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'A-
ABSTRACT

IA 'characteristic shared by many computation intensive algorithms is the repented usage of a few
data values in a sequence of computations. An efficient parallel implementation of these data
dependences often requires the simultaneous transfer, or bresdcuting, of the data values to all the
processors that need them. Unfortunately, direct realization of this broadcasting operation on VLSI
processor arrays, especially on systolic arrays, usually results in severe performance degradation.

A technique for decomposing broadcasting dependences into propagation dependences at the
algorithm level is presented in this paper. Such propagation dependences, when physically realized,
result in pipelining. The determination of a feasible propagation scheme is formulated as a linear
algebra problem. 1W.-114P that all broadcastings can be decomposed into propagations and we
propose a systematic m , hod for finding such decompositions.
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1. INTRODUCTION

A major obstacle to the efficient implementation of algorithms on processor arrays with

distributed memory is that random data access in constant time is not possible. The data access time

in a processor array depends on the physical distance between the processors which generate and use

the data, which is a function of the global interconnection pattern used for data routing.

A characteristic shared by many computation intensive algorithms is the repeated usage of input

data or of intermediate results in sequences of computations, see, e.g., the algorithms in Ill. While
this kind of data dependence poses no problem in a uniprocessor environment, a minimal time parallel

implementation on an ideal machine with negligible communication cost would often require the

simultaneous transfer, or broadcasting, of data to all the processors which use them in subsequent

computations. Simulation of the broadcasting operation, however, usually results in severe
performance degradation in array implementations because the 1/0 bandwidth between the processor

array and the host is limited, and the fan-out degree of the processors is bounded.

There are two commonly known solutions to the broadcasting problem on processor arrays:
architectural transformation and algorithmic transformation. Architectural transformation is based on

the retiming procedure proposed by Leiserson and Saxe 121 for inserting delays in the broadcasting

paths on the array, effectively replacing data broadcasting with pipelining, see the example in [31.
While this approach is systematic and well formulated, the derivation of the broadcast-free array has

a complexity proportional to the product of the number of processors and the number of

interconnections in the array. The algorithmic transformation approach, on the other hand,

eliminates broadcasting at the algorithm level. A powerful type of transformation is the

decomposition of broadcasting dependences into propagation dependences 141, which, when physically

realized, result in pipelining. The decomposition approach deals with broadcasting at a higher level

than architectural transformation and hence, may result in parallel implementations of better

performance.

To illustrate the decomposition approach, consider the 1-D recursive filtering algorithm. The
output signal y is computed from the input signal z and two sets of weights w and r according to

the equation

k k
Yi , wi z _j + E ri yj_j , k < i < n , k << n

j=1 _

The equation may be expressed in single assignment form:
Y(i, j) - y(i, j+1) + 0 (i-1, j)F(i-1, j-1) + F(i-1, j)y(i-j. 1)

F(i, j)F= i(i-lj)

Y(i,/)= (i-1, j-1)
* ?ji, j) }- :(i-1, j),

with boundary conditions

y(i,k+1) -0, 0 (k -1J) - w,, F(k-1,) = r,

Y(k -,j ) ,- 1 , F(i ,0) =

The final results are , = (i, 1). Each computed value y (t, 1) is needed by several computations
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* of I(i, j); the value of I(l, 1) has to be made available to all the computations y(i, j), where
i-j = 1. The data dependences associated to this broadcasting are shown in Figure Ia, in which

k = 8 and I - 8.

* To eliminate the broadcasting, we introduce a propagation variable, V, defined by the
conditional recurrence

7(s-1, j-1) ifji3 ,1
j I I (i -lj) otherwise'

and replace the dependence of I (i, j ) on I (i -j , 1) with the dependence on F(i, j)
gI Y j) - IY'i, j+l) + U(i -1, j)Y(i -1, j -1) + T(i -1, j)v(i, j).

The function of F(i, j) is to transfer, or propagate, the value of I (i-j, 1) to all the computations
that use it. For example, the direct dependence of computation V (12,4) on the value of V (8, 1) is now
replaced by the dependence path

y(12,4) - j(12,4) -~ F(11,3) - F(10,2) -~ V(9,1) -~ y(8,1)

N-te that all the M(ij )'s along the dependence path need value 1(8,1) and that th~e propagation
variable F brings them that value. With propagation, the broadcasting dependences in Figure Ia are
decomposed into the propagation dependence8 shown in Figure lb.

The idea of replacing broadcasting with propagation is not new. Many innovative processor

array implementations have been derived through the use Of such a transformation: algebraic path

:y on y

* 0 0 00 0 0 00

6 8n

Figure Is: Broadcasting dependence. on the value of y(8,I1) in the 1-D recursive filtering example.



y- onfl y-4 on 0 Pe y n

6* 0 0 0 0 / 6 * ****0

0 -/
* 0 0 *0 0/ 0 0 * 0

* 0 0 0/ 0 0 0 0 0

s 0 0 ** 0 0 ..... *

Figure lb aDecomposing the broadcasting dependences shown in Figure I& into propagation
dependence.

problem 151, LDU decomposition of matrices 141, dynamic programming 161, etc. Without a rigid
formalism, however, algorithm transformations must be carried out through tedious data dependence
analyses, which can handle in practice only the simplest forms of broadcasting.

In this paper, we formulate the decomposition of broadcasting dependences into propagation
dependences and present a systematic method for determining the appropriate decomposition. In
Section 2, the algorithm model, upon which our discussion is based, is presented. In Section 3
propagation is defined mathematically and all broadcastings are proved to be decomposable into
propagations. In Section 4, a special case of broadcasting, in which the data to be broadcast come
from external sources (input data), is considered. Open problems and current research in the area are
discussed in Section 5.

2. ALGORITHM MODEL

The Linear Dependence Algorithms (LDA's), are a generalization of the Regular Iterative
Algorithms (RIA's) 141 and Uniform Recurrence Equations (UTRE's) [7]. Ai. LDA is expressed as a set
of r recurrence equations defined within an n -dimensional index space called the computation domin.
C. The data dependene s among the computations of an LDA are linear (or affine) functions of the
coordinates of the computation points,

3



(P) f (aj,( dj,,(P)), a,,(d.,,(P)), ), 1< i < r, IE W , P E C, CC.

The computed vanriable, a, 1 < i :_ r, represent the quantities computed by the LDA, and

the f i's are the functions evaluated in order to compute these values. Note that, unlike RIA's, in
which the full set of the r computed variables is computed at every index point of the computation

domain (except, possibly, for index points on the boundary of the domain), LDA's feature selective

computations of subsets of these r variables at difereut index locations throughout the domain:

variable a, is computed at all the points in the subset, C,, of C. The input variables, aj, j > r,

of the LDA are data values supplied to the LDA from external sources.

The dependence mapping, di,, is an aine mapping which defines the dependence between the
indices of the computed variable aj, and the indices of the variable a,; the computation of a, (P)
requires the use of the quantity sj (dj (P)). A dependence mapping comprises a linear part, B, which
is an m X n integral matrix, and a constant part, i,', which is a constant integral column m-vector,

dj(P) - B.P - Ai . ,

where the value of m is n if j < r, i.e., if ay is also a computed variable, and satisfies

I _< m _5 n, otherwise. Here, we assume that all the computed variables are fully indezed, i.e., each
of them is indexed by an n-vector. This can be achieved by introducing one or more additional
indices to those computed variables which are not already fully-indexed. There are simple heuristics
for adding these missing indices 181.

The dependence vector, 'j,(P), associated to the dependence mapping dj, ij <5 r, at an
index point P at which aj is computed, is given by

vj(P) - P - d,,(P) - (Q. - Bj)P + ,j

where 1. is the order n identity matrix. A dependence mapping di, ij _< r is a translation if

B, - I. and then

,(P)- A,, VP EC,.

The RIA's and URE's are particular cases of LDA's in which all the dependence mappings are
translations and C, = C, 1 < i < r. The dependence vectors are constant in these cases.

3. BROADCASTING

In this section, we formally define the decomposition technique for the elimination of
broadcasting in LDA's. Two kinds of propagation are considered, elementary and composite

p.opagation. In elementary propagation, the propagation dependence paths are constructed from
elementary (or canonical) vectors. We present a necessary and sufficient condition under which a
broadcasting dependence is decomposable into elementary propagation. A polynomial time algorithm
for constructing the propagation variables is given. Composite propagation is the generalization of
elementary propagation, with propagation dependence vectors that are not necessary canonical. We
show that all broadcasting dependences can be decomposed into composite propagations. In this
section, we consider only the broadcasting of the values of computed variables in a LDA. The
broadcasting of input variables, which is a special case, will be discussed in Section 4.

4



M.. zKMnt', Prop"ationd

An LDA requires broadcasting if the value of a computed variable is needed by several other
computations of the same or 4 dilerent variable. This can be detected easily from the recurrence
definition@ of the LDA:

A dependence mapping d,,, where aj and a, are computed variables of the LDA, is a

broadcauting dependence mapping if the linear part of dj, the n X n integral matrix Bei, is

rank deficent.

The computation of a, at pint P uses the value of aj computed at point dj(P). If Bi, is rank
deficient then there exist P 1, P 2, ... , sock th at dio(P t) am d, (P 2) ,- -' -- P , say. The

computations of aj at points P1, P 2, -" , all need the value of a computed at point P0. hence the
value of aj(PO) must be broadcast to all these points. For convenience, we drop the subscripts and
rename 4, as a, aj as b, and di, as d.

The basic ide'a of elementary propagation is as follows. We associate to each broadcasting
dependence mapping, d, a set of propagation voable*, Z&i,,, " , 11., where {k1, k2, '' - . is

a permutation of the set of integers (1, • • •, n ), for transferring the broadcast value, b, to the index
points at which b is needed. Each of these propagation variables is responsible for propagation along
one elementary direction, It , where T&, is a canonical basis vector. The portion of dependence path

in the direction of 4k, is called the q th section of the overall propagation dependence path.

Let P0 be the index point at which the value of b to be broadcast is computed and assume that
the computation of a at P, needs the value of b(Po), hence, d(P) - Pe. The original data
dependence

s(P 1 )- b (d(PJ) b(PO)

is replaced by a sequence of propagation dependences starting with

a(P )- 15 ,(PI) •

The variable lTk performs propagation in the direction of 1, the kith elementary direction. The

objective is to create a dependence path from the current index point, P, in this case, to the index
point P2 whose kith component equals the kith component of P0 , the index point at which the
required b is computed. The first section of the propagation path is therefore,

a(P 1 ) - 4'I(PI) -- li (P i+e 141) - ir, (P1+2fIeI) ..... i ( 1(P 2 - r1 ,

where el = 1 or -1 or 0 is the sense of propagation in the direction 4,'. The second section of the

propagation path, which extends in the direction of 4-, I, begins at P. with propagation variable Xif

Propagation in this direction is continued until the index point P3 whose k2th component equals that
of P,. is reached,

a( I) - (P1  T1 ,(P2-(1Fk) -0 iXk,(P2) - ',I(P 2 + (2,42 it (P 3 - (2 41 )

Since propagation in the second section does not change the k t b component, the k Ith component of
P2 equals the kith component of P0 . Repeating this procedure for each of the elementary directions,
the anal dependence path is



a (Pr) - ,(P1) - . ,(P2) -i •(P.) - "(P.+1-(. 7)

If we let b be rI .,, this dependence path is a decomposition of the original broadcasting dependence

of a (P1) on b (P0), since P.4 1 m P 0. The introduction of the propagation variables does not modify
the precedence relationship between the computations of a and b at index points within the
computation domain, hence the computability of the transformed LDA is guaranteed. The feasibility
of the elementary propagation scheme, however, depends on .he existence of the appropriate
propagation variables.for performing the required propagations.

In general, the propagation variables, Ijt, 1 < q < n, are defined by conditional recurrences
of the form

i't,(P +e, ) if(P +e, Ok, < Pok,

(P (P-ek f if (P -4 e I s > Po&,I

Fk,(P) - a'. ,P +ek,) if(P +4, lb, h Pok f, VP, (1)

A,,., (P- , if (P -4 41 1, - Pok,

Yk, ,(P) if (P 1k, = P O,

where (P + YjtI is the kqth component of the vector sum (P + fl, and Pok, is the kfth component

of P0 , the index point at which the required data value b is located. The first two conditionals
determine the sense (either positive or negative) of propagation and the remaining conditionals define
the terminating conditions of the q th section. The value of poe, depends on the starting index point,

P1, of the dependence path. Since P1 is arbitrary, and hence P0 is arbitrary, it must be possible to
determine the value of pok, from the current index point P and the constant part, A, of d for the

propagation scheme to work with only one set of propagation variables for all P I's.

From (1), the index points P on the g th section of the propagation path have the property that
their k, th component is equal to the k, th component of P0 for r < q, and to the k, th component of
P1 for r > q,

SPo, r < q

k Pik, r > q

These components are called the invariant components of the q th section of the propagation path.
Hence, if d is such that the kfth component of Pn (- d(P 1)) can be determined from A and the
invariant components of the q th section, I -e, q < n , the elementary propagation scheme is
applicable. In other words, if there exists an order of propagation. i.e., an assignment of 1, • • - , n to
ki, k 2, "'., k., such that the above-mentioned condition is satisfied, then the broadcasting
dependence can be decomposed into elementary propagation with the given ordering. To minimize
the computation cost of the conditionals, the k, th component of P0 is constrained to be a linear
function of the invariant components and of A.

The condition under which a broadcasting dependence mapping is decomposable into elementary
propagation can be formulated in simple mathematical terms. Assume for the moment that the i th
row of B is different from e.,T for all i. The broadcasting dependence is

L!11111 11 111111 011!!11 W1111111111116



P, - d(P 1 ) - BPI - A = Po.

Suppose the natural ordering is a feasible propagation order, i.e., k,=q, I q < n. The

assumption that the q th component of P0 is a linear function of A, of the first q -1 components of P 0

and of the last n -q components of PI within the q th section, implies that

P Of I - lej p o. + uqj p it - b,

j=1 j=+1 j=1

where lj, u,, and ztj are rational numbers. Writing the above expression for q - 1, , n in

matrix notation and grouping the components of Po and P I on opposite sides, we get
I Pot '0 U 12 U 13 Ulm pi!

121 1 0 P02 U 23 P:12

131 1 •2

0 0 -XA.

• alurn-lie

1.1 1.2 " ".- I Pon 0 P i

This implies that Po = L-(UPI - YA), hence

Bff L-U , and X - L ,

where L is unit lower triangular and U is otrictly upper triangular. Since the actual value of A is

unimportant, for simplicity, we will assume from now on that A is a null vector, hence d (P) - BP.

Theorem 3.1:
A broadcasting dependence mapping d is decomposable into elementary propagation using m

propagation variables if there exists an order n permutation matrix Q such that

L [-'U Him

where L is an m X m unit lower triangular matrix, U is an m X m strictly upper triangular

matrix, H is an m X(n -m ) matrix, and 1.rn is the identity matrix of order n -m.

Proof:

First, note that a symmrtric permutation of rows and columns of B by Q is equivalent to

reordering the indices of the computation n-space. Second, if the i th row of B is equal to J.,T

then PI " P 0 = d(P 1 ) implies that Po. = PIj, hence propagation in the direction of f, is

unnecessary. Thus, from our previous analysis, if B can be symmetrically permuted into the

stated form, Q defines an order of propagation and the appropriate elementary propagation

may be carried out by m propagation variables, one for each of the first m elementary

directions selected by the column permutation Q and defined with conditional recurrences as in
(1).['0

Suppose B is decomposable into elementary propagations, then

7I



BPI - Po *Q-'BQ(Q-P I) - Q-'Po. (2)_'1
Partition vector Q -1P into I sl' where

j'l - (PkI, Pk,, " 1 "' )T
F= - (Pk. ,, Pk. ' " , Pk. )T.

By Theorem 3.1, equation (2) is equivalent to! L-ip I + ffP12 - Fo

F M - F02

The first equation implies that Up-11 + Lj2 - LPoI, hence,

P0a, +- ,TT#. _,T +1,11 12 ,1< q < r , (3)

where L = (r1,2 " ,, )T' U = (ill 112 . . i,)T, and 1, is the m-vector with all O's except for
the q th component which is a 1. Since L is unit lower triangular, the expression (r - 17q )Tj'o 1 is a
linear function of the first q -1 components of Q-'P 0 . Similarly, since U is strictly upper triangular,

+ T 2) is a linear function of the last n-q components of Q-P 1 . Hence, the q th
component, POk, of Q-'Po can be determined from the invariant components of the qth section.

Thus, once the matrices Q, L, U and H are known, the conditionals for defining the propagation
variables, 3 k , 1 < q < m, can be derived from (1) and (3).

Example 1:
Let the indices of the four-dimensional computation space be (i1 , ' 2, i 3, i 4). Consider the

broadcasting dependence
a (i ,i 2 .i 3 ,i 4) --* b (i 2+2i3,2i 2+4i 3+i 4,i 2+i3+,i4,i+i 3+i 4), or,

02 41B = 1 1 1

01 11

The broadcasting is decomposable into elementary propagation with order of propagation
{kj, k-, k3, k4} = (1, 3, 2, 4}, as defined by the following matrices

1 0 00 0 2 10

000 1 01

Qf 0 100 L -2 0 10 ' 0 0 1
0 001 0-10 0 000

For example, the 3rd component of Po can be determined from any index point P on the

second section of the propagation path using equation (3)

8



Po0 -fit 2'Q-P - C1 2  q 2)TQ-1P = i + i 2 +i 4

2

Similarly,

POI - i 2 + 2i 3 , P Esection 1

p02-2i,+i 4 , P E section 3

PO4=4 3 i3, P E section 4

Thus, for example, the definition of the propagation variable 373 is

ii +i 2
T3 (P + e) if(i 3+1) < + + i 4

2
il 4-i 2

W'A(P - 'e) if(i 3-1)> 2 +i4

iI + i 2(P)f TO2(P + _42) if (i 3-1)= -2 + S4

2 (P - e' 2) if (i'3 -1) = 2 + i 4

2
o'2(P) if i3 - 2 + i 4

which is valid for all index points P within the computation domain.

For example, the dependence a (1,1,1,2) -- b(3,8,4,4) is now replaced by a propagation

dependence path consisting of four sections:
a ( 1, 1, 1,2) --* 1'(1,l1,1, 2) -- 1'(2,1,1,2)--

13(3.1,1,2) -F A(3,1,2,2) - 3(3,1,3,2) --

0*2(3,1,4,2) F-* 2(3,2,4,2)-- '2(3,3,4,2) - -. l'(3,7,4,2)
34(3,8,4,2)-- N4(3,8,4,3)-- b (3,8,4,4).

For the computation of a (3,1,1,2), which depends on the same value b (3,8,4,4), the propagation

dependence path starts as
a (3,1,1,2) -* F1(3,1,1.2) - 3'3(3,1,1,2)

and then joins the path shown above. It can be verified easily that the definitions of the

propagation variables do trace out these propagation paths. D1

Despite the simple mathematical formulation given in Theorem 3.1, determining whether a

broadcasting dependence mapping is elementary decomposable and finding a feasible order of

propagation are non-trivial tasks. A simple-minded approach is to find Q by exhaustive search,

possibly with the help of heuristics; if such Q exists then the broadcasting mapping is decomposable.

This approach is not very appealing as the worst case complexity is exponential. Fortunately, as will

be shown next, decomposability of a broadcasting mapping into elementary propagation is related

directly to the non-zero structure in B, the linear part of the broadcasting mapping. The proof of this

claim provides a polynomial time algorithm for constructing a feasible order of propagation.

9



For the following discussion, we assume that the i th row of B is different from i for all i. if

this is not true, we can find a permutation matrix R such that R-BR = [ 1_ B1, where the

m X m matrix B11 satisfies the assumption, and let B - B11, n 4- m.

Let G(B) - (V,E) be the directed graph, or the digraph, associated with the matrix

B= [Oj ] , with a vertex v, E V for each of the n indices of the n-space and an edge, f q E E,

from vi to vi if Oi, is non-zero. The connectivity of the digraph G(B) corresponds to the non-zero

structure in B. Let F(G (B)) = v, I vi E V, indegreefvi ) = 0 ) be the set of free vertices in the

graph G (B), and 7 = V - F (G (B)). We say that the matrix B satisfies the reachability condition if

its associated digraph G (B) has the property that every vertex in V is reachable from at least one of

the free vertices, i.e., if for each vi E 7', there exists at least one v, E F(G (B)) such that there is a

directed path from vi to vy in G (B). The digraph associated with the broadcasting dependence

mapping in Example 1 is shown in Figure 2.

The following theorem constitutes the main result of this subsection:

Theorem 3.21
The following statements are equivalent

(1) B satisfies the reachability condition,
(2) there exists a permutation matrix Q such that

Q- BQ = L-'U ,
where L is a unit lower triangular matrix and U is a strictly
upper triangular matrix.

Figure 2 : The directed graph. G (B) associated with the broadcasting dependence B of Example 1.
The vertices are labelled by the indices they represent. B satisfies the reachability
condition.

I0



Prooft
not (1) z, not (2):

Suppose (1) does not hold and let v, E 7 be a vertex that is not reachable from the free

vertices; v, necessarily belongs to a strongly connected component in which all the vertices are

not reachable from the free vertices. Without loss of generality, let this strongly connected

component contain the set of vertices Vt - {v, r+."" , v. , i.e., assume that the matrix

B is of the form

where the non-zero structure of B2 corresponds to the connectivity of the strongly connected

component formed by the vertices in V 1.

Suppose (2) holds. Since U is strictly upper triangular, Q must be such that the diagonal and

the subdiagonal elements of Q-BQ can be eliminated using the elements on its first

superdiagonal as pivots. Consider the diagonal element #,, in the submatrix B2, there are three

possible choices of Q :

(i) Leave the position of ,, unchanged. Statement (2) does not hold unless 0,,* = 0 for all

j > r, which contradicts the assumption that vertices in V, are strongly connected.

(ii) Reorder elements within B22. Suppose the j th row and j th column, r < j < n, are swapped

with the r th row and r th column. The r th column becomes

( O I J 0 2 1 j " ' I ' O jj, O r5 . O t : " l_ .j O i O +I JL " " j .) T ,

which is equal to

(0 0 ... 0 0 J. , " ' + I, -.. . rj 0 1 .. . . . 0 .) ' .

As in case (i), statement (2) holds only it 85, = 0 for all i > r, which contradicts the

assumption that the vertices in V, are strongly connected.

(iii) Move Orr out of B22. Suppose the rth row and rth column are swapped with the ith row and

i th column, i < r. The i th column becomes

( 0 i, 0 2 r " -' " O -I., O r,, i,+ I , ... O -I. , O , , O ,+ l, o a r )T ,

which is equal to

(00 ... ,, 0 0. ,, ,+ ,, ... - O ,)T

Since /, = 0. j _5 i -l, statement (2) does not hold unless 0,, = 0 for all j, a contradiction

to the assumption that the vertices in V, are strongly connected.

Thus, not (1) implies not (2).

11



To prove the converse, we need the following lemma:

Lemma 3.1 1

Let F(G(B)) be (vi, V 2, "", v,) and V be (l,, /2, , ,V. I < < . If B

satisfies the reachability condition then there exists :. pivot, Oi,, I < i < f , I < j :5 n,

such that B', the order n -1 matrix obtained from B by

(s) eliminating the j th column of B using Oi as pivot, and,

(ii) deleting the i th row and i th column,

also satisfies the reachability condition.

Proof of Lemma 3.1 :
By induction on the cardinality, 1, of V, the set of mon-free vertices in G (B).

Base case : I - 1,

0 0 01.+1

0 0 0.,l

0 • 0 $/+],/+

Since v! +I is reachable from at least one of the vertices in F(G (B)), there exists a 0,

I < i < f , which is non-zero. Using this element as pivot, we have

which satisfies the reachability condition. Therefore, the base case is true.

Suppose Bk, k > 1, satisfies the reachability condition. By picking an appropriate permutation

R of order (f +k), it is always possible to rearrange the rows and columns of B, such that the

principal submatrix, B&-,, obtained from deleting the last row and last column of R-BR

satisfies the reachability condition. To do this, first find the depth-first spanning forest 191 of the

graph G (B,) and, supposing v., f < u < f +k, is a non-isolated leaf node, form R to swap

the u th column and (f +k)th column. For clarity of presentation, we now assume that R is

the identity matrix.

We complete the induction step of the proof by showing that either the element, 6,,,

I < r < f, f < q < k-1, which is a feasible pivot for the case I - k-1, or the element

O, is a feasible pivot for I - k.

Suppose the proposition is true for I - k-1, that is. there exists a pivot 1,) such that W-_

satisfies the reachability condition. Without loss of generality, let 01., f +1 < q < k-I, be

such a pivot, then,

12

' .- %- - R * -



0 0 &/1 &-1 0 k2q+1 2,-

B- M

o 0 ,_., .1 _,.,_, 0 k-_,q+ . k-I,k-_ ,

where = - Ojj - aj O, , with a, - , 2 < i < (k-1), (f +1) < j _< (k-1).

Now, if we pick Ole as pivot for Bk, we have,

02k

Bk- B1 1,

0 .0 ok.4,1 I .- ,,-, 0 k.q+ . Okk

where 0,j, - O3, -a, #, with a t - - i =-- k or j = k. Since, by assumption, BkA_1

satisfies the reachability condition, B,' does not satisfy the reachability condition only if
,-0, 2 < i< (k-1), ad,

34 #0,
where the inequality ensures that Vk does not belong to F(G(Bk')). Thus, if '61q is not a

feasible pivot for Bk. then

Olk

Bk-I a3 lk

Bk =

!--- ck l~lk

0 0 Ok.1 +1 "k.k-I #kk

Since vu is assumed to be reachable from at least one of the vertices in F(G(Bk )), #0.

Picking Olk as pivot, we have,

13



0
0

Bk' -,A

0

0 0 kj. +1 k,k-1 0

where Okj Oki - -Ojj, (f +1) _ j < k, which satisfies the reachability condition since

vk E F( G (Bkj). Therefore, either 01, or Olk of Bk is a feasible pivot and hence, the

proposition is also true for I - k. 0

Proof of Theorem 3.2 (continued):

(1) = (2):

Suppose B satisfies the reachability condition and let F(G(B)) be {v, - , v! ). The

following procedure finds the permutation matrix Q, a unit lower triangular matrix L, and a

strictly upper triangular matrix U such that Q -'BQ = L -'U

Q -I.; L - I.; 1 1; B, - 9,

Repeat
{

u - n - I +1; f I IF (G(B);

Find a feasible pivot Oq E B1, 1 < i < ft < j 5 u,(Lemma 3.1); (It)
R- (i,1) row permutation matrix;

H - Rt BRT;

0

La * 0

H - LH with the first row and column removed;

Q 0 LR,]LQ
Q1T - column permutation which moves the zero columns of H to the left;

1'-$+ 0]
L 0 Q1 L]

14



Q Qt Q;

I *- i +1;

until B, becomes a null matrix;

U -L BQ T;

L LQT;
Q ._ QT;

The elimination step in the above repeat loop has to be done with ezact arithmetic as the
connectivity of the digraph depends on the exact values of the matrix entries.

By Lemma 3.1, if B, satisfies the reachability condition then a feasible pivot can be found at
line (t) such that Bt+1 also satisfies the reachability condition. Hence, if B, satisfies the

reachability condition, each iteration of the repeat loop eliminates at least one diagonal element

and the associated subdiagonal elements and a strictly upper triangular matrix results when the
procedure terminates. Thus, (1) implies (2). 0

Theorem 3.2 establishes the rather surprising property that the decomposability of a rank

deficient matrix into the product of a unit lower triangular matrix and a strictly upper triangular

matrix (up to symmetric permutation) depends only on the zero (or non-zero) structure or the matrix

and not on the value of its non-zero entries. Utilizing this result, the test for decomposability of a
broadcasting dependence mopping into elementary propagation can be accomplished simply by finding

all the strongly connected components in the digraph G(B) and verifying that each strongly
connected component has at least one incoming edge from a verlex external to that component. The
test has complexity of OjMAX( n JE1)) 191. The procedure detailed in the proof of Theorem 3.2, which

has complexity of O(n 4 ), can be used to find a feasible order of propagation, if one exists.

Example 2 (Beck-substitution solver) :
Given a non-singular n X n lower triangular band matrix A of bandwidth p, and an n -vector

b, the solution z of the system of equations

Az - b

can be found-by back-substitution. The algorithm can he expressed in the following sequential

program loop :
for i = I to n do

zj , fI Ib, - a ,, z, )/ a,,

which can be translated into the following LDA:

Iz 0, J -l) - au G i 304 j
z . ) . Z(i, i-1)l a,, i= j.

The domain of computation is C = <i < n max(L, i-p+l) < j : i }, with the
boundary condition z (i, jo) i b,, where j 0 = max(l, i -p +1) - 1, and the final results are

15



z. zi, ).The dependence of z (ij on zj,) is a broadcasting, B-[ ] Since

the second row of B is equal to eT, we let B .- B11 -0 1, ad hence G (B) is a digraph with

only one vertex (representing index i), which is free. Since B satisfies the reachability condition,

the broadcasting can be decomposed into elementary propagation with one propagation variable,

where

q - 00 [~~ L I [] ,U - [o] H I]

Introducing the propagation variable 7, the LDA now becomes

3(i j)(i, ,j-i)-aij)

T~-'j) if i-i 7Aj
F(i, A) - (i j) otherwise

In the recurrence of F, only two conditionals are needed because the coordinates of the points in

9 o x on x

0 0 0

3

Figure ~~ ~ 1 3. racsigdpndne ntebc-u suto aloitm

01

Ni .0t 
0' 0



the computation domain satisfy i > j. The broadcasting dependences and the corresponding

propagation dependences after decomposition for the case p = 6 and n - 8 are showni in

Figure 3a and 3b, respectively. 0
Although it is powerful, elementary propagation does not handle all of the broadcasting

dependence mappings commonly found in numerical algorithms. For example, the broadcasting in the

I-D recursive iltering algorithm shown at the beginning of this section is not decomposable into

elementary propagation. In the next subsection, we generalize our approach to cover all
broadcastings.

3.2. Composite Propagatlon

As noted in the previous subsection, constraining the propagation dependences to elementary

dependence vectors is too restrictive. In this subsection, we extend the basic principle of propagation

to allow propagation dependence vectors which are not necessarily elementary. This composite
propagation technique is a generalization of the elementary propagation scheme discussed in the

X0 :onx R

•-se R on x

-•o on x

0 t! 0 .05ic

Figure 31b :Decomposition of broadcasting dependences shown in Figure 3a into elementary

propagation dependences.
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previous subsection. We prove that, with such generalization, my broadcasting dependence can be
transformed into propagation.

A major complication in allowing on-elementary dependence vectors on a propagation path is
that the conditionals for defiing the propagation variables are no longer dependent on the index
components which remain invariant in a section of the path. This can be seen in the following

example :

fxample 3 :

Consider the broadcasting dependence

It is not transformable into elementary propagation as B does not satisfy the reachability
condition. By using the non-elementary propagation dependence vectors, iD 1. (1, -)T and

-2 a (1, -2)T, however, this broadcasting mapping can be transformed into propagation

4(01, i2)- ZI(i ,, i2)

where,

lT(P + i ) if(il +2i 2 -1)O> 0 ZAP + I) if(i- i 2 +3)< 0

Wf(P - al) if(il+2i2 + 1) < 0 2 (P -U2) if(i-i 2 -3)> 0

TI(P)- TA'P + 01) if(i,+2i 2 -l)-O , 2(P)- b(P + i2) if(i -i 2 +3)-O

A2 (P -01) if(i,+2i 2 +l)-nO b(P -0 2) if(iI-i 2 -3) 0

ZA4P) if(i0 + 2i 2) - O b(P) if(i I- i 2) = 0

Some of the broadcasting dependences and the corresponding propagation dependence paths are
shown in Figure 4a and 4b. Interested readers can verify that the propagation scheme does
indeed implement the broadcasting correctly. 0
Unlike elementary propagation, in which the index points along a section share some common

invariant components that can be used for determining the sense and extent of the section, composite
propagation does not necessarily preserve any of the components of index points on a section.
Consequently, the technique outlined in the previous subsection for defining the appropriate
propagation variables does not apply directly. By restricting our attention to particular classes of
propagation dependence vectors, however, we are able to derive a precise mathematical description of
composite propagation. This is detailed in the following.

Mathematical formulation

Let P be an index point in the computation domain, C. Originally, P is expressed as a linear
combination of the n elementary vectors, {', ), which make up the canonical basis,

Pp , + 1+p 2'F2 + p+ Pom .

Suppose we perform a change of basis (101 to C from the canonical basis to the basis defined by the n
linearly independent integral vectors, 0l, 02, , a, which form the columns or a matrix W.

18



-~. . a on b

* 0 0 0 0 0 * 0 0

00 * 0 I ". . •

,,I

Figure 4a Some of the broadcasting dependences of Example 3. The broadcast data are located
along the line iI = i.

With respect to this new basis, the index point P becomes P where

P - F1 0I+ 2W 2 + + =r PU-, = W-1P

that is, a change of basis from {) ) to the columns of Wcorresponds to a linear mapping, W- 1, which
maps index points P E C to index points P of the transformed computation domain, C. To ensure
that L contains only integral points, Wmust be unimodular, i.e., I det(W) I - 1.

Let d - B be a broadcasting dependence mapping in C. Under the change of basis to IV, the
broadcasting dependence P -- BP becomes

W'P - W-'BP - P -. W-BW(W-'P) = W-'BWP

in C. Thus, the broadcasting dependence B undergoes a similarity transformation 1101, b - W-'BIV.
Since B represents also a broadcasting dependence in C, if B is elementary transformable, the
elementary propagation paths of ? in C can be mapped by W into propagation paths in C that
implement the broadcasting dependence B. This is formally stated in the following theorem.

Theorem 3.3
A broadcasting dependence B is decomposable into composite propagation with propagation
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.- oa, on a, a, , on a . , on b

a Q.ona a on , 8, on a

3 .\ .* . . . . .

00 0 0 0•

*0 * 0 0 0 0 0 0 0'

i2 -

0L_*. - *

Figure 41b :Decomposing broadcasting dependences shown in Figure 4a into propagation
dependences with dependence vectors (I I)T and (I -2)T .

dependence vectors 0 1, W., . .. IW , if there exists an n X n unimodular integral matrix
W =- (, 02, ... -, .), called a feasible basis, such that

L N - -H

*0 0 .

where L is an m X m unit lower triangular matrix, U is an m X m strictly upper triangular
matrix, H is an m ×In -m ) matrix, and I.,m is the identity matrix of order n -m.

Proof :
By Theorem 3.1, the broadcasting dependence 7) can be decomposed into elementary
propagation with propagation variables, 1, defined with respect to the transformed domain,

20



i, (P + zi) if (P + i %W, < 0,

i (P - ,) if (P -Z, i > o,
YP) lr,,(P + , if (F + , r ,j - jo, , VFE , i < m, (4)

x +,(PF - -, ) if (F - ?, i, - 'o,

i+,(P) if (P, - Fo,

where 1 is the i th canonical vector (in the transform d domain) and jo, is the i th component

of the index point P 0 at which the broadcast quantity is located. Using equation (3), jr0 can be
expressed as the invariant component of the i th section of the elementary propagation path in

. Applying the linear transformation W to the domain 7, and substituting W-'P and W, for
P and t, respectively, in the conditionals, expression (4) becomes

1i(P - ;) if(W 1' P - Ai Ji > Poi

ui(P)= T .(P + A if(W'P +0 Ii Poi , VP EC ,i < m , (5)

Ti .I(P - 0G) if(W'P - v, , Ii Poi

i,4 1(P) if(W-'P Ii - Po

where po, is obtained from F0 ,, which is a linear function of j'0 , J 34 i, with the appropriate

substitutions. Thus, the broadcasting dependence B can be transformed into composite
propagation with propagation dependence vectors u, I < i _ m. Obviously, the elementary

propagation scheme discussed in the previous subsection is a particular case of composite
propagation in which the feasible basis, W, is an order n permutation matrix, Q. 0

Example 4 s
Apply Theorem 3.3 to Example 3:

Let W== -11 -2 .then

=W-'BW= -2]

Hence B is decomposable into elementary propagation with propagation variables

1I(P + -el) if (F + -F $1 < 3F

371'P - ?e, if (P - -e Al > -3P-2

11C() - T2 (P + F) ir(P + F, =11 -3F,

a2(P - -',) if (P- Ve 11 =-3F2

' 2 (P) if (P W - -3 F2

21



P- b( + 7) if (P + 72 6 - 2

b(P-P)

6 (AP - _N: if (IF - _e2 )6 > --Y,

b (P) if (3)6 - -1,

Some of the elementary propagation paths in the transformed domain are displayed in Figure

4c. Applying the linear transformation W to the domain C and performing the substitutions
W-p OF- (,, pt) - ((2i, + i 2 ), -(i, + '2))T,

(W-'P 0 1 1 - (j1 + w 11) - 2iI + i 2 ± 1,
(V-'Pt "1- p, - 2iI + i 2,

(1'"P * 'a2N2 - ('2 + W2) - (i + i 2 ± 2), and
(W-'P) - IT2 - +1 + i2 ).

in the conditionals in (5), we get the propagation variable definitions given in Example 3.

The choice of W is non-unique. For example, by selecting W - i ], a different set of

composite propagation paths is obtained (Figure 4d). 0

Existence of a feasible basis

From Theorem 3.2, a broadcasting dependence B is decomposable into elementary propagation

if and only if B satisfies the reachability condition. The following corollary of Theorem 3.3 is a trivial

extension of Theorem 3.2:

Corollary 3.1 :

A broadcasting dependence B is decomposable into composite propagation if and only if there

exists a unimodular transformation W such that B = W-BV satisfies the reachability

condition.

Hence, given B, theoretically one could determine all the feasible bases by checking the non-zero

structure of B for all unimodular transformations V. The next theorem is the major contribution of

this subsection.

Theorem 3.4 1

All broadcasting dependences can be decomposed into composite propagations.

We prove the theorem by showing that for any rank deficient matrix, B, there exists at least one

unimodular transformation W such that D - W-'BW sat:.lies the reachability condition. For the

trivial case where B - 0, Theorem 3.4 is automatically satisfied as T is a null matrix for all

unimodular transformations W. In the following discussion, we assume that B # 0. Tn prove the
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1 < i < n, which satisfy yTiV = 1. If for each of these vectors there exists a scalar k, such

that

-. TB -k 'T

then

4,T BigI - iyTC

hence k =- 0. Therefore, TTB 0 for n linearly independent vectors which implies that

B - 0, a contradiction. 0

Let I and 0 1 be integral vectors that satisfy the conditions stated in Lemma 3.2. Let

I = B'. Since rT # kqT by assumption, the components of T and I can be reordered with the

same permutation such that

s 1 q 2 3 8 2 q1 . (c)

Without loss of generality, we assume that no reordering is required.

We prove Theorem 3.4 by constructing the integral vectors 0, 2 < i < n, such that

(i) the first row of W -1 is 4,T,

(ii) the matrix IV == (0 1 , 0 2, , ) is unimodular, and,
(iii) IfTBW, = 'TWi 34 0, for all i > 2,

where I and 0 1 satisfy Lemma 3.2 and condition (c). For such a matrix IV, = W-BIV has the

form

0

which always satisfies the reachability condition, hence W is a feasible basis.

Proof of Theorem 3.4 :

Requirements (i ) and (ii) are equivalent to
(ir) YTW, =0. i > 2 and
k) det( 5 -!, - . )1= 1 112

This follows directly from the fact that the first row of it-, is w'T/det( 1t), where 6* is the
column vector whose i th component is the cofactor of the (i. I) element of It', and from the

formulas

det(IV) = 9'Ti3,

det(I i', . UV
obtained by expanding the two determinants with respect to their first column.

We now construct, given ' and I satisfying the conditions of Lemma 3.2 and condition (c),

vectors w2, 3, 0' , which satisfy condition (iii) to (t). The associated matrix It" is a

feasible basis.
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*~~ 0

0 0 0 0 0

* 06

Figure 4d t Another feasible composite propagation scheme ror the broadcasting dependences shown

in Figure 4a. Note that the propagation paths are shorter than those shown in Figure
4b,

Let I < i < n , be the gcd of the first i components of 1. The g, 's can be computed via

the recurrence

.q I I

g,= ged(gi 1, q, ), 2 < i < n,

hence. L and 9--1 are integers for i > 2.

The set of integral vectors, {W2, CV3, ,iV. }whe re

U4 (w, I~ W2..Wt, -IL- 0 .. O)T ,2 < i < ni

* ~ w,, q) q, , and, (i
1=1e
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satisfies requirements (iil to (v). This is shown next.

The Diophantine equation (ci) always has solutions, because the ged of the coefficients on its

left hand side, which is g,_,. divides its right hand side 1II]. Since, by assumption (c), the two

hyperplanes defined by equation (cl) and equation

6-1

a Wij j -

are not parallel, there exists at least one solution, (w,i, j < i 1, to equation (cl) that satisfies

condition (cf). Therefore, the set (02, 03, • " • , 0. ) is well defined.

It is straightforward to verify that condition (0i) implies (iv) and condition (cf) implies (iii).

Thus the vectors W,, i > 2, satisfy requirements (ii and (iv).

To see that 02, -03 , W. satisfy requirement (v), consider the matrix
V - (?-. 72, "", 0.),

which has the following structure

ql W 2 1 W 31 W4 1  WIN

q2 W2 2 W 32  WX 2

q 3  0 W33 WM3

0 w 44

0

0 W, 1l1 1~

q. 0 0 0 was

Partition the matrix V as

where ? T is a row (n -1)-vector, 'F is a column (n -1)-vector and is upper triangular.

Using Schur's determinantal formula (12I, the determinant of V can be expressed as

det(V) - (qf - FT F)det( V;) . (6)

Since, by construction, qT 0, = 0, 2 < i < n,

qI-T -FT O

which yields the relation FTj7-I - . Substituting this relation into equation (6) and

noting that
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deg(V) Wfi -liw.i l
i2=

the determinant of V is seen to satisfy

det(V) = q' + -eT " = iT-f

which is equivalent to condition (v).

Therefore, the vectors Wj, i > 2, satisfy the requirements (iii) to (v) and hence satisfy (i) to

(ii}. 0

Given a broadcasting dependence, the basis W constructed in the proof of Theorem 3.4 can be

used to transform the broadcasting dependences into composite propagation dependences. This is,

however, not the only feasible choice of basis in general. It is unclear whether there exist efficient

methods for determining all such feasible choices. In the concluding section, we will discuss current

and future research topics in the area.

4. INPUT PIPELINING

Input values of an algorithm, which are used by more than one computation, should be

pipelined to reduce the amount of communication between the host and the processor array on which

the algorithm is implemented. To avoid performance degradation due to I/O bottleneck, it is

essential to reduce the I/O bandwidth requirement of the algorithm so that the host is capable of

delivering the input data at a rate which matches the computation rate of the array.

Example 5 :

Consider the one-dimensional convolution of signal z and w to form the filtered signal y as

given by the following LDA consisting of a single recurrence,

y(i, j)- y(i, i-l) + w(j) "z(i-j),

with computation domain { 1 < i < n 1< j < i). Thus, B ---- 1, B., =10 11 and

B,, = jI -l1.

The input streams w and z, which are needed for the computations of multiple instances of y,

should be pipelined to reduce the I/O overhead. This can be realized by transforming the LDA

into its equivalent input-pipelined form with the introduction of the pipelined variables, iv- and

Y(, j)= Y(i, j-1) + 0(i, j) .(i, j)

0(i -1, j) i > I

S(i, j)= 1 w1(j) otherwise
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yi,j > I
r(i, z = (-j) otherwise

With this transformation, only one copy of each of the streams z and w is needed from the

host. The dependence paths for pipelining the input variables are shown in Figure 5. 0

In this section, we show that input pipelining can be treated as a special case of the
broadcasting presented in the previous section and, therefore, that it can be handled with the same
technique.

A variable a, is an input stream if it is not computed within the LDA, i.e. , if I > r, the
number of recurrences in the LDA. The following defines the pipelinability of an input stream

w--o 8

//

- -. II...~- -*4..4-

X0 x1  X2  X3  X4  x5 X6 x7

FIgure 5 : Pipelining of input streams w and z in Example 5 (n = 8). The self-dependences are
not displayed.
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Deinltion:
An input stream at of an LDA is pipelinable if there exist one or more dependence mappings,
dt, I < i < r, in the r recurrences of the LDA such that rank(Bu) < n .

Obviously, if all the Bi 's in the LDA have rank equal to n, the computation of a, at each index

point P requires a distinct value of a,, a#(d, (P)). In this case, each of the input values of a# is only

used once and therefore the stream is not pipelinable.

Now, suppose there exists a Ba of size m X n, m < n, with rank less than n. This resembles

broadcasting in which a particular (computed) value is needed by several other computations. The

only difference is that, since a# is an input variable, we have the freedom to reassign the location of

the broadcast value provided that the assignment does not result in conflicts, that is, we do not assign

more than one ail to an index point.

Let R, be an n X m integral matrix, the relocation tranef ormation of input variable at. R,
has to be chosen such that

RBu(P1 - P 2) - " only if B(P! - P 2) = 0,

that is, R, should have full column rank. Applying R, to di,, we have

!i (P) - T P - 3jm - R, Bi P - RIAi.

Since Bi is square and rank deficient, it can be treated as a broadcasting dependence mapping and
the technique discussed in the previous section applies.

In Example 5, the chosen relocation transformations for the input variables w and z are
R r1 R r

R. 11 JT - - 1

By decomposing these two broadcastings respectively into elementary propagation and composite

propagation (with W' - [I ] ), we obtain the result given in Example S.

Example 6 :
The matrix-matrix multiplication algorithm is an LDA comprising one recurrence equation

c(i,j,k) - c(i,j,k-1) + a (i,k) b (k,j) , 1 < i,j,k < N ,

in which the input streams a and b are pipelinable. Applying the procedure described above,

R.=[D1].D.[i]

00 -0 P ,. -- 0 1

10

R b 0-- - 0 ) " - 0
0 0

and transforming the broadcasting dependences into propagation, the input-pipelined version or

the LDA is
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e(ij,k) - c(i,j,k-) + r(i,j,k' - '(ij,k)

T (ij -I,k) if (j -I) > 0
T'(ij ,k) -ia (i ,k) otherwie

if (i-1) > 0
F(i ,j ,k) b- ( ,jk) otherwise 0

5. CONCLUDING REMARKS

In this paper, we systematize the decomposition of broadcasting dependences into propagation

dependences. Two kinds of propagation schemes, elementary and composite propagation, are

introduced. It is shown that the derivation of the appropriate decomposition can be formulated as a

linear algebra problem. Moreover, all broadcasting dependences are decemiposable into propn. ation

dependences.

In the discussion, we provided the theoretical framework for performing the decomposition but

avoided the actual implementation issues because the optimal choice of propagation scheme depends

on many factors; among others,

(1) the propagation dependence vectors must be selected in a way compatible with the other

data dependences in the algorithm for the transformed algorithms to be executed

efficiently,

(2) the number of propagation variables should be minimized to simplify the data flow and

the control complexity of the processor array, and,

(3) the length of the propagation paths should be minimized as the computation time of the

algorithm depends on the length of the longest dependence path in the computation

domain.

Simple heuristics can be found for the optimal choice of propagation scheme. These results will be
reported in a forthcoming paper.

Open problems and related research currently in progress include

(1) Can efficient methods for determining all the feasible propagation schemes be found?

This is equivalent to finding all the feasible bases W, such that the matrix W-'BIV
satisfies the reachability condition, a condition which depends on the non-zero structure

of the matrix.

(2) Is it possible to classify and characterize all such feasible bases?

(3) Does there always exist a propagation scheme such that the transformed algorithm has
the same order of run time as the original algorithm? In 1I, it is shown that any systolic

algorithm with computation domain of dimension s has O(N) run time when
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implemented on an (s -)-dimensional systolic array, where N is the size parameter of the
algorithm. We would like to know whether such a claim can be extended to LDA type

algorithms

(4) How is the control and communication complexity of the array related to the propagation
scheme used? We would like to justify the cost efectiveness of implementing algorithms
with broadcasting dependences on regularly connected VLSI arrays.

The results reported in this paper will serve as stepping stones for further investigation of these
topics.

Aeknowledgemnt The authors would like to thank Professor Stan Eisenstat for many helpful
discussions.
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