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. INTRODUCTION
The cls lot sin modl (9C involves the production of a dig product.

swf it in a warehoose of unlimited capacity until needed, and requires the complet

folmoz of all (d) demands Various modificatiom s have been made to

*a model which isclde th Introduction of uppe bounds on production and on

Imvmuny apace ad the bwckl~ft of orders. Each modification permits the

dulvale of special remuts relevant to that cue. In the present paper we conside a

vie vktiom of te modl that of permittins stockouts,

On ls of rum IA in the area of production planning deal with capacitated

lot aln undug of a snlo item. Once the single item cue a undrstood.

oowlAip from it is ued t ofl the mulIpl Item situation. Resear h in this area

was megre- by the uncepactuaW lot mime mod of Wagne and Whitin (9]. Other

bnides Zb (1il. Zarwil CUI C121. end Luau.n ad Morion E71. Each of thues

smiglem involues a forwad agotm a- whch Woesw mcava loge finite

houm prellem =W a duisiom hoiuo is msoimfrs By ddoimtom if optimal

peI -- dehMMe d&A*n the iteval C1.t' we Mpasy iniepeadent -of the

dwoed di boyau t!* I t, the. t* is a decision horzon wd t" is a forecast

horizon. Prom a practical andpoat. we us rfally a*l interum!iIn determining ane

iet dooih borizo dbcs the proedousn problom is tyical rsolvd periodicall to

insorporase improve forecast das SIngle 1W. capecitated lot sine model research hes

boss lmtd to static horizmo Isng pobblem end snnmptios as to the demand

Inrm, eapaft vts, and cu fnductbm e (s lori and Klein (2]. ipnsathn

ad la. £3]. Love 6]. Swovelmad CI]. Louvesux SI. Korpoaker (4]. and hker.

Dime, Mapune and Silver 1]). The drawback of the ststic horizon mumpslo. is
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dhot infaOnS from beyind the end of the barium OWNdm de anr

"Mslm Pu dos kc so deciso m bar2N wre oblalebW

Tb. pups. of thu wiM is to *Oh owhw detwiss ad forecast borlames my

be olmeld for sieItsm caacUid lot us moddl In order to Mabte hrt.

510*k015 (Out SW. are Permitted but no Mukursim ndS Slttm hu no bee

coniuedby preiom autos A conav prodnulhos fumalo caniag of a flid

oost compoommi and a Dows compoentI is emmaed Prodvictim is bouded by cmmclty

111mialt whic my or may not be conatimt from puriod to p wind.

MWe formbllm Of the mode under sud is pruumsmd in Section 2. Nammery

Conditions for a solution so be opimal we stat end povd in 3't. 1 3. Such.m 4

two type Of barium £huarmi we dismissed. Mwe fint typ Involve the-l- -rmum o

the slockout end b'Mfin cosm, the seon Wien becme of cousmia a cmm prododa

capaity. TWO foward solutam adt U.S OiMM beth he qpimally comd

ad the horium thuarn we pumaud in ustin & The fku applies so probum for

whk the mailmn podiido capecty is =@nt frm pulle 1 period. It is &Om

dth the worstGcee effort Invlvd in solvin thi O'I is iniaify cubic but

-ypoiul busomeas Miner in the jung* 0f the probm.= The seond forward

alprthm waus the cue in whh the =m. produstica pacity varies with tme

a'd bhee i fmui thu the wors cme effort is inlitilly ezpOMuMtial but uympoticslly

buoame lnowr In the le8g0 of the proAllm If dechion horizoes are desucted

ffre"MdY, soU the lengths of t mbproblum ar kept aL evm this problems is

not Noo ompRUWatomafy dummading. CaMMto~IrnS with the algrtm are give.



I MODEL FORMULATIN
The *0*u01md lot min MOdM with maobm which is n~ intap liua

i. ~ k hmI P 2-1 and is mild Pro.bie. In* Prof T Objective

tu~t" be maednmbJct to Cmrhts (2)-().

T-1 7 7 7 7

174I .X - Ir S5 d. for ra1....T (2)

X1,- XMAX,5 7  0 for r-L.T (3)

x 7 ,I , . ,, sif aoa eand i ng for r*1,...T (4)

a5 binay for t1....T (5)

Vlgu 2-i Problem PDT: O"apeltd Lot Sins Mode with StokuAG

The variae of the modd el X, the production quantty in period 7;1I

thinvetory level a the end of period v; Sr. the number of stokouts hicurred In

periodr and J a b wnay arfabbwhich iu IwbeX >O0and 0otrwus. The
7 7

sIer of the model or. f.t neup cost p. te variable production cost per unit

(emunmed oootumt) h. t holdin cont per unit per period; s. te sockout cost per

unit XMAXr , the piroduction apecity in period rv; and dr. the demand requirements

in period 7



MWe objectve is to minmmlu the of a ittl estp cams, tow vaiable

pruentans otalWbd huIM ae nd Intl steckou costs as sated in Object[ve

Fineres () C mstdat (2) detime the proi 1da-ivuaY-sf1ckout relationship with

doe dd. rnrmua It 18 iNed that I6 - Ir =-0 w~tOu lose of generality and

doet If & 0 for All t * that backordersare prohbited. Mhe upper boundknS of

adlcrna is scoamlidod bY comstraint (3). Cstralat 0) also forces the stop cast to

be ncuredwhom production is paitive. Constraint (4) requires the production.

InventOrY, and maokout qmuantitie snuac period to be nnmepative and integer.

FPnally oatat (5) iinpoess the b~nay 10.1) restriction on the avariables.

Pro, mp can be formulated as a concave cast uetwork flow problem a

Wolows. Let node Md be the mtr supply node that contains the sum of the muppiles

for all T pronk We define two Smlmn ides. P and &~ Node P will transship

all the unis dtsat isfy demand via production and node S will rrahip, all the units

~tfi atify dimmdS via Nackol Finaly, moda 1. 2.. T are the perioid demand

modes Such that die demand at noderli d T. The arc set cosssof dhe following

four awe subes

1. Directed arc (3d.?) and (MAS) which shlp flow at zero cost and hae upper

bounds of +w.:

I Drected acsP. r) wthupper bounds ofxmAx . for?-1. .T

which eacb incur zero, shipping cast for zero arc flow and. a cast of e+ (p

* X ) If the arc's flow, X, Is greter than zero (dimn constitute die

3. Drected ac(S) wth uppe bouo oo for L . . . .T whch



6

Ualp flow at a amt of a Per =nit flow (dum are the Mzcktut arcak

4DirsctWamcs(r.r+) wth upp boumso ofoofr rul. LT-wbMc

ship flows at a cast of h per unit flow (te inventory arce).

A pictorial, -six utation of the Problem e~ flow network is given in Figure 2-2.

F~gre -2: PlmP sa tokPo rbe

An ptial olTio oPolmp ilb pnigte fteP ew

in~~~ Xue22adec nttaesfo i spl oe ,t t epciedmn
node by the lowes tstaalbep.
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3. NECESSARY CONDIMONS FOR A SOLUTION TO BE

OFIAL
fecomy conaditions on the optimal solution to Problem eT me now stated and

Duihatle. 1: Wein the mexln-wm I~dlng period to be k-

Ls-pALi Tbhe following rmolt Justifies this name.

Lapi 2: In an optimal solution, the maximum number of periods a

unit will be held in inventory is the maximum holding period L.

Prest. Assume there exist an optimal solution with one or more

units being held in inventory for mome than k periods, say k + 1 periods.

Theu thee will be a path of k + 1 basic inventory arcs from a period t to

period t + k + L. The total holding and variable production. cast for one unit

will be p. h.(k.1). Now since k - L(s-p)/hJ. which" implies E(s-p)/hJ - I

< k : 0s-0/h. or, solving for s.

p + (hek) :9 s < p + .k.)

The rightmost Iwneqalty implies that the stockout coat is less than the sum of

its total holding cost and variable production cost. Theref ore the original

solution could not have been optimal a

The lemma which -follows describes how units should be distributed from

inventory in an optimal solution to Problem PT. The FIFO rule, or first-in, first-out

rule distributes the oldest item first while the UIFO rule (last-in. first-out rule)

distributes the newest item first. Both the FIFO and LIFO rules should be regarded as

bookkepng system for inventory valuation. Rarey are these systems used a the

actual method of distributing units from inventory. The main purpose for proving this

le=m ito aid in the proof of an important theorem which follows it.



Lemm 3: In an opta solution. the newes item in inventory

shoul be distributed first (LIPO).

Pmof We begin with a pla that for at leas two units, the first

unit produced is distributed before the second (FIF0). It is then shown that

switching the distribution of theme two units from FIF0 to LIFO will never

lead to a Wowgers solution

Conder two units that are distributed on a FIF0 buio:
unit When Produced When Distributed

£ to

±ts to

Itlisumumed thatt t (which impies thatt for FIFOto

hold) andthot -t, k kand t-t 2  k kso thatboth units arproduced.
Case 1: to 0 or to to

For Cases n Ite oa cost under FIF0 and LIFO are equal.

For Cwelkland 111bt I (t 2 : r (t' The FIFO total varable

Production and holding com for the two units is: 2.p + h*C((t-t )+(t'-t2)1.

If we switch to LIFO, the distribution pattern will be as follows:
unit When Produced When Distributed

it to

Ift + *k 2t(CuteIIWa, then unit i Iwilistill be produced under

LIFO. The LIFO total variable production and holding cost for the two units
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FIc IOP + h*C(r-It Ht-t)] which is equal to the FIPO holding cost.

if t, + k ( t2 (Cue fb). then unit il Will not be produced under

IMO. The LIPO total variable produton holding. and stockout cast is p.+

hs(tl-t2) + a. The Proof is complete when it is shown that p + ho(t;nt) + s

:9 ~ ~ I 22 *Er7,+(,%

AwSMeC not. iLe., p + ho(t-t) + s > 2'mp + h.[(t;-t, ).(t-t 2)J. which

reduces to:

hS -(t)<sp (6)

B3y defndtion, k x L(s-p)/hJ. which implies that

Recall that it was aned that t + k <tor

k ( t'2 - t. (I

Combining inequalities (6) and (7) yields h *(;t)ch *(kel) and

since it was aenmed that h > 0,

k;t + L (9)

Combining inequalities 8 and 9 leads to

k ( t' - t <k + 1

which isimpossible since k.t, and t are intgers

Theorem 4: In an optimal solution every k + 1 consecutive periods

forms a regeneration met. Lae., contains one or more regeeration points at

which the ending inventory is zero.
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P1os Auae the contrary, that there exists an optimal solution with

k + 1 Com Put 0e peiods that do not form a regeneration set saY periods t'

- k -k +. . .+ 1. so that tbereae k i 1periods of positive

-~f invetory. Since an opial plan can be found using LIP()

ftribuoi (anAza 3), a unit produced in period r - k will be held until at

lost period r +1L diat is at lest k + 1 periods, which contradicts Lemma

2..

Theorem 4 stain that in an optimal solution, for a sequence of any k + 1

comecutiv. periods. the inventory level at the and of at least one of these periods must

be zwo (ILe., a regeneration point). Th etemnto of a regeneration point makes it

possible to partition a large problem into smnaller subproblems. each of which can be

solved easly.

Loamm& In anoptimal soluion ,ISt 0foruall t

Proof: If in an optimal solution, I, *St 0 for some tV. then there

is a pmthfrom node Mto node t +Ivia nodes Sand tat cost s +h. The

path via node S only, using arc (St+1). has ost 3. so that a lower -cost

solution is obtainable by tusing this alternate route, contradicting the

mumiption that the original solution was optimal.a

Dsflltion6c Define the minimum positive flow on a production

arc to be XMIN [vr/(s-p)l, where [il is defined to be the smallest integer

>- L The oext theorem justifies this name.

Theorem 7: In an optimal solution, if X > 0. then XMIN : t:

X(MAX,.

Proof: Clearly X 5XMAX for all L Now assume there is an

optimal solution such that on a production arc (P,tc) there is a positive flow



X ,/(s-. Cm. cifin brackuw may be reme since Must be

jt"gst.) 3inra*.,.wehbav sX < +.(p*)). This ft b

cdeper to stok outoftde. Od u m t bito producetbma

Cwoflary &IfXMGAX 1, XMMN for cus r, the X1 -0.

A theorem similr to the nuzt one bs proved in Baker. Dimon Magazine. and

Silver El.

Thuura 9n an opnual a Im s OcA -).sXt i0 for

alL

Proaft Am. he w ontray, tha thee aeiss a perio r in an

optinu solutio wmith 1 s. * (XAX.-X) * X.>0. This me that acs

(r-1,r) and (P.r) ans both basic (refr to Figure 2-2). Since arc (r-1.t) is

basic, ther must be a arc (P~t") (rt"Cr) with a positive flow. This positive

flow mm be a MAX,., othewiss a cycle will bmv formamL violat the

cbaracterizatin of optimal flows a s pnin trees However, a lower cost

flow bs obtanble, by inresing the flow on (PAt until it becomes smbuic

and decreasin the flow on (P.tr) by the mount of the incrase on Moj'.

Produdctoew rembi the am but tooal holding casts are reduced. Since a

lower cost flow Is possble this contit the initial aunptin.



Umm A b a mddomd V k L"AiJ (*W/ ad

P" A -a dm m unad wifh a prod r- afd

Sr. >~ 0 M &P"r-(Wk Sr- 9r) wift (Xr- XMAX..

am le o t mmyw

ispm r at s ~ dwmi pwmw C ug 1%mpu

piinnMW~ do k W y "n~ md r- r. we m aw.

p * h.r-, ) a

whiaskow is a maaiidm anrE, ow tor slin um na um mad

um Ell.~lL



K, 1M ,. po) an um pop r k s' T. uf r k > T.

Momalt Cm l Aa Dw

Pon Lar SMIX)IS I).L &.bthsmphrl of

. ~~ n r + k >T. n OuI AX, Xe k. ff

< N m W~,,a~ m so be id muluir k t ave

Mdf ff bkm. Xr* wer uto qmst I m u XM"X,.- thi

US ,e.M Ins V V d <~ (AX 1 , dmu abs X, oal 10

of psoofw hN. ftd T 4L ff X. is mt to urn quantit

im on ItN to uaim wE agms wav mobmu in purled r + k. which

eas Tbh A
Tbh Ia Is m idnkdm if for ur por .di kd

XbAXIm X& > . m X& a MAX.-

pwo Am am aim n opta .lkli having a purle r
wa df at XMAXe ad XAX.. Than sithg mue (r-1r) and

mPr be haSha (wM*c on-jis Thms. 9). or a=c (&rV) and (P.t')

m huh hugs (ahs musalw Theorm 10). It -s ths theorm is tma

As - shove it is poedhs ao himera mWn =MamaY Mondo an optimal

mimi..- aatY. A muwla that mt~iu thu cocadis not nhcomarly

elMLIe. thu cmdtlum ane wot sdflclt for optiuality. However urn of the

iniyonmihim inp-s the "s of thes obutlo apac that most be considered in

Nbngfor - optimal .hudme
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4. THE DETECTION OF DECISION AND FORECAST

HOR'IZONS
In *is ns do w te oem . are preented that smetimes permit te

dsamshom of decisin and forvest horizons for the problem under on-ideration.

Whth q them wi r are used in the forward algoritims decribed in Section

A forward algmthm begins by solving the initial one period problem and

oued by so1v suemuvel longer finite horizon piroblemL To be useful tmere

am be a mepplg rul in order to know when to terminate the forward algoritlm.

Whm decision and forecast barium an be detected the algorithm can stop. since the

solution up to the decision horizon is praniteed to be part of the optimal solution to

any problem longer ta the forecast horizon. Specifically, the solution for the first

period will be pert of the optimal solutim to any probm loner um the decision

hom1a. Since produto plannin model are umully re-solved every few periods to

make use of updted, mor accure forecast informatlion only the first few decision

Dd.zdm 13, If XV is the optimal period j production quantity in

doe t-perlod problem 10, then the sequence IX, . . ., .X'V is called an

optimW pr.uctlon sqave for Problem 1 .

Definition 14. If the sequence IX, VX) is an optimal

producton sequenc for Problem PO. the the sequenc Uxq .. )v I is an

optimei production ubequenci for Problem FO. provided t" S t.

Theorem M& Consider problem. 1r , .... P' where k is the

maximum boding ~ od (k + 1 S t T). If X"* X* ' . .. X for



r\- CL I .dmpro t a m brzna

pi mftd r" is a decisio boiad for my Problen 10 am t :c t* :9 T.

i/taf Fro Thbmwsue 4. It is known tla for amy agoseas of k I 1

........ ~utv, wios. , ,ns o at lem me of Oe, pdeodb

om be sm in a ot valution. Wbuw sob t p atm P" .POr'....

: I ~1, tlM invueafy at ft and of a rod ombim has to w mmin my otptk

. 1 ~ ~ kd ... outwo omo the prdutio anm in at int we of them

"bunls wm be par of to, opftmd xftom to mny probisn of wo te.

wm ts s.u t=r votrafr

:9 t - k). this nmm that ow~b pW P*.. ]0 bas thw sam opftWm

pxroductio amnqumm for tle first tC tloide ad tlamdom this lmbquaft

most be part of the optimal saon to any problem of isnd t*, wlaw t 9

te A T. nwore period r is a decision horizan. Sloe t ; - 'a s of demand

intonation weo no" to dewates thls deiso brim 1 ,I t is a

forumt hodbm ,,

This thiran is sinfler to t muf-Monon hweorzona tht (7].

We know from Tbm 4 that evr k + I cosctv piods form a • mwd

mt. If a*n of tla k + 1 conseutve p Ohm as the same oidmel luldo for tbo

firs r ipedodh, dim dls aw wM~ be part of th opti~mal solution o aniy lonOw

II

dos dmad Lqu is at or wSr a peak dat is pa d ian tdo available pu

lty. e oa 16 alies to pror of lnmo s tn or equa to I and

• vam 17 aeuti probra oh bang to t buw Um k.

tau bezer I amoptma soluioI.Whe wiin b V4. ' ... ' -" ..



Tboain 16 Cleiur tdo opftl solutln to a t-perled prolto 10

wherst9L If uXMAX frJ L ... . t.diesperiod t isa

fasmi awe deulm herla. for may Put s. F' wir, t & eo s T.

Pre*f If is O the o s o hles to 10. tOer we k onsecutive

purled. wMItA wcda at the uppr boini, thi for problem PI . where t :

e T. sy dimaod. ouerieg afte period t som, be saisfied from

I du h afterperiod L The rnt is do 1 0inmy optiml okdm

se o0 R oo ssrwuusess U.,X w Ieinube todw.4by

dmwee ovri afte period L. Thhretw peried t is a decM= on nn

ad deas a* t - in6of dimeed blsafoim. ars souli ao iitr.e

vored t is na foram boisom..

T1oea 17: Coesder the optimal moitiu. to a t-periodd praowmF

wh t>L UIf XX AX fors t-k.I.... t isprlodtisJ j

a foram ad deciuo bron foray Probl ent :1 eas 'T.

ProeIt If is the o~~u sodin to F'. Mare ams ooucative

purled boiog I aductia. at the upper bevA, the for proble F' m w ti

:s eo : T. mey demads occurring after period a sust be satifiled from

1.R 4ii, - e, frerio t rortperiodptI-dk-+L If snatifid from

I cA Fdola prior to period t - k+ I, thm units wlf be in inventory for at

Ism k. + pIreI.c violating Linm I Therefore the demand.s occorring

afte period t am be satisfied from production after period a. As in the

preoei proof. this impis that It~ 01 inmy optimal solution and the

optima produictionesqfuee We' .. V X winl be unchinged by demand.

assuring after period a. Therefoe period t is a decision horIzon and since

oely a period. of demand information are needed to determine it. period t is



17

abe a tweast horbie. a

K S. THE FORWARD ALGORITHM

K Nafth d demdo two forward algorithims are described and used to solve Problem
PTr Th first arthm Is e when poducti capacity is constant. the second when

ft is MLt

We bqkm by amft two defluitlow

DIdtem I& Lot Vft) be the optimal value, of the t-period

PRolem, V. we t :9 T.

Dii Wtm 19. Lot (qt) be the optimal value of the (t-q.1)-phro

mubproblm. P(qt), that begoo at period q. subs at period t. with the

Mwe requrent that the Now) subproblms have poiive inventory in every

peio 411mp1 ht IN made in order t0 remove 0 much dulcation of compurazlona

effort a possibe (mere an this xbory). In effect, period t is forced to be the only

regmeratie point in Subproblem P(q.t). The definition of Subproblem P(qt) issimilar

ao the of Florian atd Klen' Capacity Camsined Sequences, [21. Subproblem P(%Ot

-be nodded a an intege linear pmopam a n Fiure 5-1.

SubrobemP(oO is nuodded similarly to Problm eT a described in Figure

2-1 moept that 1) the only stockout variable is the owe in the last period. So and 2) s,

Plty varibl It is included in both the objective function and in Constraint 14.

LM be a vey pnmberso thatif a solution hul IT O0for any q- ..q,

t - 1, aI, b equal to 2*M4 and the objective function attains a very high value for that



is

M r (.rsr  px r  hI r  o r ) ) . (10)

1r- X " If d. for rwq..-.-I (11)

14 +X -ItS -d (12)

Xrp - XMAX rj r : 0 for ra.-..t - (13)

o r - Me(flIr - t -(Ir - 1)3 a 0 for rq%,-.,t-1 (14)

aI =o0is
I

1II (16)

X r . 1. Inuper for roq...t (17)

$ inter (18)

ar bbny for rnq,...,t (19)

Figme 5-1: Subproblem P(qt)

Detiti. 2 A molution to Subproblem P(qt with nl7 = 0 for r =

q, t - it said to be adm qlble. A solutiom to subproblem P(q.t)

with at lasw one I1 r > 0 for =q, . t - I is sai to be
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In a to motd do Wadote valve condition in Construnt 14, two new s

at omamwaks we adsd:
I (y* -y l foYq,..- (20)

;. ; 2 0 for r=q,...,t-1 (21)

we the replace I11 - 1i in Constraint 14 by "(y* +

The nature of te P(qt) subproblems alow ststement of svera nceary

mladions giv e in the previous section. In paicu

L Thwe will not be any stckouts in periods q hou t- since all the

inventory acs anre basic (Lemma 5).

2. pis q + I throu t, production is eitber at zero or at the upper

bound for that perd eorm 9).

31f S > O. tm X - XMAX (Tearem 10 plus the fact that X must be
tqq q

positive in order for inventory arc (q.q+1) to be basic and have positive

flow).

4, If d q XMAX, then there is no solution to the P(qt) subproblem, since
q q

inventory arc (qo.1) must be bsc

.If thebalasit ive productionoccursin periodq' < t, the Zqd (X

r' d (Theorem 11 plus the fact that inventory arc (t-.t) must be basic with

positive flow).



In em pro j q...t -1. d, (oredos1, > 0).

The vaku V(t) aatsti lbS following functional equation:

W(O -min{(V(0-1) +C(q.) 1(22)

where r - max I t - k. 1 ) and V(0) =0.

We now illustrate how this functional equation solves Problem PTfor a small

omun01=11m06

Aininsetatk -2 and T - . We beeinbymsolving P1with optimal value

V(L3 From doe functional equation r =1 and

V(1) *V(O) + C(1,1).

We M prced to solve the 2-period problem Pe. Again. r a 1 and

V(2) - min ( V(1) + C(2.2), V(0) + C(1.2) 1

Notice that the value of V(1) is alredy known and that C(2.2) is the optimal

soluio. to the 1-period subproblem P(2.2). The value V(1) + C(2.2) immeidiately gives

an upper bound an the optimal solution toP.

The 3-period problem is solved next. The parameter r is still 1 and

V(3) - mini ( V(2) + C(33) V(1) + CM23) V(0) + C(1,3) ).

The number of possible completions to V(3) is 3, which is equal to k + 1.

This will always be the maximum number of completion to be evaluated.

When V(4) is computed. r is now equal to 2 and

V(4 - mini ( V(3) + C(4.4). V(2) + C(3,4, V(1) + C(2,4) 1



We do not ovakum V(O) + CM1.) dmo MO.4 WOul be the optimal value to

the subprobism with positive ending inventory in. prs 1. 2,Z and 3. It is known that

this will never be pert of en optimal molutle to 10 since the aimum number of

coeecutive period with positiv ending inventory is k which is 2.

FinalyV(S) is detemud wthr -3 so that

V(S)-inl(V(4) S .)V(3) C,S)V(2) +C(3.) I

For large values of It. the computation of Caqt) can be quite formidablemac

it is pomible that (XMAX - XMIN) * V' different production sequences would have

to be enumerated. However in the nuat section. a cue is treated in which the P(q4t

wubpoblems can be solved in polynomial time.

One IaM comment concerns the decision horizon tniques and compttional

savings. Assumne that when we evaluated V(4). we obtained a decision horizon by

Theorem 15 which covered periods 1 and 2 (Le.. r a 2). This means that when we

evaluate V(S), we need not include periods 1 or 2. Notice in the above that when we

evaluate V(S). we don't include thes periods anyway, since r a 3. The point- is that

even if the longest passible decision horizon a detected by Theorem 15. the same

amiount of effort must go into evaluating V(S). The value of the horizon technique

given by Theorem 15. therefore, is not that it saves computational effort. but that it

provides a stopping rule., That is,, if we only need to determine the production decision

for period 1. we can stop the forward algorithm after evaluating V(4) and we need not

evaluate V(S).

This is not the cuse for the decision horizons found by Theorems 16 and 17.

If period t - 4 were found to be a decision (and forecast) horizon by these methods.



we wo ei ef V(S a a e s Period problem condefin only ofperiod 5.

For Vid e m the forward aloritham in this paer searched for deciuion

hI an via Theurm 16 and 17 first. If this wa wt found to be fruitful Theornn

15 WO Wed to search for deciio born

LL1 Com~ng MAq Wisas Predutiu Capacity is Constant
Whan protmamo capacity is constant fromt period to period, then XMAX.u

XMAX for s j~ W cont~minue oas essdtat- q 9k or eb ubproblemP NO)

un aM be pet of the optimI uuin. The nhmiber of poitive productions, n

I pron h q d -%I t m liondiel be desermined is followr.'

DdIndwm21Ut A - r d (cM XMLAnO

Ddles 22 Lat N - W - A)/XMAX.

7We velmeof 0 h b do de of the total demand in rilods q throught

00 m0at be ins Io by pudde at XMAX a"c due period. Periods in which

bs at XMAX in oaWe uw hounded production period&. The number

of WW bI prduia p fto in I rioAm q through t wil be equal to N. Apin

reel fNo *a prsie sction that If d 14 XMAX the P(qt) subproblnm does not

The.. 21 Uf~ $ kma (XMIN. d +1). then X = 4. otherwise S

Pro, The anly pusitive production at a quantity Ia than the

Wppe bInd XMAX can occur In period q (Theorem 9 plus the fact that

of O d.Amhlu dos a 4 XMAX * sqIf th iis ONNIIIIII is falMe thea We6 Xi. XMAX
~ j * .. . , ~5 ql a. te req A idam.ad*~ btahsaar r qqIP...

J 16 M ~~~~S, O s6 nk 91BdefkdtM n~w n(~+)
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each inventory wre is basic). It is neceimry to produce 0 units in period q

in order to avoid any stockouts in period t. as long as 8 2: XMIN (Theorem

If~ d + 1. however, inventory arc (qq'1) will be nonbasic and

stockout ac (Sqa) may be buic, violating the definition of the P(q.t)

subproblem Therefore X -jSonly if8> d. IfX is notset to ., the

first upper bounded production will be in period q and the * units will not

be produced at all but will be stocked out, these stockouts coming in period

LU

The periods in which to place the N upper bounded productions must now be

determined. Their dtriaonis made pousible by the fact that the production cost

and holding cost functions are constant over time.

The procedure for finding them is to begi in period q. determining X 9and 1.

Once this is done S, can immediately be determined (see above discussio). We then

move to period t and work beck to period q + 1, placing each XMAX production as

late as possible while still keeping every inventory arc basic. The procedure is

illustrated with a numerical example.

We wish to solve P(1.4 where o, = 5, p = 1. h = .3. s = 2, XMAX =8. di =

3, d 2 = 2, ds 6, and d 4 = 6.

Periodi1 A=17 (mod8) = 1and N -2. Since 8 5 =XMIN,X, S.8it =

5, and St = 0.

Period 4 1 4 O 0and S 4 t=1. Recalculate d 4to bed 4- S4 + 14 5S(the
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total Inflow of Prodution plus inventory into period 4). Sinme d 4 S

XMAX set X4 in

pa ~ ~ I 3 da4 - X4 -S5ands S3=0. Now d. isredeterined to be d3 -5S,

+ 1 aM Beause d, > XMAX set X3 XMJAX -

?a ud 2 I - d3 - X3 i3and S. a0. Thedemmnd d. winlnow be replaced

by d2 - S2+12 -5. Set X, =O0becaused2 :9XMAX

MOM~ Sinc I~ I d2 - X.. we have found the optimal -P(L,4) subproblem

The solution to the ample follows:
i 1 11 21 31 41

81 01 81 01I
~1: 5 1 3 1 5 1 0 1

S 1 01 0 01 11

C (1,4) -31. 9

Theorema U The Procedure described above will find the optimal

solution to the P(qlt) subproblema when Production capacity is coastALt

Proof:. If d q XMAX then Subproblem Noq~) will have no

admissible solution since inventory at (qq4) will be nonbasic with zero flow

in any such subproblemn

We first compute 8. the number of units not produced in upper

bounded Production periods. and N. the number of upper bounded production

periods. Mwe reaoing behind the placement of the production (or stockout)
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Tw Wn f pwdms mm i W, ho ftM who T < k + . the snad
%lInT ) k + L

ftr a @iWTlu I T k I.Le whlv for V(I), V(2. .. upto VM.

ak so m O p4 a, -a 1)/2J adiltimi oempaudow an performed

0 o p ihiem. to 1E at effort is mlvlg for V(T} will be Z t(t+1}1/2

- W4)2 er Oft

Per a irlm p wtw T > k . wea p b m r for V(1) V(2), ... up

WD M*aferw wt k # 1.we as olve k + I o teqt) ubproble.

Th..tm, we =M ON@ bewun doe effort isvolvd in slv*n P' throug pk*'

anddo ffet bvwgd Is uavf e3 W tre P. Tie effort involved -in solving 10

I#" eo' yE i [tU/2 a (2k k2 k*12)/ 12. Tin effort. involved w,

u, P" O w I n Ck:k 2)/23,[T-(k*1). The roal effort s he

Off This is a vary I S -11. If k * 1 k T, the soltlm al grithm pow

at a i oft Olwihe, ster a puled of aI* powth dho siuluon algorithm

~~~mu ~ b~ MESIEYN T.

5.Ca ie CkqI Whim Peee Capacity is so Ceinamt

whim tas Iremdee I i as mt coemnt from period to period, the

vtmus WOW M mant be not Id, h P(q.t) subprobl ae solved via a

boom& wdbased ftThs are up o - XMINJ diffent

I '-- Is npmu dot may solve Sbprobm P(q,., och of which munt be

desidwed ssisifly or bouied away from milr-ta.

evurl pmu s are eaploed to ave cmputatous em that this maximum

inher of e aqueas mid no be eumerated. First, if d > XMAX, then
q q
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P%4 wi not have an admlbsle solution.

boond ol thm production sequence for which X = XMAX need beq q

ueiilrd. If a produmtlo qmme for this reduced arec hu lj > 0 for j = q....

S1- ad I - 0. Men it is aadmimble solution to Subproblem P(q,t). If instead a

mp 'o a is found for this reduced srch with > 0 for j = q. .. t,

we hck to se 1) f every ding inventory I for j =q .... t can be reduced

by I uits without any of these inventorie becoming zero (except I itself) or negative.

and 2) if X can be reduced by l units and still have X greater than or equal toq I q

XMIN. If both of these conditioms are satisfied, the solution is modified by reducing

Xq by 1 unit, sd II for j = q.... t by units. The result is an admissible

solution to the P(qt) subproblem with X < XMAX. The lowest cost admissible
q q

solution will be optimal

Theorem 2& A reduced search on the part of the branch-and-bound

tree with X = XMAX alons with the solution modification procedure justq. 4

described will generate the optimal solution to a P(qt) subproblem.

Proof: Clearly the optimal solution to Subproblem P(qt) will be

generated if the solution has X = XMAX.
.4 4

Assme there exists an optimal solution V* to Subproblem P(qt) with

first production X* ( XMAX. It follows that this solution will have noq q

stockoumts (Theorem 10). production in periods q + 1 through t at either zero

or the upper bound (Theorem 9), and I* = 0. This solution will not be in

the reduced bianch-and-bound tree because the first production quantity is

not equal to the upper bound.



In the reduced. bnc-ad-bound tree however. time will ost a

ndom r. with r XaXJ.x all otliw poductn quantities equa to those

in V. so IstokoSum ad endfinInventory Wwash t*a we XMAX X* highe
than those in solutio V*.

If we ltA XMAX -X*,solution V can beobtaned fromi

solution r. by reducing the first production quantity X' and. evey ending
j

inventory by A units.

The definition of Sunbproblm P4q.t0 ca be used to remove from further

consideation any soltion in which 1 :9 0 for j < t Solutions whose ending

inventories are too high can aimo be removed. It is known that in an optimal solution

tLb ending inventory in a period J. called I f will be no greater than Lbeso of the

dmnsin periods j + 1 through t, aled IMAX or else 1I will be positive. However,

thes ending inventories may evetually be reduced by I I units if I us positive in order

to construct an admissible solution. The maximum reduction that can occur to thes

inventories and still have an admissible solution is XMAX 4- XMIN units, or- else X
wll be Was than XMIN. Furthermor for aperod jStif I*=m 5  ,te h

maximum reduction that can occur to the inventory in period j will be tLb

minflt1-1.XMAX -XMIN). If we reduce all Inventories between periods q and t by I I.

or more units, Lbe resulting inventory level in period t* will be zero or negtive. thus

violating Lbe definition of Subproblem P(q.t). Therefore, if I~

3iui(I a *1XMAXq4 XMJNJ > IMAX j for some is the computation of Lbe solution to this

subproblem can be terminated, becaus it is certain to be bounded.

The calculaton of solutins to soesubproblem can also be eliminated by



nft st bouml As V( is compumd wfi diffreait vlms of q (W Equaom 22.

t uper bs u a* new ftt) subp"m is ad avan. 1W umpe in

tho IO of V(U, it is foud t V(4)+ C a -V.7. *. fU VU) IC 6 for

C(X4" b a GiNOda for pt Of the optimal im to0 V(. CK4S umt Inlai

un the current best value of V(O) mim V(. cr 3.7. In d n g C("4.), the

.Im inl of any soaon can be i tnl that wnll have a flta vase raw than

or equl to thn uppr bound. On" N . homv . t value of t WIto my t

overstated if it will bereduced de toanl >0. Themalmum redtilon will be byI

(XMAX -XMIN) units. The actual radodoa wi loow toa" pronbe amt in

period q and the inventory holding costs to every period q thro t and will be no

rumte than (XMAX - XMIN) 0 (p + h*Et-q4IU. If afte mneking this cast
q

adjmumnt, the value of the solutiop, Is still grete thm or equal to the upper bousd

in calculation is UnnInated due to cost boumds

The branch-and-bound wtehnique is illusted with ma mple. Amm we

wish to dtermin C(L5) with - S. p a L h - .3, and , 2.s7. so ta k - 5 and

XMIN - 3. The demas, mcltmee, and mimmm inventory leves are as w in the

following wNf
j 1 2 1 31 4 1 5

---- ----- -1--I- ---I--

4 1 61 91 41 4! 61
xnuI: 91 S 71 6 7
zU 1 23 14 10 6 0 0

Duldu the maximum inventory leelit is also known dta 7 • X :S 9.X

(0,XMAX,) for j a 2, 3. 4, and that X5 a 0 (sacm XMAX, k d).

The branch-and-bound tree for this problem is consructed in Figur 5-2. The



AP vaM ft au ac M the 1, oamptlm vabue endift isvmmmsry, ane of slocof and

am a poist in the umee repeotv*l. Severa bIma of the treewe bde

in t infndbW (nvmminry poing a zero at uto@koui omarrn before puried L

1 1 (9/3/0/14.9)

2 (8/2/0/28.5) / \(0/0/6/lao)

3 (7/5/0/42) / \(0/0/2/+Wo)

4 (6/7/0/55.1) / \(0/:1/0/42.3)

5 (0/1/0/55.4) 'as (0/o/5/55.Sx "b'

Figu S-)t Drnh-sod-bouid suon at a P(qt) inbprobsm

Two adidet inbjdom ae left at doe ad of the awfrah, stia Wa wit tdo

dida seqin.o (9A7AO) ad so1m wV with podiw~ seueia (9.&7.0O).

Ueolm IaV ha wn ait in inventory however nd thue does not satiey

the ftam of ftbprobluni F(qt). This soltls modified by reducing aunk ending

Inventoy ad tdo fim Veios produstlo by 1 unit with amr nauln of 2A5 A new

uoldo. is found with production sequence (UA.AO). This sution ha a Cost of 554

Z 25 a S2i. whis bs opdaL

The apdoi uolutlon deuive trm aeono "e" in FIgur 5-2. is given in tho

-oow tW



1 1 21 31 41 51I~- -I-I.--I-I-I

q'z 9 9 1 71 6 71

I 1 8 1 I 7 6 012 1,II I I 4 II  'o

- I01 01 01 01 01

C(1,5) - 52.9

Lst us now look at the masuunmdoodl complexity question for the vaiable

qWin howi a~smd lot mins modeL In uolvlng P(qt). the branch-anod-bound tme

wigi have 2"*.a4 brt c. thms reqniil at nms that aimmy optaon.Apin. the

valuof qkt) isnot compued for t-q >L

Two types of probisms wre mgo1mir, the tint wher T : k + 1, the secood

wheeT ) k* L

P roa P p ith T 9 k + L we wh* for V(1, VO) up to VM.
aim the soumon P", '. 2"'1-i a - t - 2 addidoo momputo are

p m to solve 1. Therfoe the mont of effort i solvin for M(T). will be

ZT - t - 2) t - 4 - (T(T 1)/2 - 2T or O(f).

or a proe m P with T > k + . we p olve for V(), V(2)..... up

to VCT), but for 10 with t > k L oly k + I of the P(qt) subproblem are wlved.

Threor we most dbtpM be e the effort involved in solving P' through P+'

and the effort involved In solvin P"' through pT The effort Involved on sowing P'

threw e," will be &;' (2"' - t - 2) ''- 4 - (k Xk+2)/2 - 2(k+I). The

effort involved in molvtng pk* throug pT will be (k*2 - k - 3].[T-(k+l)]. The total

effort is ocT?). In a fmblon similar to the cott production capacity cae. if k + 1
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a T. dohe m m Wpitm ptow at an cqxomental rate. Otherwi, after a period of

e roh. do soltion alritm becomm asymptotically linear in T.

(L COMPUTATIONAL RESULTS.

It hem alredy ben owm that U k + 1k T than the worst can solution

effort for the cspecimed lot "ti model is O(T) when production capacity s contant

ad 0(27) when ap lon capacity varis from period to period. The averag

perfornma of most algoithms Is usually much better than their worst case bounds and

this is true for the forward aipithm Just d cibed. In this section the detais of hw

the, averag m-utational I foimmia were detemned for boh the constant

production capacity and variebl podo capacity algorlthms are givn

6.1. Variabe hod ct*,- Capeit Algpltbn Perufmance

A poup of 46 Mea problem was creaed to ma*dy th pert ors of the

varial" production Capacity algrithm, HAck *Kproblem was S0 puld in Wag&h

The valuem of th variable I rodction ccu Per unit (P) nd the Nckout com per lost

sle 6) wwo kept fid at $1 nd 5. rupuv*. The setup om (.) was vared

betwoen $4 and 5160. "This psnad imsi positive production qlnt ieu (XMIN

of 10 units and 40 units, reupectively. By aing the holding cm per unit per peri

WI,. different values of the maximum holdi period (k) could be generated. Holding

com of 0.26 (k - 1}5), 020 .,and 0.16 (k 25) weree

Demands were enerated randomly from two uniform distributionms U(20.60) and

U(0,80). (We me the convention that the uniform distribution U(z.y) has minimum

value I and maximum value y.) Cyclical dimand patterns (1 cycle = 24 periods were

also constructed using the me ranges as the random demand patters.L Production



33

Mw bounds V.16 peraed randomly from two uniform distributions a wel U(60.80)

Back tMa probiems was actually solved thre times. The first run (RUN 1) usid

bot eison horin techique anid Subproblem P(qt) fathoming techniques (from

dos previe secton). The second run (RUN MI toed only the fathming techniques.

The third run (RUN III) used neither the decision horizon techniques nor the

The teat problem were solved on an IBM 4341 computer using a forward

alprithm wrtten in VS FORTRAN at Clarkuon University.

It was found that the maximum holding period (k) was the single most factor

affecting the solution tim.. Considering only RUN I, for k = 15 the averag solution

time was 206 as0000s (CPU). for k 3 0 the average solution time was 25L1 seconds.

and for k n 25 the average solution time was 1882.4 seconds.

Generally. the tes problems with XMIN -40 took longer to solve than the

Problem with XMIN * 10. This occurred only in RUN I and RUN II. which used

the subproblem fathoming techniques. The differences in solution times ranged from

10% for k =I1to 35%for k -25. This is explaned by the fact that the higher

XMIN value is causid by the larger setup cast (a). The larger setup cost results in

fewer setups and higher inventory levels, thus lessening the effect of fathoming by

inventory lower bounds. On the other hand, this should have increased the likelyhood

of fathoming by inventory upper bounds. The evidence, however, does not bear this

out.
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As pctad, the deciioa horizon techniques did not reduce the solution tim

of So UE probms, acept m those cuss where horizos were found by Theorems 16

aod 17. The h cuckng procedures actually increased the solution n.es by an

avers of 2.61L

The Subproblem (qt) fathoming tecniques bad a significant effect on the

solutiUU times. Although RUN l was not carried out for k = 25. for k = 15 and k

- 20. the average solution time was 814% less when using the fathoming techniques

(UN 11).

I Average Solution Times in CPU Seconds
I - --

k XIIN 1 RUN I RUN II RUN III

15 10 I 19.489 19.143 89.981
20 10 1 220.476 216.192 1632.869
25 10 I 1598.864 1561.156

15 40 1 21.646 20.788 90.645
20 40 1 281.667 275.014 1629.617
25 40 1 2165.842 2104.239

Tale 6-1: Roputtional l sults Variable Production Capacities

Finally. the solution times for RUN II for k a 25 were regresed in order to

etimat the averae growth rate. The exponential curve of best fit was Y(T) =

3.73*(L41)T with r2= 76.8 where T is the length of the problem 'and Y(T) is the

pected time needed to solve a problem of length T. measured in CPU milliseconds.

Although this estimate is better than the worst case bound of O(2UT), it is still hopelessly

zpoamitlaL
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L2 Caa" Productls. Capacity Algorithsm Perfornasnce

In a fashio similar to the above a group of 24 tes problem was created to

study tie. performance of the constant production capacity algoritm. Half as many

tM problem than wer ue previously were geneated since, the production bound was

taken to be the largest possible period doeand. All othe factors, including 3 runs for

each test problem. were kept identical to those in the previous section.

Average Solution Times in CPU Seconds

k MN UNIRUN 11 RUN III

15 10 1 0.607 0.595 0.671
20 10 11 0.789 0.773 0.908
25 10 I 0.934 0.931 1.098

15 40 I 0.685 0.694 0.711
20 40 1 0.884 0.888 0.923
25 40 1 1.037 1.042 1.113

Table 6-2: C- ua Ia Results: Constant Production Capcities

Agin, the maximum holding period (k) was the singl most factor affecting the

solution time. The solution time. were however, much lower than in the variable

capacity cue. Cosderig only RUN I. for k - 15 the average solution time was 0.65

seconds, for It - 20 the average, solution time was 0.84 seconds, and for k = 25 the

average, solution time was 0.9 seconds.

Because of the very low solution times. any attempt to draw significant

conclusions must be prefaced by the reark that a relatively larg part of the variation

in solution times could be caused by the varying load on the computer used. However,

the low solution times did make it possible to study longer test problem. A new

group of 6 test problem was created that were each 100 periods in length. A random

demand pattern was used. Demands were generated from the uniform distribution
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UCUM) The production capecty (XMAX) was takeas; 60& The solution reults are

prusmiin Table 6P-3. Only the fathoming technique. wee used in these problem

ISolution Time
kc XX in CPU Seconds

-1-

25 10 1 2.431
50 10 3 .839

100 10 9.667

25 40 1 3.044
50 40 1 7.305

100 40 1 11.628

Tabk 6-3t CoptaiuilIaztg 1W0 ft Test Problem

Fift Of t growth In moltlas time ane given in ftgure 6-1 for XMIN 10

ad in Figure 6-2 for XGMN - X0 Notice that in each cask the solution times ane

awer equa for the first k + 1 periods. after which the vrwt rates become linear.

A repeuMon we. performed an the two teat problem with k - 100. It wn

f(wad Oat the polynomial curv of but fit we. Y(T - O.2reT3 with 1? 97.5%

iiuybemer thm the woru cau bond of OMT). As before T is the lengt of the

problem maid Y(T Is the expected time needed to solve a problem of length T,

miessred in CPU mlillisecounds.
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