
7 D-A I91 612 A PROCESSOR FOR
TU O-DIMNSION L SYMMETRIC

CIGEU ALUE 1/1

DEPT OF COMPUTER SCIENCE J DELOSNE NAY 67
.OCRSSIFED YALEU/DCS/RR-4 DLO3-96- C-6158 FO12/2NML

uLIEE ...

1111.0 In" U-28 K
I.I L3.2

3hIUI I1 -0

~I2 .4 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

-- ud§ u-- w - Vw .lw w~ W .W zJw -

O4

0 0
I'-

1' r

A processor for two-dimensional
symmetric eigenvalue and singular value arrays

Jean-Marc Delosme

Research Report YALEU/DCS/RR-540
May 1987

DTELFECTEf

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

,b no Hae" a"lmmnim

Il~_ ~ tl l i _ 6,24 0

Abstract. A dedicated processor architecture is ere introduced for multiproces-
sor array implementations of Jacobi methods. C1 new processing element fac-
tors arbitrary rotations into products of elementary rotations whose angles are
exactly twice the CORDIC elementary angles. This characteristic permits com-
plete concurrency between the evaluation of the Jacobi rotations and their appli-
cation. Thus the processors in the resulting arrays are almost never idle.

.Accession For
A~I' vDTIC TAB

U1l announced --Justit loatlon _

IDistribution/

Dist Special

4r

A processor for two-dimensional
symmetric elgenvalue and singular value arrays

Jean-Marc Delosme

Research Report YALEU/DCS/RR-540
May 1987

~JUN 2 6 19870

E
The work presented in this paper was supported by the Army Research Office
under Contract DAAL03-86-K-0158.

TWO d a

1 - - , -, t~~

I. INTRODUCTION

Symmetric eigenvalue and singular value decompositions (SVD) are often at

the core of today's signal processing techniques. Because these decompositions

demand a large number of computations, and because of the stringent

throughput requirements of adaptive beamforming, direction finding and other

real-time signal processing applications that employ them, several parallel archi-

tectures tailored to their implementation have elsewhere been proposed. These

architectures are briefly reviewed in [9]. A consequence of this burgeoning

interest in simple dedicated parallel implementations has been the revival of the

Jacobi methods, eclipsed for about twenty years by the computationally less

demanding QR-factorization methods 17]. The Jacobi methods have the advan-

tage of leading to highly regular implementations with local communications and

simple control.

• The Jacobi method is applied to a square n X n matrix, either the original

matrix for the eigenvalue problem or the square factor computed in a preparatory

QR-factorization step for the SVD problem [2]. In this paper the matrix is

assumed to be real. (Note however that the Jacobi approach is very general and

can also be used for parallel computation when the matrix is complex 16].) A par-

ticular ordering scheme for the rotations in the Jacobi approach allows for a high

degree of parallelism, enabling the use of two-dimensional arrays of processors to

implement a Jacobi sweep in 0 (n) time [11, [2]. Experiments indicate that only

0 (logn) sweeps are needed for convergence, giving an 0 (n logn) total time for

the diagonalization of the n X n matrix.

The multiprocessor implementation developed in [1 and [2] consists of a

square array of -X I processors with nearest neighbor interconnections. Each

sweep comprises a cyclic sequence of n -1 steps. At the start of a step the

current matrix to be operated upon is already stored in a distributed fashion in

p ~ -p V p.

-2-

the processors of the array. The matrix is partitioned into 2X2 blocks, and adja-

cent blocks are assigned to adjacent processors. The step starts with the parallel

evaluation by the diagonal processors of the rotations 0 and f that diagonalize

the 2 X 2 block stored in each of them

(Coo 5in9)(6 C)I COSV -sinf _ ir uo)-sinl0 cooe0 b d sin P cosV' 107

The angles 0 and P are propagated to all processors in the same row and the

same column, respectively, as the diagonal processor that has evaluated them.

Every processor in the array pre- and post-multiplies the 2 X2 block it currently

has in storage by the rotations 0 and 01 that it has received. Then, to complete

the step, matrix elements are interchanged between adjacent processors in such a

way, discovered in [1], as to enable a complete sweep in only n -1 steps.

The angles 9 and 9' are easily seen to satisfy [21

tan(+) -0' and tan(-V 0' b -C
a -d a+d

The main role of the diagonal processors is to extract 0 and 0' from these equa-

tions, while the function of the off-diagonal processors is simply to apply the rota-

tions defined by these angles. In order to use the array efficiently, the diagonal

processors should be as fast as the off-diagonal processors, even though they must

perform a more complex task. The array efficiency will be further increased if

the evaluation of the angles by the diagonal processors and the application of the

rotations overlap significantly in time. The CORDIC concept is here fully

exploited in order to meet these goals. In fact, according to the implementation

here proposed, the evaluation and application of the rotations of a given step

start and finish almost simultaneously. As a result the efficiency of the array is

almost one, which is a significant improvement over the work presented in [3].

-3-

In the symmetric case the computational burden of the diagonal processors is

reduced, since then c always equals b, which implies 0 = and

2b
tan2 da-id

The array itself may furthermore be reduced to a triangle: in the square array,

the blocks pertaining to a pair of processors which are positioned symmetrically

with respect to the diagonal are always the transpose of each other. Since it is

conceptually simpler, the implementation of this important special case will be

presented first.

I. SYMMETRIC BIGENVALUE PROBLEM

Some elementary facts from CORDIC arithmetic (101, [111] will first be

reviewed, as we shall build upon them in order to derive our implementations.

CORDIC arithmetic hinges on a fundamental property: if a matrix function

R (0) can be expressed as a matrix exponential R (0) = e A , an additive decom-

position of 0 yields a multiplicative decomposition of R (0) [41, [5]. The off-

diagonal processors in the symmetric eigenvalue array must apply plane rota-

tions,

R(9)= (c eos sin$)-sin# cosO

which satisfy the above property, since

R(0)- eAD with A (1 I)

Consequently, assuming the availability of the encoding of 0 as a set of signs

= -I such that 0 --- 9, where the positive angles 9, form a preset
i-I

sequence, the rotation of a vector by R (9) can be performed by applying the

sequence of elementary rotations R ('ye Oi) to that vector. It remains to specify

-4-

how the angles Gi are selected to make the elementary rotations easy to perform.

Expressing the rotation R (i 0;) in terms of ti = t=ai

R(-,j) =0 (I + A',t)/,/det(+ A "7,t,) ,

and noting that the scaling factor is independent of "ye,

a/det(I + Aj, t) = V AS(t,

we se that the rotation R (0)= f& R (yi O9) may be implemented by performing
i l

I

sequentially the product by the p factors I + A -1i t, and then dividing the result

by the global scaling factor S = A S(t4), 14), fiI]. (Alternatively the scaling
i-I

could be done first, followed by the p products by I + A -1i 1,.) If the elementary

angles O are selected such that the tangents t are integer powers of two, multi-

plication of a vector by I + A '1 t, is simply a pair of coupled

addition/subtractions,

Zi +1 = "-Zi + "Yi ti 7i; , i +1 = 7i - "l; 1i Zi

where the vector components ; and ji are shifted by t and then added or sub-

tracted to yi or z;, respectively.

A high performance implementation of that operation will use two parallel

adder/subtractors, one for each equation, and two barrel shifters, for quick multi-

plication by arbitrary integer powers of two. That architecture, with a minor

modification, can also perform the division by the global scaling factor S. Indeed

S-1 can be decomposed into a product S- 1 --= ft (I + 6, s), where 6, -I I
i-Il

and each s is an integer power of two. Scaling of a vector by I + 6, s is sim-

ply a pair of decoupled addition/subtractions,

Z,+, zi +6isiZi , Yij+I=Y.+ 6j+i8iYi ,

i

-5-

where the components zi and ji are shifted by ei and then added or subtracted

to :, or gi, respectively. Hence only a multiplexer has to be added to the basic

architecture, to direct the shifted zi towards the v-adder and the shifted l,

towards the z-adder (coupled mode) or to direct the shifted ;; towards the x-

adder and the shifted Vi towards the p-adder (decoupled mode). (Note that, for

compactness and speed, the multiplexer and the two barrel shifters could be

merged into a single structure.)

The total time to perform a rotation is independent of the rotation angle

and equals the time to perform p coupled pairs of addition/subtractions and q

decoupled pairs of addition/subtractions. Since in the above implementation a

pair of addition/subtractions, whether it is coupled or decoupled, requires the

same amount of time - one cycle - the total time to perform a rotation is p + q

cycles. The tangents ti should therefore be selected to minimize p + q [4].

Assuming, without loss of generality, that the tangents t are non-increasing,

that is t , t for 1 < i < j < p, any rotation within a range (-Gma, +ma)

can be implemented with accuracy e if and only if Pmu (t O +,F and
imI

i. _5 e 0+ f, for l<i<p.

These conditions, derived in 1101, are easily seen to be satisfied if t+ 1 _ t /2

for 1_ i < p-i and t, = t. The freedom in the choice for t + 1 of either t;

or ti /2 may be exploited in order to minimize p + q: by properly choosing the

tangent values to be repeated, we may modify the scaling factor S and reduce

the number q of factors 1 + 6i ai in the expansion of its reciprocal [4]. Given

the desired range and accuracy, we may achieve that minimization via a search

procedure such as simulated annealing 18]. For 0,,. = ;r/4, the range for the

symmetric eigenvalue problem [1], and for the resolution t - 2-32, our simulated

IM UU F

annealing program generated the sequences

ti = 2 2-2, 2-3 2-4 ele 2- . 2-31, 2-3n,

68 . = -2-3, +2- 4, -2- 16, +- s , -2 -21, -27n, -2 -U,

giving a rotation time of just 40 cycles. The control unit of each processor is pro-

grammed to cycle through such a sequence.

In the proposed architecture for the symmetric eigenvalue problem, the off-

diagonal processors will each have two processing units that execute in parallel

the standard CORDIC algorithm presented above, with minimal number of cycles

p +q. In the first phase of each step, each processing unit rotates a column of

the 2 X 2 block stored in the off-diagonal processor by the angle 0 whose encoding

is generated by the diagonal processor in the same row. In the second phase of

the step, each processing unit now operates on a row of the modified 2 X 2 block

and rotates it by the angle 0 whose encoding has been generated in the first phase

by the diagonal processor in the same column.

While the off-diagonal processors use the above standard CORDIC algorithm

to apply rotations by angles 0 encoded as sequences of signs "71, I < i < p, the

diagonal processors must on the other hand perform the more complex task of

computing the encoding of the angle 0 which satisfies tan2f = 2b /(a - d), given

the entries (a, b, d) of their current block. The first phase of the steps is criti-

cal, since, during that phase, rotations must be applied simultaneously with their

evaluation. Such concurrency may be achieved if the encoding is generated

recursively, that is, one sign '7i every clock cycle. Indeed, although several cycles

may be needed to propagate a bit along a row of the array, q cycles are available

for that propagation if the off-diagonal processors spend the first q cycles of the

first phase performing the scaling part of the rotations. For practical array sizes,

this q-cycle upper bound on the propagation delay can be met without much

-7-

difficulty.

The encoding will be generated on line if the diagonal processors can per-

form rotations by 20 for 1 < i < p and, moreover, if the decomposition of 20

as t -1i "20 is generated recursively. The rotation by 'yj -20i is
i-!

R (-i.2#j)- R (,y Pi)-R (,7)= t 2 -1 -ti /(I + t,2);
-y 24j '7t2 JI +

therefore, up to a scaling factor independent of the sign -1j, it is a multiplication

by

1 -ti 2 7j -i2ti
--y; "2tj I-t; I

Since the tangents ti are integer powers of two, this multiplication may easily be

implemented with shifts and addition/subtractions. Specifically, the operations

are

z+ --- (1- ti2)z + yj .2t, y , 1, +1 = (1 - t2)y1, - 7;. 2t, ;

These operations may be performed in the same amount of time as an off-

diagonal processor cycle by a processor with four barrel shifters, two linear arrays

of carry save adders (plus some inverters) and two adders. The barrel shifters are

of two different types, in order to shift z. and y in parallel by the two amounts

2t . and t,2. The arrays of carry-save adders funnel data into the two adders.

Specifically, they compress the triples (zi, -t-:z, 7j, "2t y) and

(Y ,-i 2yI,, -'y, "24iz) into pairs of inputs for the two adders which compute,

respectively, z.j+ and yj,'+. The carry-save adder delay is much smaller than the

adder delay: hence the claim that a diagonal processor can perform the whole

multiplication in one cycle. The signs -y, can be generated recursively by using

the simple control law 151

&MN lq I &V6 X -'

°-

--- =sign(zi)

This law ensures that the rotation is always performed in the proper direction, so

that, starting with zI = (a - d)/2 and y1 b b, the absolute value of the angle

between (zi, yi) and (aign (a -d), 0) is always less than t 20 + 2e.

This novel processor architecture, introduced to implement the diagonal of

the symmetric eigenvalue array, will also be used for the processors in the SVD

array. The processor has the flexibility to perform either the coupled pair

z+=(I-_at2)z + T2tV , p+= (1-at2)y -' y2tz

or the decoupled pair

z+=(l+t 2)z + 06"2tz , + = (I + t2)y + 6"2ty

where a and # equal either 0 or 1, '- and 6 equal either 1 or -1, and t can be any

negative integer power of two between 2-2 and E (note that t - 2-1 is not

included). The z and y registers may be loaded independently at the start of

each cycle. The computation of (a - d)/2, which can be seen to require two

cycles, and the computation of a - d and 2b, which requires four cycles because

each computation needs two cycles and they cannot be performed concurrently,

illustrate the limitations of the processor.

Assume for a moment that at the start of the first phase of a step the diago-

nal processors have already set their respective z I = (a - d)/2 and y I = b, and

that the associated sign, -11, has just been sent to the off-diagonal processors in

the corresponding row. We shall assume furthermore that -y1 reaches all these

processors before the end of cycle q. On the first cycle, the diagonal processors

perform the (unscaled) rotation by -11.20, and evaluate -12, which is sent to the

off-diagonal processors in the corresponding row. The last sign, -1p, is evaluated

on cycle p -1. The off-diagonal processors spend the first q cycles scaling the

-9-

vectors which they are rotating; by doing the scaling iterations at the beginning

of the phase rather than at its end, q cycles are provided for the horizontal pro-

pagation of the signs -yi. On cycle q +1 the off-diagonal processors apply from

the left the (unsealed) rotation, by -1101, to their respective block. They apply

the last rotation, by p, 0,, on cycle p +q. The diagonal processors initiate on

cycle p the computation of the updates of the diagonal elements a and d, which

are easily seen to satisfy

_ a+d a-d
a ----- + - cos2+ bsin2#]

2 2

- [cos20 + b sin20]
2 2

To obtain the term between brackets, which is the first component of the vector

((a - d)/2, b) after its rotation by 20, the rotation of ((a - d)/2, b) is completed

as follows. On cycle p apply the unscaled rotation by y, "20P. Then, for the

next q cycles, perform the scaling part of the rotation, according to the decou-

pled equations

Z.+ = (1 + 8i2)Z, + *2, z, , y+ --' (1 + ,2)y, + 6,. 2s, ,

The evaluation of the term between brackets thus terminates on cycle p +q.

In the second phase, every off-diagonal processor rotates its 2 X 2 block from

the right by the angle 8 whose encoding, issued on the first phase by the diagonal

processor in the same column, has already been received. This requires p + q

cycles, like the first phase. The diagonal processors spend the first two cycles

computing (a + d)/2, perform the addition that gives " on the next two cycles,

and effect on the following two cycles the subtraction that yields d. The remain-

ing p +q -6 cycles provide, as we shall see presently, more than enough time to

let the diagonal processors take the head start on the first phase of the step, as

we earlier assumed.

t--~

- 10-

In between two steps, the processors must exchange data. In contrast with

the propagation of the single bits "vi, which takes place along horizontal and

vertical directions, this exchange is performed along diagonal connections. Each

processor has the ability to exchange data with its four neighboring processors

along the diagonal directions (1],[2]. Both diagonal elements within a block are

exchanged with elements on the diagonals of those blocks which reside in the two

neighboring processors along the same diagonal direction; the same holds for the

other two elements in the block with respect to the other diagonal direction. In

particular, the diagonal entries of the matrix are always exchanged between diag-

onal processors. The interchange itself may take a few cycles; it will require four

cycles assuming 32-bit precision and one processor per VLSI chip, with 64 bidirec-

tional I/O pins dedicated to this exchange. The diagonal processors, which finish

updat~lg the entries in their block about p cycles ahead of the off-diagonal pro-

cessors, can exchange their diagonal elements with a p -cycle lead time. Thus are

they afforded the time to evaluate the new (a -d)/2 before the start of the next

step.

HI. SINGULAR VALUE DECOMPOSITION

The array architecture is a square of -j X processors with horizontal and2 2-poesr ihhrzna n

vertical connections, which carry to the off-diagonal processors the angle encod-

ings computed by the diagonal processors, and with diagonal interconnections

between neighboring processors, which convey the entries of the 2X2 blocks

interchanged before each step. Both diagonal and off-diagonal processors consist

of two processing units. The processing units are all identical, and can perform

the same functions as a diagonal processor of the symmetric eigenvalue array.

During the first phase of a step, the diagonal processors rotate in parallel the

vectors (a - d, b + c) and (a + d, b - c), in order to evaluate recursively the

encodings of 0 +- f and &- 0 - as well as to update the diagonal ele-

ments within their respective blocks. The elementary angles for these rotations

are 20, identical to the ones used by the diagonal processors in the eigenvalue

array. In order to generate the encoding as soon as possible, the unsealed part of

the rotations must be performed first. On the first two cycles the two processing

units of a diagonal processor compute b + c and b - c; the components a - d

and a + d have already been computed during the previous step. At the end of

the second cycle, the two processing units contain (z + , F1)-- (a - d, b + c)

and (z ,yj)=(a +d, b-c), and the signs y = ign(zj "y+) and

'y- = sign (z I- y I) are generated. The operations effected in parallel in the two

processing units on cycle i +2, 1 < i < p, are

z + = (1 - t2)=T+ +'y+.2t; y+ , yi+l = (I - ti2)y,+ - 7+.2t. z+,

'yA++i= sign (xz4 141)l

and

x=.+ - (I - t;2)z - + y,.2t, y- , y. --- (1 - t2)g- - 71-.2t, ;-

=sign (zi +I y,;+ I

The pairs of bits ('y+ , -i-), I < i < p, generated by a diagonal processor, make

up the encoding of (0+ , 6-). They are sent via 2-bit wide horizontal and vertical

connections to all the processors which are located either on the row or on the

column of the diagonal processor. The last unscaled rotations, performed on

cycle p +2, align the vectors (a - d, b + c) and (a + d, b - c) along the (1, 0)

direction to the best angular accuracy that a diagonal processor can achieve.

While the pair of bits (,+ 1, '7-+y) generated on that cycle is of no utility, the

first components of the rotated vectors are useful for computing the updates F

and I of the diagonal elements. Indeed, these components are the computed

values, before scaling, of

'" ' " " 0 ' ' '' ' ,,' ',:'' ,,i, . ,', ' , ,3 ', , ' "e r,.,e ,e" °; I

- 12-

z + (a - d)cosf + (b + c)inI+ and z-(a + d)cos+(b -c)sin&

and the updates of a and d are easily shown to satisfy

I -+= + -+_Z+

2 '2

The scaling part of the rotations that yield z + and z- begins on cycle p +3 and

employs the decoupled equations

Z+ = (+ .2):'+ + 6, 2.= + ,2) X + + 6 -2s j+,

Zi+s =-(I + ,si - ;2; ;,z (+ ,;) + 6i .as; y;-

Since the scaling requires q steps its execution will spill over onto the first two

cycles of the second phase.

During the first phase the off-diagonal processors apply rotations by 9 to the

columns of their respective block. During the first q cycles of the phase each

off-diagonal processor normalizes the lengths of the vectors it operates upon, thus

giving the pairs (qy+ , ji-), generated by the diagonal processor belonging to the

same row, q -2 cycles to reach an off-diagonal processor. The significant, uns-

caled, part of the rotations by 0 is applied on the next p cycles. The angle of the

i th rotation increment is ('yi+ + -yi)Oi, hence the total amount of rotation after

p iterations is, as it should be, the half-sum of the decompositions o! e+ and t

as t'yj+20j and t'jj-20j.

In order to be able to perform the scaling in q iterations, some care is

needed when implementing the unsealed rotations. Observe that the amount of

the i th unscaled rotation can be +29,, -2#j or simply 0. Since in the first two

cases the rotation increases the length of the vector to which it is applied by

I + ti2, the nil rotation should increase the length by the same amount. A pro-

cessing unit can effect this stretching in one cycle by multiplying both vector

-13-

components by 1 + t,. It is only because of this operation that the elementary

angles for the rotations have been selected equal to 2#j instead of 9,, where

tanti = t is an integer power of two. Indeed if the angles 9, were selected as

rotation increments, the vector components would have to be multiplied by

r-7 which the CORDIC hardware cannot do in one cycle. (A related pro-

perty is that 29, is the smallest rotation increment that may be applied in the

proposed implementation, corresponding to an accuracy of 2e. Thus, assuming

an identical number of cycles per step, the accuracy of the Jacobi rotations is one

bit less for the SVD array than for the eigenvalue array.)

We may now recapitulate more formally the operations performed by the

off-diagonal processors during the first phase. The processors apply rotations by 0

to the columns of their respective block. Each processing unit within a processor

deals independently with one of the two columns. The q scaling iterations per-

formed on a coiumn are of the form

z,+1 = (I + 8i2).; + 6i "2si zi , V,+1 = (I + 8i2)y, + 6i .2s, y

The p unscaled rotation iterations that follow satisfy

X,+1 =-- (I - 0, t,2)-, + 7,+-(l + or,)t, y, , y, +1 -- (I - 0,, t,2)y ,y.(+ 0,,)t, zi

where oai A sign ('I'*) with y"+ and - received from the diagonal processor in

the same row. Thus either a nii rotation is performed, if j,+ and - differ, or else

a rotation by -7+.20 is applied.

At the beginning of the second phase of the step, the diagonal processors ter-

minate the scaling of the components z + and z- and compute F and d from

these components. This requires a total of only four cycles. Then the diagonal

processors exchange their diagonal elements between neighbors and compute the

new a - d and a + d. Afterwards, they merely wait till the end of the phase for

the off-diagonal processors to finish their rotations.

- 14-

During the second phase, the off-diagonal processors apply rotations by V

to the rows of their respective blocks. Each processing unit within a processor

deals independently with one of the two rows. The q scaling iterations per-

formed on a row are of the form

i+i=(1+2)zi +6"2iz, , (i +-(1 +) + 6 , -228 zy

The p unscaled rotation iterations that follow satisfy

Xi+ I (1 + oi ti2)z, + "l,+'(l - a,)1 V, I1i+i (1 + a'i - y,+(1 -)t z.,

where a, = sign ('Ii 'y y) with "y'+ and -I- received from the diagonal processor in

the same column. Thus either a nil rotation is performed, if 'y,+ and y,- are

equal, or else a rotation by "yi+.20 is applied. The second phase lasts p +q

cycles, like the first one.

The next few cycles are used to exchange entries between neighboring pro-

cessors in exactly the same way as for the symmetric eigenvalue array. Note that

the updated off-diagonal elements for the diagonal processors will be available

only at the end of that exchange; they cannot be exchanged in advance like the

diagonal elements.

IV. DISCUSSION

A key idea in our approach is to simplify the diagonal processors by having

them generate simple rotation encodings. The diagonal processors of the sym-

metric eigenvalue array consist of one new processing element and those of the

SVD array of two such processing elements. This new processing element is a

fairly simple machine, only slightly more complex than a CORDIC rotor and

requiring less than twice the CORDIC rotor area for the same cycle time. The

simplification of the diagonal processors entails some extra cost for the off-

diagonal processors, which must be able to construct rotations from the

- '

encodings. If that extra cost were an increased processor complexity, the

* approach would be unpractical; there are many more off-diagonal processors than

* diagonal ones. Fortunately the CORDIC approach lets the tradeoff take place at

another level: processor speed.

For 32-bit precision the diagonal processors proposed can be as fast if not

faster (and certainly much more compact) than processors based on conventional

approaches of evaluating the entries of the rotation matrix: using fast multiplica-

tion, division and square-root algorithms, or table look-ups and linear interpola-

tions. The off-diagonal processors, however, are significantly slower than a fast

multiplier based implementation of the rotation for about the same area. This

relatively poor performance would doom the whole approach if it did not possess

* a key redeeming feature. the rotations may be applied simultaneously with

respect to their evaluation. Indeed, while with a traditional processor architec-

ture the application of the rotations cannot start before the complete evaluation

of the entries of the rotation matrices, with the proposed architecture the appli-

cation of the rotations by the off-diagonal processors starts at the same instant as

their evaluation. The relative slowness of the off-diagonal processors contributes

little to the total computation time: at the end of a step, the off-diagonal proces-

sors need about p cycles to terminate their computations after the diagonal pro-

cessors have finished theirs. This time is to be compared to the time required,

with a traditional processor architecture, for propagating the cosines and sines

defining the rotations to the off-diagonal processors and then performing the rota-

* tions. These times are similar for practical pin counts, which impose a fair

amount of sequentiality in propagating the sines and cosines. Thus we claim that

our processor architecture leads to a performance similar to what could be

obtained using a more conventional architecture based on fast arithmetic, while

offering the advantages of simpler control and much simpler diagonal processors.

- 16-

Two important architectural variants that use the CORDIC approach should

be mentioned. They both apply to the SVD array. In the first variant the off-

diagonal processors are replaced by simpler pairs of CORDIC rotors, as in the

symmetric eigenvalue array. The diagonal processors, which must then generate

the encodings for 9 and P directly, employ the relations

ab + ed ,= + bd

tan2 =2 2 _ _ tan2 2 a2+b2_c2_d2

Thus, in addition to the two processing elements that generate the encodings for

9 and 9 given the vectors (a2+c 2-b-d 2,2(ab +cd)) and

(a2+b 2-C€-d 2, 2(ac+bd)), the diagonal processors possess fast multipliers for

the speedy computation of the components of the vectors. The updates of the

diagonal blocks are performed by pairs of CORDIC rotors, as for the off-diagonal

blocks. The array is therefore a square of identical processors - pairs of CORDIC

rotors - plus a diagonal of rather complex processors; it can be as fast as the ori-

ginal one if the time for the fast multiplications and the propagation of the first

bit of the encoding of 0 does not exceed q cycles. A second variant aims at

removing the idle time that the diagonal processors experience during the second

phase of each step. The diagonal processors are the same as in the first variant

and generate the encodings for 0 and 9' directly. A square array of identical

processors applies the rotations to the diagonal and off-diagonal blocks simultane-

ously from the left and from the right. More precisely these processors apply the

ith iteration of the rotation by 0 and the rotation by 0' simultaneously, in effect

removing the second phase of each step. The processors contain two processing

units which, although they have more complex adders, are still very similar to the

ones in the original SVD array. One processing unit operates on the diagonal

entries of the current block and the other one on its off-diagonal entries. The

speed up with respect to the original array can reach two, if the time spent for

-17-

the fast multiplications and the propagation of the first bit of the eneodings of 0

and 0' does not exceed q cycles.

One should be able to use the arrays, which are adapted to a specific prob-

lem size n, for the solution of oversized problems with only a marginal loss in

efficiency. Instead of a block Jacobi scheme [21, a more appropriate procedure is

to map the scalar Jacobi scheme on a virtual array whose dimensions match the

problem size (more precisely match the first multiple of n greater or equal to the

problem size) and then fold that array onto the real array. The folding is just

like a paper folding into squares of the same size as the real array and defines the

allocation of the 2X2 blocks of the matrix onto the real army. (Each processor

could communicate with its own memory chip holding the blocks allocated to it.)

The sequencing in time is such that, if we unfold our folded paper, the squares

along the diagonal are processed first in order to determine the rotation angles.

The exchanges between steps still involve only neighboring processors. The con-

trol remains simple and the efficiency very high.

ACKNOWLEDGEMENT

Jimmy Lam, from the Computer Science Department of Yale University, wrote

the simulated annealing program mentioned in the paper.

a,

~WM~.~A~mbA2

- 18-

REFERENCES

I R.P. Brent and F.T. Luk, "The solution of singular value and symmetric

eigenvalue problems on multiprocessor arrays," SL4M J. Sci. Statist. Com-

put., Vol. 6, pp. 6W-84, Jan. 1985.

2 R.P. Brent, F.T. Luk and C. Van Loan, "Computation of the singular value

decomposition using mesh connected processors," J. VLSI Computer Systems,

Vol. 1, No. 3, pp. 242-270. 1985.

3 J.R. Cavallaro and F.T. Luk, 'Architectures for a CORDIC SVD Processor,"

Real Time Signal Processing IX, Proc. SPIE, Vol. 698, Aug. 1986.

4 J.-M. Delosme, "VLSI Implementation of Rotations in Pseudo-Euclidean

Spaces," Proc. 1983 IEEE Int. Conf. on ASSP, Boston, MA, pp. 927-930,

Apr. 1983.

5 J.-M. Delosme, "The matrix exponential approach to elementary operations,"

Advanced Algorithms and Architectures for Signal Processing, Proc. SPIE,

Vol. 696, pp. 188-195, Aug. 1988.

6 P.J. Eberlein, "On the Schur Decomposition of a Matrix for Parallel Compu-

tation," IEEE Trans. on Computers, Vol. C-386, No. 2, pp. 167-174, Feb.

1987.

7 G.H. Golub and C.F. Van Loan, Matrix Computations, The Johns Hopkins

University Press, 1983.

8 S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, "Optimization by Simu-

lated Annealing,' Science, Vol. 220, pp. 671-680, 1983.

9 J.M. Speiser, "Signal processing computational needs," Advanced Algorithms

and Architecture, for Signal Processing, Proc. SPIE, Vol. 696, pp. 2-6, Aug.

1988.

10 L.E. Voider, 'The CORDIC Trigonometric Computing Technique," IRE

a Trans. on Electronic Computers, Vol. EC48, No. 3, pp. 330-M3, Sept. 1959.

11 L.S. Walther, 'A Unified Algorithm for Elementary Functions," AFIPS Conf.

Proc., 1971 Spring Joint Computer Conference, Vol. 38, pp. 379-385, 1971.

/

