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ILI TRANSFER FUNCTION ESTIMATION*

Will Gersch
Department of Information and Computer Sciences

- .University of Hawaii
Honolulu. HI 96822

and

Genshiro Kitagawa
The Institute of Statistical Mathematics

4-6-7 Minami-Azabu, Minato-Ku
Tokyo 106, Japan

ABSTRACT: A smoothness priors approach to transfer function estimation from sta-

tionary time series is shown. An infinite order impulse response model plus an infinite

order additive AR noise model is assumed. This is algebraically equivalent to an infinite

order ARMAX plus white noise model. A finite order ARMAX model approximation to

this model is actually fitted to data. Frequency domain smoothness priors are assumed

on the ARMAX polynomials and smoothness hyperparameters balance the tradeoff

between the infidelity of the model to the data and the infidelity of the model to the

smoothness constraints. The likelihood of the hyperparameters is maximized by a least

squares gradient search computational procedure. The method is illustrated by the

analysis of the Box-Jenkins series J data. Some of the statistical properties of the

method are explored in Monte-Carlo simulation studies.

KEYWORDS: Bayesian model, smoothness priors. time series analysis, transfer func-

* * tion estimation.

• This work was completed while the first author was a National Research Council

Senior Associate at the Naval Postgraduate School. Monterey California.
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-' i, °, . 3. DlrQDU 'ZIN

* A..im.iea, smoothnes prors approach is intoduced in this paper for trafr fruction sti-

imatiom. Jointly stionery input ead tpst d"a is assumed to be observed in the premce o

additive colored noise. The me*tod is peticuarly rlevant when only short opans of data are

available, wham the impl. ewaonse i relatively leng-taild and when the low order polynomial

ARMAX type model can not capture the true model structure. The method is illustrated by the

analysis of the Box-Jenkins Series J data. The statistical pedormance of the method is explored in

Monte-Carlo simulation studies.

The models in Astrom and Bohlin (1965) and Box and Jenkins (1970), are the classical

parametric time domain transfer function models. In that method, ARMAX type models charac-

terised by polynomial operators on the input, the output and the observation noise are fitted to

the observed input and output data. (The observation noise in the Astrom .Bohlin model is MA

noise. It is AR noise in the Box-Jenkins model.) That method requires the specification of

three polynomial operator orders, one each for the input, output and noise polynomials and the

estimation of the unknown polynomials coefficients via the minimisation of a performance func-

tional. Typically that computation is achieved by a computationally costly nonlinear optimisation

procedure. In such procedures it is only feasible to search for solutions over low polynomial orders.

Despite the fact that conventional transfer estimation methods have been extensively used,

the influence of the sampling variability in the polynomial model order selection on the transfer

function estimation performance remains to be explored. Another objection to the use of low

order polynomial ARMAX models is that the "parsimonious" parametric model may not be a good

charatterisation of the system thLt generated the data. An elaboration of this objection to the

conventional parametric modeling method, from a Bayesian point of view, is that the conventional .

parametric modeling methods can not yield "correct" models. That is, if there is information in

the data to select, by some best model order selection procedure. an ARMAX pq,r model, then

there is also information in the data to select alternative ARMAX p'.q'.r' models. There the best ,des
o 'o

' to sott 'wo 1 i



Sa1il1 mO l 101110101 tha the trIanfr fuseSi... romputed with diferent model oodes be aver-

qpCd with sespet be she Use~sed of each Sted model and &be prior probabilities of the model

ardens. Abae (W~ft) is perhap the bet example of a flkyssin time swim. modeling with

eversuig df She computatisnal ressulls over andeIn with dilereuiet model orders. The smooths.

prier. method of semer function stmatin mutoduced here obvisas, the 3 strngent parameter

model order search problem is conventional transfer stimation procedures. Our procedure also

uesS parameters. One is a I dimensional model order parameter, the other two ame smoothness

diferetia order paramets.M We demonstrate that the values of those Parameters ame not critical

in determining the estimated traser function properties.

The MayweFirsoon (1978) three stage least squares (SSLS) procedure was developed to

avoid the costliness of the maximisation of the nonlinear likelihood for the transfer function

modeled wirth additive MA mose. Almost contemporaneous alternative linear computational

transfer function estimation procedus were generalised least squares (Clarke, 1987) and extended

least squares (Panaska, 1968). Durbin (1961), a 2SLS procedure, was the conceptual predecessor

or the Mayne-Firzoon procedure. Astrom and Mayne (1962) and Hannan et al. (198) are recur-

sive procedure realisations of the Mayne-Firsoon SSLS transfer function estimation procedure.

Other recent noteworthy publications on or related to transfer function estimation include Hannan

and Riesavien (1982), a recursive method for finding model orders, and Ljung (1985). a study of the

statistical properties of time and frequency domain transfer function estimation procedures.

Jordinson et al. (1970), Newbold (1973), Wegman (1980), Jakeman and Young (1962), ad

Kruc et al. (1982) are examples of the literature on statistical regularization and Bayesian

smoothed deconvolution procedures for the estimation of transfer functions. Applications of that

literature include the estimation of the transfer function of the vascular system, applications in

radiology, dispersive relations in streams etc. This activity is not summarised here . Our own

smoothness priors method is a variation on that Bayesian theme.
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In ow meed, am Mt order impulse response between input and output plus an Mth order

.utIeopessfrv (AR) model for the additive noise is asumed. with M "quite large". This model is

* equivalem to w ARMAX phis white noise model. We ssume integrated square seroth and kth

eder derivative frequency domea smoothnm constraints on the polynomial operators. In the
'S

Iust squares fr-aaewek, she reuhlat model strikes a balance between the inidelity of the solution

to the data ad the inidelity of the solution to the smoothness constraints. That balance or tra-

deolf is characterized by one pramneter for each of four smoothness constraints. In Bayesian ter-

mimology, those are referred to a hyperparameters, (Lindley and Smith, 1972). The likelihood of

the hyperparameters that characterise the claw of smoothness priors is maximised to yield the

best transfer function model with the best data dependent priors.

The approach taken in this paper is an application of our frequency domain smoothness pri-

or. AR model spectral estimation method, Kitagawa and Gersch (1985a). Some of our other

time-domain smoothness priors papers on the modeling of nonstationary time series are Brotherton

and Gersch (1981), Kitagawa (1981) and Kitagawa and Gerich (1984, 198b). Additional Bayesian

methods of time series analysis are in TIMSAC-84, Akaike et a. (1985). Gersch and Kitagawa

(1987), is a review of our smoothness priors modeling of time series. The papers by Shiller (1973)

and Akaike (1979b,1980) are predecessors to our own work. In particular, Akaike (1980),

motivated our interest in this subject. Additional related work, that is better known in the

statistics literature, are the methods of regularisation, Tikhonov (1965), and the maximised penal-

ised likelihood method (I.J. Good 1970, and Good and Gaskins 1980), Wahba (1977),(1982),(1983)

and O'Sullivan (1987).

The smoothness priors method of transfer function estimation is treated in Section 2. An

example of the smoothness priors analysis of the Box-Jenkins Series J data is shown in Section 3.

Studies of the statistical performance of the smoothness priors method and comparisons of the SP

and $SLS methods of transfer estimation are also in Section 3. An interpretation of the results,

summary and discussion in Section 4 conclude the paper.
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2 ANALYSIS

In Section 2.1, several features of a Bayesian model for linear regression are shown. A

variety of other analyses of the Bayesian model are shown for example in Zellner (1971) and

Broemeling (1985). The presentation here uses assumptions on the priors of the parameter vector

similar to those used earlier in Lindley and Smith (1972) and Akaike (1980). Illustrations of

smoothness priors, a particularisation of the Bayesian linear model analysis, are shown in applica.

tions to the time series analysis problems considered by Whittaker (1923) and Shiller (1973) in

Section 2.2. Our transfer function model is described in Section 2.3. In contrast with the time

domain priors on the model coefficients in the Whittaker and Shifer problems, in Section 2.4 we

show an application of smoothness priors in the frequency domain, in transfer function estimation.

2.1 A BAYESIAN LINEAR REGRESSION MODEL

Consider first, the linear regression model

N - X + £. (2.1.1)

In (2.1.1), v =(V,,..,VpN), is an nxl vector of observations, 0 is a pxl parameter vector, X is an

nxp known design matrix and t is an i.i.d. nxl random vector with e -N(O,ov1). Then, the con-

ditional data distribution is

A(vI X'Oi0u) = (2rv2)-/exp(~~( - f xi91 - Xi )J (2.1.2)

In the stochastic regression problem, 0 is considered to be a random vector with distribution w(O).

From Bayes theorem, the posterior distribution of the parameter vector 0 is proportional to the

product of the conditional data distribution (the likelihood), p(yi X,O.u'), and the prior distribu-

tion, r(e).

X(i ',V) a P(I X,i,0)*(*) (2.1.3)

Let the prior distribution of 0 be DO - N(DOoA2I). In the application of Bayesian regression

4



Metbods to smoothness; priors problems, we shall confider the special cawe of D0, - 0 Also, it is con-

venient to introduce the paramneterization, A - r/a. In that case, the prior distribution on 9 is

ir(OI ra) -(2se)'/ 
2 D WD exp~ -- O9 . (2.1.4)

r is referred to as the hyperparameter of the prior distribution, (Lindley and Smith, 1972). In this

conjugate family Bayesian situation, in which both the priors and conditional data distribution are

normally distributed, the posterior distribution is also normally distributed, (Zellner 1971). The

mean of that distribution is easily computed as the minimizer of

If r were known, the computational problem in (2.1.5) could be solved by an ordinary least

squares computation. The solution for I is

0- [T + r2DTD -X?' (2.1.6)
with the residual sum of squares,

SSE(r)-y'V - O X + r2DTD]i. (2.1.7)

The posterior distribution of 0, r(Ol y,rau) is a proper distribution, therefore the likelihood

for the unknown parameter r can be determined by

L(ra) f-0 rf l sj ,rvo)df .(21)

1.J. Good (1965) referred to the maximization of (2.1.8) as a Type If maximum likelihood method.

Since '(O1 y,rau) is normally distributed, (2.1.8) can be expressed in the closed form, (Akaike 1980),

L(r,a) = (21ra2)-A/2J 1'DrDI 1/21 XTX + I2TD -12ex -:-SEr (2.1.9)

The maximum likelihood estimator of 02 is

5



= 558r)/N.(2.1.10)

It is conveniet to work with -2 log likelihood. Using (2. 1. 10) in (2.1.91 yields

-2LegL(v,#) _ NU02s, + JWV(SSE(r)/N) + log) XrX + i2DT DI - logi '3 D'D- + N.

This is the basic relation that we use in our smoothss prior. least squares analysis. A practical

way to determinie the value of r2 for which the -2log-Miklihood is minimised, is to compute the

likelihood for discrete values of 0~ and search the discrete -2log likelihood-hyperparameter space for

the minimum. Kf there are more than say 2 hyperparameters, it might be more expeditious to use

a gradient search algorithm to determine the hyperparaineters that maximize the likelihood.

Akake (1980) demonstrated the firt practical use of the likelihood of the Bayesian model and the

use of the likelihood of the hyperparameters, as a measure of the goodness of fit of a model to data.

Several other facets of stochastic regression may be of interest. The solution of the ordinary

least squares regression problem in (2.1.1) is

'LS = (XTx)-IXTvY (2.1.12)

Matrix algebra yields

*-(XTX + i2D T D)-'(XrXLS ODD,. (2.1.13)

That is, the posterior parameter estimate is a weighted sum of the least squares solution and the

prior mean, 00. Let 0, be the true value of the parameter vector 9. Then, direct evaluation of the

mean square parameter vector error, MSE(D) - Var(J) + E(i-D,) TE((§.9,), yields the result

MSE(O)<(MSE(#Lu) (2.1.14)

iff

tr(XT X)-'>tr(X T X + Y2DTD)-' + Y,-p )rDr(XTX - r2D T D) 2D(O,-O0 )

The first term on the 1111 of (2.1.14) is not larger than the LHS of (2.1.13). Depending upon how

close 00 is to 0,, the MSE(1) may or may not be less than MSE(OLS). The Bayesian method

6



miimises expected lom. Therefore the expected value of MSE(i) will be less than or equal to the

expected value of MISE(DLS).

2.2 SOME EXAMPLES OF SMOOTHNESS PRIORS MODELING

Two of the earliest smoothness priors problems are illustrated here. We refer to those as the

Whittaker problem, (Whittaker 1923), sad the Shiller problem (Shiller 1973),

The Whlttaker Problem: In the problem treated by Whittaken the observations 1 ,,n'l .... N

are given. They are assumed to consist of the sum of a "smooth" function and observation noise,

IV. I. + C. (2.2.1)

The problem is to estimate the unknown f.,n= 1,...,N. In a time series interpretation of this prob-

lem, f.,.=1,...,N is the trend of a nonstationary mean time series. A typical approach to this

problem is to use a class of parametric models. The quality of the analysis is completely depen-

dent upon the appropriateness of the assumed model class. A flexible model is desirable. In this

context, Whittaker suggested that the solution balance a tradeoff of goodness of fit to the data and

goodness of fit to a smoothness criterion. This idea was realized by determining the f/,n=1.. N

to minimize

N N

lE (y. - I.)3 + ,2E (71f.)2] (2.2.2)

for some appropriately chosen smoothness tradeoff parameter #2. In (2.2.2) 77f% expresses a kth-

order difference constraint on the solution f, with Vi,, = f. - f..-. .f = -( 7f.), etc.

(Whittaker's original solution was not expressed in a Bayesian context. Whittaker and Robinson,

1924 does invoke a Bayesian interpretation of this problem.)

The properties of the solution to the problem in (2.2.1)-(2.2.2) are clear. If #2=0, ,, =Y

and the solution is a replica of the observations. As u2 becomes increasingly large. the smoothness

constraint dominates the solution and the solution satisfies a kth order constraint. For large p2

S7%



and k-1, the solution is a constant, for k-2, it is a straight line etc.. Whittaker left the choice of

p1 to the inveutigator.

From the Bayesian point of view, the difference equation constraints on the parameter vector

problem are stochastic. That is, -,'6f, w., with w. assumed to be an i.i.d. normally distributed

sero-mean sequence with unknown variance r2 . For example for k-1 and k=2 those constraints

are:

S + W; (2.2.3)

f. - 2f.-I - I,-: w,.-

Corresponding to the matrix D in (2.1.6), for difference orders k-l and k=2 respectively, the

smoothnem constraints can be expressed in terms of the NxN constraint matrices D, and D2,

a -B a

-11 1-2 1
1 -2 1 0-I 1 D r -

DIM I . . . (2.2.4)

0
1 -2 1

-11

In (2.2.4) a and $ are small numbers that are chosen to satisfy initial conditions. (An alternative

to the ad hockery in specifying a and 0 in (2.2.4) is to estimate f0 and f, by a maximum likeli-

hood method.)

We use the parameterisation jffa, r. Therefore. p2 has a noise-to-signal interpretation.

Larger r corresponds to smoother trends. For fixed k and fixed r2 the least squares solution can be

expressed in the form of (2.1.5). The matrix X and the parameter vector 0 in (2.1.5) are replaced

by the identity matrix I and the parameter vector f -(I,....fN). Then for example, with k = 2 and

D - D 2, the solution {ff,n - I., satisfies



(1 (rDJ I  •(2.2.5)

From (2.1.6),the solution to (2.2.5), with D=D 2, is

I=[I + v2D~'2 [, (2.2.6)

and the value of SSE(r) is given by (2.1.8) with 6=f,X=I,D=D2 . The minimized value of -2log

likelihood for this problem is:

(2.2.7)

-21ogL(f,6) = Nlog21 + NIog(- SSE(f)) - Iogl ?2DD 2 + Il - 1og fOD2D 2I + N.

The Shiller Problem: The problem treated by Shiller is the estimation of the distributed lag

(impulse response), given the jointly stationary time series observations, {fy,z.; n=1,...,N}. The

distributed lag model is,

M

Urn = ,_, + ,,, (2.2.8)

Frequently and also in the case of the data analyzed by Shiller, econometric data is short duration.

As a result, econometricians have been motivated to Bayesian analyses. They assume a prior dis-

tribution on the parameters of the model and thereby increase the effective data length. The

smoothness priors assumed on the distributed lag coefficients by Shiller were of the form,

Vkh,, =w., with {w. ,m-O,...,M ), a zero mean, normally distributed zero mean i.i.d sequence.

Those are the same priors assumed for the Whitaker example. We take ho to be 0 and for simpli-

city consider the initial conditions, z,...ZxM, as known. Then. the computational problem for the

smoothness priors distributed lag parameters, is as in (2.1.6). In the application of (2.1.6) to the

Shiller problem, the parameter vector O=h, and the Nxm matrix X as given below in (2.2.9) and

the matrix D either D, or D2 as in (2.2.4).

9
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so ZM-M4.. ZI- . . . ZI_ P2~ [h2

2.3 A TKANSWUR FUNCTION MODEL

Assume that input/output jointly stationary time series data z,,&. a-I,...,N is observed.

Assume that the output W. is observed in the presence of additive colored noise, m.. Consider a

representation of the input/output plus noise in the impulse response plus colored noise form,

w,,- g.x._. + W. (2.s.ln)
aml

We So rn-,_r - .. (2.3.lb)
-=. I

For convenience in (2.3.1b), a. is assumed to be a Gaussian zero-mean uncorrelated sequence with

unknown variance a!. In (2.3.1a) b. is an impulse response sequence and m is assumed to be in

AR model form.

Using the assumed stationarity, (2.3.1a) yields

eo

a- " - -~--•2.3.2)

Substituting the expression for i.,_. into (2.3.1b) yields the model

.2S OS

. + d.._. + (2.3.3)
rn-I rnl

with

am, rn-I,... (2.3.4)

d. - ba,_., M-I...
I-1

10



59"imlo. (2.3.3) is an ARMAX model with additive white noise u,. The models in

(2.3.l),i2.3.lb) ame estimated using (2.3.3) and (2.3.4). The infinite order transfer function model

S ° in (2.3.3) is approximated by inite transfer function model

v.-E efti 3 -. + E dnza- + o,, (2.3.5)

with M asumed to be "large". (The choice of M may be determined by the maximization of a

likelihood and Akaike's AIC.) The coefficients c,,d m=l,...,M are directly estimated by the

Bayesian procedure described in the following section. The estimates of the coefficients of the

model (2.3.1a) are then obtained by the formulas

a. = eo, m=1,...,M (2.3.6)

a. = 0, m=M+1,...

M-I
b. = d. + E, aib._,, m=I,...,M

i-I

M
b.= aib._,, m=M+I,M+2,...

0~1

From (2.3.1a), the frequency response function from the input z. to the output y, can be

obtained from

hiW) - E bexpI-2riM (2.3.7)
M-I

where 0s-1. The power spectrum of the noise w. is given by

I - E a.expi-2ifm, -2 
(2.3.8)

M-i

where u= is the innovations variance of the estimated model (2.3.5).

Identify the quantities C(f) and D(f)

11



C(f) -I - E reMZP'--21rimfJ. (2.3-9)

D(f) E d ezp[- 2 rifmJ.

Then, a more convenient form for the frequency response function is

h~f) =(2.3.10)
C(f)

M
* E d.,expj-2wjm)j

rnot

W- E c,,expj-2rifinj

2.4 A SMOOTHNESS PRIORS TRANSFER FUNCTION MODEL

The Whittaker and Shiller problems, Section 2.2, are examples of smoothness priors model

parameter constraints in the time domain. Akaike (1979b) is very likely the first example of fre-

quency domain smoothness priors constraints. In this section, we employ frequency domain

parameter constraints that are similar to those that were successfully used in our smoothness priors

modeling of AR models for spectral estimation, Kitagawa and Gerach (1985a). (Gersch and Kita-

gawa 1984 was an earlier frequency domain priors version of the SP transfer function method.)

Let R1, and Qk respectively, measures of the roughness of the C(f) and D(f) polynomials,

be characterised by the integrated square kth derivative of those operators,

Rk f'/ dkC(f) f f &. 112 1 (2.4.1)2 d
1/2 df~ k 1 Q& -'1/2 df (.41

Then using the definition of C(f),D(f), equation (2.3.9), direct evaluation of (2.4.1) yields

R& = (2r)3* E M21c,., , -j (2r)2A E m 2
, (2.4.2)

From the definitions in (2.4.1), large values of Rj and Q&, respectively mean an unsmooth, in the

sense of ktk differential, frequency domain measure of the c(.) and d(.) polynomials. We also

12



inradvep the zero-ti. derivative smoothness constraints

-o f 1 I C(f)I ldf I + * (2.4.3)

,I D(fl ldf = E d.

F Let the differential orders for the numerator and denominator polynomials to be kj, and k3 respec-

tively. With these "frequency domain" prior. we then have the constrained least squares problem

which for fixed values of kl,k2 and q, j-1,...,4 determines the {c,,d,, m=1l,...,M) that minimizes

(2.4.4)

N U U 2A M
- 2 rnrn- d4z..j +- E [rl'c. + 4m bc. + I [4d + r42M 21,.

'II rn+ rn- rn-I rn-

In (2.4.4) rj' j=1,..4 are the tradeoff parameters. By a proper choice of the tradeoff parameters,

our estimate of the model parameters, {e.,d.,t~1.M, balance a tradeoff between infidelity of

the transfer function solution to the data and infidelity to the smoothness constraints.

2.5 THE SMOOTHNESS PRIORS LEAST SQUARES PROBLEM, DETERMINING

THE TRADEOFF PARAMETERS

As indicated in Section 2.1, the constrained least squares problem has a Bayesian interpreta-

tion which facilitates the determination of the tradeoff parameters in the criterion. We apply that

approach to the particular smoothness prior transfer function problem at hand.

In detail, the minimisation of (2.4.4) is equivalent to the maximization of

(2.5.1)

12I f- U- Uo M- U41 M- rm22)

In that form, the constrained least squares solution hab a Bayesian interpretation as the maximum

a posteriori estimate of the model with the data distribution

13



p(uI X,.) =(21re2)-h/2 exp( II-i-~ d~. 1 2 252

and the prior distribution

r(Oj rar) -(2rv2)-AI DTDI 1/3czpIJIDLTD 7DJ (2.6.3)

whene r denotes the vector of hyperpar~meters T...rand 9 denotes the model parameters,

c,4,-1,..M.In (2.5.3)

(, 12 2

(+41/ 2A'2S2 d,

D= (2.5.4)

CAI

From (2.5.2) ad (2.5.3) it follows that

A(vI XD,)Wj91 rVu) -(2.5.5)

(2r.') (N+2Ad)/2j DrDI l/xexpjZL (JI D)(XX + D 7D)-'(# - O))exp-SS(r)],
2&2 2o,'

where

Is so . . 1-Ad ZIM 11

x -2A Z24

UN-i ZN-1i IN-Ad NjVd IN

and

1=(X'X + D 7D)-X': , (2.5.7)

SS(T) -zrz _ DT(XrX + DrD)J .

In (2.5.6), the initial condition data {z,p, i -- M,-M+I,.0.) are assumed known. Integrating
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* (2,5.5) with respect to the parameter vector yields the likelihood or the hyperparameters,

L(ra) (21rv2[N/2 I DTDI 1/21 XTX DTD -""exp! (2.S.8)

Then
6

logL(ror) - _ log2wu2 + -logI DTDI ...±lohI XrX + DT DI - -55(r), (2.S.9)
2 2 2 2&1

with the maximum likelihood estimate of o,2 given by

a - -SS(r) .(2.S.10)

Substituting the estimated value of o,2 from (2.5.10) into (2.5.9) yields

logL~ra) = -N og2iwoS + Ilogl DTDI - IlogI XTX + DTDI (2..11
2 2 22' (.1)

which is to be maximized to obtain the maximum likelihood estimates of r ,2 .,4 The likeli-

hood for the hyperparameters is maximized via a Davidon-Fletcher-Poweli gradient search algo-

rithm. That algorithm is exterior to a Householder transformation least squares solution of the

constrained least squares problem.

We use the AIC statistic, (Akaike 1973),

AIC - -2logL(rau) + 2(ambr of parameters estimated) (2.S.12)

-N(Ioj2ir 2 + 1)-l DTDI +* logt XTX + DT DI + 2(isumber of parameters estimated),

to determine the order M for the transfer function. Akaihe (1950) referred to (2.5.12) as the likeli-

hood of the Bayesian model. The analysis indicated here is referred to as a "quasi-Bayesian

analaysis. A more thorough Bayesian solution of the transfer function estimation problem, would

require that prior, be specilled on the model order M. A completely orthodox Bayesian analysis

would require prion on the model order and parameters of the stochastic input to the system.



8. ANALYSIS OF BOX-JENKINS SERIES J DATA AND MONTE CARLO

RMULTS

In this section the results of the transfer function analysis of the Box-Jenkins Series J gas fur-

sace data by the smoothness priors ad Box-Jenkins methods are described and compared. Some

properties of the smoothness priors method of analysis are shown. Also, we show the results of

Mo e Carlo studies of the statistical performance of the smoothness priors, (SP), method and the

3SLS asymptotically maximum likelihood method of Mayne and Firsoon ,(1978), based on models

derived from the BJ series J data.

The input output BJ series J data are shown in Figure 1. The variances of the input and

output data are 1.14727 ad 10.25357 respectively. For illustrative purposes, the data shown in

Figure I was normalised to have sero mean and the same variance. (Inverting the output data

and superimposing it over the input data r-veal the output to be a delayed-low pass filtered ver-

sion of the input.) The generic Box-Jenkins transfer function model is

= *.- .. al, n-P +bnz.a-n-, ' ' ' + bez._.... + W(.1)

UP, e 1W"_1 + ' * * + C'W_' + a'.

In (3.1) az,,p*,w,, ,n-1,...,N) are respectively the observed input and output and the unobserved

added noise. Also in (3.1), {u, a=l,...,N) is a normal 2-ro mean i.i.d. random variable with

variance v.2. The dimensional parameters of the BJ model are d=2, p=2, q=3, r-2. The pub-

lished vectors of BJ model coefficients are: u-(0.57,0.01);b=(0.53,-0.37,-0.51);c-(1.53,-0.63),

a! - 0.05058, (Box-Jenkins, Section 11.4). For the AIC optimal, k1-4,k,=2, SP model, the

dimensional parameters are p=q-r-4. The d=0 model is the AIC best shift parameter model. (in

this data example, the higher order SP model automatically accounts for the delay between input

ad output data, without requiring an additional non-zero d parameter.) The SP a.b polynomial

coefficients are a-(1.8824.-0.70509,-0.13198,0.14861), b-(0.17090,-0.43813,-0.17497,0.08608).

The vector of smoothness priors tradeoff parameters was r2=(0.00886,0.10305,0.71914.0.10686).
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Tabl I shows the values of the AIC for the differential orders kj,k 2=1,...,4 for the order M=4

: model.

INSERT FIGURE I HERE: BOX-JENKINS SERIES J DATA

Table I. AIC's d=O, M=4, SP Model, Parametric in ki and k2.

k2 k1 = 1 kl =2 kl =3 kl =4 kl=5
1 46.88 45.697 45.663 46.345 47.375
2 46.436 46.186 45.316 45.995 46.630
3 46.273 45.031 45.120 45.794 46.436
4 46.672 45.013 45.096 45.769 46.414
5 46.410 45.072 45.072 45.721 46.388

In Figure 2, the original Box-Jenkins Series J output data, and the SP model tracked output

data are shown superimposed. A vertical scale displaced version of the difference between the ori-

ginal and tracked data is also shown in Figure 2. The tracked output data is computed by passing

the input through the estimated model. The appearance of the N=294 tracked data version of the

BJ modeled data, incorporating the d-2 parameter, appears very similar to that of the SP

modeled data and is not shown here.

In the sense of minimum mean square tracking error, the performance of the AIC optimum

SP and BJ models were similar. The variances of the tracking error for the BJ and SP models (the

sams of squares of the residuals, SSE), were 0.70187 and 0.6862 respectively. The ratio of the

relative variance of the tracking error to the variance of the true output was 0.06798 and 0.06696

for the BJ and SP model respectively.

INSERT FIGURE 2 HERE: TRACKED DATA
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The impulse response, transfer function amplitude response, phase response and power spec-

tral densities (psds) of the residuals associated with the BJ and SP models are shown in Figure 3.

(Compare the transfer function and residual spectrum of a windowed periodogram analysis of the

B-J data, Jenkins and Watts, p440.) The residual pads were computed from Householder

transformation-Akaike AIC criterion AR models. The coefficients of the corresponding AIC best

AR 4 models of the BJ and SP residuals were 11.53458,-0.55879,-0.21378,0.16280) and

(1.58329,-0.65524,-0.17195,0.17461) respectively with corresponding innovations variances

0.05995 and 0.05755. In Figure 3, the SP and BJ modeled psds of the residuals are almost identi-

cal. The AR -AIC model of the residual of the SP modeled BJ Series J data shown in Figure 3 is

quite similar in appearance to that obtained automatically by the SP modeling procedure and

computed directly by equation (2.3.8).

Also in Figure 3, after the first 3 time points, when the impulse response for the BJ model is

zero, the impulse responses of the BJ model and SP model appear similar. The SP model impulse

response is smoother than the BR impulse response. The initial non zero going part of the SP

impulse response is a consequence of the fact that the optimal SP model delay parameter d is zero.

The BJ modeled transfer function and phase function versus frequency each have some rela-

tively abrupt kinks in their responses as compared to those for the SP modeled results.

INSERT FIGURE 3 HERE: IMPULSE RESPONSE, TRANSFER FCN & PHASE &

NOISE PSD's SP & BJ MODELS

Some comments on the stationarity of the Box-Jenkins Series J data are in order here. In

Figure 2, the true BJ output data and the SP modeled data appear more discrepant in the latter

part than the earlier part of the time series. Also in Figure 2, there are relatively large excursions

in the latter part of the residual time series. That evidence suggests that the Series J data is nons-

tationary. To examine that conjecture, we examined the residuals of the AR modeled tracked

data. fitted SP models to the first 200 data points and to the first 75 data points of the Series J
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data aad examined the tracking behavior of those models. The properties of the BJ series J data

do appear to change slightly after n=225.

The impulse response, noise spectrum, transfer function and phase function for the

k1=l.k2-1 SP models for n=200 and n=75 data are shown superimposed in Figure 4A and 4B

respectively. As expected from Figure 2, the properties of the SP modeled n =296 and n =200 series

J data are quite similar. The properties of the SP modeled n=296 and n=75 data are also quite

similar. The conjecture that the SP modeling method might be reasonable for relatively short

length data spans is supported by the evidence shown in Figure 4. The apparent property of the

SP procedure to yield reliable parameter estimates with relatively short data length time series is a

consequence of the assumption of priors on the model parameters. The priors are equivalent to the

observation of additional data.

For completeness, the a,b polynomial coefficients corresponding to SP M=4,k 1 =l,k 2 =1

modeled data are respectively: 11. 13620.,-0.15871,-0.29041,0.13128),

11.08946,-0.24032.-0.557960.11972} for the n=200 data and

(1.25647,-0.20495.-0.35709.0.16760), {1.18340,-0.54000,-0.36671,0.28644) for the n=75 data.

The respective residual variances of the SP modeled M-4, n=200 and n=75 data point models

were 0.09900 and 0.04629 respectively. The corresponding relative tracking variance ratios were

0.01078 and 0.00620.

INSERT FIGURE 4 HERE: IMPULSE RESPONSE etc n=200 and n=75 Models

The effects of the choice of model order. M, and the differential orders k,,k 2 on the impulse

response, the noise spectrum and the transfer function amplitude and phase of the SP model are

also of interest.

First, to illustrate the effect of model order M on transfer function model properties, graphs

of impulse response, amplitude and phase response are shown superimposed in Figure 5A,B,C for

the optimal SP M=4 model and the likelihood best SP models of orders M=10.20 and M=30. The
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graphical results for the higher order SP models wiggle only slightly around those for the order

M=4 model. Those results indicate that, on the provision that the model order is sufficiently

large, the specification of the order of the SP model does not very critically influence the transfer

function characteristics. For completeness, some of the computed results for those models are:

M-10: k3-l,k 2 -4,AIC=47.789; M-20: k1=2,k 2=4,AIC-50.224; M30: kl=2,k 2 =4,AIC=56.886.

The similarity in the appearance of the model properties for the different model orders is compati-

ble with the similarity in the values of the AIC for the different models.

The values of the M-10 optimal SP model, a and b polynomial coefficients are:

a 1 .5698 -0.70201,-0.02424,0.06248.0.01102,-0.00000,-0.00152,-0.00046,0.00004,o.o010),

b - 40.15110,-0.38420-0.177 13.-0.00672.0.03029,0.08646,0.04176.0.00577,-0.01716,-0.00717}.

The pattern of a,b polynomial coefficients is similar for the larger order SP models. The tapering

toward zero values effect of the smoothness priors constraints on the model parameters, particu-

larly on the higher order a polynomial parameters and the relatively long tail b model parameters

helps explain the similarity of the M=4,10,20 and M=30 model properties. The b model parame-

ters in the numerator of the rational polynomial description of the model do not have as dramatic

an effect as do the a polynomial denominator polynomial parameters on the model properties.

The long tail b polynomial parameters and the short tail a polynomial parameters are well approx-

imated by the SP M = 4 model.

For the purposes of comparison, we also fitted ordinary least squares, (OLS), models of ord-

ers M=5,10 and M=20 to the BJ series J data. Graphical results of the impulse response, transfer

function and phase function for those models are shown in Figures 5D,E,F. The M=5 LS model

properties are very similar to the optimal SP model properties. (The relative variance of the track-

ing error was 0.06706. The OLS M=5 model is actually a superior model of the BJ series J data

than the original BJ model.) The computed properties of the OLS M=10 and M=20 models wig-

gle a lot more around the SP M=4 model than the SP M=30 model. This is very clear evidence

that the SP model properties are relatively insensitive to model order in comparison with other,
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The formula is (3.21 is rsemosabl under the assmption that the data is stationary, i.e. the pro-

perties of the Im M hin~l of the data do not change very much with different values of M.
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Monte Carlo Results

Monte Carlo simulation studies were performed to explore the statistical performance of the

SP method of transfer function estimation. Some comparisons of the SP and Mayne and Firzoon

(1978) 3SLS procedure were also done. We chose to compare the SP with the 3SLS procedure

because the latter procedure has asymptotic MLE properties and is easy to program. The principal

topics of interest are the bias and MSE parameter estimation properties and transfer function

confidence interval properties of the SP and the 3SLS procedures. We show computational results

of simulation studies of the SP and 3SLS models with additive AR and additive MA observation

noises.

Consider the transfer function model

yn = aly.-I "'" + al-P + bZ.-, "' + b#_ + v, (3.3)

with v. an added noise process. The MA, noise model is: v., = e mu,-,, where {Ju, is a zero
m=O

mean i.i.d. process. The AR, noise model is v, = ' c,,vnm u, . where again {Iu,} is a zero
m=l

mean i.i.d. process. The AR observation noise model is the Box-Jenkins model. The MA observa-

tion noise model was used in Astrom and Bohlin (1965). Since then it has been used extensively in

engineering applications.

The 3SLS procedure was developed as an alternative to the comptationally extensive max-

imum likelihood method for the MA observation noise model. For convenience, the 3SLS pro-

cedure is as follows:

Let a,b.c denote the AR, MA and added MA noise polynomials respectively in equation (3.3).

i)L'sing least squares (LS), fit a "long" a.b polynomial model, to the {z,,y,, n=l .N} input-

output data and compute the residual time series.

ii) Fix the orders of the a.b and c polynomials to their final model orders and use the original

input-output data and the residuals from stage i) to estimate the a.b and c polynomial coefficients
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by LS.

iii) Prewhiten the input and output data using the inverse of the c polynomial determined in stage

ii) and estimate the fixed order a,b polynomials coefficients by LS.

We fit the 3SLS model to the original Box-Jenkins Series J data in order to verify the

relevance of that procedure for a comparison of results AR observation noise Monte Carlo study.

An first stage SSLS a,b polynomial model order p,q=8 was determined by trial and error. A simi-

lar procedure for determining the stage one model order was used in Hannan et al. (1986). The

SSLS M=4 model parameters were: a=(1.58607,-0.67426,-0.17672,0.16647),

b=(0.19765,-0.44775,-0.24883,0.17300). The appearance of the superimposed SP

M=4, k,=1,k 2=1 and 3SLS modeled impulse response, transfer function and phase response were

visually indistinguishable. On the basis of this evidence, it was thought reasonable to examine the

performance of the 3SLS transfer function model with AR observation noise that was similar to

the observation noise in the BJ series J data.

The model that we used to synthesize data for the Monte Carlo simulations is a variation of

the model of the BJ series J data. The input data for the simulation was the Box-Jenkins Series J

input data. For the first set of trials, the added noise was a stochastic version of an AR 4 model of

the residual noise from the SP fit to the Box-Jenkins series J data. The a,b coefficients of the

noiseless simulation model were a = (1.66283,-0.64256,-0.30648,0. 2 23 7 7 )

b=(-0.83218,-0.47872,-0.24869,0.12831). The AR 4  model coefficients were

c=(1.69069,-0.69023,-0.28565,0.022507), o,2=0.284. The (biased) SP model parameters fitted to

a noiseless version of that data were a =(1.73481,-0.21383,-0.92282,0.40184),

b = (-0.03550,-0.05907,0.04443,0.05015). The vector of hyperparameters was

r = (0.000062,0.000004,0.000027,0.000003). Such small values should not be surprising because to

within roundoff errors, the noiseless data is exactly an AR, M.44 model.

Results of the statistical properties of 25 replications from the SP and 3SLS models for

n=296, AR 4 , data points are shown in Table 2. The output deta is regressed partially upon itself
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so the 3SLS procedure as well as the SP procedure, will yield biased coefficient estimates. (The

magnitude of the biases is model dependent.) The bias of the SP modeled parameters is defined

as the difference between the mean SP parameters and the sero added noise 3SLS model parame-

ters. The standard deviation and bias errors are comparable for both the the SP and 3SLS pro-

cedures. (The standard deviation of the SP modeled estimated b polynomial parameters are actu-

ally somewhat smaller than those for the 3SLS procedure.)

Table 2 AIC's, SP & 3SLS M-4 Models

SP M = 4 SSLS M =4
para mean std. dev. bias mean std. dev. bias
arl -1.6436 0.0541 -0.0820 -1.6641 0.0554 -0.0615
ar2 .0.7746 0.1093 -0.5833 -0.8395 0.1052 .0.6483
ar3 -0.1577 0.1082 -0.7836 -0.0911 0.1054 0.8502
ar4 0.2040 0.0524 -0.2029 0.1775 0.0538 -0.2294
mal -0.0404 0.0217 -0.0050 -0.0596 0.0484 0.0243
ma2 -0.0284 0.0146 0.0310 -0.0181 0.0893 0.0414
ms3 -0.0161 0.0126 0.0281 -0.0078 0.0861 0.0519
ma4 -0.0192 0.0106 -0.0200 -0.0511 0.0494 -0.1019

Figure 7 is an illustration of the mean and plus and minus on sigma of results estimated

from the Monte Carlo trials. The illustrations correspond to the simulation results reported in

Table 2. From Figure 7 it appears that the overall mean square error in transfer function estimate

is slightly smaller for the SP than for the 3SLS method. The similarity of the SP and 3SLS simu-

lation results is compatible with the similarity of performance of those models on the BJ series J

data.

INSERT FIGURE 7 HERE SP AND 3SLS TRANSFER FCN MEAN AND STD. DEVS.

The order 4a,b polynomial 3SLS model tends to be overparameterised. In order to verify

that the 3SLS statistical results shown in Table 2 were representative, an ARMAX 2,2,2 model

was also simulated and modeled by the 3SLS and SP M=4 model procedures As before, the input

was the Box-Jenkins series J input data. The additive stochastically modeled noise was an AR2
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version of the residual of the SP modeled series J data. The simulation model parameters were

.- (.46778,-0.5 5 192),b-(-0.3586,-0.06788),c-(1.5877s,-0.72461), o-0.018. The statistical

results of 25 replications of fitting the SP and 3SLS models to the trial data are shown in Table 3.

Here, the bias of the SP modeled parameters is defined as the difference between the mean and sos

added noise SP model parameters. The standard deviation and bias of the SP M-4 model param-

eters are comparable to those in Table 2. The standard deviation and bias of the M-2 3SLS

model parameters are similar to those observed in Table 2 for the M=4 model.

Table 3. AIC SP M=4, & 3SLS M=-2 Models

SP M = 4 3SLS M = 2

param mean std. dev. bias mean std. dev. bias

arl 1.5846 0.0566 -0.1502 -1.1562 0.0386 0.1633
ar2 -0.7048 0.1072 -0.4910 -0.0095 0.0356 -0.1171
ar3 -0.0323 0.0984 0.8905 --
ar4 0.0486 0.0415 -0.3532 - -

mal -0.0443 0.0222 .0.0088 -0.0095 0.0406 0.0264
ma2 -0.0362 0.0383 0.0229 -0.0918 0.0436 -0.0231
ma3 -0.0001 0.0243 -0.0451
ma4 -0.0299 0.0236 0.0600

We recall that the added noise for the Table 2 data was AR 4 and that for Table 3 was AR2 .

The consistency of the tabulated results for the SP model in Tables 2 and 3 suggest that the SP

model is reasonably robust with respect to noise color and noise model order.

Finally, we show results of simulation studies with added MA observation noise. The pri-

mary objects of interests in these computational experiments were a comparison of the SP and

3SLS modeling performance and the sensitivity of the SP transfer function modeling method to

choices of model order M. the differential orders ki~k 2, the observation noise level and the sensi-

tivity to data length.

The model for these simulations was a slight variation of the model for the AR observation

noise simulations. The superimposed impulse response, transfer function and phase function of the

3SLS and SP M=4,M=5 and M-10 on the noise free data were visually indistinguishable. In the

first stage of the 3SLS method a model order of 20 was used. The stochastic input signal was an
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AR. vson of the input of the series J data. The 3SLS M-4 noise free data a,b polynomials

win: * - 4.72506,-0.19127,--0.94126,0.40697), b - 4-0 03550.-0.05940,0.04412,0.05070).

The observation noise was an MA, model, (inadvertently MA3, instead of MA). The noise

model pereters were e - {1.0,0.6,0.3,0.1). This model has a fairly flat pad spectrum. A sample

me of te MAs nouse yielded an AR* AIC-AR model of that noise.

Monte Carlo trials with n-296 and n-i78 were done. Superimposed output and output plus

woise and a displaced version of the noise are shown in Figure 8 for typical sample trials of data

nobths a-296 and a-78. Figure 8 illustrates the noise level of the experiments and how dramati-

caly short the a-78 data span is.

Diferential orders k, and k3 best SP M=5,M=10 and M=20 transfer function models were

Itted to a sample trial of the n=296 data with the following results:

M-5, k1-1, k=-1, AIC=-1567.545, M=10, kf=4, k2=1, AIC=-1609.348, M-20, kl=4, k2-3,

AIC--1557.410. The similarity of the AIC values suggest that these models will have similar

properties.

The computed results of the MA3 noise simulation runs for the 3SLS M-4,

SP M-l0, klfi,k 2=4 and SP M=20, kl=2,k2-4, SP M=20, kI=i,k 2=3, SP M=20, kl=3,4f=5 and

an SP M=20, kf2,k2=4 model of data with observation noise variance 9 times that of the previ-

ous three simulation trials are shown in Figure 9A,B,C,D,E.F. Tabulated values of the mean and

standard deviation of the parameter estimates for the $SLS and SP M=10, M=20 kl=2,k2 =4

simulation trials are shown in Table 4. The 3SLS and SP M=l0 results transfer function and

phase function results are reasonable similar. The relative jaggedness of the impulse response for

the $SLS model indicates that a lower order $SLS model might be more suitable for this data.

The SP M=20, kl,k,=4 model results appear very similar to the results for the M=i0 models. The

results of the Monte Carlo runs, with SP models Mf20,k- 1 l,k2=S and M=20,k1 =S,k 2=5, (Figures

9D,E), are very similar to those shown for the M=20,kf=2,k2=4, (Figure 9C), results. Those illus-

trations show the relative insenstivity of SP modeling to variations in the differential orders kn,k..

26

LM - r," " l'~r ' " ' i qrrl~~''~~ 'l,' ' ' m ' rlq', "l



As expected, the results in Figure 9F for the SP M=20 model the 9 times variance trials show

more dispersion than the results for the Figure 9C trials. The graphical results in Figureg are com-

patible with the performance of the 3SLS and SP models of the Box-Jenkins series J data.

Table 4. AIC, 3SLS M=4 & SP M=10,20,20 Models

3SLS M=4 SP M=10 SP M=20 SP M=20, VAR x 9

param mean s.d. mean s.d. mean s.d. mean s.d.
al 0.7217 0.0469 0.6420 0.0356 0.6100 0.0472 0.5836 0.0615
ar2 0.0001 0.0588 -0.0109 0.0329 -0.0154 0.0321 -0.0459 0.0532
ar 0.0490 0.0630 -0.0013 0.0111 -0.0000 0.0019 -0.0036 0.0068
ar4 -0.0041 0.0397 0.0031 0.0135 0.0002 0.0001 -0.0001 0.0005
ar5 - 0.0016 0.0075 0.0001 0.0001 0.0001 0.0002
mal -0.0387 0.0235 -0.0363 0.0210 -0.0437 0.0248 -0.0547 0.0463
ma2 -0.1115 0.0498 -0.0958 0.0366 -0.0906 0.0366 -0.0907 0.0621
ma3 0.0060 0.0557 -0.0798 0.0318 -0.0884 0.0308 -0.0675 0. 1091
ma4 -0.1526 0.0333 -0.0719 0.0277 -0.0674 0.0252 -0.0879 0.0608
ma5 - - -0.0467 0.0243 -0.0628 0.0253 -0.0704 0.0539

In Table 4 only the results for the first 5 a,b polynomial coefficients are shown. That is

sufficient to understand the results of the Monte Carlo trials. The standard deviations for the

3SLS and M= 10 SP trials are comparable. Those results are also comparable to those shown in

Table 2 for the AR noise trials. The a polynomial coefficients for the SP trials tend to taper

quickly and correspondingly, the standard deviations for those coefficients tend to be smaller than

the standard deviations for the larger valued coefficients. The values of the b polynomial

coefficients do not taper and correspondingly neither do the standard deviations of those coefficient

estimates.

The final Monte Carlo trials are for the shorter length n=78 data. An exploratory computa-

tion on a single trial of an N=78 data SP M-10 model, (that yields an N=68 data points for

actual modeling), indicated that the k1=2,k 2=1 model was optimum for that data. No experiment

was performed for the SP M=5 model. Graphical results for 25 SP M=5,kj=1,k 2=1 and SP

M-10,k=i,k 2 -1 models MA noise Monte Carlo trials are shown in Figure 10. Numerical results

corresponding to those shown in Figure 10 are in Table 5. (Only results for the first 6 polynomial
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" €cients are shown.) The standard deviations for the a-78 data coefficients are in general

luger tha those for the a-296 data coefficients. The SP M-10 x=78 data parameter mean

values and standard deviations indicate the same kind of tapering effects as was observed for the

n-296 data. The graphical results for the SP transfer function modeled n=296 and n=78 data

look very similar. This is additional evidence to support the conjecture that Bayesian smoothness

priors transfer function modeling can yield reliable transfer function estimation with relatively

short duration data.

Table 5. AIC, 3SLS M-4 & SP M-10,20,20 Models

SPM = 4 SP M = 10

param mean std. dev. mean std. dev.

arl 0.7217 0.0848 0.6623 0.0816
ar2 0.0196 0.0850 0.0537 0.0671
r3 0.0382 0.0678 0.0186 0.0605

ar4 -0.0030 0.0331 0.0164 0.0318
arS -0.0151 0.0297 0.0153 0.0222
are - 0.0062 0.0220
mal -0.0448 0.0248 -0.0416 0.0551
ma2 -0.0772 0.0344 -0.0971 0.0753
ma3 -0.0735 0.0335 -0.0663 0.0426
m&4 -0.0521 0.0322 -0.0616 0.0352
ma5 -0.0512 0.0342 -0.0330 0.0382
ma6 - -0.0125 0.0162
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4. INTZRPRETATION OF RESULTS, SUMMARY AND DISCUSSION

A smoothness priors approach to the problem of transfer function estimation was demon-

strated. The smoothness priors are stochastic constraints on the parameters of the linear model.

The Bayesian smoothness priors procedure in one possible way of utilizing the information in the

likelihood function. The critical computation in the Bayesian smoothness priors approach is the

likelihood of the Bayesian model. The likelihood is used as an objective measure of the goodness of

a model and the hyperparameters which maximize the likelihood are determined by a gradient

search method.

Some of the consequences of the smoothness priors approach to transfer function estimation

are:

1) The complex multiple model orders selection procedures of other transfer function estimation

methods are obviated by the smoothness priors method. Instead, the specification of the values of

model order, M, and the differential orders, k1,k2, appear not to be very critical in determining the

impulse response, transfer function and phase properties of the model.

2) Least squares and conventional maximum likelihood are abandoned as a criterion for modeling

data. Instead, constrained least squares criterion or equivalently penalized likelihood methods are

used in the smoothness prior method.

3) The smoothness priors model will ina general not be as parsimonious, in the number of model

parameters, as the conventional least squares or maximum likelihood transfer function estimation

methods.

4) Smoothness priors modeling will tend to be more robust with respect to the specification of the

observation noise color than the conventional methods.

5) Smoothness priors modeling will tend to yield reliable parameter estimates with shorter length

data than conventional methods.

The relatively large model order non-parsimoniousness property of the Bayesian smoothness

priors model can be justified. In any alternative Bayesian transfer function modeling, the Bayesian
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model would be an aveage of the transfer function computed by models of the different a,b,c poly-

nomial model orders weighted by the likelihood and the priors on model orders. The Bayesian

transfer function model would have contributions from the largest a,b,c polynomial model orders

considered. As a result, the overall Bayesian model orders would be the identical to the orders of

that largest orders model. Thus, the Bayesian procedure will have a,b,c polynomial model orders

larger than the model selected say by the minimum AIC procedure. By the specification of a large

model order and smoothness priors constraints on the model parameters, the smoothness priors

method achieves the effect of the alternative Bayesian methods of averaging the computational

results of different order models.

The use of frequency domain priors is a relatively new idea. The class of frequency domain

priors that we used lack a definite physical interpretation. They seem reasonable because they

penalize the higher order polynomial coefficients with increasing weights. As expected, the SP

model properties are increasingly smooth with increasing kth derivative constraints. Also, the

overall optimum solution is not necessarily the smoothest solution. An important property of our

frequency domain priors is that they permit the problem of transfer function estimation to be cast

within the framework of the linear model.

The Monte Carlo results suggest that the smoothness priors method of transfer function esti-

mation achieves comparable statistical performance with the asymptotically efficient procedures.

In summary. the smoothness priors method of transfer function estimation appears to yield

statistical performance results that are comparable and perhaps superior to other well known

methods while enjoying a more forgiving parameter computational search procedure than the

search procedures of other methods. In general, the results shown attest to the flexibility of the

Bayesian modeling approach.
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LIDGENPS

FIGURE 1. Box-Jenkins Series J Gas Furnace Data

Figure 2. Original and Modeled Data Superimposed and Difference Data Smoothness Priors

Model, a-296

FIGURE 3. Impulse Response, Amplitude and Phase Response and Residual PSD versus Fre-

quency, Superimposed Box-Jenkins and Smoothness Priors Model Results, (Dotted Lines).

FIGURE 4. Superimposed Smoothness Priors Impulse Response, Amplitude Response, Phase

Response and Noise Spectrum for

A: n=296 and n=200 data points, (dotted lines). B: n=296 and n=75 data points, (dotted lines).

FIGURE 5. Superimposed Impulse Response, Amplitude Response, Phase Response and Noise

Spectrum:

A: SP M=4 and M=10 models. B: SP M=4 and M=20 models.

C: SP M=4 and M=30 models. D: SP M=4 and LS M=5 models.

E: SP M=4 and LS M-1O models. F: SP M-4 and LS M=20 models.

FIGURE 6. Superimposed Smoothness Priors Impulse Response, Amplitude Response, Phase

Response and Noise Spectrum for SP M=4 kl=1,k2=l and k1=9,k,=9 (dotted lines) models.

FIGURE 7. Mean and Plus and Minus One Standard Deviation Impulse Response, Amplitude

Response, Phase Response. AR Observation Noise:

A: Smoothness Priors Model. B: 3SLS Model.

FIGURE 8. Input. Output and Ouput Plus Noise:

A: N=296, Input, Noise, Superimposed output and output plus noise, Superimposed output and

output plus larger variance noise, (in descending order).

B: N=78, Superimposed output and output plus noise. Noise.



FIGURE 9. Mean arnd Plus and Minus One Standard Deviation Impulse Response. Amplitude

Response and Phase Response. MA Observation Noise. N 296:

A: 3SLS M=4 Model. B: SP M= 10, k1 =2,k2 =4 Model.

C: SP M=20. k1=I,k2=3 Model. D: SP M=20, k1 =3,k2 =5 Model.

E: SP M=20, kl=2,k2 =4 Model. F: SP M=20, kl=2,k2 =4 Model, Variance x 9.

FIGURE 10. Mean and Plus and Minus One Standard Deviation Impulse Response, Amplitude

Response and Phase Response, MA Observation Noise, N = 78:

A: SP M=5 k1=2,k2 =1 Model. B: SP M=10, k1=2,k 2=1 Model.
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