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ABSTRACT AND SUMMARY

Our research concerns optical data processing for missile guidance and target recognition.
It uses pattern recognition techniques with an increasing use of knowledge base, inference
machine and associative processor techniques. Our Year 2 work addresses devices (the liquid
crystal television), Kalman filters, intrinsic features, iconic filters, and symbolic processors.
These all represent quite movel optical processing concepts. Our work also concerns new
architectures and concepts such as: relational graph processors, optical linear discriminant

processors, model-based optical processors, hierarchical symbolic optical correlators, and optical

associative processors.
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1. INTRODUCTION

The first year of this grant (1 October 1984 - 1 October 1985) produced much good work.
This period was followed by an unsupported research period. By the end of our second year
(January - December 1986) of this effort, we are again on track, having overcome various
problems associated with no funding for one semester. Chapter 2 provides a summary overview
of our calendar year 1986 research progress. Subsequent chapters detail each aspect of this

research.

We are phasing out all feature extraction research and have now completed all student
projects in this area. This work is summarised in Chapters 5 and 6. We have also ceased our
Kalman filter research (since no Eglin Air Force Base funds were available to transition support
of this work). Chapter 4 notes our final effort in this area. Our hierarchical symbolic processing
concept is noted in Chapter 12. It utilizes correlation filters and thus we are continuing research
in this area. This work is detailed in Chapters 7-11. After discussions with AFOSR, we have
made a considerable redirection of our research effort toward optical computing rather than
pattern recognition. Chapters 13-17 highlight five new research directions originated in 1986.
Theese include: relational graph processors, model-based processors, and analysis of the Hopfield
associative memory, new nearest neighbor data matrix associative processors, and distortion-
invariant associative processors. These represent four new optical approaches to advanced

computing.

In 1986, the Principal Investigator (PI) was quite active with various invited papers on
numerous topics: the IEEE Spectrum article (August 1986), an SPIE Institute Series paper on
scene analysis (5], an Optics News special issue article [7]. He also has been most active in

various conference organizations. He was Chairman of a hybrid image processing conference

(April 1986), Chairman of a digital image processing session (Janu.ry 1986), Chairman of a set

R A
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of six conference on robotics (October 1988), plus provided an invited paper at the ICALEO’86
conference. We have thus expended considerable effort to expose our work and AFOSR research

to a quite wide community.
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2. SUMMARY AND OVERVIEW

We aow provide a summary and overview of our 1986 research progress and highlight the

contents of Chapters 3-17 which detail 15 different aspects of our research.

.1 SPATIAL LIGHT MODULATORS (SLMs) (Chapter 3, Liquid

Crystal Television Correction)

SLMs represent the critical element in most optical processors. The liquid crystal
television (LCTV) emerged in late 1985 as a low-cost and viable optical SLM. Our work [8] on
this device included practical remarks about bias voltage selection and polarization reorientation,
the demonstration of interpolation on the device by single sideband filtering, and the selection of
beam balance ratio spatial filtering techniques using such s sampled input SLM. Our primary
contribution was the use of a new phase conjugate hologram correction technique to correct for
the phase nonuniformity of the device. This allows its use in a space integrating correlator, as

we experimentally demonstrated.

2.2 FACTORIZED KALMAN FILTER (KF) ALGORITHM
(Chapter 4)

This chapter concludes our AFOSR work in this area [15]. ONR/SDI support for this may
sllow us to continue some of this work. This 1986 work involves a new parallel vectorized and
factorized KF algorithm. This is very suitable for optical processing, since it requires a reduced
accuracy optical processor. This is achieved since the algorithm does not entail processing full

matrices, nor does it involve square root and other time-consuming operations. We have detailed

how this algorithm can be employed on an optical processor.




AF-ODP-86: p. 5

2.3 FEATURE EXTRACTION (MOMENTS, FOURIER
TRANSFORMS AND HARTLEY TRANSFORMS) (Chapters
5 and 6)

This work concludes our intrinsic (or feature extraction) OPR (optical pattern recognition)
research. We feel that optics has s considerable role in low-level vision, where the input data
rate is the highest and where the number of operations per input data pixel or point is the
largest. One thrust of this research has been to provide more features from one optical feature
space. This is attractive since separate optical architectures are then not necessary for each
desired feature space. Chapter 5 considers an optical Fourier transform feature space (this is the
simplest feature space that one can optically generate). We show in this chapter how the
moments can be obtained from this feature space [18]. We also provide a new digital filtering
technique and algorithm to sid calculation of moments from Fourier coefficients [17]. Chapter §
summarizes this work [18] and conference paper [19] provides new simulation results on detector

area effects and other results using this feature space.

The basic architecture involves an optical Fourier transform system with and without a
linear  mask present. The Fourier transform produced by this system is sampled, and an
approximate derivative is digitally produced by a differentiating finite impulse response filter
using » new algorithm and techniques. The associated moments are then assembled from these
samples. Techniques to achieve this with and without a linear £ mask are noted. In total, 21
samples of the Fourier transform are used to produce 21 moments. For the case of symmetric
inputs, we find the odd order moments above third order are in error by over 7%. For
asymmetric inputs (these are typical of most real objects), all moments up to eighth-order are
accurate within 2%. We found that the sampling of this system was optimal at 1/4L (where L

is the size of the input). We also found that as the digital filter length increases, the number of

usable moments also increases (with a filter length of 15 being adeq '« for all moments up to
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order 5). Detector area effects were also considered (such as area sampling, which was found to
be a small negligible error compared to the filter length effect). Concerning detector dynamic
range, we found that a 16-bit A/D converter was adequate. Our noise analysis showed that
approximately 0 dB input plane SNR could be tolerated. Our initial results showed very good
separation of different tool parts for different rotated and translated versions of these input

images.

We also provided a journal paper [4] in 1986 that detailed the computer generated

hologram fabrication of a wedge ring detector with experimental data on this system included.

We have also [24] detailed how one can obtain the Hartley transform from the Fourier
transform and how one can obtain moments from the Hartley transform (Chapter 6). This
implementation technique is quite attractive since no additional mask is now required. This
arises because the Hartley transform is real. The Hartley transform has other attractive
properties as well. These are discussed in the aforementioned reference. We have also developed
a new algorithm to recursively calculate all moments from the n-derivatives of the Hartley
transform at the origin. This thus represents additional work associated with producing various

feature spaces from and on the same optical processor.

Paper [25] discusses other uses for this system and proves that all geometrical moments can
be calculated recursively from the partial derivatives near the origin in the Hartley transform

intensity pattern.

2.4 APPROACHES TO LARGE-CLASS ANALYSIS PROBLEMS
(Chapters 7 and 12)

As noted in Chapter 1, our approach we consider for advanced processors involves a

hierarchical symbolic correlator. The basic concepts of <nch a processor [21] are advanced in
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Chapter 12. They involve the use of multiple hierarchical levels of different advanced distortion-
irvariant filters. This yields a unique symbolic processor, whose outputs are the spatial

representation of the input data for different correlation filters.

In 1988, various aspects of iconic filters were studied and several new concepts emerged.
Chapters 7-10 detail these results. In Chapter 7, we analyze the simplest filter (an equal
correlation peak (ECP) filter) assuming Gaussian and exponential image models for the
correlation functions [22] with attention to the large-class problems. Various effects (space
bandwidth product, in-plane scale and rotation distortion, noise, and the number of training
images) are investigated in terms of the output SNR for an ECP projection synthetic
discriminant function (SDF). Quantitative dats on all issues are advanced. Similar results are
obtained for both image models. This is encouraging, since the results should thus be extendible
to more general models and to real imagery. We also find that as the number of training images
increases, the best SNR decreases and the worst-SNR increases. We also find larger differences
between the best and worst-case SNR as the space bandwidth product increases. These results
provide us with many useful guidelines:

1. increases in the training set size (beyond some value N) will cause little improvement,

2. more training set images are useful for larger space bandwidth product images,

3. smaller space bandwidth product images may yield higher SNR outputs when the
number of training images N is limited.

4. for each N selected, there is an optimum space bandwidth product.

We plan to employ these results in our future hierarchical symbolic processor research.

Our 1000 class OCR (optical character recognition) results [14] represent the first case
study dsta on a large class optical processor. The first multi-level and multi-filter optical

processor studies are included in this work. Also included are the first attention to the effects of

s large number of object classes (as occurs in the advanced inference and optical computing and

0 L") R atata A e WORER A S S %R MR SRS PR o Fal SR TR Mt S e ——
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Al (artificial intelligence) processors using knowledge bases, that we consider). These results
should be most attractive and appropriate for advanced optical Al, symbolic, and optical

computing architectures.

2.5 NEW ICONIC FILTERS FOR HIERARCHICAL
PROCESSORS (Chapter 8-10)

Chapter 8 details our minimum variance SDF iconic filter [23). This theoretical study
advances the case of a linear combination filter and when such a filter is best, and the
performance of the conventional SDF in the presence of colored (real) noise (versus its
petfor!ximce in white Gaussian noise). It also advances cases of a nonlinear discriminant
function. We constrain the integrated intensity of the filter in all images to be unity (rather
than sssuming s linear combination filter). For the case of white noise, we found that the filter
that minimizes the output noise variance is the linear combination ECP projection SDF that we
previously developed. In colored noise, the optimal filter is a different linear combination filter
function. The inverse of the covariance matrix C of the noise is required to obtain this optimal
SDF. This covariance matrix inverse is not always easily obtained. Approximations to it are
one of various future research topics possible. The suboptimality of the conventional ECP-SDF

in colored noise is also quantified in this chapter.

We also devised (1] new Fisher and mean square error (MSE) filter functions (Chapter 9).
These filters use a reduced orthogonal basis function set and conventional pattern recognition
synthesis techniques. They are fabricated such that conventional parameters for pattern
recognition are optimized. This is attractive from a theoretical standpoint. These filters also
offer promise for fabricating reduced dynamic range and special (i.e. binary and phase only)

filter functions.

As noted at the outset, these various filter functions are planned to play a significant role




AF-ODP-86: p. 9

in our advanced hisrarchical correlator aad icomic filter a8 well as symbolic processor
architectures and algorithms (Chapter 12).

New correlation filters and peak to sidelobe ratio (PSR) filters (Chapter 10) that are
superior to the original projection SDF filters were aleo detailed [11]. The projection filters
constrain oaly the peak value of the correlation function. The correlation filters comtrol the
shape of the correlation function and the PSR filters provide easily detectable correlation peaks.
These three filters are employed in our hierarchical correlator architecture and concept (3,22].

This tesk study coacerms the number of amplitude and phase levels required in a
correlation filter [20]. Large class problems are cossidersd. We find that phase-oaly filters are
inferior for discrimination and in large class cases. Several amplitude levels are found to

significantly improve performanace.

2.7 OPTICAL ARTIFICIAL INTELLIGENCE (Chapters 13-17)
These chapters advaace four new concepts for advaaced optical computing. This work
involves a relational graph processor (2,12]. This also includes the concept of an optical linear
discriminaat function, techniques to orgasise o knowledge base, and the comcept of a parallel
data base search (Chapter 13). Our work has also advanced the first optical wee of a model
besed representation [6] (Chapter 14) for input objects. Advances in graphics caa be expected to
make this approach most attractive, especially for advanced large data bese casss. It is very
sttractive in terms of computer memory requirements, filter generatioa for correlators and for
sssociative processor memory sysiems as detailed elsewhere (Chapter 12). We coaducted
detailed initial studies [26] that noted severe storage problems with the Hoplield associative

memories aad that the nature of the input data to sach processors was quite restrictive aad was

B
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thus 2ot the general vectors required for pattern recognition (Chapter 15). We then advanced a
data matrix nearest neighbor associative processor (27] that is preferable (Chapter 16). Our final
comtribution [13] has involved distortion-invariant associative processors (Chapter 17). This

work includes the first quantitative data on such processors, new synthesis techniques for these

processors and new synthesis techniques to improve their memory capacity. One general paper
on this work [9] was published in 1986. Attention to optical processing techniques for range

image data were also advanced [10]. Seversl invited papers at the January 1987 SPIE conference

on this area will be available shortly.
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