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bcAftr hasiOR problem. The eotafficient are based upon the solution of
.b th e g rm ar BRWV C~na relaxaton. The dual of this relaxation has a
o4ensnd f&we VMbb eassiea of minimizing a certain piecewise linear convex

taumiam This pape presents a now, method faa solving the uncpcttd
tMv loation problem bomed up=m ths exct eolution of the- condensed dual

viaasbouum pr.jeaotims.?The amount at work per iteration is of the same
eder ma tha at a simplex iteration faa a linear Program in a variables and
cnstruaat wbere a Is the number at client. Par comparison, the underlying

unset progra7mming dual has an + a+ n variables and an + n constraints,
where n is the number of Potential locations for the facilties. The method is
flaxible an it can handle side constraints. in perticulaa', when there is a
duWlit gap, the linearpormsg amlto can be strengthened by
adding cuts. Numerical results for some classical test problems are included.
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~ uu~amsWed Ihiflit~y location problem can be stated an follows.

Ueps v6 how. a a oet indexed by I1z (1, 2, ... , a) and n potential

osm ftr opening halES.. indeed by J a (It 2,t.. n). We are given the

qft al jt1"am be accrued from supplying all of client i's demand from.a

faalrin luosmtis Jt, ad te Mind cost fj 1 0 for mtting up a facility in

ceatica J. The problem cosists ot oelecting an optimal set of facility

locatloa ad assigning the clients to them facilities. Let y1 j represent the

fftatom of client its demand supplied from facility J. Define

XJ I if facility jis Open,
0 otherwise.

rawuca model problem is

iJ.81 .3 jej

Kyji for all i a (1.2)

xj-yIJ 0 for alliJ.a , j a (1.3)

Yu 0for all iual, jaJ (1.4)

The constraint (1.2) expresses the fact that- all of client i's dnmnd in

supplie, and (1.3) expresse the fact that we can only supply the clients

frmopen facilities

This model htas been eztensively studied. See [71 for a recent survey of

the literature. By relaxing the 0,1 restriction on xjp we obtain the so-called

strong hume programming r.Imxt ion of the uncapacitated facility location

problem. More precisely, we replace (1.5) in the above formulation by

0O j I I fow all sJ.(.6



~I~- ihas been VWTn fftdI a in pmtises. tt turns out that its

~~~ 8 b100001iiel ftr on mad edm-..problem arising from

4 ~(me hr saab.e lI.Vell and Swain 11 Gertinbelt Usebe, and

OM (31) ramber. I. and 3.hur[1 kkta(101, Mulvey and

Ellw 7W~) bra WAG"i V, Ath eistenoe at very snll

*OftI eW (about 04%) is supported by a probmbiliutlic amlyss Ell. Much

Imger aW arls., under the uniform cost model but this model is =ot

do mmttive at real-world apia~~

We als. mote thatt becase of the aim at the strong lineprgmmg

raemetion (it bas min + a vrblse) and its speci structure, it is not

adioleaLtoi use the ulmplez method directly. The standard Hoesa programming

dual at problem (.H.)16)can be written as

min al, + Itj (1.7)

U1 + VIj .Cij for all i a t, J a J(18

- j !.+ tj - t forrallJ. (1.9 J

NJ j. tj Z0 fr all i a t, j a J. (1.10)

Thi s a problem in mn + a* + vmulables but it is possible to rewrite it In a

condensed form in the lght of the following ob servations.

We note frmthe form of (1.7) that, for any given u1 jIn, we would lke- to

make the tj's as smal as possibleo. Thus, using (1.9) and (1.10). we require

= V E WJ - fj1l (111

where, a max (O9a). Consequently, we would like to make w I j as small as

possible. Constraints (1.8) and (1.10) imply that we should have

*~ (C. J-Ui). (1.12)
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M o b ysiWblb to repke the dud problem (1.7)-(1.10) aove b the

n I(u) us+ t 81(u) (1.12)

. A () (cj-u)- . (1.14)

16 Mrk that

a) thia t --- -m" is we k,,,w. See kwr eeml, Sp eb g (21 and

(b) F(u) in a ip'moewe lnear conve objwotdu functio.

(a) Problem (LI) Is unaoumn .ptIartin problem In a variables.

(d) Ther. is an ovtmum seluton at (1.13) msh that 8j(u) . 0 tar all J a J.

(To me this, no that the constrit zj I 1 at (16) i -uperfbo in the

strong Hagar promring 1laton since we harv msed fj k0. Thi

sbows that, in the dual, we am always ot tj : 0.)

In this pape we propose a method that minatase F(u) directly as

piscewise linear function. Section 2 outlines the method and provides the

theory. Section 3 contains the proof of the main theorm. Section 4-

describes the alerithm, and Section 5 reports our -- outatioa xpence.

Section 6 deecribm onnections between our method and Brlenkotter's.

inaily, in Section 7, we dimuss extensios of the method.

In the r nder of this section we provide additional background on the

una-pecitated facility ocatio problem This problem is NP-hard. Therefore it

is not surprising that most of the exact solution methods proposed in the

teratue resort to branch and bound. The success of such algorithms

depends an the avalability of a tight relaxation. The so-called weak linear

peogr ng rehxton is defined by replacing (1.3) by

3



V. ,+, , •J

*32- * tis v1 b in Yrw am to solve, it. use within the contest of

bra and baw lead to large eumertion tress, even for relatively small

wbe l Ig s -n bynd [91). The Strong ler p a n

d ism (L1)-(1.4,)(16) an the othor band producee amangly tight bounds,

w ba. ow m Wte WOdW. haing it i. - nt its

siature an be explafted in nay diffrent ways. Garfinkel* Noebe and Rao

[11 sdved the smcng M pmmng relaomtiom by Dantuig-Wolfe

s Scbre [20 devised a variable upper bound simplex algorithm

to badle the const p Is (1.3) while Mori (161 trietod them s cutting

ple to be inemog ted s needed; fnlymf Guignard and Spielberg (141

prooed to pivot uly om unmdulr baes. An them methods are variants

at the primal simplex algorithm. For the purpose at branch and bound,

bmer thbre w advallage to solving the dual at the relaxation instead of

the primL a smy dual feasible solution yieida a valid bound. We have seen

already tha the dual has a aondemed foarm (1.13). lnotter [101 minimized

thie Maser mews function using a descent heuristic. Narula, Ogbu

ad l (181 ead OornueJoa, Fisher and mbuser [6] used

bgrdlentop ios. Both approachm quickly yield good dual solutions,

ne easy to peogram and well suited for breach and bound algorithms.

sceotly .M g a saccees have been achieved in tho solution of

cloptllsata problems by combining a cutting plane approach

with bramh and bound, - Grotechel and Padberg (123 for example. In order

to genemt cutting planes for the uncapacitatcd facility lcation problem, It is

desirablo to solvo the strong Linear programming relaxation to optimality.

Since the primal ha many more variables than the condensed dual n- + n

4



a -- it seem appropr1te to nolve the latter. Subgradient

optimatlon can be very slow to achieve optisality and Brlenkotter's dual

descent algorithm is a heuristic, so neither approach is well suited to solving

the condensed dual optimally. The present paper proposes an algorithm to

solve this eondesd dual to optimality.

The beat outtink planes are those that generate facets of the convex hull

of the .outiona to (1.2) - (1.5). This palytope is known as the uncapacitated

fscility location polytope, and its facets have been partially described by

Gulgiurd (131, Cho, Padborg and Ro (31 and CornuoJols and Thisy (81. Por

example, the inequality

Yr7 + YS + Yoh + Yth + Ytk + Yrk - Xt - Xh - Xk 1 (1.1)

define, a facet of the uncapacitated facility location polytope for any 8, h, ke

J and r, s, t s I such that 1 $ h 0 k and r 0 a 0 t. It cuts off fractional

basic solutions of (-.)-(1.4),(1.6).whore all the variables in (1.15) take the

value I/2. Adding the constraint (1.16) to (1.1)-(1.4),(.6) and taking the dual,

we get

Min jZu+ 1tj+v
iol jeJ

u1 + wIj 1 cj for all (ij) # (r,8),(a,J),(sh),(t,h),(t,k4,(r,k)

U1 + wij + v >c~j for (ij) = (r,8),(s,8),(s,h),(t,h),(t,k) or (r,k)

-wIj + tj >- fj for all j ,h, k

1w, + tj - v I_- fj forj , h or k

Wj, tj, V > 0.

Therefore the now condensed dual is

Min F(u,v) a I u, + I St(u,v) + v (1.16)
v_>O,u il jej

where Sj(u,v) Z (aij-ui)+ - ?J (1.17)

5
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f *~I for (iqj) ji(,)(,)(0),thtkrk

~ ~ v for (i.,J) u r~,a8(~)(~)(~)or (r~k)

for do hie, k

~t j v forjdh or k.

Thi emwple shown that the gemermi. form of the condensed dual fi. preserved

whom & catting phimasumch as (1.15) ia added. More generally. ff p contraintts

are added to the prW9a foru atdion, the condensed dual ha. p new variable.

32et for the -_ ngatlvity of these variebles the now condensed dual is

amff the Iaaaoustaainmininisation at a convez piecewise linear function. For

the sneson, the potential extensions of the condensed dual include the

afpctated faciliy location problem We will not treat thia latter extension in

thia ipers but both etension@ further juatify -our interest .in the condensed

dual P(u.

2. MoUio and Theory

An we have already meen, we are initially concerned with the following

OPtmatn problems
a D

0 F(U) EU U+ I (u) (2.1)
wa ir-1 J=1

wher SIMu - JI (Cj-uj)+ - fj. (2.2)-

Clearly F(u) is a piecea linear camvuc function.

It is sndifferentiable at all points u* such that either

J.) 1 (U) a 0 for saws j a J a (1, n). u (2.3)

or Hi) C, j MUt for sowe i a I= (1, ... , a) with S1(u) > 0. (2.4)

We call thew activities (breakpoints) of type i and type H1, respectively.

6



We shaD define the foMowing index sets at a point u.

J'(U) a j:Uj8(u) >0) (2.5)

31(u) z U a j : S(u) 0) (2.6)

J-ju) = a j3 Sj(u) (0) (2.)

11(u) a a I: Cj U, > 0) (i.1)

11(W a fi a: I 1 C, i 1  (2.9)

Ij (U) a (il a: - u, < 0) (2.10)

1( j.JO(U)UI+(U) 1()(.1

Jt~~a J(u) : i a11(u)) (2.12)

31(u) U aj * 3( : i a 11(n)). (2.13)

Whenever the underlying u in evident, we will write J+ for J+(u), etc.

Using the above dfziin

F(u) 1 Z1 ,+ I Sj W).
ill jai+

As we sall se, isi useful to define a "base gradient" for F(u). Thus we

define

9(u) a 0+ i ;s(U) (2.14)
jai+

"here a = (it,... 91)T a J", and

SSj(U) a (5sJO... 921)T a on, (2.15)

-1 if i a 11 U 11 (2.16)

0Otherise.

Notice that 6(u) expresss exactly the first order change in F(u) along the

direction d when, in this direction, the u1 'a such. that i a II, j a J+ happen

to decrease and, further, S1(u) remains zero for all 3 JO. This statement,

7



" 4 ~t the md~ffo ueemy to express more general changes, is the basis
S "d - ee othed.

Lt e deote the th unit rector -in P. We first state the following

%woure Li. The paint uS soivee problem (Li) if and only if there exist

see" % and oft celled the Lagrange dual variables, such that

C(u*) I 'T s (v 8 ) - I oN, (2.17)

where

I ILI 10 for jJ • s(u*) (2.18)

o j of - z x + IJt(u*)I for i a I(u*). (2.19)
iJr(u5 )

The theorem i const ve in the sense that whenever the conditions

(LIT7)-(2.19) are not matiled, it in relatively straightforward to obtain a

descent direction for F.

Mor .pcically, the mottvation is as follows. We first try to obtain a

descent direction by projecting -g(u) orthogonally into a space such that

JO(u) u O(U) does not change (the activites remain active). A descent

direction is obtained when such a projection is nonsero. When the projection

Is sero, it follows that g(u) can be expressed entirely in terms of ; Si (u) for

J * JO(u) and *, for i a 10(u). Thus, we are able to consider the effect of

dropping a mingle activity. This either determine@ a descent direction or

establishe@ the required optimality conditions.

We wl try to make this more concrete by considering a simple example.

Comider a z n z 3,

8



and UP(fl 2 1 3).

(c.l) liii
Ort frl, ,*J. , [zj), 12. l1 or any convwc ccubination

of tkhie Vector.

'I u a our initial point. F(u*) = 11 and J+(u°) = (1, 2, 3).

We bae no activty f type but ofae ctivity of type ii ven by u? = c13.

The boew gradimt at uO is g(uO) = (-2,-l,-2)r. We maintain the activity of

type U by choosing our search direction in a ,pace orthogonal to (-1,O,0)T .

Thu, we take our umrch drection to be dO = -Pg(uO) where P is the

otogm projector onto the space orthogonal to the space spanned by the

gradients of the activities. Thus in our esample, d = (0,1.2)'.

We now demnd as much as possible in this direction while minimizing

the entire function F(u). This gives a.step else of 1/3 and hence ul =

(1, 2+1/3, 3+2/3) T For this point, F(u') : 9+1/3, J+(u') : (2), J(ul) : (1, 3),

I? and 11 are empty, and It Z (1). This time g(u l ) = (0,1,0)T and we project

orthogona to ; S1 (u t ) : (-l,-1,-1)', * S.(ul) : (-1,-1,-1)' and el, obtaining

d' z (0,-1,1)', where without loam of generality dl has been suitably scaled.

The optimal step wise for the line search is again 1/3 and thus u2 =

(1,2,4)T. This gives F(u 2 ) z 9, J+(u2) = (2), JO(u2) = (1,3), 1? = (3), 10 : (3)

and It z (1). Now g(u 2) z (0,1,0)T but the projection is zero. The point u2 is

a degenerate stationary point but in this particular case it is easy to choose a

suitable basis. We chooe S,(u2 ), e1 and e9. Now

(u a ) Z X, ; S,(u) - Ae, - '03*3

with ), = - l and * = = 1. Clearly, condition (2.18) of Theorem 2.1 holds.

To check condition (2.19) note that JT(u 2 ) : (3) and J4(u') is empty. So, for

9
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I..We1, tmoadMit hreduces to 0 . -s which isetif1d. Por i = 3 we

'au s(u') : (1) and J(ua) = (21. In this cams the condition (2.19) reduces

o ta0,Jj% jI (U). Agaln the condition iaatilfied.

?hewore, . An 1dlg to Theorem 2.1, the point ua i optimum for our

Given an optimum dual solution u*, we can derive an optimum primal

solution to the mtrong linear programming rehlaation by using the

0omplmntary siacknem ondition. Namely

j +(u*) implis L1 (220)

j uJu*) implies z1 = 0 (2.21)

I a I(u*) lmpue y*, j 2Z~j (2.22)

i a IJ(u*) implies A = -o. (2.23)

The values of xf for j a JO (u*) are the optimum Lagrange dual values X ,

up to the sign. Namely

j Jo(u) implies l =: -AI. (2.24)

The resion for 2.24) ia that (2.22), (2.3), (1.2), (1.3) and (1.4) imply the

existence at 0 j e, I such that

Z X1 +Z IaljxI + I Si 12l fori1 U 11.

This is eqivalmt to (2.17)-(2.19).

In or mle., these conditions yield

Xf = 0 (by 2.24)

Xs a I (by 2.20)

Xf a I (by 2.24)

yf a Y, y 71,3 1 (by 2.22).

10



a.rde to prove. T 2.1v we will require five iemmm.

gh lemma Wil I-oame"o

degep dfteatioe When ome zat.

Let P denote the orthogaml projector onto the specs owthooe.al to the

v-Pec upmnned by 81(u) ftr j a JeD(u) end ej for I a 10(u).

Lam 2.1. If Pg(u) is nonsero, then d z- Pg(u) in a descent direction o

1(u).

fIt follows from the defition of P and the fact that, fto a

sMu ely .man step sh a. the inde. saue 4, .-, ri ad 17 do not ohangs,

that

P(u+d) u F(u) + ed Tg(u). (3.1)

But

dTs(u) : -(u)TPTS(u) : - | Pg(u) Is ( C6 (3.2)

using the he that P is - t1esmal prjstr (psPT,"PP) snd the.

. -ump4 , that Pg(u) 0 0.

Ooa.squestly P(u4kd) (l(u) for an d po ti ve. a

&ow suppose that PS(u) a 0, or equivalently

g(u) •a ; £j(u) - 0 ,,1. (3.3)jJ'(u) 1 a1X(u)

It will be convenient to assume that the mtipM-8 )'j fr J a P0 and m, fbr

i a 1° are uniquely defined. This can be realised by methods such as

perturbation techniques. Indeed, this is @mlcy anakgous to the situation in

near pr . So, without lose of generality, we make the following

aumptin~ for the next four lemma.

11



, n The vector Sj(u) for as Jo(u) and e, for i a 1o(u) are

h~y Idepeident.

Vram a aamutational point of view, a perturbation technique is

dn M Our o approach to degeneracy is presented in

Setdom 4.

La If m . > 0 for some k P, then d - g (u) ina descent

dst14m for P(u), where P" donotes the orthogonal projector onto the space

Qm' nimto theowp spanned by ; Sj(u) fio j i J\{k) and *, for i a 10.

rar We first note that, using (3.3) and the definition of Pk,

P*C(U) a kk P1 it (U). (3.4)

ft"s dT 6 St(U) 3- X Sk(u) T pf " Sk(u)

2- i t p ; S.(U) II ( 0,

wh e the insqumlty fanlow from the facts that xk > 0 (hypothesis) and

Pk S(u) 10 (Ammt 3.2).

Thus Of(u) desemnds in the direction d, i.e. it changes from an activity of

tM I to being strictly negatve. All the other activities remain actrve. So,

-n Ow the proot of Lemma 3.1, we got P(u+od) z F(u) + *dTg(u) ( P(u), for all

edJ try mmn positive 6. a

Le 4 . It kk  I for sm k a J,T° then d =-Pkig(u) in a descent

difeo A., where Pi Is defined an in Lomma 3.3.

Prde. As in the proof of Lemma 3.3,

dT ; Sk(u) : - xt IPh ; Sk(u)I1. (3.5)

12



a" " 4 'Sk(u) > 0 nnd, for smil positve ,

(u4ed) z F(u) + adTg(u4.d)
= P(u) + dT (g(u) + Sk(U)).

Since dTS(u) z Ak d St(u)

1(u4ed) : 1(u) + a(t+l) dT ; Sk(U). (3.6)

equeatI, we will have descent Nf % - I. a

LmsL Sf Pt 0 for some k a I*# then d z -kg(u) is a descent

direction for F(u), where Qk denotes the orthogonal projector onto the space

orthoonal to the space spanned by ; Sj(u) for j a JO and eo for i m l°\{k}.

PrcaIt Using (3.3) and the definition of Qk,

Qftg(u) : " oi Qfkg1  (3.7)

Thus d T (-.ek) : -* I Qke k 12.

Since 0 bhy h es and Qk% $ 0 b Assumption 3.2, we have that Uk

in decreasing in the direction d.

Now it foows from the definition of ; Sj (u) that

(u..d) = e + Z ; SJ(*u+.d)
jJJ(uuad)

= 0 + I ; SJ(u) f(u),
jJ(u)

for sufficiently smll positive a. Thus

f(umd) a F(u) + adTS(u) for sufficiently smal a and dTg(u) =

- I akw(u) 12 * 0. a

Lmn3.6. If& -P. xi + I Jt I for someke la , thend - Rkc(u) is
JJ

a descent direction for F(u), where R" denotes the orthogonal projector onto

13



Raft ~hIS (3.3) mad the definition of Rk

Ibgu)a-1 2) ikeb. (3.8)
ioni

Ih~ d.5q)* - (* )1J) 3 kehel
* Jion

gum.,* > 0 by hWpothesis and joteb 0 by Asaamption 3.2, we

ts4" the Property that uk is increaing along d.

"NO, for a muffiiStly mmiil and positive,

4ft v Sj W+ s it k aI(U)
v SS(u otheaise (3.9)

Threor, (U4.) a 0+ S S()+ I Olt,~
jeJ(u) jJ4(u)

g(u~ad) x S(u) + I 4(u) I elt. (3.10)

Using (3.8) and (3.10), we obtain

3'gu~d) -(of, + I -I4(u)h ikeik..
J&J (u)

Let bUI, + Ij Jt4 and vk ~+ I j. Thea
J.Jt jai

dve(u4.d) a vt(et)T (Rk) T g(U44sd)

.V1,71(eft)T ikek k- Vkk I Rke,, Ia.

BY hypothesis vi > 0 and vt ), 0. So dTg(u+ad) C0 and therefore

1(u4.d) 2 F(u) + advg(ue+") ( F(u)

for sufficiently mmll poitivea. a

1us at Theorm 2.

It foMows directly from Lemmas 3.1, 3.3, 3.4, 3.6 and 3.6 that the

conditions (2.17) - (2.19) of Theorem 2.1 are necessary.

14



To proe that these conditions are sufficient, we assume that they hold

ancd analyse the effect of dropping a single activity. We show that, in each

mwe, F(u $ ) cannot decrease.

By the piecewise linarity of P and the fact that nondifferenttabilitis

c od to activities of type i or i, this implies that 1(u s ) cannot decrease

in any direction.

First consider the effect of dropping Sk(u 8 ) for k i 3. Thus d :

j Pkg(u*), where Pk is defined in Lemma 3.3. An in the proof of Lemma 3.3,

dT ; 8b(u*) : wX, I Pt ; Sk(u*) 1a. If w > 0, Nt k 0 implies that, for

sufficiently small a, P(u*+ad) = P(u*) + mdTs(u*). Now dle(u*) =

W I Pkg(u*) I > 0 Implies that P(u*+Sd) . P(uS). If W ( 0, XI 1 0 implies, as

in Lemma 3.4, that P(uS +d) z F(u*) + a(xk+l)dT ; St(U*). This gives

non-desment since Xk _ - 1.

Next we consider the effect of dropping e for k a 10. Thus d ="

@Qkg(uS)t where Qk i defined in Lemma 3.5 or d : vRhg(u*), where Rh is

defined in Lemma 3.6.

We first consider d z .Qkg(u*). Then dT(-et) - r i Qkeh Is, and by

hypothesis ! > 0.

If. > 0, then ut decreases and, an in the proof of Lemma 3.5, P(u*+ad) :

F(u*) + ad~g(u*) for sufficiently small positive a. Now P(u*+ad) k P(u*) since

dTs(u*) a V I Qkg(US) 12 > 0.

* < 0 implies that ul increases. Consequently, if there exists 3 a J(u*),

we violate our condition that only one activity is dropped. However, if Jt(u*)

is empty, Q k is Identically equal to Rh and d z ,Qkg(u) : wRks(u*). Thus, as

in the proof of Lemma 3.6, omitting all torms involving Jg(u*), we obtain that
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.P Us#4. - = 1(u ) edTg(u*+ad) where d T(u e+ d) 2 WPWr I R e k I' with rk -

-1I1. i w,, by hpotu 0 k< IJVU *) which Implu k 0 and

thU dT ga(u84ad) > 0.
L( 1remiins to onsider d wRkag(u). If V( O, then direotly from the

Pemt of Lemi 3., we hve F(u+ad) :z (u ) -svvk' i Rke | for any ammU
POIM 0- Ifk 1. 09 the dT(-Sk) 2 Vk I RkOk 12 i=9110 that ut does not

decra.. sag d and vr 1 0 (from (2.19)) implies that V(u8+ad) I F(u-). If

vk ' 0, then uk decram. along d. Therefore mr condition that only one

acti:ity in dropped implies that JI(u*) is empty. but then vk X ^ which with

(2.19) Implie Wk I0, ooCUI t Vk < 0.

If w > 0 then# am in the prof of emms 3.6, Rkg(u ) :-vkRk and

dT(-Ok) uevk I Rkek 1- NOW, If vk ( 0, Ut increases alms d and IP(u'a.d) :

P(U) + edTg(u$4Od) with dTg(u$4+ed) : - vvkskRkg(u*$4d) : kVk" k IRk.k Is 1 0

since v, 0. Thsimpliee (u*+d) IP(u*). PlnMlI if k, > 0. U1 decreases

ahmon d which once again violatee our aomdition that only one activity is

dropped unles.Jt(u*) is empty. Then vk a ot, Rk X Qk and lp(u*+,d) :

F(u8) + edTgf(u) from the proof ot Lem 3.S. But mw dTg(u8) 2 V I Rkg(u)

4. The Algorihm

We now proeent a finite algorithm for solving problem (Mi). For simplicity

of exposition, we first minumo that nondegenora holds. Our approach to

degemsvmy is epmined in the latter pert af this section.

(1) Choos anmy ul a IP and set k 1.

(3) IdentIy PO(Uk), J+(uk), 1(uk), r(uk), j g J.

16



(4) Co.puW 4dbau-P(uk) wherePlis defined in Section 3.

(5NI dt 009thou go to (9).

(6) Copte te currvent estimate tar the Lagrange dual variables itJ

J(uk) mod oft i a I'(uk) by solving

gOak) * K S3(uh) Ojai
JaJP(u) WOW(u)

(7) Stpif- I.)XI 0 for alljJ aJ(uk)

sd 01 jet I. I %I+ 14(uh) I for all i a I0(uh).
J*Jt(uk)

(3) Chome onm at the vioated InqaiisIn (7) and drop the crepnding

motivity. Let Ra JO(uh) u 1I(uh) be its inde. Define

- P86(uh) if k> 0 or if Ak< -1, whatPsis defined

in Lms 3.39

dk - 0Q4g(uk) ifit 0, ~ idrQI is defined in Lina 3. 5,

- Raoul) if 011> - I X y+ IJ+-I, IVAM 0 is defined

in Linas 3. 6.

Ans ca ref-inema is to choose dbk in thme orda r > 0, ph < 0,X <-1

ja > ' + IJI 1. ubmeer there is a choice.

(9) Determine the star mise sk by solving Min F(uh4.mdk) subject to keeping

all activities active (except, of course, for the activity dropped in (8)

when step (8) is performed in iteration k). This line sarch can be done

by starting from uk and now ng from one breakpoint of P to the next, in

the direction d~ro until either the value of F starts increasing or an

active Si becomes nonactive.

17



(0) Wie" mi Quse..

. urb4I * Uk + ekd

rk #. k + 1

do to (2).

V* . * -a at the Algoeribm

A point u such that Pg(u) x 0 in cailed a statiomry point.

First, now that at most n iterations can occur before a stationary point is

remobed nce, whenever we are not at a staftiowry pointt the ine search

picks up at least one new cUtiity while mintaining those seatisftied at the

beginning at the iteration. We next remark that there are only a finite

number of stionary points because of the piecewise linear nature of the

obJsctive fNnatlu - Le. the oi' and; Si' cam. from a finite coll ction, as

does g(u). Finlly, it in not possible to return to any given stationary point,

since the objective function se quence (P(uk)) in monotonic decreasing. Thus

termination occurs in a finite number of Iteration.

lFutroreW the work required within each iteration in finite. In

particular, in the line search (9), a breakpoint of type it occurs when ut +

adk z cj for some I a I end j a J. Given the current point and the sign of

dt, it is easy to find the next such breakpoint of type i A change in the

sen of Sj(u) between two cosmecutive breakpoints of type ii yields a

breakpoint of type I since Sj in linerin that range. So breakpoints of type

I are easy to find as weEL Since there are only finitely many breakpoints

along the line uk + odi, the line eearch Is finite.

18



(a) Although u can be chosen arbitrarily in stop (1), there are advantages

in choosing either

(i) u| : second largest aj over j a J,

or (H) the beat heuristic dual solution determned by irlenkotter [10]. -

(b) The line search described in (9) can be modified to take into account the

remark mad* in Section 1 that there always exists an optimal solution such

that Sj(u) . 0 for all j J. Specifically, assume that Sj(ut) 1 0 has been

maintained through iterations t - 1, ... , k. Perform the line search by moving

from one brekpoint of F to the next until the first of the following events

occurs:~

(i) F(u ead k) starts increasing.

(ii) Sj(uk+mdk) bemcn inactive for snm j a JO(uk) [JO(uk)\ {) if uk

is stationary],

(iii) Sj(uk4+dk) bec a positive for same j g J(uk).

We donota by LS1 the line search described in (9) and by LS2 the

modified line search described here. Thus LS2 is obtained from LSI by

adding the stopping criterion (iii).

(c) We implemented an experimental code for the purpose of this article. We

use QR factorlsations that are updated for dropping and adding activities until

there are a possible n activities, in which case we use LU factorisations with

updating. This is adequate since our primary concern in this paper is with

the number of iterations required to reach optimality. An ideal version of the

algorithm would use genuine large sparse techniques.
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Algr,,AI p Ar mb to DIgeae0S.

The diMfulty arises in the degenerate came because the multipliers

associated with (3.3) are then no longer uniquely defined. A unique solution

can of course be determined if one chooses a basis ; Sj (u), el from j a J (u),

i a 10(u), and sets all other multipliers to sero. We note that this is exactly

what we did for the simple example given in Section 2. The problem i that,

once activitie are dropped in Lemmas 3.3, 3.4, 3., and 3.6, one has to verify

the consequence to the dependent activities. Indeed, this is exactly analogous

to the situation in linear programming and, from a theoretical point of view,

can be handled by perturbation techniques. From a practical point of view, a

perturbation technique is undesirable mince one loses, in general, the

underlying structure of the location problem. One may use an approach

analoIous to that of Busovaca [2], namely adding the conditions of Theorem 2.1

as explicit constraints. In other words, one recognise. optimality by solving

g(u) xi SJ(u) - I Pel

subject to

1 <X j 0 for j a JO

0_, - + I i fIor i 0
jg?

as a constrained least squares problem in X and p. Moreover, if no solution

exists, an optimal point has not been fouad and a descent direction can be

readily constructed.

For the purpose of the present article, sulfice it to my that

(i) degeneracy is a relatively ceon occurrence for uncap citated facility

location problen,
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(ii) in wer, able to solve degenerate problem without amy particular

difficulties,

(iii) we outline in some detail ame algorithmic approach to degeneracy that

is relatively straightforward and effective in practice, givem the

special structure of location problems.

Suppose (3.3) Is satisfied but Assumption 3.2 is not. Consequently, one

my choose a beas among the activities uch that

g(u) "- k j Sj(u) - i el (4.1)
jeji i818

where the subscript B indicates that a basis is being chosen. Further,

without loss of generality, we my always take II = I.

Now suppose X1 , 0 for some k a 3 and consider d - - Pkg(u) an for

Lemm 3.3. Then

dT Sk(U) =-- x I Pk V St(u) 12 < 0

and dTg(u) x )kd T  Sk(u) < 0.

To find out whether d is a descent direction, we compute drg(u+ad) for

small positive a. Thus it remains to consider dT ' Sb(u) for h i Jv\J. For

any such h, we can write

dT Sh(u) = 7hdT Sk(U) for s1e 7h 8 . f4.2)

Let D- (h a JO\TJ : 7h < 0) sad

D+  (h a 3J\Jj : 7h ) 0}. Now

dT g(u+ed) = dTg(u) + I dT Sh(u+Qd)
haD-

= dTg(u) + I dT  Sh(u)
haD

= (Xk+ I 7h) dT ; St(U).
h*D-
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Ihorera d is a dm mt direction if

.'.+ I i.>O (4.3)

How msppose lk <- I for some k a J1. Using the a.me direction d mas

above. we hows dT ; 8lk(u) > 0. 8o, boee dTS(U4.0d) z dTjj(u) + dTr ; Sk(u) +

SdT ; 3,(u). lherefre, we obtain that d isa descent directio, if

it + I ? O. (4.4)

Suppose A% ( 0 f om k u l and consider d z -Q g(u) as for Lemma

LL fThem,

dT(-ek) X - pt I Q6ek 12 ) 0. (4.5)

s(u4md) a s + sj(u+d).J*J+(umad)

go, in order to know the sign at dVs(u4.d) for eml positive a we need to

cmider dT ; 8b(u) for h \J. We ca. write

dT ; 1,(u) a 7k dT (-e*) for h a J" (4.6)

LsD-: (h a J\Jt : 7, ( O) end D+ a(h . J\J: 7,) 0). Then

d trg(u.d) a d~g(u) + I dT ; S,(u..d)

a (j%+ I 7ib) dT(-ek).

2merfstr d is a desont directia if

A, +,z 7h< O. (4.7)

Fimlly, it ramins to conider

,, - kitj + I1 (4.8)

Aerit@J it n J3. Let d u-Rg(u) m for Lem 3.6. Then

dT'("e,) * -(sa. + I )j) I Rkek 12 < 0.
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Define ?rh for h a JO\JI by

dT(; Sb(U)+ek) a ., dT(-e,) if h a J?\J3

dT Sg,6a) -7h, dT(-e.,) if h a (JO\JlU\J3.

Let D (h a JeO\J3: 7h( ) and D (h aJD\JI : 7h0) Now

d'g(u4'ed) - dT g(U) - Jt(u)IdT(--e.) + I dT VS,

h&D-
a .U + %J" - 141+ 1 7h) dT(-e.,).

jaj?8 h#D-

Tbarefore d in a descent direction if

Ok > .- 1E 11 + 141l-! I 7. (4.9)
jeJte haD

L. Numerial Daufate

The firet met -of results given are for a class of ten 33 x33 problems

where the c1 j values are taken from data for a traveling inalesuman problem

(15]. This ina wei-.knovwn test set considered representative. It was solved

for example by Schrage [201 and Brlenkotter. (10].

We give results for two different initial points

(a) u, 0 1 z It ... , 33

(b) u, sC 111  i = 1, ... , 33, where cib is the second largest entry for

given it and the two different line search algorithms LS1 and LS2. No

results awe given in the latter case for fixed charges 184 and 295 since not all

the Silo are initially positive.
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# of iterations
uo= 0 Uo Clk F(u*)

LSe. •  ,a1 LS2 LS1 LS2
184 3 3 10 - 6024
296 10 14 9 -8673
50 14 21 11 20 -11267
1000 10 17 9 12 -14832
1500 18 23 15 19 -17832
2000 39 40 26 .31 -20346
2500 41 32 28 27 -22127
3000 30 23 14 22 -23474
4000 11 8 8 7 -25474
5000 5 7 4 5 -27474

We note that only the problem with fixed charge 2000 has a duality gap

(the solution is - 203631. Next we consider this problem in more detail. Using

the complementary slackness conditions (2.20) - (2.24), we get

4f : : I= O 3! = ., : 1/2,

Xzo xf = I and xj = 0 for all the other j's.

The fractional yfj are as follows.

1,3 Y 2,3 7 3,3 Z Y,,3, 75,3 = : 1/2

y3,, Y4,7 YS,7 Y*,7 = Y,7,7 Y.,, = Y91,7 : 1/2

Y2,s Y7,8 Ye, & Ye,. = Yo,e Yai,s = Y=az, = 1/2

Y,1 = Ys,13 = Y12,:s = Yss,1s Y1n,1s = Y19,12 = Y6,13 = Y17,13 =.1/2

Ys1,i6 = Y1,,se = Yas,a. = Yie,,# = Yi,,1 = 1/2.

The remaining i a I are assigned to either facility 20 or 24, whichever is

closer.

Note that there are several cuts of the form (1.15) that cut off the above

fractional solution (x*,y*). In fact there are 18 such cuts. Sixteen of these

cuts involve the variables xs, x7 and xs. The other two involve the variables

x3, ge and X1S. We show one cut of each type.
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OUt1 ia * 7ia +71, Ya Ts + Y&sz,a -2, - Xre - ,, j X1

OUt 72,als + 7,s + *y,7 + y, 7a,& + ,& - , " Z S z

Adding theme two cuts to the formulation yields a modified condensed dual

with two new dual variables, my v amociated with Cut 1 and vs associated

with Cut 2 (See (1.16) and (1.17)]. Starting from the previous optimum dual

solution u, we only needed 9 additiomal iterstion to solve the uodifid

condensed duaL We found an optimal dual solution (u*,v*) with vf* - 44

and vf: x 20 but there are alternate optima, as is typical with problem (2.1).

Using the complementary slacknese conditions (5.1) - (5.6), we now have an

integer primal optimum solution:

X7 = Zis zo Z. , X 0otherwie.

This solution is unique. Instances where the dual formulation has alternate

optima and the primal hM a unique solution seem to be typical for the

uncapacitated facility location problem. At any rate, we have observed it

frequently whether it be with or without the addition of cuts.

We give another llustration of the cutting plane apprach. By drawing

the c1 j'a randomly from a uniform distribution, duality gape are more likely to

occur than when the *,j'5 satisfy the triangle inequality (such as in the

above 33-city problem), [1]. Consider the following problem, where ctj was

drawn at random between 0 and 100 and where fj z 100 for every j.

75 56 74 88 19 3 46 21 29 39
52 10 "79 62 12 9 52 88 76 31
85 59 58 87 63 73 3 79 80 27
17 68 35 70 75 3 87 72 13 35

(cj) =64 32 40 73 11 93 30 80 64 71
70 33 44 71 34 21. 20 56 59 19
55 56 9 21 40 7 93 50 49 27
42 14 69 15 77 85 36 52 72 98
41 5 99 21 27 51 23 89 23 68
64 32 59 29 96 31 81 83 4 63,
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4V'

Whing problem (LI) using the algorithm of Section 4 with line search

ulgrihm LS 181, we obtain the folowing optimum vector u, with value F(u)

a M +2/L.

Su 1  U + 2/3, us a 62 u a Up u z 70, us a 71pu. a 52+1/3, u x 37#, u

59 uo 74+1/3 and u 9 67+1/L.

Using (L1) - (5), we get the primel optimu eolution

s s zo2 • z 1/3, z x 2/3 and zj a 0 otherwise.

V3.~ / for 1 0 I,

IpS a 7 It,* Ya2 s 7., 2 YS4 - Y-6T : Y99 - .Y;*, C Y,7 2 y1,3 - Y9, Z

101a 1/3 yj a 0 otherwirne

It e own in [31, (81, [131 that the following Inequality defines a facet of

the Ia facility location polytope. Fu-thermore. it cuts off the

current f*MCUorA sa~o.

I1 I YS Ti,. + T T7 + Y293 + T, + TaO + Y,69 + Y7,7 + Y498 + 79,3 +

yT, + yo.g - - Z. - z7 - Ze I 2.

Adding it to the Armuaton and malving the now condensed dual yields an

o.4mum alution valueo at Sr Gaing back to the priml through (5.1) - (5.5),

we have

Zo 2 zZ Z =Zez 1/2 , zj : 0 othaerwiet,

7 Its Ys,. T, ag s a,. Ysgo - Yal e- Ye, 7" , 10 7Z., -= YS,. - Y6,4 'I

Yo 3 ,, 7T,. 7 , 2  os- yoa 3 7.,: - 2 - yl*T Ti.,. --" 1/29

yI jx 0 horwime.

We added net

Ou T2 aa + + + Ta,:+ atso+ y,. + y,. - 2 - X4 -2 . 1

reducing the optimum solution value to 573.6, and then
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* TM opimum solution of the new condensed dual was

us a 22, us x 52 us 2 M2 u. z 48, us a 66, uo = 53, u7 50, us 49, u :

U2, u,2 64, vI 2 24, v2 = 11, V3 a 9 whoe' v1 in associated with Cut i,

i x 1, 2g The corxesponding value ts P(u~v) = 570. Now using (5.1)-(5.5)

one more, we get

z*: 1a It . =1 1 for all it

xi z 0and yj zO for j 0B.

6. Ihto s " wiR 3I .wtsrs Heuristic

A well-known heuristic approach to the condensed dual problem is that of

Brlenkotter (101. This method is simple and often very effective. We analyze

it in the context of our proposed method.

FirmtIy, at all iterations of Brienkotter's heuristic all Si'. are nonpositive.

Consequently, S(u k) z * for all k.

We remark that the descent direction given by our algorithm amounts to

steepeet descent In the particular subapace defined by Lemmas 3.1, 3.3, 3.4,

3.6 and 3.6.

By contrast Brlenkotter's dual descent procedure corresponds to a

coordinate-wise sarch until a new activity of type Hin found or until blocked

by an activity of type i, repeating until no descent is so obtained. Consider,

say, a search along d a -es,. It is immediate that dTg(U) ( 0 and Erlenkotter-'s

line search is effectively stopped whenever an Sj 1 0 becomes positive. Since

u1, is decreasing but all other ul'a remain fixed it is clear that all activities

remain active except possibly an activity of type %I given by ckj = uk, which

one could consider to have been dropped. In the former case, we clearly
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haye a direction in the spac defined by Lemma 3.1, although no longer in the

steepest descent direstian in general In the latter case we have a direction

of the type defined by Lemmas 3.6 or 3.6, but again, in general, no longer in

the steepest descent dIrection.

Uvismt~,what the duel descent procedure lacks in sohsiain it

mawe up for amply (at leasnt for medium-sise problems) in the simplicity of

the comIputations. The dual adjustment procedure adds one level of

coplication to the choice af search direction when optimality cannot be

reached via coordia wise search.

Mae particularly, suppose ck j > ul, for more than one 3 P 3(U) I zIJa I..

jt say.

Now suppose we increase Uk,. Consequently Sj,... Sjt that were active

become negative. Vs can om attempt to decrease other u'5 that appear in

SJ11 9 0-9 SJt. if more than one such uj can be decreased wnit for unit s

uk increases, my ul i 2 i,, in$ eee, I,, we gain and NOu decreases.

Thus in effect we are searching in a direction

pal

In other word., a + 1 activities of type Hi are dropped, one by increasing U k

mad the remining a by decreasing ul.. In addition, several activitiesn of

type i my also be dropped in the search direction d.

7. lUatendodss

The essntial ingredients of the method that we have presented are:

Mi F is a siin of nomdifferentiable functions.

(ii) The coinatorial structure of the proble can be exploited.

Sea Caiammi and Cam (41, and Camm [5J for additional related background.
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I 
!:" ? "

o tove u see ~ of te idea. to other structured lna

ie, tbA sha be" a phwim Umer condensed forn. This In not an

ea-- i rs n. I cAs the prima at the trong lnea

rshumua of the facilt y location problem itself ba. such a

condensed form [V It am be witta us

- . ,(X) - K fjxj
xO, Ej 1 I JBT

J*j

wbhr z (x) Is the piecudse linear camem fctim defined by

X,(x) a min (c,k+ I (c, J'Ck)+ Xj).
keJ JOJ

Iaviv ltlv S(I) s ch + I (cj-Ck)+ xj
jai?

ubm k is defined by

K < K Xj.

J:cij>cik J:cIAc it

In general problem with fixed charges such as network design or

loesn problem have inear programming rezlationa that my admit a

condesfd om.

The aa 1taed facfilty locatn problem I obtained by adding the

capacity cosraints

I d4 yoj Isjmj for iJ (7.1)

to the formulation (1.1)-(1.). Zero d, represents the demand of client i and

8 1 the capacity of a facility at location J. The dual of the linear p ramming

rellutiuon is
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aL Za+ Zti
• + "U J + dfvJ @JJ fbr all i a 1, a J

-ZVj + tj- sjvj -fj for .11 j a 3
481

wVjt, vj . 0 for all i I, J a J.

Ibis d.1 ba comdmsed fows, nmely

Ka (u,v)= a u1 + I , (u,)
VIO U iaI jai

Nbers, 8J(uv) = K (c.j-u,-d,vj)+ + sjvj - fj.isT

As for the problem, F(utv) is piscwime and convex, and

there iS an optimum ach such that Sj(uv) 1 0 for all j a J.
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