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\ ABSTRACT

The objective of this thesis is to develop segmentation methods for multichannel
and single channel images, and compare these methods. The segmentation algorithms
are based on a linear model for the image textures and on inverse filtering to estimate
the image textures and their regions. Two specific methods are compered 1) A
multichannel filtering algorithm that simultaneously models the three separate signals
representing the intensity of red, green, and blue as a function of spatial position and
2) A single channel model applied to a combined image resulting from performing a
Karhunen-Loéve transformation on the three signal components. Results of the
multichannel 1mage segmentation and the Karhunen-Loéve transformed one-channel
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1. INTRODUCTION

Segmentation techniques are among the most important considerations in the
development of the automated image processing systems. Two related algorithms using
2-D linear prediction models and the Karhunen-Loéve transformation for multichannel
and color image segmentation are developed and compared in this thesis.

The purpose of segmentation is to partition an image into a set of simpler.

homogeneous regions. The regions may consist of different gray level, different

Il

textures, colors, etc. In some cases an “ image ” may consist of several spectral
components. For example, a color image consists of three separate signals representing
the intensity of red, green, and blue as a function of spatial position. If we represent
each of these signals by functions Fr {(n,m), Fb (n,m), and Fg (n,m), the image is

represented by a vector quantity

F, (n,m)
E (nm) = F, tn,m) (1.1)
l"g (n,m)

where n and m represent spatial coordinates. We call such an image, consisting of
more than one two dimensional (2-D) signal, a multichannel image.

In this thesis, a method based upon linear prediction is evaluated experimentally.
This method has been developed [Ref. 1] for monochrome images and extended to
color images [Ref. 2]. That method uses maximum likelihood (ML) and maximum a
posteriori (MAP) estimation to segment multichannel images into regions of similar
textures. The linear prediction is a filtering of the multichannel image to estimate the
gray level at a particular spatial coordinate from the gray levels at neighboring
positions. It is implemented as a 2-D linear filtering operation. The algorithm uses a
previously-determined set of parameters corresponding to the mean of the data in each
channel, the covariance matrix of the prediction error, and the weighting coefficients of
the estimation filter for each specific texture type.

The method discussed above is compared to a variant of this method based on
the Karhunen-Loéve (K-L) transformation. The K-L transformation allows the several
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components of an image to be combined into a single image that retains most of the
energy in the original image. Hunt and Kubler [Ref. 3] found that for image
restoration, Karhunen-Loéve transformation followed by single channel image
processing worked nearly as well as multichannel image processing. It was desired to
see if the Karhunen-Logve transformation wouid be equally effective for segmentation.
In this part of the work, the K-L transformation has been developed to reduce the
3-channel color problem to a 1-channel problem and the segmentation was performed
for the one-channel image. Karhunen-Loéve transformation is based upon the
statistical characteristics of an image. The advantage of this approach is
computational savings; only about one ninth the number of computations is required
for this method. )

The remainder of this thesis is organized as follows. Chapter 11 discusses the
model and the algorithms used to perform the multichannel image segmentation
employing techniques of linear prediction [Ref. 4]. A general class of linear filtering
models for texture is first presented. An algorithm is then developed to estimate the
filter parameters from a multichannel image. Then, the multichannel image
segmentation algorithm is described.

Chapter III presents the models and the algorithms to perform the Karhunen-
Loéve transformation and one-channel image segmentation. First, the algorithms for
determining the eigenvectors and the eigenvalues of the correlation matrix are
developed. Then, the transformation using a 3-channel image is presented. Finally,
the one-channel image segmentation algorithm is discussed. The examples
demonstrating the application of the segmentation methods for color images are
presented and compared in Chapter IV. Chapter V has the conclusions about the
multichannel image segmentation and one-channel image segmentation.

In Appendix A, the Relaxation Method is described briefly as an alternative to
the maximum a posteriori region estimation for monochrome images. Results are
compared with the MAP method. In each of Appendices B and C, the description and
use of the computer programs for the multichannel image segmentation and the one-
channel image segmentation are presented. The computer program for multichannel
image segmentation is contained in Appendix D. The Karhunen-Loéve transformation
and one-channel image segmentation computer programs are contained in Appendix E.
These programs are written in FORTRAN, compiled using Version 4.2 under the VAX
/ VMS Version 4.1 operation system.




II. IMAGE SEGMENTATION UﬂgSﬁMULTICHANNEL FILTERING

In this chapter, a multichannel image segmentation algorithm based upon a 2-D
linear filtering model is presented. The multichannel images used in this work are color
images with three channels representing the red, green, and blue components. The
linear filtering model is used to develop approximate expressions for the multivariate
probability density functions in terms of the filter error residuals for the entire set of
points representing an image. The density expressions are used in the formulation and
solution of the multichannel image segmentation problem. It is assumed that the
multichannel images contain multiple regions of homogeneous texture. This is found to
be the case in dealing with aerial photographs of natural terrain.

The problem of multichannel image segmentation is addressed as an estimation
problem for two regions of texture. Maximum likelihood (ML) and maximum a
posteriori (MAP) region estimates using a Markov random field to model region
transitions are developed. ' ’

This chapter consists of two sections. The first section describes the linear
filtering model and develops an expression for the image probability density function in
terms of filter error residuals. The last section deals with the algorithm that is
developed for the texture estimation and the multichannel image segmentation. The
results of texture estimation and image segmentation are presented in Chapter IV.

A. MODEL DEVELOPMENT

In this section, a 2-D multichannel autoregressive-moving average (ARMA) model
[Ref. 5} is first discussed. Then, we concentrate on the multichannel autoregressive
(AR) model with Gaussian white noise inputs [Ref. 6]. The development parallels that
in [Ref. 1. A multichannel image is represented by a vector signal F" (n,m) where
(n,m) are spatial coordinates and the superscript h is an index representing the texture
type. A 2-D multichannel image is shown in Figure 2.1 . A texture of type h is then
modeled in general by a multichannel ARMA process defined by

I el ———— St ——




P-1 Q-1
E (nm) = =3 T A" F* (nim) + 3 B B (nm) (2.1)
i=0j=0 B

(1,j) = (0,0)

E', (nm) = F" (nm) + G" (2.2)

forh=01,n=1,..N,m = 1,...M, where Aijh and B.‘ih are set of filter weighting
coefficient matrices of size K by K. Bt (n,m) are a set of independent identically
distributed zero-mean random variables, ¢ is a constant representing the mean value of
the image, and  is finite-extent mask covering the filtered points. Zh (n,m), Hh (n,m),
and G" are vectors of size K, the number of channels in the image. The matrices Ahij are
the key parameters in the linear model. For a first quadrant filter with a P X Q region
of support, there are PQ Ahij matrices with Ah00 = 1, an identity matrix.

For the auto-regressive (AR) or all-pole model we have Bhij = Slij *‘and so that
Equation 2.1 reduces to

P-1Q-1
F'(nm) = = ¥ ¥ A" F* (n-im-i) + ¥ (n,m) (23
i=0j=0 ‘
(ij) = (0,0)

If the vectors f, w, and g represent an ordered set of the corresponding image points,
then Equation 2.2 and Equation 2.3 are written in a matrix formulation as

Af—g =W-Ayf, (2.4)

where A and A are matrices whose nonzero elements are derived from the terms Aii in
Equation 2.1 and f; represents a set of boundary conditions with support outside of the
regions. Since the terms ¥ (n,m) are independent with probability density function
(PDF) p,, One can solve Equation 2.4 for W and express the multivariate probability
density function for the image conditioned on the boundary values as

10
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Figure 2.1 2-D Multichannel Image Model.




1
Pry 1, (f i) = rA—.Tle (Alf-g) + Ay ) (2.5)

= Il p, ( E (n,m))
(nm)e R

where the notation E(n,m) is used to represent the ordered components of the vector
A(f-g) + Ay f, . If the boundary conditions, f; , are temporarily ignored, then

E(nm) = Al - g) (2.6)

and the terms £ (n,m) in Equation 2.5 are computed from

P-1 Q-1 g
E" (nm) = ¥ ¥ A", B* (n-im-j) 2.7
i=0j=0
(i) = (0,0)

The filter of Equation 2.7 which computes £ ® (n,m) from F! (n,m) is referred to as
the ‘prediction error filter’. One can think of Equation 2.7 as producing an estimate or
prediction 2 (n,m) of the image at point (n,m) and then forming an error § (n,m) as a
" difference F (n,m) - f (n,m) . This process is known as 2-D linear prediction and is
fundamental to performing multichannel image segmentation.

B. ALGORITHM DEVELOPMENT

In the multichannel segmentation problem, it is assumed that the image consists
of multiple connected regions of known texture types, but that the region boundaries
and the number of regions are not known. The segmentation of the image is treated as
a supervised learning problem, since the regions are considered to consist of known
texture types. In this section, the multichannel image segmentation algorithm for
textured images is discussed.

12




An overview of the method is as follows. Given a multichannel image of each
texture, filter parameters are estimated by computing the covariance matrix from a set
of data and solving the Normal equations corresponding to the model of Equation 2.3 .
In this case the ‘correlation method’ of linear prediction is used to compute the
covariance matrix. The filter parameters are derived from a statistical analysis of the
textured images, because the image model discussed in the previous section is based
upon statistical properties.

Once the filter parameters are known the filters are used to perform the
segmentation. The filter weighting coefficients are used to calculate the prediction
errors EP (n,m) of two textures (n,m). Then, a maximum likelihood (ML) region
estimate is developed using the prediction errors and the covariance matrices for image.
The ML estimate is used as a basis to determine an approximate maximum a posteriori
(MAP) region estimate. The MAP region estimation utilizes an underlying Markov
structure for the region statistics to produce an accurate segmentation.

1. Filter Parameter Estimation Method

The prediction error filter is a finite-extent impulse response (FIR) or
nonrecursive ﬁlier with selectable mésk size and quarterplane region of support. It is.
always stable. The inverse of the filter used in Equation 2.3 is an all-pole filter (the AR
filter). The filter parameter estimation problem requires calculating ¥ , Ew". and AR
by statistical analysis of data in an estimation window containing the. desired texture,
where the quantity M" is a mean vector of the average gray level of the image in each
of the channels, and I‘.hw is a covariance matrix of the multichannel white noise

th = E[§" (nm) @ (am)T ] (2.8)

the term Zhw is also refered to as the prediction error covariance matrix, since in a
linear prediction problem it represents the covariance of the quantities § (n,m) defined
in Equation 2.7 . Since Ehw is not in general a diagonal matrix, we see that the ‘white
noise’ is uncorrelated within each channel but correlated between channels.

The covariance of the multichannel white noise (the prediction error
covariance) and the filter coefficients will be obtained by estimating the correlation
function of the image and solving a set of Normal equations as discussed below. The

13




corrclation function itself is estimated (rom data in a window containing a sample of
the desired texture. Two estimation windows are depicted in Figure 2.2 [or two
different textures in the multichannel image. The reader should realize that the
estimation windows do not have to come from the image to be segmented; they can be
selected from any image containing the same type of texture.

\\\Y\ \

-V

(/.

Figure 2,2 Typical estimation windows for two textures.

a. Mean Vector Estimation
In order to model the multichannel image by Equations 2.2 and 2.3 the
mean vector of the multichannel image has to be estimated. Knowing ¥ and selecting
the stationary estimation windows of two desired textures of F_, the zero mean 2-D
multichannel image, F, appearing in Equation 2.3 can be obtained by subtracting the
mean vectors from the multichannel image. Thus, Equation 2.2 becomes

E" (nm) = " (n,m)- g (2.9)

14
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where M" corresponds to G" in Equation 2.2, and the term ¥ in Equation 2.9 are
computed from

MM,
M= | MM | (210)
Mh,
where
| X,Y,
¥, = ———— ¥ Y £ (nm) 2.11)

N. M‘ n=Xl m=Yl

M"k is the mean estimate for the k' channel of the h'! texture image. The limits X
X, . Y, , Y, represents the edges of the window which is of size N° by M". Therefore
N=X-Xy+1, M =Y)- Y +Land0 S X, <X, SN, 0=Y, <Y,
< M ,and h represents the two.textures of the multichannel image. All variables used
in Equation 2.11 are depicted in Figure 2.3 .

(‘l) (U N

[\\\\\‘1

(l) (1
' Yy )

(2) (2)

(X, v n
Im (B2
2'2

Figure 2.3 Selection of the Size of the Windows for Mean Vector Estimation.
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b. Correlation Function Estimation
The correlation function of the zero mean, 2-D multichannel signal has to
be calculated in order to estimate the multichannel white noise covariance or prediction
error covariance, Zhw, and the filter weighting coefficients, Ahij . The theoretical 2-D

e

matrix correlation function for lag * i,j ” is given by

RP (i) = (RB (-, )T (2.12)
= E [F* (a,m) . ( B (n-im-i))T |

and can be estimated from the multichannel signal by

1 ny my
R (i) = ———3% T £ (nm) (£ (ni, me)T | (2.13)

N’ M‘ n=nl m==ml

where RP (i,j) is a matrix of size K by K, and n; , n, , m; , m, are defined by

0 Sn =mxX X +i)<n, = min(X, , X, +.i) < N, and

0Sm = max(Y,,Y, +j) < m, = min(Y,,Y, +j) S M.

This matrix correlation function is used to form a larger block- Toeplitz covariance
matrix which is used to estimate the filter parameters. This is discussed next.
c. Filter Coefficients and Prediction Error Covariance )

The prediction error filter weighting coefficients and the prediction error
covariance must satisfy a set of linear equations known as the Normal Equations when
the multichannel image is represented by the model in Equation 2.3 .

Normal equations corresponding to Equation 2.3 can be written as

[R].[A]=[S] (2.15)

where R is the correlation matrix for the signal, A is an appropriately ordered matrix
of the filter coefficients, and S contains a single non-zero block I, which is the
prediction error covariance. The matrix R has three levels of partitioning and for any
rectangular region of support is block Teoplitz with block Toeglitz blocks.

’ For a first quadrant filter with a P X Q region of support, The Normal
equations that define Equation 2.15 have the specific form

16




"R(O) R(-1) . . .R(-P+1)1[ A 7 S° }
R(1) RO) . . .R(-P+2)| | Al 0
={ . (2.16)
LR(P-)R(P-2). . . R(O) JlaP-1] [0
where
[R(,0) R(i,-1) . . .R(i,-Q+1) ]
RG,1) R0 . . .R(i,-Q+2)
R () = ) . .. (2.17)
LR(1,Q-1) R(,Q-2) . . R(@E0) |

= RT ()

and where R(i,j) is the matrix correlation function described in Equations 2.12 and 2:13
The quantities A' and S? are defined by

[ Ao ]
‘ A 1

A = . (2.18)

'Ait Q -1
and
" I, 1
0

S = . (2.20)

L O )
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with Agpy= I and where Aii and the partitions of SO are matrices of order K, the
number of channels of image.
2. Multichannel Segmentation Method

An overview of the segmentation is as follows. By using a Gaussian
probability density for the white noise in Equation 2.5 , one can develop explicit
estimates for the density functions in terms of the prediction errors E (n,m) . From this
one can form the conditions for ML and MAP estimation of the regions in the image.
The theory leading to the estimates is explained below. A brief intuitive explanation of
the process is given here.

As mentioned earlier the prediction error filters in Equation 2.3 can be
considered as predicting the intensity of a pixel in each channel from data in the region ,
adjacent to the vector of pixels. The prediction errors E! (n,m) are the outputs of the
filters. In the segmeniation algorithm the prediction error is normalized in an
expression involving the corresponding prediction error covariance. These normalized
errors are compared in ‘an appropriate formula to obtain the ML region estimate.
When an area of texture is processed by a filter that is not matched to the texture, the
normalized prediction error can be expected to be high. When the same area is
processed by the filter that is matched to the texture, the prediction error can be
expected to be low. '

The ‘maximum likelihood region estimate, ML(n,m), of texture class is
achieved based on the prediction error covariance and the error estimates of the two
desired textures for each pixel in the multichannel image. The ML(n,m) region
estimate assigns pixels to texture types without regard to the assignments of the

adjacent pixels. Then, the ‘maximum a posteriori’ region estimate, MAP(n.m), of
texture class is achieved for a pixel and a desired number of adjacent pixels of two
textures of the ML region estimation result. The MAP region estimation uses the
Markov model that refers to the above description. The form of the Markov model
i and ML and MAP region estimates are presented in detail below.
a. Maximum Likelihood Region Estimation

It is supposed that a multichannel image has many regions, but that each
region contains only one or another of two texture types. Given these regions, one can
write the Equation 2.5 as

MEIR) = "pwm(z(n.m)) i=1,....,q (2.21)
(n,m)

18




where the pwhi is the probability density function for the white noise source of type h,
within region R, ,and q is the number of regions. When the white noise term is
Gaussian with density function (mean 0 and covariance 2' )

NM/2

-——i———— - L T -1
py () oo lxex'l% > ¥ L, k) (222)
w

then, taking minus twice the log of Equation 2.21 and applying Equation 2.22 , we
obtain for an N by M pixel multichannel image

- 2l p(Z (R, , Ry ernR)

q
=Y (&', ()T (E, T '[B!, (nm)]+In[T}|+..
(n,m) &R,
+¥ (&%, ()| T (29, T ! (B9, (nm)]+1n/Z9, 1)
(n,m) € Rq - M In2xn
(2.23)
. -

=T ¥ (&, )T [T 1 ! 1, (nm)]+ T, 1)
i=1(nm)eR,
= NM In2r.

For maximum likelihood estimation, the number of regions q and the regions
themselves are considered to be deterministic parameters of the density function. An
ML estimate for these parameters is obtained by choosing values that maximize
Equation 2.21 or, minimize Equation 2.23 . Since NMlIn2n is constant value, the
Equation 2.23 is minimized if every point (n,m) in the multichannel image to a region
R, of type h, such that the term in brackets is minimum. Thus, one can write a ML
region estimation for two textures as

ML, (n.m)(;< MLO (n,m) (2.29)
1

where

19
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ML, (nm) = (88 ()T (£, T (B° (nam)] + niZ", | 225)

for h = 0, 1, where the number above or below the inequality indicates the region
class to which the pixel (n,m) is assigned. When the class is 1, the ML(n,m) is assigned
1 for a white pixel. Otherwise ML(n,m) is assigned 0 for a black pixel. Since the ML
region estimate assigns pixels to black and white without regard to the assignments of -
adjacent pixels, this algorithm produces a number of false assignments and a somewhat
‘spotty’ result.
b. Maximum A Posteriori Region Estimation

The ‘maximum a posteriori' (MAP) region estimation utilizes the Markov
model to describe the occurance of regions in the image. The combination of the linear
filtering model with the Markov model results in an algorithm to achieve a MAP
region estimation. For MAP estimation the regions are considered to be random
quantities, and we maximize the probability for a given set of regions conditioned on
our observation of the multichannel image. From Bayes rule, the a posteriori
probability can be written as

PrR, Ry 2] = —PERLRy o Re) PR Ry By]

P(E)

Since the denominator’of Equation 2.26 does not depend on the regions, maximum a
posteriori (MAP) estimate for the regions can be obtained if the Ri are chosen to
maximize the numerator

PE IR Ry iRy ) - PrR) Ry R ] (2.27)

One can define the “ state ” s(n,m) of point (n,m) as the region type to
which that point has been assigned. In our development, the number of region types is
assumed to be 2. Since the set of all possible state assignments for points in the image
is one-to-one with the set of all possible divisions of the multichannel image into
regions, the region estimation problem can be viewed as one of estimating the states of
the points. It is assumed that the state of a point is stochastically dependent on some
adjacent set of states Sn, m i @ symmetric support region, as shown in Figure 2.4 .
Since S represents a choscn set of state assignments for all points in the multichannel
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image, Pr [ S ] denotes the joint probability that the points in the image take on a
chosen set of state assignments. The support set defines a neighborhood structure i.e.
all elements in the support set are neighbors of each other. It can be shown that if the
set of states S is a Markov random field, then the probability of S can be factored as a
product of terms of functions depending only on the “cliques” of the support set Sn’ m*
The cliques are defined as groups of points such that each set of points are neighbors
of each other according to the support set. For a Markov random field, the probability
of S can be written as

Ll
L]
-

o
[
[

S

n, m

Figure 2.4 State support région of the point s for MAP estimation.

Pr[S] -(ngl)l’r[ s(n,m) | Sn’ m ] (2.28)

where the terms in the product are additive functions defined on the cliques of §
and the product is over all cliques in S. One simple acceptable form for the terms in
the product is '

Pe(s(am) | S,, ] = T ep [ sam) (@ + By (+8) + By (v+v)
oy ) + oy, W] (229)

where t = s(n-l,m),t" = s( n+1, m), Sn, m is the set of states as snown in Figure 2.4 ,
and D is a normalizing constant. One particular selection of the parameters, namely @
= —4,B, = B, = ¥, = v, = 1, leads to a particularly simple algorithm. In this
case, we have
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1
PrUlS, ul=— exp(L(s(ii)-1/2)) (2:30)
D (jesS,

and
1
Pr[O]Sn,m]=-B- (2.31)

The second term in the numerator of Equation 2.26 can be replaced by
Pr{S] . Thus maximizing Equation 2.26 is equivalent to minimizing

~2np( EIR, ,....,Rq ) = 2InPr[S] (2.32)

One can define the MAP region estimate by combining Equations 2.22 ,
2.26, 2.28 , and 2.32 as

TLg" (nm) TIEL T E (nm)]
,MN

+m|Zh, | = 2mPrl]S, ]<
i
LRI RNl JUEY (2:33)
,m
+In[Z% (= 2InPr[O]S, ]

For Pr{ h | Sn, m | in the form of Equation 2.30 and Equation 2.31 computing the
terms — 2 1n Pr [hlSn, m ) 1S €quivalent to counting the nqmber of pixels in Sn, m that
have value 'h’ and dividing by the total number of pixels in Sn, m + and muitiplying by
an appropriate normalizing factor, KS.! A larger state support region Sn’ m 15 depicted
in Figure 2.5 as an example. The side of the S n, m TUSt be an odd number . Although
it does not necessarily lead to the true MAP estimate we find it convenient in practice
to maximize Equation 2.33 term by term. That is, we require to use Equation 2.33
without sum. Equation 2.33 can be solved by iteration using the maximum likelihood

1The_normalizing factor results because the quantities a , ,and in
E‘qu::_tion 229 can be scaled arbitrarily and still result in & '%ég'lt?rﬁdtzl probagﬂi
nction.
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state estimates obtaincd from Equation 2.24 as an initial sct of states for MAP region
estimate,

oOj[v]o |1 |1
11011 110
r11j.sj{ir}o
110 |1 111
ojJoj|J1r1}|o]o

Figure 2.5 A Set of States 1's, 0's adjacent to S for MAP Region Estimate.

The computational requirements of the MAP region estimation are reduced by storing
the differences,

MLD (nm) = ML, (n,m) — MLg (n,m) (2.34)

incurred during the calculation of the ML region estimate. Substituting Equation 2.34
in Equation 2.33 gives

1
MLD(n,m) = 2InPr[ 1S I+ 2InPr{o)s, 150 (2.35)

0

At each iteration terms Pr [ h | S, m | are evaluated based on the values of the states
’

at the previous iteration. For our particular method of selecting Pr [ h | Sn’ m ]
Equation 2.35 can be expressed as
MLD(n,m) _
2 (number of state 1 pixels) —~ ( number of pixels in Sn, m)t1 {
- KS§ N 0
number of pixels in §_ ,m 0
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There are two important points in Equation 2.36 in order to perform the maximum a
posteriori image segmentation accurately. The value of the convergence factor, KS,
must be assigned properly. If KS is assigned too small, the segmentation may not
remove improperly classified pixels. On the other hand, if KS is assigned too large,
correctly classified pixels could be changed. In addition, the size of S| , m must be large
enough. Otherwise, false assignments produced by the initial ML segmentation may
not be removed.

24




S —

Il KARHUNEN-LOEMAE%AgEE&%M%I{_?SINAND ONE-CHANNEL

In this chapter, the models and relevant algorithms are presented to perform the
Karhunen-Loéve (K-L) transformation [Ref. 3] and one-channel image segmentation
utilizing the techniques of linear prediction [Ref. 1]. Since linear predict.on techniques
are presented in detail for multichannel image segmentation in the previous chapter,
this discussion concentrate: on the K-L transformation. The K-L model and algorithm
are first developed to reduce the three-channel color problem to a one-channel
problem. Then, a one-channel segmentation procedure is presented that is based on the

‘same model previously discussed. The results of the K-L transformed one-channel
image segmentation are prescnted and compared with the multichannel image
seginentation in Chapter IV.

A.. MODEL DEVELOPMENT

The K-L transformation developed in this section is-based on the statistical
properties of an image. This transformation provides an energy compaction between
channels of a color image. That is, most of the color image énergy is compacted into
one channel, and the transformed image channels are uncorrelated. If the multichannel
image and transformed multichannel image are expressed in vector form, The K-L
transformation is given by [Ref. 7]

@(n.m) =[A] F(n,m) (3.1
where F ( n, m ) is the original multichannel image, @ ( n, m ) is the transformed
multichannel image, and A is the K-L transformation matrix, whose rows are
eigenvectors of the between-channel correlation matrix R defined by

R=E[E(n.m)EY (n.m)] (3.2)

The between-channel correlation matrix of the transformed image is

A=E[Q(n,m)QT (n.m)] ‘ (3.3)
=[A][R][AT!
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where the matrix A is a diagonal matrix of the form

A, 0 o
A= 0 A 0 (3.4)
R R W

and the A, represent eigenvalues of the between-channel correlation matrix. The
eigenvalues are ordered such that

AM2ZA,2A 20 (3.5)

The importance of this property is that each eigenvalue A, is equal to the variance of
the k ™ channel of the transformed multichannel image whose channels are
uncorrelated. Then, it is a well known property of multivariate statistics that the total
variability. of the color image has the form [Ref. 3]

3
M =XA 3 (3.6)
k=1

which relates the total variability to the decorrelated component variations, A, . One
can observe that often the kk values have 5 wide range of magnitudes, and the first
component, A; , will be sufficient to approximate A with only a small percentage of
error. This becomes the key idea for the use of the K-L transformation. Table 1 shows
the energy distribution between the transformed color image channels of two test
images. .

Indeed, in a 3 channel image one can often find that the first channel of the K-L
transformed image is sufficient to account for 99 percent of all the variability. That is,
it is typical to find that

A = 099 Ay 3.7)

The Karhunen-Loéve transformation provides the best energy compaction [Ref. 8] and
the advantage of this transformation is computational savings. We will see later that
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TABLE 1

ENERGY DISTRIBUTION TWEEN TRANSFORMED IMAGE
CHANNELS

Percentage of Energy in Channels

Q @
Image 1 99.13 084 0.03
Image 2 99.15 0.78 0.07

one-channel image segmentation'achieved by processing only the first channel of the
K-L transformed color image will be very close to the result obtained on the original
image with a multichannel algorithm, but will be obtained at only one ninth of the
computational cost.

B. ALGORITHM DEVELOPMENT _

- In this section, the algorithm to perform K-L transformation of color images is
presented. Since the K-L transformation is based upon the between-channel correlation
matrix, R , of the color image , the between-channel correlation matrix is first
determined. Then the eigenvectors of the between-'channel correlation matrix are
computed. Finally, the K-L transformation is formulated using the transpose of the
eigenvector matrix.

1. Correlation Function Estimation
In order to determine the K-L transformation of Equation 3.1 , the between-
channel correlation matrix of the color image must first be estimated. Our estimate for
the between-channel correlation matrix is given by

1 N1 N-1
R= YYE(n,m)(E(n,m)T (3.8)
N2 n=0m=0
* 27




where the image size is N by N, and the between-channel correlation matrix size is K
by K.
2. Karhunen-Loeve Transformation Matrix
Since the rows of the K-L transformation matrix are the eigenvectors, E, of
the between-channel correlation matrix, the eigenvectors must be calculated from the
between-channel correlation matrix of the color image. The K-L transformation
matrix is then obtained using the transpose of the eigenvector matrix. That is

<—ng—»
[A]= |ecel,— (3.9)
«g,—>

o W

3. Karhunen-Loeve Transformation
Since the K-L transformation matrix satisfies Equation 3.3 , then the K-L
transformation is represented by Equation 3.1 with A is given by Equation 3.9, where

T

e’ i= 1,2, 3 are the eigenvectors of R. More explicitly, the components of @ are

determined from the components of F at any pixel (n, m ) as

T

Q(n,m) «—ze' | —»[F;(n,m)
Q(n,m) |=] ezl —=|IF,(n,m) (3.10)
Q(n,m) <—£T3—b‘ F3(n,m)

C. ONE-CHANNEL IMAGE SEGMENTATION

The one-channel segmentation procedures presented in this section are based on
the same model that was described in detail for the multichannel image in Chapter II.
A single channel image is used instead of a three channel image. That is, K is always
equal to 1 in the Equations of Chapter II. As a result the vector and matrix quantities
become scalars and the equations are simplified.

In order to model the single image by Equations 2.2 and 2.3, the mean of the
image is estimated using the Equation 2.11 . Then the correlation function is estimated
in the same manner as in Section II-B.b where R(i,j) is a scalar instead of a matrix.
This procedure is followed by estimation of the filter coefficients and the prediction
error covariance. The equations in Section II-B.c are then used to determine the filter
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coefTicients, Aii , and the the prediction error covariance, Zw , Now a scalar value.
Finally, the one-channel segmentation algorithm is applied. The method is the same as
that described in detail for the color images in Section II-B.2. However, instead of
Equation 2.24 and 2.33 the following simplified relations are used for the maximum
likelihood and the maximum a posteriori region estimates. A maximum likelihood
region estimate for a single channel image of the pixel is given by [Ref. 1]

( E® (n,m))?
X

( E! (n,m))?

2
+In(X! )<
i, ()]

+In(Z% ) (3.11)

w

and the maximum a posteriori region estimate is given by

1 2

(Evin,m)z_ In(E,) - 2l Pr(1]S, .1

2 (EO Z"n.m))2 .
R T () - 2 P015, ]

w

where E! and E? are the result of applying the linear predictive filters to the first
channel of the K-L test image.
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IV. RESULTS AND COMPARISON OF THE METHODS

In this chapter, the results of the multichannel image segmentation, the
Karhunen-Loéve transformed one-channel image segmentation, and the K-L
transformed 3-channel image segmentation are presented and compared.

The digitized image size used in this work is 128 by 128 pixels with gray levels
represented on a scale of 0 to 255 (8 bits). A digitized color photograph of a rural area
containing trees (the green region) and fields (the yellow region) are shown in Figure
4.1 . A quarter-plane filter for each texture class (2 X 2 pixels) was designed and
applied to the color image to achieve the multichannel image segmentation. A state
support region of 7 by 7 pixels was used for MAP region estimation. The results of the
maximum likelihood (ML) and the maximum a posteriori (MAP) segmentations of
Figure 4.1 image are shown in Figures 4.2 and 4.3 respectively. The segmentation
results show the field regions as black and tree regions coded as white. The ML result
(Fig 4.2) is spotty, but the true tree and field regions are distinguishable. The MAP
segmentation result (Fig 4.3) of Figure 4.1 image is quite clear. The MAP
segmentation was not able to remove a few improperly classified points in the left side
of the field yegion. Since there is an inherent ambiguity in the estimation of the region
boundaries due to the finite size of the masks, the edges are expectedly somewhat
.rough. Figure 4.4 shows another color image of a rural area containing trees and
fields. Figures 4.5 and 4.6 show the results of the ML and the MAP segmentation of
the Figure 4.4 image. The ML estimation was achieved using the filters designed for
the image of Figure 4.1 . The result of the ML segmentation (Fig 4.5) is again quite
spotty, i.e. Although two regions are discernible. The MAP algorithms segmented the
regions quite accurately as shown in Figure 4.6 . The MAP estimates presented above
converged after 10 iterations and KS was assigned to 100.

In the results presented above the ML procedure produced a poor result with a
lot of false regions. This is due to the lack of prior information about region
connectivity. On the other hand, MAP estimation using the Markov model to represent
region transitions produced results that was quite accurate.

Figure 4.7 shows the first channel of the Karhunen-Loéve (K-L) transformed
image of the Figure 4.1 . The image size is 128 by 128 pixels with the scaled gray levels
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: within the intensity range of the display. The result of the one-channel ML
segmentation of Figure 4.7 is depicted in Figure 4.8 . The one-channel ML
segmentation result is quite spotty, but the two regions are perceptually discernible. On
the other hand, the MAP segmentation result (Fig 4.9) of Figure 4.7 is quite smooth,

k although there are a few incorrectly classified points in both regions.
The first channel of the Karhunen-Loéve transformed image of Figure 4.4 is
| shown in Figure 4.10 , and Figures 4.11 and 4.12 show the results of the one-channel

ML and MAP segmentations of Figure 4.10 respectively. The one-channel ML
3 segmentation result (Fig 4.11) has a lot of spots, but both segmented regions are
distinguishable. The maximum a posteriori segmentation (Fig 4.12) of Figure 4.10 is
quite smooth, but again there are a few incorrectly classified sets of pixels in both

regions.

#, The results of multichanne]l image segmentation and the Karhunen-Loéve
transformed one-channel image segmentations were presented consecutively. These
results show that the ML estimation of the Karhunen-Loéve transformed single
channel image is much more spotty than the ML estimation of the muiltichannel image.
But, the MAP estimation results of the K-L transformed single channel images are as
clear as the MAP segmentation results of the multichannel images.

In summary the results presented in this cl;apter show that the best segmentation
result is provided by the multichannel image segmentation method. However the
segmentation . results of the Karhunen-Loéve transformed single channel images are
very close to multichannel image segmentation results, i.e. Because most of the color
p image energy (99 percent) is compacted into the first channel.
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Figurc 4.1 Two-Texture Color Image.
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Figure 4.2 ML Region Estimation of Figure 4.1 Image.

Figure 4.3 MAP Region Estimation of Figure 4.1 Image.
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Figure 4.4 Color Image Containing Two-Texture.
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Figure 4.6 MAP Region Estimation of Figure 4.4 Image.
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Figure 4.7 First Channel of K-L Transformation of Figure 4.1 Image.
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Figure 4.8 ML Region Estimation of Figure 4.7.

) I

Figure 49 MAP Region Estimation of Figure 4.7.
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Figure 4.10 K-L Transformed Single Channel Image of Figure 4.4.
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Figure 4.11 ML Segmentation of Figure 4.10.

Figure 4.12 MAP Segmentation of Figure 4.10.
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Y. CONCLUSIONS

The segmentation of terrain images is an important part of image analysis
methods for military and civilian applications. The work in this thesis utilized a 2-D
stochastic linear filtering model and compared algorithms for multichannel image
segmentation of color images. Two levels of structure were used for multichannel
segmentation development. The fundamental structure based on the linear filtering
concepts represents the texture in local regions of terrain. Superimposed on this
structure is a Markov random field that describes transitions from one region type to
another. The segmentation was considered as a region estimation problem and
maximum likelihood and maximum a posteriori region estimatation methods were
developed. The ML region estimation produced a spotty result, but the MAP region
estimation produced quite accurate results for the multichannel and single channel
image.

The other piece of work developed in this thesis was the Karhunen-Loéve
transformation model that based on the statistical characteristics of color image.The
one-channel image segmentation was then applied to the first channel of the
Karhunen-Loéve transformed color image to see the effectiveness of the K-L
transformation for segmentation.

We observed that multichannel image segmentation results were quite accurate.
Similarly the results of the K-L transformed one-channel image segmentation were very
smooth. In summary the results of both segmentation methods were very close to each
other, and the K-L transformation is very effective for segmentation.
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APPENDIX A
RELAXATION METHOD

The Relaxation Method algorithm utilizes a set of iterative numerical techniques
to compute a posterior probability of the pixel (n,m) from a prior probability of the
same pixel and a set of prior probabilities of the adjacent pixels. The prior probabilities
are estimated from a 2-D image data using the linear filtering model (see Equation
2.25).

The Relaxation formula is defined [Ref. 9] by

: A3 P.K(n,
P, kK+1nm) = Avg ( v Py (nam)

Laspk

(A.l)

where Kk is the number of the iteration, )‘ijs is the relaxation factor, Pij" (n,m) are a set
of prior probabilities, T is the number of textures, and S is the number of pixels. The
updated estimates Piik +1 (n,m) are obtained by averaging all of the terms in
parentheses. The relaxation factor, )"ii’ , in Equation A.1 is given by

A =tgf(i’j | s,t) PX (n,m) (A.2)

where c(i,jls,t) is a nonnegative compatibility function whose value is small if the
neighboring pixel is black when the estimated pixel is white, otherwise its value will be
large. lij’ is used to update the probability Pij" (n,m). Note that Xii“ is large if the
compatibilities c(i,j|s,t) are large and the probabilities Pﬂk are high, otherwise }.ijs will
be small.

The results of the Relaxation Method segmentation are shown in Figures A.l
and A.2 . The Figure A.l presents the segmentation of Figure 4.7 with the
compatibility c(i,x|s,x) is equal to 0.1, where x can be 0 or 1. The result is very spotty
but both regions are discernable. The Figure A.2 gives the segmentation with the
compatibility c(i,x|s,x) is equal to 0.9. This result is better than the previous result, but
there are still several spots especially in the field region. Both results are obtained after
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10 iterations. Figure 4.9 shows the resuit of MAP segmentation of Figure 4.7 . The
MAP segmentation result is much more accurate than the Relaxation method
segmentation.

Figure A.1 Relaxation Method Segmentation with ¢ = 0.1.
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Figure A.2 Relaxation Method Result with ¢ = 0.9.
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APPENDIX B

FILTER PARAMETEI%E%’HWA?POﬁVD MULTICHANNEL

The interactive program, FLTRI1, estimates two sets of filter parameters from a
2-D three-channel image. The corresponding algorithms were presented in Section

II.B.1. In order to run this program, the user must input the required program
parameters in the order listed below

* The number of filter rows, P. Maximum is 4.
: The number of f1 ¢ s i

iter columns, Q. Maximum is 4, ) .

e number of rows, N, in each image channel. Maximum is 128.

* The number of columns.‘%, in each image channel. Maximum is 128.
* The ?um.aer of channels, K, in image.

* The filenames of the image channels.

* The coordinates of the estimation windows of textures.

* Two output filenames for the estimated filter parameters.

The mean vectors of the data in the two estimation windows is first computed by
FLTRI. Then, the program subtracts the mean from the image and determines the

correlation functions. After calculating the correlation matrix, the program determines
the covariance matrix, I , using the equation

[RI[B]=[S]] (B.1)

where B is a dummy matrix that has the same dimension with A matrix, By =1[X%, ]'l

and Sy is all zero except for an identity matrix in its first partition. The covariance
matrix must satisfy the relation

By - &, = 1 (B.2)
Finally, the filter weighting coefficients are estimated using
[A]=[B].[Z] (B.3)
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MULTICHANNEL IMAGE SEGMENTATION PROGRAM

The interactive program, SGMT1, segments a color image with two textures
when given the three-channel image, the image dimension, and two sets of filter
parameters. Again, the user must input the required program parameters to run the
program. These parameters have to be in the order listed below :

* The number of rows, N, m the image channels.
* The number o co lumns, M, in the image channels.
* The number of lter rows, P.
* The number o ter col umns, .
* The number of textures, in the image.
* The number of channels, K, in the image.
. The filenames of the image channels.
ilenames of the hiter parameters.
. The output filename of the ML segmentation.
* The output filename of the MAP segmentation.

This program estimates the errors of two textures using Equation 2.7, then performs
the ML segmentation and the MAP segmentation using Equations 2.25 and 2.33 . The
convergence factor KS, and the size of S | m must be assigned properly by user to
perform the MAP segmentation accurately.
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APPENDIX C
KARHUNEN-LOEVE TRANSFORMATION

The interactive program, KRLV, implements the Karhunen-Loéve transformation
algorithms described in Section III.B. This program requires the user to assign the
program parameters in the order listed below :

* The number of channels, K, in the image.

The number of rows and columns, N, in each channel.
* The tilenames of the ﬁf channels.
* The output filenames of the transformed color channels.

The correlation matrix is first calculated. Then the program calls the IMSL
subroutine EIGRS to calculate the eigenvalues and the eigenvectors of the correlation
matrix. Finally, the transformed color image is obtained by multiplying the transpose
of the eigenvectors matrix by the original color image. The program scales the
transformed color image for display on the COMTAL image prossessing system.

ONE-CHANNEL IMAGE SEGMENTATION PROGRAM

The program, FLTR2, calculates two sets of filter parameters from a 2-D single
channel image. The user must input the required program parameters to run the
program. These parameters except the number of channel, K, are given in Appendix B.

The program, SGMT2, implements a single channel image segmentation. The
required program parameters given in Appendix B have to be assigned to run the
program. Equations 3.11 and 3.12 are used to perform the ML region estimation and
the MAP region estimation.
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APPENDIX D
l:()hlPlTTEJ!l’R&)(;gﬁtggﬁaE}giﬂgqq%}ﬂilCH{AdﬂbiEl.INIAK;E

o 2 v s 7k e e e e e e e s sl e s s ke s vk e s 7k ke e e s e e sk ok i e vk ke e e e e e 7 T A e s sk 3k vk s o e e e e e e e e e e ok e ok ke ok

PROGRAM FLTR1
PURPOSE To develop two sets of filter parameters from a 2-D
three-channel input image. These parameters are the
mean vector, the covariance, and the filter coeffici-
ents of the image.
REQUIRED IMSL ROUTINES
LEQT2F, LUDATN, LUELMN, LUREFN

*
*
*
*
*
*
*
*
*
*
*
*
*
: IMPLEMENTED BY LTJG TIMUR KUPELI Nov 1986
*

*

*
%
*
%
*
*
*
*
*
*
*
*
*
*
*
*

she e e e e e ok ok e e she e T e T vk o e sl e e e s vk s e e e e e vk s e e e e T sk sk ok e sl e e e e ok e e e e e ok e sk ok o sk ke e e ke ok ok e e

k**%  VARIABLE DEFINITIONS  ****

BINPUT = [ Input ] Image data in byte format.

FINPUT = | Input ] image data in real*4 format.

P, g = Rows, Columns of the linear filter.

N, = Rows, Columns of the_ image data.

K = The number of channels in image.

T = The number of filters for'g;ocessing.

IMAGE = Ingut ] Filename of the image channels.
FILTER = | Output | Filename of the filter parameters.
MEAN = Array of mean vectcrs of estimation windows.
R = The correlation matrix.

IMATRX = Identity matrix.

KW = The covariance matrix .

A. = The filter coefficients matrix.

ISIZE = The estimation window size. .

NO, MO = Row, column delay(shift) of correlation.

This program uses 2 by 2 pixels filter. If user wants to use
different size filter, the dimensions of the following
variables must be modified.

SI , WAREA '
e, for'a b¥4g gixels filter, the dimensions must be

R
For exemR%4é'48)’ R ), A(48,3), WKAREA(2448)

INTEGER*4 OW,COL,STARTN(2), S'I'ARTH:%ZR ) .ENDN(2) ,ENDM(2),

Pl [
nué%w,nncoL,aaow,ccon,x Y,K K,PKg,L,J,JJ,JJJ,
HNNO , EMMO , HCOL , HROW, LNNG , LNMO , LCOL | LROW, RN 'RM ' T,
* NO,M0,RRN,RRM, ROW1, COL1,MMO,NNO, IDGT, I

REAL*4 SUM,TEMP,FINPUT(128,128,3),MEAN(2,3),WKAREA(180),
5412,12) 51512 3), IMATRX(3,3),B00(3,3),SUM1, SUMZ, SUM3,
(3.3),A(12,3§1812E
CHARACTER*50 IMAGE(3),FILTER(2)
BYTE  BINPUT(128)
T=2

GET PROGRAM INPUT PARAMETERS.

* *

47

L -‘; & (B By T 4

e B T iR A g R T I o e PR ROTIET et T v

" i ™ gt




C
10
11
C
12
C
13
C
14
C
15
C
C
C
c
17
18
C
C
C
c
181
180
C
16
C
C
C
C
20
C
21
C
22
C
23
C

TYPE 1
rggnar(' ENTER NUMBER OF FILTER ROWS FROM 2-4 DESIRED :',$)
sonnar(zé)

TYPE
FggggT{' ENTER NUMBER OF FILTER COLUMNS FROM 2-4 DESIRED :',$)

4

TYPE 13

FORHATS' ENTER NUMBER OF ROWS IN IMAGE ',$)
READ 11,N
TYPE 14

FORHATS' ENTER NUMBER OF COLUMNS IN IMAGE ',§)
READ 11,M

FORMAT‘ ENTER NUMBER OF CHANNELS [ MAX = 3 ] IN IMAGE ;',$)

GET THE MULTICHANNEL IMAGE
D016 J =1, K

WRITE(*,17) J

FORMAT&I ENTER FILENAME OF IMAGE CHANNEL ' I3,$)
READ ( 18) IMAGE(J)

FORMAT (AS0

CONVERT THE IMAGE FROM BYTE FORMAT TO REAL*4 FORMAT
OPEN(UNIT=1, FILE=IHAGE(J) STATUS='OLD' ,ACCESS = 'DIRECT')

DO 180 ROW =
READ (l'ROW) (BINPUT(COL) CoL=1,M)
COL=1 , M

DO 181
TEMP = BINPUT( OL%HE
IF (TEMP.LT.0.0 N
TEHP = TEMP + 256

END
FINPUT(ROW,COL,J) = TEMP
CONTINUE
CONTINUE
CLOSE (UNIT=1)

CONTINUE

GET 'T' AREAS FOR WHICH FILTERS ARE DESIRED AND QUTPUT FILENAMES
FOR EACH AREA'S FILTER COEFFICIENTS ANV COVARIANCE MATRIX.

DO 19 1,T

wazrz(*ég%%

FORMAT(* R UPPER-LEFT ROW FOR AREA ',I2,':',$)
READ(*,11) STARTN(I)

WRITE(*, z I
FORMAT (" ER UPPER-LEFT COLUMN FOR AREA',I2,':',$)
READ (*, 11) STARTM(I)

WRITE(*,622) I
FORMAT(' ENTER LOWER-RIGHT ROW FOR AREA',I2,':',$)
READ(*,11) ENDN(I)

WRITE(*,23) I

FORMAT(' ENTER LOWER-RIGTH COLUMN FOR AREA',I12,':',$)
READ(*,11) ENDM(I)
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24

27

29
271

291

WRITE(*,24) I
FORMAT(' ENTER OUTPUT FILE-SPEC FOR FILTER',I2,':',8$)
READ(*,18) FILTER(I)

FIND THE MEAN VECTOR OF ESTIMATION WINDOW , T, AREAS OF IMAGE
CHANNELS. THE MEAN VECTOR CONSISTS OF THE MEAN FOUND EACH CHANNEL

ISIZE = (ENDN(I) - STARTIN(I) + 1)*(ENDM(I) - STARTM(I) + 1)

SUM1 = 0.0

SUM2 = 0.0

SUM3 = 0,

DO 25 L
DO

= SUML / ISIZE
= SUM2 / ISIZE
= § / ISIZE
7) (HEANéI,II II=1,K)
" MEAN:',3F9.3, 5]

CORRECT THE IMAGE TO BE ZERO MEAN

DO 271 J =1, K
DO 28 L = STARTN(I%, ENDN(I)
DO 29 LL = STARTM(I) ENDM(I)
N%%NPUT(L,LL,J) = FINPUT(L,LL,J) ~ MEAN(I,J)

WRI S*,
FORMAT

DETERMINE THE 2-D CORRELATION FUNCTION OF THE IMAGE (HANNEL.
ggzpcognzaarron MATRIX APPROPRIATE TO THE INPUT INPUT PARAMETERS

WRITE(*,291) I
FORMAT("

PKQ = P * K * Q
K = * K .
0 30 RNROW = 1,P
X = ?K * (RNROW-I%
DO 3 RNCOL = 1,
NO = RNROW - RNCOL
Y= gK * (RNCOL-1)
DO 32 RMROW = 1,0 :
RN = K * (RMROW - 1) + X
DO 33 RMCOL = 1,0
MO = RMROW - RMCOL
RM =K* (QMCOL -~ 1 ) + Y

LNNO = STARTN(I) + NO
LMMO = STARTM(I) + MO
HNNO = ENDN(I) + NO
HMMO = ENDM(I) + MO

LCOL =MAX0 STARTH(IQ,LMMO)
HCOL =MINO(ENDM(I), 0)
LROW =MAXO(STARTN{I),LNNO)
HROW =MINO(ENDN(I),HNNO)

DO 133 ROW1=1 , 3
RRN = RN + ROW1
DO 233 cCOoLl =1, 3
RRM = RH0+ CoLl

SUH = o.
DO 333 ROW = LROW , HROW

CORRELATION.MATRIX',12,$)
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331
330

37
36

NNO = ROW - NO
IF (NNO .LT. LROW) THEN
RROW = 0 (ROW,NNO)
ELSE IF (NNO .GT. HROW) THEN
RROW = MIN(ROW,NNO)

ELSE
RROW = NNO
END IF
DO 433 COL = LCOL , HCOL
MMO = COL - MO
IF (MMO .LT. LCOL) THEN
CCOL = HAXO% 0,COL)
ELSE IF (MMO .GT. HCOL) THEN
CCOL = MINO(MMO,COL)
ELSE
CCoL = MMO
END IF
SUM = SUM + FINPUT(ROW,COL,ROW1) * FINPUTSAVEW,CCOL,COL1)
CONTINUE
CONTINUE
R(RRN,RRM) = SUM / ISIZE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE

THE FOLLOWING FORMAT MUST BE MODIFIED TO USE DIFFERENT FILTER SIZE

" THEN 2 by 2 PIXELS.

DO 330 L = 1 , PKQ
WRITE *,331; {R(L,3J),J=1,PKQ)
WRITE(*,332

FonnArz' 1'12F6.0)

FORMAT(' '}
CONTINUE

RESET THE IDENTITY MATRIX.

DO36J =1, K
DO 37L=1,

K
IF (J.EQR.L THEN
IMATRX(J,L) = 1.0
ELS
Eg?TRX(J,L) = 0.0

CONTINUE
CONTINUE

C
g RESET SI(J,L) TO HAVE [ I ] IN FIRST PARTITION AND [ O ] IN ALL OTHERS

anoan

39
38

DO 38 J =1, PK

DO 39 L =1,
IF (J.g?.n) THEN
s1(J,L) = 1.0
SI(J,L) = 0.0
IF
CONTINUE .
CONTINUE

SOLVE EQUATION &TR é * [B] = £ I ] . NOTE THAT THE BELOW
CALL TO IMSL ROUTINE LEQT2F, [ B ] RETURNS IN [ SI |
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45

000 0

49

48
47

491

53

nnnn

o]

495

55

19

IDG = 3
CALL LEQT2F (R,K,PKQ,PKQ,SI,IDG,WKAREA,IER)
SOLVE E uuxon BOO 3 tg KW ; = 5 I ] FOR COVARIANCE
MATRIX l AFTER C LLI G IMSL ROUTINE LEQT2F, [ KW ]
RETURNS IN [ IMATRX ]
DO 45 J = 1 x
DO 46 JJ =
BOO(J JJ) SI(J3,33)
CONTINUE
CONTINUE
CALL LEQT2F(B0O,K,K,K,IMATRX,IDG,WKAREA,IER)
SOLVE FOR THE FILTER COEFFICIENTS ¢ [ Al = #A R}{ * [ KW ],
wmcamn-mpaocmr[a] [ 1] *[1
DO 47 J =1 , PKQ
DO 48 JJ =1, K
TEMP = 0.0

DO 4% JJI =1 , K-
NU%EHP TEMP + SI(J,J33) * IMATRX(JJJ,JJ)

ONTI
A(J,JJ) = TEMP

CONTINUE
CONTINUE
WRITE(*,491) ((IHATRX(J JJ),33=1,K),J=1,K)
ORMAT (' <x>(s .2,3X))
cJRITE *,53
RMAT(" LTER COEFFICIENTS :', 12,$)

WRITE(* 491) ((A(J,33),33=1,K),J=1 PKQ)

WRITE OUT MEAN, COVARIANCE MATRIX, AND FILTER COEFFICIENTS TO THE
USER INPUT FILE.

" OPEN (UNIT=2 FILE—FILTER(I) STATUS='NEW' , CARRIAGECONTROL='LIST',
FORM=' FORMATTED ") .

WRITE(2, 495) (MEAN(I, J) J=1,K)
FORMAT(F10.

WRITE(2, 495 IHATRX(J JJZ ,JJ=1, )

WRITE(2,495 A(J,33),33=1,K),J=1,P

CLOSE (UNIT=2)

J=1,K
KQ) )

C8g¥ NU
RHAT( PROGRAM FLTR1 IS OVER',$)
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*

* % % %

PROGRAM SGMT1

*
*
*
PURPOSE To segment a color image with two textures given *
the image, the image dimensions, the filter dimen- *

sions, and the two sets of filter parameters to *

be used. :
REQUIRED IMSL ROUTINES *
LINV3F, LUDATN, LUELMN :

b3

*

*

IMPLEMENTED BY LTJG TIMUR KUPELI Nov 1986

e s g vk v s s s e e e e ol T e T e T e i sk ok vk s vk vk ok e o e e e e e sk e s sk ok vk ok ok e ok e e e e e e e T gl ok e vk ke ok ke ok ok e ok e e ok ok

Kk VARIABLE DEFINITIONS Rekhk

BINPUT = Ingut ].Image data in the byte format.
ML = [ Output’] Thé result of ML segmentation in byte format.
MAP = | Output_] The result of MAP segmentation in byte format.
FNAME = | Input ] Filename of filter_ parameters set.
IMAGE = Filename of the image channel,
P, g = Rows , Columns of filter.
N , = Rows , Columns of image.
K = Number of channel of image.
KW = [ Input ] The covariance matrix. .
MEAN = | Input ] Mean vector of estimation windows.
ERROR = Prediction error estimation
a = [ Input ] Filter coefficients matrix.
TEXTURE = Zero-mean image data’ in real*4 format.
col = Number of removed false points in the first texture.
Cl0 = Number of removed false points in the otnher texture.
IN , IM = Maximum number of rows and columns in the image,
Pl , Ql = Maximum number of rows and columns in the filter.
= Maximum number of filters for processing.
IK = Maximum number of channels in image.

INTEGER IN,N,IM,P1,P,01,Q,TMAX,T,PQ,ROW,COL,I,J,J3,33J,L,LL, KK,
LLL,LLLL,COUNT,LI ,HI,LJ, HJ K, PP,0QQ,IK,1T,111,C01,C10 M

REAL KwW(l1:3,1:3,1:2),MEAN(1:3,1:2), TEMP,SUM1,SUM2,PML11,LN(2),
ERROR(1:128,1:128,1:3,1:2),PML1,PML2,PML(1:128,1:128),
AREA, S.A§1:3,1:3,1:2 1:2,1:2),01,D2 KW1{1:3,1:3),KkW2(3,3),
EKW1(1,1: ,sxwz§1,1=é%,puL22,Doz,rExrun 1:128,1:128,3,3
WKAREA(6),AA(1:128,1:128)

CHARACTER*50 IMAGE(1:3) ,FNAME(1:2) ,MLTEST ,MAPTEST
BYTE BINPUT%l:128,1:128,1:3),HL(I:IZB,l:lZB),HAP(I:IZB,I:IZB)
8,1:128)

MLI(1:1
IN = 128
IM = 128
Pl = 4
gl =4
X = 2
IK =3

GET THE INPUT PARAMETERS OF THE PROGRAM
WRITE

* 2) IN
F%%'%(*‘ B%N'%m THE NUMBER OF ROWS IN IMAGE.LIMIT OF',I3,':',$)
FORMAT(I3)

IF((N.LT.1) .OR. (N.GT.IN)) GOTO 1
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N

20

21
c

0

N 0O 0

23

19

26

27

260
c

28

WRITE(*,5) IM
F%&g&?& %NTER THE NUMBER OF COLUMNS IN IMAGE.LIMIT OF',I3,':',$)
IF((H LT.1) .OR. (M.GT.IM)) GOTO 4

WRITE(*,7) Pl

Fg&g&;&f ENTER THE NUMBER OF ROWS IN FILTER.LIMIT OF',I3,':',$)
IF((P LT 2) .OR. (P.GT.P1l)) GOTO 6

WRITE (*, 9% %

F%égéi NTER THE NUMBER OF COLUMNS IN FILTER.LIMIT OF',I3,':',$)
IF((Q.LT. 2? .OR. (Q.GT.Ql)) GOTO 8

WRITE(*,11) TMA

F%Sﬁﬁ?g‘ ENTER NUHBER OF TEXTURES TO PROCESS.LIMIT OF',I3,':',$)

IF((T. LT)Z) .OR. (T.GT.TMAX)) GO TO 10

WRITE(*,13) IK
FORMAT& ENTER THE NUMBER OF IMAGE CHANNELS.LIMIT OF',' ',I3,$)

AD(*,3) K
IF((K LT.1) .OR. (K.GT.IK)) GO TO 12
GET ALL CHANNELS OF THE IMAGE

DO 19 I = K
WRITE (* 20) 1

FORMAT(' ENTER FILENAME OF THE IMAGE CHANNEL NUMBER',' ',I2,$)
READ(*,21) IMAGE(I)

FORMAT (A50)

OPEN(UNIT#1,FILE=IMAGE(I),STATUS='OLD',ACCESS='DIRECT')

DO 23 ROW =
READ(l'ROW) (BINPUT(ROW,COL,I),COL =1 , M)
CONTINUE

CLOSE( UNIT = 1)
CONTINUE
GET THE FILTER COEFFICIENT,MEAN, AND COVARIANCE MATRICES

DO 25 I
WRITE(* 26) I

FORMAT ('ENTER FILENAME OF FILTER PARAMETERS SET NUMBER',' ',I2,%)
READ(*,21) FNAME(I)

OPEN(UNIT=2,FILE=FNAME(I),STATUS='OLD', FORM='FORMATTED')

DO 260 J = 1

READ(2, 27) MEAN(J I)
FORMAT(F10.4)
CONTINUE

DO 28 J=1,K
READ(2,27) (KW(J,JJ, 1),3J=1,K)
CONTINUE

Do 29 Pp=1 P
DO 30 0Q=1,Q
READ (2 333)R°(v£_(lao!§ COL, PP ),COL=1,K)
I =
FORMAT (F10.4) 90
CONTINUE
CONTINUE
CONTINUE

33
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‘ CLOSE(UNIT=%2 %))

csz FORMAT (3 (F10
| c25 CONTINUE
g GET THE OUTPUT FILENAMES OF THE ML AND MAP SEGMENTATION RESULTS.
Rzans* zzo; MLTEST
3 READ(*,220) MAPTEST
szo FORMAT (A80) _
¢ CONVERT A 2-D BYTE INPUT IMAGE DATA ARRAY IN THE RANGE OF -128 TO
| ¢ 127 THAT REPRESENTS APPROPRIATE INTENSITY LEVELS IN THE RANGE OF
g 0 TO 255 .
DO35J =1, K
DO3GRW=1, N
{ po37coL=1, M
. TEMP = BINPUTSROW ,COL,J)
IF (TEMP.LT
TEMP rzup+255
END IF
TEXTURSROW,COL,J,I? = TEMP - HEANzJ,lg
TEXTUR(ROW,COL.J.2) = TEMP ~- MEAN(J,2
37 CONTINUE
i 36 .CONTINUE
C35 CONTINUE
g CALCULATION OF ERROR ESTIMATE FOR TWO TEXTURES
DO4OI=1,T
po4r L’=1,N .
DO42LL=1,6 M .
. DO 421 KK = 1 , K
ERROR(L,LL,KK,I) = 0.0
Do 43 Ifr =1°,’p
J=1- 111
DO 44 LLL =1 , Q
JJJ = LL - LLL
DO 45 II =1 , K
DO 46 JJ =1 |, K
IFSJ.LE .0) J=i
IF(JJ3J.LE.0) JJJ=1
ERROR(L,LL,KK,I)=ERROR(L,LL,KK,I)+A(II,JJ,III,LLL,I)*TEXTUR(J,JJJ, KK, 1)
46 CONTINUE
45 CONTINUE
44 CONTINUE
43 CONTINUE
421 CONTINUE
42 CONTINUE
41 CONTINUE
C40 CONTINUE
DO 47 JJ=1,K
DO 48 Ll=1,K
KWISJJ,LL; = xw§JJ,LL,1;
KW2(JJ,LL) = KW(JJ LL.2
48 CONTINUE
c47 CONTINUE
Dl = 1.0
g%%% LINV3F§KW1 ,6,1,K,K,D1,D2,WKAREA, IER)
. LN(1) = ALOG(DET1)

Dl = 1.0
CALL LINV3F(KW2,6,1,K,K,D1,DD2,WKAREA, IER)
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DET2 = D1 * 2**pD2
LN(2) = ALOG(DET2)

CALCULATION OF MAXIMUM~LIKELIHOOD IMAGE SEGMENTATION

OPEN(UNIT=3,FILE=MLTEST,STATUS='NEW', ACCESS='DIRECT',
RECL-(IH/Q) MAXREC=IN)

DO 50 ROW =1,N

no 51 COL = 1 M
DO 52 I = 1,k

+ERROR

11

KWw2(1l

PHLII—PHL11+EKW1$1,L;*ERRORiRON ,COL,L,1
PML22=PML22+EKW2(1,L)*ERROR (ROW COL L,2
CONTINUE 0.0

0.0
PML1l + LNgl;
PML22 + LN(2

ML (ROW, COL)=0
PML(ROW,COL) = PML2 - PML1
IF(PML1 .GT. PML2) THEN
ggow ,COL)= -1

END I
MLI(ROW,COL) = ML(ROW,COL)
CONTINUE

WRITE(3'ROW) (ML(ROW,COL),COL=1,M)
CONTINUE .

CLOSE(UNIT=3)
MAXIMUM A POSTERIORI IMAGE SEGMENTATION

OPEN(UNIT=4,FILE=MAPTEST, srarus-'usw' ,ACCESS='DIRECT',
RECL= (IM/4), MAXREC = IN)

KS = 10.0

Co0l =0

Clo =0

DO 600 II =1 ,

E

w

g
+1+100
L) (3

[
EL:

°oZ0o wwwwoo'

-
]
:::r-
HH

IF LI

HI
IFiLJ E g LJ
IF(HI.GP.M) HI
AREA = (HI - LI + 1) * (HI - LJ + 1)

DO 62 ROW = LI , HI
0 63 COL = LJ , HJ

nuronn
R
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63
62

61

60

600
c

71
70

64

SUML = SUM1 - MLI(ROW,COL)
CONTINUE
CONTINUE
SUM] = SUML + MLI(I,J)
MAP(I,J)= 0
SUM2 = PML(I,3) - ((KS/AREA)* 2*SUMl-area+1)
IF sunz.z.rfo_.ogl méts ( )
MLI(I,J) = MAP(I,J)
CONTINUE
CONTINUE
CONTINUE
DO70I=1,N
D071J=1 y
"SFLSQs%’ .EQ. 0) THEN
Lol (MAP(I,3)°NE. ML(I,J)) co1 = co1 + 1
IF(MAP(I,J) .NE. ML(I,J)) C10=C10+1
END IF
CONTINUEWRITE(4'I) (MAP(I,J),3=1,H)
CONTINUE T
CLOSE (UNIT=4)

wnzrsé* 64) €01,C10
FORMAT(' cO01:',IS,6x, ¢C10; ,1I8)
STOP

END
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PROGRAM KRLV

PURPOSE To_implement Karhunen-Loéve transformation from a 2-D
color image which size is 128 by 128 pixels.

* *
* *
* *
* *
* *
* *
* REQUIRED IMSL ROUTINES x
* EIGRS, EQRT2S, EHOBKS, EHOUSS, UERTST, USPKD, UGETIO  *
* *
* *
* *

IMPLEMENTED BY LTJG TIMUR KUPELI Dec 1986
ook de sk e e e sk e e e ek ok e dede e e ek ok ek e e ek ke deeok gk deck dede e dedede e dedede ek ke e dek

INTEGER 1I,J,L,K,N1,N2,NN,ROW,COL,ITEMP,0C(128,128),

* MAXVAL,MINVAL,IDIF, INTVAL,N
REAL R(1:3,1:3),E(1:3,1:3),FINPUT(1:128,1:128,1:3),
* D(3),WK(3),TEMP,Q(1:128,1:128,1:3),SLOPE

CHARACTER*S0 IMAGE(1:3) , FNAME(1:3)
BYTE BINPUT(1:128,1:128),00(1:128,1:128,1:3)

TYPE 100

FORMAT( 'ENTER THE NUMBER OF ROWS, COLUMNS IN THE IMAGE',S)
READ 101,N

FORMAT(13)

TYPE 102 :
FORMAT(' ENTER THE NUMBER OF CHANNELS IN THE IMAGE',S$)
READ 101,K

GET THE FILENAMES OF THE RED,GREEN,AND BLUE COMPONENTS
OF THE COLOR IMAGE.

D0O1I=1,K
WRITE(*,2) i ,

FORMAT(' 'ENTER THE FILENAME OF THE IMAGE CHANNEL NUMBER ',' ',I2,$)
READ( *3; IHAGEéI%
WRITE (%, gIMAG H

WRITE(* 45)

FORMAT (A50)

CONVERT THE IMAGE BTYE FORMAT TO THE REAL NUMBER FORMAT
OPEN(UNIT=1, FILE=IMAGE(I), STATUS='OLD', ACCESS='DIRECT')

DOSROW=1 ,6 N
READ(1'ROW) (BINPUT(ROW,COL),Z0L=1,N)
PpO6COL =1, N

TEMP = BINPUT(ROW,COL)
IF (TEMP.LT.O.O&PTHEN
TEMP = TEMP + 256

END IF
FINPUT(ROW,COL,I) = TEMP
CONTINUE
CONTINUE
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c .
c CLOSE(UNIT = 1)
. 1 CONTINUE
g CALCULATE THE CORRELATION MATRIX
NN =N*N
DO20I =1, K
DO 21 g(; 5)'-Ko
DO 22'N1 =1, N
DO 23 N2 =1, N
R(I,J) = R(I,J) + FINPUT(N1,N2,I)*FINPUT(N1,N2,J)
23 CONTI
22 CONTINUE
R(I,J) = R(I,J) / NN
21 CONTINUE
. 20 CONTINUE
WRITE(*,45
WRITE(*.30
WRITE(* 39
) 39 FORMAT('! e==we= cuescema g ----l)
% 30 FORMAT(' ',5X,' THE CORRELATION MATRIX',$) °
WRITE(*,31) ((R(I,J),J=1,K),I=1,K)
31 FORMAT( <K>(F9.2,4%X))
. WRITE(*,39
c CALCULATE EIGENVALUES AND EIGENVECTORS OF THE
A g CORRELATION MATRIX
i JOBN = 11
. CALL EIGRS(R,K,JOBN,D,E,K, WK, IER)
g SORT THE EIGENVALUES IN DECREASING ORDER
TEMP = Dil
Dil; = D(3
c D{3) = TE
DO 49 I =1, K
TEMP = 221,1;
! E{I,lg = E(I.3
E(I.3) = TEMP
c49 CONTINUE
wnzrsi*,seg
WRITE(* 45
c45 FORMAT(' ')
wn:rai*,41
WRITE(*, 39
4 41 FORMAT(' *,5X,' THE EIGENVALUES ',$)
DO 46 J=1'K
1 WRITE(*,42) D(J)
42 FORMAT (5X,F9.2)
46 CONTINUE
WRITE(*,39
WRITE(* 45
WRITE(*,43
WRITE(*,39
43 FORMAT(' '',5X,' THE EIGENVECTORS', $)
WRITE(*,44) ((E(I,J),Jd=1,K),I=1,K)
44 FORMAT (3(F9.2,4X))
c WRITE(*,39)
¢ USE THE TRANSPOSE OF THE EIGENVECTORS MATRIX TO IMPLEMENT
) 58
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63
62

KARHUNEN-LOEVE TRANSFORMATION.

Nl =1,
DO S2 N2'=1 , N
E(Nl' 2,I) = 0.0
=4 -1
po 53(»371 =N21 ')K Q(N1,N2,I) + E(J,I)*FINPUT(N1,N2,J)
r I = +
com'mus
CONTINUE
CONTINUE

DOG0I=1, K
WRITE(*,61) f

FORMAT (' 3EN'I‘ER FILENAHE OF THE TRANSFORMED IMAGE ',' ',I2,$3)
ik
CONVERT THE TRANSFORMED IMAGE TO BYTE FORMAT ’
DO 62 Nl = 1 , N
DO 63 Nz ~ i N2) = JNINT(Q(NL,NZ,T))
CONTINUE Q(NL. Nz,
_ CONTINUE
SCALE THE TRANSFORMED IMAGE TO BE WITHIN DISPLAY RANGE’
IF (I .EQ. 1) THEN
MAXVAL % )21 1;
MINVAL = OC(1,1
DO ROW = N
DOCOL=1, N
IF (oc(ROW, cox,) .c'r MAXVAL) THEN
r&xv % W,COL
ELSE IF (QC(R CoL) .LT MINVAL) THEN
MINVAL = QC(ROW,CO
END IF
ENDDO
ENDDO
INTVAL = MAXVAL - MINVAL
SLOPE = 255 / REAL(INTVAL)
DO ROW = 1 1 N
DO COL =
IF (Qc(Row Ccor.) .EQL. umvzu. ) THEN
ELSE IF (Q ( OW,COL) .E quvm.) THEN
QC(ROW,cCOL) =
E'.SE
IDIF = gc(now cor.) - MINVAL
END QC(ROW,&0L) =' INT(SLOPE*IDIF)
ENDDO
ENDDO
ELSE
nmvzu. = ?C( 1,1)
DO
CIOFL (c Row COL) .LT. MINVAL) THEN
&?INQI '= Q¢ (ROW, COL)
END IF
ENDDO
ENDDO
DOROW=1, N
DOCOL =1, N
IDIF = QC(ROW,COL) - MINVAL
59
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65
64
c

nNo

)3

6
c

c
60
c

QC(ROW,COL) = INT(SLOPE*IDIF)
ENDDO
ENDDO
END IF
DO 64 N1 = 1 , N
DO 65 N2 =
ITEMP “gC(Nl NZ;
IF (ITE GT 127) THEN
= ITEMP - 256
(N1,N2,1) = 1TEMP
CONTINUE QQ
CONTINUE

OPEN(UNIT=2, FILE=FNAME(I), STATUS='NEW' +ACCESS='DIRECT',
* RECL= (N/4), mgmz N )
3;9132 2'-'»1117 %Qé(l‘lgl N2,1),N2=1,N)
CONTI r r r r

CLOSE (UNIT= 2)
CONTINUE

STOP
END
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PROGRAM FLTR2

PURPOSE To develop two sets of filter parameters from a 2-D single
channel image which size is 128 by 128 pixels. These para-
meters are the mean, the covariance, and the filter
coefficients.

REQUIRED IMSL ROUTINES
LEQT2F, LUDATN, LUELMN, LUREFN

IMPLEMENTED BY LTJG TIMUR KUPELI Sep 1986
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*
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*
*
*
*
*
%*
*
*
*

INTEGER*4 P,ngOW,COL,STARTN(Z),STARTH(Z),ENDN(Z),ENDH(Z),IDGT,
PQ, RNROW, RNCOL , RROW, CCOL , X, ¥
0,HMMO , HCOL | HROW , LNNO , LNMO , LCOL, LROW, RN, RM, IER
REAL*4  SUM,TEMP,FINPUT(128,128) ,MEAN(2),WKAREA(28),
* R(4 41 s:&4,1g,1uarnx<1,1),aoo,
Kw(i,1),A{4.1) 1SIZE
CHARACTER*50 IMAGE,FILTER(2)
BYTE  BINPUT(128)

T=2

* ¥

GET PROGRAM INPUT PARAMETERS.

TYPE 10 .
10 FORHAT{' ENTER NUMBER OF FILTER ROWS FROM 2-4 DESIRED :',$)

READ 11,P
11 FORMAT(I3)
TYPE 12
12 FORMAT(' ENTER NUMBER OF FILTER COLUMNS FROM 2-4 DESIRED :',$)
READ 11,Q :
E

TYPE 13
13 FORMAT(' ENTER NUMBER OF ROWS IN IMAGE ',$)
READ 11,N

TYPE 14
14  FORMAT(' ENTER NUMBER OF COLUMNS IN IMAGE ',$)
READ 11,M

GET FILENAME OF SINGLE CHANNEL IMAGE
TYPE 15
15 FORMAT(' ENTER FILENAME OF IMAGE ',$)
READ 16,IMAGE
16 FORMAT(A50)
CONVERT THE IMAGE BTYE FORMAT TO REAL NUMBER FORMAT
ggz¥;uuxgga,F1%E=Inhcz,srarus='onn',Acczss = 'DIRECT')
READ (1'ROW) (BINPUT(COL),COL=1,M) °
DO 18 COL'=1 , M
TEMP = BINPUT(COL)
IF (TEMP.LT.0.0) THEN
TEMP = TEMP + 256

END IF
FINPUT(ROW,COL) = TEMP
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18 CONTINUE
17  CONTINUE
CLOSE (UNIT=1)

GET 'T' AREAS FOR WHICH FILTERS ARE DESIRED AND OUTPUT FILENAME FOR
EACH AREA'S FILTER COEFFICIENTS AND COVARIANCE MATRIX.

D013 I =
WRITE (*, 20) 1

20 FORMAT(' ENTER UPPER-LEFT ROW FOR AREA ',I2,':',$)
READ(*,11) STARIN(I)

WRITE(*,21) I
21 FORMAT(' ENTER UPPER-LEFT COLUMN FOR AREA',I2,':',$)
READ(*,11) STARTM(I)

WRITE(*,22) I
22 FORHAT(' ENTER LOWER-RIGHT ROW FOR AREA',I2,':',$)
READ(*,11) ENDN(I)

WRITE(*,23) I
23 FORMAT(' ENTER LOWER-RIGTH COLUMN FOR AREA',I2,':' 8)
READ(*,11) ENDM(I)

WRITE(*,24) I
24 FORMAT (' ENTER OUTPUT FILE-SPEC FOR FILTER',I2,':',$)
READ(*,16) FILTER(I)

FIND THE MEAN VECTOR OF ESTIMATION WINDOW AREA OF IMAGE
égézg = éENDN(I) - STARTN(I) + 1)*(ENDM(I) - STARTM(I) + 1)

DO 25 L = STARTN(T) ,ENDN(I)
0 26 J = STARTM I) ENDM(I)
SUM = SUM + FINPUT(L,J)
26 CONTINUE .
25 CONTINUE
MEAN (I) = SUM / ISIZE
WRITE

* 2;% I,HEAN(I;
27  FORMAT AN','(',I2,')',':',F9.2,8)
CORRECT THE IMAGE TO BE ZERO MEAN
DO 28 L = STARTN(IAR ENDN(I
DO = STARTM(1), ENDH( }
' UT(L,J) = FINPUT(L,J) - MEAN(I)
29 CONTINUE
28  CONTINUE »
DETERMINE CORRELATION MATRIX

WRITE * ,291) 1
FORMAT

nnno

ann

anon

anon

291 R CORRELATION.MATRIX',I2,$)
D8 30" RNAoW = 1,P
X = 0 * (RNROW- 1)
Do 31 RNCOL = 1.,P
No_= RNROW' - RNCOL
g (RNCOL-1)
503 RMROW =1,
RN = X + RMRO
D0 33 RMCOL = 1,0
RMROW

MO = -
+ RMCOL

RMCOL
RM =
STARTN{%
3

LNNO + NO

LMMO = STARTM + MO

HNNO ENDNSI NO
ENDM(I MO

HMMO

nHnne

:
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LCOL =MAXO STARTH(I&M§HHO)
HCOL =MINO(ENDM(I

LROW =MAXO0 STARTN(I.)] NNO)
HROW =MINO(ENDN(I)

c
SUM = 0.0
DO 34 ROW = LROW HROW
NNO = - NO
DO 35 COL = LCOL HCOL
MMO = COL - MO
SUM = SUM + FINPUT(ROW,COL)*FINPUT(NNO,MMO)
35 CONTINUE
34 CONTINUE
c R(RN,RM) = SUM / ISIZE
33 CONTINUE
32 CONTINUE
31 CONTINUE
c 30 CONTINUE
g RESET SI(J,1) TO HAVE 1 IN THE FIRST ROW AND O IN ALL OTHERS
DO 41 J = 1,PQ
IF (J. E% 1) THEN
J,1) = o
marax(a 1) =
SI1(J,1) = 0.0
END IF _
c 41 CONTINUE
c THE FORMATS BELOW MUST BE MODIFIED TO USE DIFFERENT FILTER
g SIZE THAN 2 by 2 PIXELS.
IDGT =
DO 36 K
WRITE (* 36 (R(R,J),J=1,PQ)
WRITE(*. .
37 Fonnaré F9 2,8)
38 FORMAT 1,8
Css CONTI
g SOLVE EQUATION [ R ] * [ B ] = [ SI ]
c CALL LEQT2F (R,IDGT,PQ,PQ,SI,3,WKAREA,IER)

%* =
o RBEGE T )

C .
¢ SOLVE EQUATION BOO * KW = I
. BOO = SI(1,1)
c GET THE FILTER COEFFICIENTS USING THE EQUATION
g (A]=[B] * KN
KH(1.1) = MATRX(1 1) / BOO
E(a3 'COVARIANCE'
c WRITE(*,360) Kw(1
DO 43 ROW = 1,PQ
(ALROW, 1) 28 (row,1) * KH(1,1)
o 43 conTIN
¢ WRITE OUT MEAN, COVARIANCE, AND FILTER COEFFICIENTS TO THE
¢ USER INPUT FILE.

OPEN (UNIT=2, FILE=FILTER(I) STATUS='NEW' , CARRIAGECONTROL='LIST',
ORM=' FORMATTED )
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53

54
19

DO 51'J = 1.p

WRITE(

CONTINUE
FORMAT (F10.5)

CLOSE (UNIT=2) -

*,53) 1
. FILTER COEFFICIENTS

WRITE
FORMAT
WRITE

FORMAT
CONTINUE

STOP
END

|

* 54
F10.5)

2?52) A(J,1)

(a(3,1),3=1,pQ)

',12,8)
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*
*
*
*
*

PROGRAM SGMT2

PURPOSE To segment a single image with two textures given the
image, the J.mage dimensions, the filter dimensions,
and two sets of filter parameters to be used.

REQUIRED IMSL ROUTINES
NONE

IMPLEMENTED BY LTJG TIMUR KUPELI Sep 1986
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INTEGER IN,N,IM,P1,P,01, Q,THAX T,PQ,ROW,COL,I,J,J7,3JJ,L,LL,
LLL,LLLL COUNT, I, HI,LJ HJ

REAL 2) ,MEAN(2) ,AA(4,1,2),TEMP,SUM1,SUM2, TEXTUR(128,128,2),
LN( )., ERROR(128,128,2) PML1,PML2,PML(128,128),
AREA,KS A(2,2

CHARACTER*50 IMAGE, FNAME ,MLTEST ,MAPTEST

BYTE BINPUT(128,128) ,ML(128,128) ,MAP(128,128),MLI(128,128)

- GET THE INPUT PARAMETERS OF THE PROGRAM

WRITE(* 2) IN
Fgﬁgﬁﬁ %yrsa THE NUMBER OF ROWS IN IMAGE.LIMIT OF',I3,':',$)

3
IF((N( LT) 1) .OR. (N.GT.IN)) GOTO 1

WRITE (* 5) IM
F%&g& ENTER THE NUMBER OF COLUMNS IN IMAGE.LIMIT OF',I3,':',$) -
IF((H LT 1) OR. (M.GT.IM)) GOTO 4

WRITE(*, 7%
Fg&g&;(' NTER THE NUMBER OF ROWS IN FILTER.LIMIT OF',I3,':',$)
IF((P LT 2) .OR. (P.GT.P1)) GOTO 6

WRITE(*,9)
F%&g$ & E ER THE NUMBER OF COLUMNS IN FILTER.LIMIT OF',I3,':',$)
IF((Q LT. 2? .OR. (Q.GT.Q1)) GOTO 8

WRITE(* 11) TMA
F%% Szma‘m NUHBER OF TEXTURES TO PROCESS.LIMIT OF',I3,':',$)
IF((T.[T.2) .OR. (T.GT.TMAX)) GO TO 10

GET THE SINGLE-CHANNEL IMAGE

PQ = P *
ITE( * g
FORMAT ‘ENTER FILENAME OF IMAGE ' '$)
,21) IMAGE
FORHAT( \50)
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22

ano 0

24

(9]

240
c
242

241
23

220

annn

31
30

ann

42
41

46

OPEN(UNIT=1,FILE=IMAGE, STATUS='OLD',ACCESS='DIRECT')
DO 22 ROW =
AD(I'ROW) (BINPUT(ROW,COL),COL = 1 , M)
CONTINUE
CLOSE( UNIT =1 )
GET THE FILTER COEFFICIENTS,MEANS, AND COVARIANCES

D023 1=1,T
WRITE(* 24) I

FORMAT(' ENTER THE FILENAME OF FILTER PARAMETERS SET NUMBER',I2,':',

READ(*,21) FN.
OPEN(UNIT=2,FILE=FNAME,STATUS='OLD')
READ(Z 240 KW(I
FORHAT( 3 (1)
sz z4o> HEAN(I)
DO 2 %
READ(2, 240) AA KK,1,I)
CONTINUE

CLOSE (UNIT = 2)

WRITE(* 24%2 KW(I),MEAN(I),AA(1,1,1),3A(2,1,I),AA(3,1,I),2A(4,1,1)

FORMAT
ONTI

READE* 220; MLTEST
READ(*,220) MAPTEST
FORMAT (A80)

CONVERT A 2-D BYTE,  INPUT IMAGE DATA IN THE RANGE OF -128 TO 127 THAT

REPRESENTS APPROPRIATE INTENSITY LEVELS IN THE RANGE OF 0 TO 255

DO 30 ROW

31 COL 1, M
TEMP ‘= BINPUT(ROW COL)
IF(TEMP LT.0.0) TEMP = TEMP+256
TEXTURSROW,COL 1; TEMP - MEANSI;
TEXTUR(ROW,COL, 2 TEMP - MEAN(2

CONTINUE
CONTINUE

CALCULATOIN OF ERROR ESTIMATE FOR TWO TEXTURES

J=3 i
CONTINUE
CONTINUE

P
J=1 - LLL
DO 46 LLLL = 1 , g
JJ = LL - LELL
IF((J.GT,0) .AND. (JJ.GT.0)) THEN
ERROR(L,LL,I) 'ER%§3§F ,LL,I)+ A(LLL,LLLL)*TEXTUR(J,JJ,I)

CONTINUE
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45 CONTINUE
44 CONTINUE
43 CONTINUE

40 CONTIN&%) ALOG(KH(I))

CALCULATION OF MAXIMUM LIKELIHOOD IMAGE SEGMENTATION

OPEN(UNIT*3 FILE=MLTEST, STATUS='NEW' ,ACCESS='DIRECT',
* L-(IH/4) MAXREC=IN N)

ann

:

*k
ép_gggggl JPL %*5 {KRweld)s PR

MLI(I,J) = ML(I,J)
51 CONTINUE

WRITE(3'I) (ML(I,J),J=1,M)
50 CONTINUE

(@]

CLOSE (UNIT=3)
MAXIMUM A POSTERIORI IMAGE SEGMENTATION

OPEN(UNIT=4,FILE=MAPTEST, STATUS"NEW' ,ACCESS='DIRECT',
* RECL= (IM/4), MAXREC IN)

KS = 100 ‘

onn 0N

0
(=]
o
(<A
o
H
L
—
-4
=R

+1+100"
2O WWWwwoo™ -

G "

HI.GT.
IF(LJ.EQ.0) LJ
IF(HJ.GT.M) HJ

AREAR = (HI - LI + 1) * (HJ - LJ +1)

DO 62 ROW = LI ,
DO 63 COL = LJ
IF ((ROW.NE.

SUM1

END IF
63 CONTINUE
62 CONTINUE
MAP(I,J)=0

SUM2 = PML(I J) - ((KS/AREA)*(Z*SUMI-AREA+1))
IF(SUM2.LT.0) T

MAP(T,J) = 1
END IF

IF(LI.EQ. LI
HI

R Z e

H
I

I) . (COL.NE.J)) TH

L smi - MLI(ROW, COL)
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c

70

MLI(I,J) = MAP(I,J)

CONTINUE
CONTINUE
CONTINUE

DO701=1,
WRITE
CONTINUE

STOP
END

(%'1) (Map(1,9),9=1,m)
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