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» Chapter 1

Introduction

The precise and objective measurement of the severity of coronary artery obstruc-

tions is important in the treatment of patients with ischemic heart disease, that is,

N

[ : deficiency of blood supply to the heart.

ﬁ The coronary arteries are the vessels which encircle the heart and supply blood
directly to the heart muscle. Narrowing of the coronary arteries, usually as a result

of atherosclerosis, prevents adequate supply of blood to the heart, causing pain and,
. eventually, damage to the heart muscle. Such damage of the heart is called coronary
! disease. The number of deaths from coronary disease has increased strikingly in the

last 70 years in association with a marked prolongation of the average life span [1].

3': In order to restore normal flow of blood to the heart, over 100,000 coronary artery
™ bypass surgical procedures are undertaken each year |1].
5 An angiogram is an x-ray picture of arteries taken after a contrast agent has
. been injected into the vessels. Coronary angiography is necessary to determine
x whether a bypass operation is needed. In addition, it is an essential part of any
- surgical therapeutic approach, as it is used for the preparation and evaluation of
:f .ﬁ the results of surgery. An example of a coronary angiogram is shown in figure 1.1.
y o In the case of coronary angiograms the injection of the contrast agent is done via
‘ a catheter directly to the arteries to achieve high concentrations. At present the
b 9
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Figure 1.1: Coronary Angiogram
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best storage medium for the coronary angiograms is 35mm cinefilm, because of its

inherent high resolution.

s = B

Conventional visual evaluation of the severity of coronary obstructions has been
characterized by large inter- and intra-observer variability 12,36,11,24.. Thus, the

development of digital processing techniques for the precise and objective measure-

ork B £

ment of the severity of coronary obstructions from coronary angiograms is important

in the treatment of patients with ischemic heart disease.

ke 20 o'}
A

Coronary artery imaging presents special problems, because of their location

on the beating heart and their shape and size. For example, intravenous digital

g
o radiography can be used to visualize most of the major arteries except the coro-
N naries. When the injection is intravenous the SNR of the angiographic image is
ﬁ low. To improve the SNR, an x-ray image obtained before injection of contrast
;\ agent into the vessels is subtracted from an image obtained after injection. The
S

image that is obtained in this way contains the vessels in uniform background. In

the coronary artery case subtraction results in poor quality images, because of the

-

rapid movement of the heart. As a result of these special problems many techniques

LI )

that have been used quite successfully for stenosis determination of other arteries,

Voo
’_‘l'-l

like the femoral and carotid, do not have satisfactory performance when applied to

coronary arteries.

The most commonly used measure of an obstruction is percent stenosis, which

T

is determined as the maximum percent arterial narrowing within a specified length

of the vessel

oy d - d
o stenosis (%) = ld 2 100 (1.1)
1
oY where d; is the diameter (or cross-sectional area) of the normal section of the artery
and d; is the diameter (or cross-sectional area) of the most obstructed section. Of
",

3

course, the resulting stenosis is different depending on whether we use the diameter

-

or the cross-sectional area. According to equation (1.1), in determining the severity

of an obstruction, it is the relative dimensions of the vessel that matter, not the ab-

<

11
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3 solute ones. However, in some cases it is important to have absolute measurements
of vessel dimensions. especially when it is not possible to locate with certainty a
normal section of the vessel.

The hemodvnamic resistance of the vessel is determined by the cross-sectional

area of the vessel. According to Poisenille’s equation, the pressure gradient P

X necessary to ensure a constant flow F in a cylindrical vessel of radius r and length
?, L is given by
K P = %’TF— _ Bmulk (1.2)
nr A*
: where u is the coefficient of viscosity and A is the cross-sectional area of the vessel [4].
: This theoretical result has also been corroborated by experimental studies [13,14].
Thus. the vessel dimension that is most significant for this problem is the cross-
4

sectional area. The severity of heart disease is determined by the cross-sectional

<
N area of the obstructed segments of the vessel. }%
N .
. According to almost unanimous opinion, the stenoses regarded as significant
. "

enough to require an operation are those which reduce the lumen (that is the cross-

sectional area) by 75°7-100% 4. Thus, it is important to have accurate estimates

of the vessel dimensions at its most narrow points, as they may determine whether

" an operation is needed. "
N The cross-sectional area of the vessel can be obtained from the diameter, if the d
_E vessel has a circular cross-section. This is approximately true for healthy vessels, _a
:.: but at a coronary obstruction the shape of the cross-section is frequently irregular.

Y Figure 1.2 shows a few characteristic examples of such cross-sections taken from ! J
A N

Abrams 1. In such cases it is obvious that the diameter depends on the angle of

A

projection. and does not provide a good estimate of the area.

¥
-

The methods which estimate the area of the cross-sections directly from the

image density are usually called densitometric. These methods assume that the

T,
Iv,l -

contrast agent is mixed homogeneously with blood. and also that there is a linear

relationship between the density of the radiographic image and the thickness of con-

3
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& Figure 1.2: Cross-Sections of Stenotic Coronary Arteries
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trast agent. This relationship can be secured under rigidly controlled experimental
radiographic Tonditions [23.9]. When this is not possible, appropriate corrections
must be taken. Spears developed a rotating wedge technique for linearization of
cineangiographic gray scale with contrast medium thickness i30,31:. A different
technique for transforming x-ray density levels to irradiated object thickness was
implemented by Reiber et al. [17]. Thus, densitometric methods require strict
densitometric checks and, if necessary, calibration of the imaging system.

The maximum percent area reduction, as defined in equation (1.1), is a reason-
able estimate of heart disease. Obviously, a more accurate indication of the severity
of the obstructions would be the exact shape of the cross-section at each point along
the artery. As we will see in chapter 2 the optical density distribution of the ra-
diographic image is the line-integral projection of the x-ray attenuation coefficient
along each ray path through the human body. According to the projection-slice the-
orem, if we know the projections at all angles, then we can reconstruct the object
exactly. Since the attenuation coefficient of the contrast agent inside the arteries
is different from the coefficient of the surrounding material. we can thus obtain
the vessel cross-sections. However, there are practical problems in obtaining and
combining angiograms of more than one view. More than one view perpendicular
to the long axis of a given vessel segment often cannot be obtained. because of over-
lapping branches 31.33.. Even when we can get more views, proper registration of
the projections in the various views is difficult to achieve because of motion of the
heart. Thus it is important to extract as much information as possible about the
vessel cross-sections from one projection.

It is clear that we cannot reconstruct the vessel cross-sections from one projec-
tion. Even if we could isolate the vessel component of the projection, we could not
reconstruct the vessel cross-section. unless we had some a priori information about
its shape. However. some vessel parameters can easily be obtained from the vessel

component of the projection. Figure 1.3 shows one of the vessel cross-sections of

14
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Figure 1.3: Vessel Cross-Section and Projection

z.

figure 1.2 and its projection, assuming a perfect imaging system and uniform con-

trast agent concentration within the vessel. This projection corresponds to a linear

profile perpendicular to the two-dimensional vessel projection. The cross-sectional

~=
s ¥

g area is the integral along this profile. The diameter of the cross-section is simply

the length of the nonzero projection values. It is clear that the diameter changes

- |

when we rotate the vessel, while the cross-sectional area does not.

The problem of course is that we do not have the vessel component of the pro-

P
el

L

jection. There are other objects in the background, and distortions are introduced

by the imaging system. The task of isolating the vessel component is not easy. As a

X

result, the problems of estimating the diameter and cross-sectional area of the vessel

become nontrivial. Figure 1.4(a) shows the projection of figure 1.3, which assumes

B

a perfect imaging system. Figure 1.4(b) shows the same projection after we added a

Yo rov
I 'y

low order polynomial (background), convolved with a Gaussian line spread function

(blur), and added white noise. The resulting profile is close to what we would ob-

®

tain from the actual imaging system. We observe that, while it is straight forward

o0
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(a) Perfect Imaging System (b) Actual Imaging System

Figure 1.4: Projection of Vessel Cross-Section

to obtain the diameter and the area from the first projection, it is not obvious how

we would obtain the same parameters from the second.

1.1 Problem Statement

The problem we will consider in this thesis is the following. Given a coronary
angiogram, that is, one view of an artery, estimate the diameter and cross-sectional
area at each point along the artery. We will assume that we have a single isolated
vessel. We will not attempt to handle branch points and overlapping vessels. Our
procedure for computer measurement of coronary angiograms assumes that the
angiographer selects the vessel segment to be analyzed.

The diameter we will be estimating is the one parallel to the projection plane. As
we saw above this diameter is sensitive to vessel rotation. The cross-sectional area
on the other hand does not present this problem. In addition to this, the cross-

sectional area determines the hemodynamic resistance of the vessel. Hence the

16
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" cross-sectional area is a more attractive measure of vessel obstruction. However,
- . cross-sectional area estimation assumes that there is a linear relationship between
;;. the density of the radiographic image and the thickness of contrast agent. As
1 . .

, f" we have already mentioned. when this is not true, appropriate corrections must
o be taken. The advantage of the diameter estimates is that they are not sensitive
:: § to deviations from this linear relationship. The experiments with vessel phantom
E: . angiograms in chapters 4 and 5 illustrate these points.

:' = The severity of heart disease is determined by the most obstructed segments of

the vessel. It is usually the greatest degree of narrowing observed that is recorded

-

ks

by the angiographer {4]. Thus it is important to have accurate estimates of the

vessel dimensions at the most narrow points. An algorithm that estimates the

Y XL )
| AR

vessel dimensions very accurately at most points along the vessel except the very

Y narrow ones is not very useful.
7
% te

-

1.2 Existing Techniques

"“".ﬂ
=3

-~

Current algorithms analyze the angiograms by examining the densitometric profiles

P

I
a: of a series of lines perpendicular to the vessel image. Their objective in most cases
%

_ ! is to find the diameter or the area of the vessel. In both cases the boundary points
k.

e - R
" of the vessel must be determined. Most algorithms are quite heuristic and find
£ N

T

the boundaries of the artery by first smoothing the profile and then finding the

-

inflection points (extrema of the first derivative), or the knee points (maxima of

the second derivative) (26,16,3,32,15|. Smoothing is done by averaging or fitting

:__CH.,

some polynomial or spline function to the projection profile. Barth et al. [5] use

i
P0G
3

a correlation technique to find the positions of maximal second derivative. Smith

. -

1 > et al. 29' do not use derivative operators to determine the boundaries; instead
a i they select a threshold level after background subtraction. The diameter of the
::' o vessel is obtained as the distance between the two boundary points. The area
B 3 17
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is obtained as the integral of the projection profile between the boundary points
after the background has been estimated and subtracted. The estimation of the
background is, in our view, a nontrivial task. Some authors [16] estimate the
background by computing the linear regression line through the points directly left
and right of the detected boundaries. Smith et al. 29  estimate the background by
sliding a large sphere underneath the surface of the image. An extensive overview
of many «f these heuristic methods is given in '20].

We will refer to the methods described above as the slope methods, because
they base their analysis on the slope of the profiles. Their main advantage is their
computational simplicity. They are heuristic, however, and their performance is not
satisfactory. As we will see in chapter 4 this is especially true at the narrow sections
of the vessels, which are the most important ones. We will also show that they are
sensitive to scaling of the image. The choice of the inflection points is arbitrary,
except for the fact that they are close to what our eyes perceive as the vessel edge.
In fact, the inflection points are typically located inside the actual vessel edges.
The knee points happen to be closer to the true boundaries, but again the choice is
arbitrary. As one would expect, the knee points are less reliable than the inflection
points, because second derivatives are involved.

Another problem with the slope methods is that they do not take fully into
account the spatial continuity of the vessel. One way to use the vessel continuity
is by averaging the profiles before finding the edge points. An alternative is to
smooth the edge points after detection. Finally, the detected points of one profile
can be used to determine bounds for the location of the edge points of the next
profile. There are problems associated with each approach. Averaging of the profiles
may result in loss of resolution. The same is true for smoothing of the detected
boundaries. The use of the bounds can lead to very distorted boundaries, or totally
wrong ones, because, if the algorithm starts tracking the wrong edge, it is impossible

for it to recover.
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Inaccuracies in the estimation of the vessel boundaries by the slope methods
affect the crdsi-sectional area estimates as well as the diameter estimates. The
area estimates are affected because the area is obtained as the integral between the
boundary points after background subtraction, and also because the background
estimate depends on the boundary points.

Shmueli used a modeling approach to detect vessel boundaries in subtraction
angiograms 27,28'. Subtraction angiograms are obtained when an x-ray image
obtained before injection of contrast agent into the vessels is subtracted from an
image obtained after injection. The purpose of the subtraction is to remove the
background and thus increase the signal to noise ratio (SNR) of the vessel image.
In subtraction angiography the injection is intravenous and so the SNR of the
final image is low. Shmueli’s algorithm is designed to detect vessels in uniform
background and was applied to simulated data and to vessel phantom measurement
data. As we have already mentioned subtraction angiograms of the coronary arteries
are especially difficult to obtain and are not currently used for diagnostic purposes,
because of their poor quality (low SNR).

Shmueli assumes a simple model for the profiles perpendicular to the vessel. It
is based on the assumption that the vessel has a circular cross-section and there is
no background. Thus the profiles are characterized by the radius and the location
of the center. Shmueli uses a stochastic approach to model vessel continuity.

Some authors have developed algorithms for the reconstruction of the vessel
cross-sections from two orthogonal projections [16:. They use some heuristic tech-
nique to find the vessel boundaries and to remove the background from each pro-
jection, and then they reconstruct the cross-sections in the following way. They
assume that the cross-section can be represented by a matrix of 0's and 1’s, and
that the projections are proportional to the row and column sums of the matrix.
Since it is well known that the matrix can not be reconstructed uniquely from the

two sums, their reconstruction algorithm minimizes a cost criterion that reflects the
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”s' fact that adjacent slices must be similar.
" The problern with this approach is that, in addition to the fact that the cross-
':'_* sections cannot be reconstructed from the two projections, the algorithm assumes
p <~
j: that the vessel projections can be isolated from the background. We have already
) discussed the problems with the estimation of boundaries and background.
y [}
e
v 1.3 Scope of the Thesis
3
Q In this thesis we present a modeling approach to estimate the dimensions of the
[ coronary arteries from their x-ray projections. The idea is the following. We fit
)
f, a model to the x-ray image and obtain the desired vessel dimensions from the
Y estimated model parameters, instead of relying on direct boundary estimates based
L, . .
. on local extrema of first or second derivatives.
-
\ . . . .
} We develop a two-dimensional model of a rectangular section of the angiogram
)

that contains a single vesse!. Our model accounts for the structure of the back-

\ ground, as well as distortions introduced by the imaging system. The desired vessel
> : : , : . ,
E; dimensions, that is, the diameter and cross-sectional area at each point along the
",‘ " vessel, can be obtained easily from the model parameters.
‘,. The vessel component of the projection is derived from a simple three dimen-
5
i_: sional model of the vessel. The vessel is assumed to be a tube with elliptical cross-
:0', sections. The background is modeled by a low order two-dimensional polynomial.
_ The model takes into account the continuity of both the vessel and the background.
‘ In addition to the two-dimensional model of a section of the angiogram, we derive i
L
\ . a one-dimensional model of the densitometric profiles of lines crossing the vessel. l
L This model can also be used to obtain the diameter and cross-sectional area at each
\ > point along the vessel, even though it does not use the continuity of the vessel and

M the background.
A0
o The main difference with Shmueli’s model is the addition of the background. l
"
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Shmueli’s model assumes a flat background and therefore cannot even be applied to

coronary angiograms. Also Shmueli's model of vessel continuity is stochastic. The

= x>z K

mode] presented in this thesis is deterministic.

LA

The parameters of the model are deterministic and we obtain the maximum
likelihood estimates, which is equivalent to finding the model that best fits the data
,\! in the least squares sense. The estimation of the model parameters is a non-linear
problem. We developed an iterative algorithm to estimate the parameters. The
8 computational requirements for the one-dimensional algorithm are reasonable, even

though they are considerably greater than the slope methods. The two-dimensional
g algorithm requires much more computation than the one-dimensional approach.

We test the algorithms on three types of data. The first type is computer gener-

| ==

ated data. It provides the opportunity to test the algorithms under the assumption

K X
Sals

that the model is valid and to compare them with the current methods. Second,
the algorithms are tested on x-rays of contrast-medium-filled cylindrical phantoms.

Since the true vessel dimensions are known, this set of data gives us the opportunity

=

to test the model of the imaging system. Finally, the algorithms are tested on real

coronary angiograms. In this case the true vessel dimensions are not known. Thus

v
Telus

this set of experiments can only lead to qualitative conclusions. In the first part of

our experiments we compare the performance of this one-dimensional model to the

slope approaches. We then compare the performance of the one-dimensional model

Foa

with that of the two-dimensional model. !

Our results indicate that both the one-dimensional and the two-dimensional

=3

algorithm have better performance than the conventional slope approaches. This is
because the modeling approach uses all the information in the projection image to
estimate the model parameters. The slope approaches use only the slope information

at the sides of the vessel to determine the vessel boundaries and get an estimate of

=< o

the background. We also show that the two-dimensional algorithm is more robust

to non-white noise in the background than the one-dimensional algorithm.

"=
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L 1.4 Summary and Notation
), The thesis is organized as follows. The parametric model approach for the detection
.0
f of coronary artery dimensions is presented in chapter 2. The computation of the v
A
i model parameters is discussed in chapter 3. In chapter 4 we compare the modeling
" approach to the slope methods. The two versions of the modeling approach are g
¥,
U .
:: compared in chapter 5. The conclusions of the thesis are summarized in chapter 6.
)
::. Throughout the thesis we will use parentheses to denote a continuous function
f(.) and brackets to denote a discrete function f|.]. We will use bold face lower case
18 1}
N letters to denote a vector X. h,
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Chapter 2

Coronary Angiogram Model

The radiographic imaging chain includes the following stages, shown in figure 2.1.
The object is illuminated by the x-ray source into the image intensifier. A cine-
camera records the output of the image intensifier on 35mm film. Each frame is
optically magnified and digitized by a vidicon camera/digitizer.

First we will develop a model for the coronary angiogram under the assumption
of a perfect imaging system. That is, the x-ray tube is an ideal point source emitting
a monoenergetic x-ray beam, the image intensifier introduces no distortions, the
film characteristic curve is linear, there is no film grain noise, and the output of
the system is a continuous image. Later we will extend our model to take into

consideration the more significant distortions of the imaging system.

z-ray ™ image cine-
source jntcns;ﬁer camera

digitizer

Figure 2.1: Imaging System
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2.1 Perfect Imaging System

The analysis of the x-ray images is based on the Lambert-Beer law [23]. According
to this law, a monoenergetic x-ray beam with input intensity I, photons passing

through a length z of material gives an output intensity of
I = Ihe ™ (2.1)

The attenuation coefficient u depends on the energy of the x-ray beam and the
type of material it passes through. In the case of the human body, the attenuation
coefficient u(z,y, z) is a function of position, and the simple uz product becomes a

line integral. Thus the output intensity is also a function of position
I(z,y) = Io(z,y)e” S zwate (2.2)

The projection P(z,y) that we see in an x-ray image is actually the following quan-
tity 25!

5 1(z,y)
P(z,y)=-In I(z.y) /u (z,y,2 (2.3)

Thus the x-ray image is the line-integral projection of the attenuation coefficients.

The x-ray beam passing through the human body encounters three types of material:

tissue, bones, and contrast agent (iodine) which has been injected into the blood

vessels. Thus

P(z.y) = /Iu,(:c,y,z) dz -+-/Tu1(:r,y,z) dz + /BuB(z,y,z) dz (2.4)

where u;(z,y, z) is the attenuation coefficient of iodine, and the corresponding in-
tegral is over the iodine sections along the line parallel to the z-axis at (z,y). The
other two integrals are similarly defined. If we assume that iodine is uniformly
distributed inside the vessel, and thus the attenuation coefficient is constant in the

iodine sections, then we have
P(z,y) = uili(z,y) + /bm(z,y,z) dz (2.5)
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where [;(z,y) is the thickness of the blood vessel (iodine) along the line parallel to
the z-axis at{z,y) of the body, and the integral is the combination of the tissue and
bone terms of equation (2.4). Thus the projection consists of two terms, the vessel

term and the background term, and equation (2.5) can be written as

P(z,y) = v(z,y) - b(z,y) (2.6)

The attenuation coefficient of the contrast agent is substantially higher than the
other two, and that is why we can see the vessels.

Assuming this perfect image processing system we will develop a model for the
x-ray image. In particular, we will develop a model for the vessel component and
a model for the background component. The background model will be for a small

rectangular section of the image around the vessel.

2.2 Two-Dimensional Vessel Model

In this section we will develop a two-dimensional model for the vessel component
v(z.y) of equation (2.6). We will do this by considering a model for the three-
dimensional vessel and from this deriving the model of its two-dimensional projec-
tion on the x-ray film.

We consider the following model for the three-dimensional vessel. We assume
that the vessel is continuous and has elliptical cross-sections. Then it can be de-
scribed by a continuous multi-dimensional function, each point of which is a vector
containing the coordinates of the axis and the parameters characterizing the el-
liptical cross-section perpendicular to the axis at the point. This kind of object
is usually referred to as a generalized cone or cylinder i2\. Figure 2.2 shows an
example of such a cylinder and its line-integral projection.

This model is clearly too simple to match the actual vessel exactly. The model is
pretty close to the healthy vessels, but it deviates significantly from the obstructed

vessels. As we pointed out in the introduction, the shape of a cross-section at an
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o Figure 2.2: Generalized Cylinder and Its Projection
. obstruction cai. be irregular in shape. The model is simple so that we can estimate
‘:: its parameters from only one projection. The hope is that even when the model
L. is crude. we can still get good estimates of the true vessel parameters, such as the
- diameter and cross-sectional area.
4
¢ A slice of a cylinder with an elliptical cross-section is always an ellipse. Thus,
' if the vessel is continuous and its parameters are slowly varying, then the slices of

the vessel are ellipses. Now, look at a plane perpendicular to the x-ray image which
slices the vessel, and consider the line-integral projection of the vessel along that

plane. The elliptica! vessel cross-section and its projection are shown in figure 2.3

i
4

in solid lines.

Baas
irv.:

An ellipse is described by the following parameters: the major and minor axes,

o the angle of rotation, and the coordinates of its center. If the axes have lengths 2a

| il

and 2b, the angle of rotation is 8, and the center of the ellipse is located at (c,,c,),

] then the equation of the ellipse is i
:' (s — ¢.) cosl ~ (t — ¢,) sinf? ~(s — ¢.) stn@ - (t — ¢,) cos@!? - )
X —— —— - - - =1 (2.7)

" a? b?

E
[ ¥
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Figure 2.3: Ellipse and Its Line Integral Projection
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i and its projection is given by

B

B o p(t) = 2:12b\/r (t—ce)? fit—e<r (2.8)

_* 0, otherwise

§ where r? = b*cos®d ~ a*sin’é.

" It is easy to see that this ellipse has the same projection as an ellipse with axes

_; @ =ab/rand b = r and 8 = 0. The new ellipse is shown in figure 2.3 in dotted line.

: This shows that, as we mentioned earlier, it is impossible to recover the exact shape

i of the cross-section from one projection. However, the area of the two ellipses is the

j same and is given by

3 area = mab = nab (2.9)

B

Y which is also equal to the integral of the projection.

':: In fact, if we express the projection of an ellipse in terms of the parameters r,

3 a. and c as follows,

j' o(t) = 20:\/r2 —(t-¢)? ft-c<r (2.10)

L-,* 0, otherwise

:4 then these parameters can be recovered from the projection. The area of the cross-
‘ section is given by

;o’ area = mar® (2.11)

Ko

f Thus two quantities that we can get from one projection are the area of the cross-

* section, and its diameter 2r, which is equal to the diameter of the ellipse which has

n the given projection and an axis parallel to the projection plane.

As an illustration of the potential errors in the obstructed sections of the vessels

K we considered several cross-sections obtained from post-mortem analyses. Figure 2.4

R shows the line-integral projections of the cross-sections of figure 1.2. Also shown in _ !

y this figure are the elliptical models fitted to these projections. The model parameters ;i

! are chosen so that the sum of squares of the difference between the actual projection

and the model is minimized. Table 2.1 displays the percent error between the

[
) .
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estimated and actual parameters. We see that, even though the cross-sections are
far from being elliptical, we get good estimates of the cross-sectional area. The
diameter estimates are not as good, but the exact values are not very useful, since
they depend on the angle of projection.

So far we have derived a model for a cross-section of the vessel projection. We
must now extend this to a two-dimensional model for the projection of the vessel
on the x-ray image. Consider the profiles of the projection that are perpendicular
to the axis of the projected vessel. According to our discussion, each profile is
described by an equation of the form of (2.10). Let ¢,(¢) and ¢2(g) be the functions
that specify the x- and y-coordinates of the axis of the projected vessel, and let the
functions r(g) and a(q) describe the corresponding perpendicular profiles. These
functions describe the vessel component v(z,y) of the perfect projection model of
equation (2.6). The continuity of the vessel implies that the functions r(q), a(q),
c1(q) and c,(g) are continuous. We will assume that they are cubic splines.

Splines are piecewise polynomial functions of degree n that are connected to-
gether (at points called nodes) so as to have n — 1 continuous derivatives |8,10].
They represent nice smooth curves which are convenient to use in many practical
applications. One important property of splines is that they are good approxima-
tions of functions whose behavior in one region is totally unrelated to their behavior
in another region. The behavior of polynomials, as well as most other mathemati-

cal functions. is just the opposite. Their behavior in any small region affects their

Cross-section N] Diameter | Area |
| (a) 1% —4%
() L 12% ~3%
(c) | ~6% ~1%

Table 2.1: Error in Estimation of Stenotic Vessel Parameters
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behavior everywhere {21].
' The continuity and flexibility of the cubic splines are the main reasons that make
E .. them a good choice for modeling the spatial continuity of the vessel. In addition,
-‘E “‘\i their flexibility can be adjusted by changing the spacing of the nodes. The choice of
‘ the spline parameters does not depend on the length of the vessel. The importance
& of these properties will become more evident in the next chapter, where we discuss
g the estimation of the model parameters.
+ B

We showed that from the projection parameters we can obtain the area of the ver-

tical cross-sections of the three-dimensional vessel, but not the exact cross-sections.

=4

It should also be obvious that we cannot recover the exact three-dimensional loca-

tion of the vessel either.

| =

Here we should note that the parameter «a is also proportional to the attenuation

L]
»
-

coefficient u; of the contrast agent, i.e. to the iodine concentration. Assuming that

T B B
1
e

the iodine concentration is constant along the vessel section of interest, estimates

-

of the vessel model parameters will give us relative estimates of the true vessel

parameters.

-~ v

2.3 Two-Dimensional Model of Background

Z |

1

In this section we will introduce a two-dimensional model for the background com-

e

2
.

ponent b(z,y) of equation (2.6). We will model the background in a rectangular

T

. s section of the image around the vessel.

3 ~ We assume that the objects in the background, that is tissue and bones, are
= much bigger than the blood vessels. Therefore the density of their two-dimensional
w projection is slowly varying, and we can model it by a low order two-dimensional
: polynomial p(z,y). A two-dimensional polynomial is a function of the form
b

y ot p(z,y) = ZZa,,zy (2.12)
¥y 1= 0] 0
-
A
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% If we assume that a, g_, # O for some 0 < i < @Q, then the degree of the polynomial

: is Q@ and the order is Q +~ 1. Given that the image occupies a rectangular area

"i a.b « ¢.d of the plane, we can express this function in terms of an orthonormal

| basis v, (z.y)

v

k p(z.y) = Z Z dyy ¥, (z,y) (2.13)

. =0 =0

:\ where v, (z.y) = ¢7(z)0}(y) and ¢}(z). ¢](y) are the orthonormal bases for the

- one-dimensional polynomials in the intervals |, b and (¢, d| respectively 8.

* Polynomials, especially of low order, are very smooth functions. They are unable

-" to take on sharp bends followed by relatively flat behavior. Thus their properties K

: are very different from those of the vessel projection, which varies drastically in

< the direction perpendicular to its axis. This makes the models of the background

: and vessel relatively independent, and thus makes simultaneous estimation of their \

. parameters from one projection possible. N

; The model for the perfect projection of equation (2.6) now becomes

P(z,y) = v(z,y) + plz.v) (2.14) j
- An example of the perfect model and its components is shown in figure 2.5. 1
"' Figure 2.5(a) depicts the vessel model. A fifth degree polynomial modeling the a
: background is shown in figure 2.5(b). The sum of the two components is shown in

.‘ figure 2.5(c). ﬂ
" We must now extend our model to take into consideration the distortions of the

3 imaging system. q
S

Y j
: 2.4 Model of Imaging Process E

. In the development of our model we assume that the x-ray tube is an ideal point :}
: source and that the radiation is monoenergetic. We model the blurring that is .

K introduced at various stages in the imaging process as convolution of the perfect i
§ .
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{a) Vessel Model (b) Background Model

(c) Vessel Plus Background Model

Figure 2.5: Perfect Model
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: projection image with a two-dimensional point spread function ¢g(z,y). In this thesis
¥
) we will assume.that the point spread function is Gaussian with covariance matrix S,
-
. but any other smooth bell shaped function can be used. In fact, the x-ray pattern
b~ in the plane of the film (intensity domain) is the convolution of the x-ray pattern i
" that enters the image intensifier with the point spread function of the film-screen
i‘: combination 122.. Tests with vessel phantom x-rays show that it is reasonable to !
model this, as well as other effects, as convolution in the density domain. We model
h degradations such as quantum mottle noise, digitization noise. and film grain noise, .
o as white noise w(z,y) added to the projection image.
J. -
o According to this model the optical density distribution of the radiographic
N
v image is the following =
., .
3 I(z.9) = P(z.y) + g(z,y) ~ w(z,y) (2.15) ,
‘: ’.
> ‘
‘S where P(z,y) is the perfect projection of equation (2.14), g(z,y) is the Gaussian
2
blurring function. and w(z,y) is the additive noise. Substituting for P(z,y) we
)
K obtain the density at each point of the image section
! :
" flz,y) = [v(z,y) + pz,¥); * 9(z.y) + w(z,y) (2.16)
,i' where N,
Cd
‘ f(z.,y): observed densitometric profile ,
U4
Iy .
N v(r,y): vessel model -
: p(r.y) : polynomial model of background tissue and bones R
“» -
% g(r,y) : Gaussian point spread function
.y
. w(zr.y): white noise -
The convolution of an n-th order polynomial with a smooth function like a Gaussian ‘
: is also an n-th order polynomial, i.e. ~
: plz.y) +g(z.y) = p'(z.y) (2.17) N
9 34 1
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s .: where p'(zr,y) is a polynomial of the same order as p(z,y). Substituting equa-

L]
B ‘ tion (2.17) into-(2.16) we have
ile _ ,
AN f(z.y) = v(z,y) *9(z,y) + P(2,y) + w(z,y) (2.18)
W i X
W This is the two-dimensional model of the coronary angiogram that we will use
ad E in this thesis. An example of the model and its components is shown in figure 2.6.
o
:;% Figure 2.6(a) depicts the vessel model of figure 2.5(a) convolved with a Gaussian
QY IING : : :
'?‘.: ,5\- point spread function. The sum of this component and the background of fig-
Ve W

= ure 2.5(b) is shown in figure 2.6(b). When white noise is added to the above we

4y 't -
:l '-: obtain figure 2.6(c).
A
P " The radiographic imaging process is much more complicated, however. There
el Bty
",‘ =" are many distortions introduced because of the x-ray tube characteristics (it is
':: % not an ideal point source), the image intensifier distortions (pincushion), the film
X .I ) . -« 3 . . . .
(e characteristics, and the fact that the radiation is not monoenergetic. A section of

an actual coronary angiogram is shown in figure 2.7. The model parameters for

-

_? figure 2.6 were obtained from this angiogram.

E": L:':; Our model is only a crude model and cannot account for all the distortions
::j B introduced during the imaging process. However, the more important distortions

=~ '; are either accounted for by the model (blurring, noise), or can be corrected inde-

‘4 ) pendently. Nonlir.car geometric distortions, such as the pincushion distortion, are

s t': important only if absolute measurements are to be derived from the angiograms.

b . Kooijman et al. 15 present a technique for correcting this type of distortions. Our
:ﬁ ':. model assumes a linear relationship between the density of the radiographic image

;: and the thickness of the contrast medium. When this is not true, linearity can be

bt restored by the techniques we mentioned in the introduction [30,31,17,. A compar-
_- - ison of the model of figure 2.6(c) with the actual angiogram of figure 2.7 indicates
.-’_‘,,"3 = that our model is reasonable despite the simplifications.

' o As we discussed in the introduction, the x-rays of contrast-medium-filled cylin-

- u drical phantoms give us an opportunity to test our model. Since the vessel phantoms

3!::: @
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(a) v(z.y) « g(r.y) (b) v(z.y) - g(z.y) - P'(z.y)

- (c) v(z.y) +g(z.y) - p'(z.y) - n(r.y)

a
.
LR

DA

Figure 2.6: Two-Dimensional Model
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' Figure 2.7: Real Angiogram
.
\ i
. are straight with circular cross-sections, and the background is flat, they both fit the
.‘,
S model, and thus we can use their x-rays to check the model of the imaging process.
—
' S A section of a vessel phantom x-ray is shown in figure 2.8(a). The model for this
) ! phantom is shown in figure 2.8(b). The vessel component is shown in figure 2.8(c),
K~ and the difference between the original and the vessel component is shown in fig-
::i- ure 2.8(d). Examining this figure we find no traces of the vessel. This indicates
y .
that the model of the imaging process is adequate for this case.
R ﬁ Further justification for our model will be provided in the experiments of the
A
: following chapters.
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2.5 One-Dimensional Model

As we saw in the introduction, all of the current algorithms estimate the vessel

parameters by analyzing the densitometric profiles of the lines perpendicular to

N
& the vessel. A model of these one-dimensional profiles can be developed based on
o assumptions similar to those of the previous sections. Modeling the perpendicular
o profiles would be an obvious first step towards a modeling approach to our problem.
:: It is therefore of interest to compare it to the two-dimensional model. It also offers
a a computational advantage over the two-dimensional approach, as we will see in the
?3 next chapter. The advantage of the two-dimensional approach is that it uses the
? spatial continuity of both the vessel and the background.
i The model for the one-dimensional profiles can be derived similarly to the two-
. dimensional model. Consider the profile of a line crossing the vessel projection at
: some angle, not necessarily a right angle. The one-dimensional analog of equa-
. tion (2.16) is the following
o F(2) = [v(t) = plt)] * g(t) + w(t) (2.19)
:::: where

f(t) : observed densitometric profile

E v(t) : vessel model

p(t) : polynomial model of background tissue and bones
:?.: g(t) : Gaussian point spread function

w(t): white noise
ol
R The model for a cross-section of the vessel projection v(t) was derived in section 2.2,
. and is given by equation (2.10)
i 2ay/7% — (t—c), if't—c|<r

o(t) = { ayr? - (t=c) <

- 0, otherwise
N
W The background is modeled as a low-order polynomial p(t) of the form
I"

N
p(t) = D diay(t) (2.20)

&
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where @;(t) is the orthonormal basis for the one-dimensional polynomials in an

:'ﬂ interval a,bl: ‘It is easy to see that a slice of a two-dimensional polynomial is a
E: one-dimensional polynomial of the same degree. Thus the vessel and background
_‘: components are consistent with the two-dimensional model. Blurring is modeled
L as convolution of the perfect projection v(t) ~ p(t) with a Gaussian point spread
; function g(t), with standard deviation s. However, it is not true that a slice of the
:E: convolution of two functions is the convolution of their slices. Blurring in all direc-
‘. tions cannot be equivalent to blurring along one direction. Thus equation (2.19) is
ol an analog of equation (2.16). but cannot be obtained as a slice of equation (2.16).
: The final component of the model is additive white noise w(t), with standard devi-
_‘E ation o.
:(’ Similarly to the two-dimensional case the convolution of an n-th order poly-
‘f: nomial with a smooth function like a Gaussian is also an n-th order polynomial,
? l.e.
A p(t) + 9(t) = p'(1 (2.21)
' where p'(t) is a polynomial of the same order as p(t). Substituting equation (2.21)
into (2.19) we have
; 1(t) = o(t) < 9(t) + #'(t) - wl(t) (2.22)
" This is the one-dimensional model of the densitometric profile along a line crossing
': the coronary arter,. We should note here that the profile does not have to be
- perpendicular to the vessel for the model to be valid. The reason for which we are B
interested in the perpendicular profiles is that it is their parameters that are usefu! j
for our problem. ‘i
The model and its components are shown in figure 2.9. Figure 2.9(a) depicts j
L the vessel model. This model convolved with a Gaussian point spread function is
: shown in figure 2.9(b), while a fifth degree polynomial modeling the background p
. is in figure 2.9(c). The sum of the components of figures 2.9(b) and 2.9(c) is in i
. figure 2.9(d). When white noise is added to the above we obtain figure 2.9(e).
’
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(2) v(2)

(c) P'(t)

(e) v(t) = g(t) + p'(t) +n(t)
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(b) v(t) * g(t)
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(f) Real Profile

Figure 2.9: One-Dimensional Model
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An example of an actual vessel profile, taken from a real angiogram, is shown in
figure 2.9(f)~ The parameters for the model were obtained from this profile. A
comparison of the model of figure 2.9(e) with the actual angiogram of figure 2.9(f)
indicates that our model is reasonable despite the simplifications.

As we did in the two-dimensional case, we can test the model of the imaging
process on x-rays of contrast-medium-filled cylindrical phantoms. A profile of a ves-
sel phantom x-ray is shown in figure 2.10(a). The model for this phantom is shown
in solid line in figure 2.10(b): the original is shown in dotted line for comparison.
We see that there is a close match between the two. The vessel component is shown
in figure 2.10(c), and figure 2.10(d) shows the original minus the vessel component.
No trace of the vessel is evident in this subtracted profile. This indicates that the
model of the imaging process is adequate for this case.

The two-dimensional vessel projections can be described by the parameter func-
tions r(g) and a(q), as well as the corresponding axis coordinate functions ¢,(g) and
c2(q).

The difference between the one-dimensional and the two-dimensional model is
that the latter takes into consideration the continuity of both the vessel and the
background. Also the blurring is in all directions, rather than along a linear profile.
In the next chapter we will consider a simple heuristic (and suboptimal) way to
incorporate the vessel continuity into the one-dimensional model. But there does

not appear to be a reasonable way to use the continuity of the background.

i
d
d
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é Figure 2.10: Comparison of Vessel Phantom and Model
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Estimation of Model Parameters

“

i

Y

i In the previous chapter we introduced parametric models for a rectangular section
o of the coronary angiogram and a linear profile of the angiogram crossing the artery.
)
1)

;' In this chapter we will look at the problem of estimating the parameters of these
- models from the angiograms. The unknown parameters of the model are assumed
‘ to be nonrandom. In this case, the problem can be formulated as a maximum
> likelihood (ML) estimation problem.

D)

A According to our model the observations (coronary angiogram) are described by
h)

’ equations (2.18) and (2.22), which we will combine into
.'

.

N f(x) = fo(x;a) + w(x) (3.1)
K.

X where fy(x;a) = v(x) *g(x) + p'(x). The vector x stands for the coordinate pair z,y
in the two-dimensional model, or the coordinate ¢ in the one-dimensional model,
N and a is the vector of all the model parameters. The parametric function f; is
l

' deterministic, and the noise w is stationary, white, Gaussian, with variance o?.

- In the Gaussian case the ML estimate & is the value of a which maximizes the
K

' likelihood function (34|

b

1

3 Alf(x);a] = -5 /{f(x) — fo(x;a)}? dx (3.2)
X
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&
;: ' Differentiating with respect to a, we find that the ML estimate satisfies the equation
i 3fs(x; a)
. ——dx =0 .
;; Jrx) = folxia)y SR ax (33)
i: ""“ The covariance matrix of the ML estimate a satisfies the Cramer-Rao inequality
" g E{(a-a)(a-a)"} >J(a) (3.4)
;‘s’ where
T 2 afo(x;a)\ [ 3fo(x;a)
' - _ £
? ?5 3,(8) = - 5 / ( o o) x (3.5)

The ML equation (3.3) is nonlinear and cannot be solved analytically. Instead, we

¥

2,

will consider iterative procedures to minimize equation (3.2).

So far we assumed all parameters to be continuous. The coronary angiogram is

' )

digitized, however. That is, we are given samples of the image on a Cartesian grid,

and the above integrals become summations. In the following sections we will look

A

at algorithms for finding the maximum likelihood estimates of the parameters of

each model. We will consider the one-dimensional model first, because it is simpler

[t

and leads into a better understanding of the two-dimensional case.

ol s o

Py

3.1 One-Dimensional Model

- .

The one-dimensional model of a densitometric profile along a line crossing the coro-

ER AR

nary artery is described by the discrete version of equation (2.22)

S flt] = vt « gt] + p'[t] + wlt] (3.6)

VI

f ) The vessel component is described by the location of the center ¢, the radius r, and

3 ,,_l' the parameter a. The background component is characterized by the coefficients

. of the polynomial d,, the Gaussian point spread function is characterized by the

0 -, standard deviation s, and the noise by the standard deviation o.

h The choice of the degree of the polynomial that models the background depends
[ on the width of the vessel relative to the width of the profile we are analyzing and

.
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the variation in the background. We want the models of the background and vessel
to be independent, that is. the polynomial must fit the background component not
the vessel component. Thus we must choose a polynomial that fits the background
with as low a degree as possible. Reasonable values for the degree of the polynomial
are three and five (odd degrees seem to have better behavior than even degrees).
We can find the maximum likelihood estimates of the parameters character-
izing our model by maximizing the discrete version of the likelihood function of

equation (3.2), or equivalently minimizing

,—\
w
-

N
Aa) = Y {f1t] - foit:a]}?
t=0

where
foltia} = v[t] = g[t! ~ p"t] (3.8)

over all parameter vectors a.
Minimizing A’ over the parameters ¢, r, a, s, and the coefficients of the polyno-

mial is the same as fitting a polynomial to all possible functions
flt] vt gt (3.9)

and selecting the one that results in the minimum mean square error. This means
that we must search over all possible values of the unknown parameters. However,
taking the structure of the problem into consideration, we can proceed with the
search in a systematic way.

We assume that the variance of the Gaussian point spread function can be
estimated independently of the other parameters. The above minimization is done
as follows. First we find crude estimates of the pararmeters c¢. r, and a. The
estimates of the previous profile should be adequate because of the spatial continuity
of the vessel. At the first profile we can use some heuristic technique to determine
the estimates. Once we have the initial estimates, we need only search in the

neighborhood of these estimates. To reduce the search even further, we decouple
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- the search over c. and the parameters r and a. This is possible, because of the bell
' shaped vesset and its model. It should be obvious that with a reasonable estimate
o of r and a. optimization over ¢ will give a value pretty close to the optimal. We
;- can then optimize over r and a. A possible strategy for the minimization is the

following:

1. Get initial estimates for ¢, r. and a. Pick search increment.

e

2. Update c estimate by searching over a neighborhood of c¢.

3. Update r and a estimates by searching over their neighborhoods.

vx3

oW
1%

4. Reduce search increment.

. Update c estimate by searching over a neighborhood of c.

| S
o

6. Update r and a estimates by searching over their neighborhoods.

.):

o

7 7. Repeat last 2 steps if necessary.

4

u It also follows from the shape of the vessel that the likelihood function is locally

> convex. As we move away from the optimum value of one of the parameters (in

= . o . .

» either direction) the value of the error should keep increasing. Thus we need only

E search in the direction of decreasing error.

’ For each value of ¢, r, anu a we have to evaluate the function in equation (3.9)

"j and fit a polynomial to this function. The main computation in each function

A
evaluation is the convolution with the Gaussian. For the convolution the number

E of computations is of the order of N log, N. The polynomial fit is of the order of !

' !
Q.V computations, where Q is the degree of the polynomial. We will refer to the }

o '

j,-f above operations as one iteration. Thus the number of computations per iteration

l
is proportional to

o

i

' computations/iteration ~ Nlog, N ~ QN (3.10)

"

a Exact knowledge of the covariance matrix of the Gaussian point spread function
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is not crucial in the optimization procedure. In fact. if we assumed that there is no
blurring. we would still get good estimates of the parameters.

So far we considered only one profile of a line crossing the vessel. In order to
apply the algorithm to a segment of the vessel, we need a starting point and the
approximate direction of the vessel. We assume that they can be provided by the
angiographer. We can then apply the algorithm to the profiles perpendicular to the
given direction. The output of the algorithm consists of the sequences of estimated
parameters r ¢', a.q!, and ¢.¢'. From c ¢! and the direction of the vessel we get the
axis coordinates c,,q; and cziq.

However. the objective is to estimate the dimensions of the cross-sections that
are perpendicular to the vessel axis. Using the initial estimate of the axis coordi-
nates. we can obtain the perpendicular profiles at each point and get new parameter
estimates. This procedure can be repeated iteratively. Usually one additional it-
eration is enough. At each point along the vessel the perpendicular direction is
computed by fitting a cubic spline to the estimated ciq' sequence, and computing
its slope. The density of the linea: profile is obtained by simple linear interpolation.

Thus far the one-dimensional algorithm does not use the spatial continuity of
the vessel. except for determining initial estimates for the parameters of each profile
from the previous one. In order to have a fair comparison of the one-dimensional
approach with the two-dimensional approach, we will consider a simple heuristic way
to use the continuity of vessel. This is to smooth the vessel parameter sequences
after they are estimated, by fitting splines to them. This approach will be useful
in chapter 5, where we will compare the one-dimensional approach to the two-

dimensional approach.
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3.2 Two-Dimensional Model

We consider a small rectangular section of the angiogram (N = M. where usually
M = N = 50-80 pixels). We assume that there is a single isolated vessel in this
section of the angiogram. We assume that the angiographer can pick such a section.
Physical considerations dictate that the vessel must cross the section borders in two
places at most. It may terminate (total obstruction) before it reaches another part of
the border. For simplicity we assume that the vessel does not cross the two vertical
sides of the section. This is not a limiting assumption, since the angiographer can
pick the section so that it is true.

The two-dimensional model of the rectangular section is described by the discrete

version of equation (2.18)

fz.y =viz,yi+giz,yl +plz,yl + wiz,y (3.11)

The vessel component is described by the sequence of axis coordinates ¢, and ¢; q .
and the sequences of the corresponding radii rig: and alphas alg|. The background
component is characterized by the coefficients of the polynomial d,,. Finally, the
Gaussian point spread function is characterized by the covariance matrix S, and
the noise by the variance o>.

We assume that the variation in the direction of the axis of the vessel is limited
so that the vessel crosses each horizontal line at most once. This is a reasonable
assumption, given the fact that we look at a short segment of the vessel. In this case
we can choose ¢z q| = ¢. Thus, the total number of parameters describing the vessel
is 3V, where N is the vertical dimension of the image section. However, since we
have assumed that these sequences are samples of continuous cubic splines, they can
also be described by the spline parameters. The location of the nodes determines
how smooth the splines are. Thus we can choose the spline parameters to reflect
our a priori knowledge of the vessel smoothness. Of course the choice also depends

on the magnification of the x-ray.
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::;. The choice of the degree of the two-dimensional polynomial that models the

background dépends on the size of the vessel relative to the image section we are

h.. . . . 3 . . »

o analyzing and the variation in the background. As we argued in the one-dimensional
1

-:{ case, we want the models of the background and vessel to be independent, and thus

B we must choose a polynomial that fits the background with as low a degree as

N possible. Reasonable values for the degree of the polynomial are three and five (odd
J degrees seem to have better behavior than even degrees).

# ".

' We can find the maximum likelihood estimates of the parameters character-

Nyl izing our model by maximizing the discrete version of the likelihood function of
N‘i

:. equation {3.2), or equivalently minimizing

™ N M

o [ — . 2

r N(a) =33 {flz.y] - folz,y;a]} (3.12)

- z=0y=0

..

~ where

7.

;o '

I folz,y;a] = v[z,y] * giz,y] + Pz, ¥ (3.13)

& over all parameter vectors a.

(e

o Minimizing A’ over the model parameters is the same as fitting a polynomial to

A

' all possible functions

J flz,y) —viz,y| g7,y (3.14)
n

!

,; and selecting the one that results in the minimum mean square error. This means
Hn

' that we must do an exhaustive search through all possible sequences ¢;(q|, rg] and
e . - . .

s a:q . This is a formidable task. However, as we did in the one-dimensional case,
<~ we can take the structure of the problem into consideration and proceed with the

N

:;' search in a systematic way.

-
* . . . 3 »

ol We assume that the covariance matrix of the Gaussian point spread function

,.: can be estimated independently of the other parameters. The above minimization
i :

" is done as follows. First we determine a crude estimate of the sequences c,[qj, r'g!,
'.- P . . . .

Ly and a|¢i, and then we consider perturbations around these estimates. For this we

Wy can use the estimates obtained by some heuristic technique, or the one-dimensional
\

L)
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:::: approach presented in the previous section. We can also obtain initial estimates of
' ‘ the vessel directly by a technique described in section 3.3.
b
RN . . Co .
;;;k_ . To simplify the search, we decouple the search over the sequences ¢,.q}, r ¢' and
2 ) o
S . . . . .. .
- aiq]. As we argued in the one-dimensional case, this is possible because of the bell
\, "
«t
’ . shaped vessel and its model. It also follows from the shape of the vessel that the
. likelihood function is convex for perturbations of a sequence around a point. One
L)
N & possible strategy for the minimization is the following:

1. Get initial estimate of the sequences ¢,|q!, r(g|, and alq].

e -
f *: 2. Optimize over a set of rough perturbations around the current r|q] estimates.
e
: " 3. Optimize over a set of rough perturbations around the current c,[g| estimates.
- 4. Optimize over a set of fine perturbations around the current r|g| estimates.
A .

:3. o 5. Optimize over a set of fine perturbations around the current ¢,|q] estimates.
Bsn o

)

_'-,.5 - 6. Consider tradeoff in perturbations around the r/g| estimates and «aig| esti-
L LS

‘ ﬁ mates.

ﬁ{.
:-.‘_ Y 7. Repeat last 3 steps if necessary.

SO
{y, At each step, we consider a set of perturbations around a parameter sequence.

) 2 . 1 . . 3
v g For example consider the sequence r(g| shown in figure 3.1. The solid line shows the
!'.. =
ég' o original sequence, and the dotted line shows a typical perturbation of step 4. The
; A
'::: ;:' perturbations are made at K evenly spaced points, shown by the vertical dashed
i‘q'

) “ lines in the figure. As can be seen in the picture, the perturbations are local.
") ",
Y - Our ability to do this follows from the flexibility of the splines. As we discussed in
PV chapter 2, the splines can be changed locally without affecting their global behavior.
N e

I0h A On the other hand the properties of the splines guarantee that these changes are
;:63: {3 smooth. Thus the properties of the splines insure that spatial continuity constrains
. x»
. the vessel parameters only locally.
%
:::: g Another property of the splines that is important here is the fact that their
f‘: flexibility can be adjusted by changing the spacing of the nodes. Figure 3.2 shows
] ¢ c:
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Figure 3.1: Example of Fine "erturbation

an example of a perturbation at an earlier stage in the optimization procedure
(step 2). Here the spacing of the nodes is wider and the spline less flexible. As a
result the spacing of the points at which the perturbations are made need not be
as dense.

For each perturbation we have to evaluate the function in equation (3.14) and fit
a polynomial to this function. Each function evaluation involves the computation
of the vessel component, the convolution with a Gaussian, and a subtraction. The
number of computations for the vessel evaluation is of the order of N? {from now on
we set M = N). For the convolution the number of computations is of the order of
N?log, N.! Finally, the polynomial fit is of the order of ;Q* N% computations, where
Q is the degree of the polynomial. We will refer to the above cycle of computations
as one iteration.

We observe that the computations are dominated by the convolution with the

t Actually the number of computations is of the order of N7 log, N,, where N, > N + N, and

N, x N, is the support of the Gaussian point spread function.
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i

Gaussian point spread function and the polynomial fitting. Considering only these

-
il
-

4y two operations, the number of computations per iteration is proportional to

4 \ -

o . . . 2 1 22

DTN, computations/iteration ~ N*log, N + §Q N (3.15)

o] !

) E Exact knowledge of the covariance matrix of the Gaussian point spread function

.' . -I' . . . 3 3 - .
*5 is not crucial in the optimization procedure. In fact we can assume that there is

‘ s . . . . . . . . .

KX 48 no blurring until the very last optimization stage, without significantly affecting

) o

the procedure. Thus we can save a considerable amount of computation, since the

- . . . .

AN number of operations per iteration becomes proportional to %Q’N 2,

-q).:: i

(2N |
N 3.2.1 Comparison With One-Dimensional Approach

T In terms of computations, the advantage of the one-dimensional approach is that
ave
h it optimizes the cross-section parameters of the vessel at each point independently
2
) -‘J - . . . .

” ﬁ of all others. Also, it only uses background information of one linear profile. The ‘
v two-dimensional optimization is also done locally, but more than one cross-section is !
; ') “--t :
.l n"'.
'l 4 53
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involved at each point, as the algorithm takes the spatial continuity of the vessel into

account. Also. it uses all of the background. and assumes blurring in all directions.
Thus we expect the two-dimensional approach to require much more computation.
This is indeed the case as demonstrated by the following crude comparison.

The number of computations at each step of the two-dimensional optimization
procedure is proportional to K. the number of perturbation points, and the num-
ber of computations per iteration of equation (3.15). Thus the total number of

computations is proportional to
.1 ,
computations for 2D case ~ K(N?*log, N ~ ész\'z) (3.16)

The number of computations at each step of the one-dimensional optimization
procedure is proportional to the number of computations per iteration of equa-
tion (3.10). But this is repeated for .N profiles along the vessel. Thus the total

number of computations is proportional to
computations for 1D case ~ N?log; NV ~ QN? (3.17)

Assuming that everything else is the same, we can see that the two-dimensional
approach is much more time consuming than the one-dimensional approach. In
fact. the two-dimensional approach requires more computa\t.i;\ﬁ than this simple
comparison indicates. mainly because more iterations are needed. Finally, it should
be obvious that both approaches involve much more computation than the slope

methods. mainly because of the search involved in the optimization procedure.

3.3 Initial Vessel Estimate

The modeling approach presented in this thesis suggests a way to estimate the
background from the angiogram without estimating the vessei parameters. At the

same time we can get a rough estimate of the vessel in the section.
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S
A M
':9; %
:‘ Consider a rectangular section of the coronary angiogram. containing one or
. i more vessels. " Assume that the background is slowly varying compared to the vessel
oy
N profile. and thus can be modeled by a low order two-dimensional polynomial. This
ﬁh 1 L ¥4
Y ol assumption is reasonable, as we discussed in the previous chapter, if the section of
*
ﬁ the angiogram to be analyzed is chosen properly. Also assume that the vessel profile
.
i"‘ - is positive, which is always true. Now consider the following algorithm.
¥,
:g'e ':::
Jo R
¥, » . . .
g - Algorithm: Background Estimation
-~ r-" .
i~ 1. Fit a low order polynomial to the section, and compute the standard deviation.
& .. 2. Remove the points for which the error is greater than a given multiple of the
U , p p
R o .
. y standard deviation.
by 3. Fit a low oraer polynomial to the remaining points of the section, and compute

SnsD
S

the standard deviation :35].

)>. y 4. Quit if there is no significant reduction in the standard deviation. Otherwise
]: - go back to step 2.

v L

, This algorithm has been observed to converge after a few iterations. The polyno-
) E mial thus obtained is a good estimate of the background. The set of points that
: g are removed in the process give a good initial estimate of the vessel after we use

‘:': :,',' some simple neighborhood operations to remove isolated points due to noise in the
~ background.

)- ke An example of this procedure is shown in figure 3.3. The original coronary

:g 5 angiogram section is shown in figure 3.3(a). After 3 iterations of algorithm 1, the
i i background estimate is shown in figure 3.3(b). The degree of the background poly-

nomial used in this example is 3, and the threshold used was 1.5 times the standard

deviation. The set of points above the threshold are shown in figure 3.3(c). Fig-

A
RANS

o

- -

[ A

-

ure 3.3(d) shows the points after removal of isolated points by simple neighborhood

>

B operations.
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Figure 5.3 Inttial F~timate of Vessel

(a) Original Anglogram (b) Backgrouna f.stimate
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Chapter 4

ot

Yo
v‘: \l'
s, k’ Y [ *
N Comparison of One-Dimensional
A
l\:
b) [ ]
S Model With Slope Methods
1'.. .\_
a °
“a
IS
‘ “
,: E ) In this chapter we examine the performance of the one-dimensional model and
*'. compare it to that of the slope methods, on which most current boundary detection

-

methods are based. In our analysis we will consider each densitometric profile in-

R dependently of the previous profiles, i.e.. the spatial continuity of the vessel or the
’Z:: m background (in the direction of the vessel) will not be taken into account. Our objec-
) tive is to isolate the problem of accurately estimating the cross-sectional dimensions
",' ; from one profile, from that of exploiting the spatial continuity of the vessel. The
E:". E: importance of vessel continuity will be examined in the following chapter.
X ’ The slope method we implemented in our examples is the following: at each point
RN of the profile we fitted a second degree polynomial to a set of 7 adjacent points.
z . The first and second derivative of the profile were estimated as the corresponding
;y‘ 'E derivatives of the polynomial. The inflection points were identified as the points
. with maximum and minimum first derivative, and the knee points as the maxima of
"' :.p the second derivative. Variations of the above approach, as well as other approaches
:' . of estimating the profile derivatives, were tried with comparable or worse results.
,‘ g The vessel diameter was obtained as the difference between the inflection or the
X .
3 X 57
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::o:; knee points. The cross-sectional - . :a was obtained as the integral of the profile
e

N between the-boundary points after the background had been estimated and sub-
(AN

f:' tracted. The background was estimated by computing the linear regression line
B )‘*

‘; through the boundary points.

i We tested our algorithm on computer generated data (synthetic data), on x-rays
:}n:,' of contrast-medium-filled cylindrical phantoms, and on real coronary angiograms.
\

L)

0 The first two cases are useful, because the results can be compared to the true
Wy

’tﬁu vessel dimensions. The last case is useful as an illustration of application of the
_— algorithms to actual coronary angiograms. The true dimensions are not known, so u
v, . . o

'*‘,5‘ any conclusions we draw will be only qualitative.

4! In the phantom and coronary artery cases a sequence of images were recorded
: on 35mm film (cine-angiogram) and a single frame was selected by the angiogra-
! . . g

e pher. The analog image was optically magnified and digitized by a vidicon cam-
»l:.f:; era/digitizer interfaced to a Vax 11/780 computer. The grey level of each pixel was
Ky digitized to 256 levels. The scans were performed four times and averaged. The
;:' phantom x-rays were the same ones used by Spears et al. in {32]; the resolution
wy .

"-: was fixed at approximately 15 microns/pixel. The resolution for the real coronary
"’ angiograms varied from image to image. In the synthetic data case the grey level
fi)a of each pixel was also digitized to 256 levels to be consistent with the x-ray data. '
N

'

N 4.1 Synthetic Data

Ry

‘o First we examine the performance of the model on synthetic data. The data were
5:‘: generated assuming the model is valid. A typical example of a synthetic densito-
Sl

s metric profile is shown in figure 4.1. This profile is 80 pixels wide. The background

;"i is a fifth degree polynomial, obtained from a real angiogram profile. The vessel
:’;_“ parameter values are ¢ = 40 pixels, r = 10 pixels, a = 2, and s = 1 pixel. These
::fnt parameters were chosen to correspond to vessel profiles of actual angiograms. Fig-
P
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Figure 4.1: Synthetic Densitometric Profile

ures 4.1(a) and (b) show the profile before and after the noise was added. The
standard deviation of the noise is ¢ = 2, which corresponds to signal to noise ratio
of 19.6 dB.

We conducted a number of experiments to study the properties of the modeling
approach and to compare them to the properties of the slope method. In particu-
lar, we investigated the behavior of the two approaches for different levels of noise,
different vessel dimensions, and different image backgrounds. In each of the ex-
periments we describe below, all the parameters (background, ¢, r, a. s, and noise
variance) were fixed except one. We considered 80 noise samples, and estimated
the vessel dimensions for each sample using the modeling approach and the slope
methods. The radius and cross-sectional area estimates were averaged. and the
standard deviation of the estimates was computed. The standard deviation of the
estimates was normalized, that is, it was divided by the true value of the parameter
being estimated (radius or area).

The degree of the polynomials used in the modeling approach was 5, the same as
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that of the background polynomials of the synthetic data. In all of the experiments

UE™Y

the model parameters were chosen to correspond to profiles of actual angiograms.

4.1.1 Effect of Noise Level ’

For this experiment all the parameters were fixed except the noise level. The syn- N
thetic densitometric profile we used was that of figure 4.1(a). The vessel parameters

were ¢ = 40 pixels, r = 10 pixels, a = 2, and s = 1 pixel. To this profile we added

Xyl

7 different levels of noise. For each noise level we considered 80 noise samples and
estimated the vessel dimensions for each sample. The signal to noise ratio (SNR)

is defined as follows:

signal variance X
SNR = 10 logm( gna’ varan )

: : (4.1)
notse variance

The average of the radius estimates as a function of signal to noise ratio is shown
in figure 4.2(a) and the normalized standard deviation is shown in figure 4.2(b). *
The solid line represents the model estimates, the dot-dashed line represents the
corresponding results when the inflection points are found, and the dashed line I\
represents the results for the knee points. The true radius is shown in dotted line.
We observe that the inflection point method underestimates the vessel radius, while
the knee point method overestimates it. This behavior is characteristic of such
algorithms, and is consistent with previous results [32]. Note that for the signal y

to noise ratios considered, the average of the model estimates is roughly constant.

The same is true for the inflection point estimates, but the average of the knee (,

point estimates increases for low SNR's. As expected the standard deviation of the

estimates is significantly higher in the slope methods. }
The average of the area estimates as a function of signal to noise ratio is shown ]

in figure 4.3(a) and the standard deviation is shown in figure 4.3(b). The solid :

line represents the model estimates, the dot-dashed line shows the inflection point ;

estimates, and the dashed line shows the knee point estimates. The dotted line
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Figure 4.2: Radius Estimation for Different SNR's
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represents the true area. Here we observe that the knee point method slightly
underestimates the area, but, more importantly, the estimate changes significantly
with the signal to noise ratio. For the signal to noise ratios considered, the average
of the model estimates is roughly constant. The inflection point method grossly
underestimates the area. As a result, the usefulness of the inflection point area
estimates is doubtful, but we include the results for completeness. The standard

deviation of the slope approach estimates is higher than that of the model estimates.

4.1.2 Effect of Vessel Radius

For this experiment all the parameters were fixed except the vessel radius. The
vessel parameters were ¢ = 40 pixels, @ = 2, and s = 1 pixel. The standard deviation
of the noise was fixed at o0 = 2 (this corresponds to signal to noise ratio of 19.6 dB
when r = 10 pixels). The values of the radius were r = 3,4,5,6,7,8,10,12,15
pixels. For each radius we considered 80 noise samples and estimated the vessel
dimensions for each sample.

The average of the radius estimates as a function of radius is shown in fig-
ure 4.4(a) and the normalized standard deviation is shown in figure 4.4(b). The
solid line represents the model estimates, the dot-dashed line represents the inflec-
tion point estimates, and the dashed line represents the knee point estimates. The
true radii lie on the diagonal (dotted line). Observe that the inflection point method
underestimates the vessel radius, and the knee point method overestimates it. The
problem for the slope methods, however, is that the estimates lie on a line that does
not pass through the origin. Moreover, the line curves up near the origin. This
means that the relative radius estimates are biased, and thus can lead to significant
errors in the determination of vessel obstruction. We also observe that the standard
deviation of *he slope approach estimates is higher.

The average of the area estimates as a function of area is shown in figure 4.5(a)

and the normalized standard deviation is shown in figure 4.5(b). Both axes of
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figure 4.5(a) and the x-axis of figure 4.5(b) show the square root of the area. so
that the data points are more evenly spaced. The solid line represents the model
estimates, the dot-dashed line represents the inflection point estimates, and the
dashed line represents the knee point estimates. The true areas lie on the diagonal
(dotted line). Here the knee point estimates of the area lie on a line very close and
roughly parallel to the diagonal. Again the line bends up near the origin. These
observations are much more pronounced in the inflection point results. We also
observe that the standard deviation of the slope approach estimates is higher. The

average of the model estimates is on the diagonal.

4.1.3 Effect of Parameter Alpha

For this experiment all the parameters were fixed except a. The vessel parameters
were ¢ = 40 pixels, r = 8 pixels, and s = 1 pixel. The standard deviation of the
noise was fixed at ¢ = 2 (this corresponds to signal to noise ratio of 17.2 dB when
a = 1). The parameter alpha ranged from a = 0.5 to a = 2.5 in steps of 0.5. For
each alpha we considered 80 noise samples and estimated the vessel dimensions for
each sample.

The average of the radius estimates as a function of alpha is shown in fig-
ure 4.6(a) and the normalized standard deviation is shown in figure 4.6(b). The
solid line represents the model estimates, the dot-dashed line represents the inflec-
tion point estimates, and the dashed line represents the knee point estimates. The
true radius.is shown in dotted line. Again we observe that the inflection point
method underestimates the vessel radius, and the knee point method overestimates
it. Note that the knee point estimates increase for small alphas. The standard de-
viation of the slope approach estimates is higher than that of the model estimates.

The average of the area estimates as a function of alpha is shown in figure 4.7(a)
and the normalized standard deviation is shown in figure 4.7(b). The solid line

represents the model estimates, the dot-dashed line represents the inflection point
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estimates, and the dashed line represents the knee point estimates. The true areas
lie on the diagonal (dotted line). Here we observe a significant bias for the knee
point method. The estimates lie on a line that curves up as we approach the origin.
Also the standard deviation of the slope approach estimates is higher than that of

the model estimates.

4.1.4 Effect of Background

For this experiment all the parameters were fixed except the background. The vessel
parameters were ¢ = 40 pixels. r = 10 pixels, a = 1, and s = 1 pixel. The standard
deviation of the noise was fixed at 0 = 2 (this corresponds to signal to noise ratio
of 10.9 dB for the flat background). The different backgrounds used are shown
in figure 4.8. They were obtained from actual angiogram profiles. For each back-
ground we considered 80 noise samples and estimated the vessel dimensions for each
sample. The average of the radius estimates for the different backgrounds is shown
in figure 4.9(a) and the normalized standard deviation is shown in figure 4.9(b)
The solid line represents the model estimates. the dot-dashed line represents the
corresponding results when the inflection points are found. and the dashed line
represents the results for the knee points. The true radius lies on the dotted line
The corresponding results for the area estimates are shown in figures 4 10{a) and
4.10(b). We observe that the model estimates are not very sensitive to variations in
the background. The same is true for the radius estimates of the slope approaches.
but not for the area estimates. This is expected. because the background i1s smooth
and thus cannot have a significant effect on the derivatives of the protile. but it has
an effect on the area estimates which assume that the background i« linear Con-
sistent with the previous experiments. the standard deviation of the slope approach

estimates is higher than that of the model estimates.
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4.1.5 Remarks

Summarizing the results of the synthetic data experiments, we note that in all
cases the performance of the modeling approach is superior to that of the slope
methods. It presents an improvement in both the average of the estimates and in
their standard deviation. The bias in the slope methods can lead to significant errors
in the determination of the relative dimensions at different points of the vessel.
Our results also indicate that the knee point estimates are less reliable than
the inflection point estimates. This should be expected, because the knee point
estimates use the second derivatives of the profiles, whereas the inflection point

estimates use the first derivatives, which are less sensitive to noise.

4.2 Vessel Phantoms

Now we examine the performance of the algorithms on the vessel phantom x-rays.
The vessel phantoms are cylindrical holes with 14 different radii, drilled in a plastic
block, and filled with angiographic contrast material. The radiographic properties of
the plastic block are very similar to those of water, and thus the human tissue. The
block is parallelepiped. so the background of the phantom x-rays is flat. All x-rays
were obtained under the same set of radiographic conditions. The vessel phantoms
are shown in figure 4.11. Figure 4.12 shows the perpendicular cross-section of a
vessel phantom and the profile of the perfect projection at that cross-section. Nince
the phantoms have constant cross-sections. this experiment is similar to the radius
experiment performed in the synthetic data case. We considered 50 consecutive
profiles of each phantom. and estimated the vessel dimensions for each profile. The
estimates were averaged and the standard deviation of the estirmates was computed.
The degree of the polynomials used in the modeling approach was 3. As we discussed
in section 3.1, a lower degree {3 instead of 5) polynomial to modei an approximately

flat background performs better in this case.
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Figure 4.12: Vessel Phantom Cross-Section and Perfect Projection

The average of the radius estimates as a function of true radius is shown in
hgure 4.13(a) and the normalized standard deviation is shown in figure 4.13(b).
The sohd line represents the model estimates. the dot-dashed line represents the
inflection point estimates. and the dashed line represents the knee point estimates.
The unmits of the x-axis are millimeters (mm) and of the v-axis pixels The exact
correspondence 1s not known. and 1s important only if absolute measurements are
desired If we are .nterested in reiative measurements. then the estimates are satis-
factory when theyv lie on a straight line pass.ng through the origin Since the exact
correspondence between the radius in mm and the radius in pixels 1s not known.
we normalized the standard deviation of the estimates by the values on a diagonal
lime close to the average of the estimates

Observe that the average of the model estimates roughly hes on a straight ine
through the onigin Thic as not true for the imHection and knee point estimates
he corresponding hnes do not pass through the ongin. and curve up near the

origin - Ohserve also that the inflection point method underectimmates the vessel

rad-us refative to the modeling approach. and the knee point method overestimates
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it. These results are similar to those obtained in the radius experiment of the
synthetic data case. The standard deviation of the model estimates is only slightly
lower than that of the slope estimates. This is due to the fact that in this set of
experiments the signal to noise ratio is very high for phantoms with radii greater
than Imm. Also, the fact that the background is flat eliminates one potential source
of error for the slope methods, which estimate the background as the straight line
connecting the boundary points.

The average of the area estimates as a function of area is shown in figure 4.14(a)
and the standard deviation is shown in figure 4.14(b). Similarly to the radius case,
the standard deviation of the estimates was normalized by the values on a diagonal
line close to the average of the estimates. Both axes of figure 4.14(a) and the x-axis
of figure 4.14(b) show the square root of the area, so that the data points are more
evenly spaced. The solid line represents the model estimates, the dot-dashed line
represents the inflection point estimates, and the dashed line represents the knee
point estimates.

We observe that the knee point method slightly underestimates the area relative
to the model estimates. As we noted in the synthetic data experiments, the inflection
point method grossly underestimates the area. and is of limited usefulness. Also,
the standard deviation of the model estimates is lower than that of the knee point
estimates. However. there is a major difference from the synthetic data results. The
average of the estimates does not lie on a straight line. Instead. it lies on a line that
bends down as the radius increases. This is true for both the modeling approach
and the slope approach. The reason for this is that the relationship between the
density of the radiographic image and the thickness of the contrast agent is not
linear. As we discussed in the introduction. appropriate corrections can be made
to restore linearity 30,31.17 . This result indicates that the cross-sectional area
estimation is more sensitive to the imaging process. and emphasizes the importance

of densitometric checks and. if necessary. calibration of the imaging system.
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4.3 Coronary Angiograms

The performance of the algorithms was also tested on real coronary angiograms.
As we mentioned earlier, it is very difficult to evaluate the performance of the
algorithms in this case, because we do not know the true dimensions of the arteries.
However, a simple inspection of the angiograms and their models can give us a good
indication of the relative performance of the two approaches. Thus the comparisons
in this section will be qualitative, in contrast to the quantitative results of the
previous sections.

In the examples we present, the approximate direction of the blood vessels is
vertical. The one-dimensional algorithm was applied to the profiles perpendicular
to this direction. The degree of the polynomials used in the modeling approach was
5. As we discussed in section 3.1, a second iteration of the algorithms could provide
the parameters of the perpendicular vessel cross-sections. Since both approaches
use the same profiles, we chose not to carry out the second step. This does not affect
the comparison of the two methods. and makes the presentation of the results a lot
easier.

A section of a coronary angiogram is shown in figure 4.15(a): the resolution
is 80 ~ 80 pixels. The boundaries detected by the modeling approach are shown
in figure 4.15(b). Figures 4.15(c) and (d) show the inflection and knee points,
respectively. The boundaries detected by the modeling approach and the inflection
points appear to follow the shape of the vessel very well. The knee point boundaries
are more noisy. as should be expected from our analysis and previous results. Also
consistent with our previous results is the fact that the inflection point boundaries
are inside the model boundaries. and the knee point boundaries are outside. As we
mentioned in section 1.2. the inflection points are close to what our eves perceive as
the vessel edge. which is not the same as the actual vessel edges. The area estimates
are shown in figure 4.16. The solid line represents the modeling approach estimates,

the dot-dashed line represents the inflection point estimates. and the dashed line
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Figure 4.18: Cross-sectional Area Detection (Example B)
4.4 Summary

The experimental results we presented in this chapter indicate that the performance
of the modeling approach is better than that of the slope methods. Our results
show that the inflection points tend to be inside the model based boundaries and
the knee points tend to be outside. More importantly, this bias is not consistent,
thus resulting in errors in the determination of the relative dimensions at different
points of the vessel. The variauce of the slope method estimates was shown to
be higher than that of the model based estimates. In the case of the knee point
estimates, the variance was especially high for low signal to noise ratios, that is, for
the obstructed sections of the vessel.

The reason for the better performance of the modeling approach is that it uses all
‘he information available in the vessel profile. The slope approaches use information
..+ o« ally (the slope at the sides, or the second derivative near the base points

+ +ne protiier Thus they can be very sensitive to the local shape of the profile.
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rather than its overall structure. For example, if there are two local maxima of
the slope. it is not clear which one should be the boundary point. Similarly. the
cross-sectional area estimates depend only on the boundary points to estimate the
background. The model works well even when the number of samples across the
vessel profile is very small. This is an advantage over the slope methods in which
it becomes difficult to determine the inflection or knee points accurately as the
number of samples decreases.

The advantage of the slope methods is their computational simplicity. However.
when one considers the time and effort that is required to get an angiogram of the
coronary arteries. it appears to be reasonable to spend more time to get better

estimates of the severity of the obstructions.
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Chapter 5

Comparison of Two-Dimensional
Model With One-Dimensional
Model

In this chapter we examine the performance of the two-dimensional model and
compare 1t to that of the one-dimensional model The two-dimensional model in-
corporates the spatial continuity of the vessel and the background. and is thus
expected to be more robust to noise than the one-dimensional model
In the experiments of the previous chapter we considered each densitometric
profile independently of the adjacent profiles. 1. ¢  the spatial continuity of the ves.
sel and the background was not taken nto account In chapter 3 we discussed a
heuristic way to use the spatial continuity of the vessel with the one-dimensional
pproach This s to it splines to the estitnated vessel parattieter sequences We will
refer to this moditied approach as the smoothed one-dimensionai approarh  n order
to compare it to the two-dimensional approach. we will use the same <phine param-
eters for the smoothed one-dimensional approach as those of the two-dimensional

approach In the following experiments we will compare the two-dinnensjonai ap-

proach with both the ane-dimensional approach and the smoothed one-dunensional
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approach.
Similarly to the previous chapter. the algorithms were tested on computer gen-
erated data (synthetic data). on x-rays of contrast-medium-filled cylindrical phan-

toms. and on real coronary angiograms.

5.1 Synthetic Data

First we examine the performance of the model on synthetic data. The data were
generated assuming the two-dimensional model is valid. We conducted a number
of experiments to study the properties of the two-dimensional modeling approach
and compare it with the one-dimensional approach. In particular, we investigated
the behavior of the two approaches for different levels of noise and different vessel
dimensions.

In order to he able to make quantitative statements about the experiments, we
considered first vessels of constant radius (r ¢ - r.) and alpha (ag¢ = a,). Also,
we chose the axes of the vessels to be straight vertical lines (¢, ¢ ¢,.c2¢9 - q)
This makes it possible 10 1solate the effects that the level of the noise. the radius
of the vessel. and the parameter alpha have on the problem [t also simplifies the
unplementation of the one-dimensional algorithm. and makes the comparison easier.
“ince the two-dimensional algorithm does not take these facts into consideration,
they ~houid not bias our experiments. A more reahistic example with parameter
sequences obtained {from a real angiogram will be considered at the end of this
~e ¢ 1101

It each of the experiments we describe below  all the parameters (hackground.
¢ v~ and noise variance) were hxed except one We conusidered one noise
catnpie for vachivaiue of the variable parameter and estimated the vessel parameter

sequerces gsing the one ditnensional and 1wo-dinensional approaches  bach sample

~now g two ditnensional mage (50 0 50 pixelst Since the sequences vy and ay
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Figure 5.1: Two-Dimensional Synthetic Image

and hence the vessel cross-sections  are constant, we can compute the average
and standard deviation of the radius and area sequence estimates over ¢. This
is similar to the experiments of chapter 4, where we considered R0 noise samples
of a one-dimensional profile and averaged the estimates. The standard deviation

was normalized. that is. 1t was divided by the true value of the parameter being

estimated (radius or area)

A typical example of a synthetic test 1mage 1~ shown in figure 51 The back-
ground s a fifth degree two-dimensional polynonial. obtained from a real an-
giogram The vessel parameter values are o) ¢ 25 pixels. r g “pixels.a g 2.

for all g. and > diag(1.1) (pixels)’ The standard deviation of the nowe s a2,

which corresponds to signal to noise ratio of 16 2 dR
The degree of both the two-dimensional and the one dinensional polynonuals

used o the corresponding estitnation algorithms was 5 the came as that of the

svuthetic data The spacing of the nodes ol the cubne sphnes used in the last stage

of the twodimensional algonthin and tor cinoothmg the one-diunensional estimates

Was o poihits
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5.1.1 Effect of Noise Level

For this experiment all the parameters were fixed except the noise level. The syn-
thetic image we used was that of figure 5.1. 7 he vessel parameters were ¢y ¢ 25
pinels, ry ~ pinels, and a g 2. for ali , and S diag(1.1) (pixels)*. To
this profile we added 7 different levels of noise. For each noise sample we estimated
the vessel parameter sequences using the two-dimensional and one-dimensional ap-
proaches. The signal to noise ratio (SNR) is defined as in equation (4.1) of the
previous chaprer.

The average of the radius estimates as a function of signal to noise ratio is shown
in tigure 5.2(a) and the normalized standard deviation is shown in figure 5.2(b).
The solid line represents the two-dimensional model estim s, the dot-dashed line
represents the one-dimensional model estimates without any smoothing. and the
dashed line represents the smoothed one-dimensional estimates. The true radius
i~ ~hown 1 dotted line. We observe that the average of the estimates for the
tao-dimensional approach is very similar to that of the one-dimensional approach.
't ~rmoothing of the one-dimensional estimates does not affect the average (the
dor-dashed and dashed lines coincide), but. as expected. improves considerably the
tandard deviation The standard deviation of the two-dimensional estimates s
onlyv <hightly better than that of the smoothed one-dimensional estimates.

['he average of the area estimates as 4 function of signal to noise ratio is shown
0 ohgnre 33 a) and the normahzed standard deviation i« shown in figure 5.3(b).
[V ~obd Tine represents the two-dimensional model estimates. the dot-dashed line
ows the one-dimensional model estimates without any smoothing. and the dashed
Ane s hows the sinoothed onesditensional estimates. The dotted line represents the
true area In tigure 5 3a) the dot-dashed and dashed lines comncide  The two-
ditnensional approach offers some pnprovement in the average of the estimates,
and oniv a ~mall improvement i the standard deviation of the smoothed one-

dimensiondal estimates
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5.1.2 Effect of Vessel Radius

For this experiment all the parameters were fixed except the vessel radius. The
> vessel parameters were ¢, ¢ = 25 pixels, r ¢ = r, pixels, and a|q, = 2, for all ¢, and
S — diag(1.1) (pixels)’. The standard deviation of the noise was fixed at o = 2 (this
& corresponds to signal to noise ratio of 16.2 dB when r, = 8 pixels). The values of
the radius were r, = 3,5,8.10 pixels. We estimated the vessel parameter sequences

for each radius using the two-dimensional and one-dimensional approaches.

o,

The average of the radius estimates as a function of radius is shown in fig-

LoV |

)

ure 5.4(a) and the normalized standard deviation is shown in figure 5.4(b). The

solid line represents the two-dimensional model estimates, the dot-dashed line repre-

a sents the one-dimensional model estimates without any smoothing, and the dashed
o~ line represents the smoothed one-dimensional estimates. The true radii lie on the
:;',' diagonal (dotted line). We observe that the average of the estimates for the two-

dimensional approach is almost identical to that of the one-dimensional approach,
“ and both are close to the true value. The two-dimensional approach offers some

. improvement in the standard deviation of the estimates, especially for smaller radii.

v
k)

.
NA

The average of the area estimates as a function of area is shown in figure 5.5(a)

and the normalized standard deviation is shown in figure 5.5(b). Both axes of

figure 5.5(a) and the x-axis of figure 5.5(b) show the square root of the area, so

g" that the data points are more evenly spaced. The solid line represents the two-
) dimensional model estimates, the dot-dashed line shows the one-dimensional model
:’? estimates without any smoothing, and the dashed line shows the smoothed one-
; dimensional estimates. The dotted line represents the true area. Again, the average
’:} of the estimates for the two-dimensional approach is very close to that of the one-
” dimensional approach, and both are close to the true area. The two-dimensional
1’} approach offers some improvement in the standard deviation of the estimates over

the smoothed one-dimensional approach.
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ot 5.1.3 Effect of Parameter Alpha

0 For this experiment all the parameters were fixed except a. The vessel parameters
were ¢, @ 25 pixels. r ¢ - X pixels. and a g a ., for all ¢g. and ~ (1.1
™ (pixels®). The standard deviation of the noise was fixed at @ 2 (this corresponds
to signal to noise ratio of 16.2 dB when a. 2}, The parameter alpha ranged from
! a. - 0.5.to a. ~ 2.5 in steps of 0.5. For each a we estimated the vessel parameter
sequences using the two-dimensional and one-dimensional approaches.

The average of the radius estimates as a function of alpha i1s shown in fig-
ure 5.6(a) and the normalized standard deviation is shown in figure 5.6(b). The
solid line represents the two-dimensional model estimates. the dot-dashed line repre-
sents the one-dimensional model estimates without any smoothing. and the dashed
line represents the smoothed one-dimensional estimates. The true radius is shown
in dotted line. We observe that the average of the estimates for the two-dimensional
approach is almost identical to that of the one-dimensional approach. and both are
close to the true value. The two-dimensional approach offers some improvement in
the standard deviation of the estimates only when alpha is small.

The average of the area estimates as a function of alpha is shown in figure 5.7(a)
and the normalized standard deviation is shown in figure 5.7(b). The solid line
represents the two-dimensional mode] estimates, the dot-dashed line shows the one-
dimensional model estimates without any smoothing, and the dashed line shows

the smoothed one-dimensional estimates. The dotted line represents the true area.

4

Again, the average of the estimates for the two-dimensional approach is very close

L)
,

i to that of the one-dimensional approach, and both are close to the true area. The
o

"o two-dimensional approach offers some improvement in the standard deviation of the
= estimates over the smoothed one-dimensional estimates. more so for small alpha.
§
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Figure 5.8: Two-Dimensional Synthetic Image

5.1.4 Realistic Example

The previous experiments were designed to study the behavior of the two approaches
for different levels of noise and different vessel dimensions. Here we present a more
realistic example in order to compare the overall performance of the two methods
on synthetic data.

The synthetic image we used in this experiment is 100 x 100 pixels, and is shown
in figure 5.8. No noise has been added to this image. The background is a fifth
degree two-dimensional polynomial, obtained from a real angiogram profile. The
vessel parameter sequences c,|g|, r{g], and alg| are shown in figures 5.9(a), (b), and
(c), respectively. They too were chosen to closely match the vessel projection of a
real angiogram. The covariance matrix of the blurring function is S = diag(1,1)
(pixels)®. The units of ¢ and the sequences c;{q] and r|g| are in pixels.

To the synthetic image of figure 5.8 we added seven different levels of noise. The

parameter sequences of a section of this image (80 x 80 pixels, shown in dotted lines
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{‘,’ in figure 5.9) were estimated using the two approaches. The degree of both the

", ' two-dimensional and the one-dimensional polynomials used in the corresponding
Eé’ o approaches was 5, the same as that of the synthetic data. The spacing of the nodes
h res of the cubic splines used in the last stage of the two-dimensional algorithm and for

smoothing the one-dimensional estimates was 7 points. A second iteration of the

one-dimensional approach was performed to get perpendicular profile estimates. A

o

o -
e

» typical example of the vessel parameter estimates is shown in figure 5.10. They

._..i,,

correspond to the case of signal to noise ratio of 16.3 dB. The vessel parameter

sequences c;(q), r(q], and aq] are shown in figures 5.10(a), (b), and (c), respectively.

‘h

s

The solid line represents the two-dimensional model estimates, the dot-dashed line

represents the one-dimensional model estimates, and the dotted line shows the true

P A KA
| 22

b

parameter sequences. The smoothed one-dimensional estimates are not shown in

: ; this figure.

E The differences between the true and estimated radius and area sequences were
- i obtained. We then computed the average and standard deviation of these differ-
g ) ence sequences. The standard deviation was normalized by the average value of
" 'E: the true radius and area sequences, respectively. The results are shown in fig-
" ures 5.11 and 5.12 as a function of signal to noise ratio. = The signal to noise
:" B ratio (SNR) is defined as in equation (4.1) of the previous chapter. The solid line
:‘: " represents the two-dimensional model estimates, the dot-dashed line represents the
Q:! Ity one-dimensional model estimates without any smoothing, and the dashed line repre-
; % sents the smoothed one-dimensional estimates. Since we are plotting the difference
; - between the true and estimated values, the perfect result would be the zero se-
i’ “h quence shown in dotted line. For both the radius and the area estimates we observe
b

that the two-dimensional approach offers some improvement in the average and the

standard deviation of the estimates.

C=ceru
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The results of this more realistic example are similar to those of the previous
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- _-W.
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sections. The difference in performance between the two-dimensional approach and
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the smoothed one-dimensional approach we observe here is comparable to that of
the previous sections. This means that the earlier experiments were reasonable,

even though the vessel shape was too simple.

5.1.5 Remarks

Summarizing the results of the synthetic data experiments, we note that the two-
dimensional approach offers some improvement in the variance of the estimates,
while the average is very close to the true value for both approaches. As expected,
the smoothing of the one-dimensional estimates reduces the standard deviation

considerably, but does not affect the average.

5.2 Vessel Phantoms

Now we examine the performance of the algorithms on the vessel phantom x-rays.
The phantoms are the same ones that we used in chapter 4. For each vessel phantom
we considered a section of the x-ray which contained 50 consecutive profiles of the
phantom, and estimated the vessel parameter sequences using the one-dimensional
and two-dimensional approaches. Since the phantoms have constant cross-sections,
we can compute the average and the standard deviation of the radius and area
estimates over q. The standard deviation of the estimates was normalized in the
same way as in section 4.2, by the values on a diagonal line close to the average
of the one-dimensional estimates (the exact correspondence between the radius in
millimeters and the radius in pixels is not known). This experiment is similar to
the radius experiment in the synthetic data case (section 5.1.2). The degree of the
polynomials used in the estimation algorithms was 3. As we discussed in section 4.2,
a third degree polynomial to model an approximately flat background has better
performance. The spacing of the nodes of the cubic splines used in the last stage

of the two-dimensional algorithm and for smoothing the one-dimensional estimates
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was 7 points.
The average of the radius estimates as a function of true radius is shown in

figure 5.13(a) and the normalized standard deviation is shown in figure 5.13(b).

The solid line represents the two-dimensional model estimates, the dot-dashed line
represents the one-dimensional modei estimates without any smoothing, and the
dashed line represents the smoothed one-dimensional estimates. The units of the
x-axis are millimeters (mm) and of the y-axis pixels. As we discussed in the pre-
vious chapter, we are interested in relative measurements. Thus the estimates are
satisfactory when they lie on a straight line passing through the origin. We observe
that the average of the radius estimates for the two-dimensional model roughly lies
on a straight line through the origin, and is very close to the one-dimensional model
average. The standard deviation for the two-dimensional approach is lower than
the standard deviation for the smoothed one-dimensional approach.

The average of the area estimates as a function of area is shown in figure 5.14(a)
and the standard deviation is shown in figure 5.14(b). Both axes of figure 5.14(a)
and the x-axis of figure 5.14(b) show the square root of the area, so that the data
points are more evenly spaced. The solid line represents the two-dimensional model
estimates, the dot-dashed line shows the one-dimensional model estimates without

any smoothing, and the dashed line shows the smoothed one-dimensional estimates.

Again, there is very little difference in the average of the estimates of the two

Lo ]

approaches. The behavior of the average area estimate was discussed in section 4.2

of the previous chapter. The standard deviation of the two-dimensional model

"

estimates is lower than the standard deviation of the smoothed one-dimensional

model over most -of the range of area values.
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Figure 5.13: Phantom Experiment: Radius Estimation
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5.3 Coronary Angiograms

The performance of the algorithms was also tested on real coronary angiograms.
As we mentioned earlier, it is very difficult to evaluate the performance of the
algorithms in this case, because we do not know the true dimensions of the arteries.
However, a simple inspection of the angiograms and their models can give us a good
indication of the relative performance of the two approaches. Thus the comparisons
of this section will be qualitative, in contrast to the quantitative results of the
previous sections.

In the examples we present, the approximate direction of the blood vessels is
vertical. The one-dimensional algorithm was applied to the profiles perpendicular
to this direction. More iterations of the algorithm provided the parameters of
the perpendicular vessel cross-sections. The degree of the polynomials used in
the estimation algorithms was 5. The spacing of the nodes of the cubic splines
used in the last stage of the two-dimensional algorithm and for smoothing the one-
dimensional estimates was 7 points.

The performance of the two-dimensional model is shown in figure 5.15. Part (a)
shows the original image, which is 80 x 80 pixels; part (b) shows the model; part
(c) shows the vessel component of the model; and part (d) shows the background
component. The estimated radius and area sequences are shown in solid line in
figures 5.16(a) and 5.16(b) respectively.

The performance of the one-dimensional model is shown in figure 5.17. Part
(a) shows the original image; part (b) shows the model; parts (c) and (d) show the
vessel and background components of the model, respectively. Figure 5.18 shows
the smoothed one-dimensional model. In these figures we show the results of the
first iteration of the algorithm. The profiles in the first stage of the optimization
are parallel and nonoverlapping, and hence can be displayed in an image. The
profiles of the second stage are in different directions and can only be plotted one

at a time. The displayed results are adequate for a qualitative comparison of the
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Figure 5.15: Two-Dimensional Model (Example A)
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Figure 5.17: One-Dimensional Model (Example A)

v als

110 )

X P

. . . .
. - . L . . . - . . .. .
et e T . tas - . ot N . - S - = - T s - ~ - - . . . .
IR B AR R T N e v . e, . . L R
B NP PRI . PO PR, . WA S WL WS W) S R oD U S U, P PP S U TURIT VU G S I YU S T e B, § W/ 0 B DI ST AT L S -G W)




L h AT A B d Nah S Aad Radi dnafl . Sl s e haerBae Sam aca ALa B gl 0 - d s o T T W T W o o Y e N S T W W _'v-:v—\'v'v"'—t'.‘w

(a) Original (b) Model

=»

’
.

r %

2

(c) Vessel Component (d) Background Component

Figure 5.18: Smoothed One-Dimensional Model (Example A)
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algorithm performances. For the one-dimensional model, the estimated radius and
area sequences of the profiles perpendicular to the vessel are shown in dot-dashed
line in figures 5.16(a) and 5.16(b), respectively. The smoothed radius and area
sequences are shown in dashed lines.

Comparing figures 5.15 and 5.18, we observe that both models look pretty close
to the original. As should be expected the background in the one-dimensional
model is discontinuous in the direction of the vessel. However, when we look at the
vessel component of the one-dimensional model, we see a valley in the intensity at
the narrow point in the middle. This valley is not present in the two-dimensional
vessel model, and is apparently caused by the small vessels in the background. This
indicates that the two-dimensional model is more robust to non-white noise in the
background.

Another example is shown in figures 5.19, 5.20, and 5.21; the resolution is 80 x 80
pixels. We observe that the vessel component of the one-dimensional model has
some wide points which are obviously caused by the background noise. The effect of
the noise on the two-dimensional vessel estimate is considerably smaller. The signal
to noise ratio is very low in this case, and the performance of the two-dimensional
model is clearly superior. This observation is consistent with the results of the
previous sections, where we showed that the standard deviation of the estimates
in the two-dimensional approach becomes significantly smaller for small signal to
noise ratios.

The estimated radius and area sequences of the profiles perpendicular to the
vessel are shown in figures 5.22(a) and 5.22(b), respectively. The two-dimensional
model estimates are in solid lines, the one-dimensional model estimates are in
dot-dashed lines. and the smoothed one-dimensional model estimates are shown

in dashed lines.
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Figure 5.19: Two-Dimensional Model (Example B)
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Figure 5.20: One-Dimensional Model (Example B)
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Figure 5.21: Smoothed One-Dimensional Model (Example B)
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Figure 5.22: Estimated Parameter Sequences (Example B)
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' 5.4 Summary

RS .

,.:. The synthetic and phantom data experiments we presented in this chapter in-
iy

:"% .,,J; dicate that when compared to the smoothed one-dimensional approach the two-

dimensional approach offers some improvement in the variance of the estimates,

vy E while the average is very close to the true value for both approaches. When we
~.‘ : examined the behavior of the algorithms on real coronary angiograms, however,
'.}§ ::2 we found that the two-dimensional model is more robust to non-white noise in the
" background.

‘f;:" E As we discussed in chapter 3, the two-dimensional approach requires a lot more
2.' computation than the one-dimensional approach. Again, when one considers the

e
o
| ~-5J

time and effort that is required to get an angiogram of the coronary arteries, it

appears to be reasonable to spend more time to get better estimates of the severity

5*? ~
oy of the obstructions.
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Chapter 6

-

Summary and Future Work

i

¢

: 6.1 Summary

&

" In this thesis we presented a modeling approach for the estimation of the dimen-
L sions of the coronary arteries from coronary angiograms. The model we developed
. accounts for the structure of the background, as well as distortions introduced by
i

! the imaging system. The model takes into account the continuity of both the vessel
[/

]

and the background. The desired vessel dimensions, that is, the diameter and cross-

sectional area at each point along the vessel, can be obtained easily from the model

1 &

parameters. Two models were presented. The first is a two-dimensional model of a

section of the angiogram containing a single vessel. The second is one-dimensional

model of the profiles of the lines crossing the vessel.

The maximum likelihood estimates of the model parameters were obtained by

-

iterative algorithms. The computational requirements for the one-dimensional al-
gorithm are reasonable. The two-dimensional algorithm requires much more com-

putation than the one-dimensional algorithm. The amount of computation for both

algorithms is considerably greater than that of the slope methods.

We tested the algorithms on three types of data. The first type is computer gen-

PR

erated data. The second is x-rays of contrast-medium-filled cylindrical phantoms.
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The algorithms were also tested on real coronary angiograms. In the experiments
we presented we first compared the performance of the one-dimensional model to
the slope approaches. Then we compared the performance of the one-dimensional
model to that of the two-dimensional model.

Our results indicate that both the one-dimensional and the two-dimensional
algorithm have better performance than the conventional slope approaches. This
is because the modeling approach uses all the information in the projection image
to estimate the model parameters, while the slope approaches use only the slope
at the sides of the vessel to determine the vessel boundaries and to estimate the
background. We also showed that the two-dimensional algorithm is more robust to
non-white noise in the background than the one-dimensional algorithm.

As we discussed in the thesis, the cross-sections of the coronary obstructions
are frequently irregular in shape. This suggests that more complicated models of
the vessel would be desirable. As the model gets more complicated, however, the
problem of estimating the parameters from one projection becomes more and more
ill-conditioned. Also the amount of computation increases. The model we developed
in this thesis is an attempt to balance the need for an accurate model of the vessels
and the requirement of a well-conditioned estimation problem.

Our model can easily be extended to handle the case of multiple vessels in the
image segment. It can also be extended to use more projections to reconstruct
the elliptical cross-sections. The problem in both cases of course is that the com-
putational requirements and the complexity of the estimation procedure increase

significantly.

6.2 Suggestions for Further Research

A problem that is not treated in this thesis is that of estimating the severity of

obstructions that occur at points where the vessel separates into two branches.

119




—rw e i aa e aaa aA™ B B2 bac eav e hai ani @ab kAt aat gas Gar saf dshandh A A Ad i e\ L e Al Sl Al A h Sl Al Golh Sol nh A Aeh AalS

This is an important problem, because stenoses can occur at vessel bifurcations (4.
To estimate the artery dimensions at a bifurcation, one could extend the modeling
approach of this thesis. The vessel component of the model would have to be .
modified to describe a bifurcation. However, the new model will most likely involve
more parameters, making the parameter estimation procedure more complicated.

Another interesting problem is that of reconstructing the vessel cross-sections
from two or more projections. We have already discussed the problems with ob- .
taining more than one view of the coronary arteries and the difficulty of proper
registration of the projections in the various views. Despite these problems the
problem of vessel reconstruction from two or more projections has been of interest
to many researchers. According to the projection-slice theorem, if we know the e
projections at all angles, we can reconstruct the object exactly. However, the vessel
reconstruction problem has a very special structure. Thus it might be possible to
reconstruct the cross-section from two orthogonal projections. The conditions under
which this can be achieved are not known. The general problem of reconstructing
an array of zeros and ones from two projections (the sum of its rows and columns)
is considered in [7]. Approximate reconstructions have been considered by Reiber
et al. 18.33 and Spears et al. [33]. Spears et al. use a maximum entropy iterative
algorithm to reconstruct the cross-sections from a small number of views. All of
the above approaches assume that the vessel component of each projection can be
isolated from the background in the presence of blurring and noise. However, as we

argued in this thesis, the problem of isolating the vessel component of the projection

[ oW IR |

is not easy.
Finally, there is the problem of combining the information in consecutive frames N
in time. This would require an accurate procedure to estimate the movement of the

b vessel from frame to frame, and could lead to improved parameter estimates. by

120 :

¥ » j P - -"- L GERA AT TOE N R R .‘-..‘P .‘: AT LR ’A - O R |
_l’n'!v.‘!"‘s!!n'!o. ; ...nl.. - o’ £ RS O PR A RERS;

() N
LOONONOOIT N



R Y A e odle - a2l e _ak - ad- A& e e das ded Mak dax gac Aas oz sk sk ek ek Aol Aok Suh Ad

)l .
BATE e
SO
4‘; i [

Bibliography

j ¢ [
;:"i ~
k)
V ) - 11 H. L. Abrams, ed. Coronary Arteriography. Little, Brown and Company,
?f"‘ \:.1 1983.
% 2" G. J. Agin, T. O. Binford, “Computer Description of Curved Objects,” IEEE
1::& by Trans. Comp., Vol. C-25, No. 4, pp. 439-449, April 1976.
+
L)
.z:::: G 3} E. L. Alderman et al.,, “Quantitation of Coronary Artery Dimensions Using
"t B Digital Image Processing,” Digital Radiography, SPIE Vol. 314, pp. 273-278,
~ 1981.
‘ 1!
I, .
:~; o 4, M. Amiel et al., Coronary Artery Diseases. Springer-Verlag, 1984.
~"y -
s
) <’ . ‘5! K. Barth et al., “The Objective Measurement of Coronary Obstructions by
’ ﬁ Digital Image Processing,” Proc. of Int. Workshop on Physics and Eng. in
Qi Med. Imaging, IEEE Cat. No. 82 CH1751-7, pp. 74-78, 1982.
oy
A L
) S 6' K. Barth et al., “Quantification of Coronary Stenoses,” in Radiological Func-
' '

;:'.“ tional Analysis of the Vascular System, (Ed. F. H. W. Heuck), Springer-Verlag,
v Berlin, pp. 207-213, 1983.

2 1
N s ‘7' S. K. Chang, Y. R. Wang, “Three-Dimensional Object Reconstruction from
'R " Orthogonal Projections,” Pattern Recognition, Vol. 7, pp. 167-176, 1975.
B 3 :": L
oy N 8 S. D. Conte. Carl De Boor, Elementary Numerical Analysis. McGraw-Hill,
. 1980.
Wy ﬂ o ;
o 7. 9 D. W. Crawford et al., “Rotating Step-Wedge Technique for Extraction of l
:,’ . Luminal Cross-Sectional Area Information from Single Plane Coronary An-
7-;:,“ 2 giograms,” Investigative Radiology, Vol. 12, pp. 307-313, 1977.
- 10! Carl De Boor, A Practical Guide to Splines. Springer-Verlag, Applied Math-
" )

ematical Sciences, Vol 27, 1978.

‘11, T. A. De Rouen et al., “Variability in the Analysis of Coronary Arteriograms,”
Circulation, 55, pp. 324-328, 1977.

Ry 121

o
T A

Y

DRI POM IO AT W X - X C ¥ | O (X e Crtadn T (s,
' A AT R A T T e Y ;‘1) LN AT Ve Ve TV M R PR AN




| o iam wadan.as ad et -ag - ad el el aded Al ah-ahe -0 o -aie Ak Sais in i e bt - A% At Sia > Aba Ahe Sie A An e e it b TN e NN TR U TN U U@ N YUY

’-T
o
A~

12 K. M. Detre et al., “Observer Agreement in Evaluating Coronary Angiograms.”
Circulation, 52, pp. 979-986, 1975.

g 't

"y 13 K. L. Gould, K. Lipscomb, “Effects of Coronary Stenoses on Coronary Flow

) Reserve and Resistance,” Am. J. of Cardiology, Vol. 34, pp. 48-55, July 1974.

)

" 14 K. L. Gould, “Pressure-Flow Characteristics of Coronary Stenoses in Unse-
dated Dogs at Rest and During Coronary Vasodilation,” Circ. Res., Vol. 43,

:’ pp. 242-... 1978,

e

- 15 C. J. Kooijman et al., "Computer-Aided Quantitation of the Severity of Coro-

N nary Obstructions from Single View Cineangiograms,” Proceedings of Int.
' Symp. on Medical Imaging and Image Interpretation, pp. 59-64, 1982.

16 J. H. C. Reiber et al.. "Objective Characterization of Coronary Obstructions
from Cineangiograms with Single and Multiple Views,” Proceedings of Second
Int. Conf. on Visual Psychophysics and Medical Imaging, Brussels, Belgium.
pp. 11-17, 1981.

17 J. H. C. Reiber et al., “Transfer Functions of the X-Ray-Cine-Video Chain 1
- Applied to Digital Processing of Coronary Cineangiograms.” in Digital Imaging ;
. in Cardiovascular Radiology, (Eds. P. H. Heintzen and R. Brennecke). Georg
Thieme Verlag, Stuttgart, pp. 89-104. 1983.

~ 18] J. H C. Reiber et al., “3-D Reconstruction of Coronary Arterial Segments from
Two Projections,” in Digital Imaging in Cardiovascular Radiology, (Eds. P. H.
Heintzen and R. Brennecke), Georg Thieme Verlag, Stuttgart, pp. 151-163.

1983.

. o,

A '19' J. H. C. Reiber et al., “Coronary Artery Dimensions from Cineangiograms i
& ~ Methodology and Validation of a Computer-Assisted Analysis Procedure.”

N [EEE Trans. Med. Imag., Vol. MI-3, n. 3, pp. 131-140, 1984. 3
3 20! J. H. C. Reiber et al., “Computer Assisted Analysis of the Severity of Obstruc-

E tions from Coronary Cineangiograms: A Methodological Review.” Automed- iy
. ica, Vol. 5, pp. 219-238, 1984. c
.,

:_ 21" J. R. Rice, The Approximation of Functions, Vol 2. Addison-Wesley, 1969. j
‘ 22" K. Rossmann, “Image-Forming Quality of Radiographic Screen-Film Systems:
K The Line Spread-Function,” Am. J. Roentgenology, Rad. Therapy & Nuclear ‘.]
v Med.. Vol. 90, No. 1, pp. 886-906, July 1963. o
! '
3 231 T. Sandor et al., “Cine-Densitometric Measurement of Coronary Arterial
o Stenoses,” Catheterization and Cardiovascular Diagnosis, 5, pp. 229-245, 1979. #
: :
2 122 1
v 3
! q
?

""""" A U o L A B RN




el

s

g 259

SN

e B

[24]

25]

26]

27]

(28]

29|

31

33

34|

35

36|

M. E. Sanmarco et al., “Reproducibility of a Consensus Panel in the Interpre-
tation of Coronary Angiograms,” American Heart Journal, 96, pp. 430-437,
1978.

H. J. Scudder, “Introduction to Computer Aided Tomography,” Proceedings
IEEE, Vol. 66, n. 6, pp. 628-637, 1978.

R. H. Selzer et al.,, “Computer Analysis of Cardiovascular Imagery,” Proc. of
the CALTEC/JPL Conference on Image Processing Technology, Data Sources
and Software for Commercial and Scientific Applications, Pasadena, California,
pp. 6-1-6-20, 1976.

K. Shmueli, “Estimation of Blood Vessel Boundaries in X-Ray Images,” Ph.D.
Thesis, Stanford University, 1981.

K. Shmueli et al., “Estimation of Blood Vessel Boundaries in X-Ray Images,”
Optical Engineering, Vol. 22, No. 1, pp. 110-116, 1983.

D. N. Smith et al.,, “A Semiautomatic Computer Technique for Processing
Coronary Angiograms,” Computers in Cardiology, pp. 325-328, 1981.

J. R. Spears, “Rotating Step-Wedge Technique for Extraction of Luminal
Cross-Sectional Area Information from Single Plane Coronary Angiograms,”
Acta Radiologica Diagnosis, 22, pp. 217-225, 1981.

J. R. Spears et al.,, “Computer Aided Densitometric Evaluation of Coronary
Cineangiograms,” in Radiological Functional Analysis of the Vascular System,
(Ed. F. H. W. Heuck), Springer-Verlag, Berlin, pp. 195-206, 1983.

J. R. Spears et al.,, “Computerized Image Analysis for Quantitative Measure-
ment of Vessel Diameter from Cineangiograms,” Circulation, 68, pp. 453-461,
1983.

J. R. Spears et al.,, “Computer Reconstruction of Luminal Cross-Sectional
Shape from Multiple Cineangiographic Views,” IEEE Trans. Medical Imag.,
Vol. MI-2, No. 1, pp. 49-54, March 1983.

Harry L. Van Trees, Detection, Estimation, and Modulation Theory, Part I.
Wiley, New York, 1968.

E. H. Timothy Whitten, “Orthogonal Polynomial Trend Surfaces for Irregularly
Spaced Data,” Mathematical Geology, Vol. 2, No. 2, pp. 141-152, 1970.

L. M. Zir et al., “Interobserver Variability in Coronary Angiography,” Circu-
lation, 53, pp. 627-632, 1976.

123




DISTRIBUTION LIST

DODAAD Code

Director HX1241 (1)
Defense Advanced Research Project Agency

1400 Wilson Boulevard

Arlington, Virginia 22209

Attn: Program Management

Head Mathematical Sciences Division NO0O14 (1)
Office of Naval Research

800 North Quincy Street

Arlington, Virginia 22217

Administrative Contracting Officer N66017 (N
El19-628

Massachusetts Institute of Technology

Cambridge, Massachusett; 02139

)
i

104

Director NOO173 (6)
Naval Research Laboratory

Attn: Code 2627

Washington, D.C. 20375

Defense Technical Information Center S47031 (12)
Bldg 5, Cameron Station -
Alexandria, Virginia 22314

F ol ot ]
o]

Dr. Judith Daly (H
> DARPA / TTO
By 1400 Wilson Boulevard
) Arlington, Virginia 22209
Y
e




N A S P R S RN RIS N R L AR R L S LTSI SR SRV L) 3 -1 SEe MR ICERT VR x - -~ s N

T
.y
l‘::
y't”
1 it
e
N,
WA
1
R
4 '.
LA
t
N
()
AN ;
N
TS .
. K;,
i
¢ s'. ;
'f( Y i
Il‘.|
an b
.‘ ‘=
A
o
A
el
LA
)
M
5:“:
B
Y
oy
L3
!g"i
b —
g s
Y
Jt&}:‘
LY 50
‘.; ).
Ha
-.',U‘!'
P’i

[
R
X \
by
[

‘ <

L

/

ﬁ::f't
W
l‘.!l'
l"._‘ I:
i
.
1 . -
e
34 5'\
’:fl v
T':‘f
L
' i

v - \“*‘

Conr gt




