
'A-II623 PC EXPERT SYSTEM DBMS INTERFACE TOOLS PHASE I I'
1 FEASIBILITY STUDY(U) APPLIED LOIC SYSTEMS SYRACUSE NY

LINCISSIEDF/ 12/5 L

EhEEEEEmhmhhhI
son.

11--11... ..

O I1[25 1 4 1.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

S..... " . . .

OCFILE copy

to PC Expert System/
IMDBMS Interface ToolsDTQ

'..

DTIELECTEu
Final Report JUN0 2 W98

D
Contract DAAB1O-86-C-0551 '

(SBIR Phase I Feasibility Study)

USACECOM Vint Hill Procurement Office
R&D Field Station Support

P.O. Box 1551, VHFS
Warrenton, VA 22186-5120

Requisition/P.O. Number: W73DMT- 1 15-86
Effective Date of Contract: 14 May 1986
Expiration Date of Contract: 3 December 1986

Prinoel nvetlgnpr:Prnieet Enoinee:
Kenneth A. Bowen Keith Hughes
(31S)-471 -3900 (31S)-471 -3900

WppIied Logic Systems Inc.
B3ox 90, University Station
Syracuse, New York 13210

The view and conclusions contained in this document are those of the
authors and should not be Interpreted as necessarily representing the
official policies, either expressed or implied, of the Government.

IDIBTRIDWION STATEMENT A.
Approved for public r.1eg Ie

Disriution Unlimited

37 4 1~

I1

Summary

The technical goals of this Phase I effort were to explore the feasibility
of the construction of direct interfaces between Prolog and databases
managed by conventional DBMS systems. The Prolog utilized was ALS Prolog
and the DBMS system utilized was dBase III. Expert tools which assist
programmers in the construction of interfaces between ALS Prolog and
dBase III were successfully constructed and tested. This study demonstrates
that it is quite feasible to easily construct interfaces between the languages
used for the implementation of expert systems and the files managed by
conventional database management systems.

Two further feasibility studies were conducted. The first was the
feasibility of constructing expert systems which ease the task of preparing
graphical presentations of data held in DBMS files. On the negative side, the
study showed. that it is not feasible to achie e this using conventional
graphics presentation packages which are ori ed towards interactive use.
On the positive side, the study showed th it is feasible to couple such an
expert system with lower-level ro ing language packages of graphics
pre..- - will allow one to build an expert graphics

sentation tool which can be interfaced to a variety of different databases.
)The final study concerned the feasibility of utilizing the database

interfaces to construct tools for easy input of ASCII data into existing DBMS
data files. This too was shown to be quite feasible by coupling the database
interfaces to previously constructed tools for reading structured ASCII data
into Prolog. --

All three feasibility studies were quite successful and demonstrate that
powerful, flexible, and easily used tools of the type described can be
constructed for the PC environment.

Accesion For

NTIS CRA&I
D rC TAB D
U;.a:irouj;:ced 0

J 5tt',C L~ n

By .7 ~ h \LPEUTED/

Dit, ibJtion I i,
Availability Codes

Avii, ai,. J or
Dit ipL.dt

2

1. Summary Results of the Phase I Work

The Phase I work was highly successful. The original technical
objectives (from Section 4 of the Phase I proposal) were:

0 Objective 4.1. Construct Prolog rules representing the manner in which
dBase III generically organizes its datafiles, indexing files, and database
definitions.

- Objective4.2. Construct low-level access functions which are able to
navigate in dBase III data and index files and which can read individual
fields of dBase III records.

- Objective 4.3. Construct a prototype collection of Prolog predicates
which utilize the results of 4.1 and 4.2 to construct custom Prolog interfaces
to a particular dBase III database. User-friendly aspects and full
packaging as an expert assistant will be deferred in this feasibility study.

- 0Objec tiv e 4.4. Select a suitable commercial graphics presentation
package for use with dBase III. Develop Prolog rules which describe the
files it requires and the commands to invoke it properly. Develop a
prototype collection of Prolog predicates which utilize these rules to
create graphics presentations of information from the dBase III database.
Again, user-friendly aspects and full packaging as an expert assistant will
be deferred in this feasibility study.

* Objective 4.. Applied Logic Systems has already developed methods of
specifying the format of input data files and reading them into internal
Prolog forms (under a current SEIR Phase I study for the National
Institutes of Health -- see Section 4). Develop prototype Prolog predicates
which utilize the interfaces constructed in 4.3 to load the input data into the
dBase III database.

Our overall results of the Phase I effort can be summarized as follows:

* On objectives 4.1-4.3, we accomplished substantially more than was
proposed.

" On objective 4.4, we encountered limitations due to the nature of almost
all graphics presentation packages, but have devised approaches to
overcome these limitations.

" On objective 4.5, we completely met the goal.

3

2. Details of Accomplishments by Objective

2.1 Objectives 4.1-4.3:

2.1.1. We constructed a small collection of very low-level predicates
which were coded in C and which supplied primitive functions for database
file access. These included predicates for:

* opening and closing arbitrary files
* locating at an arbitrary byte position in a file
* determining the current position in a file
* determining if end of file has been reached
• reading a specified number of characters
* writing a specified number of characters
" reading integers and reals from files
* writing integers and reals to files

These primitive predicates were originally added to ALS Prolog as new built-
in predicates. This is a rather awkward process, and comsumes space in the
standard Prolog which it is hard to justify. However, they no longer must be
added as (non-standard) built-in predicates. ALS Prolog has been extended to
support foreign predicates implemented in C (and later FORTRAN, Pascal,
etc.). Consequently, the primitive predicates required for the database
interfaces can be loaded as foreign C-coded predicates via the standard
foreign program interface. The delivered version of the software will be
the version incorporating these predicates as non-standard Prolog builtins
(the original approach). However, during the Phase II effort, the interface
will be configured to smoothly use the foreign program interface.

2.1.2. A set of Prolog predicates was implemented (in Prolog, in terms
of the C-coded predicates of 2.1.1) to enable the reading and writing of the
specific datatypes supported by dBase III, such as number, boolean, date,
character, etc. (Padding and justification of fields is appropriately accounted
for.)

2.1.3. A Prolog definition of the internal headers of dBase III datafiles
was coded (utilizing 2.1.1 and 2.1.2 above). This definition can be used to
direct the reading of information from the header of an existing file, or to
create a new header for a new empty datafile.

2.1.4. A Prolog definition of the B+ - tree structure of dBase III indexing
files was constructed. This definition directs the navigation through the
indexing files for both reading and writing records in data files.

2.1.5 A small interface-construction expert program was implemented
in Prolog. This program is used to construct the actual interfaces between
Prolog and specific dBase III files. The expert conducts a short dialog with
the programmer to obtain such information as the name of the target dBase
data file, the names of any associated indexing files (which must be obtained
from the programmer since dBase III does not support a uniform data
dictionary), etc. The expert program then reads the header of the target data
file, and afterwards writes Prolog code defining the virtual interface

between Prolog and the data file. The code is stored in a file named by the
programmer. In order to utilize the interface, the programmer simply loads
this interface code file along with any other Prolog code defining the
program which will manipulate the data from the database. The interface
.supports both reading from and writing to the dBase III datafiles. It also
utilizes the indexing files for both reading and writing, and updates the
indexing files whenever new records are written (by the interface) into the
data file. An arbitrary number of such interfaces can be attached to a given
Prolog program.

2.1.6. A large-scale geographic database was created as a collection of
dBase III files (derived from a collection of Prolog files supplied with
Borland's Turbo Prolog). and was interfaced (via the tool of item 2.1.5 above)
to a simple natural language query program written in Prolog (also derived
from a program supplied with Turbo Prolog). The test was quite successful.

2.1.7. A prototype high-level DBMS expert system was constructed for
use by Applied Logic Systems programmers in constructing the interface
tools for given DBMS systems. This DBMS expert has knowledge of the
generic structure of files and indexing methods used by DBMS systems. It
assists the user (a high level Prolog programmer) in constructing the
analogues of the tools 2.1.3-2.1.5 above for a given (new) DBMS. After a
moderate-sized dialog with the programmer, the DBMS expert writes
definitions in the style of 2.1.3 & 2.1.4, and then writes information used by
the interface expert for interfaces specific to the given DBMS (in the style
of item 2.1.5 above).

Further details of the interfaces are presented in the attached Appendicies.

2.2 Objective 4.4:

W e examined a number of standard commercial graphics presentation
packages designed for use with DBMS systems such as dBaseIII. Hardly any of
the available graphics presentation packages support command-line
arguments or batch operation. Virtually all are oriented towards interactive
use, which presents a problem for remote control by an expert program (no
matter what language is used to implement the expert program). For those
which utilize the standard DOS input and output, it would be possible to
communicate with the graphics program through the temporary pipeline
buffer files used by DOS. However, the effort required for this does not seem
to be warrented. A much better approach appears to be to use the foreign
program interface for Prolog in order to couple Prolog to a standard
commercial collection of graphics presentation routines (many such
collections exist). These can be utilized by an top-level expert presentation
system coded in Prolog which aiso interfaces to the appropriate DBMS rles.

The feasibility of this approach was tested using a small collection of
graphics routines supplied with the Manx C compiler. The test was highly
successful.

2.3. Objective 4.5:

We were successful in connecting the previously constructed routines
for reading structured data from ASCII files with our routines for
interfacing from Prolog to DBMS iles for the purpose of inputting data to

5

existing datafiles. The experience showed that such separate coupling
introduces inefficiencies. However, our previous experience and the
present work show that a better approach would be to modify our original
approach so that the target for the ASCII file reader is not internal Prolog
structure. Instead, the target for the ASCII file reader should normally be
database file output through the very low-level routines coded in 2.1.1 under
Objectives 4.1-4.3.

011! WWP 11 1(1,11

6

3. Evaluation and Next Steps

The evaluation of the feasibility studies for all of the technical
objectives was highly positive. They demonstrate that each of the objectives
can be achieved with efficient programs which are quite compact and suitable
for the PC environment. Moreover, our tests of ALS Prolog on 286-class
machines (e.g., IBM AT and accelerator boards for PCs), 386-class machines
(e.g., COMPAQ 386 and accelerator boards for PCs and ATs), and 68000-class
machines (e.g., Macintosh, SUN workstations, accelerator boards for PCs and
ATs) show that the resulting programs will be extremely efficient and
productive.

The immediate next steps are the following:

3.1. Extend the DBMS interfaces to other systems such as R:Base 5000,
primarily by the route of extending the high-level DBMS expert (2.1.7 above).
We have already obtained the cooperation of MicroRim for R:Base 5000 in this
regard, and will approach other companies.

3.2. Push some of the Prolog-coded predicates down to C or assembler-coded
predicates for improved efficiency (especially those dealing with aspects of
indexing). This will be done after significant effort is carried out on 3.1. so as
to choose an optimal set of predicates for recoding.

3.3. Select an appropriate collection of C or assembler-coded graphics
presentation routines for interfacing to databases. This may be a
commercially available set. However, we will expore the value of coding the
set ourselves, since we might be able to tune it especially well to the needs of
the interface.

3.4. Complete the recoding of the ASCII file input reader for inputting data
into existing databases. This has begun and is expected to be quite routine
given the experience with merging our previous work with the present
concerns.

g

7

Appendix 1. Description of the Interface Tool.

Prolog dBaseIII Interface

Most expert systems applications require the system to access and
manipulate extensive databases of information. In many cases, this
information resides in a database developed under a standard DBMS, and is
accessed and maintained by applications programs written in standard
programming languages such as C or FORTRAN or specialized Database
Programming Languages associated with the DBMS. However, these
languages are not usually suitable for implementation of complex expert
systems. Instead, Prolog or LISP or specialized expert shells (written in
Prolog or LISP) are utilized. Because of the size of the database and
supporting applications as well as its importance to the organization owning
it, it is usually unthinkable to convert the database and the supporting
applications to Prolog or LISP. Thus a gap exists between established
databases and expert systems which must utilize the data residing in the
databases.

Applied Logic Systems has developed a method of bridging this gap
without disrupting the database and the other application programs making
use of the database. The method uses the existing database to provide expert
systems written in ALS Prolog with virtual views of the information in the
database. This virtual view is defined by interface code (written in ALS
Prolog) which is created by an expert system called Access Expert (which is
itself written in ALS Prolog). Access Expert conducts a brief interview with
the programmer, determining such things as the database and relations to be
accessed, the nature of the access (fields or whole records, read or write),
etc. DBTool also reads information from the DBMS data dictionary or from
headers in data and index files. It then combines this information to
synthesize the interface code, which it compiles and writes to a file for
storage.

The over-all architecture of the resulting interface is suggested by the
following sketch:

8

constructed by DBTool

Expert interface
System

(dBase)ALS Proig. Dt
File~ l

The construction of interfaces between Prolog and relational databases is
especially natural because the fundamental notion of both is the notion of a
relation. Abstractly, an n-place relation is a collection of n-tuples of objects.
The relation is said to be 'true' for each n-tuple actually in the collection.

From the perspective of relational databases, a relation is a rectangular
table. Each of the n columns of the table corresponds to one of the positions
in the n- tuples, and the rows of the table correspond to the n-tuples
belonging to the collection defining the relation. Many relational DBMS
systems identify each table with a file containing the data in appropriate
formaL The name of the file is often identified with the relation name.

Prolog sees simple relations as collections of facts. Let 'parent' be the
name of a 3-place Prolog relation. A fact for 'parent' is a statement that
'parent' holds of a certain 3-tuple of objects, namely (john, mary, ruth). This
is usually expressing in the form

parent(john, mary, ruth).

This fact corresponds to the row

john mary ruth

in the relational database table for the relation. Since Prolog views relations
as collections of facts, there is an obvious one-to-one correspondence
between the Prolog facts and the tuples in the relational database table view
of the relation. And at a higher level, there is a Prolog relation
corresponding to each database table.

A Prolog <=> DB interface constructed by Access Expert allows a Prolog
program to behave as if it actually contained the collection of facts
corresponding to the tuples in the database table. However, this collection of
facts never really exists in its totality in Prolog. Instead, individual Prolog
instances of the appropriate facts are constructed "on the fly" by the
interface as they are needed by the Prolog program. When Prolog finishes

9

using such an instance, it is discarded. For example, suppose that
PARENTS.DBF is a dBaseIII data file containing a 3-column table, and that
'parent' has been connected by the interface to PARENTS.DBF. The file
PARENTS.DBF may contain 5,000 tuples, but only a few of the corresponding
facts for 'parent' exist in the Prolog image at any one time. As the
computation of the Prolog program requires instances of 'parent', the
interface accesses PARENTS.DBF and constructs one or more appropriate
instances of 'parent' from tuples contained in PARENTS.DBF. If dBaseIII
indexing files have been constructed for PARENTS.DBF, the interface utilizes
them in locating appropriate tuples from the PARENTS.DBF table.

The interface is two-way. ALS Prolog provides the programmer with a
special built-in called 'db_assert'. This is a database-oriented version of the
standard assert. A Prolog call of the form

db-assert(p(john, mary, harry))

will cause the interface to write the corresponding tuple

john mary harry

into PARENT.DBF. The dBaseIll indexing files for PARENTS.DBF are not
currently updated, but this facility is being added at present.

Installation of these interfaces is extremely simple. The programmer
simply invokes an ALS Prolog program called Access Expert which questions
the programmer. The invocation is a simple as this:

>dbpro accexp
ALS Prolog Version 1.Ox [1000] DB Version

Copyright (c) 1986 Applied Logic Systems, Inc.

?-accexp.

The dialog with Access Expert beins here

The first question is the name of the DBMS (here, dBaseIII), and the name of
the data file containing the target relation (here, PARENT.DBF). Then
'access-expert' obtains all the information it needs to construct a basic
interface by reading the header of the dBaseIII data file PARENT.DBF. It also
asks whether there are any dBaseIII indexing files associated with
PARENT.DBF. Next, it asks the name of the corresponding Prolog predicate
(here, 'parent'), and finally it asks for the name of a file (say, PARENT.PRO)
in which it should store the interface code it will generate. (This code is
entirely Prolog code; a few very low-level supporting routines written in C
have been added.) 'access-expert' then generates Prolog code defining the
interface and stores it in PARENT.PRO. All the programmer need to now to
interface his Prolog program to PARENT.DBF is to load the file PARENT.PRO.
The code in this file makes it appear that 'parent' consists of a collection of
5,000 facts corresponding to the 5,000 tuples in PARENT.DBF.

10

As an example, consider a simple relational database containing gross
employment data by country and economic activity. The source data might
originally have taken the following form:

NN

11

Cantr. Economic Activity ENP NP 21

Brazil
Community, Social

& Personal Serv. 44 10,706 24
Manufacturing 23 6,832 15
Wholesale & Retail 12 4,276 10

Trade etc.
Great Britain

Community, Social
& Personal Serv. 19 6,200 27

Manufacturing 28 7,155 31
Wholesale & Retail 10 2,806 12

Trade etc.

PGNP = % of GNP produced
NPE = Number of people employed
PT = % of total

As is common in the implementation of such databases, the actual entries are
highly compressed or coded versions of the source data. In this case, the
actual table might look like this:

Brazi CSP 44 10706 24
Brazl Man 23 6823 15
BrazI WRT 12 4276 10

GrBrt CSP 19 6200 27
GrBrt Man 28 7155 31
GrBrt WRT 10 2806 12

Let us assume that the file containing this table is named ECON.DBF.
Moreover, let's also assume that dBaseIII was instructed to index this table on
the first two columns; the files for these indicies will be named ECONI.NDX
and ECON2.NDX. If we were to create the equivalent set of Prolog facts, the
collection would look like this:

econdata('Brazl', 'CSP', 44, 10706, 24).
econ-data('Brazl', 'Man', 23, 6823, 15).
econjdata('Brazl', 'WRT', 12, 4276, 10).

econdata('GrBrt', 'CSP'. 19, 6200, 27).
econdata('GrBrt', 'Man', 28, 7155, 31).
econ-data('GrBrt', 'WRT', 10, 2806, 12).

However, using the ALS Prolog <=> Database Interface tools, you doesn't
create these facts in your Prolog program. Instead, you invoke the
Iaccess-expert' program and participate in a dialog similar to the following
(where the user's responses are shown in outline font): I

p - pp.

12

What is the name of the relation (data file)? ecos
What is the database system you &- using? dfatslll
Do any of the fields have index fidcs yes

Fields in econ:
1. Cntry characater 6
2. Acvty characater 3
3. PGNP numeric 3
4. NPE numeric 7
5. PT numeric 3

Type in a list of numbers for the fileds that are indexed: [1.21

What is the name of the index file for Cntry? ocoal
What is the name of the index file for Acvty? econ2
Will you need to read and write full records (y/n) ? y
Do you need individual access to any of the fileds (y/n) ? a
What do you want the accessing Prolog predicate to be named? economic-data
What file should the interface code be stored in? scon

Interface code has been stored in the file econ.pro

Thanks for the work....

At this point, the access-expert stores the interface code (which the
expert writes in Prolog with some calls on builtin functions which have
been coded in C) in the file ECON.PRO. The data can now be accessed from ALS
Prolog as if the facts listed above had been created as part of an ordinary
Prolog program. All that needs to be done is load the file ECON.PRO along
with any other Prolog files which will use these "facts". This is illustrated as
follows:

>alspro econ
ALS Prolog 1.0 [nnnn]
Copyright (c) 1986 Applied Logic Systems, Inc.

?-economicdata('Brazl', 'Man', PGNPVal, NPEVal, PTVal).
PGNPVal = 23
NPEVai = 6823
PTVal = 15

yes.

One can build ALS Orolog programs over this data as if the data were
expressed as ordinary Prolog facts. For example, suppose the file
ECONANLY.PRO contains the following clause:

max_pe(Country, Activity)
setof(x(NPE, Where), economicdata(Where, Activity, -, NPE, J, List),

13

List W I x_, Country) I .

Assuming the database only contains data on Great Britain and Brazil, the
following interaction would occur:

>alapro econ econanyl
ALS Pfolog 1.0 [nnm

Copyright (c) 1986 Applied Logic Systems, Inc.

?-max_pe(Country, 'Man').
Country = 'GrBrt'
yes.

An arbitrary number of data files can be accessed from one program in
this manner. The files need not all be mentioned on the command line
invoking ALS Prolog. Instead, 'consult' statements loading them can be
placed in the primary program files. For example, the file ECONANYL.PRO
might begin:

:-consult(econ).

max.pe(Country, Activity)

The command line would simply be:

>alspro econanyl

Alternatively, one can simply invoke ALS Prolog and then load the files:

>alspro
ALS Prolog 1.0 [1000]

Copyright (c) 1986 Applied Logic Systems, Inc.

?-consult(econanyl).
Loading econanyl.pro...econanyl.pro loaded.

The complexity of the analytic programs accessing relational database
data in this manner is limited only by the imagination and energy of the
programmer. magination and energy of the programmer. magination and
energy of the programmer.

ALS has designed an extremely flexible and easy to use tool which
constructs virtual interfaces between Prolog and relational databases. The
present development version of the tool constructs interfaces between ALS
Prolog and databases built with Ashton- Tate's dBaselIl database management
system (DBMS). However, the tool is readily adaptable to relational databases
built using other DBMS products.

-]

14

Appendix 2
Technical Description of the Prolog/dBaseIII Inter ace

Introduction

The current interface between Prolog and dBaseTlT has three parts to it. At tf -first or
uppermost level, a user or application Prolog program sees a normal Prolof relation
which seems to be a large collection of variable-free facts. In actuality, the Prc :g facts
do not exist in the Prolog program. Instead, the collection of facts is a phantom -virtual
collection which is determined (at runtime) by a dBaseI database. At this level the user
or Prolog program has no idea of where the information actually resides. The r xt level
(the second or middle level) consists of a collection of Prolog predicates wh- h know
what a dBasem data file looks like, and which retrieve or store information fr rn these
database files as needed. The predicates at the first or uppermost level are d ined in
terms of these middle level predicates. Finally, the third or lowest level is a colil ction of
evaluatable predicates added to an ordinary Prolog system to do work associ: ed with
reading or writing an arbitrary disk file. Each of these levels will be explained n detail
below.

In the discussion to follow, we will use a ficticious database

supply(Itn,PartNo,NolnStock),

where:

Item is a characwr field of length 20,
PartNo is a part number of type numeric with length 10 bytes, including 2 to the

right of the decimal, and
NolnStock is the number of the items to be found in stock, of length 0 bytes

with 0 digits to the right of the decimal point.
This makes the full length of a record 41 bytes, when the byte used by dBa. • M for
marking a record as deleted or not is included.

Levd 1: The User Appikation Program Level.

The user or application program, (generically referred to as the user), sees a itabase
call as a normal Prolog goal. For instance, if the user wants to talk about tht supply
relation, he would first load a file called supply. Toexecute a query on this dat ase, he
would simply make a call such as

supply(Item, PartNo, NoInStock)

where the arguments would be either variables or constants for Prolog to unify a dnst. If
the user wishes to add new records (or tuples) to a database, a dbAssert call is nt essary.
In the supply example, the call would be

dbAuet(supply(Im to,NolnStock))

where the arguments would be the values for supply being entered.

15

The user is unaware if the goal is actually found in the Prolog clause database, or is
off on disk in a database file. This information is in the supply file, which might either be
actual Prolog clauses conting the data, or clauses describing the access path to the file on
disk (here a dBase MII data file) where the data actually resides. The reason for this designdecision was to ensure that the user does not have to pay attention to the details of where
a relation physically resides when writing the program or phrasing a query. This also
means that a fully integrated database could be split across several database systems (such
as R:Base, dBaseII, dBaseMil, or across a network channel). Only the creator of the
database need know how the database was created. The user would simply load a file
specific to the relation, and start to compute with it. Note that the user (or program) can
simultaneously make use of many different database access predicates. They might all be
specific to one DBMS system, or spread over a number of such systems.

As currently implemented, dbAssert is more dependent on the user knowing where the
data resides, since it is not a normal Prolog assert call. However, the application program
could be written entirely with normal asserts. Determining whether or not the relation is
found in a database or not handled in one of two ways:

(1) Preprocessing an application program relative to the interface files before it is
compiled would be one way. Here, the interface files created by the database designer
would specify which predicates were are dBaselll databases and which were not.
Everywhere in the application Program file that an assert is seen which involves a
dBasel file, the prqxocessor would replace the assert call with a dbAssert call.

(2) Another possibility would be to construct a modified assert, which would notice
which predicates corresponded to dBase M1 database items, and call dbAssert instead.

Level 2: Prolog Interface Level

As stated earlier, the user sees the data reading interface to the supply database as a
call to

supply(Itemn4PrtNoNoInStock),

and the data writing interface as a call to

dbAssert(supply(Item,PartNoNolnStock)).

The procedures invoked to execute each of these calls lie in the second tier of the
interface. These second tier procedures are written in Prolog to make them easily
modifiable. They contain knowledge of what the database actually looks like on the disk.
In the case of this project, the DBMS managing these databases is dBaselIL To interface
to a new DBMS, these routines must be rewritten for the particular database.

A relation with no index files associated with any of its fields has a read interface
clause of the following:

Head :- access(Filehfo, Head)

where Head is of the form

RelName(Argl, ... , Argn)

16

where RelName is the name of the n-argument relation to be accessed by this predicate,
and FleInfo is a team of the form

flllnf(Rl~aeRecordhnF~e Size~feourd, SizeOffleader)

where RecordlnFile is the record number of the record that the access predicate will read
next. The starting value for RecordlnFile should be -1, which means that no records
have been read yet, and that the file is not open. A non-negative value means that the file
has been opened, and the value gives the number of records read. This is a highly non-
logical operation and should not be seen by the typical Prolog programmer.
SizeOfRecord is the total number of bytes taken up by a given record. SizeOfHeader is
the size of the header at the front of the dBase MI datafile containing the information for
RetName. For example,

supply(Item, PartNo, NoInStock)

access(fileInfo(supply, -1, 41 130),
supply(Iem, PartNo, NoInStock)).

access reads in data from the database by unifying the data it reads from the database
against the particular instantiations of the arguments used in the call, backtracking if
necessary. For instance, a goal of

supply('gas can',123,Number)

would call

access(tlleInfo(supply,-I,4,130), supply('gas can',123JNumber))

This goal would read records from the database, starting at the first record and moving
sequentially through the database, until it found a record with the first arugment beinggas can' and the second argument being 123. Number would then be unified with the
number of gas cans in stock.

access gets the information from the data file by a call to

getlnfo(RelName(Argl,_,Argn))

whose purpose is to know the types of data found in a single record and how to read
them. For instance, the above access call would call

getlnfo(supply('as can',123,Number))

and getlnfo would fail if the data for the current record did not unify with the arguments
of supply. access would then try the next record, failing if there were no more records to
be found in the database.

getlnfo has the form

getlnfo(RelName(Argl,...,Argn))

DeletyfteCheck,
CallForArgl,..,
CaForArgn

17

where CaliForArgli is a call that can read the particular data type for argument i, and
DuletufyteCheck is getCbrs(" ",1), since non-deted records begin with a space. For
dBasefll, these fields and the associated calls that read them are as follows:

Read a Strig of Lnt ch-aacters from the current datafile. This suing will have a
justifcaton of either left or right, and the ASCII code of the pad character is Pad.

Read Lengtb characts fim the current datafile, and convert them into a Prolog
Number with Decimal digits to the right of the decimal point. The other arguments
are the same as for character.

Read 8 characters from the current input file and convert them to a structure of the
form MM/DD/YY, where MM, DD, and YY are the numbers of the month, day,
and year, respectively.

Simply read I character to be used as the logical value.

In our current example, the clause generated would be

1gOtChami ",1)

etNumPrtNo,10,2),
gtNum(NoSt&,10,).

Fles with indexed fields are treated slightly differently. Instead of the accem predicate
being used, the retrieval clause has the form

Had:- "me O$=eOf ecord)

The variables have the same meaning they had above. A clause of the form

d Get(lmd) :- aCin(LoHesd)

is also included, where arguments have the same form as before. This clause is used if
none of the indexed arguments ame ground in a call to indezedGet. In our example, the
clauses needed wouMd be

de t(mupyopply(hmPntNo,NoStock),30A 1).

accml fo(mpply,-1,13041),supply(ItemPartNoNolnStock).

18

For eGet to work, another level two predicate must have a true instance for
every d2b access predicate with indexed fields. This is the

himb mezs~nedArg)

relation, where RdName is the name of the relation and LitlndexedArg is a list of items
loong like Number : FileName, where Number is the argument number of an indexed
field in IRlNMA= and FleNum is the name of the mdx file associated with that index.
For instance, if the supply database is indexed on the second argument only, in file
parmo.nd, then the clause for supply would be

dmd(aupply, [2: partDol).

If supply was called and the second argument was a variable, then the didntGet clause for
supply would be called.

Writing to a database is handled through the dbAssert call, which has the form

dbAset(l3ed)

where Head is of the form

RdNmeArI.Arm),

where:

Reltme is the name of the n-argument reltion to be accessed by this predicate,
SizeRecod is the total number of bytes mken up by a given record,
SizeOtHeader is the size of the header at the front of the datafile containing theinf n -on for RdName, and
PosNumRees is the byte position in the datafile where the current number of

records in the database is swredL

For example,

dbsU (supply(Iem^artNoN nS&ock))

output(supply,4,,suppy(Item,PartNo,NonStock),41,130).

Before dbAssert can be called, the file supply.dbf must be opened with openRel. After
the dbAauert are completed, supply.dbf must be closed with closeRel.

The predicate output writes data to the database. For instance, a goal of

dbAuert(=pply('pas can',123,1))

would call

output(supply,4,supply('gms can',123,12),41,130)

which would write the record to the database.

19

ouWpmwries theinformato tthe data file by a calto

bmfod~(RdN=*eArg1,. Ar))

whoe pro eisteofthetps fo datafudasiglerecord andhow to wite
them For insammc, the above output call would call

VwrleIoMPply('ps n',12,1))

and writelno would write out the converted Prolog data structures to the current output
file. writeinf has the form

CafforArg1,.,

where CaUforArgi is a call that can read the particular data type for argument i, and
DdeuyteWrfte is wrlteCbaW("j1). Ti~s is necessary since non-deleted --cord begin
with a space. For dBaself, these fields and the associated calls that read them are as
follows:

QMM .g Odflad)
Write a Strin of Length character to the current datafile. This string Will have a

jut .cto of either left or right, and the ASCII code of the pad character is Pad.

S~k. W wr~mN m edn-l4-fla onPa)
Write Length characters to the current datafile, after converting them from a Prolog
Number with Decimal digits to the right of the decimal point. The other arguments
are the same as for character.

2M wbdkaD#)
Write 8 characters from the current input file, converting them from a structure of
the form MM/DD(YY, where MM, DD, and YY are the numbers of the month, day,
and year, respectively.

LLaga W. 0 CharsuUA&gIA)
Simply write 1 character to be used as the logical value.

In our current example, the clause generated would be

wr~ueno(uppybsunAtdoNoStoc)

brechw "AnO)
walleNuuu(PmrtNo.1O,2).
wrlteNum(NonStoc,1O,O).

Files with indexed fields wre rated slightly differently. Instead of the output predicate
being used, the asserting clause has the form

dbAumr(HeadRecNo)

20

where the variables have the sam meaning as above. The only addition is RecNo, which

is the number of the record when it is entered in the main data fe. Also, the

relation must have an entry for RelName, where the format for indexing is the same as
before. In our example, the clauses needed would be

dbAsmt(supplyIem NoNonStock),RecNo)

indexOutput(supply,4,supply(Item,PartNoNoInStock)A,130,RecNo).

indxed(wpply,[2: partnoD.

For detailed descriptions of how these routines are written, the reader is referred to the
code, which has a large amount of documentation explaning how it works.

Level 3: The Evahndee Predieaes

For the two upper levels to work properly, some exwa evaluatable predicates had to be
added to Prolog. As much of the code as possible was written in Prolog to make
~e~~pmntam easy, but not e g could be written in Prolog. Predicates of this order
incude opening and closing of files, being able to move around arbitrarily in a file, and
being able to read and write characters and numbers from and to a file. These will now be
explained in detaiL

Opens thefile with name RetName and extension Extension. Once the file is open,
the 'current datafile' will be set to this file. Consequently, all I/O will be from and
to this file.

Once the current datafife has been set by either an openRel or a changeRd, the application
program can operate on this file without further regard to the ID of the file. However, to
operate on a different file, eider an openRel or a changeRel must be issued. For instance,

?. opnd(supplydbf).

would open up the file supply.dbf and set the current daafile to point to supply.dbf. If the
application proram then wants to talk to the file partno.ndx, a

?- opmn0R(purlnod).

must be entered. To go back to supply.dbf, the program would then issue a

?. chmgeRe(aupply,dbf).

which would allow operations to be done to supply.dbf. When done with these files, a

?. closeRel(supply,dbf).

I

and a

?- doseRd(pirto,ndx).

must b issued.

To iove in the current datafile without having to read or write characters requires the
move? bs and the moveRel predicates. moveAbs(Position) will move to byte position
Positik i, while moveRel(Rei) will move Rel bytes from the current position in the file,
whethe Re[be positive or negative. To find out the current byte position of the read/write
pointer in the current datfile, posRel(Position) will unify the current position of the
read/w te head with Position. endRel(Position) will unify Position with what it thinks is
the byt position of the end of the file. setEndRe(End) will set the end of file position for
the cur ent datafile to End. This is done whenever the application program adds any
charact rs to the fle. The beginning byte position of a file is 0.

Wri, ng characters to the file requires using writeChars(StringSizeString), where String
is a Prx og list of ASCII codes for the value of the string, and SizeString is the length of
String. For instance,

?- writeChars"heilo, would",12).

would, Tite hello, world out to the current datafile. Reading characters is achieved through,
getCha s(StrinfSizeString), where SizeString bytes will be read from the file, starting at
the cun .nt position of the read head, and stored in the Prolog list String in ASCII.

Spt ial routines are required to read and write ints (16 bit integers), longs (32 bit
integer: j, and doubles (8 byte floating point) from a file, since these are sometimes stored
in files i their binary representations. These routines are:

gett(lnt),
wrkelntMInt),

wrlteLogLong),
lptDoublDouble), and

wrefoubke(oubie).

Th# • routines were all that were deemed necessary to be evaluatable predicates in Phase
I. Parts)f level 2 will most likely be moved into level 3 for speed considerations during
Phase I

h

ZR Z WAZR W ~AR~m w~VV~WdCMM

22

Appendix 3. Using the Access Expert

Thi: section describes how to use the access expert program to construct an
inte face between Prolog and a given dBaseIII table.

Ste, 1: Determine the name of the dBaselIl data file holding the table
whi h contains the tuple which are to be represented as Prolog facts. In this
exai ple, we will call it mytable.dbf.

SteI 2: Determine the number of columns in the table. (Use dBaselIl if
nec, 3sary to obtain this information.). We will suppose that the table in
my 3bie.dbf contains N columns.

Stel 3: Determine which columns of the table have had indexing files
con: ructed for them, and determine the names of those indexing files. For
this discussion, we will assume that the following columns have the indicated
indc ing files associated with them:

Cnlnmn Number Indexiny File Name

n I lndxl.ndx
n 2 indx2.ndx

Stel 4: Decide on the name you want for the Prolog predicate which will
sup! y access to the facts corresponding to the tuples in the dBasellI table.
In t is discussion, we will call the predicate mypred.

Stel 5: Determine whether you will be only reading the tuples in
my a ble.dbf, whether you will only be writing new tuples back into
myt ible.dbf, or both.

Ster 6: Determine whether you will only need access (reading or writing)
to s me of the fields in the tuples of mypred.dbf, or whether you will be
acce sing the entire tuples (for either reading or writing).

Stet 7 Invoke the special version of ALS Prolog called 'dbpro' with
'accc cp' as a command-line argument. When ALS Prolog prompts you with
its -, prompt, type 'accexp.' followed by return. This will appear as follows:

>dbpro accexp type return here
ALS-Prolog Version 1.Ox (DB Version) [1000]

Copyright (c) 1986 Applied Logic Systems
?-accexp. type return here

SteF 8: The Access-Expert will greet you with its banner and then being
askii ; you questions. Your answers will be based on the information you
gath, 7ed in steps 1-7. (In the following, what Access-Expert types is shown
in (-dinary font and your responses are shown in outline font.) The
bann r typed by Access-Expert looks like this:

ACCESS EXPERT An ALS DBTool
Copyright (c) 1986 Applied Logic Systems, Inc.

L '

23

This DBTool will help the user create an access file tailored
for the particular database and application.

We will consider each question in turn. Your answer to each question must
be terminated with a period followed by a return. (You can type 'help' to any
of the Access Expert's questions. It will give you a brief explanation of what
it wants.)

8.1:
What is the name of the relation (data file)? mytable.

As the example shows, just answer with the name of the data file, but don't

include the extension (i.e., the '.dbf in the case of dBasell!).

8.2:

What is the database system you are using? dBasoII.

At the moment, the only database system that Access Expert knows about is
dBase i!i. However, this will change in the future. At this point in the
dialog, Access Expert opens the file 'mytable.dbf and reads the header
information, learning the names of the columns, the types and sizes of the
the column entries, etc.

8.3:

Do any of the fields of the relation have index files? yet.

If no fields have index files, just answer 'no' Access Expert will then skip to
question 8.7. If you answer yes, Access Expert prints a table of all the
column names for the relation, the types of the entries in the columns, and
their sizes. The table might look something like the following:

Fields in econ:
1. column #1 name column #1 type column #1 size
2. column #2 name column #2 type column #2 size

•~~... ,.... o H*ooo

N. column #N name column #N type column #N size

8.4:
Type in a list of numbers for the fileds that are indexed: [uia2],

Access expert has to ask for this indexing information (as well as that which
follows) becuase dBase!!! has no master data dictionary in which all such
information is stored. In this question, simply type the list of numbers
corresponding to the columns which have index files. Then Access Expert
will follow with a sequence of questions asking for the names of the
associated indexing files:

8.5:

24

What is the name of the index file for Cntry? 'iadxI.nds'.

8.6:
What is the name of the index file for Acvty? 'iadx2.ads.*

8.7:
Will you need to read and write full records (y/n) ? y.

5.8:
Do you need individual access to any of the fields (y/n) ? a.

If you do need individual access to any of the fields, answer y. Access Expert
will ask you to identify the fields for which you require access.

8.9:
Your name for the accessing Prolog predicate? my-prod.

5.10:

File to store the interface code ? 'my.pred.pro'.

Interface code has been stored in the file econ.pro

Thanks for the work....

At this point the interface code has been wrinen into the file 'my_pred.pro'.

8.11: Using the interface is now quite easy. The file 'my-pred.pro'
simply has to be loaded, either alone (for simply direct querying) or along
with the applications Prolog program which will use 'my-pred'. For
example, if 'my-prog.pro' is a file containing Prolog code for an applications
program utilizing 'my-pred', the commands to load the files would be:

>dbpro my.pred my..prog

Alternatively, they can be consulted once inside ALS Prolog:

>dbpro
ALS Prolog l.Ox 110001 DB Version

Copyright (c) 1986 Applied Logic Systems, Inc.

?-[mypred, myprog].
Loadingmy-pred.pro ...mypred.pro loaded.
Loadingmy-prog.pro...my-prog.pro loaded.

?- ,-*~~ .I~R. p

25

Appendix S. The Graphics Interface Experiments

Introduction

The Graph package is a series of routines written in C for talking to a graphics
output device, in this case the USI MultiDisplay Adapter Card, which looks like an IBM
Color Graphics Adapter (CGA). This package is written using the ALS C interface for
adding new evaluatable predicates to the ALS Prolog system. The main purpose for these
routines is to show how Prolog could be used for doing graphical operations.

Discussion

Several C and Prolog routines were written to handle primitive 2-D graphics for the
CGA. These include points and line drawing primitives, as well as color and coordinate
transformation primitives.

To use the package, the user must first consult the file graph.pro and type

?- graphInit

which will load the C graphics routines and initialize them for use. This initialization
comprises of resetting the coordinate transforms. If at any time, the user is unhappy with
the coordinate transforms and wants to reset them, he can type

initGraph.

which will only reset the coordinates. graphInit should only be typed once, since it loads
the C routines.

The use must now decide which resolution he wishes to plot at, and tell Prolog
which graphics mode to enter. To enter graphics mode in the lower resolution, type

?- IowRes.

which gives 200x320 pixels, and

?- highRes.

to get 200x640 pixels. The high resolution is available only in black and white, while the
low resolution has 4 colors, which 4 depending on which color palette is chosen. To re-
enter text mode on the CGA,

?. textMode.

will return the monitor to the text mode which allows 4 colors for letters.

Once in either graphics mode, the screen has a coordinate axis put on it where the x
coordinates determine the row on the screen, and y determines the column. The point (0,0)
is defined to be the center of the screen, while (-1,1), (1,1), (1,-1), and (-1,-1) define the

- ~ ? [

26

upper left hand, upper right hand, lower right hand, and lower left hand corners
respectively. Anything that is plotted outside of these limits will not show up on the
screen. This does not mean, however, that any points input outside of the screen cannot be
plotted. That is the purpose of the coordinate transforms, which will be discussed later.

Once in graphics mode, a color must be chosen for the pen to draw in. This color is
chosen with the call setColor(Color), which will set the pen to be Color. The colors which
are available at a given time depend on which palette is chosen, which is set by the
palette(PaletteNumber) call. Palette 0 has colors black, white, magenta, and cyan, while
palette 1 has colors black, green, red, and brown. Once a palette has been chosen, as long
as the user wishes a color in that palette, another palette(PaletteNumber) call is not
necessary. Mixing of colors between palettes is not possible, because of hardware
limitations.

To plot a point, type

?- point(XY).

which will put a point on the screen at coordinates (X,Y).

?- line(Xl,YI,X2,Y2).

will draw a line from point (X1,Y1) to (X2,Y2), while

?- lineTo(XY).

will draw a line from the last point plotted by either a point, line, or lineTo call, to point
(X,Y). For instance,

?. point(1,1),lineTo(l,.1),lineTo(-1,-1),lineTo(-1,1),lineTo(1,1).

will draw a box on the screen.

Coordinate transforms are available for transforming input coordinates before they
are plotted. They are scaling, translating, and rotating. These transforms are accumulated as
they are received, but are independent from other types of transformations. For instance,
scaling by 0.5, and then scaling by 0.5 again means the total scaling is now 0.25. The
independence means that, for example, scaling will not affect a rotation or translation. An
example of these routines would be

?- scale(0.5,0.3).

which would scale x coordinates by 0.5, and y coordinates by 0.3. Typing in the box
example from above will show how this looks. Then,

?. translate(O.1,O.2).

moves the box 0.1 units in the x direction and 0.2 units in the y direction.

?- rotate(45).

then rotates the transformed square by 45 degrees. This rotation is done as if the square
was still centered on the screen. Typing

27

.i~mnit Wy.

resets the trnfrain to 0 for translation and rotation, and 1 for scaling.

Other available calls are cis, and backGround(Color), which will clear the screen,
and set the background color of the screen to Color, respectively. The legal values for
Color for the background are black, blue, green, cyan, red, magenta, brown, light~rey,
darkGrey, light~lue, lightGreen, ligluCyan, lightRed, lighthlagenta, yellow, and White.

An example program

An example program which uses the Graph package is found in plotpro. Ile code
will not be described here, the reader is refered to the code for that. What will be discussed
here is how to use the plot program

plot is for plotting mahmtclequations on the screen. To use it, the user should
type

?- [gapbplotj, graphnit.

wich will load the graphics package, initialize it, and consult plotpro.

To use plot, the user would type

?plot(uuuctlouiStartVStoPJncremnmt).

where Function is a univariant function in X, and the plot will be in the interval
(Start,Stop], by steps of size Ixnent. For instance,

?- plot(cos(x),X-I1,,.1).

would plot the function cos(x) in the interval [- 1 1] in steps of 0. 1. The user can set the
color of the plot or transform it in any way wished as described above.

To plot the same function, but change the interval and step size used for plotting,

?- sPkotUndWaStrtSopStep).

will change these values. Typing

?- aPlOL

will then draw the equation again.

There is also a predicate axis, which will draw an axis with tick marks on the
screen. To use it. simply type

?- axis.

and it will appear on the screen.

*1

