RD-A181 632 REPRESENTRT!ON OF NONSTATIONARY MRRROUBRNO RMDON
PROCESSES AND THEIR APP_  (U) NRVAL POSTGRADUATE SCHOOL
MONTEREY CA K M LOW MAR 87

UNCLRSSIFIED F/G 1774

x
-3




"rECER
EEFE

FEEE

’

E




AD-A181 632

. ) I A

TR COPY
NAVAL POSTGRADUATE SCHOOL

Nonterey, California

DTIC

ELECTE
JUN2 9 %e7

D

THESIS

—
REPRESENTATION OF NONSTATIONARY NARROWBAND
RANDOM PROCESSES AND THEIR APPLICATION AND
EFFECTIVENESS AS JAMMING SIGNALS IN SPREAD

SPECTRUM COMMUNICATION SYSTEMS

by
H Kah Meng, Low
March 1987

Thesis Advisor: Daniel Bukofzer

Approved for public release; distribution is unlimited

)




o

UNCLASSIFIED

CCRYy T ATSTRITON DY TR AT Sy e A
REPORT DOCUMENTATION PAGE
Vo REPORT SECURITY CLASSIFICATION 6 RESTRICTIVE MARKINGS
WCLASSIFIED

20 SECUMTY CLASSISICATION AUTHORITY

J OISTRISUTION/ AVAILABILITY OF REPORT
Approved for public release;

25 OECLASS S ICATION ' DOWNGRADING SCHEDULE

distribution is unlimited

4 PEREOAMING ORGANIZATION REPORT NUMBER(S)

S MONITORING ORGANIZATION REPORT NUMBER(S)

64 NAME OF PERFORMING OARGANIZATION 60 OFFICE SYMBOL Ta NAME OF MONITORING QRGANIZATION

(1f spphcadie)

Naval Postgraduate School Code 62 Naval Postgraduate School

6c ADORESS (City State. ond 2iP Code)

Monterey, California 93943-5002

7b ADORESS (City. State. and 2iP Code)

Monterey, California 93943-5002

8a NAME QF FUNDING : SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTFICATION MNUMBER
JRGANIZATION (if applicabdle)
8¢ ADDRESS (City State ang 2iP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROECT TAaSK WORK _NiT
ELEMENT NO NO NO ACCESS:ON NQ

AR}

[3K3

LE (Incluae Security Classibication)

REPRESENTATION OF NONMSTATIONARY NARROVWBAND RANDOM PROCESSES AND THEIR APPLICATION AND
EFFECTIVENESS AS JAMMING SIGNALS IN SPREAD SPECTRUM COMMUNICATION SYSTEMS

*) PERSONAL AUTHOR(S)

{OM, Kah Meng
o Tvde OF QEPORY. 11p T'Mg COV(RGD 14 DATE OF REPORT (Year Month Day) 'S PAGe (OUNT
Master's Thesis ROM 10 _ 1987, March 91

"6 SLPALENENTARY NOTATION

COSATn COOES 18 SUBIECT TERMS (Continue on reverse f necessery and dent:ify By Olock numbet)

N GROUP SUB-GROUP nonstationary random processes; spread spectrum

communication; pulsed noise jammer

"9 &BSTRACT (Continue on reverse if necessary and «dentify by block numbder)

A representation of nonstationary narrowband random processes in terms of nonstationary quadrature
components is proposed in a form analogous to that used to represent wide sense stationary narrowband
random processes. The representation is then applied to a specific case in which the nonstationary narrow-
band random process is generated by the product of white noise and a deterministic periodic signal and
then is processed by a narrowband filter. This representation is used in the modeling of a bi-level pulsed
noise jammer which is assumed to be present in a communication channel. The effect of such a jammer on a
direct sequence, binary phase shift keyed (DS-BPSK) spread spectrum communication receiver is evaluated
and characterised in terms of the error rate performance of the receiver. Families of performance curves
are plotted to demonstrate the effect of various parameters, namely signal-to-noise ratio, jammer power to
signal power ratio, and processing gain, on the error rate of the complete spread spectrum receiver. The
analysis carried out differentiates between two cases, namely fast jammers and slow jammers. However,
the analytical tools developed make it possible to consider either one of the two cases without resorting to
quasi-stationary arguments as has been done in the past.

SN
L0 DS RIUTON AVAILARILITY OF ABSTRACT 11 ABSTRACT SECURITY CLASSIFICATION
B vcassiseounuMiTen (O same as mer Clonc Lsens UNMCLASSIFIED

id ‘ANAE OF “ﬁi’ONS'.Lf HOWVIOUAL 220 TELEPHONE (Include Area Code) | (2¢ QFF (e SYMBOL
Prof. Daniel Bukofzer (408) 646-2859 Code 62Bh
00 FORM "73' 84 MAR 8) APR eg:it:Oon may De uied unt:l eshausted SECUMTY CLASSIFICATION OF Twi§ PAGE

All Other ed:t.0Nns 4@ OD1OIete

: UNMCLASSTFIED

VGO PR
.‘ SO RN

.
y 1oy ., - e T [P
E l‘ “‘I. I. . 1‘.?1’. ‘l.i ll“v L'e

™o = : " Y o AR
OO IS S I ,x!,,x‘., ¥ ,l‘*' LN i ot

o
AN Y,



~———

Approved for public release; distribution is unlimited

Representation of Nonstationary Narrowband Random Processes
and their Application and Effectiveness as Jamming Signals
in Spread Spectrum Communication Systems

. - by

Kah Meng, Low
Ministry of Defense, Singapore
: " Dipléme d’Ingénieur. ESME Paris, 1980

Submitted in partial fulfillment of the
requirements for the degree(s) of

¥ MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the
'::.E ' NAVAL POSTGRADUATE SCHOOL
N March 1987

X S Xae

Author:

), o e
. Approved by: N y

Daniel C. Bukofzer, Thesis Advisor

’; g IZ&L'Z ﬂ . 2% LA L
N Glen A. Myers, Second Read
H AN A9 %f/b !>/\O

v Harriett B. Rigas, Chairman, Departthent of Eléctrical
' Computer Engineering

Gordon E. Schacher, Dean of Science and Engineering

{ ! e X OO OCOC AN o
. l'q !1v'l v 7]6*_‘ ‘i,‘,?i‘\ '; LA ) e\‘{‘ l':v,i’:.‘t’\‘,,i"]‘ A AN N R




ABSTRACT

(A representation of nonstationary narrowband random processes in terms of
nonstationary quadrature components is proposed in a form analogous to that used
to represent wide sense stationary narrowband random processes. The represen-
tation is then applied to a specific case in which the nonstationary narrowband
random process is generated by the product of white noise and a deterministic

periodic signal and then is processed by a narrowband filter. This representation

i is used in the modeling of a bi-level pulsed noise jammer which is assumed to

”' be present in a communication channel. The effect of such a jammer on a direct

- sequence, binary phase shift keyed (DS-BPSK) spread spectrum communication re-

»: ceiver is evaluated and characterized in terms of the error rate performance of the

‘ receiver. Families of performance curves are plotted to demonstrate the effect of

g - va.rioﬁs parameters, namely signal-to-noise rafio, jammer power to signal power ra-

,Z . tio, and processing gain, on the error rate of the complete spread spectrum receiver.

‘ The analysis carried out differentiates between two cases, namely fast jammers and ‘
" sl& jammers. However, the analytical tools developed make it possible to consider |
:J either one of the two cases without resorting to quasi-stationary arguments as has ‘
‘ been done in the past. N \*//, )
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Electronic Counter Measure (ECM) techniques have gained increasing atten-
tion in military communications. It is often necessary and important to be able to
analyze and predict the performance of communication receivers, especially when
operating under hostile electronic interference. In order to improve the survivabil-
ity of tactical communication systems operating in jamming enviornments, spread
spectrum modulation techniques have been introduced, analyzed and implemented
in many systems in order to mitigate the effects of intentional electronic inter-
ference. In many of the analyses carried out to date, the jammer interference
is typically assumed to be a stationary (or wide sense stationary) random process
with well-specified statistical characterizations [Ref 1], and the natural interference
introduced in the communication channel i; generally modeled as additive white
Gaussian noise (AWGN). However, in practice, there are many communication en-
vironments which do not fit the model just described. Consider, for example, a
communication system which is being jammed by a continuous wave (CW) tone
near the transmitter operating center frequency, or by a distorted retransmission
of the transmitter’s own signal. The interference cannot be accurately modeled
as a stationary random process in either case. Another typical jamming scenario
involves a jamming signal that may be pulsed between various power levels at a
rapid rate and is therefore not stationary [Ref 2].

The effects of nonstationary interference on the performance of a spread spec-
trum communication system is not known in general. It is however possible in
many cases to characterize nonstationary interferers and determine their effect on

specific communication systems. In fact, if the statistics of the nonstationary
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process are periodic, such a prc :ess is said to be cyclostationary [Ref. 3]. The
o statistics and power spectrum of a cyclostationary process are normally computed
by using phase randomization or time averaging techniques [Ref. 3.
E In view of the importance of the use of nonconventional forms of generating
R channel interference, the aim of this thesis is to analyze the effects of nonstationary |
narrowband interference on the performance of a spread spectrum communication ;
;‘,if\ receiver. More specifically, the results of the analysis are applied to the special case
oy of a narrowband bi-level pulsed noise jammer, since it is an effective form of ECM |

[Ref 3]. Although certain results concerning the same type of jammer considered

i
i:': " here can be obtained by other methods [Reference 1 and 2] the results derived are
EEEEE based on the application of quasi-stationary assumptions which oftentimes are not
-i' realistic and cannot always be justified in practice.

’:'3 In Chapter II of the thesis, methods analogous to those used in the repre-
%:: sentation of narrowband random processes are used to characterize a stationary

narrowband nonstationary random process. Such a random process is shown to

t..l(' be specified in terms of its nonstationary quadrature components. The expression ‘
) o . ] |
‘ * of the autocorrelation function of the nonstationary narrowband random process |
b l
-,;;’.! is then established, and, all the results are used to specify the characterization
'y
)
e::. y of a bi-level, narrowband pulsed noise jammer which can be obtained by ampli-
"
o ”n . :
j‘.g:: , tude modulation of white Gaussian noise which is filtered by a narrowband filter
e centered at some high frequency f,.
R "c
.:.E:é: In Chapter III, analysis was carried out in order to characterize the output
i.?g'l'
::: of the spread spectrum receiver consisting of a despreader, a bandpass filter and
’;‘?‘; a correlation detector, when a nonstationary narrowband process is applied at the
s 0,\.
';:‘,' input of such a receiver. This characterization is obtained in terms of the mean
)
r'll".
o 9
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% and variance of the Gaussian random variable at the output of the receiver’s deci-
% sion circuitry.

| Chapter IV provides a detailed analysis of the performance of a spread spec-
" trum receiver. The binary phase shift keyed (BPSK) modulation scheme was se-
o lected as the method by which digital information is transmitted and the method
of spreading the signal bandwidth was chosen to be a direct sequence spread spec-
trum modulation approach. Noise and jamming were assumed to be sources of
M channel interference, using the models developed in Chapter 3 for their character-

ization. The receiver performance specification was accomplished by deriving the

3;: error probability or the bit error rate. The error performance was plotted versus
)

:;: various factors that take into account signal power, interference power and band-
- width spreading. The effect of the various parameters on the receiver’s performance

) was analyzed and discussed.

From the general representation of the narrowband nonstationary random pro-
cess, other forms of nonstationary interference can be proposed and their effect on
' communication receivers can be derived by similar approaches. Although the de-
rived performance of the spread spectrm receiver was developed for BPSK signal
modulation with direct sequence bandwidth spreading, the general results can be
f.i\ modified and extended to obtain performance evaluations of receivers in which

!‘. other modulation schemes are employed.
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II. NONSTATIONARY RANDOM PROCESSES

A. NONSTATIONARY NARROWBAND RANDOM PROCESSES

A random process is said to be narrowband if its power spectral density is zero
except for a narrow frequency region (W Hz) around a high carrier frequency (f.),
that is,

W<<2xf, and 2xf,>>1

If X(t) is a sample function of such a real random process with zero mean, it may

be expressed as: [Ref. 4]
X(t) = X.(t)cos2nf,t — X, (t)sin 27 f,¢ (2.1)

where the power spectr;l density of the random processes X,(t) and X, (t) is zero
except for a narrow frequency region (W 1iz) around f = 0. The random processes
X.(t) and X, (t) are referred to as the quadrature components of X(t).

Random processes can be generally classified into stationary and nonstation-
ary processes. If the joint probability density function (p.d.f.) of a process X(t)
taken at arbitrary times ¢,,t;...t, is invariant to arbitrary time shifts for any
integer n, such a stochastic process is said to be stationary [Ref. 5]. A random
process is nonstationary if it does not have the above properties. A weaker form
of stationarity is the so-called wide sense stationarity (W.S.S.) involving first and
second order moments of a random process [Ref. 6|. The representation of Eq. 2.1
normally implies a W.S.S. random process X (t).

We propose here to represent a nonstationary narrowband random process in
a form analogous to that of Eq. 2.1 and to study the statistics of the associated

quadrature components. This is accomplished by analyzing the output of a

11




narrowband filter when the input is an arbitrary nonstationary process. Before
attempting this, a convenient method of specifying a narrowband filter is developed
first.
1. Lowpass Equivalent of a Narrowband Filter
Any bandpass filter can be specified in terms of low-pass filter equivalents.
Let h.(t) be the impulse response of a low-pass filter and H; (f) be the Fourier

Transform of k, (t), that is,
he (t) <= HL(f) = A(f)e*) (2.2)

where H (f) is not necessarily symmetric about f = 0 so that h,,‘(t) is not neces-
sarily real. Then the Fourier Transform Hp (f) of a bandpass filter having impulse

response hp (t) can be specified as follows: [Ref. 7]

he (t) <= Hp (f) = Ho(f — f.) + Hu (~(f + £.)) (2.3)

As shown in Figure 2.1, H (f) is realized by summing the frequency up shifted
(by f,) and the frequency reversed and down shifted (by f,) Fourier Transform
of the low-pass filter. The negative sign in the term H; (—(f + f,)) is due to the
frequency reversion of H; (f) described above.

We can remark that in general h, (t) is a complex quantity. However, since
the focus is on generating real narrowband random processes, we will require that
kg (t) is a real function of ¢t. By inverse Fourier Transformation of Eq. 2.3 and by

expressing h, (t) in the following complex form,

he(t) = ke, () + 5hei(t) (2.4)

12
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where both A, (t) and A.,(t) are real functions of t, we can obtain the impulse

response hj (t) of a narrowband filter as [see Appendix A]
hg (t) = 2Re {h, (t)e’?*"/*} (2.5)

where Re{(:)} represents the real part of the function in brackets. It is demon-
strated in Appendix A that h,,(t) must be an even function and h,(t) must be
an odd function if h,(t) is to be real.

2. Output of a Narrowband Filter
.In the case of a stationary random process input, the statistics of the
output of a narrowband filter is wellknown [Ref. 4]. We will investigate the more
general case where the input random process to a narrowband filter is real but
nonstationary. Let Y (¢) be the output due to a real input signal X(t) applied to
a narrowband filter h.a.ving transfer function Hp (f) as described in Section 1 [Fig.

2.2]. Then Y (t) can be expressed as the convolution of X (t) and hj (t) namely
Y(t) = /_ " he(t - a)X(a)da (2.6)
It is demonstrated in Appendix B that Y () can be further expressed as
Y(t) = 2X,.(t) cos 2x f,t — 2X,(t) sin2x f,¢t (2.7)
where

X.(t) = ‘/:“ [he.(t — a)cos2xf,a + h,,(t — a)sin2xf,a] X(a)da (2.8)

X, (t) = /_“ (hei(t — a)cos2nf,a — h,,.(t — a)sin2xf,a] X(a)da (2.9)

14
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Bandpass Filter

X(t) —> —> ¥(2)

Pigure 2.2 Narrowband Filtering of Real Input X(t)
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There is a certain degree of similarity in the mathematical form of Eq. 2.7 and
Eq. 2.1. However, the properties of X, (t) and X, (t) given by Eq. 2.8 and Eq. 2.9
respectively must now be established.
3. Output Correlation Function for Nonstationary Input
By definition, the autocorrelation function Ry(t,,t;) of any random pro-
cess Y (t) is the expected value of the product of Y (¢,) and Y (¢;) for arbitrary time

instants ¢, and ¢; [Ref. 5], that is
R, (t:,t2) = E{y(t:)y(t2)} (2.10)
In order to obtain R, (t,,t;) for the output Y (¢) of the filter described in Section

2, it will be necessary to evaluate the following quantities (since Y(t) is the linear

combination of X, (t) and X, (t))

R.(ti,t) £ B{X.(t:)X.(t2)} . (2-11)
R,(t:,t:) & B{X,(t,)X, (t2)} (2.12)
R, (t,8) £ E{X.(t:)X, (t2)} (2.13)
R..(t:,ta) & E{X,(t:)X,(t2)} (2.14)

The four quantities above are complicatéd functions of ¢, and ¢, [See App. B]. It can
be observed that in general R, (t,,t3) # R,(t1,¢t2) and R.,(t,,t2) # —R,.(t;,t3);
unlike the case of ‘stationary narrowband process, both the quadrature compo-
nents have identical autocorrelation function and the two cross-correlation func-
tions are null if both X, (¢) and X, (t) are real [Ref. 4]. The autocorrelation function
R, (t,,t;) of the nonstationary narrowband process Y (t) can be formulated as fol-

lows | See App. BJ:

R, (t,,t;) =4|R.(t,,t;) cos2mf,t, cos2n f,t; + R, (t,,t2)sin2x f,tsinx f,t,
(2.15)
- R, (t,,t;) cos2nf,t, sin2n f,t; — R, (t,,¢t2)sin2xf,tcos2rf,t,

16
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It is clear that Ry(t,,t,) is also a linear combination of R, (t,,t3), R, (t,,%3), R.. (t:1,2)
and R.c (t; ’ tg).

B. A MODEL FOR THE NONSTATIONARY INPUT

The results of the previous sections will be applied now to a specific general
class of nonstationary random processes which are generated by a system to be
described now. This is done in order to continue the development for a class of
nonstationary random processes of interest and to be able to apply the results
to some practical problems involving jamming of spread spectrum communication
systems. Let the nonstationary input X(t) described previously be the result of
mixing a stationary random process W (t) with a deterministic signal ¢(t) as shown
in Fig. 2.3. We further assume that the autocorrelation function R, (¢,,¢;) of the

stationary random process W (t) is
R, (t,,t;) = EW(t.)W(t))] = 6(t; —t.) (2.16)

That is, W (t) is assumed to be a white process with unit power spectral density
(PSD) level. Therefore

R,(t:,t;) = E[X(t:)X(ta2)]
= E[W(t.)q(t:)W(t2)q(t2)]
= q(t:)q(t.) E [W (2, )W (25)]

=g (t:)6(ta — t.) = ¢*(22)6(ta — t,)

(2.17)
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Pigure 2.3 Nonstationary Input X(t)
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since R, (t,,t,) is sero unless t, = t,. We can now apply the results from Appendix
B in order to characterize the output of a narrowband filter when its input is a
nonstationary random process of the type being described in this section. It is
demonstrated in Appendix C that the autocorrelation terms of Equations 2.11 -
2.14 simplify significantly when X (t) = ¢(t)W (t), namely

R,(t,,t;) = R,(t,,t3) (2.18)

and

Rco (tutz) = Ru(tl ’tﬁ) = 0 (219)

Finally, the autocorrelation function R, (,,¢;) for the nonstationary process Y (t),

namely the output of the narrowband filter, has the following form: {see App. C]

R,(t,,t;) = 2co; 2xf,(t; — t,) /:“ hy(t, — a)h, (t; — a)g, (a)da (2.20)

where
a(t) =4 (t) | (2.21)

Observe that R, (t,,t;) is not a function of the time difference (t; — t,), so that

Y (t) is (as expected) a nonstationary random process.

C. A SPECIFIC EXAMPLE

In the previous sections, we have established a representation in general form
for a narrowband nonstationary random process generated by applying the mixture
process g(t)W (¢) at the input of a narrowband filter. As a specific example, it is now
desired to use these results to model and characterize a pulsed noise jammer that
is processed by a narrowband filter. Assuming that we have a bi-level pulsed noise

jammer, we can model the jamming signal X(t) as the result of mixing white noise

[ A ; L ) d
!‘-'4" ‘a‘.“."" 'i'.‘t“«'u‘v‘él ‘l'-fo*'.:l 14 .I . l'r‘;'a‘g)’;'i‘:‘-‘,""l‘,’".} 6
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W(t) of unit PSD level with a bi-level deterministic periodic signal ¢(t). Such
a jamming signal present in the communication channel would cause a typical
receiver to produce a jamming component at the output of the receiving front end
narrowband filter. This component is denoted Y (t) as shown in Figure 2.4.

The autocorrelation function R, (¢,,¢;) of the input process to the narrowband

" e s W -

filter is given by Eq. 2.17 while the corresponding output autocorrelation R, (¢, ,1;)
. is given by Eq. 2.20. T, is the period of the periodic signal ¢(t) which remains at
B the level A for the time interval [0, pT,| and at the low level C for the time interval
[pT,,T,],0 < p < 1. [Fig. 2.5] The narrowband filter Hp (t) is based on a low-pass
9 equivalent which is assumed to have impulse response h; (t) = B -e~2tU(t) where
Y U(t) is the unit step function, and B specifies the 3db point of the filter. The

details of the derivation are presented in Appendix D, where it is demonstrated

+ that for the special case under consideration, Eq. 2.20 becomes
! ‘
L) A’B
R,(t,,t;) =2cos2nf,(t; — t,) — e~ Blt1+ta) 2BMin(tsits)
" B(A? - C? -
: ( 2 )e-B(t.+¢.) [eznuin(t.,t,)([rl - [8] (2.22)
; 3BTy . g3BT (sl _ 3BT, , ;3BT,[r|
+ 1 —e-2BT, ] }
¥ where (2] is the largest integer less than or equal to 2
g )
g r=—p+ =Min(t,,t;), (2.23)
T,
: 1
1 s = —1+ —Min(¢,,t,) (2.24)
[ Tq

and

Min(t,,t;) = minimum of ¢, and ¢,

20
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Although equation 2.22 is not a simple mathematical form, it is possible to

derive the average power of the random process Y (t), by time averaging R, (t,t).

I

The details are again presented in Appendix D, where it is demonstrated that
W R, (t,%) = B[A%p + (1 - p)] (2.25)

This result can be easily verified from the assumptions made at the beginning of

,.: this paragraph. Furthermore, it can be seen that for the special case under con-
B sideration, R, (t,t) represents the jammer power at the output of the narrowband

filter Hg (f).
K It has thus been shown that a nonstationary narrowband process can be rep-
resented by the nonstationary quadrature components in a form analogous to that

for the representation of wide sense stationary narrowband processes. A general

M

ig . . . . . . .

% . expression of the correlation function for a filtered nonstationary input is obtained.
KN

4 The results are applied to a special case in order to model a bi-level pulsed noise
N jammer. The effects on a spread spectrum communication receiver due to such a
.‘!

;}: pulsed noise jamming signal will be investigated in the next chapter.
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III. EFFECT OF SPREAD SPECTRUM SYSTEM
ON NONSTATIONARY NOISE

b e e

A. MODEL FOR THE SPREAD SPECTRUM RECEIVER
In spread spectrum modulation, digital information is transmitted by employ-

ing a trasmission bandwidth which is much larger than the minimum bandwidth

sy ~

required to transmit the digital information via conventional means. In the spread

spectrum receiver, the demodulation must be accomplished, in part, bi/ correlation

of the received signal with a replica of the “spreading” signal used in the transmit-

L -,
eV -

ter in order to recover the digital information signal. If the bandwidth is spread by
direct modulation of a data-modulated carrier with a wideband spreadiﬁg signal

or code, the technique is referred to as direct sequence (abbreviated DS) spread

- g A em

spectrum modulation.

The simplest form of DS spread spectrum modulation is DS-BPSK spread

.- -
ol !

spectrum transmission where a binary phase shift keyed (BPSK) modulated car-

L e -
-t -

rier is spread by a wideband “code signal.” [Ref. 2]. The spreading operation can
be mathematically represented as a multiplication of the carrier by a function ¢(t)

" which takes on the values +1 at a digital rate R, periodically. (Fig. 3.1) The trans-

¢ mitted spread spectrum signal is received together with some type of interference

.z and/or Gaussian noise. Demodulation is accomplished in part by remodulating
-t with the spreading code ¢(t). The process is commonly referred to as despreading
Y

% and is a critical function in all spread spectrum systems.

E A simplified model of the DS-BPSK receiver is illustrated in Fig. 3.2. The
;: figure shows the received signal r(t) first processed through a front-end bandpass
y

~':

s
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filter centered at the carrier frequency f, and having a bandwidth wide enough
for the spreading signal (contaminated by thermal noise and perhaps a jammer)
to be allowed through with negligible distortion. The output of the front-end
bandpass filter is then mixed with a local synchronized replica of the code spreading
signal ¢(¢) in order to despread the signal. The despreading operation produces a
.y contaminated BPSK signal from which the digital information can be recovered by
E:j‘ conventional techniques using a filter and a correlator as shown in Fig. 3.2.
It is well-known that in the 'absence of any jamming, the perfomance of the
:: receiver in Fig. 3.2 in terms of the bit error probability (P,) is given by: [Ref. 2]
.' n=a(y32) (3.1
“, where R, is <he bit energy of the received signal, N, is the one-sided power spec-
::?: tral density level of the AWGN interference and Q(-) is the complementary error
| function defined by | -
o T et (3.2)

o Q=) = \/i?
B. EFFECT OF NONSTATIONARY NOISE ON THE DESPREADER
AND BIT DETECTOR ON NONSTATIONARY NOISE
3 The jamming signal produced by the bi-level pulsed noise jammer may not
necessarily be narrowband. However, after the filtering operation performed by

the receiver’s front-end bandpass filter the jamming signal can be considered to

;:Ei be narrowband. We therefore investigate here the effect of the despreader and the
:.f' bit detector system on the input nonstationary narrowband random signal which
N ¥ - models the jammer.

E The receiver of Figure 3.2 is now assumed to have a narrowband nonstationary
o zero mean input y(t) as illustrated in Figure 3.3. The output of the bandpass filter
o
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is denoted by z(t) while the bandpass filter impulse response is denoted k,(t) and
can be specified in terms of a low-pass filter equivalents denoted h;(t). The output

of the receiver due to the input y(t) is denoted Y,. It can be seen that

2(t) = y(t)e(t) » h(t) = /;: hi(t — r)y(r)e(r)dr (3.3)

and

T,
Y, =/ 2(t) cos 27 f,tdt
(1]

which can also be expressed as

Y, = /OT. [/;: he(t - r)y(r)c(r)dr]dt (3.4)

The jamming of the transmitted signal is always being considered as an action

- of addixig a nonstationary Gaussian random process to the signal. As will be seen

. in the analysis to be carried out in Chapter IV, part B, the effect of the jammer on

the receiver’s perfox:ma.nce is completely accounted for by evaluating the variance of

the output of the bit detector. That is, only the variance of Y; will be established

and the other statistical properties of Y, which have no direct influence on the
systems bit-error probability will be neglected.

The variance 03 can be shown to be given by an infinite sum of terms, namely

A= cf " B(NE @R, - DP(-DP.(] - nR.)

/ : Hy (0)Hy (nR, — ) [S.(f + fo —u) + S.(f — fo —w)]dudf  (3.5)
- where R, is the period of the nonstationary jamming signal and C, is given by:
‘;é | C. = {A’p+c’(1 ;ir’:)rmp . in=0
,.fn: n p(A? —C’)—n—”p——e"‘" yn#0

B 29 |




It can be seen from Eq. 3.5 that 07 is a function of the duration T, of the
information bit, the duration T, of the spreading code, chips, and T,, the jammer
pulsing period. However, practical spread spectrum systems utilize spreading codes
for which the chip duration is very much smaller than the information data bit

duration [Ref. 8]. That is
T. << T, or R, >> R,

where R, is just T !, the chip rate, and R, is T:‘, the bit rate. It is therefore
possible to define here two classes of jammers, namely fast jammers for which the
puise repetition period T, is of the same order of magnitude as T, so that the
jammer pulsing rate is mu§h larger than the data rate, and slow jammers for which
T. is of the same order of magnitude as T,. The effect of the jammer pulsing rate
on the variance 03 will be examined separately for both cases.
1. Variance 03 for the Fast Jammer
. Consider first the Fourier Transform P.(f) of the function P,(f) defined

in Eq. E-2, namely

Ty
P.(f) = /; cos2r fote~ 73"/t dt = G(f — fo) + G(f + fo) (3.6)

where

G(f) = % sinc (fT,)e" 72"/

We can see that P.(f) is significant for f = +f, over a restricted frequency band.
Similarly, P.((f —nR,) is significant for f = £(fo, +nR,) over a similarly restricted
frequency band. The functions P,(f) and P,(f —nR,) are diagramed in Figure 3.4

from which it is possible to observe that if

fo—nR,+ R << fo—Ry

30




or equivalently, if
2R, << nR, (3.7)

essentially no spectral overlap of the frequency functions occur. This condition
except for n = 0 is satisfied for what has been defined as a fast jammer since
R, >> R, under fast jamming.

It is possible to conclude therefore that in the case of a fast pulsed jamming
environment, the only contribution due to the infinite sum of terms that make up

the variance o} is the term n = 0 (See Eq. 3.5). Therefore

& =G, / " H(NH(~N)P.(~])
- (3.8)

/_“ Hy (u)Hy (=) [S.(f + fo — ) + S.(f — fo — u)] dudf

and substituting in Eq. 3.8 the corresponding mathematical description of the

functions H,(-), H.(:), P.(-) and S.(-) as given in Egs. E.3, G.6, G.8 and G.17,

results in
_ CoTb 2 1 -BT, 1 +¢-BT°
% =73 {”(mm; BT.)(.I “"") - BT,
B? B(B? + )

(3.9)

+ et ) [bT.(B= ~¥)  WLT.(B7 - B)
Be-BT. T, Be-BT:bT. ]}

WT,T,(B + b)° ' 26T,T,(B - b)°

The details of the derivation of this result are presented in Appendix G.
2. Variance o% for the Slow Jammer
In the case of a slow pulsed jamming environment, the condition R, >>
R, is not satisfied, therefore a certain degree of overlapping between the spectral

factors that make up the expression for 03 will occur. While the infinite sum of
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Eq. 3.5 can be approximated accurately by a finite sum, the number n,, of terms
needed in the approximation will be such that

noR, >> 2R,
or equivalently
2R,
neg >> — 3.10

. In this case, the result for 07 becomes

> a / " H,(f)H:(kR, - NP.(-P.(f - kR,)

s h=—ng
/ Hy (u)Hy (kR, — v) [S.(f + fo — v) + S.(f = fo — u)) dudf
(3.11)
; ,: It is also clear that as k increases, |C, | decreases so that the sum involved
RN .

w can perhaps be further truncated. The computation of 0} in this case becomes
quite complicated, however using numerical integration, 03 can be obtained quite

oy accurately.
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RFO CE OF THE SPRE
COMMUNICATION SYSTEM

SPECTRUM

Iv.

A. GENERAL OUTLINE

In Chapter III, a complete derivation for 03, the variance of the Gaussian
random variable that quantifies the power contribution of a bi-level, nonstationary
narrowband jamming signal at the output of a DS-BPSK Spread Spectrum Mod-
ulation receiver, has been undertaken. A diagram of the spread spectrum receiver
is shown in Fig. 3.1. The receiver structure is optimized based on principles of
Maximum A Posteriori (MAP) detection for binary modulation schemes. The re-
ceived signal and noise is first processed by the front-end bandpass filter which has
a bandwidth just wide enough to pass the spread signal and the in-band noise. The
narrowband signal is then processed by the despreader which consists of a multi-
plier mixing the received signal with a synchronozed local replica of the spreading |
code signal. A second bandpass filter having a bandwidth proportional to the in-
formation bandwidth follows the despreader, so as to further eliminate the noise
power being presented to the remainder of the receiver. The data signal is thén
demodulated by a correlator and finally, a decision is produced every T, seconds
which is translated into O or 1 data bits. This generates a MAP estimate of the
digital data at the output of the receiver.

The performance of such a receiver is usually characterized by the probability
of error, which is, in essence, the probability of an incorrect decision made at the
receiver. The probability of error can be further categorized into symbol error and

bit error probability. However, for the case of Binary Phase Shift Keyed (BPSK)




modulation, the two error probabilities are equivalent and provide the basis for
specifying the receiver’s performance.

In the next section, we investigate the performance for the case in which a
o BPSK modulated signal is spread by direct sequence methods, and the signal is
" . received in AWGN interference as well as the bi-level pulsed noise jammer described

and analyzed in previous chapters.

)
A

L»f'.‘;l B. RECEIVER PERFORMANCE FOR BPSK MODULATION
W

. The structure of a spread spectrum correlation reciever is shown once again
o in Fig. 4.1. In BPSK modulation, the two transmitted signals are [Ref. 4]
o
;:fi'. 8 (t) = \/ Zzg-b-cosmrf,t 0<t<T, and

8(t) = —\/ Focosamft  0<t<T,

“ﬂ" ) ‘ [ ]
:.:”:;: | where E, is the energy of each signal and T; is the duration of each signal. Since
:*‘:;' . each signal represents a single information bit, E, is the energy per bit and T} ' is

. ’ the bit rate.

,: , : At the output of the second bandpass filter, the signal y(t) can be regarded as
w the summation of the transmitted signal s, (t), narrowband noise N, (t), and the
R jamming signal y;(t) convolved with the impulse response h;(t) of the bandpass
e filter. That is,

!":,'

B V(0) = [8®) + N ) 435 (0)et)| () )
s t=1or2

:f! Hence,

-1 A T.

" Y= / y(t) cos 27 f, tdt

(4]

e Ts Ty

i.ij = S;(t) * h;(t) cos2x f,tdt + / N (t)C(t) % hy(t) cos2nf,tdt  (4.3)
E::f : OT. [}
. + / ys (t)e(t) * hy(t) cos 27 f,tdt
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e or simply,

;'EA Y= S.' + Nu. + YJ (4.4)

where S;, N;, and Y, represents the three integrals in Equation 4.3 respectively.

i It is clear that Y is in fact a random variable whose statistics can be evaluated |
O once certain properties of S;, N,, and Y; are established. 1
We first assume that the noise contribution at the front end of the receiver is {
zero mean, white Gaussian noise with %ﬂ- as its two sided power spectral density ‘

level [Fig. 4.2]. The autocorrelation function for the noise, ednoted Ry (t,7) is
)  Rultr) = 526(- 1) (4.5)

i where §(t) is the Dirac Delta function. Based on these assumptions it is shown in
{I-;;‘s Appendix H that N,, is also a zero mean, Gaussian random variable with variance
es';: ' o2, specified in the sequel. Due to the fact that the receiver ‘is linear, the noise
contribution at the output retains its Gaussian statistics. The expression for o2,

g is from App. H given by (Eq. H.18).

(4.6)

(

ot where

‘J|

it k = 0.903

PYY and

P .

.jﬁ"l‘ - é . R
o G. A processing gain.

o It is shown that S, and S, are given by [Ref. 2]

"ﬂ." E [ Tb
Iy =
.’:E:: S 1 2 2
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Figure 4.2 Power Spectral Density of the Thermal Noise
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K l
By Furthermore, Y, is the quantity related to the jammer and its variance o7 is given

i

o by (see Eq. H.4)
! 2 CoTb

o, =
" J 8

J(G.)

where J(G.) is defined by Eq. 4.6. To further simplify. the notation, let X =
Ny, + Y, so that

o oy =0l +03 (4.7)

o since the noise and jamming are zero mean uncorrelated processes, and

u‘__r.
2 2L

then X is zero mean Gaussian random variable with pdf given by [Ref. 2]

P
e
-

f.(X) = L 3 (4.9)

2
2ro%

& -
ey |

£}

2o

For the BPSK modulation scheme that is being considered here, the decision

‘l'a
) regions of the signal space diagram can be illustrated as shown in Fig. 4.3 [Ref 4]:
' A From equations 4.8 and 4.9, it can be seen that the probability of receiving the
¥
A » signal Y given that a signal S; was actually transmitted is:
2 .
¥ Pr{r = Y/S;(t) was transmitted} = f,,, (Y/S:) = f. (Y — S)) (4.10)
0w
)
o The probability of bit error rate is then given by: [Ref. 2]
t E
é P,=Q ( "Z"’ |
b 20% |
iy
'. »
_ or
DN
. E,T, )
> P, = —_— 41.11 1
o =2 2, +07) 1 ;
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Figure 4.3 Signal Space Diagram for BKSP Modulation
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where Q(-) is the complementary error function defined earlier in Chapter III
Substituting o7, and o3 from Equations H.4 and H.18 results in

E,T,
P, = Q( NIk T (G ))
) 4 4
or
E,
P, = Q(ﬂ M.k C.J(C) ) (4.12)
[ 4 4

C. ANALYSIS OF ERROR PERFORMANCE

As derived in the previous seétion, Eq. 4.16 yields the probability of bit error
P, for a DS-BPSK spread spectrum feceiver under AWGN noise interference and
narrowband bi-level fast pulsed noise jamming. Clearly P, is a function of the
power spectral density level N, of the AWGN, the average power of the jammer
given by BC, and also, the processing gain G.. It is clear from Eq. 4.11 that
the receiver bit error probability will increase if the noise and/or jammer power
increases as the Q(-) function is monofonically decreasing.

In order to analyze the quantity P, in more detail, we define the signal to noise
ratio (SNR) to be the ratio of E, to N, and the jammer power to signal power ratio
(JSR) to be the ratio of average jammer power P, to the average signal power P

[Ref. 4]. Hence,

a By a P;

SNR = Fo ,JSR = 7 (4.17)

where
P, = BC, =2xR.C, (4.18)
P=FE,R, (4.19)
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so that Eq. 4.16 can be reexpressed as

_ SNR
h=Q 0.903 | (JSR)(SNR)
L 4 SeG,

(4.20)

Based on Eq. 4.20, families of curves of P, versus SNR for fixed JSR values can be
plotted and analyzed. However, first plots of P, versus JSR for different values of
G. under various SNR conditions are shown. Logarithm scales are used for P, due
to the large variation in this parameter. From Figure 4.4a to d, one can observe
that in general, under intense jamming (i.e., JSR large), the receiver probability of
error is also large, thus implying that a significant number of delivered data bits
are in error. Under a fixed JSR and fixed G, values, it can be seen that if the SNR
is large, P, can be made significantly small. For example in Fig. 4.4b, it is shown

that when JSR = 15dB and G, =100;
P,(at SNR =4) ~10"%7

and

P,(at SNR = 20) ~ 10-2°

However, when the jamming is very strong (for JSR > 30 dB) P, tends to a limit of
approximately 10~ ! regardless of the value of all other factors. It can be observed
from Eq. 4.16 that if JSR increases indefinitely, the limit of P, equal to 0.5 is
reached.

From Fig. 4.4a to d, we can also conclude that for any fixed values of JSR
and SNR, an increasing processing gain G, implies a decreasing value of P,. The
phenomenon is more prominent in a high SNR environment than in a low SNR
environment. There is no significant improvement in P, for SNR in the range from

0 dB to 8 dB however a large improvement in P, is obtained when SNR exceeds
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12 dB. The immediate conclusion that we can draw from this is that by increasing
the chip rate (R,) of the spreading code, resulting in a higher processing gain,
the perfromance of the receiver can be improved under the jamming environment
analyzed, however this counter measure loses effectiveness when powerful jamming
is present.

To better illustrate the effect of G. on P,, another family of curves is plotted.
In Fig. 4.5a to d the variation of P, as a function of JSR is shown for different
values of G, and SNR. It is clearly shown that all the curves converge toward P,
equal to 0.5 as JSR increases. From Fig. 4.5a we can see that P, (at JSR = 20
dB) reduces from approximately 10-°7 to 10~ !* when G, increases from 2 to 400
under weak signal (SNR = 4 dB) conditions, while P, redut‘:es from approximately
107 %7 to 10~?° under the same conditions when SNR = 20 dB (see Fig. 4.5d).
At JSR > 35 dB, no significant gain can be obtained regardless of signal strength.
As a result of this, we can conclude that by increasing the chip rate to counter the
narrowband bi-level fast pulsed noise jammer is not effective under strong jamming
conditions, however, a high chip rate can reduce the probability of bit error of the
jamming is not too severe.

It is also possible to represent the error performance curves by plotting log,, F,
versus SJR, the signal power to jammer power ratio under various SNR conditions.
Fig. 4.6 a to d show how P, varies with SJR. The curves can be interpreted
in essentially the same way as the previously mentioned graphs. By comparing
Fig. 4.6 a to d with the results obtained in Reference 2, we observe that the
performance of the DS-BPSK spreak spectrum reciever degrades under a jamming
environment in a manner similar to the case of barrage noise jamming or partial
band noise jamming environment presented in the reference. Furthermore, the

receiver performance is well below the boundary of the performance for the
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e worst case pulsed noise jamming derived in Reference 2 based on a quasi-stationary
analysis method. Except for the weak signal condition case, the receiver perfor-
mance approaches the above mentioned boundary. In general, by increasing the

processing gain, the performance of the receiver improves significantly.
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V. CONCLUSIONS

In this thesis it has been demonstrated that any nonstationary random process
that is bandpass filtered can be represented in a mathematical form analogous to
that used to represent narrowband wide sense stationary random processes. The
quadrature components of the narrowband nonstationary process are themselves
nonstationary low pass random processes. In general, the autocorrelation function
of the two quadrature components are not identical and the cross-correlation func-
tion of the quadrature components is not neces§a.rily an odd function. However,
when the input nonstationary random process is real, the correlation functions of
the quadrature components of the narrowband output process have properties sim-
ilar to those associated with narrowband wide sense stationary random processes

The general representation of th; nonstationary narrowband random process
has been applied as a model for a -pecific class of electronic counter measure
signals. Specifically a bi-level pulsed noise jammer, in which the power of the
jammer periodically pulses between two levels is modeled using the previously
mentioned nonstationary narrowband random process representation and its effect
on a DS-BPSK receiver analyzed. This type of jammer was analyzed because it is
quite effective in the sense that it produces significant performance degradations
on the receiver. In practical cases, the jammer pulses between two levels at a rate
faster than that of the data bit rate. The quasi-stationary analysis method for
receiver performance is not valid. Therefore, a methodology has been developed
that allows rather precise evaluation of receiver performance in terms of signal,

noise, and jamming powers as well as spread spectrum processing gain.
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The effect of the pulsed noise jammer on the spread spectrum binary phase
shift keyed receiver was examined in detail and it is shown that a strong transmitted
signal is more effective at mitigating the effect of the jammer than increasing the
chip rate of the spreading code. The pulsed noise jamming can be shown to be
quite effective under various signal power and processing gain values, as rather
large bit error rates result when powerful jamming is present.

The thesis develops a methodology that can be used to evaluate thé effect of
a nonstationary narrowband random process interference on communication chan-
nels. There are two benefits from this study. First, in terms of ECM performance
it makes it possible to evaluate the effectiveness of such jammers, and second, in
terms of electronic counter counter n;easum (ECCM), the performance of jam re-
sistant receivers can be evaluated more accurately. Although the example chosen
in the study involves BPSK modulation spread by direct sequence methods, results
for other forms of nonsta{.ionary jammings on different types of spread spectrum

receivers can also be obtained from the above results with appropriate modification.
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APPENDIX A
REPRESENTATION OF NARROWBAND FILTERS

Let
he (8) «— Ho(f) = A(f)e®) (4.1)

be the specification of a low-pass filter (LPF), and let

hs (t) «— Hp (f) = Hu(f - f.) + H.(—(f + £.)) (A.2)

where f, is assumed to be much higher than the cutoff frequency of the LPF.
Thus, Hp (f) is the transfer function of a narrowband filter centered at f = £ f,.

By inverse Fourier Transformation, we have:
hs (t) = / Hp (f)e™/4df

= /°° H, (f-fo)e"z"'df-+/w Hy(—f - fo)ei2"'tdf (A.3)
- ht, (t)e:.z;rlot + hL (—t)e"""h‘
If we express

he(t) =he (t) + 5he:(t)

since h; (t) may be complex, then
hg(t) = [k, (t) + he,(—t)]cos2n fot + [hpi(—t) — hpi(t)]sin2n f,t+

J{{hei(t) + hri(—t)|cos2n f,t + [he,(—t) — Hp,.(—t)]sin2x f,t} (A4)

Since hp (t) will be assumed to be real, the imaginary part in Eq. A.4 must vanish,
so that

hii(t) = —hpi(—t) => h.; is an odd function. (A.5)
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and

hy.(t) = he,(-t) = h., is an even function.

Observe also that
by (=t) = ke, (=t) + jhei(—t) = hp,(t) — shoi(t) = Ay (2)
Therefore
hn (t) = ZhL, (t) cos8 2”[,‘ - 2hl,.' (t) sin 2ﬂ’fot

= hL (t)e""”‘ + [hl. (t)c’""‘]‘

and finally

hs (t) = 2Re {h, (t)e'?"!+*}
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APPENDIX B
OUTPUT OF A NARROWBAND FILTER

The output y(t) of a narrowband filter due to an input z(t) is
y(t) = / kg (t — a)z(a)da

= / 2k, (t — o) cos 2xf, (t — ) — 2hys(t — a) sin2xf, (¢ — a)] z(a)da
o (B.1)
where the representation derived in App. A has been used to obtain Eq. B.1. By

expanding cos 2x f, (t — @) and sin2rf, (t — a) it is possible to obtain
y(t) = 2X,(t) cos 2 f,t — 2X, (¢t) sin 27 f, ¢ (B.2)
where |
X, () = / " [heo(t — o) cos2nfya + hyi(t - o) sin2nf,a] X(a)da  (B.3)
and - |
X,(t) = / : [hys(t — a) cos2nf,a — hy, (¢ — a)sin2nf,a] X(a)da  (B.A)

so that a standard narrowband-type representation is possible for the output y(t).
If X(t) is a random process that is not necessarily stationary, X, (t) and X, (t) are

themselves random processes with autocorrelation functions
R.(t,t;) & E{X.(t,)X.(ta)}
= /:: /-: -;— [he(ts — @)e?"/e® + h} (t, — a)e™ 72"/
: % [he (82 — B)e 18 + b (t2 — B)e™*"'*4] R, (a, B)dadf

- %/_" /” Re {k; (t — a)hs (ts — £)e* "=+ | B, (@, f)dadB+
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2| [ re{hitchits - et ) Rulaprdads (B3)

and

Ru(ti,ta) & E{X.(8) X, (t2)) i
- -% /_: /_: Re {hy (¢, — a)hs (ta = B)e™ 2772+ | R, (a, f)dadf+
3 [ [ re{mii - aphutes - e ) B pdads

(B.6)

The cross correlation functions are given by

R., = E{X.(t,)X,(t;)}
= %/ / Im {h,, (t, — @)k (t; — B)&2~/e(2=P) } R.(a,B)dadB+
2 [ m{bi - @bt - pre st} R )dads (B
and
R,,,(tl,t,) E{X,(t,)X.(t;)}
= 5/ / Im h;. (tx — a)h;, (tz —- ﬁ)e-:‘znlo(a-ﬁ) } R,(a,ﬂ)dadﬂ-{-
1 o o . [ 2xfo(a+B)
-3 Im {hL (t, — a)hy (t; — B)e/™™ - }R, (e, B)dadf
(B.8)
Observe that in general X, (t) and X, (t) normally labeled the quadrature compo-
nents of the narrowband process y(t) are not stationary in general. Nevertheless,

the derived autocorrelations and cross correlations can be used to obtain the au-

tocorrelation of the random process of y(t), namely
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R, (t:,t3) 2 E {y(t:)y(ta)}
= E’{Z[Xc (t1)cos2xf,t, — X,(t,)sin2xf,t,]

- 2[X,(t;) cos2x f,t;, — X, (t;) sin 2x f,t,] }

=4 [Re (tl 1t2) cos 2”fot1 cos Z*Iotz + Ra (tl atﬁ) sin21rf°t1 sin 2”fat2+

- R,,(t,,t3) cos2x f,t, 8sin2x f,1;

— R,.(t1,;)8in2x f,t, cos 21rfotz]
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: NARROWBAND PROCESS AUTOCORRELATION FUNCTION EXAMPLE

The autocorrelation functions determined in Appendix B are now used to 1
treat a specific case, namely when the input process X(t) to the narrowband filter
is generated by the system of Fig. 2.3. The resulting output y(t) is a narrowband

process bearing quadrature components whose autocorrelation function is given by

i (see Eq. 2.17)

E':i 1 [ '

e R.(t,,t;) = 5/ Re{h. (t, — a)h, (t; — a)e*?3" %2} ¢, (a)da+

_' el ()
<3 3 /:“ Re{hy(t, — a)h,(t; — a)} q.(a)da

4

¥ Given that A, (-) represents a low-pass system and g, (a) would normally vary much

more slowly than the frequency 2f,, it can be seen that integrals involving a 2f,

‘ frequency are negligible resulting in further simplifications. Thus )
:

g 1 (%

’ R(tnt) = / Re {h3 (¢, — a)hy (t2 — a)} 4, () da (C.2)

; and similarly

Ri(t,ta) = % / " Re{hi(t, - a)hs(t — o)} qu(a)da = R.(t,,t;)  (C.3)

$ . .
& The crosscorrelations are given by

o R.,(t,,t;) = %/-w Im{h,(t, — a)h,(t; — a)}q.(a)da = R, (t,,t;). (C.4)
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For the special case where A, (t) is real, R, (t,,t,) and R, (t,,t;) are both equal
! to zero, so that from Eq. B.9 and Egs. C.2 and C.3, R, (¢,,t;) becomes

R,(ty,t;) = 4R, (t,,t;) [cos 2x f,¢t, cos 2x f,t, + sin2x f,t, sin2x f,¢,]
_ (C.5)
' = 4R,(t1,t2) cos 2xf,(t; — t,)

and finally

R,(t,,t;) =2cos2xf,(t; — t,) /“ hy(t, — a)h, (t; — a)q, (a)da (C.6)
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APPENDIX D

AUTOCORRELATION FUNCTION AND AVERAGE POWER AT THE OUT-
PUT OF A NARROWBAND FILTER DUE TO A BI-LEVEL PULSED JAMMER

When ¢(t) is a bi-level signal as shown in Fig. 2.5, it is clear that
e.(t) = A - {(A’ - %) 2 [U(t - kT, — pT,) - U(t — kT, - T,)]} (D.1)
k= - o0
where U(t) is the unit step function. Let

It) & / - hy (¢, — a)h, (t; — a)q, (a)da

This integral must be determined in order to evaluate R, (¢,,¢;) as given by Eq.
C.6. Substituting ¢, (t) into /(t) and utilizsing the one pole filter specification for
k. (t) having 3 dB cutoff B rps, we get

I(t) - A;Be—B(h+l,)eﬁbuln(tl.t.) — Bz(Az _ Cz)c—a(t.-n,)
[/"' e?eU(t, - a)U(t; — a) i U(a - kT, — pT,)da (D.2)

_ /“ 2o U(t, — a)U(t; — a) i U(a - kT, — T,)da]

h=-oo
The remaining integrals in Eq. D.2 are:

f: Min(t,.ty) 2B 1 BMin( ) 1B(k+1)T
e®da = — [C2 mifabl 2B ']
/(h—p)Tq 2B E

if (k +1)T, < Min(t,,t;)

k= - oo h= - o0

(D.3)

=0 otherwise




and

@0 Mln(t;.t’) 1 ‘.]
Z / Pedy = — Z [ezamn(u.e,) _.ezb(k+1)1‘,]
(k=1)T, 2B

A= — o0 Rz~ oo

D4
if (k+1)T, < Min(t,,t,) (D4)
=0 otherwise
where [z] = largest integer less than or equal to z and
1. 1. .
r=-—c+ TMm(t,,t,) ; s=1+ ?—Mm(tl,tz) (D.5)
q q9
The difference of the two integrals given by Eq. D.3 and D.4 produces
5 3 e - 3 | |
- (ABMin(t1,ta) _ 3B (k+p)T, | _ 3B Min(ta,ta) _ 428 (k+1)T,
23 k= — 0o kz—ct;
(D.6)
since 0 < p < 1, we have r > s, so that
id o]
Z: e3BMin(t1.ts) _ Z e3BMin(t1.63) _ ,2BMin(ty,t5) [[r] _ [s]] (D.7)
h= - co k= — oo
Furthermore
{o] ir] ’ . r
2 3B A+ 1T, _ E 3B (h+0)T, 3BT, .e’BTI-l—Ie__:::T« . e3BT,[r] (D.9)
A= — oo h= — 0o
Combining the above results yields (see Eq. C.6)
R,(t,,t;3) =2cos2xf,t-I(t)
- zcuzﬂ.f t{ AgBe-B(l.+t,)e28Mln(t;.t,)_
° 2
B(A% - ¢2 D9
( - ¢ )c-a(c.ﬂ,)[czamuu.,c,)([rl_[3]) (D.9)
e3BTi 3BT (o] _ z3BoT, 3BT r|
+ 1 — 3BT, ] }
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. Since X (t) represents a bi-level pulsed jammer, the power due to the jammer
' at the output of the narrowband filter denoted by P; can be obtained by letting

t; =t; =t in the expression of R, (t,,?;) and time averaging the result. Thus

Ry(t1) = £8 - B(4* - )] - o) - ZEZ T [orom -soeoraa

— e3BeT¢ o~ 28('-1'.['1)]

B (D.10)
which must now be time averaged in order to obtain P,, the average jammer power.
With the aid of Diagram D.1, D.2, and D.3 we note that all the three functions
3 {[r] = [s]},{t — T,[s]} and {t — T,[r]} are functions of ¢, and their time average

values can be calculated as follows:

=10 = lim (7715 + (-1 - T:])

1
3 = lim ;[p +(1-p)nj=1-p (D.11)
* e-3B(¢~-T,(SD) = lim 1 ™ ne-38(t+¢) = e (1-—e?87¢) (D.12)
. n—eo0 nT, J, 2BT,
*
LTy
‘ TR (=T ) = e-38¢ " e-3B(t+0T,)
y e "Iincla (n+p)T [/ dt +n/ e dt}
. e~ 2BsTe(] — ¢-38 To)
25T, (D.13)
B Therefore, the final expression for P; is
B
:c B(Az C’) 1 — e 3BT, 1 -—e 28T,
! = A’B- B(A* - C* -
Pr=4 B( CH=p) - e-38T, [ 2BT, 2BT, ]
% = B[A’p + C*(1 - p)]
3 (D.14)
)
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APPENDIX E

VARIANCE OF Y,

Since y(t) is Gaussian and zero mean random process, Y; is a Gaussian, zero
mean random variable due to the fact that linear operations only are applied to
y(t). [Ref 2] The variance of Y;, denoted by 03 can therefore be expressed as

follows:

T, T
o} = E{/ / 2(t)z(v) coserotcos21rfovdtdv}
°_-° (E.1)

Ty (T
= / / R, (t,v) cos 27 fyt cos 27 fovdtdv
(1] 0

where

R,(t,v) = /-: Lw he(t = 1)h; (v — Y) Ry (1,7) R (1 — ~)drdy (E.2)

and R, (7 — v) is defined as the autocorrelation function of the spreading code. For
DS-BPSK spreading modulation, R.(§) is well known, namely

: 1-8 <
R¢6= T, ' <
(6) {o 6> T

where T ! is the digital rate of the spreading code and is called the chip rate.
The power spectrum of the spreading code S.(f) is the Fourier transform of R, (6).

namely [Ref. 2].

S.(f) = T.sinc*(fT.) (E.3)
where
. _ sinrz
sinc(z) = -
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A diagram of R, (6) and S,(f) is shown in Fig. E.1.
E A new signal P,(t) is defined as follows:

', cos2xfot ;0<t<T,
“ F.(t) = { ; otherwise

So that equation E.1 can be rewritten as:

o o} = /-: /-: R, (t,v)P.(t)P.(v)dtdv (E.4)

It is possible to express R, (t,v) as the double inverse Fourier transform of S; (f,v),

that is
3 ' R = [ [ sipmeri e (E.5)
where
s,('f,u)=/°° /“° R.(t,v)e™ 3" U= *") dtdy (E.6)
Let P.(f) b; the Fourier Transform of P.(t), so that Eq. E.2. becomes
! _ o0 - -] o0 (- -] ‘2'!‘ -,'2."' ‘
: o2 /_“ /_0; S,(f,u)/_” /.«. P, (1)1 P, (v)e~"** dtdvdf dv -
= [ [ ssmpnpwara

Using equation E.2 to evaluate equation E.6 results in

Sz(fiv) = / / Rv("'Y)Rc(T—‘Y)/ / h(t —1)e” 237/

'
y (v — v)e?*¥* dtdvdrd~- (E.8)

3 =8 (NE=) [ [ Rn)R(r - 2)ardy

:. since

:E /m hi(t —r)e 72 /tdt = H,(f)e %"/~ (E.9)
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and H;(f,) is the Fourier Transform of h,(t). Therefore

a=[" [ mpE()PENPE)
/‘“ /': - (E.10)
| RrR( = e e drandpan

The double integration involving the variables r and v in equation E.10 can be eval-
uated for the special case where y(t) is the nonstationary random process described
previously.

In order to evaluate o}, the double integral D(r,~) defined as must first be
evaluated, where

D(r,y) = /.“ /-- R, (r,Y)R.(r,v)e 3" /" &3 " drdy (E.11)

Recall from equation 2.20 that

R,(1,7) = 2cos2x fo (r — ¥)n(r,) (E.12)

where

n(r,7) = / " hu(r - a)h (1 - a)g. (a)da (E.13)

The double Fourier transform pair n(r,v) and H(w,w) can hence be expressed as:

H(w,w) =/- /- n(r,v)e 2" 2" " drdy (E.14)

so that

n(r,) =/- /' H({u,w)e '?""* ¢ """ duduw (E.15)




Therefore,

é D= [7 7o [ [ B audo)

R.(r — ) cos2xfy(r — v)e 73"/ 7 2"V drdy ,
/ / H(u, w)/ / 2R. (1 — v) cos 2x fo (1 — 4)- ]l
-;2.(! .)r -12-(--v)1dfd,1dudw 1
|

=/.~ /_w H(u,w)/_a (Se(f —u+ fo) +S.(f —u—fo)]

¢""‘"‘""(’""""'"'d'ydudw

=/_~ /-“ H("’w)ls°(f_"+f°)+S=(f‘“—f0)15(f—u+w—u)dudw

;:: (E.16)
% Carrying out the last integration with respect to w, results in
,;; D(r,) =/ Hiu,u+v-f)[S.(f—u+fo) +5.(f —u=f)ldu  (E.17)

Evaluation of H(u,w) which is defined in Equation E.14, can be accomplished

by performing a double Fourier transformation on n(r,v). The single Fourier trans-

e form of n(r,7) is
K / n(r,v)e 3" dr = / hy (v - a) / hy(r — a)e™??"*"drq, (a)da (£.18)
. Since
B / hy(r — a)e” 2" dr = H, (u)e” 73"~
' transforming again the left hand side of equation E.18, results in
/ / n(r,y)e ?"e &= drdy = / H (u)g, (a)e™ 727"
;,':. -ae /-o0 - - oo
/ he (v - a)e? " dvda
s or
!.:_
R H(u,w) = H, (u) H,_(—w)/ ,(a)e"?3mlv-wlady (E.19)
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However, being a periodic deterministic signal, g, () can be expressed in terms of
its exponential Fourier series expasion as follows

q.(a)= Z C“cjzwncn,
so that
/” g, (a)e= 73" (v=*)e gy = i C. /“ AT (nRe-utwla gy (E.20)

Evaluation of the C, coefficients for a particular case of interest is worked out in

Appendix F. Combining Equations E.19 and E.20 yields

H(u,w)= Y CuH.(u)H.(-w)é(nR, — u + w) (E.21)

From equation E-21, it is clear that

H(u,u+v - f)= .HL(u)HL (f—v—u) f: Co6(nR, + v — f) (E.22)

Equation E.17 can hence be further simplified to yield:

D(r,q) = /_“ Z C.H, (w)H,(f — v —u)6(nR, +v — f)

[Se(f + fo —u) + S.(f = fo — u)]du

= Y CbaR +v=1) [ BLWH( -y )

(Se(f + fo —u) + S.(f — fo — u)]du

(E.23)

Observing that in the integrand of equation E.23, u is the variable of integration,

we can define
H(f,v) & /_“ Hy (W) Ho (f = v = 0)[Su(f + fo —6) + 5.(f — fo — u)|du (E.24)
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Substituting now D(r,v) in equation E.1, with the use of equations E.23 and E.24
yields:

= | BNE(IRNRG) Y CubinR, +v - NEL(, 0 )dvdy
e (E.25)

Integrating Eq. E.25 over the variable v, we have:

A= [ CHNER, - NPA-NES - nR)EL(f, ] - nR)
T (E.26)

From equation E.24, H] (f, f — nR,) can be seen to become:
H.(f,f-nR,) = / " Heo (W) He (nRy—u)[S. (f +fo—u)+5. (f = fo—u)|du (E.27)
so that finally

@ = Y- [ H(NER - DP-NP.( - nR,)

/” Hy (u)H, (nRy - u)[S.(f + fo —u) + S.(f — fo — u)|dudf
= : (E.28)
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APPENDIX F

THE EXPONENTIAL FOURIER SERIES
OF ¢,(t) AND AVERAGE POWER OF THE PULSED JAMMER.

‘:-5 Given ¢, (t) as defined in Chapter II, part C and re-illustrated as shown in
e"‘l't
E:.;:‘ Figure F.1 since g, (t) is a periodic signal, it is possible to expand ¢, (t) in terms of
oo
' an exponential Fourier series with coefficients C,, where:
l ’T' ; T' ) ]
C. = —[/ A2 T dy +/ c’c’""‘/"'dt] (F.1)
T' o oT,
Lett, =t— %’- in the first integral and let t, = ¢ — ‘-5-*—:’—71 in the second integral,
;;l\:‘ so that
«";l
Vol Ty -
L c. = l/' TOATT e T gy 4 L/“ )T, /3 PFeirnntns W2y T 4
T, J.,z Tl -nrysa
vy (F.2)
j;féf;: Using properties of even and odd functions it is possible to simplify Eq. F.2 to
yield
“or /1 (1-p) 3t
e, C. = i[u’eﬂ"'“ /' " cos 2N gy, +2c=a=--“+-w=/ 77 cos My,
".:l: Tq 0 Tq 0 Tc
ne oT (=0T,
. 1 100, 8in2nxt, /T, 5 1se1sy) Sin2nnt, /T, g
= —[|24%¢ 57 ———— + = |2C*¢ 7 ———
e T, nx/T, |, T, 2nx/T, |,
S . .
f:::; _ A,pp},"smmrp £ C (1 = p)ermmtiee) sinnx(1 - p)
' nrp nr(l - p)
. (F.3)
- From equation F.3, we observe that if n = 0, then
g Co = A%p+ C*(1 - p) (F.4)
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In the case where n # 0, C, can be reformulated as

sinnxp

C. = ciu-’ [A’p 'in“l(l - ﬂ)
nxp

nx(1 - p)

+(-1)"C*(1 - p) ].naéo (F.5)

However, expanding sinnx(1 — p) and taking into account that sinnx = 0 and
cosnx = (—1)", the second term of equation F.5 becomes —p?C? s_im’ so that

we finally obtain

C. =€ (A -C?) 2222 %0 (F.6)
nxp
Summarizing the results above, we have
A’p+C'(1-p) ifn=0 £
"7 (A% - C)ene e BRRER ifp £ 0 (F.7)

The average power of the puised noise jammmer can be obtained directly from
the coefficients C,. Alternatively, recall the expression for R, (¢,¢,) from equation

C.landlett, =t, =t so that

R,(t,t) = R, (t) = 2cos2xnf,(t - t) /-- he(t — a)h, (t — a)q, (a)da

or

R(t)=2 [ W (t-a)a(e)da (F38)
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Assuming specifically that A, (t) = Be=2'U(t), R, (t) can be obtained as follows,

R(f) =2 /_' [Be=®¢- 21Ut - a)]’q. (a)der

=2B? / e 28° E C.e3"~=2)/Tedz  wherez=t - a
0

baud el3P +53nu/Ty)s ]-

= 3 janwt/e,
2B 2 C.¢ —(2B + 52xn/T,)

n= 0

- | (F.9)
e,yznn/‘l',

— 3

=18 E 2 2B + janx/T,

e}".ul/f. elInnt/e,

C [_J [ J
_ 3| =0
=2B [23 + “z_:lc"‘m - j2nx/T, + ‘Z_:l C. 2B +j2mr/T,]

Co boud eiInwt/T,
—-4 3 —
2B [23 + 2; ke {C" 2B + j2xnT, } ]

Since the C, coefficients have been shown to be of the form

Ca =€ [.(A,C,)p) (F.10)
Equation F.9 becomes

i -Co o0 einTrgiInmt/T,
R,(t) = 2B 2_8 +2 Z Re {f,,(A, C,p) 2B + j2nx/T, }}

LT R
[ had finwp+2nat/T,)
= 2B ﬁ+zzf.(4,c,p)ne{———iﬁ }]

(2B)? + (2nx/T,)3 ¢/ tan " nn/BT,
rCO - cos (M-f-mrp-un" 3—'—’-)

T, nte

= 28? Y + 2; I~ (A,C,p) 2B) + (2n#/T, )

(F.10)
It is obvious that R, (t) is periodic in ¢t with period T,, since the average of a cosine

signal is zero, we therefore have
R =28 (2)
or

P, = R,(t) = B[A’p + C*(1 - p)] (F.11)
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APPENDIX G
VARIANCE o3 FOR FAST JAMMER

In the case of fast jamming, the variance 0} of the jammer as demonstrated
in Eq. 3.18 simplifies to the following expression
@ =G [T ImNPIROP [T B@PS( -0y (G
where

S.(z) =Sz + fo) + S.(z - fo)

In order to simplify the notation, denote the Fourier Transform and the inverse
Fourier Transform operation by F{(-)} and F~*{(-)} respectively and let + denote

the convolution operation. Define

o(t) £ FH{V(f) (G2)
where
vin = [ 1B @Ps - v (G.3)

so that 0 can be reformulated as follows

o =G / T BDPIPNPY (N

e [~ P [ v ra
/“‘ /"“ (G.4)

=G /.“ v(t) /_“ |Hi ()PP (f)]?e7 22" 0 dt df

-c, [ w()F~* {|H, (N)PIP.NP} de




Recall from Chap. III, Eq. 3.17 that:
P(f)=G(f-fo)+G(f + fo)
G(f) = %sinc (fT)e 3T

¥ where for reasonable values of f, and T,
|P.(f)? = P.(f)P.(-f) = |G(f - fo)I* + G(f + fo)? (G.5)
“ or equivalently

2r = (%) et -+ (3) sncy+0n @9

N The inverse Fourier Transform of this function can be easily obtained from tables

(see Ref. 9), namely

T, t

« -1 3y ¢ _ Infot L -a2wfae 3T

: F (IR} g(n)(e e i) (G.7)

]

’ where ]

1t

. t\_Ji-= if t<T

\ A (T.) - L .

" The same considerations apply for |H, (f)|? since H;(f) is the bandpass filter trans-
fer function specified in terms of shifted lowpass equivalents. Since H,(f) is signif-
icant for f = + [, over a restricted frequency band,

Hi () = Ho(f - o)+ Hoo(-f-1)° (G R

: where the lowpass equivalent H,,(f) is given by

: H. () = _ G 9

Lo T b y2nf (e
' ] 2
A e s 10
H(f)' = 3 (b’ ST ) LG 10

™




Consequently,
F-3 {IH,(])P} = -:-e""’ [eyzrl.l +e"""°'} (G.ll)

so that evaluation of F~' {|H;(f)|?|P.(f)|*} can be accomplished by using the
convolution theorem [Ref. 9], that is

FoU({H(NPWPNRY = F{E(NEY s F PN}

- - bT‘ r Iwfyr —13m /[y T eyt EPR L AN I
'/.-T‘(F.)“’ ey e (e -e @
T, [* r
= T‘/_- e M A (F‘)cazt[o(t - r)dr
= !I'-/ e‘“""A(L)g(t,r)df
8 /.. »
GY
where
g(t.7) = cos2x fyrcoa2n f,(t — r)
G 13

1
= ilconitf.,t +cosdnfotcosdn for ~sindxfytsindnf,r

According to the value of ¢ - r |, Eq. G.12 can be further expressed as foilows:

F:{HN? P(N*}=1-1 G 14
where:
“ [‘z.%.-/i-t-‘«"_‘(%)"t,r)df s 13
L [T .
’lzT. ' e -\(%‘)'ﬂ.f)dr < 16

We can now proceed to the specification of vit' which 1s obtained from

'(ﬂrr"{/ H (w)' Sif .u,ll
=F {H(N'Y F s m -
- 2 t (
= Be .‘(T.)m.hf"

9




since

F '{{H.(f)?} = Be ®'"' cos2xf,t (G.18)

Substituting Eq. G.4 with Eq. G.14 and G.17 yields
'S =COB/ e""'A(%)ca?tfot(lx ~ I,)dt

The limit of integration can be reduced to the interval -T..T. since the function
Axf,t(l, + I,)dt The limit of integration can be reduced to the interval -T..T.

4
since the function A (F) is sero except for t < T, hence

€

r }
[t
o = BC / e Pt ( F)cm'.’tf.,tll» - I, dt G 19

-t

According to the vaiue of t. two cases can be considered as foilows:
Case (1)T, >t >0,
In this case. we have

) ~t

l_’I,-’-‘-:—..' [ e ™ -»(l-%)’(f."dY'/ et (1 -’r'. )gif"ldf
(A g » " ‘ "
r,
./ ¢ LTI | (l

Since Eq G 13 shows that g(t.7) w a function of cos4«f.” and sind~f. - it can be

%

)’(t.'\dr‘

b I

G 207

seen that the integration of functions of the form ¢™ cosd~f.- and ¢ sin 4+’ -
as well as forms te™ cosdv/. - and te™ sind«f .t will vield terms :nvolving the
‘actors m- - 16¢° 7 and m° - 16¢° 777 0 the denominator ot the tesut wn e
the numerators remain bounded The numerators are proportiona. "o m whick v

this case equals h or B Since in a practical system.

f --% and f - BH




hede dit - TETE e §NwN

the contribution of the corresponding terms are therefore not significant, so that,

Eq G.20 can be simplified as follows:

[+)
L+, ~ % . %costfot[e""/ et (1+ _r_) dr+

-7,

u/' b ( "\d M/r. b ( "\d G.21)
e 2>e"{1——]dr+e e "1 ——]dr 21
(1] Tb) [ Tb) :I (

Eq. G.21 can be evaluated by using standard mathematics tables [Ref. 10} and
therefore
t eb‘ e= T,

E 1 _ - bt bt
I+ =~ 8cos21rfot[b T, BT, 2b2T,,(c +e)

(G.22)

Case (2) 0>t > -T,,

In this case we have

. _ bTo ¢ ~b(t=r) T ° -b(r—t) T
I, ~I, = 5 [/_ne 1+_T—a g(t,1')+/t e 1+§,— g(t,7)dr

: + /OT' e o=t (1 - :—;;) g(t,r)dr]
(G.23)

By considerations similar to those presented in Case (1), Eq. G.23 can be approx-

imated by
T, 1 t r 0 ;
L +1, = —8'1 . -2-cos21rfot[c"" /-r. e’ (1+ Tb) df+e”‘/; e b <1+ E) dr

(G.24)
so that

t ebl e~ T,

bTb 1 - bt bt
IL + I, = 3 cos 27 f [3 + T, BT, + 20T, (7% +e) (G.25)
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We can now proceed to the evaluation of 07 expressed by Eq. G.19 according

to the range of ¢t. Since T, < T},
_ BCobTb /o Bt t 2 1 t cbt c—bT - bt bt
o = 5 . 1+ T ) o8 2nfot 5t T, BT, + 25T \© + e ) dt

BC,bT, /“ B t 2 1t e et
+ 3 A e 1 S cos 21rfotb oT, b’Tb+2b’Tb e +e dt

(G.26)

and using cos? 27 fot = (cos4n fot + 1) the reasoning that gave rise to the simpli-
fications in evaluating Eq. G.20 can be used here to neglect the terms involving
(m? + 1672 f2) or (m? + 16x* f2)? in the denominator. Thus Eq. G.26 can be

further simplified as follows: .
BC,bT, /° t\[1 ¢ et et
2 _ Bt * L bt bt
AT { _Tce <1+Tc> [b+bTb b’Tb+2b’T,, (7% +¢*) | dt

Te t 1 t e’ c‘ bTs
-Bt _ Yz _ - bt be
+/0 ¢ (1 Tc) [b T G )} dt}
and using standard mathematics tables (Ref. 10) results in

BoCobT, (1] 1 1 1 2
2 977l - — e~ BT _ — o~ BT.
7T {b[B B=T,..(1 ‘ )]*bn[ssn(‘ ‘ )

5 —1— 1+c-81'¢ B 1 C-BT°€bT° + C-BT"C_,"T"
BT, |2(B — b)°T, ' 2(B +b)*T.

B___B+¥ ] e[ 2B _ 2B +¥)
B* -t  (B? —0)T,| ' 8T, |B* -6 (B? —b)°T.,

(G.2)

(G.28)

+

-(B-8)T, -(B+b)T,
*6-ByT. T (B +b)=Tc]}
which by regrouping terms, obtains the final form ,
C, T, 2 1 1+e BT
2 04h -BT
= — 1-—- [ T —
9 = T3 {1+ (B’T,,IL BTC)( R
B? B(B? + b*)
-oTy _ _
+ (2 1) [bT,,(B2 -¥) ST, T.(B? - b%)?
Be—B‘I‘.e—b‘l‘, BC—BT° ebT¢
T WNT.(B+b)? | 2bT,T.(B - b)° } }

(G.29)
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N

L

e STATISTICS OF Y, AND N,,

e

N We first recall the definitions of N,, and Y, from Chapter IV as follows

- Ts

e Y, & / y(t)e(t) s A, (t) cos2x f,tdt (H.1)
P °

'::::: Ts

B N & | Nu(t)e(t) « hr(t) cos2x £, tdt (H.2)

(4]

.x;e‘,:‘,‘ Observe that Y, is a zero mean random variable since the jammer and the spreading
0:". ) B

::::SE: code c¢(t) are assumed uncorrelated and furthermore, c(t) has zero mean. The
q.'.! }

,ff' variance o of Y; has been developed in Chap. 3 and can be expressed as (see Eq.
o 3.19) ,
"

) 3 _ COTC -BT, 2 _ 1 3 l+e-BTc
g =" {1 +A-<"NenT BT BT,

LA X!

o B? B(B? + b*)

-0Ty _ -

- T2 - 1) [m(m “®)  WLT.(B - b) (H3)
o Be-BT.e-T. Be-BTebTe

t .

;‘3! , T LT, (B+b) | BT.T.(B - b) ] }

Wl Replacing now B and b in Eq. H.3 by 2x R, and 27 R, respectively thereby setting
:ii::: the 3 dB cutoff of the filters appropriately, with

'; ' G & &

‘:":f ) R,

N defined as the processing gain, a final expression for o3 is obtained as follows
,l::ﬁ.;g;' C T

A o
o o} = Z22J(G.) (H.4)
;,i':G:t.
il where

— (1-e?)(1-7G,) 1+e? G2 -1)( 1
R J Gc = — c
sl (Ge) =1+ 273G, P o &= -
u" - G? +1 + e %" e 3% + et )
Y 2r(G2 —1)* * 4m [(G.+1) * (G.-1)?
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The determination of the variance o}, of the random variable N,, can be ac-
complished in a manner very similar to that used in the determination of 0%. Ob-
serving however that replacing in the jammer model the deterministic priodic signal
q(t) with a constant unit amplitude function, namely g(t) = 1, setting Rw (,,t;)
equal to £26(t;,t,) (see Eqs. 2.16 and 2.17) results in a simple AWGN noise model
having PSD level N, /2. Thus all evaluations involving the jammer can now be used

with the stated modificiations in order to characterize the noise contributions to

the performance of the system. Therefore, (see Eq. E.13)

n(r,v) = /_“° he(r — a)hy (v — a)da

and with
hy(t) = Be 2*U(t)
then
Min(r.v)
ﬂ(T,’Y)=BZC-8'C-B‘,/ eZBada
= ge-Blf—vl

Thus, the auto correlation function R, (¢,7) of the noise N,,(t) is

R.(t,7) = B “Blr=vl cog2n f,(r — v)

From the methodology of Chap. 3, Eq. E.14 becomes
® = B ~B|r—q| g-j2%xru 52x
H(u,w) = No-z—c Tle=? e drd~y

Evaluation of Eq. H.8 can be shown to yield

B 1 1
H(u,w) = N”E{ B — j27u B + j27u }6(u ~w)
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R Therefore, the variance o2, of N,, (see Eq. E.25)
a=[ [ ZawnaoreEneey

/.“ H(u,u+v—f)[Se(f —u+fo) + Se(f — u+ f,)|dudfdv

(H.10)
where

‘a’&‘ B 2B

L) . - —_d —— —_ — N

(o H(u,u+v— f) N,,2 {B’+(21ru)2}6(u (v+v—-f)

a (H.11)

e _NE __2B 5(f - v)

R ~ 72 | B? + (27uw3)?

L Letting f = v — f, or f = v + f, as appropriate in the two integrals, obtain

,:0 0.‘2,' = / NolHI(f+fo)Pc(f+fo)|2Z(f)df+/ NolHI(f_fo)Pc(f_fo)lzz(f)df
(H.12)

::E:':: where ’

P ©“ B 2B ‘

DA —_ e -

:“1‘ . Z(f) e 2 B3 + (21ru)3 Se (f u)dudf (H°13)

Vo ) Z(f) can be evaluated further as follows

. B 2B B

! - — = — "Bl‘l .

i oo

“ = g e PR, (t)e 7?7/ dt (H.14)

;','m: T, T, ¢

& =B[/ e"'cosertdt—/ eA‘B‘Fcosmrftdt]

:q:‘ﬂ: . 0 o [

e The two integrals in Eq. H.14 can be evaluated separately and with BT, = 27, we

'{::t have

e 1,

5 2(f) = 322'U)

__(‘ where

E. ) Z'(f) = [IT(}W [(e"" cos2r fT, — l) ((}'T,)2 - 1) - 2fT, sin27rch>]

e (H.15)
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From Figure H.1, it can be observed that if R, << R,, then Z'(f) s~ 1 for f within
the interval (— Ry, R,). In fact, Z(f) is significant only for |f| << R,. Hence, Eq.
H.12 can be simplified as follows:

: N[ [™ ny |
: R RS XY AT R T TRV AT VYA
. -Rs ~-R,
. N [
= To |HI(I",0)PG(I_10)I2”
-R,
(H.16)
From Eq. G.6, we have
! . Ipe(f-fo)lz ~|G(f-f—2fo)lz +|G(f)|’
where
T\ . .
p G(f) = 5 ) sinc IT.. (H.17)
o .
o
. The term |G(f — 2f,)| has significant components outside the integration region
8,
* [~ Ry, Ry]. Furthermore from Eq. G.8
l. IHI (f - ft-'ﬂ)l2 ~ |H‘u(f - zfl’)l2 + Icho(_f)l2
‘ and again, the term |H_,(f —2f,)| can be dropped from further consideration due
§ to reasons similar to those discussed above in the context of |G(f — 2f,)|. Thus
: R, 2
" o3 x Mo / =y, () (5) sinc’ /T, df
T J_g, 2

.
K
L)
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Figure H.1 Function Z’(r)
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and since |H,, ()| has 3 dB cutoff at f = tR,, the integral itself can be approx-
imated by
1 [, _
IR /-R. sinc’ (fT,)df =~ k = 0.903

Finally
N,T,

=k (H.18)

2
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