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ABSTRACT AND SUMNMARY

Our research concerns optical data proceeing for missile guidance and target recognition.

It ame pattern recognition techniquem with an increasing use of knowledge base, inference

machine and amociative procemor techniques. Our Year 2 work addresses devices (the liquid

crystal television), Kalman filters, intrinsic features, iconic filters, and symbolic procesors.

These all represent quite novel optical processing concepts. Our work also concerns new

architectures and concepts such as: relational graph processors, optical linear discriminant

processors, model-based optical processors, hierarchical symbolic optical correlators, and optical

associative procesors.

I
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1. INTRODUCTION

The first year of this grant (1 October 1984 - 1 October 1985) produced much good work.

Ti period was followed by an unsupported research period. By the end of our second year

(January - December 1986) of this effort, we are again on track, having overcome various

problems associated with no funding for one semester. Chapter 2 provides a summary overview

of our calendar year 1986 research progress. Subsequent chapters detail each aspect of this

research.

We are phasing out all feature extraction research and have now completed all student

projects in this area. This work is summarized in Chapters 5 and 6. We have also ceased our

Kalman filter research (since no Eglin Air Force Base funds were available to transition support

of this work). Chapter 4 notes our final effort in this area. Our hierarchical symbolic processing

concept is noted in Chapter 12. It utilizes correlation filters and thus we are continuing research

in this area This work is detailed in Chapters 7-11. After discussions with AFOSR, we have

made a considerable redirection of our research effort toward optical computing rather than

pattern recognition. Chapters 13-17 highlight five new research directions originated in 1986.

These include: relational graph processors, model-based processors, and analysis of the Hopfield

associative memory, new nearest neighbor data matrix associative processors, and distortion-

invariant associative processors. These represent four new optical approaches to advanced

computing.

In 1986, the Principal Investigator (P1) was quite active with various invited papers on

numerous topics: the IEEE Spectrum article (August 1986), an SPIE Institute Series paper on

scene analysis [51, an Optics News special issue article [7]. He also has been most active in

various conference organizations. He was Chairman of a hybrid image processing conference

(April 1986), Chairman of a digital image processing session (Janiiiry 1986), Chairman of a set

I
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ofsi comference on robotics (October 198), plus provided an invited paper at the ICALEO'86

comfceanc. We have thus expended cosiderable effort to expose our work and AFOSR research

to a quite wide community.
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2. SUMMARI AND OVERVIEW

We now provide a summary and overview of our 1986 research progress and highlight the

contents of Chapters 3-17 which detail 15 different aspects of our research.

2.1 SPATIAL LIGHT MODULATORS (SLMs) (Chapter 3. Liquid

Crystal Television Correction)

SLMs represent the critical element in most optical processors. The liquid crystal

television (LCTV) emerged in late 1985 as a low-cost and viable optical SLM. Our work [81 on

this device included practical remarks about bias voltage selection and polarization reorientation,

the demonstration of interpolation on the device by single sideband filtering, and the selection of

beam balance ratio spatial filtering techniques using such a sampled input SLM. Our primary

contribution was the use of a new phase conjugate hologram correction technique to correct for

the phase nonuniformity of the device. This allows it. use in a space integrating correlator, as

we experimentally demonstrated.

2.2 FACTORIZED KALMAN FILTER (KF) ALGORITHM

(Chapter 4)

This chapter concludes our AFOSR work in this ares 115]. ONR/SDI support for this may

allow us to continue some of this work. This 1986 work involves a new parallel vectorised and

factorized KF algorithm. This is very suitable for optical processing, since it requires a reduced

accuracy optical processor. This is achieved since the algorithm does not entail procesing full

matrices, nor does it involve square root and other time-consuming operations. We have detailed

how this algorithm can be employed on an optical processor.
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2.3 FEATURE EXTRACTION (MOMENTS. FOURIER

TRANSFORMS AND HARTLEY TRANSFORMS) (Chapters

5 and 6)

This work concludes our intrinsic (or feature extraction) OPR (optical pattern recognition)

research. We feel that optics has a considerable role in low-level vision, where the input data

rate is the highest and where the number of operations per input data pixel or point is the

largest. One thrust of this research has been to provide more features from one optical feature

space. This is attractive since separate optical architectures are then not necemsry for each

desired feature space. Chapter 5 considers an optical Fourier transform feature space (this is the

simplest feature space that one can optically generate). We show in this chapter how the

moments can be obtained from this feature space 1161. We also provide a new digital filtering

technique and algorithm to aid calculation of moments from Fourier coefficients [17]. Chapter 5

summarizes this work [181 and conference paper 119] provides new simulation results on detector

area effects and other results using this feature space.

The basic architecture involves an optical Fourier transform system with and without a

linear x mask present. The Fourier transform produced by this system is sampled, and an

approximate derivative is digitally produced by a differentiating finite impulse response filter

using a new algorithm and techniques. The associated moments are then assembled from these

samples. Techniques to achieve this with and without a linear x mask are noted. In total, 21

samples of the Fourier transform are used to produce 21 moments. For the case of symmetric

inputs, we find the odd order moments above third order are in error by over 7%. For

asymmetric inputs (these are typical of most real objects), all moments up to eighth-order are

accurate within 2%. We found that the sampling of this system was optimal at 1/4L (where L

is the size of the input). We also found that as the digital filter length increases, the number of

usable moments also increases (with a filter length of 15 being adeqt ,,, for all moments up to

- U -. U p U , p - U U U
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order 5). Detector area effects were also considered (such as area sampling, which was found to

be a small negligible error compared to the filter length effect). Concerning detector dynamic

range, we found that a 16-bit A/D converter was adequate. Our noise analysis showed that

approximately 0 dB input plane SNR could be tolerated. Our initial results showed very good

separation of different tool parts for different rotated and translated versions of these input

images.

We also provided a journal paper 141 in 1986 that detailed the computer generated

hologram fabrication of a wedge ring detector with experimental data on this system included.

We have also (241 detailed how one can obtain the Hartley transform from the Fourier

transform and how one can obtain moments from the Hartley transform (Chapter 6). This

implementation technique is quite attractive since no additional mask is now required. Thip

arises because the Hartley transform is real. The Hartley transform has other attractive

properties as well. These are discussed in the aforementioned reference. We have also developed

a new algorithm to recursively calculate all moments from the n-derivatives of the Hartley

transform at the origin. This thus represents additional work associated with producing various

feature spaces from and on the same optical processor.

Paper [251 discusses other uses for this system and proves that all geometrical moments can

be calculated recursively from the partial derivatives near the origin in the Hartley transform

intensity pattern.

2.4 APPROACHES TO LARGE-CLASS ANALYSIS PROBLEMS

(Chapters 7 and 12)

As noted in Chapter 1, our approach we consider for advanced processors involves a

hierarchical symbolic correlator. The basic concepts of -mch a processor [211 are advanced in
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Chapter 12. They involve the use of multiple hierarchical levels of different advanced distortion-

invwriant rdters. This yields a unique symbolic processor, whose outputs are the spatial

representation of the input data for different correlation filters.

In 1988, various aspects of iconic filters were studied and several new concepts emerged.

Chapters 7-10 detail these results. In Chapter 7, we analyze the simplest filter (an equal

correlation peak (ECP) filter) assuming Gaussian and exponential image models for the

correlation functions [22] with attention to the large-class problems. Various effects (mpace

bandwidth product, in-plane scale and rotation distortion, noise, and the number of training

images) are investigated in terms of the output SNR for an ECP projection synthetic

discriminant function (SDF). Quantitative data on all issues are advanced. Similar results are

obtained for both image models. This is encouraging, since the results should thus be extendible

to more general models and to real imagery. We also find that as the number of training images

increases, the best SNR decreases and the worst-SNR increases. We also find larger differences

between the best and worst-case SNR as the space bandwidth product increases. These results

provide us with many useful guidelines:

1. increases in the training set size (beyond some value N) will cause little improvement,

2. more training set images are useful for larger space bandwidth product images,

3. smaller space bandwidth product images may yield higher SNR outputs when the
number of training images N is limited.

4. for each N selected, there is an optimum space bandwidth product.

We plan to employ these results in our future hierarchical symbolic processor research.

Our 1000 clas OCR (optical character recognition) results [14] represent the first case

study data on a large clas optical processor. The first multi-level and multi-filter optical

processor studies are included in this work. Also included are the first attention to the effects of

a large number of object classes (as occurs in the advanced inference and optical computing and

I
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Al (atwifi iltellipsm) processors using knowledge bases, that we consider). Thee results

boeM be most attractive and appropriate for advanced optical Al, symbolic, and optical

computing architectures.

2.6 NEW ICONIC FILTERS FOR HIERARCHICAL

PROCESSORS (Chapter 8-10)

Chapter 8 details our minimum variance SDF iconic filter [23]. This theoretical study

advances the case of a Har combination filter and when such a filter is best, and the

performance of the conventional SDF in the presence of colored (real) noise (versus its

performance in white Gaussian noise). It also advances cases of a nonlinear discriminant

function. We constrain the integrated intensity of the filter in all images to be unity (rather

than assuming a linear combination filter). For the case of white noise, we found that the filter

that minimizes the output noise variance is the linear combination ECP projection SDF that we

previously developed. In colored noise, the optimal filter is a different linear combination filter

function. The inverse of the covariance matrix C of the noise is required to obtain this optimal

SDF. This covariance matrix inverse is not always easily obtained. Approximations to it are

one of various future research topics possible. The suboptimality of the conventional ECP-SDF

in colored noise is also quantified in this chapter.

We also devised [1) new Fisher and mean square error (MSE) filter functions (Chapter 9).

These filters use a reduced orthogonal basis function set and conventional pattern recognition

synthesis techniques. They are fabricated such that conventional parameters for pattern

recognition are optimized. This is attractive from a theoretical standpoint. These filters also

offer promise for fabricating reduced dynamic range and special (i.e. binary and phase only)

filter functions.

As noted at the outset, these various filter functions are planned to play a significant role
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in owr advaneed hisrarehical corvelaor ad icosc filter s well as symbolic proemmor

arc tstuesand algorithm (Chapter 12).

Now correlation irds and peak to sidelobe ratio (PSR) filters (Chapter 10) that are

superior to the origia projection SDF rilters were also detailed 111]. 7%e projection filter,

constrain only the peak value of the correlation function. The corrlation filters control the

shape of the corrlation function and the PSR filter provide easily detectable correlation peaks.

'rho.. three filters are employed in oar hierarchical correlao architecture and concept [3,221.

2.6 COMPUTER GENERATED HOLOGRAM (CGH) FILTER

SYNTHESIS (Chauter III

This teak study concerns the number of amplitude and phase levels required in a

correlation filter I 2O. Larg clam problem ane considered. We find that phamosly filters we

inferior for discriminatios and in larg class cas Several amplitude levels are founmd to

Significantly improve performance.

2.7 OPTICAL ARTIF ICIAL INTELLIGENCE (Chamtmi 13-17)

Theme chapters advance four new concepts for advanced optical computing. Thin work

involves a relational graph poemor 12,121. Thin also includes the concept of an optical linear

discimisat function, techniques to orgamn a knowledge hams, and the conept of a parallel

data bass searh (Chapter 13). Our work has also advanced the frst optical use of a odel-

based repre tatios, 161 (Chapter 14) for input objects. Advances in graphic@ can be expected to

make thn approach sms attractive, especially for advanced large dataehbas cases. It in very

attractive in term of omputer memmory requiremests, filter generation for correlators and for

associative procemor memory system as detailed elsewhere (Chapter 12). We conducted

deaWed initial studies ISS1 that noted severe storage probletms wth the Hopriel amociative

memoiesand that th. nature of the input data so such processors was quite restrictive and was

LMI
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thus so& the general vectors required for pattern recognition (Chapter 15). We then advanced a

data matrix newest neighbor amociative processor [271 that is preferable (Chapter 16). Our final

contribution 1131 has involved distortion-invariant asmociative processors (Chapter 17). This

work includes the rust quantitative data on such procemors, new synthesis techniques for these

processors and new synthesis techniques to improve their memory capacity. One general paper

on this work 191 was published in 1986. Attention to optical processing techniques for range

image data were also advanced 110. Several invited papers at the January 1987 SPIE conference

on this wea will be available shortly.

~ -
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