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. order additive AR noise model is assumed. This is algebraically equivalent to an infinite
‘” order ARMAX plus white noise model. A finite order ARMAX model approximation to
this model is actually fitted to data. Frequency domain smoothness priors are assumed
on the ARMAX polynomials and smoothness hyperparameters balance the tradeoff
between the infidelity of the model to the data and the infidelity of the model to the
smoothness constraints. The likelihood of the hyperparameters is maximized by a least
squares gradient search computational procedure. The method is illustrated by the
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method are explored in Monte-Carlo simulation studies.
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1. INTROBUCTION

A Bapesiaa, smoothness priors approach is introduced in this paper for transfer function esti-
mation. Jointly stationary input and owtput data is assumed to be observed in the presence of
sdditive colored noise. The methed is particularly relevant when only short spans of dats are
available, when the impulee response is relatively long-tailed and when the low order polynomial
ARMAX type model can not capture the true model structure. The method is illustrated by the
snalysis of the Box-Jenkins Series J data. The statistical performance of the method is explored in

‘Monte-Carlo simulation studies.

The models in Astrom and Bohlin (1965) and Box and Jenkins (1970), are the classical
parametric time domain transfer function models. In that method, ARMAX type models charac-
terised by polynomial operators on the input, the output and the observation noise are fitted to
the observed input and output data. (The observation noise in the Astrom -Bohlin model is MA
noise. It is AR noise in the Box-Jenkins model.) That method requires the specification of
three polynomisl operator orders, one each for the input, output and noise polynomials and the
estimation of the unknown polynomials coefficients via the minimisation of a performance func-
tional. Typically that computation is achieved by a computationally costly nonlinear optimisation

procedure. In such procedures it is only feasible to search for solutions over low polynomial orders.

Despite the fact that conventional transfer estimation methods have been extensively used,
the influence of the sampling variability in the polynomial model order selection on the transfer
function estimation performance remains to be explored. Anmother objection to the use of low
order polynomial ARMAX models is that the "parsimonious” parametric model may not be a good
characterisation of the system that generated the data. An elaboration of this objection to the
conventional parametric modeling method, from a Bayesian point of view, is that the conventional
parametric modeling methods can not yield "correct” models. That is, if there is information in
the data to select, by some best model order selection procedure. an ARMAX p.q,r model, then

there is also information in the data to select alternative ARMAX p’.q".r’ models. There the best
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Bayesion model requires that the transfer functions computed with different model orders be aver-
aged, with respect 1o the likelihood of each fitted model and the prior probabilities of the model
orders. Ahaike (1970a) is perhaps the first exampie of & Bayesian time series modeling with :
wveraging of the computational reselts over models with different model orders. The smoothness
priors method of waneler function estimation introduced here obvistes the $ siringent parameter
model order search problem in conventional transfer estimstion procedures. Our procedure also
wees 3 parameters. One is & | dimensional model order parameter, the other two are smoothness

differential order parameters. We demonstrate that the values of those parameters are not critical

! in decermining the estimated transfor function properties.
The Mayne-Firsoon (1978) three stage least squares (3SLS) procedure was developed to
[. avoid the costliness of the maximisation of the noalinear likelihood for the transfer fumction
modeled wirth additive MA noise.. Almost comtemporaneous alternative linear computational
transfer function estimation procedures were gemeralised least squares (Clarke, 1967) and extended
%. least squares {Panuska, 1968). Durbin (1961}, a 3SLS procedure, was the conceptual predecessor
of the Mayne-Firsoon procedure. Astrom and Mayne (1982) and Hannan et al. (1986) are recur-
] sive procedure realisations of the Mayne-Firsoon SSLS transfer function estimation procedure.
Other receat noteworthy publications on or related to transfer function estimation include Hannan
and Rissanen (1982), a recursive method for finding model orders, and Ljung (1985). a study of the

statistical properties of time and frequency domain transfer function estimation procedures.

Jordinsoa et al. (1970), Newbold (1978), Wegman (1980), Jakeman and Young (1982), and

Kruc et ol. (1982) are examples of the literature on statistical regularisation and Bayesian

A smoothed deconvolution procedures for the estimation of transfer functions. Applications of that
literature include the estimation of the transfer function of the vascular system, applications in
radiology, dispersive relations in streams etc. This activity is not summarized here . Our own

smoothness priors method is & variation on that Bayesian theme. .




in owr method, an Mth order impulse response between input and output plus an Mth order
sutoregressive (AR) model for the additive noise is assumed. with M "quite large". This model is
equivalent to an ARMAX plus white noise model. We assume integrated square seroth and kth
" ovder derivative frequency domais smoothness constraints on the polynomial operators. In the
Jeast squares framewerk, the resultant model strikes a balance between the infidelity of the solution
to the data and the infidelity of the solution to the smoothness constraints. That balance or tra-
deoff is characterised by one parameter for each of four smoothness constraints. In Bayesian ter-
minology, those are referred to as hyperparameters, (Lindley and Smith, 1972). The likelihood of
the hyperparameters that characterisze the class of smoothness priors is maximised to yield the

best transfer function model with the best data dependent priors.

The approach taken in this paper is an application of our frequency domain smoothness pri-
ors AR model spectral estimation method, Kitagawa and Gersch (1985a). Some of our other
time-domain smoothness priors papers on the modeling of nonstationary time series are Bmtheﬁon
and Gersch (1981}, Kitagawa (1981) and Kitagawa and Gersch (1984, 1985b). Additional Bayesian
methods of time series analysis are in TIMSAC-84, Akaike et al. (1985). Gersch and Kitagawa
(1987), is & review of our smoothness priors modeling of time series. The papers by Shiller (1973)
and Akaike (1979b,1980) are predecessors to our own work. In particular, Akaike (1980},
motivated our interest in this subject. Additional related work, that is better known in the
statistics literature, are the methods of regularisation, Tikhonov (1965), and the maximised penal-
ised likelihood method (I.J. Good 1970, and Good and Gaskins 1980), Wahba (1977),(1982),(1988)
and O'Sullivan (1987).

The smoothness priors method of transfer function estimation is treated in Section 2. An
example of the smoothness priors analysis of the Box-Jenkins Series J data is shown in Section 3.

Studies of the statistical performance of the smoothness priors method and comparisons of the SP

and 3SLS methods of transfer estimation are also in Section 3. An interpretation of the results,

summary and discussion in Section 4 conclude the paper.
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3 ANALYSIS o

In Section 2.1, several features of a Bayesian model for linear regression are shown. A
variety of other analyses of the Bayesian model are shown for example in Zellner (1971) and
Broemeling (1985). The presentation here uses assumptions on the priors of the parameter vector
similar to those used earlier in Lindley and Smith (1972) and Akaike (1980). Illustrations of
smoothness priors, a particularisation of the Bayesian linear model analysis, are shown in applica-
tions to the time series analysis problems considered by Whittaker (1923j and Shiller (1978) in
Section 2.2. Our transfer function model is described in Section 2.8. In contrast with the time
domain priors on the model coefficients in the Whittaker and Shiller problems, in Section 2.4 we

show an application of smoothness priors in the frequency domain, in transfer function estimation.

3.1 A BAYESIAN LINEAR REGRESSION MODEL

Consider first, the linear regression model
y=X0+c¢. (2.1.1)

In (2.1.1), y =(yy,--.,¥5), is an nxl vector of observations, @ is a px1 parameter vector, X is an
nxp known design matrix and ¢ is an i.i.d. nx1 random vector with ¢ ~N(0,0%1). Then, the con-

ditional data distribution is
plyl X,6,0) = (m')--/’exp{ ~<Loly - X0)"(y - X0 )} . (2.0.2)

In the stochastic regression problem, # is considered to be a random vector with distribution x(d).

From Bayes theorem, the posterior distribution of the parameter vector # is proportional to the
product of the conditionai data distribution (the likelihood), p(y! X,0.0%), and the prior distribu-

tion, »(8).
(0] y,0) a p(y| X,0.0)x(6) . (2.1.3) .

Let the prior distribution of # be D# ~ N(D#8,A%l). In the application of Bayesian regression



methods to smoothness priors problems, we shall consider the special case of #, = 0 Also, it is con-

venient to introduce the parameterization, A = r/0. In that case, the prior distribution on @ is
| e 2
#(0 r,0) = (2x6%)?/2 PDTD'  exp —;—0'0700 . (2.1.4)

7 is referred to as the hyperparameter of the prior distribution, (Lindley and Smith, 1972). In this
conjugate family Bayesian situation, in which both the priors and conditional data distribution are
normally distributed, the posterior distribution is also normally distributed, (Zellner 1971). The

mean of that distribution is easily computed as the minimizer of

-]

i

If r were known, the computational problem in (2.1.5) could be solved by an ordinary least

squares computation. The solution for # is

b= [xfx + f’DTD] -IXTy (2.1.6)

with the residual sum of squares,
SSE(r)=yTy - 9T[XTX + r’DTD] é. (2.1.7) -

The posterior distribution of 8, x(f| y,r,0) is a proper distribution, therefore the likelihood
for the unknown parameter r can be determined by
o
L(r0) = f_w #(0| y,r,0)do . (2.1.8)
1.J. Good (1985) referred to the maximisation of (2.1.8) as a Type Il maximum likelihood method.

Since (4| y.r.0) is normally distributed, (2.1.8) can be expressed in the closed form, (Akaike 1980),

L(r,0) = (220%)~¥/2 2DTD| '3 XTX + 2DTD| "l/zexp{;—lz-SSE(r)} (2.1.9) 3
o '

The maximum likelihood estimator of o2 is




& = SSE(r)/N . (2.1.10)

It is convenient to work with -2 Jog likelibood. Using (2.1.10) in (2.1.9) yields
(2.1.11)
~2logL(r,8) = Nlog2x + Mog(SSE(r)/N) + log| XX + 2DTD| - log| D7D + N.

This is the basic relation that we use in our smoothness priors least squares analysis. A practical
way to determine the value of 1 for which the -2log-likelihood is minimised, is to compute the
likelihood for discrete values of r* and search the discrete -2log likelihood-hyperparameter space for
the minimum. If chere are more than say 2 hyperparameters, it might be more expeditious to use
a gradient search algorithm to determine the hyperparameters that maximise the likelihood.
Akaike (1980) demonstrated the first practical use of the likelihood of the Bayesian model and the

use of the likelihood of the hyperparameters, as & measure of the goodness of fit of a model to data.

Several other facets of stochastic regression may be of interest. The solution of the ordinary

least squares regression problem in (2.1.1) is
b = (XTX) ' XTy . (2.1.12)
Matrix algebra yields
é=(XTX + ADTD)"N(XTXd s ~ PDTDe,). (2.1.18)

That is, the posterior parameter estimate is a weighted sum of the least squares solution and the
prior mean, §,. Let &, be the true value of the parameter vector 8. Then, direct evaluation of the

mean square parameter vector error, MSE(#) = Var(#) + E(6—0,)T E((§-96,), yields the result

MSE(#)<MSE(0,¢) (2.1.14)
iff

tr(XTX)'2tr(XTX + PDTD)" + 2(0,~0)TDT(XTX ~ £DTD)2D(8,-6,) .

The first term on the RHS of (2.1.14) is not larger than the LHS of (2.1.18). Depending upon how

close 8, is to 0,, the MSE() may or may not be less than MSE(6;5). The Bayesian method

A “c,“l l'.' RIS




minimises expected loss. Therefore the expected value of MSE(#) will be less than or equal 1o the
L4

expected value of MSE(d, ;).

3.3 SOME EXAMPLES OF SMOOTHNESS PRIORS MODELING

Two of the earliest smoothness priors problems are illustrated here. We refer to those as the

Whittaker problem, (Whittaker 1923), and the Shiller problem (Shiller 1973),

The Whittaker Problem: In the problem treated by Whittaker the observations y,,n=1,... N

are giv.en. TLey are assumed to consist of the sum of a "smooth" function and observation noise,

Vo = Ju + €q. (2.2.1)
The problem is to estimate the unknown f,.n=1,..,N. In a time series interpretation of this prob-
lem, fo,n=1,..,N is the trend of a nonstationary mean time series. A typical approach to this
problem is to use a class of parametric models. The quality of the analysis is completely depen-
dent upon the appropriateness of the assumed model class. A flexible model is desirable. In this
context, Whittaker suggested that the solution balance a tradeoff of goodness of fit to the data and
goodness of fit to a smoothness criterion. This idea was realized by determining the f,,n=1,....N
to minimize

IENJ (va — Ju)? + u’£ (*1.)} (2.2.2)

a=] A=l

for some appropriately chosen smoothness tradeoff parameter u?. In (2.2.2) T*/, expresses a kth-
order difference constraint on the solution f, with f, = f, - f._1. Vf2= AT ), ete.
(Whittaker’s original solution was not expressed in a Bayesian context. Whittaker and Robinson,

1924 does invoke a Bayesian interpretation of this problem.)

The properties of the solution to the problem in (2.2.1)-(2.2.2) are clear. If u?*=0, f, = y

and the solution is a replica of the observations. As u? becomes increasingly large. the smoothness

constraint dominates the solution and the solution satisfies a kth order constraint. For large p4?




and k=1, the solution is a constant, for k=2, it is a straight line ecc.. Whittaker left the choice of

22 to the investigator.

From the Bayesian point of view, the difference equation constraints on the parameter vector
problem are stochastic. That is, 7*f, = w,, with w, assumed to be an i.i.d. normally distributed
sero-mean sequence with unknown variance * . For example for k=1 and k=2 those constraints

Iu - !--l + w,; (123)

jq = zfu—l -

I-—z + w,.
Corresponding to the matrix D in (2.1.6), for difference orders k=1 and k=2 respectively, the
smoothness constraints can be expressed in terms of the VxN constraint matrices D, and D,,

r 9 a

a -8 A

-1

-1

1

-1

1

1

-2 1

1

-21

0

1 -21

(2.2.4)

In (2.2.4) @ and 5 are small numbers that are chosen to satisfy initial conditions. (An alternative
to the ad hockery in specifying o and 3 in (2.2.4) is to estimate f, and f, by a maximum likeli-

hood method.)

We use the parameterization u=c,r. Therefore. u® has a noise-to-signal interpretation.
Larger r corresponds to smoother trends. For fixed k and fixed 7 the least squares solution can be
expressed in the form of (2.1.5). The matrix X and the parameter vector 6 in (2.1.3) are replaced

by the identity matrix / and the parameter vector f=(f,....fy). Then for example, with & = 2 and

D = D,, the solution {f,,n = 1,...,V} satisfies




r
i 0

|2 iz (2:25)

From (2.1.6),the solution to (2.2.5), with D=D,, is
f=1+7DID;| "y, (2.2.:6)

and the value of SSE(r} is given by (2.1.8) with 6=f X=1,D=D,. The minimized value of -2log

likelihood for this problem is:

(2.2.7)

—~2logL(#6) = Nlog2x + NIog(—IlVSSE(f")) + log| #DID, + I| - log| PDID,| + N.

The Shiller Problem: The problem treated by Shiller is the estimation of the distributed lag
(impulse response), given the jointly stationary time series observations, {y,,z,; n=1,...,.N}. The

distributed lag model is,

M
Un= L hnZa-m + €4 (2.2.8)

Frequently and also in the case of the data analyzed by Shiller, econometric data is short duration.
As a result, econometricians have been motivated to Bayesian analyses. They assume a prior dis-
tribution on the parameters of the model and thereby increase the eflective data length. The
smoothness priors assumed on the distributed lné coeflicients by Shiller were of the form,
Ph, =w,, with {w, ,m=0,...M }, a zero mean, normally distributed zero mean i.i.d sequence.
Those are the same priors assumed for the Whitaker example. We take hy to be 0 and for simpli-
city consider the initial conditions, zg,...z,_y, as known. Then. the computational problem for the
smoothness priors distributed lag parameters, is as in (2.1.6). In the application of (2.1.6) to the

Shiller problem, the parameter vector #=h, and the Nxm matrix X as given below in (2.2.9) and

the matrix D either D, or D, as in (2.2.4).
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%o e Ben n A,
% RN Y] 7] Ay
X= ) oyl A= | (2.2.9)

Y g hy
2 " 3.8 A TRANSFER FUNCTION MODEL
&
r i , Assume that input/output jointly stationary time series data z,,5, n=1,...,.N is observed.
L
r Assume that the output y, is observed in the presence of additive colored noise, w,. Consider a

representation of the input /output plus noise in the impulse response plus colored noise form,

I ™ i ‘-zu-- + w, (1.31‘)
me]
Wy = i“-"n-- + . (2.3.1b)

For convenience in (2.3.1b), u, is assumed to be a Gaussian sero-mean uncorrelated sequence with
unknown variance 03. In (2.3.1a) b, is an impulse response sequence and w, is assumed to be in

AR model form.

Using the assumed stationarity, (2.3.1a) yields

o ™ Vaj — 5‘-‘&--‘-3 . (23.2)

i=]

Substituting the expression for w,_; into (2.3.1)) yields the model

| E Camln-m + i Xy m + 8, (233)
m=] mel
with
Cm = 8y, m=1,... (2.3.4)

m-1
dp = by ~ ¥ bjan_, m=1,...
1=1

10




~ Equstion (2.3.3) is an ARMAX model with additive white noise u,. The models in
(2.3.12),(2.3.1b) are estimated using {2.3.3) and (2.3.4). The infinite order transfer function model

in (2.3.3) is approximated by finite transfer function model

: M M
= Lttt T duZu-m + Uy, {2.3.5)

with M assumed to be "large". (The choice of M may be determined by the maximization of a
likelihood and Akaike’s AIC.) The coefficients c,,d, m=1,..,.M are directly estimated by the
Bayesian procedure described in the following section. The estimates of the coefficients of the

mode] (2.3.1a) are then obtained by the formulas

ap = ¢y m=1,..M (2.3.6)

g, =0, m=M+1,...

m-1
bo = dn + T 8bp_is m=1,..,M

M
b = Doibaiy m=M+1,M+2,.. .

From (2.3.1a), the frequency response function from the input z, to the output y, can be

obtained from

A(f) = T buexpi-2nifm] (2.87) -

m=]
where i®=—1. The power spectrum of the noise w, is given by

5(f) = 4
[1- ga..expi—zxifmu -2 (2.3.8)
) m=}

where o is the innovations variance of the estimated model (2.3.5).

Identify the quantities C(f) and D(f)

11
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M
Clf) =1 - 3 epezp'--2ximf]. (2..9)

m=1

DUf) = & duesp|~2rifm] .

m=1l

Then, a more convenient form for the frequency response function is

| h(f) = %((% (2.8.10)

M
Y dyezp|—2xifm)|

~ .
[l— T cuexp[—2xifm|

m=]

2.4 A SMOOTHNESS PRIORS TRANSFER FUNCTION MODEL

The Whittaker and Shiller problems, Section 2.2, are examples of smoothness priors model
parameter constraints in the time domain. Akaike (1979b) is very likely the first example of fre-
quency domain ﬁnoothneu priors constraints. In this section, we employ frequency domain
parameter constraints that are similar to those that were successfully used in our smoothness priors
modeling of AR models for spectral estimation, Kitagawa and Gersch (1985a). (Gersch and Kita-

gawa 1984 was an earlier frequency domain priors version of the SP transfer function method.)

Let R, and @, respectively, measures of the roughness of the C(f) and D(f) polynomials,

be characterised by the integrated square kth derivative of those operators,

1/2 1 V2
Ry - f—n/:l Ld‘;_&[lpdl’ Q= f_,/,] i;D}',(,ﬂ'| df . (2.4.1)

Then using the definition of C(f),D(f), equation (2.3.9), direct evaluation of {2.4.1) yields

R, = (2")2‘5 mtcl, Q= (27)* 5 md] (2.4.2)

m=1 m=]

From the definitions in (2.4.1), large values of R, and Q,, respectively mean an unsmooth, in the

sense of kth differential, frequency domain measure of the ¢(.) and d(.) polynomials. We also

13




introduce the zero—th derivative smoothness constraints

Ry= [ lCUNM =1+ 8 ek (2.43)

/3 . Mo

Q= [, DU = T X
Let the differential orders for the aumerator and denominator polynomials to be k,, and &, respec-
tively. With these "frequency domain" priors we then have the constrained least squares problem

which for fixed values of k;,k; and 77, j=1,...,4 determines the {c,,,d,,, m=1,...,M} that minimises

(2.4.4)
N M M M M

E[Vu - 2 Caln-m — 2 dn:u-u]’ + E [rlzc:l + fgm“'c:] + E lfgd:- + ’.‘:m”zd:]

n=] m=] m=] mal m=l

In (2.4.4) r,’ j=1,....4 are the tradeoff parameters. By a proper choice of the tradeoff parameters,
our estimate of the model parameters, {¢,,d,,, m=1,....M}, balance a tradeoff between infidelity of

the transfer function solution to the data and infidelity to the smoothness constraints.

2.5 THE SMOOTHNESS PRIORS LEAST SQUARES PROBLEM, DETERMINING

THE TRADEOFF PARAMETERS

As indicated in Section 2.1, the constrained least squares problem has a Bayesian interpreta-
tion which facilitates the determination of the tradeoff parameters in the criterion. We apply that

approach to the particular smoothness prior transfer function problem at hand.

In detail, the minimisation of (2.4.4) is equivalent to the maximization of

(2.5.1)

1 N M M . 2 -1 M TS
exp{;‘&lv. - Lctatan- T d..t.-...]’}exp oo o+ ddm ')C-’»}ew{; (h+nm ’)43-}-

nal m=] m=] m=] m=1

In that form, the constrained least squares solution has a Bayesian interpretation as the maximum

a posteriori estimate of the model with the data distribution ¢

13




-1 N M M
plyl X,0.0) = (2"’)‘””exp{-2;; El{v. - Y Cabn-m ~ Eld..z._.l’} (2.5.2)

and the prior distribution

x(0| r.0) = (2x¢%)"¥| DT D) '/=up12—‘02‘-o’D'Do] (2.5.9)

where r denotes the vector of hyperparameters r,,...r,, and @ denotes the model parameters,

ConrOmym=1,... M. In (2.5.3)

(24 {

(342 N

1

(r+2Mg)2 ,
D= . 0=1 .1, (2.5.4)

Cn

(R+M U3y dy

From (2.5.3) and (2.5.3) it follows that

p(yl X,0,0)x(0 1,0) = (2.5.5)

(2x0%)-(N+34/3 DT | "’expl-;l(‘—l) T(XTX + DTD)-\(d - o)]exﬂ?;-‘;ss(r)],

where
Yo % s N-M 1M /]
N n v VoM TN ¥2
X= ) ) ’ T e= | (2.5.6)
‘rn-x IN-y - - - UN-M hv-ud ™
and
é=(XTX + DTD)' X7z, (2.5.7)

SS(r} = 2Tz - #T(XTX + DTD)é .

In (2.5.6), the initial condition data {z,,y;, § = -M,-M+1,....0} are assumed known. Integrating
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{3.5.5) with respect to the parameter vector yields the likelihood of the hyperparameters,
Lira) = (250%)"™¥ DTD| | XTX « DTD ~Vlexpi =23l (2.5.8)
Then
logL(r,0) = <3¥log2xo* + Liog| D*D| ZLlog| XTX + DTD| - L_s55(r), (2.5.9)
2 2 2 202 o
with the maximum likelihood estimate of o? given by
1
s 1 .
8 = 5550 (2.5.10)

Substituting the estimated value of o? from (2.5.10) into (2.5.9) yields

N

logL(r,0) = ;2’ilogzm= + %logl D™D - %logl x'x+0'p - &,

(2.5.11)

which is to be maximized to obtain the maximum likelihood estimates of r? j=1,....4. The likeli-
hood for the hyperparameters is maximised via & Davidon-Fletcher-Powell gradient search algo-
rithm. That algorithm is exterior to a Householder transformation least squares solution of the

constrained least squares problem.

We use the AIC statistic, (Akaike 1973),

AlIC = -2logL(r,0) + 2(number of perameters estimated) (2.5.12)

=N(log2xo® + 1)-log) DTD| + log| XTX + DTD| + 2(number of parameters estimated),

to determine the order M for the transfer function. Akaike (1980) referred to (2.5.12) as the likeli-
hood of the Bayesian model. The analysis indicated here is referred to as a "quasi-Bayesian "
analaysis. A more thorough Bayesian solution of the transfer function estimation problem, would
require that priors be specified on the model order M. A completely orthodox Bayesian analysis

would require priors on the model order and parameters of the stochastic input to the system.
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3. ANALYSIS OF BOX-JENKINS SERIES J DATA AND MONTE CARLO
RESULTS

In this section the results of the transfer function analysis of the Box-Jenkins Series J gas fur-
race data by the smoothness priors and Box-Jenkins methods are described and compared. Some
properties of the smoothness priors method of analysis are shown. Also, we show the results of
Monte Carlo studies of the statistical performance of the smoothness priors, (SP), method and the
SSLS asymptotically maximum likelihood method of Mayne and Firzoon ,(1978), based on models

derived from the BJ series J data.

The input output BJ series J data are shown in Figure 1. The variances of the input and
output data are 1.14727 and 10.25357 respectively. For illustrative purposes, the data shown in
Figure 1 was normalised to have sero mean and the same variance. (Inverting the output data
and superimposing it over the input data rrvesl. the output to be a delayed-low pass filtered ver-

sion of the input.) The generic Box-Jenkins transfer function model is

o =GPt " TG, t bl‘n-l—l + 4 bq‘n-.—l + w, (3'1)

W, =W, + " tew, ,+u,

In (3.1) {24,009, n=1,...,N} are respectively the observed input and output and the unobserved
added noise. Also in (3.1), {w,, n=1,..,N} is a normal 2-ro mean i.i.d. random variable with
variance 02. The dimensional parameters of the BJ model are d=2, p=2, ¢=3, r=2. The pub-
lished vectors of BJ model coefficients are: a=(0.57,0.01);6=(0.58,—0.37,-0.51);¢=(1.53,-0.68),
ol = 0.05058, (Box-Jenkins, Section 11.4). For the AIC optimal, k,=4,ky=2, SP model, the
dimensional parameters are p=g=r=4. The d=0 model is the AIC best shift parameter model. (in
this data example, the higher order SP model automatically accounts for the delay between input
and output data, without requiring an additional non-sero d parameter.) The SP a.b polynomial

coefficients are a=(1.58824.-0.70509,—0.13198,0.14861), b=(0.17090,-0.43813,-0.17497,0.08608).

The vector of smoothness priors tradeoff parameters was r=(0.00886,0.10305,0.71914.0.10686).
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Table 1 shows the values of the AIC for the differential orders k,,k,=1,....4 for the order M=4

model.

INSERT FIGURE 1 HERE: BOX-JENKINS SERIES J DATA

Table 1. AIC's d=0, M=4, SP Model, Parametric in k1 and k2.

k2 | ki=1 kl=2 k1=3 kl=4 ki=5
? 1 46.886 45.697 45.663 46.345 47.375
f 2 46.436 46.186 45.316 45.995 46.630
3 46.273 45.081 45.120 45.794 46.436
: 4 46.672 45.013 45.096 45.769 46.414
{ 5 46.410 45.072 45.072 45.721 46.388

In Figure 2, the original Box-Jenkins Series J outpui data, and the SP model tracked output
data are shown superimposed. A vertical scale displaced version of the difference between the ori-
ginal and tracked data is also shown in Figure 2. The tracked output data is computed by passing
the input through the estimated model. The appearance of the N=294 tracked data version of the
BJ modeled data, incorporating the d=2 parameter, appears very similar to that of the SP

modeled data and is not shown here.

In the sense of minimum mean square tracking error, the performance of the AIC optimum
SP and BJ) models were similar. The variances of the tracking error for the BJ and SP models (the
sums of squares of the residuals, SSE), were 0.70187 and 0.68662 respectively. The ratio of the
relative variance of the tracking error to the variance of the true output was 0.06798 and 0.06698

for the BJ and SP model respectively.

INSERT FIGURE 2 HERE: TRACKED DATA
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The impulse response, transfer function amplitude response, phase response and power spec-

tral densities (pads) of the residuals associated with the BJ and SP models are shown in Figure 3.

(Compare the transfer function and residual spectrum of a windowed periodogram analysis of the
B-J data, Jenkins and Watts, p446.) The residual psds were computed from Householder
transformation- Akaike AIC criterion AR models. The coefficients of the corresponding AIC best
AR, models of the BJ and SP residuals were {1.53458,—0.55879,~0.21378,0.16280} and
{1.58829,—0.65524,-0.17195,0.17461} respectively with corresponding innovations variances
0.05995 and 0.05755. In Figure 3, the SP and BJ modeled psds of the residuals are almost identi-
cal. The AR-AIC model of the residual of the SP modeled BJ Series J data shown in Figure 3 is

quite similar in appearance to that obtained automatically by the SP modeling procedure and

computed directly by equation (2.3.8).

Also in Figure 3, after the first 3 time points, when the impulse response for the BJ model is
sero, the impulse responses of the BJ model and SP model appear similar. The SP model impulse
response is smoother than the Bl impulse response. The initial non zero going part of the SP

impulse response is a consequence of the fact that the optimal SP model delay parameter d is zero.

The BJ modeled transfer function and phase function versus frequency each have some rela-

tively abrupt kinks in their responses as compared to those for the SP modeled results.

INSERT FIGURE 3 HERE: IMPULSE RESPONSE, TRANSFER FCN & PHASE &

NOISE PSD’s SP & BJ MODELS

Some comments on the stationarity of the Box-Jenkins Series J data are in order here. In
Figure 2, the true BJ output data and the SP modeled data appear more discrepant in the latter
part than the earlier part of the time series. Also in Figure 2, there are relatively large excursions .
in the latter part of the residual time series. That evidence suggests that the Series J data is nons-
tationary. To examine that conjecture, we examined the residuals of the AR modeled tracked

data. fitted SP models to the first 200 data points and to the first 75 data points of the Series J
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data and examined the tracking behavior of those models. The properties of the BJ series J data

do appear to change slightly after n=225.

The impulse response, noise spectrum, transfer function and phase function for the
ky=1.k3=1 SP models for n=200 and n=75 data are shown superimposed in Figure 4A and 4B
respectively. As expected from Figure 2, the properties of the SP modeled n=296 and n=200 series
J data are quite similar. The properties of the SP modeled n=296 and n=75 data are also quite
similar. The conjecture that the SP modeling method might be reasonable for relatively short
length data spans is supported by the evidence shown in Figure 4. The apparent property of the
SP procedure to yield reliable parameter estimates with relatively short data length time series is a
consequence of the assumption of priors on the model parameters. The priors are equivalent to the

observation of additional data.

For completeness, the a,b polynomial coefficients corresponding to SP M=4.k,=1,ks=1
modeled data are respectively: {1.13620,—0.15871,—0.29041,0.13128},
{1.08946,-0.24032,-0.55796,0.11972} for the n=200 data and
{1.25647,-0.20495.-0.35709.0.16760}, {1.18340,—0.54000,—0.36671,0.28644} for the n=75 data.
The respective residual variances of the SP modeled M=4, n=200 and n=75 data point models
were 0.09900 and 0.04629 respectively. The corresponding relative tracking variance ratios were

0.01078 and 0.00620.

INSERT FIGURE 4 HERE: IMPULSE RESPONSE etc n=200 and n=75 Models

The effects of the choice of model order. M, and the differential orders k;,k; on the impulse
response, the noise spectrum and the transfer function amplitude and phase of the SP mode! are

also of interest.

First, to illustrate the effect of model order M on transfer function model properties, graphs
of impulse response, amplitude and phase response are shown superimposed in Figure 5A,B,C for

the optimal SP M=4 model and the likelihood best SP models of orders M=10.20 and M=30. The
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graphical results for the higher order SP models wiggle only slightly around those for the order
M=4 model. Those results indicate that, on the provision that the model order is sufficiently
large, the specification of the order of the SP model does not very critically influence the transfer
function characteristics. For completeness, some of the computed results for those models are:
M=10: ky=1,k3=4,AIC=47.789; M=20: k,=2,k,=4,AIC=50.224; M=30: k,=2,k,=4,A1C=56.886.
The similarity in the appearance of the mode] properties for the different model orders is compati-

ble with the similarity in the values of the AIC for the different models.

The values of the M=10 optimal SP model, a and b polynomial coefficients are:

a = {1.56980,—0.70201,—0.02424.0.06248.0.01102,—0.00000,—0.00152,—0.(X)046,0.00004,0.0010),

b = {0.15110,—0.38420,—-0.17713,—0.00672.0.03029,0.08646,0.04176.0.00577,—0.01716,—0.00717}.

The pattern of a,b polynomial coefficients is similar for the larger order SP models. The tapering
toward zero values effect of the smoothness priors constraints on the model parameters, particu-
larly on the higher order a polynomial parameters and the relatively long tail b model parameters
helps explain the similarity of the M=4,10,20 and M=30 model properties. The b model parame-
ters in the numerator of the rational polynomial description of the model do not have as dramatic
an effect as do the a polynomial denominator polynomial parameters on the model properties.
The long tail b polynomial parameters and the short tail a polynomial parameters are well approx-

imated by the SP M = 4 model.

For the purposes of comparison, we also fitted ordinary least squares, (OLS), models of ord-
ers M=5,10 and M=20 to the BJ series J data. Graphical results of the impulse response, transfer
function and phase function for those models are shown in Figures 5D,E.F. The M=5 LS model
properties are very similar to the optimal SP model properties. (The relative variance of the track-
ing error was 0.06708. The OLS M=5 model is actually a superior model of the BJ series J data
than the original BJ model.) The computed properties of the OLS M=10 and M=20 models wig-
gle a lot more around the SP M=4 model than the SP M=30 model. This is very clear evidence

that the SP model properties are relatively insensitive to model order in comparison with other,
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conventional transfer function modeling methods.

INSERT FIGURE 5 HERE: EFFECT OF MODEL: ORDER M

huﬁwmmmammwm&,.hul.mderfnctiolproperu
ties, graphs of these propertiss are shown for SP &,=1.k,=1 and £,~9.k,=9 models of order M = 4
in Figure 6. Wﬂp&*m.“mudphmmdthchigberorder
smoothases constraint diffewentia) models are smecther thea those for the lower differential order
model. This bebavior could be anticipeted becanse the priors are froquency domain roughness con-

INSERT FIGURE ¢ HERE EFPFECT OF DIFFERENTIAL ORDERS &, .k,

We note that she farmals for tho AN 10 (3 5 12) can not be applied (o determine the best of
shernative modehs with diffwrens .’ el ordors M la the notation of (2.5.6), the "initial condi-
tien” values of (5,.0,.¢=1-M3-M ©) vere cssumed known Ia modeling dats with as SP model
of order M. we contomarily sabe (35,.9,.0-1. M) & miml conditions and mode) the data on the
remaining V- M dats poante The hbelibood » ectually computed for the last V- Af observations,
(Saser- D) o thet cane. medobs of different A ardors are modeled on different data aad it is not
appropriate (o wee the AIC to distmguish betweoen models. A formula that permits the AIC's of
models of different orders 10 be compared is.

Alc-ﬁm-w + 3 mumber of parameters estimated). (32)

The formula in (3.2) is reasonable under the sssumption that the data is stationary, i.e. the pro-

perties of the first M vales of the data do not change very much with different values of M.
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Monte Carlo Results

Monte Carlo simulation studies were performed to explore the statistical performance of the
SP method of transfer function estimation. Some comparisons of the SP and Mayne and Firzoon
(1978) SSLS procedure were also done. We chose to compare the SP with the 3SLS procedure
because the latter procedure has asymptotic MLE properties and is easy to program. The principal
topics of interest are the bias and MSE parameter estimation properties and transfer function
confidence interval properties of the SP and the 38SLS procedures. We show computational results
of simulation studies of the SP and 3SLS models with additive AR and additive MA observation

noises.

Consider the transfer function model

Un = @1 ¥Yn-1 ot Y t blzn—-l + ot qun—q + v, (33)

r
with v, an added noise process. The MA, noise model is: v, = ¥ ¢p4,.,, where {u,} is a zero
m=0

r
mean i.i.d. process. The AR, noise model is v, = Y ¢, v,_, - u, . where again {u,} is a zero
m=1

mean i.i.d. process. The AR observation noise model is the Box-Jenkins model. The MA observa-
tion noise model was used in Astrom and Bohlin (1965). Since then it has been used extensively in

engineering applications.

The 3SLS procedure was developed as an alternative to the comptationally extensive max-
imum likelihood method for the MA observation noise model. For convenience, the 3SLS pro-
cedure is as follows:

Let a,b.c denote the AR, MA and added MA noise polynomials respectively in equation (3.3).
i)Using least squares (LS), fit a "long" a.b polynomial model, to the {z,,y,. n=1,....N} input-
output data and compute the residual time series.

i1) Fix the orders of the a.b and ¢ polynomials to their final model orders and use the original

input-output data and the residuals from stage i) to estimate the a.b and ¢ polynomial coefficients




by LS.

iii) Prewhiten the input and output data using the inverse of the ¢ polynomial determined in stage

ii) and estimate the fixed order a,b polynomials coefficients by LS.

We fit the 3SLS model to the original Box-Jenkins Series J data in order to verify the
relevance of that procedure for a comparison of results AR observation noise Monte Carlo study.
An first stage 3SLS a,b polynomial model order p,g=8 was determined by trial and error. A simi-
lar procedure for determining the stage one model order was used in Hannan et al. (1986). The
SSLS M=4 model parameters were: a=(1.58607,—0.67426,~0.17672,0.16647),
6=(0.19765,—0.44775,—0.24883,0.17300).  The appearance of the superimposed SP
M=4, k;=1,k,=1 and 3SLS modeled impulse response, transfer function and phase response were
visually indistinguishable. On the basis of this evidence, it was thought reasonable to examine the
performance of the 3SLS transfer function model with AR observation noise that was similar to

the observation noise in the BJ series J data.

The model that we used to synthesize data for the Monte Carlo simulations is a variation of
the model of the BJ series J data. The input data for the simulation was the Box-Jenkins Series J
input data. For the first set of trials, the added noise was a stochastic version of an AR, model of
the residual noise from the SP fit to the Box-Jenkins series J data. The a,b coefficients of the
noiseless simulation model were a=(1.66283,-0.64256,—0.30648,0.22377)
b=(-0.83218,-0.47872,—-0.24869,0.12831). The AR, model coefficients were
¢ =(1.69069,—0.69023,-0.28565,0.022507), 0°=0.284. The (biased) SP model parameters fitted to
a noiseless version of that data were a=(1.73481,-0.21383,-0.92282,0.40184),
b=(-0.03550,-0.05907,0.04443,0.05015). The vector of hyperparameters was
r = (0.000062,0.000004,0.000027,0.000008). Such small values should not be surprising because to

within roundoff errors, the noiseless data is exactly an AR, M4, model.

Results of the statistical properties of 25 replications from the SP and 3SLS models for

n=298, AR,, data points are shown in Table 2. The output data is regressed partially upon itself
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so the 3SLS procedure as well as the SP procedure, will yield biased coeflicient estimates. (The
magnitude of the biases is model dependent.) The bias of the SP modeled parameters is defined
as the difference between the mean SP parameters and the sero added noise 3SLS model parame-
ters. The standard deviation and bias errors are comparable for both the the SP and 3SLS pro-
cedures. {The standard deviation of the SP modeled estimated b polynomial parameters are actu-

ally somewhat smaller than those for the 3SLS procedure.)

Table 2 AIC’s, SP & 3SLS M=4 Models
SPM=4¢ SSLSM =4

parsm mean std. dev. bias mean std. dev. bias

arl -1.6436 0.0541 -0.0820 -1.0641 0.0554 -0.0815
ar2 -0.7746 0.1093 -0.5833 -0.8395 0.1052 -0.6488
ar$ <0.1577 0.1082 -0.7838 -0.0911 0.1054 0.8502
ar4 0.2040 0.0524 -0.2029 0.1775 0.0538 -0.2294
mal -0.0404 0.0217 -0.0050 -0.0596 0.0484 0.0243
ma2 -0.0284 0.0146 0.0310 -0.0181 0.0893 0.0414
ma3 -0.0161 0.0126 0.0281 -0.0078 0.0861 0.0519
ma4 -0.0192 0.0106 -0.0200 -0.0511 0.0494 -0.1019

Figure 7 is an illustration of the mean and plus and minus on sigma of results estimated
from the Monte Carlo trials. The illustrations correspond to the simulation results reported in
Table 2. From Figure 7 it appears that the overall mean square error in transfer function estimate
is slightly smaller for the SP than for the SSLS method. The similarity of the SP and SSLS simu-
lation resuits is compatible with the similarity of performance of those models on the BJ series J

data.

INSERT FIGURE 7 HERE SP AND 3SLS TRANSFER FCN MEAN AND STD. DEVS.

The order 4a,b polynomial 3SLS model tends to be overparameterised. In order to verify
that the SSLS statistical results shown in Table 2 were representative, an ARMAX 2,2,2 model
was also simulated and modeled by the 3SLS and SP M =4 model procedures. As before, the input

was the Box-Jenkins series J input data. The additive stochastically modeled noise was an AR,
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version of the residual of the SP modeled series J data. The simulation model parameters were

a=(1.46778,-0.55192),b=(—0.03586.-0.06788),c = (1.58778,-0.72461), 03=0.078. The statistical
) results of 25 replications of fitting the SP and 3SLS models to the trial data are shown in Table 3.
Here, the bias of the SP modeled parameters is defined as the difference between the mean and sero
added noise SP model parameters. The standard deviation and bias of the SP M=4 model param-
eters are comparable to those in Table 2. The standard deviation and bias of the M=2 3SLS

model parameters are similar to those observed in Table 2 for the M=4 model.

Table 3. AIC SP M=4, & 3SLS M=2 Models
SPM=4« SSLSM =2
param mean std. dev. bias mean std. dev. bias
arl 1.5846 0.0568 -0.1502 -1.1562 0.0386 -0.1633
ar2 -0.7048 0.1072 -0.4910 -0.0095 0.0356 -0.1171
ar3 -0.0328 0.0984 0.8905 . - -
ard 0.0486 0.0415 -0.3532 - - -
mal -0.0443 0.0222 -0.0088 -0.009% 0.0406 0.0264
ma2 -0.0362 0.0383 0.0229 -0.0918 0.0436 -0.0231
ma3 -0.0001 0.0243 -0.0451 - . -
ma4 -0.0299 0.0236 0.0600 - - -

We recall that the added noise for the Table 2 data was AR, and that for Table 3 was AR,.
The consistency of the tabulated results for the SP model in Tables 2 and 3 suggest that the SP

model is reasonably robust with respect to noise color and noise model order.

Finally, we show results of simulation studies with added MA observation noise. The pri-
mary objects of interests in these computational experiments were a comparison of the SP and
SSLS modeling performance and the sensitivity of the SP transfer function modeling method to
choices of model order M. the differential orders k, k,, the observation noise level and the sensi-

tivity to data length.

. The model for these simulations was a slight variation of the model for the AR observation
noise simulations. The superimposed impulse response, transfer function and phase function of the
3SLS and SP M=4,M=5 and M=10 on the noise free data were visually indistinguishable. In the

firss stage of the 3SLS method a model order of 20 was used. The stochastic input signal was an
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AR, version of the input of the series J data. The SSLS M=4 noise free data a,b polynomials

were: @ = {1.72560,-0.19127,--0.94126,0.40697}, b = {-0.03550,-0.05940,0.04412,0.05070}.

The observation noise was an MA; model, (inadvertently MA,, instead of MA,). The noise
model parameters were ¢ = {1.0,0.6,0.3,0.1}. This mode] has a fairly flat psd spectrum. A sample

run of the MA; noise yielded an AR,; AIC- AR model of that noise.

Monte Carlo trials with n=296 and n=78 were done. Superimposed output and output plus
noise and a displaced version of the noise are shown in Figure 8 for typical sample trials of data
lengths n =296 and n=78. Figure 8 illustrates the noise level of the experiments and how dramati-

cally short the n=78 data span is.

Differential orders &, and k; best SP M=5M=10 and M=20 transfer function models were
fitted to a sample trial of the n=296 data with the following results:
M=8, k=1, k=1, AIC=-1567.545, M=10, k,=4, k=1, AIC=-1609.348, M=20, k,=4, k,=3,
AIC=-1557.410. The similarity of the AJC values suggest that these models will have similar

properties.

The computed results of the MA; noise simulation runs for the 3SLS M=4,
SP M=10, ky,=1,k;=4 and SP M=20, k;=2,k,=4, SP M=20, k,=1,k,=3, SP M=20, k,=3,k,=5 and
an SP M=20, k,=2,k;=4 model of data with observation noise variance 9 times that of the previ-
ous three simulation trials are shown in Figure 9A.B,C,D,E.F. Tabulated values of the mean and
standard deviation of the parameter estimates for the 3SLS and SP M=10, M=20 k,=2,k,=4
simulation trials are shown in Table 4. The 3SLS and SP M=10 results transfer function and
phase function results are reasonable similar. The relative jaggedness of the impulse response for
the 3SLS model indicates that a lower order 3SLS model might be more suitable for this data.
The SP M=20, k,,k;=4 model results appear very similar to the results for the M=10 models. The
results of the Monte Carlo runs, with SP models M=20,k,=1,k,=8 and M=20,k,=8 k,=5, {Figures
9D,E), are very similar to those shown for the M=20,k,=2,k,=4, (Figure 9C), results. Those illus-

trations show the relative insenstivity of SP modeling to variations in the differential orders &, k..
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As expected, the results in Figure 9F for the SP M=20 model the 9 times variance trials show
more dispersion than the results for the Figure 9C trials. The graphical results in Figure9 are com-

patible with the performance of the 3SLS and SP models of the Box-Jenkins series J data.

Table 4. AIC, 3SLS M=4 & SP M=10,20,20 Models
3SLS M=4 SP M=10 SP M=20 SP M=20, VAR x 9
param mean s.d. mean s.d. mean s.d. mean sd.
arl 0.7217 0.0469 0.6420 0.0356 0.6100 0.0472 0.5836 0.0815
ar2 0.0001 0.0588 -0.0109 0.0329 -0.0154 0.0321 -0.0459 0.0532
ars 0.0490 0.0630 -0.0013 0.0111 -0.0000 0.0019 -0.0036 0.0068
ard -0.0041 0.0397 0.0031 0.0135 0.0002 0.0001 -0.0001 0.0005
ar5 - - 0.0016 0.0075 0.0001 0.0001 0.0001 0.0002
mal -0.0387 0.0235 -0.0363 0.0210 -0.0437 0.0248 -0.0547 0.0463
ma2 -0.1115 0.0498 -0.0958 0.0366 -0.0906 0.0366 -0.0907 0.0621
ma3 0.0060 0.0557 -0.0798 0.0318 -0.0884 0.0308 -0.0875 0.1091
mad -0.1526 0.03833 -0.0719 0.0277 -0.0674 0.0252 -0.0879 0.0608
mab - - -0.0467 0.0243 -0.0628 0.0253 -0.0704 0.0539

In Table 4 only the results for the first 5 a,b polynomial coefficients are shown. That is
sufficient to understand the results of the Monte Carlo trials. The standard deviations for the
3SLS and M=10 SP trials are comparable. Those results are also comparable to those shown in
Table 2 for the AR noise trials. The a polynomial coefficients for the SP trials tend to taper
quickly and correspondingly, the standard deviations for those coefficients tend to be smaller than
the standard deviations for the larger valued coefficients. The values of the b polynomial
coefficients do not taper and correspondingly neither do the standard deviations of those coefficient

estimates.

The final Monte Carlo trials are for the shorter length n=78 data. An exploratory computa-
tion on a single trial of an N=78 data SP M=10 model, (that yields an N=68 data points for
actual modeling), indicated that the k;=2,k,=1 model was optimum for that data. No experiment
was performed for the SP M=5 model. Graphical results for 25 SP M=5k,=1,k,=1 and SP
M=10,k;=1,k;=1 models MA noise Monte Carlo trials are shown in Figure 10. Numerical results

corresponding to those shown in Figure 10 are in Table 5. (Only results for the first 6 polynomial
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coeflicients are shown.) The standard devistions for the n=78 data coefficients are in general
larger than those for the n =206 data coefficients. The SP M=10 n=78 data parameter mean
values and standard deviations indicate the same kind of tapering effects as was observed for the
n=296 data. The graphical results for the SP transfer function modeled n=296 and n=78 data
look very similar. This is additional evidence to support the conjecture that Bayesian smoothness

priors transfer function modeling can yield reliable transfer function estimation with relatively

short duration data.

Table 5. AIC, 3SLS M=4 & SP M=10,20,20 Models
SPM=4 SPM=10

param mean std. dev. mean std. dev.
arl 0.7217 0.0848 0.6623 0.0816
ar?2 0.0196 0.0850 0.0587 0.0671
ar3 0.0382 0.0678 0.0186 0.0605
ard -0.0030 0.0331 0.0164 0.0318
ars -0.0151 0.0297 0.0153 0.0222
ar8 - - 0.0062 0.0220
mal -0.0448 0.0248 -0.0416 0.0551
ma2 -0.0772 0.0344 -0.0971 0.07538
mas -0.0735 0.0335 -0.0683 0.0426
mad -0.0521 0.0322 -0.0616 0.0352
mab -0.0512 0.0342 -0.0330 0.0382
maé - - -0.0125 0.0162
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4. INTERPRETATION OF RESULTS, SUMMARY AND DISCUSSION

A smoothness priors approach to the problem of transfer function estimation was demon-
strated. The smoothness priors are stochastic constraints on the parameters of the linear model.
The Bayesian smoothness priors procedure is one possible way of utilising the information in the
likelihood function. The critical computation in the Bayesian smoothness priors approach is the
likelihood of the Bayesian model. The likelihood is used as an objective measure of the goodness of
a model and the hyperparameters which maximise the likelihood are determined by a gradient

search method.

Some of the consequences of the smoothness priors approach to transfer function estimation
are:
1) The complex multiple model orders selection procedures of other transfer function estimation
methods are obviated by the smoothness priors method. Instead, the specification of the values of
model order, M, and the differential orders, k,,k;, appear not to be very critical in determining the
impulse response, transfer function and phase properties of the model.
2) Least squares and conventional maximum likelihood are abandoned as a criterion for modeling
data. Instead, constrained least squares criterion or equivalently penalized likelihood methods are
used in the smoothness prior method.
8) The smoothness priors model will in general not be as parsimonious, in the number of model
parameters, as the conventional least squares or maximum likelihood transfer function estimation
methods.
4) Smoothness priors modeling will tend to be more robust with respect to the specification of the
observation noise color than the conventional methods.
5) Smoothness priors modeling will tend to yield reliable parameter estimates with shorter length

data than conventional methods.

The relatively large model order non-parsimoniousness property of the Bayesian smoothness

priors model can be justified. In any alternative Bayesian transfer function modeling, the Bayesian
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model would be an average of the transfer function computed by models of the different a,b,c poly-
‘lolni;l model orders weighted by the likelihood and the priors on model orders. The Bayesian
transfer function model would have contributions from the largest a,b,c polynomial model orders
eoundered As a result, the overall Bayesian model orders would be the identical to the orders of
that largest orders model. Thus, the Bayesian procedure will have a,b,c polynomial model orders
larger than the model selected say by the minimum AIC procedure. By the specification of a large
model order and smoothness priors constraints on the model parameters, the smoothness priors
method achieves the effect of the alternative Bayesian methods of averaging the computational

results of different order models.

The use of frequency domain priors is a relatively new idea. The class of frequency domain
priors that we used lack a definite physical interpretation. They seem reasonable because they
penalise the higher order polynomial coefficients with increasing weights. As expected, the SP
model properties are increasingly smooth with increasing kth derivative constraints. Also, the
overall optimum solution is not necessarily the smoothest solution. An important property of our
frequency domain priors is that they permit the problem of transfer function estimation to be cast

within the framework of the linear model.

The Monte Carlo results suggest that the smoothness priors method of transfer function esti-

mation achieves comparable statistical performance with the asymptotically efficient procedures.

In summary. the smoothness priors method of transfer function estimation appears to yield
statistical performance results that are comparable and perhaps superior to other well known
methods while enjoying a more forgiving parameter computational search procedure than the

search procedures of other methods. In general, the results shown attest to the flexibility of the

Bayesian modeling approach.
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LEGENDS
FIGURE 1. Box-Jenkins Series J Gas Furnace Data

Figure 2. Original and Modeled Data Superimposed and Difference Data Smoothness Priors

Model, n=296

FIGURE 3. Impulse Response, Amplitude and Phase Response and Residual PSD versus Fre-

quency, Superimposed Box-Jenkins and Smoothness Priors Model Results, (Dotted Lines).

FIGURE 4. Superimposed Smoothness Priors Impulse Response, Amplitude Response, Phase
Response and Noise Spectrum for

A: n=298 and n=200 data points, (dotted lines). B: n=296 and n=75 data points, (dotted lines).

FIGURE 5. Superimposed Impulse Response, Amplitude Response, Phase Response and Noise
Spectrum:

A: SP M=4 and M=10 models. B: SP M=4 and M=20 models.

C: SP M=4 and M=30 models. D: SP M=4 and LS M=5 models.

E: SP M=4 and LS M=10 models. F: SP M=4 and LS M=20 models.

FIGURE 6. Superimposed Smoothness Priors Impulse Response, Amplitude Response, Phase

Response and Noise Spectrum for SP M=4 k,=1,k;=1 and k,=9,k,=9 {dotted lines) models.

FIGURE 7. Mean and Plus and Minus One Standard Deviation Impulse Response, Amplitude
Response, Phase Response, AR Observation Noise:

A: Smoothness Priors Model. B: 3SLS Model.

FIGURE 8. Input, Output and Ouput Plus Noise:
A: N=296, Input, Noise, Superimposed output and output plus noise, Superimposed output and
output plus larger variance noise, (in descending order).

B: N=78, Superimposed output and output plus noise. Noise.




FIGURE 9. Mean and Plus and Minus One Standard Deviation Impulse Response. Amplitude

Response and Phase Response. MA Observation Noise. N' = 296:

A: 3SLS M=4 Model. B: SP M=10, k;=2 k;=4 Model. )
C: SP M=20. k;=1,k;=3 Model. D: SP M=20, k,=3,k,=5 Model.

E: SP M=20, k;=2,k;=4 Model. F: SP M=20, k,=2,k;=4 Model, Variance x 9.

FIGURE 10. Mean and Plus and Minus One Standard Deviation Impulse Response, Amplitude
Response and Phase Response, MA Observation Noise, N = 78:

A: SP M=5 k,=2,k;=1 Model. B: SP M=10, k;=2,k,=1 Model.
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