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1. INTRODUCTION

The clamic lot size model [9] involves the production of a single product,
storing it in a warchouse of unlimited capacity until needed, and requires the compiete
fulfilimest of all (deterministic) demands. Various modifications have beea made to
that model which include the introduction of upper bounds on production and on
inveatory space, and the backiogging of orders. Each modification permits the
derivation of special results relevant to that case. In the present paper we consider a
new variation of the model, that of permitting stockouts.

One line of ressarch in the area of production planning deals with capacitated
lot size scheduling of a single item. Once the single item case is understood,
knowledgs from it is wed to soive the multiple item situation. Research in this ares
was pionsersd by the uncapacitated lot size model of Wagner and Whitin [9). Others
inciede Zabel (10], Zamgwill [11] [12], sod Lundin and Morton [7). Each of these
solations favoives & forward algorithm spprosch which soives sucosssively loager finite
borizon problems uatil a decision borizon is encountered. By defimition, if optimal
production decisions during the interval (L") are completely independent- of the
domend data beyond t™ 2 t°, them t* is a decision horizon and t** is a forecast
horison. From & practical standpoiat, we sre reslly only interested in determining the
first decision borizon since the production problem is typically resolved periodically to
incorporats improved forecast data. Single item capacitated lot size model resssrch has
besn limited w0 static borizon length problems sad assumptions as 0 the demand
pettern, capecity pattern, and cost functions (sss Florian and Klein [2), Jagannathan
and Rso (3], Love (6], Swoveland [8], Louvesux (5], Korgacaker (4], and Baker,
Dixon, Magazine, and Silver (1]). The drawback of the static horizon sssumption is




 that iaformation from beyond the end of the borizon could change the entire
production plan; that is, no decision horizons are obtzinable.

-

The purposs of this paper is to show how decision and forecast horizons may
be obtained for single itam capacitated lot sizs models. In order to obtain horizons,
stockouts (lost sales) are permitted but no backorders. This situation hes not been
comsidered by previous authors. A concave production function comsistiog of a fized
cost component and a linear component is asumed. Prodaction is bounded by capacity
_constraints which may or may not be constant from period to period.

The formulation of the model under study is pressated in Section 2. Necessary
conditions for a solution to be optimal are stated and proved in Section 3. Section 4
two types of horizon theorems are discumed. The first type invoives the inseraction of
the stockout and holding costs, the second trises becauss of comstraints on production

capacity. Two forward solution algorithms thet utilive both the optimality comditions -

and the horizon theorems are pressnted in Section S. The first spplies 1o problems for
which the mavimum production capacity is constant from period 0 period. It is shown
that the worst cass effort invoived in solving this model is initially cubic but
ssymptotically becomes linesr in the length of the problem. The second forward
tlgorithm treats the cass in which the maximum production capecity varies with time,
and bere it is found that the worst cass effort is initially exponential but asymprotically
becomes linear in the length of the problem. If decision horizons are detected
frequeatly, so that the lengths of the subprobiems are kept small, even this problem is
ot too computationally demending Computational results with the algorithms are given
in Section 6




2 MODEL FORMULATION

The capacitated ot size model with stockouts, which is an integer linesr
program, is given in PFigure 2-1 and is called Problem P'. In Problem P', Objective
fuaction 1 is to be minimised subject to Constraints (2) - (5).

Min X7 (3 +pX_+hI_+S) @
Subjest t©
L, ,+X =1 +8 =d forr=l..T @
X, - XMAX 3 <0 for r=1..T &)
X.. 1.3 _nonnegative snd integer for r=L...T ()
s binary for rel..T ()]

Figure 2-1:  Problem P": Capacitated Lot Size Model with Stockouts

The variables of the model are X . the production quantity in period r: I ;
ummwummum';s,.mnmwormumm
poriod #; and 3_. a binary variable which is 1 when X_ > 0 and 0 otherwise. The
parameters of the model are: o, the setup cost: p, the variabie production cost per umit

(sssumed coastant); h, the hoilding cost per unit per period; s, the stockout cost per
wcw'.mmuonapdtyinpoﬁodr:mdd,.thedemmdmﬁmu
in period r.




The objective is t0 minimize the sum of total setup costs, total variabie
production cests, total holding costs, and fotal stockout costs as stated in Objective
Punctics (1). mwuummm-hmm-mmmm&pﬁm
the demand requirements. It is assumed that I = I = 0 without loss of generality and
et I 2 0 for all t 20 that backorders are prohibited. The upper boundicg of
production is accomplished by coastraint (3). Constraint (3) also forces the setup cost to
be incurred whem production is positive Constraint (4) requires the production,
inventory, and stockout quantities in each period to be nonnegative and integer.
Pisally, constraint (5) imposss the binary {0,1} restriction on the 5 _ varisbles

Problem P’ can be formulsted as a concave cost network flow problem ss
follows. wmuum;mmmmnmmunmofmm
for all T periods. We define two transshipment nodes, P and 3. Node P will transehip
all the units that stisfy demsnds vis production and node S will transship all the units
thet mtisy demands via stockouts. Finally, nodes 1, 2, . . ., T are the period demand
nodes such that the demend at node r is d_. The arc set cousists of the following
four arc subsets: » -

1. Directad arcs (M.P) and (M.S) which ship flows at zero cost and have upper
bounds of +co;

ZDIrccudara(P.r)withnppubomdsof)(MAxrforr-I... .. T
which each incur zero shipping cost for zero arc flow and a cost of ¢ + (p
tx,)ifthearc':now.xf.isgrawthtnm(theuoonnimtethe
production arcs);

3. Directed arcs (S.r) with upper bounds of +00 for r = 1, . . . , T which




ship flows at a cost of s per unit flow (these are the stockout arcs);

4. Directed arcs (r,r+1) with upper bounds of co for r =1, .. ., T-1 which
ship flows at a cost of h per unit flow (the inventory arcy).
A pictorisl representation of the Problem P’ flow network is given in Pigure 2-2.

Figure 2-2 Problem P’ as s Network Flow Problem

An optimal solution to Problem P* will be a spanning tree of the P* network
in Figure 2-2 and each unit travels from the supply node, M, to its respective demand
node by the lowest cost available path.




3. NECESSARY CONDITIONS FOR A SOLUTION TO BE
OPTIMAL
Necessary conditions on the optimal solution to Problem P’ are now stated and

; proved.

Definition 1: Define the max/imum holding period to be k
le-p)/n). The following result justifies this name.

Lemma 2 In an optimal solution, the maximum number of periods a
unit will be held in inventory is the maximum holding period k.

Preof: Assume there exists an optimal solution with one or more
units being beld in inventory for more than k periods, say k + 1 periods.
Thea there will be a path of k + 1 basic inventory arcs from a period t to
peciod t + k + 1. The total holding and variable production cost for one unit
will be p + he(ks1). Now since k = Lis-p)/hl, which implies [G-p)/h] - 1
< k £ (-p)/h, or, solving for 3,

p + (hek) £ 5 ¢ p + he(k+1).
The rightmost inequality implies that the stockout cost is less than the sum of
its total holding cost and variable production cost Therefore the original
solution could not have been optimal. e .

The lemma which - follows describes how units should be distributed from
inventory in a0 optimal solution to Problem P". The FIFO rule, or first~in, first-out
rule, distributes the oldest item first while the LIFO rule (last-in, first-out rule)
distributes the newest item first. Both the FIFO and LIFO rules should be regarded as
bookkeeping systems for inventory valuation. Rarely are these systems used as the

actual method of distributing units from inventory. The main purpose for proving this

i lemma is to aid in the proof of an important theorem which follows it
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Lemma 3 In an optimal solution, the newest item in inventory
should be distributed first (LIPO).

Proof: We begin with a plan that for at least two units, the first
unit produced is distributed before the second (FIFO). It is then shown that
switching the distribution of these two umits from FIFO to LIFO will never
lead to a higher cost solution.

Consider two units that are distributed on a FIFO basis:

Unit When Produced When Distributed
1, t, t!
18 t’ tl'

Itisanmedthut‘Stz(whichimpliathatt;St;for'PIPOto

hold)lndthltt;-tlkadt;-tszsothltbothminorcprodM

Case I: t'at.ort: tt:
Case II: t =t =t' =t
Case IIlas t + Kk 2 t!
Case IIIb: t + k < t!

For Cases I and II, the total costs under FIFO and LIFO are equal

Por Case Illa and IIIb, tl < t2 < t; < t;. The FIFO total variable
production and holding cost for the two units iss 2¢p + ht[(t;-tlHt;-tz)l.

If we switch to LIFO, the distribution pattern will be as follows:

Unit When Produced When Distributed
i, t, : t!
i t | t!

If t+k2 t (Case IIIa), then unit i, will still be produced under

LIFO. The LIFO total variable production and holding cost for the two units

- _emam -




:
|

iz 2¢p + Il‘[(t;-tl)*'(t‘l-tz)] which is equal to the FIFO holding cost.

f t +k <t (Case INb), then unit i will not be produced under
LIFO. The LIFO total variable production, holding, and stockout cost is p +
ht(t;-tz) + 8. The proof is complete whea it is shown that p + hO(t;-tz) +s
< 2op + hel(v-t )Hr-t)).

Assume not, ie, p + h‘(t;-tz) + 8> 2ep + ht[(t;-tl)*-(t;-tz)]. which
reduces to:
he (t;-tl) (s-p 6)

By definition, k = L(s~p)/h). which implies that
hesk<s-p<he (kel). | %)

Recallthuitmmmedmttl'rk(t;or
k(t;-tl. ®

Combining inequalities (6) and (7) yields h o (‘;".) < h e+ (k+1) and
since it was assumed that h > 0, )
t-t <k+l )

Combining inequalities 8 and 9 leads to
k(t;-tl<k*1

whichisimpodblesincek.t;.mdtlminm .
Theorem 4: In an optimal solution, every k + 1 consecutive periods

forms a regeneration set, i.e., contains one or more regeneration points at
which the ending inventory is zero.
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Presf: Assume the contrary, that there exists an optimal solution with
k + 1 comsscutive periods that do not form a regeneration set, say periods t’
~ELt-k+1l ...,t +1 s that there are k + 1 periods of positive
endiag invemtory. Since an optimal plan can be found using LIFO
distribution (Lemma 3), a unit produced in period t' - k will be held until at
Jesst period t' + 1, that is. at least k + 1 periods, which contradicts Lemma
2

Theorem 4 states that in an optimal solution, for a sequence of any k + 1
coasecutive periods, the inventory level at the end of at least one of these periods must
be 2ero (ie, a regeneration point). The determination of a regeneration point makes it
possible to partition a large problem into smaller subproblems, each of which can be
solved easily.

Lam&lnmopﬁmﬂaoluﬂon.ltosltomraut.

Proof: lfinmopﬁmlaoluﬁon;l‘,cs‘,>0formet'. then there
is a path from node M to node t «+ 1 via nodes S and t at cost s + h. The
path via node S only, using arc (S,t+1), has cost 3, so that a lower “cost
solution is obtainable by using this alternate route, contradicting the
assumption that the original solution was optimal. ®

Definition 6 Define the minimum positive flow on a production
arc 10 be XMIN = [4/(s-p)], where [x] is defined 1o be the smallest integer
>= 1. The next theorem justifies this name.

TheoremhInanoptimnlsolution.ifx'>o.thenXMINsx‘s
XMAX .

Proof: Clearly )(l < XMAX' for all & Now assume there is an
optimal solution such that on a production arc (P,t') there is a positive flow

§ g ® NN
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X, < o/Gp) Cmaiuumkmmy'hem:incpxlmmbc
integer.) lw'ehnstx‘,<¢+(rx‘).'rhiswitis
chesper 1o stock out of the X, uUnits than it is to produce them, a-
contradiction. » ‘ )
cmn.rya:uxMAx‘xxumformr.mx‘,-a

A theorem similar to the next one is proved in Baker, Dixon, Magazine, and
Silver [1].
Theorem 9: In an optimal solution, I + (XMAX-X) ¢ X = 0 for
all L ]
Mmmmm.mmu!um:mthm
opﬁmlaomiuwithlﬁtmv-x‘)-x'_>o. This means that arcs
(t-1,) and (P.t') are both basic (refer 1o Figure 2-2). Since arc (r-1t) is
basic, there must be an arc (P,t”) (t"<t) with a positive flow. This positive
flow must be at XMAX ., otherwiss a cycle will have formed, violating the
charactarization of optimal flows as spenning tress. However, a lower cost
flow is obtainable by incressing the flow on (P.t’) until it becomes nombasic
and decreasing the flow on (P.t”) by the amount of the incresse on (P.t).

Production costs remain the same but total holding costs are reduced. Since a
lower cost flow is possible, this contradicts the initial assumption. »




Thowen 16 Is = optimal solution. ¥ & = L-p/a) < 6-pi/n and
for soms poriod . § > & then for eaeh ¢ i o interval X S T S O, i
X >0 @ X, = XMAX.

Prosk Amums m optimal salution exisss with & peried ¢ swh that
$_>0undapuied (kS0 S ) Witk 0 ¢ X_ < XMAX, .

i the inventery ares (¥".U"+1), (T™+L0™+D, . . . , ("-L.") are oll
basic with pesitive flows or t* = ™, thean & cycls exish and the soiutien s
not optimal.

Now assume thet at least cns of the inventery arcs batwesn perieds
™ amd (€ < () is noabasic with 2ur0 flow. Simos $_ > 0 amd 0 ¢ X
<Mﬁn‘h¢~b~auh~b‘r‘hn“

production in pariod t™ ® satisfly domends in period t". That i,
P*heitrt)>s

Now sincs k = Lo~pi/] < 6-p)/h and "k S . wo com cbumin
pP*h(t™t™) (s

which is a comtradiction. Therefore owr original solution cowld met
have bdesm optimsl »

The next theorem is a varistion on one dus 0 Daker, Dixon, Magazine, and
Stiver [1).




L Thessem 15 In a optimal selution, if ¢ = max{ t | X > 0}, then
X, = misODMAX, 7} 2 XMIN povided ¢ +EST. I €+ k> T,
' B X, = mis(XMAX,. I} ¢} 2 XMIN

Posk Lt =mmi{t | X >0 la, v is the last period of
F pusitive grodustion and sssume hat © + kK £ T. (The proofl can be easily
- aaded ® %o cas whare © + k> T). Clearly XMAX 2 X 20 If
F XMAX, ¢ Z'%6, ten X_ can net b T'¢ sad poriod  + k most have
stsbous. N, however, X were 2ot 90 some quantity less than XMAX . this
wil vishts Thesrem M lg‘,"d’<mx‘,.t-mx‘,cqnlm
Saything grestr then I7'¢ will give & solution haviag at lesst k + 1 periods
of pesitive inventery, contradicting Theorem 4. If X is st 1o some: quantity
b-r‘:dr--uuwuummmmrn.wm
contadists Thesrem . o

Mnh-qumnt«mmga‘z
XMAX s X > 0 then X = XMAX.

Prost Asums there exists an optimal solution having a period t
Wit ¢ 2 XMAX aad 0 ¢ X < XMAX . Then, either arcs (f-Lr) and
(P.) are both basic (which comtradicts Theorem 9), or arcs (S.t) and (P.t)
are both basic (which comtradicts Theorem 10). Hence the theorem is true. =

As seen above, it is posibls 10 genersts many necessary conditions an optimal |
solution must satisfy. Am_mmi-mmmmismmu
optimal, e, thess conditions are not sufficient for optimality. However use of the
sscemmary coaditions reduces the size of the solution space that must be considered in

ssarching for an optimal solution. '




|
|
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4. THE DETECTION OF DECISION AND FORECAST
'HORIZONS
In this section thres theorems are presented that sometimes permit ‘the
datermination of decision and fovecast horizons for the problem under consideration.
When they exist, thess horizons are used in the forward algorithms described in Section
s

A forward algorithm begins by solving the initial one period prol;lem and
procesds by solving successively longer finite horizon problems. To be useful, there
must bs a swoppiag rule in order to know when to terminate the forward algorithm.
mmmr«muﬁmmummnpﬁmmmm.mm
solution up to the decision horizon is guaranteed to be part of the optimal solution to
sny problem longer than the forecast horizon. Specifically, the solution for the first
period will be part of the optimal solution to any problem longer than the decision
borizon. Since production planning models are usually re-solved every few periods to
make use of updated, more accurate forecast information, only the first few decisions

sre nesded. -

M-Mul&ui;hmmmmjmmmuum
ht—wbdmbhn?.ﬁnhmmix“.....x:}isaﬂdm
optimel production sequence for Problem P

Definition 14: If the sequence (X, . . . , X!} is an optimal’
production sequence for Problem P', then the sequence {X, ..., X} is an
optimel production subsequence for Probiem P!, provided t < t

Theorem 15 Consider problems P, . . . , P' where k is the

maximum holding period (k + 1 S t < T). 1fx;"-x;""=...=x;for




f=L...,PQSESt-0, thn period t is 2 forecast horizon and
period t* is & decision borizoa for any Problem P, where ¢ S * S T.

Prosk: From Theorem 4, it is known that for any ssquence of k + 1
consecutive periods, the ending invemtory of at least ome of thess periods
must be 2870 in ap optimal solution. When solving problems P, P*! |
, P, the inventory at the end of each problem has to be 2ero in any optimal
solution.  Therefore, the production sequencs in at least one of thess
problems will be part of the optimal solution 1o any problem of length t*,
wm:st‘sr.ux;*-x;""-...-x;rorjsl.....rusr
S t ~ k), this means that each problem P**, . . . , P’ has the same optimal
production subsequence for the first t' periods and therefore this subsequence
. must be part of the optimal soluticn 10 any problem of length t°, where t <
t* < T. Therefore period ¢ is a decision horizon. Since t periods of demand
information are nesded to determine this decision horizon, period t is a
forecast horizon. s

This theorem is similar to the Lundin-Morton decision horizon theotem (7).
We know from Theorem 4 that every k + 1 consecutive periods form a regsneration ‘
set. If each of the k + 1 consecutive problems has the ssme optimal solution for the ‘
firt v periods, then this solution will be part of the optimal solution to any longer |
problem.

It is also pomible to find decision borizons by using another procedure when
the demand sequence is at Or nesr a peak that is greater than the available production
capacity. Theorem 16 spplies to problems of length less than or equal to k and
Theorem 17 applies to problems of length greater thas k.




Theorem 16 Cousider the optimel solution 10 & t-period problem P
whers t Sk If X = XMAX for j = L ...t thes period t i 8
forecast and dacision horizoa for any Problem P, where t < t* < T.

Proot: If in the optimal solution to P, thers ars k consecutive
periods with production st the upper bound, then for probem P, where t S
* S T amy demsnds ocourring after period t must be mtisfied from
production after pariod L The ressit is that [ = 0 in any optimal solution
ummm“(x;....xpwmuwby
domends ocowrring after peried t. Therefore period t is & decision borizon
and since only t periods of demand information are neecsd to determine it
poriod t is also a forecest borizon. ® ‘ '
" Thesrsm 17: Cossider the optimal sofution 10 & t-period problem P
whre t > k& u:q-qux,mj-z-hl.....z.mwun
a forecast and decision horizon for any Probiem P, where t S t* S T.

Proef: If in the optimal solution to P, thers are t consscutive
periods having production at the upper bowsd, then for problem P whese ¢
€ t* £ T, any demeands occurring after period t must be satisfied from
production after period t or prior to period t - k + 1. If satisfied from
production prior 10 period t - k + 1, thess umits will be in inveatory for at
least X + 1 periods, violating Lemma 2 Therefors the demands occurring
after period t must bs mtisfied from production after period L As in the
provious proof, this implies that I = 0 in any optimal solution and the
optimal production sequence (X', . . .. X'} will be unchangsd by demands
occurring after period t Therefors period t is a decision borizon and since
oaly t periods of demand information are needed to determine it, period t is
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also 8 forecast horizon. ®

5. THE FORWARD ALGORITHM

In this section, two forward algorithms are described and used to solve Problem
P’. The first slgorithm is used when production capacity is constant, the second when
it is not.

We begia by making two definitions
Definition 18 Let V() be the optimal value of the t-period
prodiem, P/, where t S T.
Definition 19: Lot Cq.t) be the optimal value of the (t—q+1)-period
subproblem, P(qt), that begins at period q, ends at period t, with the
mulﬂ-0.1.-0.“1,>Oforj-q.....t-l.

The requirement that the P(q.t) subproblems have positive inveatory in every
period encept the last is made in order to remove as much duplication of computational
offort as pomsidble (more on this shortly). 'lncffcct.puiodtisforoduohetheonly
regemeration poiat in Subproblem P(q.t). The definition of Subproblem P(q.U) is similar
to that of Florian and Klein's Capacity Constrained Sequences [2]. Subproblem P(q,.t)
can bs modeled as an integer linear program as in Pigure S-1. |

Subproblem Mqt) is modeled similarly to Problem P’ as described in Figure
Z-IMMDhmlymkmmhbhbﬂnominthelstpcﬁod.s‘.md”a
pemalty variable M. is included in both the objective function and in Constraint 14
Lulbonmhrunmb«nthnif:nludonhal,=0foranyr=,q.....
t-l.l!'hoqmlto%“mdthoobjoctivcfmctio,nmﬁmaveryhi;hvaluefortlut

solution.




Ej}‘ ‘
Mia X, (3 +pX +hl +0)+sS 10
g}'. , Such that P
I,*X -1 _=d for reqg.t-l an
. | I, +X -1+8=d 12
X, - XMAX,J' <€ 0 for r=q....t ° (13)
W, - MeC|I, - 1] <1, = D] = 0 for req...t-1 a4
ll‘ =0 (19)
V .
1,=1~0 ()
X,. 1 integer for r=q...t an
S, integer (18)
3_ bimary for r=q..t (19)

Figure $-1:  Subproblem P(q,t)
l)uﬂnmtmztzAaolmioutoSut:probleml’(q,t)withllf =0 forr =
QG ...,t=-11ismid to be admissidble. A solution to subproblem P(q.t)

withathutonollf>0forr-q.....t-1isaidwbe
Inadmissible.




In order t0 model the absolute value condition in Constraint 14, two new sets
of coastrsints are added: '
I -(y’f ~y) =1 for r=q...t-1 (20

y", y" 20 for r=g,...t-1 1)
We then repiace "|I_ - 1|" in Constraint 14 by "G, + y )"

The nature of the P(qU) subproblems allows statement of several necessary
conditions given in the previous section. In particular:
1. There will not be any stockouts in periods q through t - 1 since all the
inventory arcs are basic (Lemma 5).

2 In periods q + 1 through t, production is either at zero or at the upper
bound for that period (Theorem 9).

3.1!3'>0.Mx'-XMqu(’rheom10plmthefactthatxqmmbe
positive in order for inventory arc (q.q+*l) to be basic and have positive
flow).

411 4 2 XMAX, then there is no solution to the P(q,t) subprobiem, since
inventory arc (q.q*1) must be basic.

S. If the last positive production occurs in period q' < t, then z';,dj <X, s

Z‘de (Theorem 11 pius the fact that inventory arc (t-1,t) must be basic with
positive flow).

FRLAE R
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Gechpriodjj=q....t-L1SXE dloresel >0

The value V(t) satisfies the following functional equation:

vit) = qug { Vg-1) + Clg.,0) } (22)
where r = max { t -k, 1 } and V(0) = 0.

We now illustrate how this functional equation solves Problem P’ for a small
nounumerical example.

Asume that k = 2 and T = 5. We begin by solving P' with optimal value
V(1). From the functional equation, r = 1 and
V(1) = V(0) + C(1,0).

We then proceed 1o solve the 2-period problem P>. Again, r = 1 and
V) = min { V(1) + O2.2), V(0) + C(1)) }.

NoﬁelﬂlttthﬂmofV(DBMyknownmdMC(u)hthem'

solution to the 1-period subproblem P(2,2). The value V(1) + C(2,2) immediately gives
an upper bound on the optimal solution to P*. .

The 3~period problem is solved next. The parameter r is still 1 and
Vv(3) = min { V(2) + C(3,3), V(1) + C(23), V(0) + C(L3) }.

The number of possible completions to V(3) is 3, which is equal to k + L
This will always be the maximum number of compietions 1o be evaluated.

When V(4) is computed, r is now equal to 2 and
V(4) = min { V(3) + C(4.4), V(2) + C(3.4), V(1) + C(2,4) }.




We do not evaluste V(0) + C(1.4) since C(L4) would be the optimal value o
the subproblem with positive ending inventory in. periods 1, 2, and 3. It is known that
this will never be part of an optimal solution to P* since the maximum number of
consecutive periods with positive ending inventory is 'k which is 2.

Finally, V(5) is determined with r = 3 so that
V(5) = min { V(4) + C(55), V3) + C(4.5), V(2) + C3.9) }.

For large values of k, the computation of Clq.t) can be quite formidable since
ithpcdbkMOCMAx‘-mm)oz"dmmtmmnmmldlme
to be enumerated. However, in the next section, a case is treaied in which the P(q,t)
subproblems can be solved in polynomial time.

One last comment concerns the decision horizon techniques and computational
savings. Assume that when we evaluated V(4), we obtained a decision horizon by
Theorem 15 which covered periods 1 and 2 (ie., ' = 2). This means that when we
evaluate V(5), we need not include periods 1 or 2. Notice in the above that when we
evaluate V(5), we don't include these periods anyway, since r = 3. Tbe point is that
even if the longest possible decision horizon is detected by Theorem 15, the same
amount of effort must go into evaluating V(5). The value of the horizon technique
given by Theorem 15, therefore, is not that it saves computational effort, but that it
provides a stopping rule. That is, if we only need to determine the production decision
for period 1, we can stop the forward algorithm after evaluating V(4) and we need not
evaluate V(5).

This is not the case for the decision horizons found by Theorems 16 and 17.
If period t = 4 were found to be a decision (and forecast) horizon by these methods,




nnﬂmvﬁ)na@mmmmdp&ui

For thess ressoms, the forward algorithms in this paper searched for decision
'borisons via Theorems 16 and 17 first. If this was not found to be fruitful, Theorem
15 was wed 10 search for decision horizons.

S.1. Compating Clg,) When Production Capacity is Constant
When production capacity is constant from period to period, then XMAX, =
" XMAX for all i We continus to amume that t - q < k or eise Subproblem P(q,t)
will sot bs part of the optimal solution. The number of positive productions in
poriods q through t cen immedisiely be determined a3 follows:'
Deflaition 31: Lat 4 = £, d (mod XMAX.
 Deflnition 2X Lat N = (F, d - f)/XMAX.

The valus of # is the remsinder of the total demand in poriods q through t
thet cansot be mtisfisd by production st XMAX each time period. Periods in which
production is &t XMAX are called upper bounded production periods. The number
of wpper bounded production periods in periods q through t will be equal to N. Again
| “fmh”MMUd‘zmAX.Ml’(q,t)ﬂlbpmblundoanot
; have aa admissible soluticn. _
| Thesrsm 2% If # 2 max {XMIN, d +1}, then X = 4, otherwise S,
=2
4‘ Proof: The onmly positive production at a quantity less than the
' upper bound XMAX can occur in period q (Theorem 9 plus the fact that

e e e e e

'&dum——utmdls XMAX & (iqeil. IF (his smumprion is faiss, hen mi X = XMAX
hl‘!v---.l.ﬂl.ndumm-mldh-ﬂ.n‘“Uuﬁhmmm(q.vl) .....
| “oL,0 s posisive flow.




esch inventory arc is besic). It is necessary to produce 4 units in period q
in order to avoid any stockouts in period t, as long as # 2 XMIN (Theorem
11).

It 2 <d.* 1, however, inmmm(q.ml)wiubemhuic.md
stockout arc (S.q) may be basic, violating the definition of the P(q.t)
subproblem. Thenfore&tﬁonlyifﬁ)dq. lfxq'unotsettoﬂ.me
first upper bounded production will be in period q and the # units will not
be produced at all, but will be stocked out, these stockouts coming in period

t =

The periods in which t0 place the N upper bounded productions must now be
determined. Their determination is made possible by the fact that the production cost

and holding cost functions are constant over time.

The procedure for finding them is o begin in period g, determining X_and 1.
Once this is done, S can immediately be determined (see above discussion). We then
move to period t and work back to period q + 1, placing each XMAX production as
late as possible while still keeping every inventory arc basic. The procedure is
illustrated with 2 numerical example. '

WeWishwsolveP(lA)Wherea=5,p=1.h=.3.s=2.XMAX=8.dl=
3.dz=2.d’=6.mdd‘=6.

Period 1 A=17(mod 8) =1 and N = 2. Since g < § XMIN.XI=8.Il=

5,and S = 0.

Period 4 IL=0and S = g =1 Recalculate d to bed =S + 1 =5 (the




total inflow of production plus inventory into period 4). Sineed‘s
mx.mx‘-a

1,-4‘-x4-smss=m Nowd,isredeluminedtobcd’-ss
+1,-11. md,>XMAx.setx3=XMAx=8.
lz-d’-x,:-Smdszso. Thedemnnddzwillnowberephced
byd -8 +I =5 SetX =0 becamsed S XMAX

Since Il = dz - Xz. we have found the optimal P(1,4) subproblem
solution.

Thenluﬁonwmem?bfollow:
p |

1) 2¢ 3% 4|
! J ] ' ]
4 |3 2 6} 6!
I ! ' ' !
i 0 ‘ t
x| 81 ol 8/ 0!
113533'5=0=
s'1 of of ol 11

c(1,4) = 31.9

Theorem 24: The procedure described above will find the optimal
solution to the P(q.,t) subproblems when production capecity is constant.

Proof: If d 2 XMAX, then Subproblem P(q.) will have no
admissible solution since inventory arc (q,q+1) will be nonbasic with zero flow
in any such subproblem.

We first compute S, the number of units not produced in upper
bounded production periods, and N, the number of upper bounded production
periods. The reasoning behind the placement of the production (or stockout)

BN OGRSEE) A A ) 0 A0 :
et LTS R S T Sl TS A ty ASRS ’:“,-‘. ,‘l‘; !
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of Ge 4 wits has bosa pooviewly prossnted.

Werking besk from poried ¢ produstion in s poried j s mt ®
mxunc,)mmc,uw-uu-u
domand frem purind j deough . This guwentess thet invenesry ass (1)
will bs basis with pesitive flow 50 that the stressure of e Pig) subprobism
s prosarved while plasing cach prodwstion 25 s & pimibia, W bosping
iaventory lovels & low s pomibls and minimising belding csst. (Owes N
and £ have besn dotermined, wwinl sowp casts, totsl werishls produstion cosm,
and total stochout costs can be computed. The enly remesining cbjsstive is
minimise total helding cesns.)

TbM”b.ﬂ.l“l‘-dm-Xw. if his is ant
the case, fewer than the requised N uwppsr bounded predustions hewe
oocurred. mmmm.majhmumu
there is not enocugh production capasity in perieds q hrough j - 1 ® smtiafy
h“Mh““”hMl‘. Ansther
instance where this can bappen s when Hhe wal dumend in peries q
tirough ¢ (U < 0 is grentor than ttal production capacity in perieds q
through t. In thess situntions, the Mgl sebproblem bes o admimible
solution. o
A single pass is made in solving the Piqt) subproblems by the sbove methed

Mth(fmthhm&d“fudd“
subproblems. “%ﬂhmmtwt-q>hmmm
solved will bs k + 1 periods long




Twe types of problems are considered, the first where T < k + 1, the second
v TH>k+ 1L

Por s problam P with T S k + 1, we soive for V(1), V@).". . . . up o V(D).
Giwn ®e mivion P, I (@ = [¥t+1)/2] sdditions! computations are performed
® sive P. Therefere, the ameunt of offort in solving for V(T) will be X [t(t+1))/2
= OT'eT'+41/12 o OT).

Por a problem P with T > k + 1, we again solve for V(1), V), . .., up
® WD), but for P wih ¢t > k + 1, we only solve k + 1 of the P(q.t) subproblems.
Therefers, we must distinguish betwesa the eoffort involved in solving P' through P**'
aad e offert invelved in solving P*** through P'. The effort invoived in solving P'
Growgh P! will b I [(+D))/2 = (X™+12x%+22%+12)/12. The effort. invoived in
siving P treugh P’ will be [(R+1)(k+2)/2)s[T=(k+1)). The total effort is then
O(TX’). This is & very interesting resuit. If k + 1 2 T, the solution algorithm grows
o a cubis rate. Otherwise, after a period of cubic growth, the solution algorithm
besomes ssymptotisally linear ia T.

uc—mwmmmu-&m:

Whea the preduction capacities are not comstant from period to period, the
proviows methed can not bs wed. Insiead, the P(q,t) subproblems are solved via a
branch-end-bound techuique. anpn(XMAx.-XMIN)‘T"diﬂmt
predustion sequences that may solve Subprodlem P(q.t), each of which must be
considered explicitly or bounded away from coansideration.

Several procedures are employed 0 save computations 30 that this maximum
sumber of production ssquences nesd not be enumerated. Fim.iquZXMAx‘.then




Mg will not have an admissible solution.

Sawnd.onl.ythaeproducﬁonsequorwhichx.=XMqumed_be
considered. lfamﬁonmceforthisredwedmchhulj>0forj=q....
‘.t-l'lllll‘=9.Mnkndlnhn'bknmmm8ubproblemﬂq.0. If instead a
mthumdhtthisredmedwchwithlj>0forj=q.....t.
ndncklonel)ifmandiuinmtorylj.forj=q,.. . , t can be reduced
by 1 units without any of these inventories becoming zero (except I itself) or negative,
M!)ifx‘uéberdnedbyl‘miunndsﬁnhavexqmthmorequalto
XMIN. If both of these conditions are satisfied, the solution is modified by reducing
X, by I units and I for j =q . ... by I units. The result is an admissible
solution to the P(q,t) subproblem with Xq < XMAXq. The lowest cost admissibie
solution will be optimal. |

Theorem 25: A reduced search on the part of the branch-and-bound
tree with Xq.t XMqul.longwiththelolution modification procedure just
described will generate the optimal solution to a P(q,t) subproblem.

Proof: Clearly the optimal solution to Subproblem P(q.t) will be
generated if the solution has X = XMAX.

Assume there exists an optimal solution V* to Subproblem P{q,t) with
first production X: < XMqu. It follows that this solution will have no
stockouts (Theorem 10), production in periods q + 1 through t at either zero
ottheupperbomd(’l'heorem9)._mdl|‘=0. This solution will not be in
the reduced branch-and-bound tree because the first production quantity is

not equal to the upper bound.




In the reduced branch-and-bound tree however, there will exist a
MV’wilhx;-mij,mom«producﬁonqmﬂﬁueqmwm
hv‘.aomma.udndh;hmmbnkmnmw.-xj‘m

than those in solution V°,

IfweletA-mAx'fXj'.aomﬁonV‘mbeobninedfrom_
nluﬁon?bynduin;tbefirnprodmdonqmﬁtyx;md-evmmdm
inventory by A units =

The definition of Subproblem P(q,t) can be used to remove from further
MlnymﬁuinvhichljSOIorj{t. Solutions whose ending
inventories are too high can also be removed. It is known that in an optimal solution,
the ending inventory in a period j. called 1. will be no grester than the sum of the
mmmj*IWLmMIMijorehel‘wﬂlbeMﬁv& However,
thacmdin.inmmiumymﬂnﬂyhembyl‘uniuifl‘kpodﬁninor&.
to construct an admissible solution. The maximum reduction that can occur to these
inmwﬁslndsﬁnhvemﬂmisiblenmﬁonisxqu-XMINImitS.or_eheX‘
will be less than XMIN. FWfMlijLHI‘.=%{I‘,}.mm
maximum reduction that can occur to the inventory in period j will be the
min{ll.-LXMqu-XMIN}. If we reduce all inventories between periods q and t by Ie
or more units, the resulting inventory level in period t* will be zero or negative, thus
violating the definition of Subproblem  P(g.). Therefore, if I -
min{l‘:-LXMqu-XMlN 1> IMAXj for some j, the computation of the solution to this
subproblem can be terminated because it is certain to be bounded.

The calculation of solutions to some subproblems can also be eliminated by




using cost bounds. As V(i) is computed using differeat valuss of q (sse Equation 22),
sa upper boust on each new P(ql) subproblem is made availabie. For example, if in
mmuvgkitifmdﬂmvw*m'n‘l.MKVG)-26.for
Cl4.9) w be a candidate for part of the optimal solution o V(S), O(4.5) must bs lem
than the current best valus of V(5) miaws V(3), or 3.7. In determining C(4.5), the
calculation of any solution can be terminased that will have a fimal value greater than
‘oreqmllothisuppubamd. Once again, however, the valus of the solution may be
mﬂitwmhmmmnl‘>a The maximum reduction will be by
(XMAX.-XMIN)MB. The actual reduction will lower the total production cost in
period q and the inventory holding costs in every period q through t and will be no
mmmq-mw-(p*hon-@u). If after making this cost
amnmmof_mnlumhmnmm«mwmmm
its calculation is terminated due to cost bounds.

The branch-and-bound technique is illustrated with an example. Amume we
wish to determine C(1,5) with ¢ = §, p= 1, h = 3, and s = 2.7, 50 that k = § and
XMIN = 3. The demands, capacities, and maximum inventory levels are givean in the

following table |

3
4
7
0

[ - I Y
O30 jwm

2
9
8
14

— -
- - -

'
'
0 |
! ! | '

Buiduﬂumximuminmtotybnh.itisabomm1$x|$9.xje
{O.XMAx‘}forj-2.3.4.andmtx,a0(ﬁnaqux,.zd,).

The branch-and-bound tree for this problem is comstructed in Pigure $-2. The




values on each arc are the production valus, ending inventory, number of stockouts, and
cost 10 that point in the tres, respectively. Several branches of the tres are bounded

uuu&tm&mmnm«m&umﬁuufmm;
PERIOD (LEVEL) |

!
1 : ! (9/3/0/14.9)
/\
/ N
2 (a/z/o/ze.s)/( \ (0/0/6/+00)
/ N\ )

3 (1/5/0/42)/( \ (0/0/2/+0)

/ \
4 (6/7/0/%8.1) { } (0/1/0/42.3)

! !
s (0/1/0/55.4) "a" | ! (0/0/5/%5.8) *"b*

Figure 5-2 Branch-and-bound solution of a P(q.t) subproblem

Two candidate solutions are left at the end of the search, solwtion "2" with the -

production ssquence {9,4,7,6.0) and solution "D" with production sequence (9.8,7,0.0}.

Solution "a" has an extra umit in inventory however snd thus doss not satiefy
the form of Subproblem P(q.0). This solution is modified by reducing esch ending
javestory aad the first period's production by 1 umit with cost smvings of 25. A new
solution is found with production sequence {8.8.7.6.0). This solution has a cost of S55.4
- 25 = 529, which is optimal

The optimal solution, derived from solution "a” in Figure 5-2, is given in the
following tabie:




31 11 21 31 &t 51

B e e e bl

a, i 61 91 4| 41| 6]

oax, | 91 81 71 61 7}

U [}

x| 8! 81 7! 61 01

I, 2 11 4! 6| 0}

s;1 0t 0ol ol ol ol
| s

c(1,5) = 52.9

Let us now look at the computational compiexity question for the variable
upper bound capecitated lot size model In solving P(q.0), the branch-and-bound tree
will have 2"%'~1 branches, thus requiring st most that many computations. Again, the
valus of Clq.t) is not computed for t - q > k.

mmqmmmmmfmmrskn.mem
where T >k + L.

Por a problem P" with T S k + 1, we solve for V(1), V(2), ..., up to V(). ~

Givea the siution ® P, X (™-1) = 7' - ¢ - 2 additionsl computations are
performed to soive P. Therefore, the amount of effort in solving for V(TL will be
I 2 -1-2=2" -4~ (T(T+11/2 - 2T or 0.

For 2 problem P with T > k + 1, we again solve for V(1), V(2), . .., up
0 V(T), but for PP with t > k + 1, only k + 1 of the P(q,t) subproblems are solved.
Therefore, we must distinguish between the effort involved in solving P' through P**'
sad the effort invoived in solving P*** through P'. The effort involved in solving P'
through P**! will be I°' ("' -t - 2) = 27 - 4 - [(+INKk+D)1/2 - k+1). The
effort invoived in solving P*** through P’ will be [2**? - k - 3]s[T~k+1)]. The total
effort is O(T2"). In a fashion similar to the constant production capacity case, if k + 1




& T, the solution algorithm grows at an exponential rate. Otherwise, after a period of
cxponential growth, the solution algorithm becomes asymptotically linear in T.

6. COMPUTATIONAL RESULTS.

It has already besn shown that if k + 1 2 T, then the worst case solution
«fmf&mwmmmmddismﬂmmﬁonwtysmx
and OQ") when production capacity varies from period to period. The average
performance of most algorithms is usually much better than their worst case bounds and
this is true for the forward algorithms just described. In this section the details of how
mommﬁmlm«mmmmdfmmmomt
production capacity and varisble production capacity algorithms are given.

6.1. Variable Production Capacity Algerithm Performance

A group of 48 test problems was created w0 study the performance of the
varisble production capacity algorithm. Each test problem was SO periods in length.
The values of the varisble production cost per umit (p) and the stockout cost per lost
sale (s) were kept fixed at $1 and $5, respestively. mnmpoou(c)m_smu
between $40 and $160. This gsnerated minimum positive production quantities (XMINs)
of 10 units and 40 units, respectively. By altering the hoiding cost per unit per period
(h), different values of the maximum holding period (k) could be generated. Hoiding
costs of 0.26 (k = 15), 0.20 (k = 20), and 0.16 (k = 25) were used.

Demands were generated randomly from two uniform distributions, U(20,60) and
U(0,80). (We use the convention that the uniform distribution U(ry) has minimum
value x and maximum value y.) Cyclical demand patterns (1 cycle = 24 periods) were
also constructed using the same ranges as the random demand patterns. Production




3

upper bounds were gamerated randomly from two uniform distributions as well, U(60,80)
and U(50,%0).

Bach test problem was actually solved three times. 'l‘lnfimnm(llUNI)ﬁed
both the decision horizon tachniques and Subproblem P(q.t) fathoming techniques (from
mmm The second run (RUN I uwsed only the fathoming techniques.
mmmmmwwmummmmiqumm
fathoming techniques.

The test problems were solved on an IBM 4341 computer using a forward
algorithm written in VS FORTRAN at Clarkson University.

It was found that the maximum holding period (k) was the single most factor
affecting the solution times. Considering only RUN I, for k = 15 the average solution
time was 20.6 seconds (CPU), for k = 20 the average solution time was 251 seconds,
and for k = 25 the average solution time was 1882.4 seconds.

Generally, the test problems with XMIN = 40 took longer to solve than the
problems with XMIN = 10. This occurred only in RUN I and RUN II, which used
the subproblem fathoming techniques. The differences in solution times ranged from
10% for k = 15 to 35% for k = 25. This is explained by the fact that the higher
XMIN value is caused by the larger setup cost (¢). The larger setup cost results in
fewer setups and higher inventory levels, thus lessening the effect of fathoming by
inventory lower bounds. On the other hand, this should have increased the likelyhood
of fathoming by inventory upper bounds. The evidence, however, does not bear this

out.




As expected, the decision horizon techniques did not reduce the solution times
of the tast problems, except in those cases where horizons were found by Theorems 16
and 17. The horizon checking procedures actuaily increased the solution times by an
average of 2.6% ‘

The Subproblem P(q,t) fathoming techniques had a significant effect on the
solution times. Although RUN III was not carried out for k = 25, for k = 1§ and k
= 20, the average solution time was 81.4% less when using the fathoming techniques

(RUN 1I).
| Average Solution Times in CPU Seconds

!
!
k XMIN| RUNI RUN II RUN III
1 e
L]
15 10 | 19.489 19.143 89.981
20 10 | 220.476 216.192 1632.869
25 10 | 1598.864 1561.156 ——
|
15 40 | 21.646 20.788 90.645
20 40 | 281.667 275.014 1629.617
25 40 | 2165.842 2104.239 - ——

Table 6-1: Computational Results: Variable Production Capacities

Finally, the solution times for RUN II for k = 25 were regressed in order o
estimate the average growth rate. Theexponenﬁalcurveofbatfitm‘[mé
3.73¢(L41)" with r* = 76.8%, where T is the length of the problem and Y(T) is the
expected time needed to solve a problem of length T, measured in CPU milliseconds.
Although this estimate is better than the worst case bound of O(2"), it is still hopelessly
exponential.




6.2. Constant Production Capacity Algorithm Performance

In a fashion similar to the above, 2 group of 24 test problems was created w0
study the performance of the comstant production capacity algorithm. Half as many
test problems than were used previously were generated since the production bound was
taken to be the largest possible period demand. All other factors, including 3 runs for .

each test problem, were kept identical to those in the previous section.
Average Solution Times in CPU Seconds

]

. |
k XMIN { RUNI RUN¥ II RUN III

]

]
15 10 | 0.607 0.595 0.671
20 10 | 0.789 0.773 0.908
25 10 | 0.934 0.931 1.098

]

i
15 40 | 0.685 0.694 - 0.711
20 40 | 0.884 0.888 0.923
25 40 | 1.037 1.042 1.113

Table 6-2: Computational Results: Constant Production Capacities

Again, the maximum holding period (k) was the single most factor affecting the
solution time. The solution times were, however, much lower than in the variable
capacity case. Considering only RUN I, for k = 15 the average solution time was 0.65
seconds, for k = 20 the average solution time was (.84 seconds, and for k = 25 the
average solution time was 0.99 seconds.

Because of the very low solution times, any attempt to draw significant
conclusions must be prefaced by the remark that a relatively large part of the variation
in solution times could be caused by the varying load on the computer used. However,
the low solution times did make it possible to study longer test problems. A new

v

group of 6 test problems was created that were each 100 periods in length. A random
demand pattern was used. Demands were generated from the uniform distribution




U(20,60). The production capecity (XMAX) was taken as 60. The solution results are
‘preseated in Table 6-3. Only the fathoming techniques were used in these problems

- (no horizon checking).
3 | Solution Times
_ X XMIN | in CPU Seconds
1
[ i
25 10 | 2.431
50 10 ! 5.839
100 10 ! 9.667
)
],
25 40 | 3.044
50 4 | 7.305
100 40 | 11.628

Table 6-3% Computational Resultss 100 Period Test Problems

Plots of the growth in solution time are given in Pigures 6~1 for XMIN = 10
and in Pigure 6-2 for XMIN = 20. Notice that in each case, the solution times are
near equal for the first k + 1 periods, after which the growth rates become linear.

A regremion was performed on the two test problems with k = 100. It was
found that the polynomial curve of best fit was Y(T) = 0.29T*° with ¢* = 97.5%,
stightly betser than the worst case bound of O(T’). As before, T is the length of the
problem and Y(T) is the expected time needed to solve a problem of length T,
measured in CPU milliseconds.
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Figure 6-1: Solution Time Growth: XMIN = 10



k=100

o)

!

) ]

1 4

]

)

[ ]

. K=59

d

[ 8

0

v

]

£

= .
£

L

; .

3 )
" K=2%

' 19

Longlh of Problem (Puriods)

Figure 6-2: Solution Time Growth: XMIN = 40




A Chas of Doterministic Produssion Planning

18, 11 Ouiy 1975, 1296~-1300

Kisin. “Dotorministis Produstion Phsning with Coassve Cos
Qullvw AMenagoment Sciense 18, 1| (eptamber 1971), 12-N.
MR Rm
m M.G. "Preduction Smesthing under Pissowine Conssve Costs, Capusity
mw. Aenagement Sciense 24, 3 (Nevember

WW

m

Mansgement Science 18, 9 (May

"A Inckiogging Model and 3 Muiti-lchelon Medal of & Dynamic

16. Zabel, Bédwerd. “Some Genersiisations of aa Inventery Planning Herisca
Theorem". Afanagement Science 10, 3 (April 1964), 465-47L

1. Zangwill, W.

Lot Size Production Systam: A Network Approsch”.

1969), 506-527.







