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Several algorithmg already exist for solving the uncapeacitated
location problem. The most efficient are based upon the solution of
linsar progrémming relazation. The dual of this relaxation has a
~ condensed form which consists of winimising a certain piscewise linear convex
-~ function. This paper presents a new method for solving the uncapecitated
facility location problem based upon the exact solution of the condensed dual
via orthogonal projections. - The smount of work per iteration is of the same
order as that of a simplex iteration for a linear program in m variables and
constraints, where m is the number of clients. For comparison, the underlying
lineer programming dual has mn + m + n variables and mn + n constraints,
‘where n is the number of potential locations for the facilitiess. The method is
flexible as it can handle side constraints. In particular, when there is a
duality gap, the linear programming formulation can be strengthened by
nddiag cuts. Numerical results for some classical test problems are included.
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W omespacitsted facility location problem can be stated as follows.
" ‘Siupposs we have m clients indexed by I = (1, 2, .., m} and n potential
 sltes for opening facilities indexed by J = (1, 2, .., n). We are given the

peofit c,; that can be accrued from supplying all of client i's demand from a
facility in location j, and the fixed cost £; > 0 for setting up a facility in
location j. The problem consists of selecting an optimal set of facility
locations and assigning thnglinuhtothm facilities. Let y,j represent the
fraction of client i’s demand supplied from facility j. Define

- 1 if facility j is open,
x4 0 otherwise.

‘ﬂnn\vm model problem is

Max I S ceiyyiy- I fsx - (1.1)
faT joJ 1394 jIJJ J .
Lyiy=1 for all i & I ' (1.2)
Jad .
X;-%320  forallielI, jsJ (1.3)
3y 20 forallisI, jeJ 1.4)
x; s {0,1} . for all j s J. (1.5)

The constraint (1.2) expresses the fact that all of client i’s demand is
supplied, and (1.3) expresses the fact that we can only supply the clients
from open facilities. ‘

This model has been extensively studied. See [7] for a recent survey of

the literature. By relaxing the 0,1 restriction on x4, we obtain the so-called

strong Hnur programming relaxation of the uncapacitated facility location

problem. More precisely, we replace (1.5) in the above formulation by
0<x; <1 forall jsel. (1.6)




bl (-o.br-ph.ln\rdbudsm (19), Garfinkel, Neebe and
ﬁnAml. m Pisher and Nembouser (6], Brienkoiter{10], Mulvey and
' W[ﬂn. nmwmmma«nm
duality gaps (sbout 0.2%) is supported by a probabilistic analysis [1). Much
larger gape arise under the uniform cost model but this model is ot
mamum

mmmmmdmmxmmmpmm
relaxation (it has mn + n variables) and its special structure, it is not
officient to use the simplex method directly. The standard linear programming
dual of problem (1.1)=(1.4),(1.6) can be written as

L T
= ST e e
R L -

‘Min Lu + It (1.7
el JjaJ
uy "“'ulcu for all i ¢ I, j = J (1.8)
-i:I"j+tlz-f" for dlle (1.9) R
"." t‘ z 0 for all i = I, J s J. (1.10)

This is a problem in mn + m + n variables, but it is possible to rewrite it in a
condensed form in the light of the following observations.

We note from the form of (1.7) that, for any given u,’s, we would like- to
make the t;’s as small as possible. Thus, using (1.9) and (1.10), we require

t, = [Lw,-2,]" (1.11)
s [m ' ’]

where a* ¢ max (0,a). Consequently, we would like to make w,; as small as
poesible. Constraints (1.8) and (1.10) imply that we should have

wyy 2 (cu-\lq)". (1.12)




It io fisk pessible 1o replace the dual problem (1.7)-(1.10) shove by the

Min #(e) = L u, + I 8{(w) (1.13)
» isl JoJ
vhere .‘(.) - i:x‘eq"-l')‘ - f’. (1.14)
8
We remark that

(a) this tremsformation is well known. See, for example, Spislberg (21] and

_ Brisnbkotter [10).

:f (b) P(u) ie a plecewise lnear convex objective function.

= (c) Problem (1.13) is an unconsirsined optimisstion problem in n varisbies.
(d) There is an optimum solution of (1.13) such that 8,(u) < 0 for all j & J.
(To see this, note that the constraint x; { 1 of (1.8) is superfluous in the
strong linear progremming relaxstion since we have sssumed f; > 0. This
shows thet, in the dual, we can always set t; = 0.)

In this paper we propose a method that minimises PF(u) directly as a
piecewise linsar function. Section 2 outlines the method and provides the
theory. Section 3 contains the proof of the main theorem. Section 4-
describes the algorithm, and Section § reporta ocur computational experience.
Section € describes connections between our method and Brienkotter’s.
Finally, in Section 7, we discuss extensions of the method.

In the remainder of this section we provide additional background on the
uncapacitated facility location problem. This problem is NP-hard. Therefore it
is not surprising that most of the exact sclution methods propoeed in the

- Htersture resort to branch and bound. The success of such algorithms
depends on the asvailability of a tight relazation. .'l‘hooo-oall.dmklinnr

programming relaxation is defined by replacing (1.3) by
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Alhmggh \his relumtion is very easy (o solve, its use within the context of
‘bramch and bound leads o large enumerstion trees, even for relatively small
pechisms (see Bfroymssn and Tay [9]). The strong linsar programming
relomntion (1.1)=(1.4),(1.8) on the other hand produces amesingly tight bounds,
as we bave noted already. Sciving it is am interesting challenge as its
strusture can be exploited in many different ways. Garfinkel, Neebe and Raso
(11] scived the strong lmear programming relsmstion by Dantsig-Wolfe
decomposition, Schrage [20] devised a varisble upper bound simplex algorithm
to handle the constreints (13) while Morris [16] trested them as cutting
planse to be incorporated as needed; fimailly Guignerd and Spielberg (14]
proposed {0 pivot only on unimodular bases. All these methods are variants
of the primal simplex algorithm. PFor the purpose of branch and bound,
however, thire are advantages to solving the dual of the relaxation instead of
the primal, as any dual feasible sclution yields a valid bound. We have seen
already that the dual has a condensed form (1.13). Brlenkotter [10] minimized-
this piscewise linear convex function using a descent heuristic. Narula, Ogbu
snd Samuesisson (18] and Cornuejols, Pisher and Nemhsuser (6] used
subgredient optimisation. Both approaches quickly yield good dual solutions,
are easy to program and well suited for branch and bound algorithms.
Recently some great successes have been achieved in the solution of
combinatorial optimisation problems by combining a cutting plane approach
with branch and bound, see Grot.chol and Padberg (12] for example. In order
to generate cutting planes for the uncapacitated facility location problem, it is
desirable to wsoclve the strong linear programming relaxation to optimality.

Since the primal has many more variables than the condensed dual — mn + n




versus m -, it seems appropriste to solve the Ilatter. Subgradient
optimisation can be very slow to achieve optimality and Erlenkotter’s dual
descent algorithm is a heuristic, so neither approsch is well suited to solving
the condensed dual optimally. The present peper proposes an algorithm to
solve this condensed dual to optimality. _

The best cutting planes are those that generate facets of the convex hull
of the solutions to (1.2) - (1.5). This polytope is known as the uncapacitated
facility location polytope, and its facets have been pertially described by
Guignard [13], Cho, Padberg and Rso [3] and Cornuejols and Thizy [8). For
example, the inequality

Vré + Fad * Yon * Yen * Yex + Ve — Xe = Xy~ X £ 1 (1.15)

defines a facet of the uncapecitated facility location polytope for any ¢, h, k ¢
Jand r, s, t ¢t T such that ¢ ¥ h Z k and r # 8 # t. It cuts off fractional
basic solutions of (1.1)-(1.4),(1.6) where all the variables in (1.15) take the
value 1/2. Adding the constraint (1.15) to (1.1)=(1.4),(1.6) and taking the dual,
we got

Min 2u,+ It,+v
isl JsJ

uy + Wiy 2 cyy for all (i,j) # (r,$),(s,s),(s,h),(t,h),(t, k), (r,k)
g Wyt 2 ¢y for (i,j) = (r,¢),(s,8),(s,h),(t,b),(t,k) or (r,k)
- w21 for all j # ¢, h, k
- Iwyy+ty-v2r-f; for j=4,hork
wigs ty, v 2 0.
Therefore the new condensed dual is

Min P(u,v) = T uy + § Sj'(u,v) +v : (1.16)
v20,u isI JjsJ
where  8,(u,v) = .}:I(e.,-u.)+ - 1, (1.17)
is




[y for (1,3) # (r,0), (8,83, (m.0), (£,), (., (r, )
Cgy — V¥ for (1,J) = (r,¢),(s,8),(s,h),(t,h),(t,k) or (r,k)

f,-v for j = 8, h or k.

This example shows that the general form of the condensed dual is preserved
when a cuiling plane such as (1.15) is added. More generally, if p constraints
are added $o the primsl formulation, the condensed dual has p new variables.
* Bxcept for the nonnegativity of these variables, the new condensed dual is
still the unconstrained minimisation of a convex plecewise linear function. For
the same resson, the potential extensions of the condensed dual include the
capacitated facility location problem. We will not treat this latter extension in
this paper, but both extensions further justify our interest in the condensed
dual F(u).

2. Motivation and Theory
As we have already seen, we are initially concerned with the following-
optimisation problem

n n ' )
‘3 F(u) = L u; + I Sf(u) (2.1)
izl J=1
n
where 84(u) = 121(9 j"‘ﬂq)"' - 5. (2.2)

Clearly F(u) is a piecewise linear convex function.
Ift is nondifferentisble at all points u’ such that either

i) 84(u) =0 for some j # J = {1, ..., n} (2.3)
or ii) cqy = uy for some i s+ I = (1, ..., m} with §;(u) > 0.  (2.4)
Wo. call these activities (breakpoints) of type i and type ii, respectively.




ﬁﬁ;ndiﬂmthofonowingindox-matlvpointu.

| THu) = {j = T : 84(u) > 0) (2.5)
J%u) = (§ ¢ J: Sy(u) = 0) (2.6)
i J=(u) = {j = J : 85(u) < 0} (2.7)
- If(u) = (i s I: cqy = uy > 0} (2.8)
E I(u) = (i s I : ¢4 = uy} (2.9)

Ij(u) = {i s I : ¢4y - uy < 0} | (2.10)
- ) = v I (2.11)
jeJ°(u)ul*(u) :

Jf(u) =2 {j s J*(u) : i s I3(u)} (2.12)

Jf(u) = {j & J°(u) : i & If(u)). (2.13)

Whenever the underlying u is evident, we will write J* for J*(u), etc.
Using the above definitions

Flu) = fu + § S,(n).
iel jasJ*

As we shall see, it is useful to define a "base gradient” for F(u). Thus we

define
gu) =e+ I ¥ S§i(u) ' (2.14)
JeJ*
whers e=(1,...,1)T s B, and -
v 8(u) = (sd,...,80)T s =, (2.15)
| [—1 ifieIfury (2.16)
s =
0 otherwise.

Notice that g(u) expresses exactly the first order change in F(u) along the
direction d when, in this direction, the u’s such.that i ¢ I, j + J* happen

to decrease and, further, Sj(u) remains zero for all j ¢ J°. This statement,
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Lot ey denote the it* unit vector in W». We first state the following
theorem.

Theorem 2.1. The point us eolvea problem (2.1) if and only if there exist
scalars 2§ and s}, called the Lagrange dual variables, such that

¥ = I Afvs(u) - I ufe (2.17)
jsJ®(u®) , s iaI®(u¥) '
where :
-142§¢o for § & Jo(u¥) ' (2.18)
0<uf¢- L Y+ ¥ for i s I°(u¥). (2.19)
JaJP (u®)

The theorem is constructive in the sense that whenever the conditions
{2.17)=(2.19) are not satisfied, it is relatively straightforward to obtain a
descent direction for P.

More specifically, the motivation is as follows. We first try to obtain a

descent direction by projecting -g(u) orthogonally into a space such that
J°(u) v I°(u) does not change (the activities remain active). A descent
direction is obtsined when such a projection i- nonsero. When the projection
is sero, it follows that g(u) can be expressed entirely in terms of ¢ Sj(u) foi-
J 8 J°u) and e; for i =+ I°(u). Thus, we are able to consider the effect of
dropping a single activity. This either determines a descent direction or
sstablishes the required optimality conditions.

We will try to make this more concrete by considering a simple axample.
Consider m = n = 3,




241
(c.,)-[314]

4a4s

-d (£5) = (213).

im0 [ [ ] e i

of these vectors.

Ve take u® = [2] as our imitial point. F(u°) = 11 and J*(u°) = {1, 2, 3}.
We have no .ctiv’iey of type i but one activity of type ii given by u? = c,».
The base gradient at u® is g(u®) = (-2,~1,~2)'. We maintain the activity of
type ii by choosing our search direction in a rpace orthogonal to (-1,0,0)T.
Thus, we take our search direction to be d° = -~Pg(u®) where P iz the
orthogonal projector onto the spece orthogonal to the space spanned by the
gradients of the activities. Thus in our example, d° = (0,1,2)7. _

We now descend as much as posesible in this direction while minimizing
the entire function F(u). This gives a step size of 1/3 and hence u' =
(1, 2+¢1/3, 3+2/3)"- Por this point, F(u') = 9+1/3, J*(u?) = (2}, J°(u?) = (1, 3},
I Illd I3 are empty, and I = (1}). This time g(u*) = (0,1,0)T and we project
orthogonal to ¥ S,(u?) = (=1,~1,=1)7, ¥ Ss(u!) = (-1,~1,-1)T and e,, obtaining
d' 2 (0,-1,1)7, where without loss of generality d* has been suitably scaled.

The optimal step size for the line search is again 1/3 and thus u? =
(1,2,4)T. This gives P(u2) = 9, J*(u?) = (2}, J°(u?) = (1,3}, I? = (3}, I3 = (3}
and I3 = {1}. Now g(u?) = (0,1,0)7 but the projection is zero. The point u? is
a degenerate stationary point but in this particular case it is easy to choose a
suitable basgis. We chocee ¥ Sy(u?), e, and e;. Now

g(u?) = A, ¥ Sy(u?) - p0, - uyey

with A3 = - 1 and »;, = 3y =2 1. Clearly, condition (2.18) of Theorem 2.1 holds.

To check condition (2.19) note that J?(u?) = (3} and Jt(u?) is empty. So, for




ttl.thi-mdiﬁon reduces to 0  »; € - Ay which is satisfied. Por i = 3 we

m ntn‘.)w:? {1} and Ji(u?) = (2). 'In this case the condition (2.19) reduces

| tco‘,;lh'i Wi @A} Aguin the condition is satistied.

: Therefore, according to Theorem 2.1, the point u? is optimum for our
Given an optimum dual solution u®, we can derive an optimum primal

solution to the strong linear programming relaxation by using the

complementary slackness conditions. Namely

j s THu¥) implies x§ = 1 (2.20)
j = J(u?*) implies x} = 0 (2.21)
3 is u®) imples y%, = x% (2.22)
2 ieIj(u*) imples y%,= 0. (2.23)

The values of x§{ for j s J°(u®) are the optimum Lagrange duai values 1A},

up to the sign. Namely :

= J°(u¥) implies x§ = A% (2.24)
The resson for (2.24) is that (2.22), (2.23), (1.2), (1.3) and (1.4) imply the
existence of 0 ¢ &y < 1 such that

b +f + Lajy=1 for i # . -
,jc.'l":i.cl'j‘x1 JaJe ”x} JjsJt H o j:J"‘q

This is equivalent to (2.17)-(2.19).
In our example, these conditions yield

x$=0 (by 2.24)
¥ =1 (by 2.20)
x§ = ] (by 2.24)

Y=yt 29fy =1 (by 2.22).

10
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" descent direction, when one exists.
wvmmmpmmmmmwtu
wmdby'sj(u)forjc.l'(u)mdnforic!'(u)

Lemaa 3.1. ‘Hpg(u)hmro.thoad:-l'g(u)h.dmtdincﬁonfu
P(u).

Proof It follows from the definition of P and the fact that, for a
sufficiently small step sise «, the index sets J*, J=, If{ and I do not change,
that -

Pluted) = P(u) + edTg(u). Nt S ¥
But .

d's(u) = - g(w)TPTg(u) = - | Pgu) I* <0, | (3.2)
using the fact that P is an orthogomal projecter (PsP',P*zP) and the
MMP:(\I)IO-

Consequently P(uted) ¢ P(u) for all sufficiently emell positive «. O

Now suppose that Pg(u) 2 0, or equivalently
ga) = I A V8- I me. (3.3)
JeJ®(u) {sI®(u)
It will be convenient to sssume that the multipliers A; for j ¢+ J® and » for
{ s I° are uniquely defined. This can be realised by methods such as
perturbation techniques. Indeed, this is exactly analogous to the situation in
linear programming. So, without loss of generalily, we make the following

sssumption for the next four lommas.

11




T m 3.2. The vectors ¥ S;(u) for j » Jo(u) and e, for i & Ie(u) are
linearly independent.

From a computational point of view, a perturbation technique is
undesireble. Our algorithmic approach to degeneracy is presented in
Section 4.

Leumn 3.3. If A, >0 for some k = J° then d = - Pkg(u) is a descent
direction for F(u), where P* denctes the orthogonal projector onto the space
orthogonal (o the space spanned by ¥ S;(u) for j # J°\(k} and e, for i ¢ I°

Preaf? We first note that, using (3.3) and the definition of P,
Ptg(u) = A, Pk v S,(u). (3.4)
Thus 4T ¥ 8y(u) = - A, ¥ 8, (u)T P* ¥ S,(u)
:-)..IP"S.(u) iz <o,
Mthh.qmﬂtyhﬁowofmth.fnchthnth)O(hmhom) and
Pt ¥ 8,(u) # 0 (Assumption 3.2).

Thus 8,(u) descends in the direction d, i.e. it changes from an activity of
type i to being strictly negative. Allth.oth.rlctiviﬁ.lm.ctivo. So,
as for the proof of Lemma 3.1, we get F(utad) = F(u) + ad"g(u) < F(u), for all
sufficiently small positive «. 0

Lemma 3.4. If \y, ¢ =1 for some k ¢ J° then d = - Pkg(u) is a descent
direction, where P" is defined as in Lemma 3.3.

" Proof: As in the proof of Lemma 3.3,

d? ¥ 8, (u) = - A, IP* ¥ S, (u)l=. (3.5)




M d' v sgh‘l). > 0 and, for small positive «,

Since dTg(u) = A, dT ¥ Sy(u),

Plutad) = F(u) + adTg(utad)
= F(u) + «dT(g(u) + ¥ S (u)).

Plutad) = P(u) + «(r,+1) dT ¥ S,(u). (3.6)
Consequently, we will have descent if A, < - 1. O

Lemma 3.5. If sy < O for some k & I° then d = - Qkg(u) is a descent
direction for F(u), where Q* denotes the orthogonal projector onto the space
orthogonal to the space spanned by ¥ S,(u) for j ¢+ J° and e, for i = I°\(k}.

Proof: Using (3.3) and the definition of QF,

Qkg(u) = = u, Qke, _ I % 4

Thus d'(-e,) = -u, | Q*e, |2,

Since u, < 0 by hyiaothodl and Q*ey # 0 by Assumption 3.2, we have that \i.,
is decreasing in the direction d.
Now it follows from the definition of v S (u) that

glotad) = 0 + I v Sy(uted)
JaJ*(utad) : -

= e + L v sl(\l) = g(u),
jsJt(u)

for sufficiently small positive «. Thus
F(utead) = F(u) + adTg(u) for sufficiently small « and dTg(u) =
-l akg(u) 2 ¢ 0. B

Lesma 3.6. Ifu, > - Aj+ | Jt | for some k ¢ I°, then d = - Rkg(u) is
JjsJ

a descent direction for F(u), where R* denotes the orthogonal projector onto




MhWWWbyzs‘,(u)-fog for j = J¢, v S;(u)
and oy for 1 & IN(KI. |

*’m mtwmmmaat
o !'t(u) == (ngt L 1g) Rte,. (3.8)
nu d'(-q.) - - (p.+-.:nx,) | Ree,-I2.

@inoe sy + I Ay > O by hypothesis and R¥e, # 0 by Assumption 3.2, we
Jedt
Mthmchtn.himmiudmd.
"Thms, for « sufficiestly small and positive,

. v 8y(u) + @ if ks IJ(w)
v 8;(wred) = [ . (3.9)
v 8,(\1) otherwise.
Therefors, g(uted) 2 e+ £ vS(u)+ I e, i.e.
. jeT*(u) jaJt(u) S
glured) = g(u) + {TLt(u)| of. (3.10)

Using (3.8) and (3.10), we obtain

Rig(urad) = = (my + I Ay - [TE()]) Rte,..
’ JaJg(u)

Tet 7 = my + zx,-lnlndv.s,..+:a, Then -
JeJt JaJg

I dTg(urad) = vy(ey)T (RO)T gluted) -
| = ~vyTy(oy)7 Rhey = — vu7y | Rbe, 2.

By hypothesis 7, > 0 and v, > 0. So d'g(uved) ¢ 0 and thersfors

t' Pluted) = P(u) + ad'gluted) < F(u)

for sufficiently small pod.tivo « 0

Proof of Theorem 2.1.

It follows directly from Lemmas 3.1, 3.3, 3.4, 3.5 and 3.6 that the
conditions (2.17) -~ (2.18) of Theorem 2.1 are necessary.




To prove that these conditions are sufficient, we assume that they hold
and analyse the effect of dropping a single activity. We show that, in each
cese, F(uf) cannot decrease.

By the piecewise linearity of F and the fact that nondifferentiabilities
correspond to activities of type i or ii, this impliss that P(u®) cannct decrease
in any direction.

First consider the effect of dropping Sy(u¥) for k =+ J°. Thus d =
oPg(u¥), where P* is defined in Lemma 3.3. As in the proof of Lemma 3.3,
dT v Sy(u¥) = or, | Px v S (u¥) 3. I ¢ > 0, A, < O implies that, for
sufficiently small «, F(u¥+ad) = P(u®) + ad'g(uf). Now dTg(u®) =
e | Prg(u®) |* > 0 implies that P(u¥+ad) > P(u¥). If ¢ ¢ 0, A\, { O implies, as
in Lemma 3.4, that P(u®+ad) = P(u¥) + a(r,+#1)dT ¥ S,(u¥). This gives
non-descent since Ay, > - 1.

‘ Next we consider the effect of dropping ey for k s I°. Thus d =
eQtg(u?), where Q* is defined in Lemma 3.5 or d = eR*g(u¥), where RF is
defined in Lemma 3.6.

We first consider d = oQ*g(u®*). Then d¥(-e,) = ou, | Qte, |2, and by
hypothesis s, 3 O. :

If ¢ > 0, then uf decreases and, as in the proof of Lemma 3.5, F(u*+ed) =
P(u¥) + «adTg(u®) for sufficiently small positive a. Now P(u¥+ed) > P(u¥) since
dTg(u®) = o | Qxg(u®) |2 > 0.

@ < 0 implies that u} increases. Consequently, if there exists j t J(uf),
we violate our condition that only one activity is dropped. However, if JB(u®)
is empty, Q* is identically equal to R* and d = «Q*g(u®) = oR*g(u®). Thus, as

in the proof of Lemma 3.6, omitting all terms involving J2(u¥), we obtain that
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PlaSed) = F(u®) + ad'g(utsad) where dTg(ut+ed) = epur, | Bte, 1% with 7, =
u. - |Jﬂ. Now, by hypothesxis 0 ¢ u, ¢ IJﬂu‘)l which implies v, < 0 and

thus d"g(u®+ad) ) O.

It remsins to consider d = eR*g(u®). If ¢ < 0, then directly from the
proof of Lemma 3.6, we have P(uf+ad) = P(u?) - av,r, | Rte, l. for lny‘g-ll
positive «. If v, > O, then d7(~e,) = ov, | R¥e, |* implies that ul does not
decresse -m d and 7, < O (from (2.19)) implies that P(uf+ed) ) P(uf). 1If
vy ¢ 0,.unn uy decreasss along d. Therefore our condition that only one
sctivity is dropped implies that JE(u®) is empty. But then v, = 4, which with
(2.19) imples v, 2 0, contradicting v, < 0.

If « > 0 then, as in the proof of Lemma 3.8, Rig(u®) = - v Rte, and
d¥(-ey) = ev, | Rte, |2. Now, if v, ¢ 0, ul increases along d and P(u®+ed) =
P(uf) + -df.(ufnd) with dTg(u¥+ad) = - ev e R g(u¥+ad) = ov, 7, [RYe, |2 > 0
since v, { 0. This implies P(ut+ed) ) F(u®). Pinally, if v, > 0, u} decreases
along d which once again viclates ocur condition that omly one activity is
dropped unless Jg(u®) is empty. Then v, = s, R* = Q* and P(ubied) =
P(u?) + adTg(u®) from the proof of Lemma 3.5. But now dTg(u®) z ¢ I Rrgu®)
iI*>0.0

4. The Algorithm

We now present a finite algorithm for solving problem (2.1). For simplicity
of o:podtbn, we first assume that nondegenerscy holds. Our approsch to
degeneracy is explained in the latter part of this section.
Mininisstion Algoritha
(1) Chooee any u® s # and set k ¢ 1,
(2) Ideatify J*(u*), J*(uk), If(uk), I$(uk), j s J.
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(3) Compute g(ut).
(4) OCompute d* = - Pg(u') where P is defined in Section 3.
(8) If d* 2 0, then go to (9).

(6) Compute the current estimste for the Lagrange dual variables A}, j =
] J%(u®) and mf, i ¢ I°(uk) by solving

‘(‘.) - : 11 ; 83(\1") - t 80y,
JaJ®(u¥) ~ 1aI%(ut)

(T) Stopif-1<AJ <0 for all j = J%u¥)

. wmd 0L pf < LAY+ [TTuw) for all i & I%(uk).
JaJt(u*) '

(8) Choose one of the viciated inequalities in (7) and drop the corresponding
activity. Let ¢ & J%(uk) v I°(u*) be its index. Define

- Pog(ut) if A% > 0 or if A% < - 1, where P! is defined
" in Lemma 3.3,
d* = {- Qég(u®) if pk < 0, where Q¢ is defined in Lemma 3.5,
- Rég(ub) ifut > - I aj+ | It |, where B! is defined
¢ ey ¢
» in Lemma 3.6.

Mou'prdmhtochouod'inthtwdux';)o,p:(o, x;<-1.

ut > - tx}+|ﬁ|.mwhadnieo. -
[ | jeJ9 [}

(9) Determine the step size «k by solving Min P(uk+ed®) subject to keeping
all activities active (except, of ¢=o|.u'-:,> ofor the activity dropped in (8)
when step (8) is performed in iteration k). This line search can be done
by starting from u* and moving from one breakpoint of F to the next, in
the diroction d*, until either the value of F starts increasing or an

active 8 ] becomes nonactive.

17




- (18) Updete and iterete.

uttt & gkt + aigk

kek+l
Go to (2).

Finite Termination of the Algorithm

A point u such that Pg(u) = 0 is called a stationary paint.

Pirst, note that at most n iterations can occur before a stationary point is

reached since, whenever we are not at a stationary point, the line search
picks up at least one hew activity while maintaining those satisfied at the
beginning of the iteration. We next remark that there are only a finite
number of stadonary points because of the piscewise linear nature of the
objective function — i.e. the e;’s nud:83'leo-6fmnﬂl;ito collection, as
does g(u). Pinally, it is not possible to return to any given stationary point,
since the objective function sequence {F(u*)} is monotonic decreasing. Thus
termination occurs in a finite number of iterations.
" Purthermore, the work required within each iteration is finite. 1In
particular, in the line search (9), a breakpoint of type ii occurs Wh.fl uf +
ad¥ = cy; for some i ¢+ I and j ¢+ J. Given the current point and the sign of
d}, it is easy to find the next such breakpoint of type ii. A change in the
sign of 8;(u) between two consecutive breakpoints of type ii yields a
breakpoint of type i since S, is linear in that range. So breakpoints of type
i are essy to find as well. Since there are only finitely many breakpoints
along the line u¥ + ad¥, the line search is finite. |
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Romarks
(a) Although u® can be chosen arbitrarily in step (1), there are advantages
in choosing either
(1) ﬁl z second largest cy over j = J,
or (i) the best heuristic dual solution determined by Erlenkotter [10]. -
(b) The line search do.c;-ibod in (9) can be modified to take into account the
remark made in Section 1 that there always exists an optimal solution such
that sli(u) £ 0 for all j s J. Specifically, assume that S,(u"-) £ 0 has been
maintained through iterations t = 1, ..., k. .Porfom the line search by moving
from one breakpoint of P to the next until the first of the following events
occurs:
(i) PF(uk+ad*) starts incressing,
(ii) S (u*+ad®) becomes inactive for some j & J°(uk) [J°(uk)\{4} if u*
is statiomary],
(iii) éj(u“«l*) becomes positive for some j & J(uk).

We dencte by LS1 the line search described in (9) and by LS2 the -

modified line search described here. Thus LS2 is obtained from LS1 by
adding the stopping criterion (iii). -

(c) We implemented an experimental code for the purpose of this article. We
use QR factorizations that are updated for dropping and adding activities until
there are a possible n activities, in which case we use LU factorizations with
updating. This is adequate since our primary concern in this paper is with
the number of iterations required to reach optimality. An ideal version of the
algorithm would use genuine large sparse techniques.
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Algorithmic Approach to Degeneracy
The difficulty arises in the degenerate case because the multipliers
associated with (3.3) are then no longer uniquely defined. A unique solution

can of course be determined if one chooses a basis ¥ 8, (u), o from j & J°(u),

i & I19(u), and sets all other multipliers to zero. We note that this is exactly
what we did for the simple example given in Section 2. The problem is that,
once activities are dropped in Lemmas 3.3, 3.4, 3.5, and 3.8, one has to verify
the coixuquonco to the dependent activities. Indeed, this is exactly analogous
to the situation in linear programming and, from a theoretical point of view,
can be handled by perturbation techniques. From a practical point of view, a
perturbation technique is undesirable since one loses, in general, the
underlying structure of the loéation problem. One may use an approach

analogous to that of Busovaca [2], namely adding the conditionis of Theorem 2.1

as explicit constraints. In other words, one recognizes optimality by solving

glu) = L Ay @ Sj(ﬂl) = I mey

jaJo isI®
subject to
-1¢2\ <0 for j & J°
O<m < -5 A+ 131 for i ¢ I° )
jsJ?

as a constrained least squares problem in A\ and u. Moreover, if no solution
exists, an optimal point has not been found and a descent direction can be
readily constructed.
For the purpose of the present article, suffice it to say that
(i) degeneracy is a relatively common occurrence for uncapacitated facility

location problems,
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(ii) we were sble to solve degenerate problems without any particular
difficulties,

(iii) we outline in some detail one algorithmic approach to degeneracy that
is relatively straightforward and effective in practice, given the
special structure of location problems.

"Suppose (3.3) is satisfied but Assumption 3.2 is not. Consequently, one
may choose a basis among the activities such that

g(u) = DAy v8;(u) - I mey (4.1)
JaJ3 isIf
where the subscript B indicates that a basis is being chosen. Further,

without loss of g'omnm.y. we may always take I§ = I°.
Now suppose A\, > O for some k ¢ J§ and consider d = - Pkg(u) as for
Lemma 3.3. Then

dT" v Sy(u) = =2, J PR v S, (u) I2 <O

" and dTg(u) = A, dT ¥ Sy (u) < 0.

To find out whether d is a descent direction, we compute d¥g(u+ad) for
small positive «. Thus it remsins to consider d' ¥ Su(u) for h = J°\J3. For |
any oﬁch h, we can write
Sp(u) = 7,dT v S (u) for some 7, s R. (4.2)

{haJ\J§: 7, <0} and

¢

dv
Let |

D* = (h s JO\J§ : 7, > 0}). Now

d7 g(utad) = dTg(u) + § dT v S, (u+tad)
heD™
= dTg(u) + I d7 v Su(u)
heD™
= A+ I 7p) d7 ¥ 8, (u).
hasD™
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" herefors d is a descent direction if
had~

(4.3)

me‘l.<-lformk-n. Using the same direction d as
.bon.wohv.d';S.(u)>0. So, here, dTg(uted) = dTg(u) + dT v S, (u) +
xrd":s.(u). Thersfore, we cbtain thet d is a descent directiom if
hs

: heD*

(4.4)

Suppose 4, < O for some k s I} and consider d = - Q*g(u) as for Lemma

$8. Then
d¥(-ey) 2 =, § Qe 12> 0.
Moreover,

guted) =0+ [ ¥ 8 (uted).
JaT*+(ured)

(4.5)

8o, 'in order to know the sign of d'g(uted) for small positive « we need to

consider dT ¥ Sy (u) for h s J°\J]. Weo can write
dT ¥ Su(u) = 7y dT(-ey) for h s+ J\J§

(4.

Lt D2 (h s J™NJ§ : 7, <Ol and D* =2 (h s J*\J§ : 7, > O). Then

dTg(urad) = dTg(u) + hg' d' v Sy (uted)
s (my+ T 7) d¥(-ey).
haD*
Therefore d is a descent directiom if

s+ T <O,
hept

FPinally, it re=mmins to comsider

JeJte
whore Jig = JE n J§. Let d = - Rtg(u) as for Lemmm 3.6.

df(-ey) = =(sy+ I Ay) | R¥e, |2 ¢ 0.
Jadte

(4.7)

(4.8)

Then

6) -
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Define 7, for h & J*\J§ by
dT(v Sy, (u)+ey) = 7y &f(—-.) it h = JE\J}
d¥ ¥ Sp(u) = 7y d7(-ey) if h & (JO\JR)\J§.
Let D~=(h s J\J§ :7, <0} and D* = {(h ¢ J°\J§ : 7, > O} Now
| dTg(uved) = dTg(u) - [TE(u)|dT(-ey) + [ dT ¥ Sp(uted)

heD™
= (e + I A= |3+ T 7)) dT(-ey).
JeJBe heD~

’l‘h.roférc d is a descent direction if

> =L x5+ [T - L 7. (4.9)

Jje I8 hsD™

S. Numerical Resuits

The first set of results given are for} class of ten 33 x 33 problems
where the c(; values are taken from data for a traveling salesman problem
(15]c This is a well-known test set considered representative. It was solved
for example by Schrage [20] and Brienkotter [10]).

We give results for two different initial points

(a) uy = 0 iz 1, wy 33

(d) uy = ¢4y i=z1l, ..., 33, where c,, is the second largest entry for
given i, and the two different line search algorithms LSl and LS2. No
results are given in the latter case for fixed charges 184 and 295 since not all
the S;’s are initially positive.
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8 of iterations

u =0 4 Yo = Cyy F(u¥)

181 182 1Sl 182
3 3 10 - 6024
10 14 9 -8673
14 21 11 20 -11267
10 17 9 12 -14832
18 23 15 19 -17832
39 40 26 .31 -20346
41 32 2B 27 -22127
30 23 14 22 -23474
11 8 8 7 -25474
5 7 4 5 -27474

We note that ohly the problem with fixed charge 2000 has a duality gap
[{the solution is - 20363]. Next we consider this problem in more detail. Using
the complementary slackness conditions (2.20)} - (2.24), we get

x$ = xf = xf =t = b = 1/2,

x30o = x$. =1 and x} = 0 for all the other j's.

The fractional y?} j are as follows.

Yai,s = &z,s = ¥s,3 = Va3 = Ts,3 = Ve, =172

¥3,7 = Ya,7 = V8,7 = V6,7 = ¥3,7 = Fu,7 = V9,7 T Yaro,7 = 1/2
Yi,8 = ¥7,8 = Ye,8 = ¥9,8 = V10,8 = Y11,8 = V12,6 = 1/2
Yi,13 = Yia,13 = V12,13 = ¥13,13 = Vie,13 = Vis,13 = Vie,13 = V17,13 = 1/2
Yis,16 = Via,16 = V15,16 = Vr6,16 = V17,16 = 1/72.

The remaining i ¢ I are assigned to either facility 20 or 24, whichever is
closer.

Note that there are several cuts of the form (1.15) that cut off the above
fractional solution (x*,y*). In fact there are 18 such cuts. Sixteen of these
cuts invol\.ro the variables x,, x; and x,. The other two involve the variables

X3y Xg and x;5. We show one cut of each type.
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Cut 1 71,5 ¢ 73,0 #7386 %*Ta1,0 * Y103 * Ta1,03 =~ %3 = Xg = X35 S 1

Cut 2 y3,3 ¢ Ye,3 V6,0 + Yo7 #+ Y20 * Vo0 =Xy =Xy - %4 £ 1

Adding thess two cuts to the formulation yields a modified condensed dual
with two new dual variables, say v, associated with Cut 1 and v, associated
with Cut 2 [See (1.168) and (1.17)]). Starting from the previous optimum dual
solution u®, we only needed 9 additional iterations to solve the modified
condensed dual. We found an optimal dual solution (u¥¥,v*%) with v§* = 44
and vi* = 20 but there are alternate optima, as is typical with problem (2.1).
Using the complementary slackness conditions (5.1) - (5.5), we now have an
integer primal optimum solution:

Xy 2 X33 = X390 = X34 2 1, x; = 0 otherwise.

This solution is unique. Instances where the dual .for-nhtion has alternate
optima and the primal has a unique solution seem to be typiocal for the
uncapacitated facility location problem. At any rate, we have observed it
frequently whether it be with or without the addition of cuts.

We give another illustration of the cutting plane approach. By drawing -
the c;’s randomly from a uniform d@tribution, duality gaps are more likely to
occur than when the c”’. satisfy the triangle inequality (such as in the
above 33-city problem), [1]. Consider the following problem, where c, j was

drawn at random between 0 and 100 and where f; = 100 for every j.

75 56 74 88 19 3 46 21 29 39
52 10 '"79 62 12 9 52 88 78 31
85 89 58 87 63 73 3 79 80 27
17 68 3 70 7 3 87 72 13 38
(cyg) = |64 32 40 73 11 93 30 80 64 TN
70 33 4 71 34 21. 20 858 89 19
86 86 9 21 40 7 93 80 49 27
42 14 69 15 77 8 38 852 72 98
41 & 99 21 27 851 23 89 23 68
64 32 59 29 96 31 81 83 4 63,

% ] ' » N
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aslgorithm LS1, we obtain the following optimum vector u, with value F(u)

s“l#zl&

u,la+mu.=ﬂ.n, =:63.u.=70, ug = 71, ug = 52+41/3, u,y, = 37, u,

ﬂ.u.s?“lla.mdu,;=ﬂ+ll3. )

Using (5.1) - (5.5), we get the primal optimum solution
':,8:.83,8113,;.=2/3mdxl = 0 otherwise.

Y0 28/8foril,

T1,9 3 Ta,0 B 71,2 3 Fa,3 2 ¥3,0 5 Yey7 = Tsp0 2 74,0
Tie,7 2 1/3, 745 = 0 otherwise.

n was shown in (3], (8], (13] that the following inequality defines a facet of
the unocapecitated facility location polytope. ?Wom. it cuts off the
current fractional solution. '

"
“
-
-
-~

Cut 1 T st Tr,e t Fi,0 4 Fas t Faa t Yoo f Fee t Tayr t Tage b Toys t
To,9 ¥ To,0 = X3 = Xy = Xy -~ Xo £ 2. ]

Mdh.hbtb!ﬂuh&nmdndﬂngthmmdamdduﬂﬁddam
optimum solution value of §75. Going back to the primal through (5.1) - (5.5),
we have )

X3 T Xy 2 Xy 2% 321/2 25 20 otherwise,

T3 T V1,0 2 V2,3 2 V3,8 2 V3,6 2 V3,82 Tay7 S T6y0 = V.0 = ¥s,8 = Te,e =
Voo 2 77,7 % T7,0 % F0,3°2 To,8 2 T9,3 = Te0 = Ti0y7 = Tiope = 172,
71y = 0 otherwise.
We added next

Out 2 yi,5 ¢ 71,0+ 72,5+ Va0t ¥3,0 + 73,0 = X3 = X =X £ 1

reducing the optimum solution value to 673.5, and then




ﬁl’ Y10 * Fre # Va0 + Tse t Foa t Fos =Xy =~ Xe =X S L
rﬁmm&ndtmmmnd.nnddmﬁ

uy 2 21, uy = 52, uy = 62, u, = 48, ug; = 68, uy = 53, u, = 650, uy = 49, u, =
40, u;o = 64, v, = 24, v; = 8, vy = 9 where v, is associated with Cut i,
iz1,2 3 The corresponding value is P(u,v) = 570. Now using (5.1)~(5.5)

2621, ya= 1 forali
xy=0and y,;=0 for j#8.

6. Nelationship with Erienkotter’s Heuristic

A well-known heuristic approach to the condensed dual problem is that of
Erlenkotter {10). This method is simple and often very effective. We analyze
it in the context of cur proposed method.

Firstly, at all iterations of Erlenkotter’s heuristic all S’s are nonpositive.
Consequently, g{u®) = e for all k.

We remark that the descent direction given by our algorithm amounts to
stespest descent in the particular subspace defined by Lemmas 3.1, 3.3, 3.4,
3.5 and 3.6. -

By contrast Erlenkotier’s dual descent procedure corresponds to a.
coordinate-wise search until a new activity of type ii is found or until blocked
by an activity of type i, repeating until no descent is so obtained. Consider,
say, a search along d = -e,. It is immediate that d7g(u) < 0 and Erlenkotter’s
line search is effectively stopped whenever an S j £ 0 becomes positive. Since
uy is decreasing but all other u,’s remain fixed it is clear that all activities
remain active except possibly an activity of type ii, given by Ckj = uy, which

one could consider to have been dropped. In the former case, we clearly

0 ':‘(’,"' 5‘-‘““ D ni‘ b ‘:i'.‘:‘ 4 ',Ee’ “._\ L) ":' [ 6'; t‘; e‘, l,.



‘h:voldinétbnintholmdtﬂmd by Lemma 3.1, although no longer in the
stespest descent direction in general. In the latter case we have a direction
of the type defined by Lemmas 3.5 or 3.6, but again, in general, no longer in
the stespest descent direction.

Bvidently, what the dual descent procedure lacks in sophistication it
makes up for amply (at least for medium-size problems) in the simplicity of
the .computations. The dual adjustment procedure adds one level of
complication to the choice of search direction when optimality cannot be
reached via coordinate-wise search.

More particularly, suppose Sy > Uy for more than one j & J°(u), ji» Jas eor
Jy say.

Now suppose we increase u,. Consequemntly 8j,--- s,t that were active
become negative. We can now attempt to decresse other u,’s't'hat ;péoar in
Sh, .. Sjt. If more than one such uy can be decreased unit for unit as
uy increases, say u; i = i;, i3y ey igy wo gain and F(u) decreases.

Thus in effect we are searching in a direction

d=e - ; Oy
p=l .
In othor words, 8 + 1 activities of type ii are dropped, one by increasing u,

sod the remeining s by decressing u¢,. In addition, several activities of
type i may also be dropped in the search direction d.

7. Extensions
The essential ingredients of the method that we have presented are:
(1) P is a sum of nondifferentiable functions.
(ii) The combinatorial structure of the problem can be exploited.

See Calamai and Conn (4], and Conn [5] for additional related background.
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UNCOMNOR OCOCUFFeRCS. In fact, the primal of the strong linear programming
relaxation of the uncapecitsted facility location problem itself has such a
condensed form {7]. It can be written as
WX i t lg(l)‘ : f,l’
x) O, 2:,21 isl JoJ
. JoJ
where 2;(x) is the piecewise linsar concave fumction defined by

2i(x) = min (ciut T (045-cqu)?* xy).
ksJ JaJ

quvnlntly 2y (x) = Cix + sz(c' J’G..)"' 81
8
where k is defined by

z 8’ <1 S_ t X’.
,’36")6'. jzclﬁeii

In general, problems with fixed charges such as network design or
lot-sising problems have linear programming relaxations that may admit a
condensed form. | '

The oapacitated facility location problem is obtained by adding the
capecity constraints i

ifxd,yu S sgny for j s J (7.1?

to the formulation (1.1)=(1.5). Here d; represenis the demand of client i and
s thom.dtydnfwmw:that_.bnj. The dual of the linear programming
relaxation is



Mia Iau+ Tt
JoJ

iaX

llg*"gj*d",zcg’ for all § s I, js3J
-:"l+t.’-.3'lz-fl for all j s J
) §

This duoal has & condemsed form, namely

Mia P(u,v) = I uy + T 8§(u,v)
v20,u isl JoJ

where $4(u,v) = i!x(c,,-u.-\'l.v,)"’ + 8yv; - 5.

. .
As for the uncapaciiated problem, F(u,v) is piecewise lnear and convex, and
there is an optimum solution such that Sy(u,v) <0 for all j & J.

a3

(2]

(3]

(4]

L))

(6]

N

Refarences ‘
8. Ahn, C. Cooper, G. Cornuejols and A. Priese, "Probabilistic Analysis of
a Relaiation for the k-Median Problem,” Management Science Research
Report 8527, Graduate School of Industirial Administration, Carnegie Mellon

* University, Pittsburgh (19686), to appear in Mathematics of Operations

Research.

S. Busovaca, "Handling Degeneracy in a Nonlinear ¢, Algorithm,” Technical
Report CS8-88-34, Department of Computer Science, University of Waterloo,
Waterico, Canada (19886).

D. C. Cho, M. W. Padberg and M. R. Raso, "On the Uncapecitated Plant
Location Problem II: Facets and Lifting Theorems," Mathematics of
Operstions Research 8 (1983), 590-812.

P.!.Olh-dandA.R.conn."AProjocudmuothodfcrl Norm
Location Problems,” to appear in Mathematical Programming (1987). :

A. R. Conn, "Nonlinear Programming, Exact Penalty Functions and
Projection Techniques for Non-Smooth Functions,” in "Numerical
Optimisation 1984," SIAM (1988), 1-28.

G. Ccmmojoh.'ll. L. Pisher and G. L. Nemhauser, "Location of Bank
Accounts to Optimise Float: An Analytic Study of Exact and Approximate
Algorithms,” Management Science 23 (1977), 789-810.

G. Cormuejols, G. L. Nemhauser and L. A. Wolsey, "The Uncapacitated
Pacility Location Probiem,” Management Science Research Report 493,




Graduate School of Industrial Administration, Carnegie Mellon University,
Pitisburgh (1984), to appear in Discrete Location Theory, R. L. Francis .
and P. Mirchandani, eds., Wiley~Interscience.

{81 G. Cornuejols and J.-M. Thizy, "Some Facets of the Simple Plant Location
Peolytope,” Mathemstical Programming 23 (1982), 50~74.

[9] M. A. Bfroymson and T. L. Ray, "A Branch and Bound Algorithm for Plant
Location,” Operations Research 14 (1966), 361-368.

{10] D. Rrhnkotur, "A Dual-Based Procedure for Uncapecitated Facility
Location,” Operations Research 26 (1978), 992-1009.

[11] R. S. Garfinkel, A. W. Neebe and M. R. Rso, "An Algorithm for the
M-median Plant Location Problem," Transportation Science 8 (1974),
217-236. :

(12] M. Grotschel and M. W. Padberg, "Polyhedral Theory and Polyhedral
Computations,” in The Traveling Salesman Problem, E. L. Lawler, J. K.
Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, eds., John Wiley and
Sons (1985), 261-360.

(13] M. Guignard, "Fractional Vertices, Cuts and Facets of the Simple Plant
Location Problem,” Mathematical Programming Study 12 (1980), 150-162.

[{14] M. Guignard and K. Spielberg, "Algorithms for Exploiting the Structure of -
the Simple Plant Location Problem,” Annals of Discrete Mathematics 1
(1977), 247-271.

{15] R. L. Earg and G. L. Thompson, "A Heuristic Approach to Solving
Traveling Salesman Probiems,” Management Science 10 (1964), 225-248.

{161 J. G. Morris, "On the Extent to which Certain Fixed-Charge Depot Location
Problems Can Be Solved by LP," Journal of the Operational Research
Society 29 (1978), 71-76.

[17] J. M. Mulvey and H. L. Crowder, "Cluster Analysis: An Applieation of
Lagrangian Relaxation,” Management Science 25 (1979), 329-340.

(18] S. C. Narula, U. I. Ogbu and H. M. Samuelsson, "An Algorithm for the
p~Median Problem,” Operations Research 25 (1977), 709=713.

(191 C. S. ReVelle and R. S. Swain, "Central Facility Location,” Geographical
Analysis 2 (1870), 30-42.

[20] L. Schrage, "Implicit Representation of Variable Upper Bounds in Linear
Programming," Mathematical Programming Study 4 (1975), 118-132.

(21] K. Spielberg, "Algorithms for the Simple Plant-Location Problem with Some
Side Conditions,” Operations Research 17 (1969), 86-111.




DRWWR Y Y LLADNSIGA NN OF THIS PAUS (S0 Uate anieres)
At ——

REPORT DOCUMENTATION PAGE - |

P NEPORY SUBSEN GOVT AGCESHON MO+
IR 537 - F: y

READ INSTRUCTICNS !
BEFORE ETING FORM ~
EN A NUMNE

8. VITLE (and Substste) ,
A Projection Method for the Uncapacitated

Paeility Location Problem

;

. PURFORMING ONG. REPORT NUMBER

. TYPE OF REPORT & PEMOD COVERKD
Technical Report, Jan. 1987

t&.-.J - o4

arama. l

T AuThony
A. R. Conn and G. Cornuejols

G. CONTRACY OR GAXNY NuwBENte) .
NOOOl4 85 K 0198

CICUUT TRy VY

e PERTORMING ORGANIZATION NAME AND ADONESS

Carnegie Mellon Udversity
Pittsburgh PA 15213

.
[

O

. J S SRR =0

t2. PYXQAT DaTS

SINTAC L. 4L CENCE nand AND ADDAKSS
Parsouanel & Training Programs

' Office of Naval Research (Code 434)

:  Arlington VA 22217
!‘ﬁm

]

{

[ ]

¢

i Graduate School of Industrial Administration
4

fremse——
113 NUMBER OF 2,522

————————————
5. SECURITY CLABS. (of thio suport)

January 1987

1

ATIS I/ o atiwnAwidG .

{Te WY (ol thie Report)

co @ @M ot o e

7. ISTRIBUTION STATEAENT (of the abotrant enteved in Bicet 30, il dilevent vem Repest)

o @ samemte plunon -

L

LY mw?azv woTEs *

LY PR Y

. -

m-mmumﬁmnmm
> Uncapecitated facility location problem, simple plant location problem,
strong linesar programming relaxation, condensed dual, Projection Method,

Non-Smooth Optimization.

. cemcaamansns]

) ASBTRACTY o roveree oide i nuoscosary and identily oy bieeh manver)

loeation problem.
linesr programming relaxzation.

THTION OF | Nov 66 I8 OBsOLETE
/9 9102:016° 6001 |

0D . n W73

AT T et @Y ey Ay WY
SRR Pt

Several algorithms already exist for solving the uncapacitated facility

The most efficient are based upon the solution of the strong
The dual of this relaxation has a condensed form
Jwhich consists of minimiszsing a certain piecewise linear convex function.
peper presents & new method for solving the uncapacitated facility location
prodlem based upon the exact solution of the condensed dual via orthogonal
projections. The amount of work per iteration is of the ssme order as that of a

simplex {teration for s linear program-in-m-veviebles—end-constreints, vhere m i
SECUMTY CLAGBIPICATION OF THIE PAGE (When Dove Bnteren)

This

A 08 WY . WD e SOAEY Y

; AU LMY
1 8T T W A Rt AT T

L3 "(

LN T
WA e
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