THE FILE COPY

JUN 0 9 1987

Final Report #01-F-1987

0

071

4

NEW DISCHARGE PUMPING METHOD FOR CO2 LASER

FINAL TECHNICAL REPORT

Sponsored by

Defense Advanced Research Projects Agency (DoD)

Defense Small Business Innovation Research Program

ARPA Order No. 5916

Issued by U.S. Army Missile Command Under Contract #DAAH01-86-C-1074

Contract Dates: September 26, 1986 - May 30, 1987

Prepared by Dr. Jonah H. Jacob

617-547-1122

DISTRIBUTION STATEMENT A Approved for public released Distribution Unlimited

656

AD-A181

Science Research Laboratory, Inc.

80

15 Word Street Somerville MA 02143

. NEW DISCHARGE PUMPING METHOD FOR CO2 LASERS

N.S.

RSN I

222

SS

R

FINAL TECHNICAL REPORT

Sponsored by

Defense Advanced Research Projects Agency (DoD)

Defense Small Business Innovation Research Program

ARPA Order No. 5916

Issued by U.S. Army Missile Command Under Contract #DAAH01-86-C-1074

Contract Dates: September 26, 1986 - May 30, 1987

Prepared by

Dr. Jonah H. Jacob

Science Research Laboratory, Inc. 15 Ward Street Somerville, MA 02143

617-547-1122 "The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government." <u>DISTRIBUTION STATEMENT A</u> Approved for public releases <u>Distribution Unlimited</u> SCIENCE RESEARCH LABORATORY

	REPORT DOCU	MENTATION	PAGE		
10 REPORT SECURITY CLASSIFICATION		15. RESTRICTIV	E MARKINGS	1811	.36
Unclassified 2. SECURITY CLASSIFICATION AUTHORITY		None		OF REPORT	
N/A			+		
N/A	nre	Uniimi	tea		
4. PERFORMING ORGANIZATION REPORT NUMB	CR(5)	S MONITORING	G ORGANIZATION	REPORT NUM	OER(S)
01/F/1987					
63. NAME OF PERIORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	73 NAME OF	MONITORING ORGA	NIZATION	3
Science Research Laborator	4 .	0.5. AI	my Missile	Command	1
6: ADDRESS (City, State, and ZIP Code)		76 ADDRESS (C	City, State, and ZIP	Code)	
Somerville, MA 02143		Ms. Gol	die Hill	A Proj (OFC
		Redston	e Arsenal,	AL 358	98-5280
Ba. NAME OF FUNDING / SPONSORING ORGANIZATION	(If applicable)	9 PROCUREMEN	NT INSTRUMENT ID	ENTIFICATION	N NUMBER
DARPA		DAA	H01-86-C-1	074	
Bc. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF	FUNDING NUMBER	RS	
Arlington, VA 22209		ELEMENT NO	NO	NO	ACCESSION A
				1	
11 TITLE (Include Security Classification) New Discharge Pumping Me 12. PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical FROM 9/	thod for CO ₂ b 0VERED 26/8605/30/87	Lasers (U 14. DATE OF REP. May 2) ORT (Year Month, 7, 1987	Day) 15 PI	AGE COUNT
11 TITLE (Include Security Classification) New Discharge Pumping Me 12. PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 13. SUPPLEMENTARY NOTATION	thod for CO ₂ b OVERED 26/8605/30/87	Lasers (U 14. DATE OF REP. May 2) ORT (Year Month, 7, 1987	Day) 15 P/	AGE COUNT
11 TITLE (Include Security Classification) New Discharge Pumping Me 12. PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 13. SUPPLEMENTARY NOTATION	thod for CO ₂ b OVERED 26/8605/30/87	Lasers (U 14. DATE OF REP. May 2) ORT (Year Month, 7, 1987	Day) 15 PJ	AGE COUNT
11 TITLE (Include Security Classification) New Discharge Pumping Me 12. PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT 13b. TIME C Final Technical FROM 9/ 16 SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB-GROUP	thod for CO ₂ b <u>26/86705/30/87</u> 18 SUBJECT TERMS (Lasers (U 14. DATE OF REP. May 2) ORT (Year Month, 7, 1987 se il necessary and	Day) 15 PJ	AGE COUNT 49 block number)
11 TITLE (Include Security Classification) New Discharge Pumping Me 12. PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 16 SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP	thod for CO ₂ b OVERED 26/86T05/30/87	Lasers (U 14. DATE OF REP May 2) ORT (Year Month, 7, 1987	Day) 15 Pl	AGE COUNT 49 block number)
11 TITLE (Include Security Classification) New Discharge Pumping Me 12. PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT 13b. TIME C Final Technical FROM 9/ 16 SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB-GROUP	thod for CO ₂ b <u>26/86705/30/87</u> 18 SUBJECT TERMS (Lasers (U 14. DATE OF REP May 2) ORT (Year Month, 7, 1987 se il necessary and	Day) 15 Pl	AGE COUNT 49 block number)
11 TITLE (Include Security Classification) New Discharge Pumping Me 12. PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 14. SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB-GROUP 19 ABSURACT (Continue on reverse if necessary A new pulsed laser dis	thod for CO ₂ b UVERED 26/86To5/30/87 18 SUBJECT TERMS (and Identify by block of charge concept	Lasers (U 14. DATE OF REP May 2 Continue on rever humber) ot is propu) ORT (Year, Month, 7, 1987 Se if necessary and osed to mee	Day) 15 Pl	AGE COUNT 49 block number)
11 TITLE (Include Security Classification) New Discharge Pumping Me 12. PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT 13b. TIME C Final Technical 13b. TIME C Final Technical FROM 9/ 16 SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB-GROUP SUB-GROUP 19 ABSUMACT (Continue on reverse if necessary A new pulsed laser dis sivilian requirements for e Sub-Start dis	thod for CO ₂ b <u>26/86705/30/87</u> 18 SUBJECT TERMS (and Identify by block of charge concept fficient oper	Lasers (U 14. DATE OF REP May 2 (Continue on rever humber) ot is proper) ORT (Year Month, 7, 1987 se if necessary and osed to mee compact, h:	Day) 15 P/ 1 Identify by et militigh ener	block number)
11 TITLE (Include Security Classification) New Discharge Pumping Me 12 PERSONAL AUTHOR(S) Jonah Jaco 13 TYPE OF REPORT Final Technical 13 TYPE OF REPORT Final Technical 13 TYPE OF REPORT Final Technical 13 TYPE OF REPORT FILD GROUP 14 SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB-GROUP A new pulsed laser dis rivilian requirements for e this discharge concept prom acalability to multi-kilojo	thod for CO ₂ b UVERED 26/86To5/30/87 IB SUBJECT TERMS (and Identify by block of charge concep fficient oper ises pulse le ule single pu	Lasers (U 14. DATE OF REP. May 2 Continue on rever but is proportion of of engths of m lsed energy) ORT (Year Month, 7, 1987 Se if necessary and osed to med compact, hi up to 100 r	Day) 15 Pl I Identify by et milit igh ener microsec	block number)
11 TITLE (Include Security Classification) New Discharge Pumping Me 12. PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 13b. TIME C FROM 9/ 16 SUPPLEMENTARY NOTATION 17 COSATI CODES 18 GROUP 19 ABURACT (Continue on reverse if necessary A new pulsed laser dis 19 Anew pulsed laser dis 11 GROUP 12 COSATI CODES 13 FIELD 14 GROUP 15 SUB-GROUP 16 SUB-GROUP 17 COSATI CODES 18 A new pulsed laser dis 19 ABURACT (Continue on reverse if necessary A new pulsed laser dis Sivilian requirements for e 19 Discharge concept prom 19 So Joules/liter-atm) and	thod for CO ₂ b 26/86705/30/87 18 SUBJECT TERMS (and Identify by block of charge concept fficient oper ises pulse le ule single put high electri	Lasers (U 14. DATE OF REP May 2 (Continue on rever bumber) of is proper cation of of lsed energical effic	osed to mee compact, hi up to 100 r y, high vo iency (2)20	Day) 15 P/ 1 /dentify by et militi igh ener microsec lumetri 0%). Th	block number) block number) ary and cry CO2 las conds durat c efficience his dischar
11 TITLE (Include Security Classification) New Discharge Pumping Me 12 PERSONAL AUTHOR(S) Jonah Jaco 13 TYPE OF REPORT Final Technical 13 TYPE OF REPORT Final Technical 13 TYPE OF REPORT 13 SUPPLEMENTARY NOTATION 14 SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB-GROUP 19 ABSTRACT (Continue on reverse if necessary A new pulsed laser dis sivilian requirements for e this discharge concept prom calability to multi-kilojo 50 Joules/liter-atm) and concept relies on a new met wilse durations This new	thod for CO ₂ b VVERED 26/86To5/30/87 IB SUBJECT TERMS (and Identify by block of charge concep fficient oper ises pulse le ule single pul high electri hod for maint	Lasers (U 14. DATE OF REP May 2 Continue on rever but is proportion of of engths of the lsed energy cal efficients aning dis-) ORT (Year Month, 7, 1987 osed to med compact, hi up to 100 r y, high yo iency (2) scharge sta	Day) 15 P/ 1 Identify by et milit igh ener microsec lumetri 0%). Th ability	block number) block number) cary and cgy CO2 las conds durat c efficience is dischar for long
11 TITLE (Include Security Classification) New Discharge Pumping Me 12 PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 14. SUPPLEMENTARY NOTATION 15. TIPL SUPPLEMENTARY NOTATION 17. COSATI CODES 19 ABSUMACT (Continue on reverse if necessary A new pulsed laser dis sivilian requirements for e this discharge concept prom calability to multi-kilojo 2) 50 Joules/liter-atm) and concept relies on a new met pulse durations. This new of efficiency, repetition rate	thod for CO ₂ b UVERED 26/8605/30/87 18 SUBJECT TERMS (and Identify by block of charge concept fficient oper ises pulse le ule single pul high electri hod for maint CO ₂ laser dis , laser pulse	Lasers (U 14. DATE OF REP May 2 (ontinue on rever bumber) of is proper cation of of engths of the lsed energy ical efficients caining differences contarge contents e length, of the contents of the continue on rever) ORT (Year Month, 7, 1987 se if necessary and compact, hi up to 100 r up to 100 r up, high vo iency (2) scharge sta ncept promi	oby) 15 P/ 1 /dentify by et milit igh ener microsec lumetri 0%). The ability ises ince energy p	block number) block number) cary and cgy CO2 las conds durat c efficience is dischar for long creased ber unit
11 TITLE (Include Security Classification) New Discharge Pumping Me 12 PERSONAL AUTHOR(S) Jonah Jaco 13 TYPE OF REPORT Final Technical 13 TYPE OF REPORT Final Technical 13 SUPPLEMENTARY NOTATION 14 SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB-GROUP 19 ABSTRACT (Continue on reverse if necessary A new pulsed laser dis sivilian requirements for e chis discharge concept prom calability to multi-kilojo 50 Joules/liter-atm) and concept relies on a new met pulse durations. This new of fficiency, repetition rate colume and reliability. Th	thod for CO ₂ b VVERED 26/86To5/30/87 IN SUBJECT TERMS (and Identify by block of charge concept fficient oper ises pulse le ule single pul high electri hod for maint CO ₂ laser dis , laser pulse e concept uti	Lasers (U 14. DATE OF REP. May 2 (Continue on rever but is proper cation of of lased energy cal effic cal effic caning di scharge con e length, of lizes a cu) ORT (Year Month, 7, 1987 osed to me compact, hi up to 100 r y, high yo iency (2) scharge sta ncept promi extracted o urrent sour	Day) 15 P/ 1 /dentify by et milit igh ener microsec lumetri 0%). Th ability ises inc energy H rce to i	block number) block number) cary and cgy CO2 las conds durat c efficience is dischar for long creased ber unit insure volu
11 TITLE (Include Security Classification) New Discharge Pumping Me 12 PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 13. TYPE OF REPORT Final Technical 13. TIML C FROM 9/ 16 SUPPLEMENTARY NOTATION 17 COSATI CODES 19 ABLEACT (Continue on reverse if necessary A new pulsed laser dis sivilian requirements for e chis discharge concept prom calability to multi-kilojo 50 Joules/liter-atm) and concept relies on a new met bulse durations. This new efficiency, repetition rate colume and reliability. Th ric stability. Such a sou ormation. Streamer format	thod for CO ₂ b UVERED 26/8605/30/87 18 SUBJECT TERMS (and Identify by block of charge concept fficient oper ises pulse le ule single pulse high electri hod for maint CO ₂ laser pulse concept uti rce will not ion can be in	Lasers (U 14. DATE OF REP May 2 Continue on rever Dumber) of is proper cation of of engths of m lsed energy ical effic caining di scharge con e length, of lizes a con stabilize oductively) ORT (Year Month, 7, 1987 se if necessary and compact, hi up to 100 r y, high vo iency (2) scharge sta ncept prom extracted our urrent sour the discha inhibited	oay) 15 P/ 1 /dentify by et milit igh ener microsec lumetri 0%). Th ability ises inc energy p rce to is arge aga by the	block number) block number) block number) cary and cgy CO2 las conds durat c efficience is dischar for long creased ber unit insure volu ainst strea use of RF.
11 TITLE (Include Security Classification) New Discharge Pumping Me 12 PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 13. TYPE OF REPORT Final Technical 13. TYPE OF REPORT Final Technical 14. SUPPLEMENTARY NOTATION 15. TIML C FROM 9/ 16. SUPPLEMENTARY NOTATION 17 COSATI CODES 19 19 19 ABSUMACI (Continue on reverse if necessary A new pulsed laser dis sivilian requirements for e this discharge concept promiscalability to multi-kilojo 50 Joules/liter-atm) and concept relies on a new met pulse durations. This new for efficiency, repetition rate colume and reliability. Th sic stability. Such a sou formation. Streamer format tence an RF current source	thod for CO ₂ b UVERED 26/8605/30/87 18 SUBJECT TERMS (and Identify by block of charge concept fficient oper ises pulse le ule single pul high electri hod for maint CO ₂ laser dis , laser pulse e concept uti rce will not ion can be in could result	Lasers (U 14. DATE OF REP May 2 Continue on rever bumber) of is proper cation of of lased energy is charge con- e length, of lizes a co- stabilize in a more) ORT (Year Month, 7, 1987 ase if necessary and osed to mee compact, hi up to 100 r y, high yo iency (2) scharge sta ncept promi extracted of urrent sour the discha inhibited stable las	Day) 15 P/ 1 /dentify by et mility igh ener microsec lumetri 0%). Th ability ises inc energy H rce to is arge aga by the ser disc	block number) block number) cary and cgy CO2 las conds durat c efficience is dischar for long creased per unit insure volu ainst strea use of RF. charge.
11 TITLE (Include Security Classification) New Discharge Pumping Me 12 PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 14. SUPPLEMENTARY NOTATION 15. TIPL 16 SUPPLEMENTARY NOTATION 17 COSATI CODES 19 ABSTRACT (Continue on reverse if necessary A new pulsed laser dis sivilian requirements for e this discharge concept prom calability to multi-kilojo 2) 50 Joules/liter-atm) and concept relies on a new met pulse durations. This new efficiency, repetition rate colume and reliability. Th ric stability. Such a sou cormation. Streamer format dence an RF current source 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	thod for CO ₂ b <u>UVERED</u> <u>26/8605/30/87</u> 18 SUBJECT TERMS (and Identify by block of charge concept fficient oper ises pulse le ule single pul high electri hod for maint CO ₂ laser dis , laser pulse e concept uti rce will not ion can be in could result	Lasers (U 14. DATE OF REP May 2 Continue on rever bumber) of is proper cation of of engths of the lsed energy is charge contended of the cal efficients cal efficien) ORT (Year Month, 7, 1987 3e if necessary and osed to mee compact, hi up to 100 r iency (2) scharge sta ncept promi- extracted of urrent sour the discha inhibited stable las	oby) 15 P/ 1 /dentify by et milit igh ener microsec lumetri 0%). The ability ises incomergy H rce to is arge aga by the ser disc	block number) block number) block number) cary and cgy CO2 las conds durat c efficient is dischar for long creased ber unit insure volu ainst strea use of RF. charge.
11 TITLE (Include Security Classification) New Discharge Pumping Me 12 PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 14. SUPPLEMENTARY NOTATION 15. TIME C FIELD 16. SUPPLEMENTARY NOTATION 17 COSATI CODES 19 19 19 19 19 11 11 12 13. TYPE OF REPORT 14 15 16 17 18 19 19 19 19 11 11 12 13 14 15 16 17 18 19 19 19 19 10 11	thod for CO ₂ b UVERED 26/8605/30/87 IB SUBJECT TERMS (and Identify by block of charge concept fficient oper ises pulse le ule single pulse high electri hod for maint CO ₂ laser dis , laser pulse e concept uti rce will not ion can be in could result	Lasers (U 14. DATE OF REP May 2 Continue on rever bumber) ot is proper cation of of engths of m lsed energy ical effic caining di scharge con e length, of lizes a con stabilize in a more 21 ABSTRACT SE Uno) ORT (Year Month, 7, 1987 ase if necessary and osed to men compact, hi up to 100 r (y, high vo iency (2) scharge sta ncept promi extracted of urrent sour the dischar inhibited stable lase ECURITY CLASSIFICA	Day) 15 P/ 1 /dentify by et milit igh ener microsec clumetri 0%). Th ability ises inc energy p rce to is arge aga by the ser disc	block number) block number) cary and cgy CO2 las conds durat c efficience is dischar for long creased ber unit insure volu ainst strea use of RF. charge.
11 TITLE (Include Security Classification) New Discharge Pumping Me 12 PERSONAL AUTHOR(S) Jonah Jaco 13. TYPE OF REPORT Final Technical 13. TYPE OF REPORT Final Technical 13. TYPE OF REPORT 13. TYPE OF REPORT 13. TYPE OF REPORT 13. TIML C FROM 9/ 16 SUPPLEMENTARY NOTATION 17 COSATI COOLS FIELD GROUP SUB-GROUP 19 ABSWACCI (Continue on reverse if necessary A new pulsed laser dis sivilian requirements for e Chis discharge concept prom calability to multi-kilojo 2) 50 Joules/liter-atm) and concept relies on a new met pulse durations. This new of fficiency, repetition rate olume and reliability. Th Fric stability. Such a sou ormation. Streamer format Dence an RF current source 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT EXUNCLASSIFICOTUNITIED D SAME AS FR 22. NAME OF RESPONSIBLE INDIVIDUAL Jonah Jacob	thod for CO ₂ b <u>26/86ro5/30/87</u> IN SUBJECT TERMS (and Identify by block of charge concept fficient oper ises pulse le ule single put high electri hod for maint CO ₂ laser dis , laser pulse e concept uti rce will not ion can be in could result	Lasers (U 14. DATE OF REP May 2 Continue on rever bumber) of is proper cation of of lased energy ischarge con e length, of lizes a con stabilize in a more 21 ABSTRACT SE UNI 22b TELEPHONE 617-547-	osed to me compact, h up to 100 r y, high vo iency (2) scharge sta ncept prom extracted ourrent sour the discha inhibited stable las	Day) 15 P/ 1 /dentify by et mility igh ener microsec lumetri 0%). Th ability ises inc energy p rce to is arge aga by the ser disc ATION	block number) block number) cary and cgy CO2 las conds durat c efficience is dischar for long creased ber unit insure volu ainst strea use of RF. charge.

TABLE OF CONTENTS

XX

X

22

1253

8

199

8

P

1.0	INTRODUCTION	1
2.0	VOLUMETRIC DISCHARGE STABILITY MODEL	4
	2.1 Stability of the Discharge Driven by a Voltage Source	4
	2.2 Stability of a Discharge Driven by a Current Source	9
	2.3 Finite Impedence Voltage Source	12
3.0	MODELLING THE CO2 LASER DISCHARGE	16
	3.1 Regions of Stable Operation for a CO ₂ Laser Discharge	20
4.0	INDUCTIVE DISCHARGE STABILIZATION	29
5.0	EFFECT OF RF MODULATION ON CO2 LASER OPERATION	36
6.0	CONCEPTUAL DESIGN OF SINGLE PULSE EXPERIMENT	41
7.0	SUMMARY	48
REFER	RENCES	49

		1
Accesi	on For	1
NTIS DTIC Uttann Justifie	CRA&I TAB ounced cation	
By Dist.ib	ution /	
A	vailability	Codes
Dist	Avail and Speci	d or al
AH		

QUALITY

SCIENCE RESEARCH LABORATORY

The second states and second s

and a construction

PAGE

NEW DISCHARGE PUMPING METHOD FOR CO2 LASERS

ABSTRACT

22

225

22

838

No.

225

A new pulsed laser discharge concept is proposed to meet military and civilian requirements for efficient operation of compact, high energy CO_2 lasers. This discharge concept promises pulse lengths of up to 100 microseconds duration, scalability to multi-kilojoule single pulsed energy, high volumetric efficiency (\geq 50 Joules/literatm) and high electrical efficiency (\geq 20%). This discharge concept relies on a new method for maintaining discharge stability for long pulse durations. This new CO_2 laser discharge concept promises increased efficiency, repetition rate, laser pulse length, extracted energy per unit volume and reliability. The concept utilizes a current source to insure volumetric stability. Such a source will not stabilize the discharge against streamer formation. Streamer formation can be inductively inhibited by the use of RF. Hence an RF current source could result in a more stable laser discharge.

NAME OF THE STOCKED IN THE PARTY OF THE PART

1.0 INTRODUCTION

3

X

A new laser discharge concept has been identified which is compatible with military and civilian applications which require efficient operation of compact high power CO2 lasers. This concept is based on a new discharge method which will insure the macroscopic and microscopic stability of the discharge at high pump power density and for long pulse lengths. This discharge concept promises pulse lengths of up to 100 microseconds duration, scalability to multikilojoule single pulse energy, high volumetric efficiency (up to 50 Joules/liter-atm), and high electrical efficiency. This new discharge method utilizes spatially uniform x-ray or UV preionization of the laser medium followed by a discharge pulse which initially supplies a voltage across the discharge electrodes, approximately equal to twice the sustaining voltage, to avalanche the electron density uniformly to 1012 electrons/cm3. The current source drive prevents volumetric discharge instabilities. The oscillating discharge voltage prevents localized electron density avalanche by controlling the ionization and recombination during the peaks and valleys of waveform and by limiting, by inductance, the localization of discharge current.

In Section 2 of this report the analytical and numerical model of this new CO₂ laser discharge concept is presented, regions of stable discharge operation and efficient CO₂ laser performance will be identified. In Section 3 this model is applied to the special case of a CO₂ laser discharge. Section 4 discusses inductive stabilization by the use of RF. Section 5 discusses the impact of RF on the CO₂ laser

operation. In Section 6 this report a conceptual design for a single pulse CO_2 laser experiment which can be used to validate this new discharge concept is presented.

8

1

XXX

8

R.S.

88

8

8

2ª

ST.

XII

SCIENCE RESEARCH LABORATORY

2.0 VOLUMETRIC DISCHARGE STABILITY MODEL

22

22

No.

R

NYS.

3

222

1227

2

882

100

Two rate equations are important in determining the stability of the discharge. The first is the electron production and loss

$$\frac{dn_e}{dt} = \nu n_m n_e - \alpha n_e^2 - \beta n_e$$
(1)

and the second is the metastable production and loss

$$\frac{dn_{m}}{dt} = \langle \sigma v \rangle n_{e}n_{a} - n_{m}/\tau_{m}$$
(2)

where n_e is the electron density, n_m is the metastable density, α is the recombination rate, β is the attachment rate, $\langle \sigma v \rangle$ is the electron impact metastable production rate constant and τ_m is the metastable lifetime. The ionization rate constant r in Eq. (1) is assumed to be the result of metastable ionization. Since the metastable levels have a much smaller ionization energy than the ground state the ionization rate of the discharge is dominated by electron impact ionization of the metastables. The stability of Eqs. (1) and (2) will be analyzed for both current and voltage sources and for a voltage source having an arbitrary impedence.

2.1 STABILITY OF THE DISCHARGE DRIVEN BY A VOLTAGE SOURCE

The rate Eqs. (1) and (2) are a pair of nonlinear simultaneous differential equations. If the discharge electric field (voltage source) is constant in time they can be solved by a perturbation analysis around the steady state, i.e.,

4

EXEMPERATION OF THE CONTRACTOR AND A CONT

$$n_e = n_{eo} + \delta n_e \tag{3}$$

 $n_{\rm m} = n_{\rm mo} + \delta n_{\rm m} \tag{4}$

Substituting Eqs. (3) and (4) into (1) and (2) and seeking solutions of the form $\sin_{em} \sim \exp(-i\omega t)$ results in the following quadratic equation in ω

$$\omega^{2} + i\omega \left(\alpha n_{ee} + \frac{1}{\tau_{m}} \right) + \frac{\beta}{\tau_{m}} = 0$$
 (5)

The two roots of (5) are

$$\omega_{\pm} = -\frac{i}{2} \left[\left(an_{ee} + \frac{1}{\tau_{m}} \right) \pm \left\{ \left(an_{ee} + \frac{1}{\tau_{m}} \right)^{2} + \frac{4\beta}{\tau_{m}} \right\}^{1/2} \right] \quad (6)$$

From Eq. (6) one can draw the following conclusions for a voltage source driven discharge

(a) The discharge is marginally stable when the attachment rate **B** is zero. The two roots are $w_1 = 0$ (marginally stable) and $w_2 = -i(\alpha n_{e_0} + 1/\tau_n)$ decaying.

(b) For a finite attachment rate there are no stable roots. For a recombination dominated discharge, the decaying root is the same as for the case with zero attachment and growing root is given by

$$w_1 = \beta (1 + an_{e0} \tau)^{-1}$$

To verify these solutions Eqs. (1) and (2) have been numerically integrated and the results are shown in Figs. 1, 2 and 3.

Figure 1 shows plots of n_e and n_m as a function of time for the special case of zero attachment. n_{e0} was initialized to 10^{14} cm⁻³ and n_{me} to zero. The electron density decreases rapidly initially until

5

SCIENCE RESEARCH LABORATORY

and

n

غ.

Figure 3

the metastable density reaches a steady state value of about 2.2 x 10^{14} . The electron density then stabilizes at a density of 7 x 10^{13} cm⁻³.

Figure 2 shows the result of introducing a small amount of attachment (i.e., $\beta = 10^5 \text{ sec}^{-1}$). Again the initial n_{e0} and n_m were 10^{14} cm^{-3} and zero notice that the discharge is unstable. However, if the initial electron density is chosen to be 2 x 10^{13} cm⁻³ the discharge decays. By inspecting Eqs. (1) and (2) in the presence of attachment it can be shown that there exists critical electron density

$$n_{ac} = \beta (v < \sigma v > \tau_{a} n_{a} - \alpha)^{-1}$$

For an initial electron density, $n_{ei} > n_{ec}$ the discharge is unstable and for $n_{ei} < n_{ec}$ the discharge is quenched.

2.2 STABILITY OF A DISCHARGE DRIVEN BY A CURRENT SOURCE

Next, Eqs. (1) and (2) will be investigated for the case of constant current source. A constant current source implies that

 $J_{p} = n_{e} v_{d} e = const$

and any perturbation in the electron density must immediately result in a perturbation of the drift velocity v_d , i.e.,

$$\delta(\mathbf{v}_d) = -\mathbf{v}_{do} \frac{\delta \mathbf{n}_e}{\mathbf{n}_{eo}} \tag{7}$$

This change in v_d can only result from change in the electric

9

field E

$$\delta \mathbf{E} = (\delta \mathbf{v}_d) \left(\frac{\partial \mathbf{v}_{d0}}{\partial \mathbf{E}}\right)^{-1} = -\frac{\mathbf{v}_{d0}}{\mathbf{v}_{d0}} \frac{\delta \mathbf{n}_{00}}{\mathbf{n}_{00}}$$
(8)

For CO₂ laser mixtures $(\partial v_{de}/\partial E) > 0$ and so Eq. (8) implies that an increase in n_e leads to a decrease in the electric field which leads to subsequent decrease in production of the metastables and electrons.

The linearized rate equations for a current source drive can be written as

$$\frac{d(\delta n_m)}{dt} = n_{ee}(n_{me}r' - n_{ee}a') \delta E + rn_{ee}(\delta n_m) + (rn_{me} - 2an_{ee})\delta n_e$$
(9)

$$\frac{d(\delta n_{\rm m})}{dt} = \langle \sigma v \rangle n_{\rm g} n_{\rm ee}(\delta E) - \frac{1}{\tau_{\rm m}} (\delta n_{\rm m}) + \langle \sigma v \rangle n_{\rm g}(\delta n_{\rm e})$$
(10)

Substituting Eq. (8) into (9) and (10) and assuming the form $\delta n_{em} \sim \exp(-i\omega t)$ and that α is small one gets $rn_{ee}(\delta n_m) + \left(i\omega + rn_{me} - 2\alpha n_{ee} - \frac{v_{de}n_{me}r'}{v'_d} + \frac{\alpha' n_{ee} v_{de}}{v_d}\right) \delta n_e = 0$ (11)

and

$$\mathbf{i}_{\mathbf{u}} - \frac{1}{\tau} \quad (\delta \mathbf{n}_{\mathbf{m}}) + \left(\langle \sigma \mathbf{v} \rangle \mathbf{n}_{\mathbf{a}} - \frac{\mathbf{n}_{\mathbf{a}} \mathbf{v}_{\mathbf{d}} \langle \sigma \mathbf{v} \rangle}{\mathbf{v}_{\mathbf{d}}} \right) \delta \mathbf{n}_{\mathbf{e}} = 0 \tag{12}$$

Equations (11) and (12) can be combined to give

$$\omega^{2} + i\omega \left(\alpha n_{ee} + \frac{1}{\tau_{m}} + \frac{v_{de} - n_{me} v'}{v_{d}} - \alpha - \frac{v_{de} n_{ee}}{v_{d}'} \right) - \frac{v - v_{de} - n_{me}}{v_{d} - \tau_{m}} \left(\frac{v'}{v} + \frac{\langle \sigma v \rangle'}{\langle \sigma v \rangle} - \frac{\alpha'}{\alpha} \right)$$
(13)

10

SCIENCE RESEARCH LABORATORY

The two roots of the equations are

$$\omega_{\pm} = -\frac{1}{2} \left[A \pm \{ A^2 + 4B \}^{1/2} \right]$$
 (14)

$$A = \alpha n_{ee} + \frac{1}{\tau_{m}} + \frac{v_{de} n_{me} r'}{v_{d}} - \alpha' \frac{v_{de}}{v_{d}'} n_{ee}$$
(15)

and

1

$$B = -\frac{v v_{do} n_{mo}}{v'_{d} \tau_{m}} \left(\frac{v'}{v} + \frac{\langle \sigma v \rangle}{\langle \sigma v \rangle} - \frac{\alpha'}{\alpha}\right)$$
(16)

At the electric fields that result in efficient laser operation both r' and $\langle rv \rangle'$ are positive and a' is negative, and hence B is negative and both roots of Eq. (14) results decaying exponentials, i.e. the system becomes absolutely stable. Physically this comes about because any increase in the current will result in a decrease in the electric field and hence in the rate constants for the metastable production and ionization will decrease. In the presence of attachment Eq. (13) becomes

$$\omega^{2} + i\omega\lambda + \left(\frac{\beta}{\tau_{m}} + B\right) = 0 \qquad (17)$$

So when $\beta > |B\tau_m|$ the one of the roots are unstable, when $\beta = |B\tau_m|$ the discharge is marginally stable and when $\beta < |B\tau_m|$ the discharge is absolutely stable. Physically Eq. (17) says that the discharge is marginally stable if the electron production rate is not a function of the electric field. However, if the electron production rate decreases as the electric field increases (i.e., $\beta < |\tau_m B|$) the discharge is stable and if the electron production rate increases as the electric field decreases the discharge is unstable

2.3 FINITE IMPEDENCE VOLTAGE SOURCE

In practice one does not have either a voltage or a current source and so it is important to consider the effect of a finite impedence circuit on the stability of the laser discharge. A simplified circuit of the discharge and power supply is shown in Fig. 4. The power supply is assumed to be a voltage source V with an internal impedence ρ . The current J through the discharge is given by

$$\mathbf{J} = (\mathbf{V} - \mathbf{E})/\rho \tag{18}$$

where E is the electric field in the discharge. For simplicity the discharge is assumed to be a cubic centimeter. The perturbed current &J can be written as

$$\delta J = - \delta E / \rho = e v_{do} \delta n_e + e n_e \delta v_{do}$$

or

$$\delta \mathbf{E}_{\mathbf{0}} = - \mathbf{e} \mathbf{v}_{\mathbf{d} \mathbf{0}} \left(\delta \mathbf{n}_{\mathbf{e}} \right) \left(\frac{1}{\rho} + \mathbf{e} \ \mathbf{n}_{\mathbf{e}} \ \mathbf{v}_{\mathbf{d} \mathbf{0}} \right)^{-1}$$
(19)

Comparing this to Eq. (8) one finds that the stability criteria developed in the previous section are valid provided v_d is replaced by

$$v_{d1} \rightarrow v_d + \frac{v_{d0}}{e_{\rho n_{e0}}}$$

¹² SCIENCE RESEARCH LABORATORY

GENERAL CIRCUIT MODEL

Figure 4

SCIENCE RESEARCH LABORATORY

$$v_{d1} \rightarrow v_{d}' + \frac{v_{d0}}{E} - \frac{\rho_{disc}}{\rho}$$
 (20)

where

No.

1923

222

22

disc =
$$\frac{E}{J}$$
 (21)

It is interesting to note that for a PFN supply $\rho_{disc} = \rho$ and equation predicts that B as defined (16) decreases approximately by a factor of two. Also as $\rho \rightarrow 0$, $v_{d1} \rightarrow \infty$ and the stability criteria for a voltage source are recovered. When $\rho \rightarrow \infty$, $v_{d1} \rightarrow v_d$ and the stability criteria for a current source are recovered.

The volumetric discharge stability analysis presented in this section is summarized in Table I for the three discharge sources, voltage current and resistive sources. The voltage source is marginally stable for a discharge whose electron loss is only via recombination, any attachment, however, small results in an unstable discharge. The current and resistive sources have stable operating regions. The stable region decreases as the attachment rate increases and as the resistance of the source decreases. In the remainder of this section these regions of stable operation will be evaluated for the special case of a CO_2 laser discharge.

TABLE I

2.5

VOLUMETRIC DISCHARGE STABILITY

CONCLUSIONS

	ELE(CTRON LOSS MECH	NSN
DISCHARGE POWER SOURCE	RECOMBINATION (ZERO ATTACHMENT)	ATTACHIMENT DOMINATED	RECOMBINATION AND ATTACHMENT
 VOLTAGE SOURCE 			UNSTABLE
 CURRENT SOURCE 	- STABLE OPERATING REGION ⁺	STABLE OPERATING REGION*	STABLE OPERATING REGION*
RESISTIVE SOURCE		STABLE OPERATING REGION**	- STABLE OPERATING REGION**

'ସ ୪ $\left(\frac{\sqrt{2}}{\sqrt{2}}\right)$ $B = \frac{\sqrt{d}}{2}$ $\frac{V_{d'}}{V_{d}} + \frac{1}{E} \left(\frac{P_{disc}}{\rho} \right)$ • $|B| > \beta / \tau_m$ where

, > |> |>

3.0 MODELLING THE CO, LASER DISCHARGE

The discharge model developed so far will be applied to the specific case of a CO_2 laser discharge. Before this can be done, however, one has to know the relevant rate constants for the CO_2 mixture as a function of electric field. The mixture of choice for this effort is a 3/2/1, $He/N_2/CO_2$ mixture. The rate constants for the ionization and excitation of the electronic states of N_2 , the fraction of discharge energy that goes into vibration excitation, the drift velocity and electron temperature as predicted by the Boltzmann code are shown in Figs. 5 and 6. From Fig. 5 which is a plot of T_e , v_d and efficiency of exciting the vibrational levels of N_2 , it is clear that efficient CO_2 operation occurs between 5-10 kV/cm.

Figure 6 shows the variation r and $\langle rv \rangle$ as a function of the electric field. Also shown in Fig. 6 is the curve for the ionization from the ground state. The curve for $\langle rv \rangle$ shown in Fig. 6 is the total excitation rate constant for all the electronic levels. This was chosen since it is difficult to identify the relevant metastable or electronic state that will be subsequently ionized. It is probable that this state will be a high lying state such as the C state of N₂. The metastable ionization rate constant r has the same shape as the electron impact ionization of the N₂ (a Σ_u), ⁽¹⁾ its magnitude, however, was increased by 10². Since this state is about 9 eV below the ionization level of N₂ as opposed to the C level which is only 6 eV below the ionization level. From this figure it is clear that $r_a \ll r$ and so for any reasonable metastable density ($n_m > 10^{12}$ cm⁻³) the metastable ionization will be dominant. Figure 7 shows the

16

Figure 5

Figure 6

18 SCIENCE RESEARCH LABORATORY

recombination coefficient as a function of the electric field. Measurements of the recombination coefficient for a 3/2/1 laser has been made for electric field strengths between 2.5 and 5 kV/cm.⁽¹⁾ The curve shown in Fig. 7 make use of these measurements.

3.1 REGIONS OF STABLE OPERATION FOR A CO, LASER DISCHARGE

Combining the rate constants predicted by the Boltzmann code with the stability analysis one can identify regions of stable discharge operation for the special case of a CO, laser. Figure 8 is a plot where $C = (B/\tau_n + B)$, as a function of electric field for an electron density of 10^{12} cm⁻³ and zero attachment. As discussed earlier the discharge is marginally stable when C = 0 unstable when C > 00 and absolutely stable when C < 0. The stable and unstable regions have been identified in Fig. 8. For zero attachment the discharge is marginally stable or absolutely stable as predicted by the stability analysis. For a voltage source with zero internal resistance the discharge is marginally stable. When the pulsed power impedence is equal to the discharge impedence the discharge is absolutely stable between 5-15 kV/cm and marginally stable for electric fields below 5 kV/cm. For electric fields > 15 kV/cm the discharge will probably become unstable because C > 0. This is because y becomes negative. The discharge stability at these high electric fields have not been investigated because it is of little interest for the CO₂ lasers.

In Fig. 9 one sees the effect of adding some attachment. One **immediately sees** that the case of $\rho = 0$ (voltage source) which was **marginally stable** before is now unstable however the case where $\rho = \rho_{disc}$ and $\rho = \infty$ (current source) still have stable operating regions

20 SCIENCE RESEARCH LABORATORY

Figure 8

i.

Figure 9

22 SCIENCE RESEARCH LABORATORY

between 7 and 13 kV/cm. By inspecting Eq. (16) it is clear that the discharge becomes more stable as n_e increases. This is graphically shown in Fig. 10. In fact for $n_e < 10^{11}$ cm⁻³ and $\beta = 2 \times 10^5$ sec⁻¹ the discharge is unstable for all values of electric field, this can be seen in Fig. 11. So for small values of n_e and electric fields > 15 kV/cm the secondary electron density will rapidly increase until n_e is large enough and the discharge becomes stable. During this rapid growth of n_e streamers can form, and the discharge can go unstable. To prevent this from happening the initial spatial distribution of n_e must be uniform, further by having an RF source such streamer formation can be inhibited.

The rate Eq. (1) and (2) has been solved simultaneously with the circuit Eq. (18) for the special case of a 3/2/1, $He/CO_2/N_2$ laser discharge. This code also makes use of the rate constants and secondary electron parameters shown in Figs. 5, 6 and 7. The predictions of this code are plotted in Figs. 12 and 13. Figure 12 shows the temporal variation of n_e and E for the circuit impedence of 10^4 Ω . Such an impedence is somewhat larger than the discharge impedence of $8 \times 10^3 \Omega$. The initial electron density was assumed to be 10^{12} cm^{-3} . The electron density increases by about 10% to $1.08 \times 10^{12} \text{ cm}^{-3}$ and the electric field decreases from its initial value of 9 kV/cm to slightly less than 8.5 kV/cm. The temporal variation of C is also shown in Figs. 12 and 13. For the case shown in Fig. 12 C is negative and such a discharge is stable. This discharge clearly becomes unstable when ρ is reduced to 1Ω . For this case the initial value of C is positive indicative of an unstable discharge. The electron

23

5 3 <u>.</u>*

26

÷

Figure 13 Curves of Ne, C, and E for unstable discharge

ľ

density suddenly increases by almost three orders of magnitude after 10 μ s. The discharge becomes stable at this large value of n_e ~ 8 x 10¹⁴ cm⁻³. As discussed in the preceding pages |B| increases linearly with n_e and hence the discharge will once again become volumetrically stable at the large value of n_e. Also, C becomes negative at these values of n_e which is consistent with a stable discharge. However, in practice any spatial nonuniformities in n_e could result in streamer formation during this transition.

4.0 INDUCTIVE DISCHARGE STABILIZATION

(Stabilisation Against Streamer Formation)

So far the volumetric stability of the discharge has been analyzed. Although a discharge can be volumetrically stable, micro instabilities and nonuniformities can lead constriction of the discharge and streamer formation. To stabilize the discharge against streamer formation SRL proposes to use an RF source. Since a streamer is far more inductive than the discharge, its formation and growth will be inhibited by using RF.

The effectiveness of inductive discharge stabilization can be evaluated from analysis of the equivalent circuit shown in Fig. 14. The discharge impedance, which has inductive and resistive components L_p and R_p while operating stably, is driven by an oscillating current source. The currents through these components are I_L and I_R respectively. The voltage drop across the inductor and resistor must be equal hence

$$i \cup LI_{L} = R I_{R}$$
 (22)

By conservation of current,

$$I_{L} + I_{R} = I \tag{23}$$

where I is the total current. Equations (22) and (23) can be solved simultaneously to give

29

STABILIZATION OF DISCHARGE BY INDUCTANCE

Ē

SCIENCE RESEARCH LABORATORY

$$I_{L} = \frac{R(R - i_{\psi}L)}{R^{2} + \psi^{2}L^{2}} I \qquad (24)$$

and

l

$$I_{R} = \frac{\omega^{2}L^{2} + i\omega RL}{R^{2} + \omega^{2}L^{2}} I \qquad (25)$$

For efficient discharge pumping the inductive current should be minimized, i.e., $R \ll \omega L$, and $I = I_R$. If the reverse is true then $I = I_L$ and the transfer of energy to the discharge will be very inefficient especially if additional resistive losses are present in the system.

Should the discharge begin to constrict, the inductance will increase and the resistance will decrease. Under these conditions the frequency of RF modulation can be chosen to inhibit arc formation.

From Eq. (22) it is clear that the RF frequency, f, should be selected such that

$$\frac{R_{D}}{2\pi L_{D}} > f > \frac{R_{e}}{2\pi L_{g}}$$

where R_s and L_s are the resistance and inductance of the perturbed discharge region. These constraints on the modulation frequency have a simple physical explanation. The constraint,

$$\frac{R_{\rm D}}{2\pi L_{\rm D}} > f,$$

insures that the skin depth at the modulation frequency is larger than the transverse dimension of the discharge. This constraint leads to spatially uniform pumping of the laser medium. On the other hand, the

constraint

$$\frac{R_s}{2\pi L_s} < f$$

insures that the skin depth at the modulation frequency is smaller than the transverse dimension of the discharge constriction. Therefore, oscillating discharge power is prevented from penetrating to the center of the constricted region. Regions of ionization instability in CO₂ laser discharges are most likely dominated by multistep ionization processes discussed in the preceding section. In this case, the ionization rate, r_1 , is not simply a function of the effective electric field, E/N, but is a function of the power density deposited into the discharge E.J/N. Consequently the limited power flow into the constricted discharge region reduces the ionization rate in that region and enhances stability.

The intrinsic inductance of the discharge can be estimated from the geometrical considerations shown schematically in Fig. 15. Also shown in Fig. 15 is the shape of the magnetic field for the symmetric current condition with no electron density perturbations. The discharge inductance is defined as

$$L_{D} = \frac{\text{fB.ds}}{I}$$

For a square aspect ratio (i.e., ℓ = h in Fig. 15)

$$L_{\rm D} = \frac{\mu_0 \ell^2}{4L} \tag{26}$$

32 SCIENCE RESEARCH LABORATORY

INTRINSIC INDUCTANCE OF DISCHARGE

Figure 15

B

33 SCIENCE RESEARCH LABORATORY

where L is the length of the active volume in the lasing direction and μ_{e} is the permeability of free space.

The inductance of the streamer representing the electron density perturbation can be calculated in a similar manner. The geometry of the streamer is shown in Fig. 16. Assuming that the streamer collapses to a radius a

$$L_{s} = \frac{\mu_{0} \ell}{2\pi} \ln \frac{2\ell}{a}$$
(27)

Dividing Eq. (27) by Eq. (26) one gets

D

$$L_{s}/L_{p} \sim \frac{2}{\pi} \frac{L}{\ell} \frac{2\ell}{\ln \frac{2\ell}{\pi}}$$

Typically l = 0.15 meters, $ln 2 l/a \sim 4$ and $L_s/L_D \sim 20$.

To calculate the required frequency of modulation the resistance of the CO₂ discharge must be estimated. The conductivity of the discharge is typically 3×10^{-2} mhos/m. For a discharge cross section of 1.5 x 10^3 cm² and a discharge length, ℓ , of 0.15 meters, the discharge resistance is 35 ohms. The inductance as given by Eq. (26) is 7 nH. So the RF modulation frequency should be in the range

5.3 x 10⁷
$$\frac{R_s}{R_p}$$
 Hz < f < 8 x 10⁸ Hz (28)

SCIENCE RESEARCH LABORATORY

The upper limit on modulation frequency, 800 MHz, insures that the skin depth of the discharge current is larger than the transverse dimension of the discharge so that the laser medium is pumped uniformly and efficiently. The remaining inequality relates to

INDUCTANCE OF CONSTICTED DISCHARGE

Figure 16

35 SCIENCE RESEARCH LABORATORY

inductive stabilization of constrictions in the discharge current. This inequality insures that the oscillating portion of the discharge current does not contribute to the current in the constricted region. The utility of this inequality is best understood by rewriting it as

$$\frac{R_s}{R_n} < \frac{f}{53}$$
 MHz

i k

. • • •

÷.

P

This inequality relates the streamer resistance (normalized to the stable discharge resistance) to the modulation frequency required to insure that the oscillating current does not flow through the streamer. Initially, in the stable discharge regime R_s is infinite and therefore $R_s/R_D \gg f/53$ MHz. As the discharge constricts, R_s/R_D falls below f/53 MHz and the oscillating current is cut off from the constricted region. At this point, the excess electron density in the constricted region should rapidly recombine thereby driving the discharge back to stable operation. If the modulation frequency in this example were chosen to be 50 MHz, then stabilization should begin to occur when the streamer resistance begins to drop below the discharge resistance, i.e. as the streamer begins to form.

5.0 EFFECT OF RF MODULATION ON CO2 LASER OPERATION

The RF modulation will have an impact on discharge and laser parameters such as electron density, temperature and small signal gain. These effects will be briefly discussed below.

The electron production and loss rate is given by

$$\frac{dn_e}{dt} = S + v_i n_e - \alpha n_e^2 - \beta n_e \qquad (29)$$

SCIENCE RESEARCH LABORATORY

ኯዀ፼ኯፚኯፚኯፚኯፚኯዄኯዄኯዄኯፚኯፚኯዄኯዄኯዄኯዄኯዄኯዄኯዄኯዄኯ

For a self sustained discharge, S=0. Typically, CO_2 laser discharges are recombination dominated. Because of the RF modulation, the discharge electric field will vary in time. The electron temperature and recombination rate will also vary. As the electric field decreases the average electron energy decreases and recombination rate increases which will have a stabilizing effect and allow slightly constricted regions in the discharge to recover to the ambient electron density.

It is desirable to keep the electron density constant in time. From Eq. (29) it is clear that, for $\beta << \alpha n_e$, the electron density will be constant if $f >> \alpha n_e$. Typically, $n_e \sim 10^{12}$ cm⁻³ and $\alpha \sim 10^{-6}$ cm³/sec (see Fig. 7). So if f >> 1 MHz, which is consistent with the modulation frequency given by (28), n_e will be essentially constant.

The RF electric field will cause variations in the average electron energy. Such variations result in inefficiencies because of nonoptimal pumping of N₂ vibrational levels (see Fig. 5). The electron temperature will be nearly constant if the RF frequency is

 $f >> k_e N_a$

where k_e is the electron impact excitation rate of ground state N_2 and N_a is the N_2 density. Typically $k_e = 5 \times 10^{-9} \text{ cm}^3/\text{sec}$ and $N_a = 5 \times 10^{18}$ cm⁻³ and therefore $f > 2 \times 10^{10}$ Hz. Since the RF modulation frequency will certainly be lower than 10^{10} Hz the average electron energy will follow the modulation frequency in time.

For the small signal gain to be constant, $f >> k_{e}$ N_c, where

37

 k_e (-10⁻¹² cm³/sec)⁽¹⁾ is the vibrational transfer rate from N₂ to CO₂ and N_c = 10¹⁹ cm⁻³ is the CO₂ number density. So for a constant small signal gain f > 10⁷ Hz. From Eq. (28) the RF modulation frequency will be chosen such that the small signal gain will be constant which is important for maintaining high laser extraction efficiency.

For efficient coupling of power into the laser discharge it is important that the impedence of the discharge does not vary strongly with the RF modulation. The power reflection R from a load having an impedence Z_1 is given by

$$R = \left(\frac{1 - Z_0/Z_2}{1 + Z_0/Z_2}\right)^2$$

where Z_e is impedence of the RF power supply and $Z_L \alpha E/en_e v_p$. From the curves shown in Fig. 5 the $v_p \alpha$ (E)^{1/2}. From Eq. (29) $n_e \alpha v_1/\alpha$. From Fig. 6 one can see that v_1 is a very strong function of the electric field while α decreases with increasing electric field. So n_e could vary very strongly with the electric field, i.e., $n_e \sim E^7$. Such a strong variation could result in power reflection from the discharge and the overall efficiency of the discharge could be adversely effected. It is in part for this reason that the RF frequency be chosen such that the electron density is constant, i.e. f >> an_e.

Finally the cross section area of the discharge will be constrained by the skin effect. For a given RF frequency the cross sectional area A must be smaller than a certain value if the current through the cross section is to be uniform. This unequality is given

38

SCIENCE RESEARCH LABORATORY

$$\mathbf{A} \leq \frac{1}{\pi \mathbf{f} \mu \sigma} \tag{30}$$

where ϵ the conductivity of CO₂ laser discharges is typically 2-3 x 10⁻² MHos/M.

From the preceding discussions a scaling map for CO_2 can be drawn such a scaling map is shown in Fig. 17. This figure is a plot of RF frequency vs cross sectional area of the discharge. As discussed earlier the RF frequency should be larger than 30 MHz for the small signal gain and electron density to be constant. On the high end the frequency is constrained by the skin effect. Also shown in Fig. 17 is the expected 10.6 μ laser energy that can be extracted per pulse. From this figure it is clear that this pumping technique can provide enough laser energy for most tactical applications.

by

6.0 CONCEPTUAL DESIGN OF SINGLE PULSE EXPERIMENT

The conceptual design of the experiment is sufficiently flexible to allow for variation of the discharge and laser parameters over a broad range to enable determination of the optimum discharge/laser conditions. Specifically the constant current RF power supply can have the following features:

- Variable frequency (10-100 MHz)
- Variable shunt impedence to allow for discharge current variation

• Discharge initiation with a 10 nsec overvoltage pulse having variable delay to the onset of the discharge sustainer pulse. In addition a UV preionizing source will provide an initial uniform density of electrons such a source is discussed later in this section. These features will permit rapid determination of the optimum laser performance within the constraints of ensuring discharge stability.

Figure 18 shows a schematic of the laser discharge and UV preionizer. The discharge cell will be fabricated out of a quartz tube having a diameter of 1 cm (cross sectional area of 0.8 cm^2) and a length of 50 cm. The RF power will be coupled in via a set of external electrodes that will be spaced about 1 cm apart. The RF source will be capable of delivering 6 kV and 20 A and the discharge current will be $0.5 - 1 \text{ A/cm}^2$ and the electric field 5-6 kV/cm. The laser discharge characteristics are given in Table II. From this table one can see that the RF power supply must be capable of delivering 120 kW in a 50 μ s pulse.

Also given in Table II are the expected CO, laser characteristics

TABLE II LASER/DISCHARGE CHARACTERISTICS

DISCHARGE CHARACTERISTICS

GAS MIXTURE 3/2/1 He/N 2 /CO 2 AT 1 ATM TOTAL DISCHARGE CURRENT CURRENT DENSITY **ELECTRIC FIELD** PULSE LENGTH INPUT POWER ELECTRON DENSITY **MEAN ELECTRON ENERGY**

LASER CHARACTERISTICS

Ŀ

 $1-2 \times 10^{-3} \text{ cm}^{-1}$ GAIN AT 10.6 µm 25 kW/cm² SATURATION FLUX LASER POWER EXTRACTION 20 kW LASER ENERGY EXTRACTED 1 JOULE

• DISCHARGE/LASER CELL

CROSS SECTIONAL AREA	0.8	cm ²
LENGTH	50	cm
OUTPUT COUPLING	10-2	20%

 20 A/cm^2

 1 A/cm^2

5-6 kV/cm

50 μs

120 kW

1-2 x 10¹² cm⁻³

1 eV

for 3/2/1, $He/N_2/CO_2$ gas mixture at a total pressure of 1 atm. The saturation flux for this mixture is 25 kW/cm².⁽²⁾ For the pump power of 120 kW the expected gain is 1-2% per cm.⁽²⁾ Using a hole coupled copper mirror with a 10-20% output coupling the energy extracted will be about a joule.

To insure a uniform discharge SRL has designed a UV preionization source. Such a preionization is the most convenient because of factors including:

- (1) ease of coupling the UV into the discharge
- (2) typically UV sources are generated by relatively low voltages (5-10 kV) and hence they can be made compact and light weight

The disadvantage of using UV sources is the uniformity of the preionization is not as good as that generated by x-ray preionization. However, this is not expected to be a significant issue in the present discharge configuration because of the small cross sectional areas.

There are a number of alternative methods for obtaining the UV radiation ultimate choice will depend on the particular application. For long lived space applications, UV generated by rare gas flash lamps may be the most appropriate.⁽³⁾ These sources are highly efficient for converting electrical power into optical radiation and at 10,000-15,000 °K they are efficient radiators in the near UV spectral region.⁽⁴⁾

Another attractive alternative is a vacuum surface spark discharge. The advantage of these UV sources are their simplicity and their efficient radiation in the UV.⁽⁴⁾ Figure 18 shows a

schematic of such a source. The radiation is created by a spark along an insulating material such as Al_2O_3 or ZnO_2 and the photons are coupled out of the vacuum chamber through a quartz window. Typically the pulse lengths of the radiation is 5-10 μ s.

A block diagram of the constant current power supply is shown in Fig. 19. The constant current supply is provided by a push-pull cathode follower circuit using two 4PR1000 tetrodes. From the characteristics of these tetrodes shown in Fig. 20, it can be seen that the current is constant for plate voltage between 3-14 kV. The RF power will be coupled to the discharge via a transformer and the output will provide constant current pulses of up to 20 amperes for voltages up to 6 kV.

The power supply design is conservative and the tubes were chosen to be rugged enough to absorb all the RF power should fault modes develop as the limits of discharge stability are explored. Further, the circuit is capable of generating an initial overvoltage prepulse to initiate the discharge.

GRIG VOLTAGE-VOLTS 600 200 400 900 100 - 200 400 0 ဖ g Typical tetrode plate characteristics S PLATE VOLTAGE-KILOVOLTS 400 006 -PLATE CURRENT-AMPERES -SCREEN CURRENT-AMPERES -GRID CURRENT-AMPERES SCREEN VOLTAGE = 1500 VOLTS 20 2 Figure 0 20 саяачма-тиаяя∪о € ഹ 0

SCIENCE RESEARCH LABORATORY

47

۵

7.0 SUMMARY

The stability of CO₂ laser discharges have been analyzed analytically and numerically. The discharge model includes the electrical circuit. It is clear from the analysis that a current source is more stable than a voltage source. Further by the use of RF discharge streamer formation can be inhibited. Scaling maps have been presented that identify regions of stable discharge operation.

In the last section of this report a conceptual design of an experiment to verify the stability model is presented. The experimental design is flexible enough to permit both discharge and laser experiments.

REFERENCES

- G.E. Caledonia, et al., "Analysis of Metastable State Production and Energy Transfer," Report #AFWAL-TR-86-2078 (1986).
- 2. D.H. Douglas-Hamilton and R.S. Lowder, <u>AERL Kinetics Handbook</u>, (1974).
- 3. B. Smith and F. Schula, "Flashlamps for Pulsed Solid State Lasers," Engineering Note #156, ILC Technology, Inc., Sunnyvale, CA (August 16, 1982).
- K.D. Ware, T.M. Johnson and C.R. Jones, "Surface-Spark Discharges Compared with Exploding Wires/Films as High Temperature UV Source," Fourth IEEE Pulsed Power Conference, p. 507 (1983).

INTERNET OF COMPANY AND A COMPANY AND AND A COMPANY AND