-

ducers for six values of interblade phase
Fleeter (1976a) nddressed the aero- angle and for four expansion ratios. The

dynamic damping associated with airfoil major features of the facility are con-
motion by controlling the frequency of tinuous operation for extended periods,

Storsional oscillation and interblade mechanized test section for changing
phase angle for a cascade oZ five blades cascade incidence, schlieren optical
in a supersonic inlet flow field. Para- system, wall bleed systems and data ac-
meters varied were inlet Mach number, quisition using two digital mini-
interblade phase angle and reduced fre- computers. The drive system is a spring
quency. Data obtained were the unsteady bar and hammer arrangement using an
pressure magnitude and phase by using electromagnet on both ends of airfoil
airfoil embulded dynamic pressure trans- trunnions to ensure rigid body motion.
ducers. he data obtained showed correspondence

Tf surface pressure trends for quasi-
Boldman (1978) using a mechanical ostatic and time-variant testing.

cam driver to produce precise torsional
motion of a single DCA airfoil obtained Riffel (1981) presents cascade
schlieren motion pictures showing shock modeling concepts to preserve the
patterns moving across the blade. A critical values of the flow field for
phase lag (nominally 100*) oetween the supersonic inlet rotor blade sections.
blade motion and response of the flow Finite element methods are used to design
increased as reduced frequency increased the airfoil and spring bars to attain
from 1.04 to 1.56. appropriate reduced frequencies for tor-

sional and translational modes. The
Aerodynamic evaluation of turbine cascade airfoil is designed and fabri-

blade packets in the first three natural cated of graphite/epoxy to attain nearly
modes was carried out by Kovats (1979). rigid body motions and to reduce the
Utilizing a shaker to input or absorb driving force required to attain speci-
energy from the airfoil packets and fled amplitudes.
measicring the resulting power flow
illowed ,quantification of the aerodynamic Unsteady periodicity in a cascade
force in phase with the airfoil motion, was demonstrated by Carta (1982) through
He also used intorforometry to instan- dynamic pressure instrumentation of
taneously (2 x 10-8 see) record gas multiple blades and the sidewall at the
density variations around the first air- airfoil leading edge plane. This cam-
foil of the packet. Twenty four records cade consisted of eleven ?ACA 65-meries
were obtained for the vibration cycle and airfoils oscillating In torsion. A
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"" oatt'xt of 96 data points were obtained presence of the stator blades was ob-
base.I on two incidence angles (2, 6), tained by strain gage measurements at thethree reduced frequencies (1.44, 0.244, midspan of the rotor blade.0.302) and eight interblade phase angles(0", 45*, 90%, 135', 180*) at a Fleeter (1979) measured the unsteady
constant inlet velocity of 200 ft/sec (61 surface pressure distribution near then/see). Comparison of experimental data trailing edge of a classical isolated

with the unsteady Verdon/Caspar (1980) flat plate, a forty (40) vane classical
theory for cascaded blades showed excel- flat plate stator row and a forty (40)lent aqreement. vane cambered NACA Series 65 stator row

due to the upstream rotor wake. This was
Stationary Annular Cascades done at reduced frequencies between 14.0

and 20.0. The data acquisition was based
Addressing the aerodynamic gust, on triggered data averaging over four

Adaclhi (1979) used hot wires to measure hundred rotor revolutions. During this
the steady and unsteady velocity distri- time eighty (80) to one hundred (100)
butions between stator vanes due to wakes digitized data points were obtained. The
produced by moving cylinders upstream. rotor wake was measured using a crosswire
In addition, the above flow field was probe.
compared to the measured unsteady force
on one stator using twenty four (24) Screens were used by Bruce (1979) to
pressure transducers embedded in the produce sinusoidal axial velocity com-
airfoil. A photoelectric pickup was used ponents of specified number and magnitude
to synchronize the data acquisition to to investigate unsteady response of a
obtain the in-passage velocity distri- rotor. Measured values of the unsteady
butions at five circumferential positions lift force and pitching moment coeffi-
of the moving cylinder. The output of cients and their phase angles were ob-
the pressure transducers was averaged tained by strain gaged sensing elements
periodically to remove random data on one rotor blade. Solidity of the un-
extracting the periodic component. cambered rotor was varied by choosing 2,

3, 4, 6 or 12 blades. Cascade stagger
Whitehead (1980) shows good agree- angle, mean incidence angle and reduced

ment of predictions of force and moment fraquency were also varied. A photocell
coefficients from a finite element was used to trigger ensemble averaging of
based program with data from an annular the data to eliminate random sources of
turbine blade cascade. The cascade con- excitation (i.e., turbulence). This
sisted of sixteen (16) airfoils with each trigger was also used to define phasing
blade excited by its own driver. A con- between the force and blade response.
trol system was used to attain constant
interblade phase angle between all air-
foils. Specifically located strain gages Interaction between rotors and
were used to measure moment coefficients stators of a large scale turbine stage
based on amplitude and phase from three was studied by Dring (1981). High re-
(3) blades. sponse pressure transducers and thin film

gages were used on the rotor and stator
A transonic turbine cascade designed to identify potential flow and wake ef-

to simulate the first three natural modes fects present. Two rotor-stator axial
of vibration of a blade is described by gaps were investigated. Also studied
Kirschner (1980). Each blade is excited were the characteristics of the steady
by its own electromagnetic driver with flow over the rotor with varying inci-
the capability to prescribe and maintain dences. Fullspan surface flow visualiza-
blade to blade amplitude and interblade tion was obtained by flowing ammonia out
phasing for positive aerodynamic damping of rotor pressure taps with the surface
values. Provision for measurement of of the rotor covered by Ozalid paper.
unsteady pressure distribution is made on
one blade. Joslyn (1982) used tranaversing

(circumferential and radial) probes to
Davies (1984) uses interferometry to study the flow in a one and one-half

visualize the shock location and movement stage axial flow turbine model. Three
on the airfoil around an annular cascade element hot film probes were used to
representing a compressor fan blade tip measure instantaneous velocity behind the
section. This was accomplished by first vane, first blade and second vane.
synchronizing the laser pulses to the High response total pressure data were
blade vibration cycle using an electronic obtained using a transducer mounted in a
triggering system. Individual blade standard Kiel probe. Unsteadiness and
shakers were used to provide specified three dimensionality of the flow were
interblade phase angles and amplitude by investigated.
means of negative feedback.

Ustng embedded pressure transducers
Low £peed Rigs on a rotor airfoil, O'Brien (1982)

quantified the unsteady effects of down-
Unsteady pressures on a stator blade stream struts (four rotor chord lengths

row due to the wakes from an upstream removed) on the rotor. The downstream
rotor were measured by Henderson (1978). stator row (one rotor chord length) un-
The variation of rotor/stator spacing, steady effects were also observed.
stator solidity and stator incidence
angle were investigated. Recessed pres- Capece (1984) conducted an experi-
sure transducer data were ensemble aver- mental study of the unsteady pressure
aged to obtain the periodic component. distributions on the first stage vane row
The rotor wake was defined by using a hot due to upstream rotor wakes. Embedded
film anemometer probe. In addition the dynamic pressure transducers were used
unsteady response of the rotor-due to the with data reduction-using MPT techniques.



I1igh Speeds Rigs crystals to controlled amplitude and
phasing is provided. These crystals used

A single stage axial flcw compressor as displacement transducers along with
t est rig with removable inlet guide vanes strain gage measurements have been used

V is described by Gallus (1979a). This rig to determine aerodynamic damping by modal
was used to investigate blade-stator analysis. An advantage of using such a
interaction under subsonic conditions. facility is the lower centrifugal and
Measurements of unsteady pressures on the bending stresses due to the lower speed
mid-spaui of rotor and stator blades were of sound and low dynamic pressures. The
accomplished with e.;.bedded dynamic pres- short test time of eighty (80) ms also
sure transducers. Rotor wake shape increases chances of rotor survival in
(midspan) for points of operation were the event of a flutter instability.
also measured with a three-hole probe
which traversed circumferentially. The This concludes the survey of some of
data were examined with respect to flow the work being done using linear and an-
parameters involved (i.e., Mach number, nular cascades, and low and high speed
reduced frequency). Gallus (1979b) also rigs to obtain meaningful measurements
obtained schlieren visualization of the of forced vibration and flutter para-
flow upstream of a rotor in an axial meters. An additional survey of research
supersonic compressor stage rig. This activities in the field of unsteady flow
was accomplished by a stroboscopic con- has been made by Platzer (1977).
trol system. A rig designed to inves-
tigate the influence of rotor-blade CALIBRATION AND DATA ACQUISITION
solidity on the unsteady pressure distri-
bution of a stator at various axial In flutter and forced vibration ex-
distances downstream is described by perimental programs described herein and
Gallus (1981). Rotor wake measurements in the previous chapter, a variety of ex-

Swere made using a traversing three-hole perimental techniques were used by the
probe. Microphones were employed to investigators to acquire time-varying
measure sound pressure level downstream, data. Regardless of the technique, com-

mon concerns faced by each investigator
A blow down compressor facility were those of calibration and data acqui-

wihch employs a flow medium of Freon- sition, both of which must be performed
Argon mixture is presented by Crawley accurately to ensure data quality. These
(1980). The ability to drive the twenty- areas will addressed in the following
three (23) blades through piezoelectric discussion.

Ii

i:

I

*1 4'

Fig. 14. Setup for Calibration of Hot Wire Instrumentation.is
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Calihration To illustrate one technique for ob-
taining dynamic calibration of installed

Two types of instrumentation, hot pressure transducers, an investigation of

wires and high response pressure trans- the effect of a pliable coating over the
ducers, form the measurement basis of diaphragm of a thin line high response
manly investigations of time varying pressure transducer is informative. Ex-
aeroldynamics. Thus a general discus- perience with uncoated transducer dia-
sion of calibration techniques necessary phragms indicated that to increase test
to ensure data quality from each type longevity of surface mounted transducers,
will be presented. coating of a pliable RTV was needed. The

effect of the coating on the measurement1I't Wire Anemometry accuracy of the transducer was not known,
thus an installed dynamic calibration was

Figure 14 presents a photograph of performed."I temperature controlled, airjet system
at Allison to calibrate hot wires

for use in several experimental subsonic
facilities. Pressurized air, controlled This calibration was made using a
by a throttling valve, flows through a dynamic pressure generator which is
heat exchanger, then through a calibrated capable of varying the frequency and
orifice. The flow then passes through a amplitude of the input pressure signal.converging section, forming a jet of air This device is basically a siren-tuned
with known velocity and temperature. Hot oscillator employing a 120-hole rotor
wire probes are inserted into the jet. wheel controlled by the air pressure
At varying velocities, the output volt- level supplied to the inlet. The signal
ages o an anemometry system are re- frequency is simply controlled by the
corded. For crossed-wire probes, out- rotor angular speed. An axisymmetric
put voltages for both wires are recorded contraction horn attached to the statorat varying velocities and probe angles exhaust serves to focus the pressure
relative to the velocity. The data ob- signal to the smaller test section.
tained forms the basis for linearization Figure 15 presents a schematic of the
via the electronic features of the ane- system. In the calibration procedure,
mcmetry system, and for corrections to the input signal was monitored for
be made in data analysis. Although hot amplitude and frequency with a piezo-
wire anemometry systems, properly tuned, electric reference transducer. This high
have inherently high frequency response frequency transducer was dynamically cal-
capabilities, the addition of coatings to ibrated by the manufacturer over a range
protect the fragile wires from damage in of known pressure step inputs. In addi-
the operational environmenL can detri- tion, the transducer was calibrated for
mentally affect their performance. lower pressure ranges using a piston-

phone acoustic generator. The output
signal from the instrumented test blade

HighResnse Pressure Transducers was monitored and analyzed for signal
strength and frequency content. Figure

Techniques for calibration presented 16 presents the frequency response data
herein are discussed using thin line for two Kulites* coated with RTV and
transducers as examples, yet are applic- flush mounted on an airfoil. The ampli-
able to high response pressure probes and tude ratios were calculated over a fre-
other pressure measuring devices. quency range of 400 to 1000 Hz. The mean

RMS amplitude ratio of the Kulite output
For static calibration of pressure of the reference output was approximately

traneducers, a tank in which the pressure 0.95 in the test frequency range, and
is variable over the desired working was independent of signal frequency.
love is commonly used. Output voltages
from the pressure transducer are recorded
as functions of the tank pressure level
and supply voltage to the transducer. Many of the investigations discussed
Curves constructed yield the sensitivity in the section on Experimental Research
of the transducer in terms of voltage used thin pressure transducers installed
versus pressure with excitation voltage flush or slightly recessed from an air-
specified. foil external contour to measure pressure

fluctuations arising from induced airfoil
0ligh response pressure transducers motion. Strain gages were used to define

have inherently high frequency ranges the oscillatory motion of the airfoils in
availabi for accurate measurement, yet order to relate the time varying pres-
the addition of coatings and shields used sures with the motion. Dependent on theto protect them from erosion and damage mode shape and frequency investigated,
in the operational environment can detri- pressure transducers located along the
mentally affect their performance. In chord of the test airfoils are subjected
many instances, the pressure sensitive to varying accelerations, both normal and
diaphragm of a transducer is located such parallel to the pressure sensitive die-
that drilled holes, tubes, or cavities phragm. Dynamic strain fields vary along
connect it to the desired point of the span and chord of tho airfoil. and
measurement. Acoustic transmission and may induce time varying strains in the
loss through these passages can result in pressure transducer, thus leading to
a substantial decrease in the accuracy of erroneous data interpretation. To quan-
pressure measurements. Thus, dynamic tify these effects Allison has used an
Scalibration of the installed measuring in-vacuum calibration procedure. This
devices in necessary. calibration system has been used exclu-

sively on rectilinear cascade airfoils,
but the procedure is valid for other non-

' fVf•JCrfc' pressure transducer rotating airfoils.
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Pig. 16. Frequency Response Data for Kulitem coated with RTV.
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fromIn obtaining time varying pressures leration and strain induced voltaqe:.
from cascaded airfoils oscillatfng with a nce both are functions of the r
coherent phase angles, Allison has used power of the deflection. Analyses of the
the concept of exciting the airfoils at signals provided an amplitude and phase
their resonant frequency. This requires calibration of the transducer in terms of
exacting frequency tuning, yet requires airfoil motion. Using this calibration,
minimal power for inducing motion and unsteady pressure data acquired during
allows extended frequency ranges to be cascade testing is corrected.
investigated. In Figure 17, a photo-
graph of a bench rig developed to dupli- Calibration considerations for in-
cate the resonant characteristics of a stallation of high response pressure
test airfoil when installed in a cascade transducers on rotating airfoils have
is shown. Frequency control is via sized been reported by Grant and Lanati (1978).
torsion rods on either side o-- the end Lambourne (1980) presents a discussion on
plates representing the sidewalls of the measurements of unsteady pressure in
windtunnel. Excitation at the rigid body which dynamic calibration concerns are
rotational natural frequency of the air- noted. These investigations emphasize the
foil system is provided by small electro- necessity of developing quantitative
magnets in close proximity to dual techniques to ascertain the installed re-
driving arms providing torque input to sponse characteristics of high response

Sthe system. Strain gages, isolated from pressure transducers.
magnetic induced signals, are located on
each torsio rod and are used to define Data Acquisition
the rotational amplitude of the test air-
foil. Accurate characterization of the

frequency and phase response of the
For calibration of acceleration and measurement devices must be augmented by

strain effects, the bench rig with the a similar characterization of the elec-
desired pressure instrumented airfoil is tronic conditioning necessary to record
placed in a vacuum chamber. Power inputs the desired data. In Figure 18 a dual
and instrumentation leadouts are provided path data acquisition scheme is illus-
across the vacuum to ambient interface. trated. Conditioning equipment supplies
Oscillations of the test airfoil are required excitation voltage to the mea-
induced by providing voltages to the suring device and provides amplification
electromagnets at the resonant frequency or attenuation of the time varying sig-
of the system. Voltages from each of the nals received from the device. These
installed pressure transducers are re- amplified or attenuated analog signals

corded at varying amplitudes. These are processed via digital or analog de-
voltages represent the sum of the accel- vices.

PEU'

k ;
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, ' Pig. 17. hfOllOw Torsion Ra'1 Drive System, Bench Rig.



SN aramount among the consideiations cessing is n cesseary. Consequently, a
Of each of the elem nts of an acqu t ion common compromise is rea tim analysis
system is that of desired frequency of key variables via oscilloscopes and
ranges. Dynamic amplifiers, real time real time analyzers with complete data
analyzers, and magnetic tape recordera recordings via a multiple channel tape
generally have selectable frequency recorder furnishing off-line analysis
ranges. Analog to digital converters capability.
have digitizing rates which create ef-
fective frequency ranges. Thus, before In Figure 18, data in time domain are
final Oata are acquired, choices concern- acquired via the analog-digital converter
ing the desired frequency range must be and oscilloscope (as oscillograph) and,

Smade based on expected signal character, generally, is acquired in the frequency
domain via the real time analyzer. Time

As an example, consider the pressure based data experimental observations such
signal near the leading edge of a stator as those recorded by Dring (1981) can be
vane created by the passage of a rotor used to provide detailed insight into
wake as shown in Figure 19. Harmonic unsteady flow mechanisms. Frequency do-
analysis of the indicated raw si•qnal was main data has been extensively used to
performed and from the analysis, the determine the amplitude and phasing of
amplitude and phase of the first three pressure perturbations along oscillating
harmonics were determined and plotted, airfoil surfaces in supersonic flutter
the first harmonic corresponding to the testing as documented by Fleeter (1976).
rotor blade passage frequency. Summing The choice of using the time or frequency
the first three harmonics at each time domain for data acquisition, therefore,
value yields a fair approximation of the is dependent on the analysis techniques
pressure signal, yet true representation used in the particular investigation. To
was not obtained, indicating a necessity illustrate time and frequency domain
to obtain higher harmonic data. This data, Figures 20 and 21 are presented.
implied that all systems in the data These data were acquired from airf-ils
acquisition system should have frequency undergoing excitation from an upstream
ranges at many times the frequency of the stator row as reported by Jay (1984).
rotor blades passage. In this example The analog data in Figure 20 is pre-
all acquisition elements were configured sented as strain gage voltage output
such that a frequency range of ten (10) versus time. In this figure the sinu-times blade passage frequency was in- soidal characteristics imply blade reso-
vestigated. nance, and the coherence between the sig-

nals from the seven gages imply a phased
A second decision to be made in motion. An expanded cross correlation

configuring a data acquisition system to analysis performed on the same data is
meet a specific experimental requirement shown in Figure 21. In this figure
is that of on-line or off-line pro- maximum correlation between gages I and 8
cessing. On-line processing has the identifies the resonant frequency and the
distinct advantage of providing immediate phase trace identifies the phasing be-
feedback to the experimentalist for more tween the signals from the airfoils. For
direct control of the experiment. Yet, this experiment, on-line monitoring was
in experiments with many parameters to be performed using oscilloscopes and the
measured, equipment demands and/or test- data shown in Figures 20 and 21 processed
ing times are large, and off-line pro- off-line.

QUASI-REAL TIME

SIGNAL VOLTAGE AL
DEVICE - CONDITIONING DIGITIZED DATA

VI 4 SIGNAL EQUIPMENT CONVERTER

REAL TIME

i! Viq. 18. Schematic ot a Dual Path Data Acquisition System.
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Currently, the use of computer con- signals A and B are not acquired at thetrolled, high speed analog to digital same instant of time. In a sequential
converters to acquire high response data processor having N inputs and a digi-has been demonstrated to be exceptionally tizing rate of M points per second, anuseful in experimental aeroelasticity in- acquisition time of T second? resultsvestigations. Carta (1980) presents a in acquisition of MxT data points. Eachschematic of such a system and defines input signal would be represented by
the effectiveness in terms of experi- MxT/N data points which would be dis-mental guidance and more rapid data placed in time with respect to other
processing. Fleeter (1976) presents a signals.
discussion of a computer controlled ex-
perimental program in which the central This distinction between the twofeature was a high speed analog to digi- systems is no hindrance to proper -ac-tal converter having a digitizing rate of quisition, yet the manner in which the100,000 points per second. data is. acquired plays an important role

in the analyses which must later beFundamentally, two types of A-D performed. Digitizing rates must besystems are in current use. For this dis- specified with regards to both the number
cussion, the two will be referred to as of points needed to accurately character-parallel and sequential. A parallel sys- ize a signal and the number of points
tem will be defined as an A-D system with which can be stored via computer memory
multiple signal inputs and a connector for digital tape.
for each input channel. A sequential
system will be defined as having multiple The final item to be discussed in
signal inputs, but a single time shared the data acquisition system is the mag-converter. The differentiation between netic tape record. This recording systemdata acquired from each of these systems finds widespread use because of itsis illustrated in Figure 22. capability to faithfully reproduce analog

signals to very high frequencies. Re-Operating on identical sinusoidal cordings of signals provide a capabilitypatterns, the parallel processor acquires to recreate events in order to provide
data simultaneously from both inputs A additional details, furnish analog dataand B at time increments of T . The for off-line evaluation, and provide aquantity T is the inverse of the digi- means to alter the time base of thetizing rate as expressed in points per recorded signals.
second. In a parallel processor having N
inputs and a digitizing rate of M points In specifying a tape recorder forper second, an acquisition time of T use in an acquisition system, care mustseconds wiil result in an array of MxNxT be taken to examine the desired frequencydata points. Each signal would be re- range and the resolution required frompresented by a vector of MxT data the recorded signal. Tradeoffs between
points. frequency response and recording time

which are functions of tape speed must be
Assuming that the digitizing rate made in experiments where reloading ofM , expressed in points per second, is tape reels is not practical. Phase lagthe same for a sequential processor, data can occur between channels in tape re-as shown in Figure 22b would be acquired. corders due to head placement. The lagAt time equal zero a data point would be occurring due to this phenomenon is aconverted from signal A, followed by a function of frequency. Therefore, fordata point at T later in time from proper use in experiments when phase de-signal B Thus, the data points from termination is desired, reference signals
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with kniown phasing can be recorded at the varying data and to illustrate the data"liesired frequency and analysis of the re.- presentation used for comparison withkx 'odeC signals used to properly compen- analytical models.
sate for induced phase errors. Resolu-
tion and phase checks should be performed Aerodynamic Damping Studyat varying voltages and frequencies by
inputting known signals, and obtaining Facility Description
playback data for comparison with the
input 3ignals. Calibration signals A rectilinear turbine cascade facil-
should _c! placed on each reel of recorded ity was conceived and built as a research
"data prior to the data acquisition tool to evaluate the steady aerodynamic
sequence, providing a reference for data characteristics of turbine blade sections
analysis at a later time. having high turning. The facility is a

continuous-flow, nonreturn, pressure-
In summary, calibration techniques vacuum-type wind tunnel; the test section

ore necessary to obtain meaningful data is evacuated by two primary steam
from the high response instrumentation ejectors. Up to 10 Ibm/sec of filtered,
used in experimental efforts to under- dried and temperature-controlled air can
stand the physical processes of the be used.
forced vibration problem. No one way is
the best and only a limiteC sampling of The major features of this facility
techniques have been discussed. Special include the following:
applications of transducers will require
special calibration procedures. In o Continuous operation for extended time
establishing data acquisition systems, periods
the obvious primary drivers are those of

i: frequency capabilities and amplitude re- o A mechanized test section for changing
solution. Analog and digital systems are cascade incidence angle
capable of obtaining needed data and each
experimentalist must choose a system o A schlieren optical system for visual
which delivers accurate data in the observation and photography of the
proper format desired. High speed analog facility in both steady and unsteady
to digital systems controlled by com- operation
puters with large memories represent the
wave of the future, yet by no means do o Bleed systems on all four cascade in-
they represent the only way to acquire let sidewalls
data necessary to aid in the solution of
forced vibration problems. o A sophisticated instrumentation system

centered around two digital mini-
EXAMPLES OF INVESTIGATIONS REGARDING computers
AERODYNAMIC DAMPING AND GUST LOADING

In this and the previous chapter
(Unsteady Aerodynamic Measurements in
Flutter Research), discussions of the
forced vibration and flutter problems
were used to define the aerodynamic para-
moters and reduced frequencies of con--corn. The facilities used by various in-

- vestigators were examined to define the
* manner by which the facility could be

used for gathering appropriate unsteady
aerodynamic data. An overview of experi-
mental efforts of those investigators

#01 pointedl out unique experimental tech-
niquea, data acquisition systems, and t
imethods of data analysis. Calibration
and data acquisition concerns were pre- a. PYMWAL PAMMR

sante'l, since both must be answered to *
ensure data quality. In this section, a
more detailed discussion of experimental
efforts to acquire aerodynamic damping 2a"`
and gust loading of airfoils will be
presented. For discussion of the aero-
"dynamic damping, important to flutter and i'
forced vibration, efforts involving a
linear, two dimensional cascade con-
slsting of five high turning airfoils
will be presented. This research re-
ported by Jay (1980) was sponsored by the
W epartment of the Navy through the Naval
Air Systems Command. Definition of the

, "*" experimental program to define the un- b. SWMVL mexia
"steady response of a stator to an up-
stream gust created by blade wakes will
-be •rde. This experimental program was
sponsored by the Air Force Office of
Scientific Research and has been reported
by lleeter (1976b) And Bettner (1982).
in these discussions, the primary thrust
will b" to describe the techniques used Fill. 22. illustration of Parallel and
to acquire both steady state and time Sequential Processorm.

Ilil rll ...... I ...... ... ... ................ ...... .... ... .... ..... ......... .................. ............ ........... llim................... ' .....



In the cascade facility, the en- prevents shock wave reflections back into
trance flow to the test section-s gen- the cascade during transonic exit opera-
erated by parallel nozzle blocks, tion.
(Figures 13 and 23) which set the inlet
flow direction. The upper nozzle block For definition of the steady-state
is movable to ensure that all the flow is operation, static pressure tetphi are
directed through the cascade. The cas- placed on the tunnel sidewalls in tCe in-
cade inlet Mach number is determined by let and exit planes of the cascade. Each
the cascade geometry under test. airfoil passage is so instrumented to

allow checks of cascade periodicity,
To aid in the establishment of the using the static to inlet total pressure

cascade inlet periodicity, bleed chambers ratio. Upstream total pressure and temp-
are provided in the upper and lower erature probes are used for definition of
nozzle blocks. Adjustments of the bleed the upstream field, and a five hole
rate through these chambers allows the conical pressure probe is used to scan
inlet flow field to the cascade to be af- the exit flow field to establish losses
fected. and to check exit flow periodicity.

Active cascade-inlet sidewall This specific cascade was designed
boundary-layer control capability to en- to obtain the relative flow fields con-
sure the two-dimenbionality of the cas- sistent with an advanced design turbine
cade flow is effected by the use of suc- rotor. The inlet Mach number was
tion strips in the cascade sidewalls. established as 0.5, while by control of
Two bleed-hose connections on each strip the exit tailboards and exit air valve,
with separately variable valves provide exit Mach numbers relative to the air-
appropriate bleed flows to the front and foils ranging from 0.7 to 1.3 could be
rear portions of the sidewall. A third, obtained.
smaller steam ejector is used to evacuate
all of the bleed systems used. The ability of the high turning cas-

cade to properly simulate a turbine
The cascade has dummy end blades rotor, coupled with the need to acquire

presenting one surface to the flow, as aerodynamic damping measurements in terms
-Thown in Figures 23 and 24. The front of unsteady surface pressures in this
dummy blade slides along the movable flow regime, led to the formulation of an
upper nozzle block as the incidence experimental program. Obtaining realis-
angle is changed. Adjustable porous ic torsional reduced frequencies for in-
tailboards are hinged on the aft ends of vestigation required developing tech-
the dummy blades, serving to set expan- niques to oscillate the airfoils. in
sion ratio and exit periodicity. The phased, harmonic motion. Additionally,
porous tailbovrds generate a bleed effect designs to incorporate surface pressure
because of the lower exit plenum pressure transducers were conceived and imple-
on theiv outside surfnces. This bleed mented.

n

Fig. 23. Photograph or Turbine Rotor Cascade Ifardware.
lip
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Airfoil Cascade and Instrumentation were supported in bearings, and the air-
foil setting angle was maintained by the

The two-dimensional cascade used in clamps of the cascade drive system.
this investigation comprises five air- Paths for the instrumentation wires and
foils that have the profile of a high- pressure tubes were machined into the
turning turbine rotor section. Trun- blade surface, and the trunnions of the
nicns were attached to both ends of each instrumented blades were hollow to allow
airfoil for support in the cascade side- the wires and tubes to exit the cascade.
walls. The physical dimensions of the
airfoils are a 3.00-inch span, a 2.59- For the steady-state testing, the
inch chord, a maximum thickness of 0.53 center blade of the cascade was instru-
inch, and 112" of turning. The cascade mented with nine static pressure taps per
physical parameters are listed in Table surface for definition of the surface
S2. pressure distributions. For the time-

variant phase of the experiment, the
Table 2. center blade of the cascade was instru-

Description of Turbine Airfoil Cascade mented with 12 miniature high-response
Kulite pressure transducers. These

Physical Parameters Kulites were staggered across the center
50% span of the airfoil, five on the

Chord 2.59 in. pressure surface and seven on the suction
solidity 1.891 surface. The instrumented airfoil is
Setting angle 25.5 deg shown in Figures 25 and 26 for the loca-
Maximum thickness/chord 0.205 tion of the transducers on the suction
Leading edge radius/chord 0.024 and pressure surfaces, respectively.
Trailing edge radius/chord 0.009
Axial Chord projection 2.34 in. Oscillation Mechanism
Torsion axis location 35.5%(from

- L.E.) The desired range of reduced fre-
quency for investigation was established
by examining resonances of turbines

The cascade airfoils consisted of having coupled bending and torsion
injection-molded fiberglass with a Kevlar (blade/disk) modes. From this study a
outer wrap. Steel trunnions were at- value of reduced frequency in torsion of

"tached to both ends of each airfoil with approximately 1.0 was desired. This led

screw clamps and pins. These trunnions

Al '

'. ...... ; ,;,

JiC

SWFig. 24. Airfoil Cascade In Windows.



to the design of a torsional oscillation sensitivities, Kulite static sensitiv-
system having a resonant frequency of ities, Kulite amplitude and phase shift
approximately 350 11z. components due to oscillation, amplifier

and signal conditioner gains and phase
An analytical model as shown in shifts, and phase shifts between channels

Figure 27 was constructed to determine of the magnetic tape recorder.
the torsional stiffness required to mount
the airfoils to obtain a rigid body tor- For the calibration of the strain
sional (rotational) motion of the airfoil gages on the spring bars, the torsion
at the prescribed 350 Hz frequency. drive system bench rig shown in Figure
These requirements could be met by 29 was used. The system was first tuned
installing precision bearings on each of to the desired frequency with a specific
the airfoil trunnions, providing bearing pair of spring bars, and then the
accommodation and sealing arrangements in amplitude of the strain gage signal was
the tunnel sidewalls for each airfoil, read by a minicomputer. The amplitude
and by connecting the trunnions to a of the blade motion was obtained by
grounded plate through sized spring bars. using a dial indicator and height gage
To provide the capability to oscillate to measure the difference between the up-
the airfoil, an arrangement was used ward peak height of the trailing edge and
whereby electromagnets on each trunnion at-rest position. The difference between
acted on steel targets located at a fixed the downward peak height and at-rest was
distance from the centerline of rotation similarly obtained. The linear motion at
as established by the bearings. A bench the trailing edge was thus the sum of
rig used in calibration studies featuring these measurements, which was converted
these arrangements is pictured in Figures to torsional amplitude by using the
28 and 29. length of the blade from axis to trailing

edge. This procedure was repeated for
Calibration Procedures several amplitudes, resulting in a linear

plot of voltage versus torsional
Calibrations were performed before amplitude. The slope is the sensitivity

the time-variant data were acquired so expressed in mV/V/radian when the bridge
that the transfer functions throughout voltage is divided out. The sensitivity
the measurement system could be deter- of each pair of spring bars was cali-
mined. Included in these calibration brated in this fashion. In addition,
measurements were strain gage dynamic measurements along the span were used to

ensure rigid body rotation.

F "

i ~Fig. 25. Kulite Transducer InstaiiatiOh - Suction Surface.
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F~ig. 28. Torsion Drive System Bench Rig.
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'he Kulite pressure transducer with the airfoil surface as shown in
static sensitivities were obtained with Figures 25 and 26. This method demon-
a vacuum-jar calihrati( n rig. A quartz strated an acceleration sensitivity of
.manometer-controller was used to evacuate approximately half that obtained with an
the jar containing the Kulite-instrument- RTV diaphragm coating previously used for
ed blade to the desired pressure. The cascade airfoils.
d-v voltage output of each Kulito was
measured over a range of pressures, re- The dynamic response of the blade-
suiting in plots of voltage versus pres- mounted Kulites to an oscillating pres-
sure. The sensitivities in mV/psi were sure was not obtained. Experience with
the slopes of these linear plots. These mounted Kulites had shown that the
sensitivities compared closely with dynamic characteristics of the Kulites
manuifacturer-supplied data. are sufficient for measurements at the

frequency used in this testing.
A Kulite pressure transducer mount-

ed on an oscillating airfoil is subjected To complete the calibration for the
to forces resulting from acceleration of experiment, the gains and phase shifts of
the transducer diaphragm and strain all the other electronics were determined
transmitted to the transducer through its and stored in the computer for on-line
mounting as well as to forces from the corrections.
pressure to be measure(]. To determine
the acceleration/strain contribution to Data Acquisition and Analysis
the Kulite signal, the instrumented blade
was oscillated; in the bench rig in a The primary components of the data
vacuum. Under these conditions, no pres- acquisition system, including the equip-

. sure-induced signal war. pf'-sent. The ment for on-line and off-line analysis,
remaining signal was therefore the result are shown schematically in Figure 30.
of acrceleration/strain effects alone.
The minicomputer was used to measure the With the tunnel in operation, the
amplitude and phase shift of each Kulite steady-state data were measured, using
signal over a range of rotational blade the minicomputer system interfaced with a
amplitudes. The data plots of signal Scanivalve pressure cabinet and crossbar
versus torsional amplitude were linear, scanner. Steady-state periodicity was
A calibration of acceleration effects was established at the desired expansion
thus obtained and stored in the computer ratio, and a cone-probe exit survey was
data analysis program to allow correc- made to yield the aerodynamic perform-
tions to the final data. These effects anco, wake definition, and mass-averaged
were less than 5% of a typical pressure properties. Schlieren photographs were
measured during time-variant testing. also taken at the transonic exit opera-

ting points to show trailing edge shock
The transducer mounting technique structures. The computer listed each

used for this cascade instrumented air- measured pressure, including the surface
foil featured a perforated metal screen static pressure of the instrumented
cover over each transducer, made flush center airfoil.

SCascade Airfoil

Magnetic bxritera

* ,Control Term[ytl

Digital Computer$K Word Memory

Pros,,o, i r°i'a'°°'" m st!"
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VFor the oscillating airfoil testing. Presentation of Data
the center airfoil was replaced with the
,iirfoil instrumcenlted with high response To provide experimental data for
prtessure trans~ducers. Operating condi- examination of the adquacy of various
tions as described by the steady-state analytical models, a presentation format
da ta ol'tained previously were re- in which normalized pressuxe coefficients
cstalliusb.ýd and the airfoils were oscil- and phase lags for each of the trans-
latedi at varying interblade phase angle ducers was adopted. The normalized
with amplitudes controlled consistent pressure coefficient was defined as the
with available driving energy. To obtain amplitude of the measured unsteady pres-
the phased motion, the 8K Word Memory sure divided by the product of twice the
Computer was prograrmmed to switch power inlet dynamic head and the rotational
to each pair of electromagnets on each of amplitude of the instrumented airfoil.
the five blades in the cascade. Since The phase lag for each transducer was
perfect tuning of the cascade airfoil referenced to the motion of the same
sLuspension systems was not possible, each airfoil. These coefficients and phase
airfoil operated near its resonance fre- lags were plotted versus their position

tuency. The phase shifts occurring in a along the projected chord of the airfoil.
lightly damped system in the neighborhood Typical plots are shown in Figures 31 and
of its vesonant peak amplitude resulted 32.
i, discrepancies in the blade to blade

__ desired interblade phase angles. A cross Further data analysis yielded
correlation analysis programmed on the similar plots representing the pressure
16K Work Memory Computer was used in differences and phasing across the air-Sconjunction with the sequential A-D foil. Integration of these pressure
system to obtain actual phasing between differences over the chord length could

. the blade motions as indicated by the then be accomplished to furnish the un-
strain gages on each spring bar. This steady lift and moment coefficients due
on-line feature allowed phase corrections to the rigid body rotation of the air-
to be entered via the smaller computer. foil, and thus determine the aerodynamic

damping.
After the desired interblade phase

angle was established, the signals from
the Kulite pressure transducers were
recorded on the magnetic tape recorder

., 1with a center-blade strain gage signal
for phase reference.

TORSIONi CASCADE
The recorded Kulite signals were SLIUFACZ PRSSURE APLITUDtS

analyzed off-line with the aid of the 1.5:OTAL TO STATIC EAnsXPSION R::O
analog-to-digital multiplexer and the ,90" I.'SIBLuun PHASE ANCL
minicomputer. An averaging technique was PREssuRE suuRActused to establish raw signals. These SUCTI0N SURACE

signals were then corrected as described
by calibration information. Pressure
amplitude and phase angles were thus
obtained for each Kulite on the airfoil 0.3
eurfaces. 2.0

In the processing of the Kulite sig-
nah', a data enhancement scheme was used.
A recorded reference signal, the square
wave voltage delivered to the electro-
magnets on the center airfoil, was elec-
tronically shaped and provided a trigger 0 0.:
to the A-D system. Upon triggering,
digitizing of the analog signals was
performed over a time period equal to six

* ,,cycles of oscillation. The digitizing W

I, process and the number of points acquired 1.0
was controlled by the computer. These
data were arranged internally in the
computer and the computer then initiated
acquisition of a similar data set from 0.1
the taped signals. One hundred data sets
were thus acquired, representing samples
from different times in t' recorded test
sequence. Averaging eact digitized data CCC
point corresponding to a precise time of 0 0
acquisition and transducer for the 100
samples was accomplished to obtain a six ) 0
cycle enhanced digital representation of 0.0 0.0
the analog signal. This digital repro-
sentation was then analyzed using Fourier 0 .3 .0 60 so 100

techniques to furnish both amplitude and ?PCtCc i tcitcE, tORi0
phase of all signals referenced to the
moition of the center airfoil. All phase
andt amplitude corrections necessary based
on calibration Information an described
previously were made via the computer to
obtain representation of the data in Fig. 31. Normalized Pressure
engineering unite. Coefficient.
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Fig. 32. Phase Lag, Pressure Surface. Fig. 33. Low Speed Compressor Rig
Facility.

Gust Loading of Stator Vane
Table 3.Facility Description Low Speed Compressor Design Input

In this investigation, a Low Speed Flow rate, W18/6 31.01 lb/sec
Compressor Facility (LSCF) was used. The Tip speed, Ut//e 183.50 ft/sec
blading and flow path of the LSCF have Rotational speed, N//I 876.30 rpm
been designed to reflect realistic aero- Stage pressure ratio, Rc 1.0125
dynamic values of blockage, blade loading Stage efficiency, nTT 88.1%
and loss levels, and tip clearance, along Inlet tip diameter, Dt 48.00 in.
with realistic geometric design para- Hub/tip radius ratio, rh/rt 0.80
meters that are typical of aft stages of Blade span, £ 4.80 in.
modern multistage compressors. Also, the Blade chord, Cb 4.589 in.
Reynolds number at the compressor inlet Blade aspect ratio 1.046
is typical of moderh compressors, i.e., Blade solidity, Cb/s 1.435
greater than 200,000. The blading and Vane chord, Cv 5.089 in.
flow path are physically large enough to Vane aspect ratio, 8/Cv 0.943
allow high-quality, detailed endwall Vane solidity, Cv/s 1.516
boundary layer measurements to be made
over the entire endwall.

Nearly the entire axial length of
Resulting geometric and design point the flow path features a transparent

aerodynamic conditions for the low speed Plexiglas casing sector that covers aiscompressor, along with representative circumferential extent of 108 degrees.
airfoil geometry, are listed in Table 3. This transparent casing permits a
Forty-two blades were used in the rotor utilization of flow visualization tech-
design. The design features high camber niques.
with fairly large deviation angles near
the hub region. Maximum thickness varies The assembled test rig with 1.0
from nearly 7% of chord at the hub to 4% aspect ratio blading is shown installed
at the tip. The blade chord varies in the test facility in Figure 33. Fore
linearly with radius and yields a solid- and aft center bodies are supported and,
ity of about 1.6 at the hub to 1.3 at the hence, blade and vane end clearances are
tip. Blade incidence was set between established by five struts located in the
+1.2 to -1.0 degree limits. Fiberglass far front of the flow path and five
material was used for the blade profile struts located downstream of the Stator.
and platform. The fiberglass material The struts are 10% thick 65 series
was mwlded around a flat steel spar that symmetric airfoil contours.
passed from the tip section of the blade
down through the blade and was welded to Table 3 shows that both the overall
a steel base plate. The blades are held rig and the airfoils are large. The
In the wheel by a T-shaped base arrange- large airfoils permit detailed, accurate
ment that allows blades to be easily studies to be accomplished without

04 changed In the wheel without disturbing having to resort to extreme miniaturiza-
the basic wheel design. tlon of-instrumentation.



-'igure 34 illustrates the low speed Steady-State Instrumentation
co:mpres sor path, showing the blade and
vane locations along with the trans- Steady-state instrumentation con-
parent windows and the arrangement of the sists of multiple-element total pressure
rotating components. The flow-path hub/ rakes distributed circumferentially a-
tip radius ratio was held constant at 0.8 round the annulus at the stage inlet,
for a large distance both upstream of the stator inlet, and stage exit planes;
rotor and down-stream of the statcrr. boundary layer rakes on the hub aad tip
This flow-path contour not only simpli- walls at the rotor inlet and stator exit;
fied inlet and exit station instrumenta- multiple-element total temperature rakes
tion design but also provided the axial at the stator inlet and exit; and static
length upstream of the rotor to dictate pressure taps distributed around the
the characteristics of the rotor inlet annulus on the hub and tip walls and
boundary layer. axially through the stage. This in-

strumentation arrangement is illustrated
Vane Design in Figure 35. In addition, 15 static

pressure taps are arranged on the tip
The vane features a large camber wall of one stator passage to allow

dngle variation in the hub region, a mapping of the vane tip static pressure
radially constant maximum thickness/chord distribution. The stage inlet total
distribution, and incidence that varies temperature is measured in the plenum
from about 0 to -1 deg. Vane solidity chamber located upstream of the flow-path
varies from 1.68 at the hub to 1.35 at annulus. All of the pressure instrumen-
the tip. Forty vanes were incorporated tation is connected to a six-unit 48-
in the stage design. Fiberglass material channel Scanivalve, interfaced with a
forms the airfoil profile. It is molded Digitec scanner and driven by a Hewlett-
around a steel spar that passes radially Packard (HP) Model 2117F computer.
through the vane and is welded to the Differential (0-1.0 psid) Druck pressure
steel trunnion. The vane/casing inter- transducers are employed in the Scani-
face design allows the vanes to be reset valve. A deadweight system pi.vides
over i20 (leg. from design setting angle. reference pressures of 0.0, 0.5, and 1.0
Figure 34 shows the vanes cantilevered psia to the Scanivalve transducers for
from the casing with a stationary endwall continuous on-line calibration of the
under the vane hub. Table 4 summarizes pressure measurement system.
the compressor design by presenting mean-
section aerodynamic and geometric design Radial/circumferential hot-wire ane-
values. mometer surveys are performed in the exit

planes of the rotor and stator. In addi-
Table 4. tion, radial/circumferential surveys can

Airfoil Mean-Section Mechanical be performed at two axial locations in-
and Aerodynamic Characteri•-tics side the stator passage. Streamwise

velocity and air angle are determined by
Type of airfoil 65 ser. 65 ser. positioning the probe at a fixed axial,

* Chord, C--In. 4.589 5.089 circumferential, and radial location, and
solidity, 0 - C/s 1.435 1.516 then by yawing the probe until the output
Camber, ý--dog 20.42 48.57 voltages of the two hot-wires are the
Aspect ratio, AR - L/C 1.046 0.943 same value. DISA constant-temperature
1Leading edge radius/C 0.0044 0.0049 hot-wire anemometry equipment is used.
Trailing edge radius/C 0.0028 0.0030 The outputs are linearized and compen-
[nlet angle, ([--deg 59.38 37.84 sated for temperature differences that
IExit ar3gle, 32 -- dec; 42.41 0.00 exist between the velocity calibration

jet air stream and the rig flow field
,su coefficient., G) 0.043 0.056 environment.

Diffusion factor, 1)f 0.449 0.410

Tronsparent window

4'4

tow tPead rseaoth Compressor

4C9181•A

If 0 yptg. 34. t ow tpeodl Compressor Flow loath.
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A icabilit of LSCF' Gust Kulite thin-line transducers were located

a nvestiations on the surfaces of four stator airfoils.
These transducers were flush-mounted byThis facility was examined relative grooving the surface. The grooves#

to its potential in carrying out experi- designed to accommodate the transducer,
ment'A studies relative to forced vibra- bonding agent, and lead wires, extend
tion, namely the effects of gust loading from the particular transducer through
on the stator vanes created by the rotor the stator trunnion. The grooves are
wake and the potential interaction ef- clearly seen in Figure 36 on two of the
fects between the rotor and stator which mean-section instrumented airfoils used
creates unsteady loading on the rotor in this experimental program. Figure 37. airfoils. The large, thick blades and shows the location of Kulite pressure
stators were ideal for installing high transducers on the hub and tip sectionsresponse pressure transducers and a hot- and leading and trailing edge regions ofwire system was available for quantifica- two additional instrumented airfoils. A
tion of the rotor wake velocity defects, view of the crossed-wire probe used in
The low axial Mach number of approxi- the experiment is shown in Figure 38. In* mately 0.1 was viewed as low relative to this photograph the wire is located near
the data base from engine testing, yet the center span instrumented airfoils.
was deemed acceptable since gust data was
critically needed to provide an experi- Data Acquisition System and Calibration
mental data base for examining the
accuracy of analytical models. The blade The central element in the acquisi-
passage frequency of 630 Hertz yielded a tion of the time-variant and steady-Sreduced frequency based on the stator state data in this experiment is a
vane chord and inlet relative velocity of digital computer with its specialized
approximately 14.0, a value consistent peripheral hardware. An HP Model 2117F
with engine experience. Therefore, the computer operating under RTE1VB softwareLSCF was selected to carry out investiga- is used with a Preston GMAD-2 analog-to-
tions regarding gust loading of the digital (A/D) conversion system to ac-

* stator vane and potential interaction quire data at a rate of up to 248,000
* . effects on the rotor airfoil. In this points per second. For data acquisition

discussion, only the investigation re- in the steady-state mode, the computer is
garding gust loading will be presented. interfaced with a Digitec scanner, which

allows conversion of Scanivalve voltages
Dynamic Instrumentation to appropriate pressures as well as cal-culation of operating temperatures.

For time-variant measurements on the
stator, miniature pressure transducers Calibration of the steady-state
and a crossed-wire probe were used. pressure measuring system is accomplished

*14;
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- aut-1atically and on-line. A deadweight were read into the computer for trans-"" system provides reference pressures of 0, ducer voltage conversions to pressure.
0.5, and 1.0 psia to the Scanivalvetrantsducers. Ahen the computer reads Calibration of the crossed-wirethese pressures, a linear curve fit is probe is obtained via a controlled temp-used to establish a calibration curve for temperature air jet capable of furnishingeach of the six transducers. Then the velocities over the range of interest.* data channels are interpreted, based on Data at standard temperature (room* the proper curve. For time-variant pres- ambient) are obtained and represent a,. sures, the instrumented stators were baseline velocity versus wire outputplaced in a pressure chamber, and five voltage curve. This curve is linearizedlevels of pressure, ranging from 8 psia electronically using built-in features ofto slightly above ambient, were used to the anemometry system. Corrections forconstruct a calibration curve for each of temperature are made internally in thethe installed transducers. These curves computer based on the temperature dif-

ference from the baseline value.

4

I8-7 9 v

Fig. 36. Vane Mean Section Dynamic Instrument Locations.

FiI 37. Radial and Chordwise Suction and Prussure Surface Transducer
instrument Locations.
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Calibrationi of the unsteady pressure sampled for N blade passages and over M
transducers electronic network was per- rotor revolutions. These rotor revolu-
"formed by applying sinusoidal voltages at tions were not consecutive because a
"expected amplitudes from the Kulites over finite time was required to operate on

N, a frequency range of 100 tin-10,000 Hertz. the N blade• passage data before the
This procedure yielded the electronic computer returned to the pulse acceptance
amplified gains and phase shifts which mode which initiated the gathering of the
were later used in data reduction. The data.

, '. A-D connector was calibrated by the same
process. Preliminary ýIourier analy,,is of the

wake data at the blade passago frequency

SData Acquisition obtained from oscilloscope traces from
the hot wires indicated that the fifth

The steady-state data acquisition harmonic had a content approximately 0.2
followed the standard compressor eval- of that of the first harmonic (blade
uation procedure. At a selected cor- passage frequency). Therefore, the
rected speed, the compressor was stabi- sampling rate of the A-D converter was
lized for approximately 5 minutes. Fol- controlled such that at least twenty
lowing this period, the on-line computer harmonics of the time varying signals
was used to initiate the acquisition of could be acquired. Computer algorithms
the temperatures and pressures necessary were established to control the number
to generate the corrected mass flow rate, of data points acquired at varying rotor
overall pressure ratio, and corrected speeds based on the rotor blade passage
speed. A scanning of the reduced data frequency, the harmonic resolution de-
was then made to assure data uniformity sired, and the number of rotor blade pas-
and to ascertain the operating point, sages to be in a sample.

The time-variant data acquisition A slight variation in wake profile
and analysis technique used was based on existed from blade to blade, as deter-

a data averaging or signal enhancement mined by examining the averaged data for

concept. The key to such a technique is up to 12 blade passages. At the reduced

the ability to sample data at a preset frequencies of these experiments, the

* time. For this investigation the signal vane surface was influenced primarily by

of interest was generated at the blade three blade wakes. Hence data was

passing frequency. Hence, the logical initially acquired for three blade
choice for a time or data initiation passages. Also, it was found that the

reference was the rotor shaft and an unsteady data were essentially unchanged

optical encoder was mounted on the rotor when averaged for 100, 200, or 400

shaft for this purpose. This encoder samples. Based on this, 200 rotor

delivered a square wave voltage signal samples were used for the dynamic data

having a duration of 1.5 microseconds. acquisition. Later studies indicated

The computer analog-to-digital converter that only two blade passages were neces-

was triggered from the positive voltage sary.
at the leading edge of the pulse, thereby
initiating the acquisition of the time From the Fourier analyses performed

unsteady data at the rate of up to on the data both the magnitude and phase

248,000 points per second. The data were angles referenced to the data initiation

7<1 7u

rig. 38. View of Typical Hot-Wire Installation In Low 8peed Compressor Vane Row
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VELOCITIES WITH NOMINAL FLOW

VELOCITIES IN WAKE REGION
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Fig. 39. Reduction in Relative Velocity Created by Blade
Wake Creates Corresponding Velocity.
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pialue were obtained. To then relate the occurrences at the hot-wire and the vane
wako generated velocity profiles with leading edge plane were then related to
tie tUr.face dynamic pressures on the phase differences between the perturba-
instrumented vanes, the rotor exit veloc- tion velocities and the vane surface
ity triangles were examined. Figure 39 pressures, using ccncept8 illustrated in
shows the change in the rotor relative a previous section.
exit velocity which occurs as a result of
the presence of the blade. A deficit in To simplify the experiment-theory
the velocity in this relative frame correlation process, the data were ad-
creates a change in the absolute velocity justed in phase so that the transverse
vector as indicated. This velocity perturbation was at zero degrees at the
change is measured via the crossed hot- vane suction surface leading edge. From
wires. From this instantaneous absolute the geometry indicated in Figure 40, the
angle and velocity, the rotor exit time at which this would occur was
relative angle and velocity- and the calculated and transposed into a phase
magnitude and phase of the perturbation difference. This difference was then
quantities are determined, used to adjust the pressure data from the

suction surface. A similar operation was
For wake measurements, the hot-wire performed on the pressure surface data so

probe was positioned between the rotor that the surfaces of the vanes were tiue
and stator. To relate the time based related; i.e., time relating the data
events as measured by this hot wire resulted in data equivalent to that for a
probe to the pressures on the vane single instrumented vane. Following this
surfaces, the assumptions were made procedure the time varying pressure dif-
that: (I) the wakes were identical at ferences across a single vane at all
the hot-wire and the stator leading edge transducer locations were calculated.
planes; (2) the wakes were fixed in the
relative frame. Figure 40 presents a In addition to the unsteady pressure
schematic of the rotor wakes, the instru- measurements, radial and circumferential
mented vanes, and the hot-wire probe. scans using the crossed hot wires allowed
The rotor blade spacing, the vane determination of the complete steady and
spacing, the length of the probe, and the unsteady velocity fields in the region
axial spacing between the vane leading immediately upstream of the stator row.
edge plane and the probe holder center- Illustrations of the steady field in
line are known quantities. At a steady terms of absolute velocity (vane relative
"operating point the hot-wire data were velocity) and inlet angle are shown in
analyzed to yield the absolute flow angle Figures 41 and 42, respectively. In
and the rotor exit relative flow angle. Figures 43 and 44, the time varying vel-
Using the two assumptions noted, the wake ocity components along and normal to the
was located relative to the hot wires and steady flow vectors are shown. These
the leading edges of the instrumented components represent the harmonic fluctu-
vane suction and pressure surfaces. From ations occurring at a frequency equal to
this, the times at which the wake is the rotor blade passage.
p:-esent at various locations was de-
termined. The incremented times between

Vane

leadige - 20 Tip
edge 125 13 Absolute velocity

130 contours, Uabs-ft/sec

S13 135 K.-Vane leading edge

• Circumtere.. ntiaI location,182)2

13~cu 125-05

,020

.14

Fiq. 41. Vane Loading Fdge Absolute Velocity Contours at Near-DesignS4Operating 
Conditions.



Vine

contours, a-deg

Vane leading

*03

55O*
55*-

60 605-

65'05'

Circum~ferential location, 0O-deg+ Hub
TE82-6053

Fig. 42. Vane Leading Edge Air Angle Contours at Near-Design
operating Conditions.
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Va ne I
l e a d i n g - l ip•6

Streamwise fluctuating
velocity component

contours, AU- ftlsec

2 2 Vane leading
edge

6
614%

'0 -- - 1Hub

circumferentiat loation, O-deg

' , E82-6054

Fig. 44. Vane Leading Edge Transverse Fluctuating Velocity Component
AV at Near-Design Operating Conditions.

establishing critical time varying aero-

DATA PRESENTATION dynamic data needed for the solution of
flutter and forced vibration problems was

For the quantification of the un- examined. For illustration of pertinent
steady loading of the stator vane due research being accomplished in each type
to the upstream generated wake, the use of facility, a sampling of investigationc
of normalized pressure coefficients and documented in the literature was used.
phase lags allowed the chordwise distri- Unique features of data acquisition tech-
bution of unsteady pressures to be de- niques, methods to induce blade oscil-
scribed. The normalization was ac- lations, and instrumentation concepts
complished by dividing the pressure were presented to provide an awareness of
fluctuation magnitudes at particular the different approaches which could be
harmonics of blade passage frequency by used. Common concerns regarding calibra-
the product of twice the stator inlet tion and data acquisition systems were
dynamic head and the appropriate harmonic discussed in a broad overview. The
transverse velocity perturbation expres- multiple aspects of experimental flutter
sed as a fraction of the inlet velocity, and forced vibration research were
Typical formats for the presentation of focused by examination of a linear cam-
these data are illustrated in Figures 45 cade and low speed compressor experi-
and 46 for the pressure and suction mental programs.
surfaces of the transducers located at
the stator mid span. Arrangement of data From this chapter, a scope of the
in this form allows analytical predic- parametric ranges and the methods which
tions to be evaluated on a surface to could be used to construct meaningful
surface basis. Arrangement of the data forced vibration research programs has
in terms of unsteady pressure difference been established. Supplementary to the
and unsteady lift and moment was also coherent gathering of time varying data
made. should be quantification of the steady

flow fields in sufficient detail to
The discussion of these two experi- define wakes, potential disturbances,

mental programs was used to illustrate and the other mechanisms creating
some, not all, of the concerns involved spatially oriented disturbances which
in the experimental aspects og aero- act to excite blades to resonance, then
elasticity pertinent to forced vibration to failure.
and flutter. Specifically, they were
used to provide physical examples which Recommendations for future experi-
are not always obvious in summary dis- mental research could be stated simply
cussions, as the need to gather data in the

correctly simulated operational environ-
SUMOARY ment of actual turbomachinery blading.

Notable among the experimental programs
By defining the operating environ- discussed has been the omission of ex-

ment of turbomachinery lhading in terms perimontal * programs directed toward
of absolute and relative velocity establishing a data be@* for blade
fields, airfoil dynamic mode shapes, and motions involving chordwise b*nding.
reduced frequency ranges, the applic- Thus, research in this direction should
ability of various flow facilities in be accomplished.
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S, UNDERSTANDING FAN BLADE FLUTTER THROUGh LINEAR CASCADE
AEROELASTIC TESTING

Edmond Szechenyi

O.N.E.R.A.
29, Avenue de la Division Leclerc

92320 Chatillon, FRANCE

INTRODUCTION (4) Supersonic started flow flutter in
bending, characteristic of the high back

The development of modern turbo-jet pressures approaching the limit of un-
engines is tending increasingly towards started flow. The fundamental mechanism
the use of inlet fans having blades with of this instability may well be closely
sharp leading edges and relatively low akin to unstarted flow flutter (see regime
natural frequencies of vibration. These (2) above).
characteristic3 increase the propensity
of the blades to flutter.

These four distinct forms of fan
Tests on actual machines, Loiseau et blade flutter are shown on the typical op-

al (1975), have shown that a variety of erating diagram of Figure 1. It must be
blade instabilities can exist. For in- stressed that there ir at present nothing
stance, flutter can occur on one or more absolute about this classification but
blades independently of the neighboring that it does seem to encompass the clearly
blades of each, or else flutter vibra- detected forms of flutter occurring in
tions can affect all the blades of a modern fans.
rotor which then vibrate as "rotor
modes". In this case, the deformations This paper attempts to give some phy-
and frequencies of all the blades are the sical insight into the causes and origins
same and they vibrate with a constant of these different flutter regimes. The
relative phdse angle. discussion is based on experimental data

-obtained in a linear cascade. For sub/
Fan blade flutter also occurs in transonic flutter the validity of the cas-

different flow regimes. Four different cade measurements is tested by compar-
forms of flutter can thus be distin- ing these with actual compressor data.
guished, though the differences in some
cases might well be rather tenuous.

In order to interpret the test re-
Fan blade mode shapes are frequently sults, some understanding of the experi-

fairly pure in either bending or torsion mental "philosophy" as well as of the
and flutter in the different flow regimes facility used is necessary. These will be
will usually appear for one or other of described before actually discussing
those mode as simple degree of freedom flutter.
flutter.

The four known flutter regimes can

be described as follows:

(1) Sub and transonic torsional flutter. Pf.mure
This is generally Known as stall flutter, raliot
but as later descriptions will show, the
term "stall" is somewhat incorrect as the
flutter is not so much dependent on stall
as on flow separation.

Flutter appears When back pressure
(angle of attack) is increased. One or S

* more blades will start vibrating at large
amplitudes and as back pressure increases ZVI*
still further all the blades will eventu-

ally vibrate, possibly according to a ro- .
tor mode if they are sufficiently 3 1
closely tuned in frequency.

(2) Supersonic .unstarted flow flutter in I \.:
bantling. This torm of instability is Us-
quently known as "supersonic stall
flutter" but here again the justification
of the term "stall" is questionable. The
aeroolastic behaviour of a fan under
these flow conditions is at present not
very well known. Flo*

(3) Supersonic started flow flutter in
torsio-W, chgacrer1stlc of low pressure

S ~ oper-ation. This instability often deter-
mines the operating limit of a fan since
its limit crosses the operating line Fig. I Mams Flow-Pressure Ratio Field of
(Fig. 1). Compressor. Stability Limits.
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AEROELASTIC TESTING Of the advantages of linear cascades,
simplicity overrides all otherst simplic-
ity in designj simplicity of in-General strumentationi simplicity in applying a
well-defined vibrational motion to the

Different forms of aeroelastic test- bladesi simplicity in the analysis and in-
ing can be employed depending on the pur- terpretation of results. This is what
pose of the tests. A manufacturer may makes the linear cascade the most widely
wish to predict the flutter behaviour of used tool in aerodynamic or aeroelastic
a future fan while still at the design turbomachinery research.
stage, or else he may require flutter
boundaries on an existing machine. In
both cases the testing can be relatively Aeroelastic Testing in the Present Study
simple and limited to the measurement of
the free vibrations of the blades as a The Linear Cascade Facility
function of compressor parameters.

In attempting to understand the
However, this form of testing is in- causes of flutter it is essential to be

sufficient for a physical insight into able to analyze in detail the aeroelastic
aeroelastic behaviour. This type of re- forces acting on the blades for varying
search requires that at least some know- flow parameters. The linear cascade is
ledge of thm actual aeroelastic forces ideally suited for this purpose.
is obtained.

The linear cascade wind tunnel built
Aeroelastic testing may be carried at ONERA in 1977 for aeroelastic research

out in fixed annular cascades, linear is shown in the photograph of Figure 2 and
cascades or simply on an existing com- schematically in Figure 3.
pressor. Each has its advantages, incon-
veniences, and applications: The tunnel is of the blow-down typo

and is connected to a compr.ssed air
source at 9 atmospheres. The total volume

Full compressor rig testing allows for of the compressed air reservoirs is such
the measuring of the true behaviour of that test run times in excess of 10
the blades and gives the real flutter minutes can be achieved at transonic flowlimits. obviously it can in no way be a speeds.
predictive tool and is thus not applica-
ble in the compressor development stage.
Moreover, the complexity of the instru-
mentation usually limits measurements to
blade vibration levels.

Cascade& have a more "research and devel-
opment- vocation. Annular cascades
usually consist of a fixed rotor repre-
senting the fan to be tested. The blades
are instrumented at will (strain gauges,
pressure transducers) and in some cases
are mounted on electrodynamic shakers
so as to enable true aeroelastic measure-
monts, Whitehead et al (1976), Kobayashi
(1983), Boelce and Schlaefli (1984). 7
The inlet flow is given the necessary
rotation by means of guide vanes. The
advantage of annular cascadet over full Fig. 2 View of the Cascade Wind Tunnel.
compressor rigs is thac instrumentation
is much simpler to implement thus allow-
ing for resoarch studieq. On the negative
side a number of points can be made:
the flow simulation neglects centri-
fuNal effects? aeroe'astic measurements
on cantilevered blades are not easy to
interpeety three-dirensional effects can
give an overcomplicated utiateady pressure
distribution picture when attempting to
obtain some physical insight.

Linear cascades are used exclurively for
reseakch and--predictions, Boldman at al
(1981), Caruthars and rif:4-1 (1980),
Arnoldi et al (1977), ruh)tltz (1976),
Tanaka et at (1964). Blade profiles are
two-dimensionax and thus results are
strictly speaking applicable to only one
section of a fan bl&de. The cascade is by
definition finite as against ay annular
cascade which is infinite as seen by the _ _,_____--_____ -_
flow. This need not be a very important , ,-
handicap if the number of bladeo in the ,
linear cascade is sufficiently large for .
all interactive forces to be measured.
However, god flow periodicity can be dif-
ficult to generate while tn an annular Fig. 3 Schematic View of the Straight
cascade perfect periodicity is inherent. Cascade Tunnel.
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The lincar cascade should simulateC

4tho rotor as closely as possible to I
eciable the study of the action of the
various parameters on blade stability, or
The most important, and most. easily varied
paramcters are considered here, namely:
flow speed, angle of attack (deviation), Re(CT)= C+ - _-(CA co mO - C sin no)
freqtoncy of vibration, chordwise
position of the pitching axis (torsionalmodes). pressure ratio (for started Im(CT)- Cs Y (CA sin me)
supersonic flow only).

The wind tunnel can be fitted with where n is the blade index:
three different nozzles: for Mach numbers

1.2 and 1.4. and for sub/transonic flow n - 0 is the vibrating blade
giving Mach numbers from 0.4 to 1.0.

n < 0 are the "upstream" blades
The facility is so designed that the

angle of attack can be adjusted by rotat- n ) 0 are the "downstream" blades
ing the entire cascade (with the dif-
fuser) about its center which is set on Cn is the complex coefficient measured on
the leading edge line. This allows vari- blade n

ations in the angle of attack while leav-
ing solidity and stagger angle unaltered. 0 is the blade-to-blade phase angle.
Angle of attack variations simulate the
effect of choking at the inlet of the
compressor at constant turning speeds for This assumption considerably simpli-
subsonic, transonic, and unstarted super- fies the experimental set-up but above all

sonic flow. it allows a more intimate analysis of
aeroelastic behaviour as direct and coup-

The cascade is composed of from 7 to ling terms are measured and assessed sep-
9 blades. The blade length (tunnel arately. It should also be noted that

width) is 120 mm. The chord-length blade-to-blade phase angle is not an ex-

depends on the stagger angle and solidity perimental parameter but merely appears

of the cascade and is normally between in the calculation.
80 and 100 mm.

The practical consequence of this

Principles Underlying Aeroelastic Testing assumption is that only one blade must be
made to vibrate and only one blade needs

Aeroelastic forces in a cascade are to be instrumented in order to measure

those induced on a blade by its own vi- aeroelastic coefficients. The relative

brating motion or by the vibrations of positions of these two blades in the cas-

neighbouring blades. cade must be variable in order to measure
all the terms. When measuring the direct

Aeroelastic measurements yield un- coefficients these two blades are of

steady coefficients of lift and moment. course one and the same.

These are either "direct", as in-'-he case
of forces acting on the vibrating blade, In practice the vibrating blade has a

or "coupling" coefficients when the in- fixed position approxiwicýtely half way down

fluence of the vibration of neighbouring the cascade while the instrumented blade

blades is considered. can take up any of the blade positions in
the cascade.

The aeroelastic force coefficients
are determined as the transfer functions If this assumption of superposability
between the vibratory motion and the were not made, all the blades of the cas-

resulting lift, moment or pressures cade would have to vibrate at exactly the
complex coefficient same frequency and amplitude with any

given constant blade-to-blade phase angle.
Whilst the complexity of the design of

5F(t)e dt such a test rig is tremendous Boldman
0 et al (1981), the tests yield results

C-c/+iC" 2S (ethat do not allow an assessment of the
(1/2) PVSf i,(t)e dt relative importance of direct and coupling

0 terms.

where F(t) and ,(t) are the time Moreover, it must be stressed that
histories of the aeroelastic force and of the separation of these components is phy-

the vibratory motion producing it., sically significant as flutter often

respectively, appears on isolated blades (i.e., flutter
where only direct aeroelastic forces act

The imaginary coefficient C" is the as in the case of mistuned blades).
measure of aeroelastic damping. If
C" c 0, there is an aeroelastic instabil- Superposability may seem to be an un-
ity (flutter). founded simplifying assumption, but it has

been adopted by a number of researchers

in the present. testing technique, the and notably Hanamura et al. (1980) who do-

assumption is made that. the direct, and monstrated its validity by theory for an

coupling terms combine linearly so that. a infinite cascade in ideal flow. No abso-

vectorial addition of these forces can be lute proof of its universal validity

made. In other words, one assumes that exist.s but an experimental verification

the principle of superposition is valid. was made at Mach * 1.4 by making two

4 Thus, the total coefficie.t for a blade in neighbouring blades vibrate simultaneously
4 an infinite cascade is:



and measuring the total coeffijient (CT) sections a specially designed flat model
on one of the blades. The result was corn- is used (thickness: 0.5 ms). This trans-
pared with the calculated total coeffi- ducer can be implanted at blade locations
cient obtained with only one blade where the thickness is down to 0.6 mm and
vibrating thus allows measurements very near the

leading and trailing edges (Figure 5).

(CT = I Cn ein0)• Blade Vibration Mechanism
Sn=0

A complete aeroelastic study on a
This was done for three blade-to-blade two-dimensional profile requires separate
phase angles. The agreement is very good measurements in the presence of plunging
as shown in Figure 4 for two different and pitching motion. The frequency of vi-
frequencies of vibration. bration must be such that the reduced fre-

quency (kR) is the same as that of the
normal modes of the fan blades being

¶ohILI!LJ ssimulated.
Mach~l.4

- Pres~ure ,at+0 - 1.6 The vibratory motion of the blade"k T (2 bladesvibrating) must be truly two-dimensional plunging or
x • I ind
NNo0l2 kroe pitching. Blade deformations must be

avoided as far as possible as they produce
--- unwanted three-dimensional effects; the

input to the aeroelastic transfer function
is then no longer perfectly known or de-

--.. 150Hz fined.
-- 50 HZ

.Y 0 ,In practice, the posvible ranges of"t4 f I lade to-tblade ,ýase anglei
frequency in the facility are approxi-

"1 Phase mately:

iso- pitching motion: from 70 to 600 Hz,l -30` - plunging motion: from 70 to 300 Hz,

0 giving maximum reduced frequencies of 0.6
and 0.3 in pitching and plunging re-
spectively at a flow speed of Mach - I.

Fig. 4 Comparison between the Measured
Aeroelastic Coefficient obtained Blade vibration is obtained by means
by Linear Superposition of the of four linear hydraulic actuators, two on
Coefficients of the 2 Blades. either end of the vibrating blade (Figure

6). A position control of each actuator
is ensured by high frequency servo-valves
using a feedback signal delivered by dis-
placement transducers.

Blade Instrumentation

Aeroelastic testing requires the mea- The four actuators are made to vi-
suring of unsteady forces. This can be brate with relative amplitudes and phases
performed by a balance or other force such as to give the required plunging (all
transducers, but results cannot yield in phase) or pitching motion (two in
pressure distributions which are funda- phase, two in counter-phase).
mental in an attempt at understanding the
aeroelastic phenomena.

Miniature pressure transducers tech-
nology is now sufficiently developed to Pressure
allow reliable good quality unsteady tapping
pressure measurement on fixed or vibrat-
ing blades. In this study, aeroelastic - : --\
force measuring instrumentation consists dur
of a set of pressure transducers placed
in a single cross-section of the blade.
Between 20 and 26 transducers are used Casce blMade Trantducer
depending on the blade profile and on _
the chord-length. This number is Transducer- Pressure G
sufficient for a good representation of tapping l
the unsteady pressure distribution and
hence of the lift and moment coefficients
obtained by integration.

The transducers employed are rnnufac-
turefa, W Kulite. At chordwlse positions
where the thicknens exceeds 2.1 m stan-
dard cylindrical (1.6 mm diameter) trans-
ducers are used. P(r thinner blade rig. 5 Pressure Transducer Mountings.
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. cal behavior, though in some cases real
and imaginary parts are also given.

11h,101w]axiO s The pressure distributions are mostly
shown for the blade surface where the main

If'1 aeroelastic forces are generated. Rarely
"are both suction and pressure surface dis-
tributions given.

The phase reference for lift and mo-
f ment is taken so that there is instability

, " .) •" for i. < * <2 i•. The phase reference for

the pressure coefficients is such that the

ShydauIcack¶ pitching axis are always dissipative forh I <€<2w . Note that for plunging motion
- ] the pitching axis is considered to be at

Servovalve infinity downstream.

SSUB/TRANSONIC FLOW FLUTTER IN TORSION

vig. 6 Blade Vibration Mechanism.

General

Data Acquisition and Reduction In this chapter, sub/transonic flut-
ter is analysed. The pressure distribu-

Wind tunnel data, the vibrational tions shown and used for discussion are
motion of the blade and unsteady pressure restricted to the suction surface as the
measurement are all filtered, simul- pressure surface values are virtually in-
taneously sampled, multiplexed, digitized, variant with the various parameters and
and recorded on disc. Thence, the aero- thus play no role in the appearance of
dynamic transfer functions are calculated flutter. An example of pressure surface
giving complex lift, moment, and pressure distributions is shown in Figure 7.
coefficients. The results are immediately
available in the form of a print-out. If The bulk of the results is for a
desired, unsteady pressure distribution pitching axis at mid-chord but the effect
plots can be obtained within a few of the position of this axis is discussed.
minutes of a test run.

Measurements on a Compressor Blade

Aeroelastic measurements were carried
out on one of the fans simulated in the Lp
straight cascade. The purpose of this
test was to estimate the validity of
straight cascade measurements. The
suction surface of one blade of the fan
was instrumented with a strain gauge and
five flat unsteady pressure transducers I
of the same type as in the straight
cascade, discussed in section "Blade LE .E

Instrumentation". The strain gauge E 7
was calibrated to give amplitudes of 287 5
torsional vibration at the pressure 270
transducer section.

Transfer functions between strain -

jauge and pressure transducer signals "'.. A-"

gave the required pressure coefficients IO-
N: which could then be compared to the

straight cascade measurements for the
same aerodynamic conditions.

siThis test was limited to sub/tran-
sonic flow conditions.

* ? Presentation of Results
Fig. 7 Example of Pressure Surface

The experimental results discussed Distributions at M - 0.9.
below are mainly based on the direct
coefficients as these illustrate most The Influence of Angle of Attack

.clearly the aeroelastic phenomena and
their dependence on the various com- Figures 8 and 9 show that, whatever

Spressor parameters. Coupling terms are the Mach number or the frequency of vibra-
Sdiscussed in so far as their presence tion, an increasing angle of attack always

influences flutter limits, brings the blade nearer to a condition of
instability.

All results are shown in the form
of complex aeroelastic coefficients (see The cause of this Is easily under-
"Principles Underlying Aeroelastic Test- stood after examining pressure distribu-
irig*). These are generally plotted as tions such as those in Figure 10. One
rmodulus and phase diagrams since these finds that flutter can exist only when the
usually give the most insight into physi- phase distribution has changed its shape.
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Fig. 8 Cm against Angle of Attack at Fig. 9 CM against Angle of Attack at Dif-
Different Flow Speeds. ferent Frequencies of Vibrations.

The theoretical inviscid flow on a flat This change in phase angle brings
plate gives a positive slope for the certain large pressures (e.g. near the

phase distribution curve (propagation leading edge) into a phase quadrant where
from the trailing edge towards the lead- they act as an exciting force and are thus
ing edge). In Figure 10, one can see this destabilizing.

* slope progressively changing as the angle
of attack increases to the point where
the whole distribution curve has a neg- Comparisons with steady pressure dis-
ative slope (propagation from the leading tributions and surface flow visualizations
edge toward the trailing edge). show that a negative phase distribution

* slope generally corresponds to an area of
flow separation. This is vital informa-
tion as it shows how stability conditions
depend on flow separation and, hence, on

the angle of attack.

* Cp Mach -0.8 -

x 6The Influence of Flow Speed

X 6
0 7
+ 8Figure 11 shows typical plots of CM

oA 9 against Mach number. Three different an-
0o0 gles of attack are shown:

(i) 7" where flow at the leading edge is
not separated (save for the usual
bubble),

S(1 1ii) 9* where the flow is at the limit of
0 .. total separation,LE TE

(iii) I11 where the flow is completely
separated over the entire chord of
the blade.

0 -For all three angles of attack the
influence of the flow speed in the sub-
sonic region is monotonic. At transonic

speeds the action of shock waves becomes
noticeable for angles of attack where flow
separation is not complete but at It1 they

4 0 have no visible influence.

The pressure distributions in Figures
12 and 13 show this even more clearly. At
i-7" the flow speed has a strong influence
on both modulus and phase while at i-ll'

Flq. IO Pressure Distribution (Upper (complete flow separation) the influence
Surface) for Different Angles of Mach number is small on the modulus and
of Attack. insignificant on the phase angles.

mOO .-.
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The Influence of the Frequency of
Vibration

One can see from Figure 9 that sta-
bility increases with frequency. This is
not due to any important change in the
unsteady flow characteristics, but prin-
cipally to an increasing phase lag. The
pressure distributions of Figure 14 are
obtained for the same flow conditions but
at different frequencies. They show, with
increasing frequency, an ever-increasing, Fig. 14 Pressure Distribution at Differ-
negative slope of the phase angle plot. ent Frequencies.

The Influence on Stability of the Position
of the Pitching Axis At small angles of attack the blade

is always stable. An this angle increases

* Stability is clearly closely depend- the blade first becomes unstable for axes
ent on the position of the pitching axis. located on the upstream half-chord. At
Figure 15 shows the real and imaginary high angles of attack (complete flow sep-
parts of CM as a function of the position aration) the blade is unstable for all
of the pitching axis (0, 50, and 921 of pitching axes. Figure 16 shows CM plotted
chord), but they suffice to determine the against angle of attack for the three
effect of this parameter. pitching axes.

............. 7,
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Fig. 16 CM as a Function of the Angle of
0 Attack at Different Pitching

LETE Axes.

90.

I ~CM(o) and CL(o) are the moment and
lift respectively, induced by pitching
about the reference axis

CL(h) and CM(h) are the lift and mo-

ment respectively, induced by plunging
motion

x is the normalized distance between
the reference axis (o) and the axis a.

Fig. 17 Unsteady Pressure Distributions
for Three Pitching Axes. Although the assumpti.on of steady

linearity is not verified, the principle
of superposition has been tested and it
gave the results shown in Figures lS and

It is interesting to note that the 19.
pressure distribution (Figure 17) is vir-
tually independent of the position of the It is clear from these figures that
pitching axis. the linear superposition of plunging and

pitching gives excellent predictions for
any other pitching axis no matter what the

Pitchlng Axis Prediction angle of attack.
by Linear Transposition Thus the linear combination is just

It is well known that for flow having as valid for completely separated flow as
linear steady characteristics, the un- it is for perfect unseparated flow. This
steady moment due to pitching about any is an important result facilitating pre-
axis can always be predicted by linear dictions for true fan blade mode shapes.
superposition of the moment relative to
another axis and the lift due to plunging
motions Blade-to-Blade Coupling and Total Cascade

Coefficients

CM(a) - Cb(h)X2 + Cb(o) + CM(h))x + CM(o) Figure 20 shows some typical coupling
coefficients as a function of the angle of
attack. Only the coupling with the imme-

where CM(a) is the moment due to pitching diately adjacent blades was measured (C-1
about axis a and C+1 ).
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Pitching axis at 0% chord
to-

Mach 0.7 20 CM Pitching skis at 92% chord
Mach = 0.7

5 measurement 151 II\\
* computation

(heaving and pitching at 50%)

0Angle of attack (i) ].,
0~~ -----

.0..,11. measurement

locomputation
(heaving and pitching at 50%)

& 10 'cmptaio
0 .................. . ,- :<• - 270 5 10 Angie of attack (1)

Fig. 18 Comparison between Measurement
and Transposition of the Axis by 8 10
Computation.

From the figure, it is clear that 90
these coefficients are much less sen-
sitive to the angle of attack than in
the case of the direct coefficients (Co).
This is also true of the Mach number in- Fig. 19 Comparison between Measurement
fluence. The effect of frequency is the and Transposition of the Axis by
same as for the direct coefficients, that Computation.
is, that increasing frequency causes an
increasing phase lag.

The total coefficients can be calcu- C'n Mach number=0.8
lated according to the formulae in sec- Red freq. 0.33
tion "Principles Underlying Aeroelastic
Testing". However, the results will de-
pend on the assumed blade-to-blade phase I
angle, 0. To assess the importance of the -
coupling terms on cascade stability, it Angie of attack
is simplest to assume for each case the 0.
value of 6 giving the largest coupling V ""---.- 10*
effect, i.e., the minimum value of C". I.... .•.

chI

Together with the coupling coeffi- 1
cients, Figure 20 also shows C"min as a
function of the angle of attack, result-
ing from the above computation. It is 0 .- , .• --.
clear from the figure that C"min follows -
the same trend as Col (direct coeffi- Blade n"
cient) relative to the angle of attack. in)
Of course, the flutter limit appears - 0
at a much smaller angle of attack but the 0 -1 TotalC•in "e----.
curve seems to be merely shifted down. + +1

o ! Cn
n

Sub/Transonic Flow Flutter Limits

From the sections "The Influence of Fig. 20 Direct Coupling and Total Moment
Angle of Attack" and "The Influence of Coefficients for Pitching Motion
Flow Speed", it is clear that the angle in Sub/Transonic Flow.
of attack at the limit of flutter dimin-
ishes with frequency. Strangely enough,
at any particular angle of attack this is
the only parameter to have a noticeable
effect on flutter limits. The effect depends is some propagation velocity in
of flow speed, though not totally negli- separated flow which seems only weakly de-
gible, is very weak. pendent on flow speed. This question

needs further investigation.

The flutter limit diagram (Figure 21)
is thus rather a plot oY- angle of Conclusions on Sub/Transonic Flutter in
attack against frequency and not Lhe Torsion
conventional reduced frequency (kR%; as
would normally be expected. The non- The principal characteristics of sub
dimensional frequency parameter on and transonic "stall" flutter can be sum-
which the limit of flutter marized by the following findingso
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o The unsteady pressures causing
stall flutter of thin compressor blades
are mainly situated on the upper surface
and on the forward half chord.

Angle of attack at the limit of flutter

o Flutter conditions can only occur
when the flow over the blade is coi,-
pletely, or almost separated. Since the
conditions enabling flutter are dependent
solely on flow separation, they are 10
directly related to the angle of attack.

o When the flow is separated, the UnMtable
presence or absence of flutter depends Mach
only on the frequency of vibration. The x0S
higher this frequency, the larger the Z0.6
limiting angle of attack. 90.700.8

o A linear superposition of unsteady 00.9 Frequency1(Hz
coefficients obtained with pitching and 100 200 300 400 500 600
plunging motions will give correct values
for moment coefficients about any other
arbitrary pitching axis. This is true at
all angles of attack whether the flow is
separated or not. Fig. 21 Typical Sub/Transonic Torsional

Flutter Limits Considering "Di-
o The name of "stall flutter" for rect" Terms Only.

this instability is not strictly correct
since flutter depends on flow separation
and not on a stall phenomenon.

The positions of the various shock
waves and of their reflections are
"obviously sensitive to variations in Mach

SUPERSONIC STARTED FLOW FLUTTER number and pressure ratio and are thus
sources of pressure fluctuations when the

General blades vibrate.

Flutter Is known to appear separately Figures 23 a and b show the suction
for torsional and bending modes, the and pressure surface steady pressure
former at low and the latter at high distributions for the four examples of
pressure ratios. These two forms of flut- Figure 22.
ter are studied separately with pitching
and plunging vibrations respectively at a
Mach number of 1.4.

A brief description of steady flow
at this Mach number and at different
pressure ratios is necessary in order
to understand the flutter conditions T
discussed below.

In started supersonic flow the angle "-
of attack is unique and is given by the
slope of the suction surface near the
leading edge. The flow determined by the
upstream Mach number and by this angle of
attack is Identical in each channel and rl.35
thus constitutes a periodic flow pattern. Flo--

The pressure ratio plays a fundament-
al role in shaping the steady flow field.
Figure 22 shows typical steady flow
configurations for four values of pressure _

ratio. These patterns were deter- r-1.45
mined in the cascade by means of
shadowgraph views. The leading edge
shock wave reflects on the suction sur-
face of the neighboring "upstream" blade
while the suction surface trailing edge
shock roflects on the pressure surface
of the "downstream" blade. As the r."pressure ratio (compression) increases, rin.65the reflected leading edge shock and the

suction surface trailing edge shock both
progressively straighten asd finally cos-leace and move up to the channel throat.

This occurs at. the limit. of started flows
any attempt at increasing the pressure
ratio beyond this point causes the flow
to become unstarted and the flow in the rig. 22 Shock Wave patterns at Different
channel becomes totally subsonic..- Pressure Ratios.
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174 Local Local
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1A ~A 7=1.65

Al1.2ý 1.2

1.1V
1.1
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r = 1.65I 0.9

LE TE LE TE

Fig. 23 (a) Steady Pressure Distribution - Suction Surface;
(b) Steady Pressure Distribution - Pressure Surface.

The Nature of the Flutter and the
Influence of Pressure Ratio A better understanding of the physi-

cal grounds for this flutter is gained
through the study of unsteady pressure

Pitching Motion distributions. Practically, this means
the evaluation of a vast amount of data

Figure 24 shows the influence of (local pressures for each blade), but ex-
pressure ratio on the direct and coup- perience has shown, as in subsonic flut-
ling moment coefficients. It is clear ter, that the change from flutter condi-
that the direct coefficients (vibrating tions to no flutter and vice-versa is
blade) are by far the most influenced by essentially governed by the direct coeffi-
pressure ratio . This is corrfirmed by cients. The pressure distributions on the
the plotting of the smallest value (most vibrating blade can thus give reasonably
unstable) of the total coefficient C"T adequate insight into the physical phenom-
against pressure ratio (Figure 24) after ena.
the calculation presented in "Principles
Underlying Aeroelastic Testing". The
total curve runs virtually parallel to Figures 25 and 26 show suction and
that of the direct coefficient. pressure surface pressure coefficient dis-

tributions in the form of modulus and
phase. According to the quadrant in which
the phases of the pressures are situated,
the contributing moment is either exciting
or damping (see figures).

Mach n' - 1.4

05 h RedI fre(L 0.23  The pressure surface (Figure 25)

~N7 shows no particular overall tendency to-
ward damping or excitation and the pres-
sure ratio does not have a marked effect.

0 .However, the suction surface (Figure 26)
Pressure ratio shows a very large unsteady pressure near

• --... the trailing edge with a phase angle al-
ways situated in an exciting quadrant. As
pressure ratio increases the magnitude of
this trailing edge pressure drops rapidly.l C• ~~~It is clear that the main otiuono

flutter conditions for V < 1.6 is this
* large trailing edge pressure.

0 ........0 A glance at Figure 22 shows that this
* •very large unsteady pressure is situated

Blade n at the foot of the trailing edge shock.
Total:C(m, ' (") The movement of the shock with blade vi-

/ 0 0 brations and the magnitude of the pressure
0, I difference across the shock are the fac-

. 1 tore determining the magnitude of the un-
#2 steady pressure. The fact that the posi-I-2 tion of the pressure peak does not varyC with pressure ratio confirm* the responsi-

bility of the trailing edge shock wave.
Thus, one can safely conclude that

rig. 24 Direct, Coupling and Total Moment the upper surface trailAng edge shock mo-
Coefficient for Pitching Mwent tion in the primary motor of pitching
in Supersonic Started Flow, flutter in supersonic started flow.

• l . .. . . . ... . . . . .1 1 .. ... . . . . . . .. .. .. . . . . .. . .. '. . . = [ . . . . . . . . . IIIIIII II 11 . ... ... .. . . .. .. . . . . . . . .. .. . . . . . . . . . .. . ..." "l . . . . . . .. .. . • ;
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Fig. 25 Unsteady Pressure Distribution Fig. 26 Unsteady Pressure Distribution
for Pitching Motion - Pressure for Pitching Motion - Suction
Surface. Surface.

Plunging Motion

Figure 27 (like Figure 24) shows a
The aeroelastic behavior in plunging very much more marked effect of varying

is quite different from that in pitch- pressure ratio on the direct coefficients
ing (above); however, the participation than on the coupling terms. This is, of
of the coupling terms relative to the course, reflected in the total minimum co-
direct terms in the total coefficient is efficient which (like in pitching) behaves
very similar. very much in the same way relative to

pressure ratio as the direct coeffi-
cients.

The total minimum coefficient curve
shows possible flutter limits for T < 1.38
and T > 1.58. As for pitching motion, the
direct coefficient pressure distribution

C i Machnurnber -- 14 will be studied in order to understand the
03 rb0d freq 0080 source of flutter.

0?

01 Figures 28 and 29 show the auction
Pressurcraw, and pressure surface distributions respec-0 . .•- tively.

1 • 14 15 1 *
- 0 1I. .. . . . . : - - _ _ . F i g u r e 2 8 i l l u s t r a t e s c l e a r l y th e

02 [ues, approach of flutter as the pressure ratio

C'hn•f increasess the phase angle reaches into
* -0 the exciting quadrant while the corre-

03 . sponding pressure peak is large. This
.2 pressure peak does not have the same ori-

02 z gin as in the case of pitchings it is the
'2 .point of impact of the reflection of the

L , •/n TotalCimin) leading edge shock wave produced by the
-.neighboring blade. Judging from this fig-

.0' - ure alone, the blade should become in-
' .• "creasingly stable as the pressure ratio

...... decreases. This is true to a pointi a
look at Fiqure 29 shows an Increasingly
greater portion of the pressure surface
pressure distribution in the exciting
quadrant with diminishing pressure ratio.
The rapid change of phase near the leading
edge is due to the position of the recom-
pression shock on the pressure surface. As
this shock wave moves aft with decreasingFirg. 27 Direct, Coupling and Total Lift pressure ratio, the extent of the exciting

Coefficients for Plunging Motion zone increases and flutter conditions once
In Supersonic Started Flow. again appear.
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Fig. 28 Unsteady Pressure Distribution Fig. 29 Unsteady Pressure Distribution
for Plunging Motion - Suction for Plunging Motion - Pressure
Surface. Surface.

The Influence of Frequency

-For the case of pitchin motion, 0° Mach N* 1.4
Figure 30 shows the direct coeficien as 0.5M

a function of frequency. This parameter
introduces a time (or phase) lag so that
the pressure ratio range showing flutter ...

conditions will progressively shrink with
increasing frequency. 0.

Reduced frequency

-The effect of frequency on flutter
conditions in plunging motion is virtu- Prenure ratio
ally nsgligible an illustrated by Figure
31. There is a noticeable influence on 36 --- 1.35
the magnitude of the coefficient but the • ..... 1.65
phase angle remains practically speaking Untble
constant. ,..% ' . .

Conclusions on Flutter in Started Super-
sonic Plow Stable

0

The characteristics of flutter in
started supersonic flow depend on the Fig. 30 Direct Moment Coefficient for
mode of vibration concerneds Pitching Motion.

-P an flutter occurs at low pres-sure-; ratos ndisappears as this para-
meter increases. The flutter is mainly
due to the movement of the auction 0.5O•o

Ssurface trailing edge shock wave, induced
by the pitching motion. As pressure ratio
increases the shock foot has probably !
an increasingly stable position and thus
generates less unsteady destabilizing 0F Reduced fIrequency
pressures.

10g O0 Mach N" I,41 --- 1.30

-Plunging flutter is found at both 1.62
high and low pressure ratios. At high
pressure ratios the main cause is the 0 . .S•~~otion of the impinging shock wave origi- , ~
nating from, the leading edge of the
nefihtrbtring upatream" blade. This -130'
effect disappears at lower pressure
ratios wthere a weaker destabilizing pro-
cess takes over on the pressure surface.
This is due to the aftward movement of
the final recompression shock wave with Fig. 31 Direct Lift Coefficient for Plun g -
decreasing pressure ratio. ing Motion.
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The effect of frequency on flutter
limits is important in the care-of pitch- C;
ing. An increasing phase lag with in-
creasing frequency reduces the likelihood I
of flutter. In plunging, frequency has n.2

little influence on flutter limits. C', _

SOME IDEAS ON SUPERSONIC UNSTARTED FLOW
FLUTTER

Good periodicity in a linear cascade MachNo 1.4
for unstarted supersonic flow is very Reduced frequency 0.23
difficult to obtain. However, it was resuredratio
achieved across four adjacent blades, but Pressureratlo=l
to date only one preliminary aeroelastic
test has been carried out with plunging Fig. 32 Total Moment Coefficient for
motion. O0 e 4 

2
w in Pitching Motion.

Figure 32 illustrates this very sim-
Results obtained seem to indicate ply. Here are two results for supersonic

that the most significant aeroelastic be- bending with C" plotted against C' for 0O
havior appears on the aft half-chord of < e < 360*. The combined effect of five
the suction surface at the point where blades (Co, C±l, C±2) has been accounted
the bow shock of the "downwind" blade re- for. The points around the loops are for
flects. the different blade-to-blade phase angles

and the single point inside each loop is
The aeroelastic pressure measurements the direct value. Experience shows that

show: the usual parameters (frequency, angle of
attack, Mach number, pressure ratio) have

-on the suction surface, a distribu- a much more significant influence on'the
tion having a very similar character to position of the direct coefficient point
that of started supersonic flow with than on the size of the loops. Hence,
plunging motion (see Figure 28); the parameter dependence of the direct

forces is the principal factor leading to
-on the pressure surface, a dis- flutter conditions.

tribution closely akin to the case of
transonic flow (Figure 7). This is not
surprising, as the pressure surface is In an actual compressor, the real
totally subsonic. effect of the coupling terms will depend

largely on the frequency tuning of the
blades. The above discussion, of course,

One can tentatively conlude that supposes perfect tuning.
unstarted flow flutter will esientially
resemble started supersonic flow high
pressure ratio bending flutter. This Mistuning is a frequently employed
conclusion would be, in fact, quite method for attempting to avoid flutter
logical since started supersonic flutter problems and this can, in fact, be & very
appears as pressure ratio rises and the powerful tool. However, it has a severe
flow approaches the limit of started flow limitation in that mistuning can change or
conditions. A certain continuity would shrink a loop such as in Figure 32 but can
not be surprising. However, more measure- never change its position relative to the
ments and a much more profournd-analysis axes of the figure. In other words, a
are required before definite conclusions case with single-blade flutter cannot be
can be drawn. remedied by mistuning. Theoretical stud-

ies on mistuning, as for example by Craw-
ley and Hall (1984), have come to this

CASCADE RESULTS AND PREDICTIONS same conclusion.

The Relative Importance of Cascade
Effects On Flutter, Szechenyl t1953) Comparison between Linear Cascade andActual Fan Measurements

The above results show that coupling One blade of the fan simulated in the
coefficients can be of the same order of sub/transonic flutter research reported in
magnitude as direct coefficients, in par- the section "SUB/TRANSONIC FLOW FLUTTER IN
ticular for neighboring blades (Ctl). TORSION" was instrumented with five pres-
These terms can thus largely contribute sure transducers in the same manner as the
to the presence of flutter. linear cascade blade (see "Measurements on

a Compressor Blade").

1owever, it is clear that flutter is Pressure measurements on the com-
neither entirely nor even essentially an pressor blade can be compared directly
unsteady cascade effect, since all the with those obtained in the linear cascade
studied forms of blade flutter can exist wind tunnel. The results are presented in

as ningle-degree-of-freadom single-blade the same form, that is, modulus and phase
instabilities, The blade-to-blade coup- of the complex pressure coefficients.
ling effects appear as vectorial addi-
tlor, (to the single blade forces) which The maximum frequency of vibration in
either increase or reduce stability, the cascade is, in fact, approximately 30%
according to the blado-to-blade phase lower than the first torsional natural
angle, frequency of the fan blade.
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Fiq. 33 Pressure Distributions on a Fig. 34 Pressure Distributions on a Blade
Blade in a Compressor in the Wind Tunnel.

A comparison of pressure distribu-
tions at Mach 0.8 in Figures 33 (fan) and ipl I bj2 cJ

2
c,

34 (cascade) shows very similar shapes. 4 = 2pN J21 kRj L,Mj
The pressure levels are equivalent and
the change of shape of the phase cuirvc
(positive slope becoming negative) where N is the number of strips.
occurs at about the same angle of attack:
between 7 and 8*. A comparison between aerodynamic

damping measured directly on a fan blade
and the above calculations based on linear

The comparison at transonic speeds cascade measurements was made for subsonic
(Figures 35 and 36) gives rise to the flow. The result presented in Figure 37
same comments as above but the phase shows that qualitative predictions are
curves for the compressor are noticeably generally good. Predicted damping values
less steep than those for the cascade are close for Mach - 0.8 but are always
(faster propagation) and particularly on lower than those actually measured. This
the downstream half-chord. This differ- discrepancy may well be due to the pres-
ence, though seemingly not very signif- sure distribution differences shown in
icant from a qualitative point of view, "Comparison between Linear Cascade and
is all the more important in that the Actual Fan Measurements" above.
frequency of vibration of tE1i fan blade
is higher than that in the cascade and THE FUTURE
should logically produce a greater phase
lug (see "Presentation of Results"). The physical understanding of fan

blade flutter can be considered at differ-
ent levels. A straightforward parametric

This phase discrepancy on the down- study of aeroelastic damping will give
stream half-chord has obviously some in- some insight into parameter dependence but
fluence on stability limits. However, in cannot reveal the aerodynamic behavior
all cases the actual fan is more stable leading to this dependence. Aeroelastic
than cascade measurement predictions. pressure distributions go a step further

and give some understanding of the aero-
dynamics behind the aeroelastic behavior.
This is the state of the art described in
this article. One could go further by

Use of Cascade Data for Pan Blade Flutter looking at the causes of the observed
Predictions aeroelastia behavior. For instance, in

the case of subsonic flow, it Is clear
that flutter conditions are created whenThe application of cascade test the direction of propagation on the sue-

result to a real compressor can, at tion surface Is reversedl but what OaUmes
the present time, only be made by strip this change of direction When the flow
theory. Aerodynamic damping can be ob- separates?
tained fairly simply from coscade results
by the following equations
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There is some way to go yet before
fully understanding all the underlying
mechanisms of fan blade flutter.

Research must progress in this di- Cp f 620Hr
rection in order to give a physical back-
ground to the development of theoret- Mach .
ical predictive tools and in order to
establish reliable flutter free design 0018.2
criteria. " 0.98-10

0

LE ,TE

10 Mach.. 90 Exciting j Damping

x 7

0100 .
08 0

- E x ci i n g - 9 0 D a m p in g E x c itin g

0 h-
-- 18

-9 Damping~' Exciting

-_8- Fig. 35 Pressure Distributions on a Blade

in a Compressor

90 Exciting Damping

* computation fromt • •.•.., xcascade resultsj~, x •.omp~or
0.02. "• M..

Fig. 36 Pressure Distributions on aBd nhn 0.
* Blade in the Wind Tunnel

*•..Mah. m, 0.9

0.011 ....
Mach a 0.8

0'
• ,.,Mach em 0.8

0.01 Mach at 0.7

FI•wreto (arbitrary scale)

I- an*l c0 attack)

Fig. 37 Aerodynamic Damping as a Function
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UNSTEADY AERODYNAMIC MEASUREMENTS
ON ROTORS

by

Heinz E. Gallus
Institut fur Strahlantriebe

und Turboarbeitsmaschinen
RWTH Aachen, FRG

INTRODUCTION flow fields. Variations in gust ampli-

tudes, reduced frequencies, and interblade
From the above chapters on "Unsteady phasing relative to the rotating airfoils

Aerodynamic Measurements in Forced Vibra- can be realized quite easily. Using vari-
tion Research" and "Unsteady Aerodynamic ous numbers of rotor and stator blades
Measurements in Flutter Research," respec- permits the investigation of interblade
tively, it. has become obvious--t.hat. four phasing and reduced frequency effects on
types of experimental facilities are in both the blading of rotor and stator air-
use to simulate and investigate the un- foils. Rotating rigs also allow the
steady aerodynamic aspects of forced experimental analysis of spanwise effects
vibration and flutter in axial-flow turbo- which are of increasing influence for
machines. These are large aspect ratio twisted bladings with

highly varying inlet and exit flow fields
- Linear Cascades along the blade span including tip leakage- Stationary Annular Cascades and secondary flow effects due to viscous
- Low Speed Rotating Rigs flow. Another very important advantage of
- High Speed Rotating Rigs. rotating rigs is the possibility of study-

ing periodical flow separation and stall
effects which may cause large dynamic

These test facilities have been de- blade loads. These studies are necessary
veloped in order to overcome the diffi- to improve the mathematical modelling of
culties due to accessibility problems in the complex three-dimensional, viscous,
real machines. Moreover, they make it unsteady flows which occur in the real
easie, to isolate and vary the major para- turbomachine and to obtain the rotor and
meters of importance. Most experimental stator blade surface loads. However,
studies have been conducted in linear these studies require -in addition to the
cascades. They represent a spanwise sec- techniques for unsteady flow measurements
tion of a turbomachinery blading by a in stationary cascades presented in the
finite number of two-dimensional airfoils, preceding chapters -further efforts to
Linear cascades provide the most con- measure the unsteady flow on the rotor and
venient and cost-effective way to study in the rotating frame of reference,
subsonic, transonic, and supersonic flow respectively. This chapter is restricted
phenomena and to vary the profile and cas- to these very difficult measurements. An
cade parameters. Further advantages are attempt will be made to give an overview
the easy access for flow visualization and of the various techniques and their appli-
the accommodation of large blade dimen- cation in selected examples. In view of
sions for detailed measurements of the the great amount of available material, a
steady and unsteady effects in the blade certain selectivity is unavoidable.
passages and on the blade surfaces. The
limitations of linear cascades arise from
the difficulty to achieve flow periodicity
with a finite blade number and to produce OBJECTIVES OF EXPERIMENTAL ROTOR AND STAGE
the proper input gust loading or simula- UNSTEADY AERODYNAMIC RESEARCH
tion of the reduced frequency necessary to
obtain the desired aerodynamic damping The major objectives of experimental
data. aeroelastic research in turbomachines ares

Several successful applications of a. flutter measurements
linear and stationary annular cascades in
the field of flutter investigations have b. forced vibration measurements
been described in the previous chapters. including
However, with regard to forced vibration
research both types of cascades imply - aerodynamic gust measurements
limitations in obtaining proper reduced - aerodynamic damping
frequencies at realistic velocities and measurements
satisfactory simulation of the gust - measurements of both effects
loading. The latter is defined as the occurring simultaneously.
time varying motion-independeIT¶, aerody-
namic loading of a cascade of airfoils Such measurements serve to provide
which is created by upstream or dounstream the designer with advanced empirical or
moving periodic disturbances. The physics semi-empirical design systems, e.g., with
of this interaction can be studi.ed by a systematic flutter boundary data bank.
arranging rotating blade rows and station- lowever, it. is more helpful and, indeed,
ary vane rows in "rotating rigs" similar also applicable to other than aeroslastic
to their arrangement in real turbo- problems, such as noise, performance, and
machines, but with the advantage of being efficiency questions, to develop less
"able to make use of scale model rotors and empirically based prediction methods that
stages and of special rig constructions can be utilized outside the limits of
which provide easy access for all the available experience. The recent advances
instrumentation needed to identify and in computational fluid dynamics encourage
quantify the *.,ents in spatial unsteady efforts to develop unsteady aerodynamic



m'nodels w:hich also account for viscous flow All this information is needed for
have been neglected up to now. the whole operating range. The resulting

time-dependent spanwise aerodynamic load
Therefore, detailed unsteady aerody- distribution -as demonstrated in Fig. I -

nazmic m:easureluents in rotors and rotating can then be introduced as time-depending
rigs which simulate the environment of the forcing function into the equation of
real machine are, although very costly, motion of the elastic blade system. At
unavoidable for both guiding the develop- resonant conditions, i.e.. equal fre-
went of satisfactory models and proving quencies of the forcing function and one
their validity. In many cases, disagree- of the natural blade frequencies, the
ments between such measurements and pre- response of the system will be. governed by
dictions from simplified mathematical the damping forces. The knowledge of max-
models are due to the omission of major imum stress levels at resonant conditions
features of the blade row phenomena is a major requirement due to the
occurring in the real machine, inability of avoiding all the -,.)sonant

"conditions in a multi-stage compressor.
From this point of view, a number of Therefore, intolerably high stress levels

additional objectives of unsteady aerody- have to be eliminated by design changes.
namic measurements in rotors and stages
become important. They cover the whole
range of parameters influencing the steady
and unsteady spatial viscoua flow field
around rotor and stator blades.- Some of Z
them are listed below:

- blade row interactions (potential
flow and ,iscous (wake)

- rotor and stator blade wake
transport and decay

- unsteady boundary layers, flow
separation and stall behavior,
transition to rotating stall -Y al

- endwall influences and secondary
flow effects

- turbulence effects

- shock/boundary-layer interaction X

- unsteady aerodynamic blade forces
and momentsy.

on the fixed bladinc due to oust

on the vibrating blading in
uniform inlet flow (aerodynamic
damping/flutter)

- on the vibrating blading with
gust loads.

Fig. 1. Spanwise Unsteady Aerodynamic
Representative measurements are often Airfoil Load Distribution

taken at the midepan section or at 75 per-
cent span. However, in low pressure
axial-flow compressor or turbine stages In this chaper, the discussion of
the airfoil and cascade geometry of the measurements in rotors and rotating rigs
adjacent blade rows (spanwise taper of will be restricted mainly to aerodynamic
chord, thickness, and stagger) as well as measurements and, in a few cases, to blade
the aerodynamic gust loads vary consider- vibration measurements as they affect the
ably from hub to tip. Therefore, for the unsteady flow field and, therefore, influ-
solution of the forced response problem ence aerodynamic damping or flutter.
these spanwise variations have to be taken
into account. Similarly, the blade Surely, this approach to improve the
deflections caused by the surface pressure prediction methods and models by measure-
loads show strong spanwise variations for monts in rotating test rigs with blade
the various natural blade modes, operating environments, representing those

in the real machine, is a very difficult
In addition to these spanwise changes and costly one. However, it will ulti-

in geometry and gust loads further con- mately save a lot of money because the
siderable variations may occur in the number of required experimental steps in
spanwise (distribution of the development of an acceptable prototype

can be reduced. Many such efforts have- dynamic boundary layer behavior already been reported in the open
an' position of separation along literature. Several examples of utilized
the airfoils rotating test rigs, measurement techniques

as well as achieved results will be
- shock position and shock/boundary presented in the following sections in

layer interaction in the case of order to provide an overview of the state-
transonic or supersonic flow, of-the-art.
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MEASUREMENT TECHNIQUES ON ROTORS OF relative flow field of the rotor, pneuma-
TURBOMACHINES tically measured signals from rotating

probes or pressure taps on the rotor blade
The study of the unsteady flow, surface are usually transmitted out of the

forced vibration, aeroelastic damping and rotor by a rotating scanivalve system.
flutter in rotating blade rows requires

- techniques to measure the vibration TECHNIQUES FOR DISPLACEMENT AND VIBRATION
of rotating blades, i.e. mode MEASUREMENT ON ROTOR BLADES
shapes. amplitudes and angles of
displacement, as well as The widely used technique of applyingstrain gauges together with slip rings has

- techniques to investigate the been documented in many publications. A,
unsteady aerodynamics of the flow short review of this technique has been
leading to forced vibration and presented by F.O. Carta and R.L. O'Brien
flutter. (1980). Although this technique has

proved its usefulness to monitor the
This can be accomplished by measuring alternating stresses on rotating and

either on the rotor itself, i.e., in the stationary bladings or the onset of
rotating frames of reference, or in the flutter, the strain gauge provides no
stationary frame by using highly sensitive information on the vibration mode involved
fast response techniques, or on the deformation mode shape of theblade. In particular, it cannot detect

Rotating frame measurements need a the blade surface load distribution. For
reliable data transfer out of the rotating the determination of deformation mode
to the stationary frame. Transfer shapes optical methods have been devel-
problems arising from low signal to noise oped. Stargardter (1977) measured the
ratios can be overcome by prov-ding both deflections of a rotating fan blade with
signal conditioning and amplification on embedded mirrors on the blade. The key to
board the rotor. Subsequently, the high the method is the unique blade and disk
level signals can be transmitted to the deflection occurring with any of the
data system via low-noise slip ring potential motions. Detailed data on the
devices or by radio-telemetry, blade and disk vibration mode shapes of
Lakshminarayana et al (1980), O'Brien et fans up to 2.2 m diameter has been mea-
al (1974), Adler (1978), Kemp (1978), sured by Hockley et al. (1978) who used
Jones (1970). To compare unsteady flow double pulse laser holography. Both axial
data with time-averaged values in the and tangential components of the blade
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,i' 1g. 2. Cut-away view of the test section, ahowing the rotor and piezo-
electric crystal assemblies, the center-body, and tiipport struts
(from Crawley 1982).
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and tangential components of the blade increase of the local bow shock strength
mode shape were obtained by taking holo- when the blade passes through the region
grams from two directions. The analysis of velocity defect in the disturbed flow.
of the holograms was performed with the
aid of a computer linked televison system
which generated the required blade mode
shapes directly from the photographs of
the hologram reconstructions. The appli- blade

cability of these methods is limited to
fans or isolated rotor bladings.
Neiberding and Pollack (1977) worked on
optical detection of blade flutter. They
used a casing optics systems to accurately
detect the passage of blade leading and
trailing edges. The importance of vibra-
tion measurements on rotor blades by
optical probes from the casing is also strain gages
emphasized by 1!. Roth (1980). Kurkov PIEZOELECTRIC
(1980) performed flutter spectral measure- CRYSTAL

ments using case-mounted pressure trans-
ducers.

Aerodynamic damping measurements _•d. Rollpins
using a specially instrumented version of SWL R

the MIT Transonic Compressor were per- tXCITAT O1
formed and reported by E.F. Crawley live
(1982). In runs at the operating point,
the rotor was aerodynamically excited by a
controlled two-per-revolution fixed up-
stream disturbance. Analysis of the data
in terms of multiblade modes led to a
direct measurement of aerodynamic damping
for three interblade phase angles. Fig. 2 Fig. 3. Details of root attachment show-
shows a cut-away view of the rotoF-, shaft, ing the location of the piezo-
and forward centerbody. Aeroelastic test- electric displacement transducer
ing was conducted in the MIT Blowdown (from Crawley 1982).
Compressor facility,providing quasi-steady
flow conditions in the test section for a
limited period of time. In aeroelastic TECHNIQUES FOR UNSTEADY FLOW MEASUREMENT
studies, a 24 channel slip ring assembly ON ROTORS

is housed in a centerbody supported by
three struts ahead of the rotor. The In principle, the majority of un-
above mentioned time varying upstream dis- steady flow measuring methods on rotors
turbance was created by the interaction of can be classified as foilows:
the primary flow with a series of small
jets injected normal to the surface of a. Measurements by direct physical
streamlined struts upstream of the rotor. connections of a high response
Thus, the symmetric disturbance along the measuring element to the
struts causes a region of velocity defect measurement point, such an
behind the injector. The disturbance was
terminated at 100 msec after test start - high response pressure
and could be shut off within I msec, thus transducers
providing a well defined and sharp termi- - high response hot wires or hot
nation of the upstream disturbance. Fig. films that can be used both on
3 shows a detail of Fig. 2, concerning the rotor blade and passage end wall
rotor instrumentation. Piezo-electric surfaces to detect surface
displacement transducers were mounted on distributions. They can also be
the disk recording the local displacement introduced into probes and
of each of the 23 blade roots. In addi- mounted to probe holders that
tion, 4 strain gauges measured the blade can be shifted in the rotating
response in bending. The transducer sig- or stationary frame of reference
nals could be calibrated linearly against to provide unsteady flow data of
tip displacement for each of the natural the blade passage and the flow
blade modes. Thus, one independent dis- field in front and aft of the

placement measurement per blade is blade row. Since such probes
provided. From these data and from the and, in particular, the probe
structural analysis of the MIT Rotor, it holders intrude into the flow
was possible to resolve the multiblade field it must be required that
modal response of the blade-disk modes these instruments are kept as
associated with one family of circumfer- small in size as feasible.
ential modes. The response to forced
vibration at the design point due to up- b. Optical methods of flow
stream disturbances was investigated, measurement and visualization,
After sharp termination of the dis- such as
turbance, the subsequent free vibration
ring downstream of the rotor served as a - plow Visualization, e.g.. by
measure of the aerodynamic plus structural amoke or dye injection
damping. Additionally, the aerodynamic - Gas Fluorescence
response of the rotor to the disturbance - Schlieren - or Shadowgraph
was investigated by use of high frequency Methods
response wall static pressure transducers - Ilolographic Interferometry
upstream of the rotor indicating the - Laser Velocimetry
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These non-intrusive measurement sys- the determination of aerodynamic blade
tems have many advantages, as will be forces due to rotor-stator interaction.
indicated in the next section by present-
ing some typical examples of performed Increasing knowledge of the physics
measurements. However, there are also of rotor-stator interaction and improved
limitations that make it necessary to use mathematical models to predict the time-
the measuring techniques of the first dependent flow field as well as the in-
category as well. duced dynamic blade forces are fundamental

objectives of unsteady aerodynamic
In the next section, a short review research. Rotor-stator interactions are

of the various methods mentioned above is an inherent property of turbomachines due
presented and the pertinent literature is to the relative motion of blade rows.
cited, so that the reader may consult Even if viscous effects, such as wakes
these publications for details of the mea- could be neglected, the relative motion of
suring devices, calibration procedures, blade rows produces a periodically fluctu-
data acquisition and processing. ating flow field around the airfoils and

induces dynamic forces on the airfoil sur-
faces. These potential flow interactions

EXAMPLES FOR THE APPLICATION OF UNSTEADY of blade rows (rotor-stator or counter-
FLOW MEASURING TECHNIQUES ON ROTOR rotating rotors) are quite amenable to

two-dimensional flow calculations using
During the last three decades, great the cascade flow model which is obtained

progress in the field of microelectronics, by unwrapping an annulus of infinitesimal
particularly high frequency response radial height from the flow passage of an
microsensors as well as electronic data axial-flow turbomachine. It is well-known
acquisition and evaluation, has led to that this potential-flow interaction
significant improvements in the measure- causes dynamic blade forces upstream and
ment of the unsteady flow and blade vibra- downstream which are very strong in the
tions in the rotating frame. In this case of very small axial gaps between the
chapter it will only be feasible to select blade rows but which rapidly diminish with
some typical examples of key measurements increa2 i axial blade row distances.
which provide a physical understanding of This effect, well explained by potential
the complicated three-dimensional, viscous flow theory, has also been measured in

JI- unsteady flow in blade passages and of the various investigations of axial-flow com-
structural dynamic response in the forced pressor and turbine stages.
vibration problem. Experimental blade
flutter investigations on rotors will be In addition to potential-flow inter-
excluded here because they were already action, wake flow interaction has to be
dealt with in the previous chapter on considered in order to determine the aero-
"Unsteady Aerodynamic Measurements in dynamic load of an airfoil. Assuming uni-
Flutter Research." form machine inlet flow, except for the

first upstream rotor blade or stator vane
UNSTEADY BLADE STATIC PRESSURE row, all subsequent rows of airfoils are
MEASUREMENTS exposed to a periodically unsteady inlet

flow field due to the wakes created by the
The development of miniature, high upstream blade or vane rows. These wakes

response pressure transducers which are are convected into the downstream row
small enough to be embedded in the surface creating unsteady pressure distributions
of the blade has generated great progress along the airfoil surfaces.
in unsteady aerodynamic investigations.
Arranging several of these transducers Fig. 4 displays the scaled midspan
around the airfoil enables one to measure section of a subsonic axial-flow compres-
unsteady surface blade loads and to obtain sor stage investigated by Gallus et al.
information on the forcing function in the (1980). Four pressure transducers were
forced vibration problem. Parallel use of integrated into the suction surface of a
pneumatic pressure taps on the surface of rotor blade and three into the pressure
an adjacent rotor blade allows one to com- surface. In Fig. 5 the local time histor-
pare unsteady and steady static pressure ies of the fluctuating portions of the
distributions on the airfoil. static airfoil surface pressures are

plotted versus time for one blade passing
The electromechanical configuration period both with the inlet guide vanes be-

of the pressure transducers and their ing present and removed. For the latter
installation in slots or grooves which case, the dashed lines indicate that there
have to be provided in the blade surface, exists a slight periodic upstream influ-
is well-known from the literature, Carta & ence of the stator vanes on the rotor
O'Brien (1980), Gallus (1975), and will blades due to potential flow interaction,
not be repeated here. However, it should although, as can be seen from Fig. 4, the
be remarked that such grooves and inner axial gap between rotor exit and stator
holes in rotor blades can reduce the blade inlet is large (30,5 nm) compared to the
strength considerably. This causes a cer- axial chord of the stator vane (61,9 mm).
tain limitation in the use of this tech- At this rotor part speed of only 6500 rpm.
nique on high-speed rotors. Therefore, i.e., about 68 percent of the nominal
new attempts should be made to provide a speed (9500 rpm), the strain gauges at thetype of surface-film pressure transducer rotor blade root indicated no noticeable
which can be fixed onto the blade surface vibrations. Due to the wakes of the inlet
without grooves but Which is thin enough guide vanes, the peak local pressure
not to disturb the surface conditions on fluctuation of about 2000 Pascal appears
the airfoil, at position RSI located on the rotor bladesuction surface close to the leading edge.unsteady static blade pressure mea- The electrical signals of the high
eureinrte are in use for flutter investi- response pressure transducers (Kulite)
gations on isolated fans as well as for were transferred from the rotating frame



tothe stationary frame by a slipring3 Attempts have been made to calculatetral1sm!it~tcr, The local time-averaged the unsteady pressure distributions due tostatic airfoil surface pressures at rotor- wake interaction;,e.g., by Naumann and Yehblade midspan were determined by an array (1973), Lotz (1965), and Henderson (1972).of pnieumiatic static pressure taps. In Gallus et al. (1981) applied these predic-*this case, the pneumatic pressure signal tion methods to the axial-flow compressortransfer from the rotating to the station- stage without IGVB,' as shown in Fig. 4,ary frame was achieved by xnean _f a ro- and compared with measured unsteady statictating Scanivalve system on the rotor airfoil pressure distributions on theshaft.. The centrifugal effect on the stator vanes. The results are presentedcolumns of air in the rotating piping in Fig. 6 in terms of Fourier coefficientsbetween pressure tap location and rotor of the lift fluctuation plotted versus theshaft. axis was taken into account by an harmonic components. From this comparisonappropriat~e correction of the measured it becomes obvious that with respect topressure values. These measurements on a the first and second harmonic componentsrotor blade surface were described by the predicted values are only in veryGallus et al. (1978). Machine data, rough agreement with the measurements.details of the measuring device, and data For flow rates between 0.8 to 0.7, pre-acquisition were reported by T. Wallmann dicted and measured coefficients differ(1980).even more. Fig. 6 also includes the com-
parison with results predicted by the

-- --potential flow interaction theory accord-

ing to Lotz (1965). For very large axial
GUIDE~lmm potential flow interaction is negligiblyGUIDEIffim small.
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F'ig. 6. Analysis of rotor-stator inter-action for flow rate coefficients1 of 0.8 and 0.7

(from Gallus et. al. 1981)

ELI .iin the moan time, improved comnputa-
,, Ih~-''~--~1 tional methods based on the solution ofthe two-dimensional unsteady Ruler equa-Ition have been established to predict. the

aerodynamic blade forces caused by theVlg(t lit till port ions. of stat ic measured unsteady inlet flow conditions,r. ýor tnirf(,II p~ressures deviating such an velocity and angle distribution infrt'., locril time-nvernrqed values, the periodic upstream wake flow, e.g., by1i',pttol verstiq time of one blade Japan et. al. (1980). This requirement.,o snn,j f£e.rkod. makes it necessary t~o know the wake flowro I I itries coror~esprurl to I6y's field downstream of stator and rotor blademlolIyof oil, dmedah~ linen to IGVas rows either by measurements or by computa-rer)oI(from G~allus at nt.1980) tional approaches.
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Measurements of the wake flows, in
1particular the study of their differing
"character and decay downstream of rotor

K" blades and stator vanes, have been con-
ducted by various authors with the aid of
rotating pneumatic or rotating as well as
stationary probes provided with high
response pressure transducers or hot
wires, and by laser velocimetry, respec-
tively. These techniques will be con-
sidered in the following sections.

Dring et al. (1982) studied the aero-
dynamic interaction between the rotor and ST00

stator airfoils of a large scale axial ,R
turbine stage. The data included-measure-
ments of the time-averaged and instan-
taneous surface pressures, and was ac- 'No
quired with rotor-stator axial gaps of 15 ,N
and 65 percent of axial chord. Fig. 7
shows the airfoil geometry and the trans-
ducer locations. The measured results
reveal the upstream potential flow influ- V(W
ence of the rotor on the stator as well as

* the downstream potential flow and wake
influences of the stator on the rotor, as _-I

presented in Fig. 8, where the stator and
rotor unsteady pressure envelopes areplotted in addition to the time-averagedstatic pressure distribution. A"

.1 © 05

as100

Fig. 8. Stator and rotor unsteady pres-
sure envelopes, 15 percent gap,
(Cx/U) - 0.78U (from Dring et al. 1982)

Beside these high response blade
static pressure measurements there are
also results from thin film gauge measure-

Su ments on stator and rotor blades reported
by Dring et al. (1982). Samples of the
rotor thin film gauge data for the three

0 'rotor inlet flow angles (35, 40, and 45
'2 ,degrees) are presented in Fig. 9 for the

15 percent gap. Data are shown for sites
_ 3 5 and 7 located on the suction surface

toward the leading edge. For the rotor,
periodic events occurred at the stator
passing frequency. It becomes obvious

"ROTOR that the strong unsteadiness at site 7
"near the leading edge is greatly reduced
at site 5 further downstream. At both
Ssites, regions of large random fluctuation
due to the turbulence in the stator wake

are superimposed on the periodicfluctuation. Zones of smaller randomnessincroased with reduced turning. Tile

reduced leading edge overspeed produced a
laminar boundary layer on the rotor
8uction surface which was periodically
interrupted by the impingement of thr tur-
bulent upstream stator wake. The periodic
oscillation between laminar and turbulent
boundary layer flow on the rotor auction

Vi~j. 7. Turbine stage at 15 percent surface was found in good agreement with
axial gap (Kulite sites) similar observations mentioned lIu the
(from IorIln qllt a . 1902) literature.



of the amplitude of the modulation due to
L-1-1o63 the blade passage, while the mean pressure

level varies. From the measurement of
instantaneous pressure distributions on
the casing waLl, the evolution of the

J pressure distribution on the rotor blade
tip airfoils at various times during the
passage of the rotating stall cell could

S. _,be deduced.

Bohn (1977). Gallus et al. (1977) andSal -0 -- .. . -.... _ W Broichhausen (1981) used high response
- '~ "•'- N - - pressure transducers distributed along the

rotor and stator casing wall of an axial-
iC.u).078d 40 flow supersonic compressor stage to study

the unsteady upstream influence of the
stator on the rotor blade tip flow.
During low-speed operation with subsonic
axial flow velocity in the gap bewtween
rotor and stator, the rotor flow pattern
is influenced by the axial retroaction of
the stator. The downstream interaction

-STATOR PAZýW_ý ---_D between rotor and stator along the casing
wall was investigated, too, to determine

- f the influence of the relative rotor posi-
tion on the wall pressure distribution at
the entrance of the stator. It was re-
markable that the maximum amplitude of the

(C-UJ0)6g d, =35. static pressure fluctuation due to rotor
blade passing amounted to 65 percent of

A - the amplitude of the mean static
V. V pressure.

Figs. lOs and 10b, taken from
Larguier (1980), show results from high
response wall pressure measurements which

"A, - were performed on a model of a supersonic
compressor at ONERA. The casing wall of
the rotor section was equipped with 12
piezoelectric ceramic pressure transducers
to produce pressure diagrams as a function
of time. Fig. 10b presents the isobar map

Fig. 9. Uotor thin film data, 15 percent developed from pressure recordings includ-
ga[) (from Dring et al. 1982) ing the drawing of shock waves as detected

by schlieren photographs.
The influence of both the axial gap

between rotor and atator and the rotor-
stator blade number ratio on the aerody-
namic blade load measured with high re-
sponse pressure transducers has also been
investigated by Grollius (1981) and Gallus
et al. (1982).

W. F. O'Brien et al. (1980) used on-
rotor high response transducers for their
stuly of distort.ed inflow behavior on the
dynamic response of the flow over the transducer A

provided the data transfer. transducer B -roto bl deo. A r tati g t leme ry yste ýi Position of transducers

1IGN RESPON•SE PRESSURE TRANSDUCERS FOR shoc 0o o1 ra du i
UNSTEADY PRESSURE FI ELD MEASUREMENTS
ON -till. CASING WALLAIT1A.pe

"Vkto technique is favoured for the .
ataiy of rotating stall and for the deter- Ap Ombor
Smi;nation of shock-wave configurations at
the tip of trans-or supersonic compressor
bladin3s.

largqiter (1980) reports ona rotat ing upper
foall tivuy with 26 piezoelect.ric ceramic b... o"
pressure t ransducers mount ed in a casing
zone locaterl in the rotor section. As
loVjn an nr, rotating stall coils appear,
eaCh of fthhrz tranadUcern emlts a signal
per lhfally rr>l|ulated by the passage of Fig. ion. Transducer arrangement. and
thn rotor ri,,'len. When rotating stall relative position of rotor at
oe:cors the ),,wasage of the separated zone time of mensurement. triggering.
ir, frort of a tranrvlrucer cauises a considl- xxamples of recordings.
erat,le cm.,arve of response and a teduction (from 1orguier 1900)
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stationary system by means of pressure
transfer devices, such as scanivalves or
rotating transducers converting the pres-

I. sure into an electrical signal in the
rotor frame of reference. References toS( the most widely used methods for the
transfer of electrical data from rotating

T transducers such as pressure transducer,
I -hot wire, strain gauge, and thermocouple

via mercury slipring unit or telemetry
system are listed. The reader also find6
a comprehensive survey of the various
types and essentials of hot wire and pres-
sure probe measuring techniques for the
experimental analysis of rotor passage and
exit flow.

flow In the following paragraphs, examples
" 5 •of the rotating probe measuring technique
a and some selected results taken from the

literature will be cited.

Very detailed information on an axial
flow research compressor facility designed

rZ, ifor flow measurment in rotor passages has
been presented by B. Lakshminarayana

Cosine (1980). In this facility, Sitaram et al.
N (1981) used conventional probes, such as

five-hole, disc, and spherical pitot-
static probes to determine the three-
dimensional flow field in a rotor
passage.

'•'+i 'T ot r ollm

Because of the extraordinary diffi-
culties to traverse such types of probes
in a rotating passage, in particular at
high circumferential speeds, and due to

Fig. 10b. Chart of isobars along the the blockage effect of such probes in case
casing wall (mbar). Comparison of a comparatively small passage area,
with shock waves observed by most of the measurements with rotating
schlieren photography (shaded probes concentrated on the investigation
zones). (from Larguier 1980) of the relative flow field downstream of

the rotor blade trailing edge. Many mid-
span and fullspan measurements of this
kind have contributed to the analysis of
the complicated flow field aft of a rotor

ROTOR FLOW FIELD AND ROTOR WAKE STUDIES showing considerable radial flow effects.
WITH THE AID OF ROTATING PROBES Circumferential and radial probe travers-

ing as well as measurements at various
axial stations enable one to study secon-

This category of measurements is re- dary flow and mixing effects as well as
stricted to moderate rotor speeds because the tip clearance influence. Maps of the
of the enormous centrifugal forces acting rotor exit flow vectors and relative total
on sensors, probes, and probe holders, on pressure contours can be obtained for an
the one hand, and the increasing inter- axial measuring station, and from their
action with and disturbance of the flow changes at various downstream stations the
field to be measured, on the other. decay of the wakes and the overall down-
Hence, this technique has predominantly stream behavior of the relative flow field
been applied to low speed test rigs and can be determined. Such a detailed exper-
isolated rotors. Nevertheless, most of imental analysis is recognized to- be a
the knowledge about the complicated phe- powerful tool for improved designs and ad-
nomena in rotor blade passages as well as vanced computational methods for flow pre-
in the rotor wake flow measured in the diction. As an example of excellent work
rotating frame of reference has been with this technique, there are to- be
gathered with the aid of this technique. mentioned the investigations of an axial

compressor rotor in a large scale rotating
rig by R. P. Dring et al. (1979, 1981).

IB. Lakshminarayana (1980) presented Fig. 11 demonstrates the radial-
an extensive review of the various probe circumferential distribution of the rela-
,,esigns in his keynote paper contributed tive total pressure coefficient measured
11 the Symposium on "Measurement Methods by a rotating five-hole probe at a down-

ii, Rotating Components of Turbomachinery" stream distance of 10 percent of the mid-
at the 1980 Joint Fluids Engineering and span axial chord. The rotor exit flow
Gas Turbine Conference in New Orleans. vectors corresponding to Fig. 11 are shown
Various rotating probe traverse mechan- in Fig. 12. Such results of measurements
isms, probe typos and sensors developed in are suitable to test the quality of compu-
reoearch laboratories all over the world tational prediction methods. These inves-

01 are described in this review paper. It tigations also included the measurement of
includes a detailed survey of the transfer the rotor wake deformation with varying
of pressure data from a rotating to a flow rate coefficient.
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profile shape, asymmetry of wake velocity
profiles with decreasing flow rate coef-

3ONTO. Un ficient, symmetric and asymmetric wake
01~O radial velocity profiles. These studiesy will contribute to an improved analytical

modelling of the wake influence, e.g., on
the unsteady aerodynamic blade load of the
downstream blade row. Among others,
Fleeter et al. (1978, 1980), Gallus
(1975), Gallus et al. (1980), Ispas et al.
"(1980) investigated the unsteady aerody-Snamic response of compressor stators
generated by rotor wakes. Gallus et al
(1982) included t~he decay of rotor wakes
due to increasing axial gaps as well asthe influence of various rotor-stator
blade number ratios into their experimen-
tal program.

Figs. 13 and 14 demonstrate wake flowmeasurements by a rotating pneumatic
three-hole probe, Gallus (1979), Wallman
(1980).

Fig. 11. Total pressure contours,
30% aft, (Cx/Um) = 0.85
(from Dring et al. 1981)

.1

Fig. 12. Relative flow speed contours
and secondary flow vectors rela-
tive to core flow, 0 - 0.85
(from Dring et al. 1981)

Wake deformation and wake transportare well-known to directly influence the
.4 unsteady static pressure distirbution in

the downstream blade row. Therefore, the
flow in the airfoil wake has been a favor-ite subject of numerous experimental Fig. 13. Rotating three-hole pneumaticattempts to describe the wake behavior probe traversed during rotationdownstream of rotor and stator blades, behind the rotor trailing edgeInvestigations conducted by Thompkins and as indicated in Fig. 4. TheKerrebrock (1975), Reynolds and photo includes a view of the
Lakshminarayana (1980), Reynolds et al. high response pressure trans-(1979), Ravindranath and Lakshminarayana ducers at midspan.(1979), Raj and Lakc;Ltinarayana (1976), (from Gallus 1979)
11irsch and Keel (1977), Keel ot al.
(1978), Gallus (1975), fallus (1979) haverevealed remarkable features of the rotor Knauf and Gallus (1984) measured thewake flow, such as large radial velocities unsteady aerodynamic response of vibrating
in the waken, local regions of laxge zadi- stator vanes to upstream rotor wakes atal flows near endwalls, similarity of wake midapan.
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Ravindranath and Lakshminarayana

. .............. (1979) applied rotating tri-axial hot wire
probes to investigate the structure and
decay characteristics of turbulencj behind
a compressor rotor. Matsuuchi and Adachi
(1983) presented measurements of the

5 0 0 three-dimensional unsteady flow inside a

I rotor blade passage of an axial flow fan.
These measurements were made with a single
hot wire probe rotating with the rotor.

ala
go.483 Ha- iv.

0 - ....... ..... MEASUREMENT OF THE ROTOR FLOW BY HIGH
_L RESPONSE STATIONARY PROBES

03 This field of measurement problems is
MOJ. mainly covered by two techniques:

t d2 - stationary hot wire technique, and

- stationary high response pressure
of probes.

-1hout 1C'V ---- M t

-- There are two methods available to
".as 0 as apply the stationary hot wire technique to

flow measurements at the rotor exit or in-
let. The first method uses a three sensor
wire whereas the second utilizes a single

Fig. 14. Wake flow measurements with sensor which is rotated about its own
rotating probe shown in Fig. 13. axis. To separate the periodic and random
The upper part demonstrates the components from the measured signal, a
influence of rotor speed, the periodic sampling and averaging technique
bottom part depicts the wake is employed in both cases.
shape deformation due to de- Lakshminarayana (1981) presented a de-
creasing flow coefficient from tailed introduction to these techniques.
0.73 to 0.63 The stationary hot wire technique has been
(from Gallus 1979). used widely for the study of isolated

rotor wake flows and the fluctuating flow
Unsteady flow effects in the rotating fields in the gaps between the blade rows,

frame of reference can, for instance, be respectively. Because of the smallness of
detected by use of high response pressure the sensors compared with the high re-
transducers or hot wires on a rotating sponse pressure probes, tie hot wire tech-
probe. Fig. 15, taken from Gallus et al. nique is favoured for flow field measure-
(1980) and Wallman (1980) shows a photo of ments in stator vane passages. For
a compressor rotor additionally provided example, Fig. 16, taken from Gallus and
with a Kiel type probe integrated semicon- Hoenen (1983), gives a view of the local
ductor transducer that can be traversed to fluctuation of the rotor exit flow angle
de..ect the wake transport from inlet guide in a stator midepacing position of the
vanes through the rotor blade passage, and probe at three various spanwise locations,
periodic rotor blade flow separation, plotted versus time of one blade paasing
respectivelyl see also Fig. 4. period. The operating point corresponds

to unthrottled flow at about 37 percent of
the design speed of the axial flow com-
pressor stage. Fig. 17 demonstrates

5TRAIN GAGES OrArING PNWMArTI already large local fluctuations of the

VIBRATION CONTROL? rHREEHOLE PROBE radial flow angle for the same operating
point, showing maximum amplitude at mid-

rWOBLADESWITH span. These measurements were performed

SEM/cOIUC tOp with the aid of a three-sensor hot wire

TRANSDUCERS probe that was also used to determine the

[D1AMfTRICALLY spanwise distribution of the degree of

OPPOSITE twO turbulence in the planes 1, 2, and 3 in

ROTRGPLADFS Fig. 18. This figure also includes the
WqH PNEUMATIC data measured by a one-sensor probe that
WprSSW la'SI cannot include the radial component which

is of considerable influence in the rotor
exit, flow.

The following examples demonstrate
POTA NNO AMWEYI, the use of high response pressure trans-
ý(WOOXKfOP1 PAN0fJtR ducers in stationary probes, such as the

data in Fig. 19 obtained from a stationary
Kiel type probe provided with a semi-

P'iq. 15. kthoto of the Instrumentation for conductor transducer for time-dependent
on-rotor measurements in a high spanwise total pressure measurements of
speed axial compressor stage the rotor exit flow, Wallmann (1980),
(from Gallus et at. 1980) Gallus and Hoenen (1983).
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30M

121

n -3500 min-1 0 IOr

with WCV Ih.

Y..............................r = 190 mm
- r 150Fig. 18. Spanwise dist~ributions of turbu----00"r =110 lence in the st~at~ions 1, 2, and

2' P' 3 of an axial-flow compressor
stage, measured by one-sensor
and three-sensor probesFig. 16. Time-dependent rot~or exit flow (from Gallus and Hoenen 1983).

angle measured at. three differ-
ent. spanwise locations in a mid-
spacing position of the three-
sensor hot. wire probe (plane 2*) 

'(from Gallus and Hoenen 1983)

6

4 - so MS_101
t2

0 

..

C-6-

3 - 350...n~

Rotor Stator ..r10 m I 4h

Fie1J. 17. I'[mo-depentlont. rotor exit. flow
angle mieasured at. three differ-
ent sapnwise locations and plot.-
ted versus time of one rotor Fig. 19. Bpanwise time-dependent. t~ot~al
blade passing period, pressure distribution downstream
The three-sansor hot. wire probe of the compressor rotor shown inwas positioned in the center of Fig. 15, at a rotor speed - ofthe spacing toetween two stator 6500 rpm and a flow coefficient.
van@*. of 0.0
(fror Gallus and IHtenen 1983) (from Gallus and Iloenen (1983).
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Shreeve and Neuhoff (1984) reported
on the development of a Dual Probe Digital

* Sampling (DPDS) technique. Two probes of
different design are mounted circumferen-
tially separated in the case wall 14 per-
cent of tip chord downstream of the trail-
ing edge of a supersonic compressor rotor.
These probes can be translated radially (V
and also rotated around their tips. Both
probes are provided with Kulite trans-
ducers in the probe tips. Due to the
different probe geometry the dependence of
the outputs of the two probes on Mach
number, pitch and yaw angle is quite dif- 000 i
ferent. While the Type A probe is a good
indicator of the Mach number, and indepen-
dent of pitch angle, the Type B probe is
suitable to measure the pitch angle. The
probe outputs are sampled at the -same
point in the rotor frame of reference, at 020
delayed times, with the probes set to nine
angles with respect to their axes. One
sample of each probe is taken per rotor
revolution, thus yielding a sample rate vocuumtube
equivalent to the rotor speed. A proce-
dure analogous to the calibration pro- ' " "

cedure used for nmulti-sensor probes is d '

applied to the dual probe system to derive .yMach number and flow angles from the two
arrays of nine measurements. Neuhoff et
al. (1986) demonstrated the capability of -4 spit Ike 0.2
this technique to resolve the radial as
well as tangential and axial velocity com- -- 0Th--
ponents of the flow field in a high speed
compressor rotor including the wake
regions. Fig. 20. Miniature high frequency sphere

probe with five semi-conductor
pressure transducers

Kerreb-ock et al. (1980) describe a (from Kerrebrock et al. 1980)
spherical probe having five surface
mounted silicon pressure sensors as shown
in Fig. 20. From the five pressure sig-
nals of this probe the stagnation and the This section will only select and
static pressures, Mach number and flow describe some representative applications
angles in two planes could be determined, of the various optical techniques used for
hll diaphragms are well upstream of the unsteady flow investigations in rotors and
separation point on the sphere, so that rotating rigs.
Reynolds number effects a-I weak. The
authors present details of the calibration
of the probe due to steady-state tests. FLOW VISUALIZATION
The well-known problems with respect to
thermal drift of the semi-conductor trans- Flow visualization is one of the most
ducers could be overcome by compensation instructive methods for the understanding
methods. This miniature high frequency re- of complicated fluid dynamic problems. In
sponse probe proved its reliability in the particular, it offers the observation of
MIT Clowdown Compressor Facility. unsteady flow effects in the whole flow

field at one sight. For instance, part-
icle injection such as smoke or dye allows
the study of flow separation or vortex

OPTICAL METHODS FOR ROTOR FLOW shedding phenomena. However, these trac-
INVESTIGATIONS ing techniques are restri.ted to low

velocity flows with low turbulence level.
Increasing turbulence and flow velocity

These methods play a very important leads to an outwash of the traces due to
role in the investigation of rotor flowm, diffusion of the particles into the sur-
Some of them can also be used at high- rounding flow.
speed operation in the trans-and super-
sonic flow regime where flow field mea- Surface painting techniques are in
surements by rotating probes become rather use to locate boundary-layer transition
problematic due to strong aerodynamic and separation. Dring and Joslyn (1981)
interactions with the flow, on the one report on the flow visualimaton of surface
hand, and due to mechanical difficulties streamlines on rotating turbine blades in
with sensors, probes, and probe holders, a large scale test rig. They utilized the
on the other. ammonia-ozalid technique developed by

Ruden (1944) and by Johnston (1964), It
A very comprehensive survey of nonin- consists of attaching a piece of Osalid

trusive optical measuring techniques paper onto the airfoil surface immediately
appropriate for turbomachine application downstream of a pressure tap location.
was presented by Weyer (1980). Ills review When ammonia is slowly discharged from the
paper briefly includes the description of tap, it reacts with the paper leaving a
the physical principles of the various dark streakline indicating the blade
techniques. surfaoce flow direction.
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SCHLIEREN AND SHADOWGRAPH TECHNIQUES Technical University of Aachen to the
steady and unsteady flow measurements in

These techniques are well-known from supersonic axial-flow compressor stages.
windtunnel investigations of linear cas- It has proved useful in many respects,
cades. During the last two decades such as the experimental analysis of the
attempts have been made to extend their structure, periodicity and stability of
application to steady and unsteady flow shock waves in supersonic rotors and
measurements in trans-and supersonic com- stators, rotor-stator interaction,
pressor rotors and stages. Buskies (1969) shock/boundary-layer interaction and
succeeded in developing a Schlieren- shock-oscillations (Dettmering (1969),
technical method for the flow analysis in Gallus et al. (1977), Broichhausen and
a stationary annular supersonic compressor Gallus (1981). The schlierenoptical mea-
cascade. Parallel light from a light suring system is shown in Fig. 21. A
source passed a cylindrical lens system in flash lamp is used as a light source and
front of a casing window and was directed operated by a stroboscope. The latter is
normal to the polished hub surface and re- triggered from a rotor blade in order to
flected back the same way. Thus, the provide a steady view of the unsteady
light passes the flow passage in both rotor and stator flow at a certain rotor-
directions integrating three-dimensional stator position. Phase shifting of the
effects of the flow field along the blade stroboscopic flash enables one to obtain
height. However, in case of large hlub- stationary pictures of all the instan-
to-tip ratios these three-dimensional taneous flow events within a blade passing
effects are rather small. period of the rotor blade. Slow motion

observation of the unsteady flow can be
This technique has been extended at achieved by detuning the stroboscope fre-

ONERA by Fabri (1971), Fertin (1974), quency and recording with the aid of a
LeBot and Larguier (1976) and at the video-camera.

8 * Diaphragm

F z Window

Sfelion A-A A K a Condenser

KA aCamera

L aLens

.+_ . .. .....- ,La Rotor
L e Stator
Mla Projection Screen

14 N & Nub
.A. S Mirror

IZ = Cylindrical
Optical System

RI_____________F___ _ __po

trig. 21, SBhlieron optical system for flow visualisation in superoonic
oompressor stages (from Gallus 1975).



This technique has been used to in- llantman et. al. (1973), Wuerker et al.
vestigate the structure of the rotor bow (1973). One of the holographic techniques
waves in comparison with a theoretical developed in this program is illustrated
analysis (Gallus et al. (1977), in Fig. 23, taken from Hantman et. al.
flroichhausen and Gallus (1981)). Fig. 22 (1973). It shows the optical flow path of
dewonstrates the blade-row interaction of the object beam entering through a small
the rotor on the stator at two different window in the casing of the transonic fan
rotor positions,Gellus et al. (L%7Tb). rig. The diffuse light is reflected from

the stationary hub surface just. ahead of
the rotor inlet towards the blade tip

""*I.section and passes through a further win-
dow in the casing onto the holographic
plate. The reference beam was contained
in an associated holocamera. The test

Srotor was a highly loaded fan with a de-
sign tip speed of about. 550 m/s and a
pressure ratio up to 2.3. To obtain the

* " holograms the laser is pulsed twice at. a
N time interval between 5 and 10 micro-
_ #seconds. During this interval of time theKr. 4,4 density field within t~he blade passage

moves by 5 to 10 percent. of the blade
spacing. Due to the double exposure a

S--, differential interferogram of the density
-• variation is obtained which is made vis-

ible by reconstruction of the hologram.

POLYCARSONATE- HOLOGRAPIC

W*ND-WS PLATE-~

ILLUMINATING
' • BEAM

Fig. 22. Schlieren visualization of the

rotor-stator flow interaction in
a supersonic compressor stage
(from Gallus et. al. 1977) FLOW

This Schlieren-opt.ical investigation

of the unsteady flow in various supersonic
axial-flow compressor stages up to a
static pruessure ratio of 3.2 has been aug-

mented by measuring techniques, such as
use of high response pressure transducers STATI NARY
on the side-walls and stator blade sur- HUB
faces as well as Kiel-type and wedge-type
probes provided with semi-conductor
transducers.

GAS FLUORESCENCE TECHNIQUE

This technique has been developed at Fig. 23. Optical paths of reflected light
MIT by Epstein (1977) and Epstein et al. holography in a transonic fan
(1979) to determine the instantaneous rig (from Hantman et. al. 1973)
intrablade static density. The gas fluo-
rescence technique is particularly well
suited to studying shock structtures in The advantages of holographic inter-
transonic compressors. One individual ferometry for turbomachinery application
measurement yields density data from a can be seen, first of all, in obtaining

1l complete blade-to-blade flow area, and three-dimensional flow data by a single
allows an accurate determination of shock measurement. Decreased optical precision
position and strength. Epst.ein and of the test section windows and other
Kerrebrock (1979) presented a detailed optical components does not affect the
analysis of the passage as well as the bow measuring accuracy. On the other hand,
shock strengths obtained for a compressor the difficulties of this technique in its
rotor with tip Mach number of 1.2 and a application to turbomachinery become ob-
stagnation pressure ratio near 1.6 using vious in the rather limited accessibility
this technique. Thompkins and Epstein to the flow field and in the extensive
(1976)ao well as Ifaymann-Haber and quantitative analysis of the measurements.
Thompkins (1980) compared the experimental The latter can also be affected by machine
results with computational solutions, vibrations.

HOLOGRAPHIC INTERFEROMETRY LASER VELOCIMETRY

In the early 70's, NASA initiated This measuring technique has been de-
activities to apply pulsed laser holo- veloped to a very high standard, and its
graphic Interferometry to the analysis of successful use in turbomachinery has
shock patterns in axial-flow transonic already been proved in various appliea-
compressor rotorsBenser at. al (1974), tions. Detailed information about. these

i .. . . .. . . . . . . . . . . . . . . . .. .. . . . . . . .. . . . . . . ..f. . .. . " " '. . . . . . . .. . . . . . . . '. . .. . . .. . . . . . . . .. . . .. . . .. . . I 11 1 ~ i l l l I11 I~ ~ lliI



developments can be found in two extensive
review papers by W. McNally (1976) and P.
Runstadler (1976). More recent surveys of
the state-of-the-art of laser velocimetry
were presented by several authors at the

1980 Joint Fluids Engineering and Gas
Turbine Conference in New Orleans.

Various publications confirm the in-
creasing success of the laser velocimetry M
for measurements on rotors. - In 1972, MRROR

Wisler and Mossey (1977) reported on mea-
surements within a compressor rotor pas- -rMODE MATCHING
sage using the Laser Doppler Velocimeter. LENSES
In 1976, Wisler (1976), presented a paper MIRROR tENSES
on the application of t~his technique on
shock wave and flow velocity measurements PHOTOMULTIPLIER \ BEAM SPLITTER
in a high speed fan rotor. (PM)TUBE ROTATOR

PIN ROLE. •

Schodl (1977a, 1977b, 1980) described F I',L

the development of the Laser-Two-Focus ORANGE-PASS FILTER- .,

Velocimetry at DFVLR. Eckhardt (1976) IM"MIRROR
presented the results of the first de- BEAM-POSITIONER HOLE
tailed flow field measurements with this MIRROR ONA
technique within a high-speed centrifugal MOTORIZED
compressor impeller. L2F-measurements in GONIOMET0MOUNT -MIRROR FOR
a transonic axial-flow compressor were PROBE VOLUME COLLECTED LIGHT

published by Weyer and Dunker (1977). C FOCUSING &COLLECTING LENS

Laser velocimetry has turned out to
become the main tool for flow field re-
search in high-speed rot.ors. Neverthe- CO-2287-6
less, there are still some problems asso-
ciated with accessibility difficulties in
high-speed turbomachines, background noise
in narrow blade passages and near walls,
flow seeding, and time and expense re-
quired to make the measurements. Fig. 24. Optical layout of laser anemo-
Recently, good progress has been achieved meter (from Schodl 1977)
to overcome or reduce some of these
problems. Various authors presented ex-
cellent contributions to the current deve-
lopments at the 1980 Joint Fluids
Engineering and Gas Turbine Conference in
New Orleans.

Powell et al. (1980) present results
that demonstrate the anemometer's capa-
bility in flow mapping within a transonic
axial-flow compresior rotor. Typically, a
velocity profile, derived from 30000 mea-
surements along 1000 sequential circumfer-
ential positions covering 20 blade pas-
sages, can be obtained in 30 seconds. To P S DIE
allow flow measurements near the rotor hub
and the casing window fluorescent seed PM
particles are used. Figs. 24 and 25 SIGNt
illustrate the optical layout auwell a&-a "-ONCE-PER-REVPULSE. MICROCO PUWS
block diag--am of the anemometer.

E_• LECTRONIC LA•

'SHAFT ANGLE PRCSO

Schodl (1980) reports on further suc- ENCODER TIME)

cessful work to improve the signal-
to-noise ratio and to shorten the measur-
ing time by multi-window operation and DISK
simplification of mean value calculation STORAGE
and error estimation. As an exampIe of
the improvements achieved by using the ad-
vanced automated L2F-technique, he com- Cny
pares the measuring time for the test case

shown in Fig. 26. Due to the automated
measuring procedure the time needed for
the same number of data could be reduced
by a factor of 12. Due to the improved
optics the minimum distance of approaching Fig. 25. Block diagram of complete Laser
a wall could be reduced to about 0.5 MM, anemometer (from Schodl 1977)



11-17

Comparative experimental and computa-
tional studies, such as those by Dunker et-
al. (1977) and McDonald et al (1980), show

.. \, 1 3 1 • 113the increasing quality of this experiment-

130 al tool to support the development and im-
provement of computational methods that

, are capable to achieve a satisfactory
(136-, approach to the prediction of the complex

- 9real flow field in turbomachines.

Recent. L2F-measurements in high-speed
, 'y turbine rotors have shown that the experi-

09 I 1 mental analysis of the exceedingly compli-
cated unsteady secondary flow in such a
rotor blade passage has become feasible.
Binder (1985), Binder et al. (1985) inves-

""7 /07 ODIRECTI-ONTA tigated the effect of wakes on the un-
steady turbine rotor flow, and turbulence
production due to secondary vortex cutting
within the rotor blade channel.

Vikl. 20. Lines of constant. relative Mach F6rster and Mach (1985) succeeded in
number through the blade passage calculating the individual particle paths
at 89% blade height (100% speed) from these measurements and traced thA
(from Schodl 1980) progress of fluid filaments through the

rotor passage. They could show that the
boundaries between wake and core flow seg-
ments in the front part of the rotor agree

At the same symposium, Strazisar and closely with the distribution of turbulent
I'owell (1980) reported on laser anemometer energy, whereas three-dimensional effects
m.easurements in a transonic axial-flow play a major role towards the rear part,
compressor rotor. The flow phenomena in- as can be seen from Fig. 28. The unsteady
vestigated include flow variations from flow through the rotor was calculated from
passage to passage, the three- the measured data and demonstrated in a

" dimensionality of the rotor shock system, color film.
as shown in Fig. 27, three-dimensional
flows in the blade wake, and the develop-
ment of the outer endwall boundary layer.

CIRCUXW(RENTIAL

DIRECTION 0 S

SAXIAL

,r AR-TIP

iSTREAM SURFACE 11' SS

NEA R-NTI 9 ~ ~.AS~
ISTRE M SURFACE 3P "

."MIO-PASSAGI

(SIREAM SURFACE 2)

1 23 5 6 7
CO. Measuring Station

Fig. 28. Comparison of convectice defor-
mation of fluid filaments with
instantaneous distribution of
tuqulint 2  kinetic energy
, "(M /a )

( rom Foerster and Mach 1985)

The few selected examples presented
Fig. 27. Thtee-dimensional structure of in this section confirm the great progress

the rotor shock system, 100 por- of laser velocimetry in turbomachinery
cent speid application, especially for rotor flow
(from Strazisar et al. 1980) analysis.
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SUMARY designs. Results from the measurements
can be taken as inputs to analysis methods

This chapter intended to give a re- or for the purpose of verifying their
view of the wide variety of fluid and accuracy. To predict the occurrence of
structural measurements on rotors which flutter, it is necessary to know from
are available at the present time. either computational or experimental anal-
Methods of flow visualization in the com- yam the unsteady aerodynamic forces and
plex flow passages have always been impor- the structural motion. For resonantrant. for the understanding of the flow vibration, the magnitude of the driving

characteristics and for the development of force has to be determined, too. These
design criteria. The evolution from smoke requirements include advances in the
flow and similar methqds to those involv- three-dimensional viscous flow analysis by
ing Schlieren and laser holography repre- computational and experimental approaches.
sents a range from rather simple to very As was pointed out in the discussion of
sophisticated quantitative measurement the experimental methods utilized for un-
techniques. A number of methods to obtain steady high speed rotor flow measurements,
dynamic pressure and flow conditions on continued improvement of the nonintrusive
rotors are now rather commonly applied, measurement techniques will be necessary.
Obviously, detailed structural dynamic Unsteady flow measurement techniques
analysis and unsteady flow anaolysis should also be extended to high temper-
methods are now becoming available to be ature regions. Data handling systems
applied in conjunction with the measure- should be improved.
ments to analyze and improve given

i .r"
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