
-A181 57 NTEGRATED INFORMATION SUPPORT SYSTEM (IISS) VOLUME 5 1/4
COMMON DATA MODEL S (U) GENERAL ELECTRIC CO
SCHENECTADY NY PRODUCTION RESOURCES CONSU

UNCROLLINS ET AL Si NOV 85 U--62814i891 F/G 5/2

mmmnmmmmmsom
mommmmmmmmnE/Ill/EEll/IllE
EhhhEElhEElhhE
mhhlhlhlhlhhhE
EIIIIEEEEEEEEE

wow

DIX FILE Coey ...

AFWAL-TR-86-4006
Volume V
Part 1

INTEGRATED INFORMATION
SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 1 - CDM Administrator's Manual

General Electric Company
IC Production Resources Consulting

One River Road
U Schenectady, New York 1234500

Final Report for Period 22 September 1980 - 31 July 1985

I1(November 1985

Approved for public release; distribution is unlimited.

PREPARED FOR:

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES)7
AIR FORCE SYSTEMS COMMAND JUN191987
WRIGHT-PATTERSON AFB, OH 45433-6533

NOTICE

When Government drawings. specifications, or other data are used for any purpose other than
in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the
government may have formulated. furnished, or in any way supplied the said drawings.
specifications. or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any way be related
thereto.

This report has been reviewed by the Office of Public Affairs (ASDIPA) and is releasable to the
National Technical Information Service (NTIS) At NTIS. it will be available to the general
public, including foreign nations.

This technical repo has been reviewed and is approved for publication.

5 /9/"
DAYID L.JLI ON' PROJECT MANAGER DA TE

WIGHT PA ERSON AFB OH 45433

FOR THE COMMANDER:

SHUMAKER, BRANCH CHIEF DATE
AFWAL/ML TC
WRIGHT PATTERSON AFB OH 45433

"If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W PAFB, OH
45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security Cnnqjfrm*f ,n4
contractual obligations, or notice on a specific document

.'.J. F I

Uaclssiid A4IA mu'~a.UM 620141001
S ITU" C.AUS' -.CAh~~ e.0 rOf T-aSO ORS ~i 7 1 November 1985

REPORT DOCUMENTATION PAGE
I& 46s1oar SgCg.aTv CI.A#Sif #CATION to ag$?A-CTIvB 41141AILIGS

Approved for public release;
3% Of C ASS if C~ATeIs./9@wbs O&Sste IC.SI OWLS distribution is unlimited.

d. 1IPgaP@Si..Q O4afbaZAT1#4 49PORT OWN01411 S. MWsa?I~oi.5 OmGAIIIZATIOu095 M ORT*1MS fti&

AFVAL-TR-66-4006 Vol V. Part 1

GA& %&A& OF Pkimap a ORAIaZATION Ii OPPICK SYMBOLI& 2.. AWK Of u004OkiNo'?C 5ft5ANAION

Production Resources Consulting I_______________________

6L ASOSIKS (iff'. 84112 4111 ZIP Cddue 76. A*005KM (C". Sand ZIP Caw

Scheectay. IT 1345VPAPB. OH 45433-6533

46 kaASo 0WOP~iSI.@ISP@.SSOSI OPP OCRSVMSO& S. PROCuU119911 NSI40= IDr5D Stir OiCAVIit tWUMS1 A

Air Force 8syls. Command. USAF r OVAL/NL1C 733615-DO-C-SI 55

&LA0 19oas OCee.5fVw. ,OmdZI ak to Soucs a. eowDINGoo

Vright-Pattervoi an., Ohio 45433 I-MNT10. 61.So o

I TowiI 7500 62 01

(See Reverse)I

12. 95A. A £UYWSO
Rollins. D. Loomis, H. Mogan. J. Leifeste, B.

13& ,VPI Of m9PON.? Time tgCoveaso wa OATS OF AIPOS7 (yr..me. AW is 59 COUT.

Flaal Y..halleAl S"*Tt 22 Sept 1040 - &I ftlylos 1~ 1985 November 3,02
IsS UPPLIMINTAIRIV10?AIO00 The ompulter toftware contained herein are theoretical and/or

ICAXProjct riorty 601references that In so way reflect Air Force-wownd or -developed

IT COSATO 00015 v.SUSAC Tathe tconmag on oinw dWew&. a" awash "~ 6iw aamt,.

fillLo *0U.OS(1305 0905

is SBTNACY ocaft an arw Of dfmv din 40M aft "p aer& soma")

~The Common Data Model Processor (CDMP) is a mechanism by which application
programs can retrieve and update data without knowing where or how the data
are stored. The CDII (Common Data Model) is a database where schemas and
mappings for data access are stored. This is a user manual for the CDI
Administrator. It describes the philosophical and practical objectives
of the CDII Administrator, the design~±.4P. anohfsesneddt
enter and maintain data in the CDII. --

20 SBuTeOt*VAe.A9161TI' Of 4STRa*CT ill AOS'aAC S1Crni? C&*.S5,9CATOh

60t.=§lIsWmUD.IWIVBX W1 AS OPmT. C:DT .i SQc C3s Unclassifiled

00 FORM 1473.83 APR 901sroia... I &A% nIOS 066Sa. ucasfe
5SarmWft C6.AM1111CATIO00 09 ?uNIS PACE

' ."

11. Title

Integrated Information Support System CuISS)
Vol V -Common Data Model Subsystem
Part 1I CDM Administrator's Manual

DTIC TAB

tjfj

UM 620141001

1 November 1985

PREFACE

This user's manual covers the work performed under Air
Force Contract F33615-80-C-5155 (ICAM Project 6201). This
contract is sponsored by the Materials Laboratory, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Gerald C.
Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady, New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department,
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer.
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACOM) state-of-the-art literature

search.

General Dynamics/ Responsible 'for factory view
Ft. Worth function and information

models.

iii

UN 620141001
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (IITRI)

and information models of
small and medium-size business.

North American Rockwell Reviewer.

Northrop Corporation Responsible for factory view
function and information
models.

Pritsker and Associates Responsible for IDEF2 support.

SofTech Responsible for IDEFO support.

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BMAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CDM) implementation and

part of the CDM design (shared
with DACOM).

D. Appleton Company Responsible for the overall CDM
(DACOM) Subsystem design integration

and test plan, as well as part
of the design of the CDM
(shared with CDC). DACOM also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

iv

UM 620141001
1 November 1985

Subcontractors Role

Digital Equipment Consulting and support of the
Corporation (DEC) performance testing and on DEC

software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(McAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programming the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBM.

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became McCormack & Dodge) the MRP II package (PIOS) that

they supplied.

SofTech, Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology, their contributing
activities and responsible projects are as follows:

Contractors ICAM Project Contributing Activities

Boeing Military 1701, 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BMAC) Transfer to Integrated

Sheet Metal Center
(ISMC).

v

T' ' 46r MINIM' " ' UM

UM 620141001
1 November 1985

Contractors ICAM Project Contributing Activities

Control Data 1502, 1701 IISS enhancements to
Corporation (CDC) Common Data Model

Processor (CDMP).

D. Appleton Company 1502 IISS enhancements to
(DACOM) Integration Methodology.

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements.
Company (HAC)

Structural Dynamics 1502, 1701, IISS enhancements to
Research Corporation 1703 User Interface/Virtual
(SDRC) Terminal Interface

(UI/VTI).

Systran 1502 Test Bed enhancements.

Operation of Test Bed.

vi
1

UM 620141001

1 November 1985

TABLE OF CONTENTS

Page

SECTION 1.0 INTRODUCTION 1-1
1.1 Managing Data as a Corporate

Resource 1-1

SECTION 2.0 CDM OVERVIEW 2-1
2.1 The Fundamental Approach 2-1
2.1.1 The Three Schema-Architecture 2-1
2.1.2 Representation of the Three

Types of Schemas 2-5
2.1.3 Integration Methodology 2-6
2.1.4 Contributions to IRRIASSPA 2-9
2.2 Basic Components of the Design 2-10
2.2.1 The CDM Database 2-10
2.2.2 CDM 2-11
2.2.3 The CDM Processor 2-11

SECTION 3.0 RESPONSIBILITIES OF THE
CDM ADMINISTRATOR 3-1

3.1 Establishing Data Standards 3-1
3.2 Maintaining the CDM 3-1
3.3 Protecting the CDM 3-1
3.4 Facilitating Use of the CDM 3-2

SECTION 4.0 MAINTAINING THE CONCEPTUAL SCHEMA 4-1
4.1 Methodology Overview 4-1
4.1.1 CS Structure 4-1
4.1.2 Basic Approach 4-4
4.1.3 Modeling Forms 4-4
4.2 Building the Initial CS 4-16
4.2.1 Phase 0: Starting the Project 4-16
4.2.2 Phase 1: Defining Entity Classes .. 4-20
4.2.3 Phase 2: Defining Relation

Classes 4-22
4.2.4 Phase 3: Defining Key Classes 4-25
4.2.5 Phase 4: Defining Monkey Attribute

Classes 4-33
4.3 Expanding the CS 4-35
4.3.1 Phase 0: Starting the Project 4-36
4.3.2 Phase 1: Defining Entity Classes .. 4-38
4.3.3 Phase 2: Defining Relation

Classes 4-40
4.3.4 Phase 3: Defining Key Classes 4-42

vii

UM 620141001

1 November 1985

TABLE OF CONTENTS (Continued)

Page

4.3.5 Phase 4: Defining Nonkey Attribute
Classes............................ 4-54

SECTION 5.0 MAINTAINING THE CDM......................5-1
5.1 Methodology Overview...................5-1
5.1.1 Using XDDL with the CDX Tables ... 5-1
5.1.2 Direct Loading of the CDM Tables 5-3
5.2 Loading the Initial CS Description 5-24
5.2.1 Direct Loading of the

CDM Tables......................... 5-24
5.2.2 Loading the CS with the NDDL........5-25
5.3 Modifying/Deleting CS Elements........5-26
5.3.1 Entity Class Changes................5-29
5.3.2 Attribute Class Changes.............5-30
5.3.3 Attribute Use Class Changes.........5-32
5.3.4 Key Class Changes5-33
5.3.5 Key Class Member Changes............5-34
5.3.6 Relation Class Changes..............5-34
5.3.7 Inherited Key Class Changes.........5-36
5.3.8 Inherited Attribute

Class Changes...................... 5-37
5.3.9 Summary............................. 5-38
5.4 Updating the CS Tables in the CDM . 5-38
5.4.1 Direct Updating of the

CS CDM Tables...................... 5-39
5.4.2 Updating the CS CDX Tables

with the NDDL.......................5-46

SECTION 6.0 MAINTAINING INTERNAL SCI{EMAS
AND MAPPINGS................*............6-1

6.1 Methodology Overview..................6-1
6.1.1 IS and CS-IS Mapping Structure ... 6-1
6.1.2 Basic Approach...................... 6-2
6.1.3 IS Modeling Forms....................6-16
6.1.4 NDDL Commands for

Internal Schema.....................6-25
6.1.5 Loading the CDX Tables..............6-30
6.2 Modifying/Deleting IS Elements

and CS-IS Mappings....................6-40
6.2.1 Database Changes.................... 6-43
6.2.2 Database Area Changes...............6-46
6.2.3 Record Type Changes.................6-47

viii

UM 620141001

1 November 1985

TABLE OF CONTENTS (Continued)

Page

6.2.4 Database Area Assignment Changes .. 6-51
6.2.5 Data Field Changes 6-53
6.2.6 Record Set Changes 6-60
6.2.7 Record Set Member Changes 6-62
6.2.8 Summary 6-64
6.3 CODASYL Databases 6-65
6.3.1 CODASYL-Specific Considerations ... 6-65
6.3.2 Building a CODASYL

IS and CS-IS Mapping 6-67
6.3.3 Building a CODASYL IS and CS-IS

Mapping with NDDL 6-74
6.3.4 Modifying a CODASYL IS and CS-IS

Mapping Objective 6-75
6.4 Relational Databases 6-80
6.4.1 Relational-Specific

Considerations 6-80
6.4.2 Building a Relational Table IS and

CS-IS Mapping 6-84
6.4.3 Building a Relational Table IS and

CS-IS Mapping with NDDL 6-86
6.4.4 Modifying a Relational Table IS and

CS-IS Mapping 6-87
6.4.5 Modifying a Relational Table IS and

CS-IS Mapping with NDDL 6-90
6.5 IMS Databases 6-91
6.5.1 IMS Specific Considerations 6-91
6.5.2 Building an IMS IS and CS-IS

Mapping 6-94
6.5.3 Building an IMS IS and CS-IS

Mapping with NDDL 6-99
6.5.4 Modifying an IMS IS and CS-IS

Mapping 6-100
6.5.5 Modifying an IMS IS and CS-IS

Mapping with NDDL 6-109
6.6 VSAM Files 6-111
6.6.1 VSAM-Specific Considerations 6-111
6.6.2 Building a VSAM IS and CS-IS

Mapping 6-112
6.6.3 Modifying a VSAM IS and CS-IS

Mapping 6-114
6.7 Sequential Files (Flat Files) 6-117

ix

UM 620141001

1 November 1985

TABLE OF CONTENTS (Continued)

Page

6.7.1 Sequential-Specific
Considerations 6-117

6.7.2 Building a Sequential File IS
and CS-IS Mapping 6-117

6.7.3 Modifying a Sequential File IS and
CS-IS Mapping 6-120

SECTION 7.0 MAINTAINING EXTERNAL SCHEMAS
MAPPINGS 7-1

7.1 Methodology Overview 7-1
7.1.1 ES and CS-ES Mapping Structure 7-1
7.1.2 Basic Approach 7-1
7.1.3 Modeling Forms 7-11
7.1.4 CDM Tables and ES NDDL 7-12
7.2 Building an ES and CS-ES Mapping 7-14
7.3 Modifying/Deleting ES Elements and

CS-ES Mappings 7-16
7.3.1 User View (ES) Changes 7-18
7.3.2 Data Item Changes 7-19
7.3.3 Summary 7-20

APPENDIX A GLOSSARY A-1

APPENDIX B REFERENCES B-1

LIST OF ILLUSTRATIONS

Figure Title Pag

1-1 Data as an Integral Part
of the Decision-Making Process 1-3

2-1 Two Fundamentally Different
Views of Data: Logical and Physical .. 2-3

2-2 Direct Mapping of Logical and
Physical Views 2-3

2-3 The Three-Schema Architecture 2-5
4-1 Relation Classes Form 4-7

x

N 5. N

UM 620141001

1 November 1985

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page

4-2 Relation Classes Form Example 4-8
4-3 Owned Attribute Classes Form 4-11
4-4 Owned Attribute Classes

Form Example 4-12
4-5 Inherited Attribute Classes Form 4-14
4-6 Inherited Attribute Classes

Form Example 4-15
4-7 Refinements of Nonspecific

Relation Classes Example 4-57
4-8 Triads and Other Dual-Path

Structure Example 4-58
4-9 Migration Through

Two Relation Classes Example 4-59
4-10 Guidelines for Determining Key

Classes of Dependent Entity Classes .. 4-60
5-1 NDDL Commands 5-2
5-2 Owned Attribute Classes Form Example .. 5-5
5-3 Inherited Attribute Classes

Form Example 5-8
5-4 Entity Class Glossary Form Example 5-11
5-5 Inherited Attribute Classes

Form Example 5-14
5-6 Owned Attribute Classes Form Example .. 5-17
5-7 Inherited Attribute Classes

Form Example 5-18
5-8 Owned Attribute Classes Form Example .. 5-19
5-9 Inherited Attribute Classes

Form Example 5-20
5-10 Relation Classes Form Example 5-23
5-11 Impact of Conceptual Schema Changes ... 5-28
6-1 Entity Class/Record Type Mapping 6-3
6-2 Join Examples 6-10
6-3 Join Structures 6-11
6-4 Record Type/Entity Class

Mapping Form 6-18
6-5 Record Type/Entity Class

Mapping Form Example 6-19
6-6 Record Type Join Structures Diagram ... 6-20
6-7 Record Type Join Structures

Diagram Example 6-21
6-8 Data Field/Attribute Use

Class Mapping 6-23

xi

UN 620141001

1 November 1985

LIST OF ILLUSTRATIONS (Continued)

Fifure Title Page

6-9 Data Field/Attribute Use Class
Mapping Example........................ 6-24

6-10 Set Type/Relation. Class Mapping.........6-26
6-11 Set Type/Relation Class Mapping

Example................................ 6-27
6-12 Data Field/Attribute Use Class

Napping Example........................ 6-32
6-13 Record Type Join Structure

Diagram Example........................ 6-35
6-14 Record Type Entity Class

Mapping Example........................ 6-37
6-15 Set Type/Relation Class

Napping Example........................ 6-39
6-16 Impact of Internal Schema Changes.......6-42
6-17 Incomplete Join Structure Example.......6-73
6-18 Relational Implementation of the

Conceptual Model....................... 6-83
7-1 Data Item/Attribute Use Class

Mappings............................... 7-3
7-2 ES-CS Join Examples......................7-7
7-3 ES-CS Join Structures....................7-9
7-4 Impact of External Schema Changes.......7-18

xii

UM 620141001
1 November 1985

SECTION 1

INTRODUCTION

The purposes of this document are several and include:

a) Describing the philosophical and practical objectives
of the Common Data Model (CDM) Administrator;

b) Discussing the CDM itself, its underlying design, and
its role in the IISS environment;

c) Describing in detail the steps necessary in entering
and maintaining data kept in the CDM.

After reading and understanding this document, the CDM
Administrator should not only be able to collect, enter, and
maintain CDM-related data, but also be able to understand the
reasons why such activities are performed.

The NDDL statements used to perform the actual CDM
maintenance activities are described in detail in the NDDL User

Guide.

1.1 Managing Data as a Corporate Resource

Managing data as a corporate resource is a philosophy
about the importance of data to an organization. The approach
recognizes that data are assets to be managed along with the
other more generally recognized resources of an enterprise,
including its personnel, inventories, capital, and so forth.
Organizations spend tremendous sums of money collecting and
manipulating data, trying to extract information needed to
support decision making. The CDM Administrator has as one of
his or her primary objectives the preservation of that
continuing, substantial investment in data resources. The CDM
Administrator plays a major role in protecting and properly
managing that investment by managing common data rather than
just managing applications that access data.

Data management includes all the activities that ensure
that quality data are available to produce needed information
and knowledge. The objective of data management is to keep data
assets resilient, flexible, and adaptable to supporting
decision-making activities in the business. Data management
responsibilities include: 1) the representation, storage, and

1-1

UM 620141001
1 November 1985

organization of data so that they can be selectively and
efficiently accessed, 2) the manipulation and presentation of
data so that they support the user environment effectively, and
3) the protection of data so that they retain their value.

The philosophy of the CGD? recognizes that data are
absolutely necessary to the decision-making cycles of
organizations (Figure 1-1). Individuals must no only be able to
collect and retain data for their own use, but also be able to
share data and pool their knowledge resources. The ability to
correlate information across traditional applications boundaries
and to provide information that supports all levels of decision
making, from operational through tactical through strategic, is
increasingly important as management at all levels is becoming
more aware of the potential power of information systems.

The CDM provides the capability to pull the enterprise's
database resources together to form an integrated, common source
of information to support decision making.

The objectives of data management include the following:

* Independence of data access from data descriptions
* Increased data accessibility
0 Improved data integrity
* Improved data shareability
0 Improved data resiliency
* Improved data administration and control
* Improved data security
* Improved performance

The CDM Administrator needs to understand each of these
objectives.

Independence between data access and data descriptions
improves control over the data descriptions, facilitates
standardization of data-naming conventions, and reduces the
programming effort required to accommodate modified data
descriptions. Data independence is perhaps the single most
important factor in determining the long-range success of a
data-driven environment.

1-2

IS E CMLA CA L B Ill,:!,Ii

UM 620141001
1 November 1985

K now ledge l Decisions

Actions

Information Facts

0 0 0 0
0 0 0

Data Pool

Figure 1-1. Data as an Integral Part of the Decision Making
Process

Data accessibility refers to the capability for a user to
extract needed information from the data resource. Data
accessibility is enhanced by user-friendly interface languages
and well designed screens. Good accessibility is characterized
by being able to relate data in many different ways to produce
information, and by being able to represent that information in
a variety of suitable forms. Data accessibility is improved by
the CDM in its support of multiple access paths and retrieval
sequences through the physical databases. Programming effort
for data manipulation is decreased and cost-effective, general-
purpose query facilities such as the NDML become possible.

Data integrity is essential to maintain the quality of the

1-3

UM 620141001
1 November 1985

data resource. Data integrity is measured by the completeness
and consistency of the data resource. Does it contain the data
that are relevant to the decision-making needs of the user?
Does it contain all required interrelationships among types of
data, and are all consistency constraints satisfied?

Data shareability is needed to keep common data truly
common. Without shareability, data proliferate and their
quality becomes uncontrollable. Without shareability, data are
private and personal- their quality is each individual user's
responsibility. The main difficulty with this distribution and
redundancy of control is that it results in no control at all.
Improved shareability can be achieved by supporting multiple
access paths through the physical databases, thereby enabling
them to serve many diverse needs. Shareability is also achieved
by separating individual user's views of the data resource from
the actual physical implementation of databases.

Data shareability refers not just to database contents, but
also to logic that accesses and manages data. Reduced data
duplication streamlines data access, reduces the programming
effort required for updating data, and reduces the potential for
inconsistent data. Reduced redundancy in the data management
effort improves the productivity of data processing personnel.

Data recoverability is needed to keep the data resource
resilient in the wake of errors. Error conditions need to be
detected and corrected. Better yet, errors should be prevented
from occurring in the first place. Part of the difficulty in
providing a resilient data resource is continuing to make the
data available to users while recovering from errors.

The CDN Administrator should help to ensure that the data
resource continues to satisfy users' information needs, even as
those needs change through time. Many organizations have
successfully established data administration functions to help
develop and protect data assets. The CDM Administrator plays a
similar role for the integrated, overall data resource.

Data security is essential to prevent unauthorized access
to data. Certainly not all environments require the same,
elaborate security schemes, but nearly all organizations' data
assets need to have some degree of access protection. Some data
are wide open to public retrieve-only access; others require
strict authentication to provide retrieval. Many databases have
more stringent restrictions on accesses that will change
database contents than on accesses that only read database

1-4

UN 620141001
1 November 1985

contents.

Performance of the data resource has two facets: efficiency
and effectiveness. Efficiency is a measure of how well the data
system utilizes physical computer support, while effectiveness
is a measure of how well the data system meets users'
information needs. The characteristics are closely related; for
example, a user may be totally dissatisfied with the system if
response time is measured in hours rather than seconds.
Response time is generally considered to be an efficiency
measure, but it certainly has an impact on effectiveness.

1-5

....................A*.i, .

UM 620141001
1 November 1985

SECTION 2

CDM OVERVIEW

2.1 The Fundamental Approach

2.1.1 The Three-Schema Architecture

A key to implementing effective data-oriented environments
lies in a framework that is called the Three-Schema
Architecture. This approach was proposed in the mid-1970s, then
developed, and finally published in 1977 in a report from a
committee of the American National Standards Institute - "The
ANSI/X3/SPARC DBMS Framework: Report of the Study Group on Data
Base Management Systems."

The basic concepts proposed in the report have the power to
lead us to more effective information resource management. They
are implemented in the CDN.

The Three-Schema Architecture is based upon several
fundamental facts:

* Computers and users need to be able to view the same
data in different ways

0 Different users need to be able to view the same data
in different ways

0 It is (more or less) frequently desirable for users
and computers to change the ways they view data

0 It is undesirable for the computer to dictate or
constrain the ways that users view data

Thus, it is necessary to be able to support different types
of views of a data resource. Users need to be able to work with
logical representations of data, which are independent of any
physical considerations of how the data are actually stored and
managed on computer facilities. Users view data in terms of
high-level entities, e.g., staff members, tools, vehicles,
products, orders, and customers. Meanwhile, computer
facilities, e.g., access methods, operating systems, and DBMSs,
need to be able to work with more physical representations.
They view data in terms of records and files, with index

2-1

UM 620141001
1 November 1985

structures, B-trees, linked lists, pointers, addresses, pages,
and so forth.

These requirements lead us to conclude first that there are
two fundamentally different types of data views: logical and
physical. The logical views are user-oriented, while the
physical views are computer-oriented (Figure 2-1).

A second conclusion is that there must be a mapping or
transformation between the logical and physical views. After
all, the ultimate objective is to enable users to gain access to
their data that reside on computerized media. This mapping
might be simple if there were only one user view and one
database, but that is not the real-world situation. Rather,
there are multitudes of user views and commonly many (sometimes
hundreds or thousands) databases in an enterprise.

Each user view could be mapped directly to the underlying
databases (Figure 2-2). This solution suffers, however, when
change is introduced in either type of view. If a physical
database is restructured on a disk to provide more efficient
performance, then the mapping to each of the user views that
references that database can be affected. If a logical view is
revised to present information in a somewhat different way, then
the mapping to each of the referenced databases may be affected.
Independence of logical and physical considerations would not
have been achieved, and we would find that physical computer
factors would constrain the ways that users logically view their
data. This is undesirable.

Using three-schema architecture terminology, "external
schemas" represent user views of data, while "internal schemas"
represent physical implementations of databases. Schemas are
metadata, i.e., they are data about data. As a simple example,
CUSTOMER-NAME and CHARACTER (17) are metadata describing the
data value CHRISTOPHER ROBIN.

To enable multiple users to share a data resource that is
implemented on potentially many physical databases, we insert
between the users' views and the physical views a neutral,
integrated view of the data resource. This view is called a
.conceptual schema" in three-schema architecture terminology.
Others sometimes call it an "enterprise view."

2-2

UM 620141001
1 November 1985

Logical Data Views Physical Data Views

Figure 2-1. Two Fundamentally Different Views of Data: Logical
and Physical

Database A
User View 1

Q3 Database B

User View 2

Database C

User View 3

Database D

Figure 2-2. Direct Happing of Logical and Physical Views

2-3

a.r

UM 620141001
1 November 1985

As the vehicle for data integration and sharing, the
conceptual schema also carries metadata for enforcement of data
integrity rules. It is extensible, consistent, accessible,
shareable, and enables the data resource to evolve as needs
change and mature.

Figure 2-3 illustrates the relationships between the three
types of schemas. The schemas and the mappings between them are
the mechanism for achieving both data independence and support
of multiple views. An internal schema can be changed to improve
efficiency and take advantage of new technical developments
without altering the conceptual schema.

The conceptual schema represents knowledge of shareable
data. There may be access controls and security restrictions
placed upon these common data, but they are not restricted to
access by only one user. The conceptual schema does not
describe personal data.

The scope of the conceptual schema expands through time.
The conceptual schema extension methodology continually expands
the conceptual schema to include knowledge of more shared data.
The external-conceptual mappings protect the external schemas
and the transactions/programs that depend on them from most
modifications incurred in evolving the conceptual schema.

Adding data to the integrated, common resource does not
start over in defining the data resource, nor does it create
another stand-alone database. Rather, development of its
database must examine questions of how those data relate to what
is already known by the conceptual schema. The result will be
an integrated data resource whose scope is expanded gradually.
It is absolute folly to approach integration of the data
resources of an organization all at once; the job must be taken
on piecemeal. The conceptual schema is the integrator.

The CDM contains all three types of schemas, as well as the
interschema mappings. It not only documents these metadata, but
also supplies appropriate metadata to support transaction
processing.

2-4

UM 620141001
1 November 1985

Ex~ternal Internal
ema Schema 1

Internal
Schema 2

External Conceptual

Schema 3

External

Schema N Internal
jSchema 4

Figure 2-3. The Three-Schema Architecture: One Conceptual
Schema That Provides for Integration and
Independence of Many External Schemas and Many
Internal Schemas

2.1.2 Representation of the Three Types of Schemas

In the IISS, the Three-Schema Architecture is implemented
through the CDM facilities to store each of the three types of
schemas and the interschema mappings. An appropriate
representation mode has been selected for each of the three
types of schemas.

The conceptual schema is represented by an IDEF1 model. The
CDM stores this model in terms of entity classes, attribute
classes, and relation classes.

The external schemas are represented by tables. The user
views the common data resource in terms of flat, simple tables.
The mappings between these tables and the IDEFl model of the
conceptual schema are part of the CDM database.

The internal schemas are represented in terms of physical
database components, including record types and inter-record
relationships. The CDM Processor routines convert the users'
data access requests, which are phrased in terms of tables, Into
requests against the conceptual schema IDEFl model, then into
requests against the physical database structures described in
the internal schema part of the CDM.

2-5

Art.~*~N~*'".

UM 620141001
1 November 1985

2.1.3 Integration Methodology

The Integration Methodology is the set of procedures and
guidelines that are used to expand the conceptual schema and to
increase the sphere of common data available to support users
and applications. The schemas and schema mappings in the CDM
are built, maintained, and accessed using the Integration
Methodology and the CDMP.

The Integration Methodology is intended to guide the CDM
Administrator in building and maintaining the conceptual schema
and in keeping its mappings to the internal and external schemas
highly accurate. This methodology consists of a set of
techniques for building the conceptual schema in gradual
increments, for building external and internal schemas from
portions of the conceptual schema, for developing schema
mappings, and for keeping these various CDM components current.

The first step in populating the CDM is to select a portion
of the data and to document it in the conceptual schema. Then
external and internal schemas for those data are built and
mapped to the conceptual schema. Subsequently, other portions
of the data resource are incorporated into the conceptual
schema, and new external and internal schemas and mappings are
developed. The CDM is populated gradually, in increments,
rather than all at once. It evolves through time.

A conceptual schema is represented by a semantic data
model. The IISS uses the IDEF1 methodology, with certain
extensions from DACOM's Data Modeling Technique. (Subsequent to
the development of CDM subsystem, IDEF1 was formally extended.
See Appendix C for references.) The data model reflects
business policy, provides a rigorous view of the meaning of the
data resource, and is independent of the physical implementation
of the data resource.

Building a data model is a rigorous procedure, whose
objective is to discover and document the semantic data
structure inits most fundamental terms. The modeling is a
multi-step process that requires substantial input from users
who are expert in the subject area.

The fundamental steps of the CDM Integration Methodology
are as follows:

1. Identify the scope of the initial increment of the
conceptual schema.

2-6

UM 620141001
1 November 1985

2. Develop the data model for that initial increment of

the conceptual schema.

3. Load the data model into the CDM database.

4. Identify any physical databases or files within the
scope of data in the conceptual schema.

5. Load their internal schemas into the CDM database.

6. Build the conceptual-to-internal schema mappings for
the internal schemas loaded in Step 5.

7. Load the conceptual-to-internal schema mappings into
the CDM database.

8. Determine which users/application programs should have
external schemas mapped from the conceptual schema.

9. Design the external schemas identified in Step 8, and
their mappings to the conceptual schema.

10. Load the external schemas and external-to-conceptual
schema mappings into the CDM database.

11. Identify the scope of the next increment to the
conceptual schema.

12. Develop the data model for the next increment of the
conceptual schema.

13. Integrate the data model from Step 12 with the data
model of the existing conceptual schema.

14. Load the integrated data model into the CDM database.

15. Verify that the conceptual-to-internal and
external-to-conceptual schema mappings are still valid,
correcting them as needed.

16. Identify any additional physical databases or files
that are now within the scope of the extended
conceptual schema.

17. Load their internal schemas into the CDM database.

2-7

UM 620141001
1 November 1985

18. Build the conceptual-to-internal schema mappings for
the incremented portions of the conceptual schema.

19. Load the conceptual-to-internal schema mappings into
the CDM database.

20. Identify any additional users or application programs
that should be supported by the extended conceptual
schema.

21. Design external schemas to support the
users/application programs identified in Step 20, and
develop their external-to-conceptual schema mappings.

22. Load the external schemas and external-to-conceptual
schema mappings from Step 21 into the CDM database.

23. Repeat Steps 11 through 22 for each increment to the
conceptual schema.

The evolutionary strategy for the conceptual schema should
be developed early in the life of the above cycle. The strategy
should ensure that the common data resource evolves in a manner
that serves the enterprise's need for controlled, shared data.
One tactic is to define the initial scope by that of an existing
database that has a corresponding data model. Ideally, that
database would contain core information of high interest to the
target user community.

Perhaps the most important point to understand about the
CDM Integration Methodology is that the incorporation of
additional data into the common data resource MUST be done in
conjunction with the existing conceptual schema. No data can be
accessed using the CDM integrated facilities, including the
Neutral Data Manipulation Language, unless they are known to the
CDM. Adding data causes the conceptual schema to expand in a
consistent manner that enables integration to occur. By
contrast, adding data to an environment that does not use
conceptual schema technology just adds more fragmentation to
what is probably already at best an interfaced (not integrated)
system.

Applying the CDM Integration Methodology is not like
swallowing a pill. It requires precise knowledge of the
meanings of the data that are to be available in the integrated
common data resource. It means not just building IDEFl models
for thosedatabases, but also analyzing the models for overlap,

2-8

UM 620141001
1 November 1985

synonyms, homonyms, and all the incipient anomalies and quirks
that somehow have crept into our database structures over the
years. The cost is measured in man-months of effort; the
benefits are integration and a knowledge base that can be built
on and evolved in the future.

2.1.4 Contributions to IRRIASSPA

The use of the Common Data Model and the Three-Schema
Architecture allows an organization to benefit from
contributions to IRRIASSPA, which are part of the objectives of
the USA's Integrated Computer Aided Manufacturing (ICAM) project
to develop the Integrated Information Support System (IISS).
The contributions can best be summarized as follows:

Independence - the IISS allows the separation of the
description and manipulation oflogical data structures
from the actual physical data representations and isolates
implementation changes from user views and programs.

Relatability - the NDDL used in building the CDM allows
the CDM Administrator to define, modify, and maintain
relation-ships among data.

Resiliency/Recoverability - although not specifically
addressed by the CDM. the design of the CDM Processor
provides the ability to recover from failures without
damage to the data resource.

Integrity - is provided through the use of data integrity
constraints, which the application may specify and the CDM
Processor enforces.

Accessibility - the NDDL allows the definition of data
that resides not only in different databases but also on
different computers.

Security - not expressly addressed by the CDM.

Shareability - is provided by support of multiple user
views (i.e., external schemas) of the data resource.

Performance - the NDML. by use of the CDDM. allows data
from multiple resources to be addressed in a cost-
effective manner in a distributed environment.

Administration - by providing a means of documenting the

2-9

I-. _i .

UM 620141001
1 November 1985

meanings in the data resource and of providing a vehicle
by which consistency can be maintained even as the scope
of the CDM is extended. It also allows the maintenance of
information about data in different databases.

2.2 Basic Components of the Design

The Common Data Nodel(CDM) subsystem is comprised of three
components:

1. The CDM database, which is the database dictionary of
the IISS

2. A logical model of the CDM database called CDM

3. The CDM Processor (CDMP), which is the distributed
database manager of the IISS

This section will briefly discuss each of these basic
components and show how they interrelate, one with another.

2.2.1 The CDM Database

The CDM database is the database dictionary of the IISS.
It captures knowledge of the locations, characteristics, and
interrelationships of all shared data in the system. The most
significant feature of the CDM database is that it implements
the ANSI/X3/SPARC concepts of the three-schema approach to data
management. These three types of schemas are the conceptual
schema (CS), the internal schemas (IS), and the external schemas
(ES).

The conceptual schema describes a neutral, integrated view
of the shared data resource. There is one conceptual schema in
an enterprise. It is independent of physical database struc-
tures and boundaries and is neutral to biases of individual
applications. Each external schema represents a user or
application view of data. Requests are made against external
schemas. Each internal schema represents an external schema to
the local DBMS.

The CDM database is implemented as a relational database,
which presently resides on a VAX 11/780 computer. It is
accessed by the CDMP at compile-time to generate appropriate
local DBMS calls against internal schemas to process a user's
NDML request against an external schema.

2-10

UM 620141001
1 November 1985

The CDH database is represented logically using a semantic
data modeling technique called IDEF1. This method of data
modeling is a hybrid of the entity-relationship approach, the
relational model, and the Smith's 2D data abstraction approach.
This logical model of the CDM database is called CDMi.

2.2.2 CD1

CDMI is a model of metadata, i.e., data about data. It
gives the logical structure of the CDM database which maintains
the metadata. These metadata describe the meanings and
characteristics of user data.

The conceptual schema portion of the CDM1 model is related
to portions that describe internal and external schemas. An
internal schema describes a local database structure in just
enough detail to give the CDMP adequate information to generate
code that can be processed by the pertinent local DBMS. Because
one of the requirements of the IISS is that it provide inte-
gration of data in existing databases, the mappings between the
conceptual schema metadata and the internal schema metadata are
not simple. IISS does not have the luxury of supporting only
certain clean database structures. It is very likely that an
attribute may be represented by one or more data files, which
may be in different databases and even on different computers,
or by relationships between record types.

An external schema describes the portion of the conceptual
schema that is within the purview of a user or application. An
external schema is equivalent to a view in the relational model.
The conceptual-to-external schema mapping part of the CDMI is
straightforward. The present implementation of the CDM
subsystem supports any external schema that can be formed by
joining conceptual schema entities and selecting attributes.

Thus, the CDM1 model is a semantic data model that
describes the logical structure of the CDM database. The CDMI
represents the conceptual schema, the internal schemas and their
mappings from the conceptual schema, and the external schemas
and their mappings from the conceptual schema.

2.2.3 The CDM Processor

The CDMP is the distributed database manager of the IISS.
It builds on top of local DBMS services to provide data access.
The CDMP plays both a compile-time and a run-time role in the
processing of transactions. The compile-time component is

2-11

tz

UM 620141001
1 November 1985

called the CIDP Precompiler. The run-time components are called
the CDMP Distributed Request Supervisor (DRS) and the CDMP
Aggregator.

2.2.3.1 CDMP Precompiler

The CDMP Precompiler performs the following functions for
each data request:

1. Parses the request

2. Transforms the request from an external schema access
to a conceptual schema access

3. Decomposes the request into subrequests, each of which
accesses one internal schema

4. Determines an appropriate access path for each
subrequest generating code that can be processed by the
pertinent local DBMS

5. Generates code to transform any data to be extracted
from local databases from internal to conceptual schema
format (this code is called a Request Processor Packet
or RPP)

6. Generates code to transform any data results from
conceptual to external schema format (this code is
called a C/E Transformer or CEX)

7. Generates code to invoke appropriate RPPs and CEXs at
run-time, via calls to the NTM Subsystems

The CDMP Precompiler accesses the CDM database to find
metadata for the interschema transforms and integrity
constraints for update requests.

After successful precompilation of a user's program, which
contains imbedded data requests in a SQL-like language called
the Neutral Definition/Manipulation Language (NDML), the CDMP
has produced the following code modules:

1. Modified user program, which now contains calls to the
NTM, which will activate appropriate processes at
run-time.

2. One Request Processor (RP) per DBMS that manages data

2-12

UM 620141001
1 November 1985

to be accessed by the user program. Each RP contains
one or more RPPs.

3. One Conceptual-to-External Transformer (CEX), which
will deliver query results to the modified user program
at run-time.

2.2.3.2 Distributed Request Supervisor

There is presently one CDMP Distributed Request Supervisor

(DRS), which has responsibility for scheduling and coordinating
the various subrequests of user transactions. The DRS uses
request graphs produced by the CDMP Precompiler to determine
which operations are to be performed where. The DRS also uses
knowledge of communications costs and intermediate result
volumes in its algorithm for scheduling RPPs.

Request Processors always deliver results as relations.
The relations are operated upon by the Aggregators.

2.2.3.3 Aggregators

An Aggregator is called to perform a single function, e.g.,
a union or a join, on two sets of data, each of which exists in
a single sequential file. These data sets are the results of an
RPP or another Aggregator.

An Aggregator always deals with data in conceptual schema
format.

2-13

* . * .. 2

UM 620141001
1 November 1985

SECTION 3

RESPONSIBILITIES OF THE CDM ADMINISTRATOR

The role that the CDM Administrator plays in the IISS
environment is not unlike that of the database administrator in
that the CDMA is responsible for the following:

1. Establishing Data Standards

2. Maintaining the CDM

3. Protecting the CDM

4. Facilitating Use of the CDM

Each of these areas is of major importance to the
organization and a failure to properly administer either of
these areas of responsibility can cost the organization dearly.

3.1 Establishing Data Standards

One of the early roles of the CDMA is the establishment of
data standards. Part of this work has already been initiated
during the development of the CDMI. The work that remains is to
determine what types of standards to implement and to gain
acceptance for the use of these standards. It should be noted
that, without acceptable standards, it will be difficult, if not
impossible, for the CDMA to enforce any level of
standardization.

3.2 Maintaining the CDN

The CDMA must maintain the CDM. This entails the building
of the initial conceptual schema (CS). internal schemas (IS), CS
to IS mappings, external schemas (ES), and ES to CS mappings, as
well as extending the model and modifying and deleting elements
as needed. It is to be expected that the need for extending and
modifying the CDM will grow over time, slowly at first, then
growing rapidly as the benefits of the concept are proved before
leveling off after several years.

3.3 Protecting the CDM

One of the most important responsibilities of the CDMA is
the protection of the CDM against loss, theft, and corruption,

3-1

UN 620141001
1 November 1985

be it intentional or not. At issue is the substantial
investment that went into the development of the CDM and the
potential damage that can be caused to the enterprise should the
data fall into the wrong hands.

3.4 Facilitating Use of the CDM

The CDNA must make the CDN available to all those who can
potentially gain from the use of the CDM and have legitimate
reason to do so. This may involve making the CDM available on
other computers in the network. It also involves communicating
with the CDM user and potential users as to the contents and
performance of the CDN, as well as the usability of the data.
Part of this communication will involve solving problems and
answering questions and reporting the status of the CDM.

3-2

UM 620141001
1 November 1985

SECTION 4

MAINTAINING THE CONCEPTUAL SCHEMA

4.1 Methodology Overview

This section and its subsections (4.2 - 4.3) introduce the
methodology for building and updating a conceptual schema. The
portion of the CDM database that contains a conceptual schema is
described, and the basic approach to developing a conceptual
schema is presented. Detailed instructions for filling out the
modeling forms are included.

4.1.1 CS Structure

A conceptual schema is essentially a single IDEFl model
that describes all of the common data in an enterprise.
Consequently, its components are those of any IDEFi model:

Entity Classes
Relation Classes
Attribute Classes
Attribute Use Classes
Inherited Attribute Use Classes
Key Classes
Key Class Members

Detailed explanations of these can be found in the IDEFi
documentation. (Extensions to the IDEFl language, referenced in
Appendix C, simplify the IDEFl terminology used here.)

In addition to the usual metadata (data about data)
contained in any IDEFl model, the conceptual schema requires
certain new elements of metadata. Key class numbers are
assigned to enable alternate key classes for the same entity
class to be distinguished from one another. Tag numbers, tags
(names), and tag labels are assigned to enable attribute use
classes within the same entity class to be distinguished from
one another. Data types and sizes are identified for all
attribute classes.

The conceptual schema must conform to several rules that
cause the data relationships and descriptions to be as explicit
as possiblc. (Note: In these rules the phrase "any number"
includes the possibility of zero.)

4-1

W'W&I~. -*

UM 620141001
1 November 1985

1. Single-Owner Rule: An entity class can own any number
of attribute classes. Every attribute class is owned
by exactly one entity class.

2. Every entity class contains one or more attribute use
classes. Every attribute use class is contained in
exactly one entity class.

3. Every attribute class appears as exactly one attribute
use class in its owner entity class. An attribute
class can also appear as any number of attribute use
classes in any number of other entity classes. Every
attribute use class corresponds to exactly one
attribute class.

4. Every entity class has one or more key classes. Every
key class is for exactly one entity class.

5. Every key class is composed of one or more key class
members. Every key class member is in exactly one key
class.

6. An attribute use class can be used as a member of any
number of key classes for the entity class in which it
is contained. An attribute use class cannot be used as
more than one member of the same key class; i.e., every
member of a key class must be a different attribute use
class. An attribute use class in one entity class
cannot be used as a member of a key class for any other
entity class. Every key class member is exactly one
attribute use class.

7. An entity class can be independent in any number of
relation classes and dependent in any number. An
entity class cannot be both independent and dependent
in the same relation class. Every relation class has
exactly two entity classes: one independent, one
dependent.

8. A key class can migrate through any number of relation
classes in which its entity class is independent. A
key class cannot migrate through a relation class in
which its entity class is dependent or one in which its
entity class is not involved. Every relation class has
exactly one key class from the independent entity class
migrating through it into the dependent entity class.

4-2

UM 620141001
1 November 1985

9. Every relation class is a migration path for one or
more inherited attribute use classes, one for each
member of the key class that migrates through it.
Every inherited attribute use class has exactly one
relation class as its migration path.

10. Every member of the key class that migrates through a
relation class creates exactly one inherited attribute
use class in the dependent entity class for that
relation class. Every inherited attribute use class is
created from exactly one key class member.

11. Every attribute use class in an entity class represents
either one attribute class that is owned by that entity
class or one inherited attribute use class that
migrated into that entity class. Every inherited
attribute use class is represented by exactly one

,,' attribute use class.

12. Unique-Key Rule: No two entity instances in an entity
class can have identical values in the same
key class for that entity class. For a multi-member
key class, instances can have identical values for some
members, but not for all.

13. No-Null Rule: Every entity instance in an entity class
has a value in each attribute use class in that entity
class.

14. No-Repeat Rule: No entity instance in an entity class
can have more than one value in any attribute use class
in that entity class. This rule is equivalent to the
first normal form in the relational database model.

15. Full-Functional-Dependency Rule: No entity instance in
an entity class can have a value in an owned, nonkey
attribute use class that can be identified by less than
the entire key value for that entity instance. This
rule applies only to entity classes with multi-member
key classes and is equivalent to the second normal form
in the relational database model.

16. No-Transitive-Dependency Rule: No entity instance in
an entity class can have a value in an owned, nonkey
attribute use class that can be identified by the value
in another owned or inherited, nonkey attribute use
class in that entity class. This rule is equivalent to

4-3

UM 620141001
1 November 1985

the third normal form in the relational database model.

17. Smallest-Key-Class Rule: No entity class with a
multi-member key class can be split into two or more
entity classes, each with fewer members in its key
class, without losing some information. This rule is a
combination and extension of the fourth and fifth
normal forms in the relational database model.

4.1.2 Basic Approach (Onion Concept)

The complete conceptual schema for an enterprise contains
thousands of entity classes and a corresponding number of
relation classes, attribute classes, etc. It is much too large
to be built all at once. Instead, it must be built in
increments -- each one building on the prior ones, until the
conceptual schema is complete. The increments are like the
layers of an onion; as each layer is added, the onion gets a
little larger.

The process of "growing" the conceptual schema involves two
procedures, both of which are enhanced versions of the IDEF1
modeling procedure. The first is used to build the initial
increment only. The second is used to build each additional
increment. The only difference between the two is that the
second must be concerned about the integration of the new
increment with the existing conceptual schema. This involves
being continually aware of which components of the conceptual
schema are within the scope of the new increment and how any of
those components will be affected by the addition of the new
increment. These two procedures are in Sections 4.2 and 4.3,
respectively.

4.1.3 Modeling Forms

Because the methodology for maintaining the conceptual
schema is based on the IDEFI information modeling methodology,
it uses most of the IDEFI forms:

Source Material Log
Source Data List
Entity Class Pool
Entity Class Definition
Relation Class Matrix
Attribute Class Pool
Kit Cover Sheet
Entity Class Diagram (optional)

4-4

UM 620141001
1 November 1985

Relation Class Definition (optional)
Attribute Class Diagram (optional)
Entity Class/Attribute Class Matrix (optional)
Attribute Class Migration Index (optional)
Author Page Control Log (optional)
Index Control Log (optional)
Kit Control Log (optional)
Text Control Log (optional)
FEO Control Log (optional)
Entity Class Set Control Log (optional)
Entity Class/Function View Matrix (optional)

Please refer to the IDEF1 documentation for detailed
descriptions of these forms.

A few of the regular IDEF1 forms have certain shortcomings
that make them unsuitable for use in directly loading the
conceptual schema tables into the CDM database. The forms
listed below were designed to eliminate those shortcomings:

Relation Classes
Owned Attribute Classes
Inherited Attribute Classes

The rest of this section contains a detailed description
and two samples (one blank, one filled in) of each of these
forms.

NOTE:
When using the NDDL (see Neutral Data Definition Language
Users Guide - UM 620141100) for maintaining the conceptual
schema in the CDM database, names should be substituted
for any/all numbers on the modeling forms. A discussion
of the NDDL can be found in Section 5.1.1.

Relation Classes Form

Purpose:

To provide a single source of information about relation
classes that are to be described in the conceptual schema.

Instructions:

Fill in one or more pages for each entity class that is
independent in a relation class. List only those relation

4-5

UM 620141001
1 November 1985

classes in which the entity class is independent; do not
list any relation classes in which it is dependent. Do
not fill in a page for an entity class that is dependent
in all of its relation classes.

Form Area Explanation

1. Independent Entity Name of the entity class that is
Class Name independent in the relation

class. This will be the same for
all relation classes entered on a
page. It is included only to
make the entry readable; it is
not used in loading the
conceptual schema.

2. Relation Class Label Label of the relation class.
This is part of the unique
identification of a relation
class.

3. R.C. Card. Symbol for the cardinality of the
relation class.

4. Dependent Entity Name of the entity class that is
Class Name dependent in the relation class.

It is included only to make the
entry readable; it is not used in
loading the conceptual schema.

5. Dep. E.C. No. Number of the entity class that
is dependent in the relation
class.

6. Ind. K.C. No. Number of the key class in the
independent entity class that
migrates through the relation
class into the dependent entity
class.

7. Node Number of the entity class that
is independent in all of the
relation classes listed on the
page.

All other form areas correspond to areas on the regular

4-6

UM 620141001
1 November 1985

0

0
uLJ

C.

00

T
Lz

cz

L),

i

"4-

UM 620141001
1 November 1985

0z

w'

c -

IL 0

ww
0o 0~O

In tilt

E.)

c 0

32 2 1

4-8

UM 620141001
1 November 1985

Owned Attribute Classes Form

Purpose:

To provide a single source of information about owned
attribute use classes that are to be described in the
conceptual schema.

Instructions:

Fill in one or more pages for each entity class that owns
an attribute use class, either key or nonkey. List only
those attribute use classes that are owned by the entity

class; do not list any attribute use classes that are

inherited by the entity class. Do not fill in a page for
an entity class that contains only inherited attribute use
classes.

Form Area Explanation

1. Tag No. Tag number for the attribute use
class.

2. A.C. Name U Label Name, label, and any synonyms of
the attribute use class. The
name is listed first. The label
is enclosed in parentheses and
placed on the line below the
name. If the name and label are
identical, the label can be
omitted. If the attribute use

class has any synonyms, the term
"Synonyms:" is placed below the
name and label and the synonyms
are listed under it.

3. A.C. No. Attribute class number for the
attribute use class.

4. A.C. Definition Definition of the attribute use
class.

5. Type ID. Format description for the
attribute use class indicating
data type (numeric, character,
etc.), length, and decimal length
(if applicable). The data type

4-9

UN 620141001
1 November 1985

must be one from the CDH Data
Type Table.

6. Nbr. of K.C. No. Number(s) of the key class(es) to
which the attribute use class
belongs, if any.

7. Node Number of the entity class that
owns all of the attribute use

classes listed on the page.

All other form areas correspond to areas on the regular
IDEFI forms. Please refer to the IDEF1 documentation for
details about those areas.

Inherited Attribute Classes Form

Purpose:

To provide a single source of information about inherited
attribute use classes that are to be described in the
conceptual schema.

Instructions:

Fill in one or more pages for each entity class that
inherits an attribute use class. List only those
attribute use classes that are inherited by the entity
class; do not list any attribute use classes that are
owned by the entity class. Do not fill in a page for an
entity class that contains only owned attribute use
classes.

Form Area Explanation

1. Tag No. Tag number for the attribute use
class.

2. Tag V Label Name, label, and any synonyms of
the attribute use class. The
name is listed first. The label
is enclosed in parentheses and
placed on the line below the
name. If the name and label are
identical, the label can be
omitted. If the attribute use

4-10

UM 620141001
1 November 1985

- 52

0L

z U
0

0 0.

4e)

to

It 1. 1'

'4-1

.' ' E 111 11 1 1 '

UM 620141001
1 November 1985

g0

ZLC

""j
i in

IU

ij'a

4-12

* MIN

UM 620141001
1 November 1985

class has any synonyms, the term
"Synonyms:" is placed below the
name and label, and the synonyms
are listed under it.

3. A.C. No. Attribute class number for the
attribute use class.

4. Ind. E.C. No. Number of the independent entity
class from which the attribute
use class was inherited.

5. Ind. K.C. No. Number of the key class in the
independent entity class that
migrated through the relation
class named in the "Migration
Path R.C. Label" area.

6. Ind. Tag No. Tag number of the attribute use
class in the independent entity
class that migrated to become
this attribute use class.

7. Migration Path Label of the relation class
through which the attribute use
class was inherited.

8. Mbr. of K.C. No. Number(s) of the key class(es) to
which the attribute use class
belongs, if any.

9. Node Number of the entity class that
contains all of the attribute use
classes listed on the page.

All other form areas correspond to areas on the regular
IDEFI forms. Please refer to the IDEFI documentation for
details about those areas.

4-13

UN 620141001
1 November 1985

0

z

K0

o

.taw
U

0
C

c-

zI

4-14

% ' 0i

UiM 620141001
1 November 1985

i0
fa)

- U

a. x
C z

- 0
i4 4~7

LL .

0

L 0

0 4.)M

c c'

Z; ' B- 't- Q
46 $4

CC
- Vs__ _ _ _ _ _ _ _ _ _ _ _ _

. o

47) ; C
(JO

4-1

UM 620141001
1 November 1985

4.2 Building the Initial CS

This section and its subsections (4.2.1 - 4.2.5) describe
the procedure for initiating an enterprise's conceptual schema.
The procedure is concerned with creating a detailed description
(an information model) of a portion of the enterprise's common
data and with collecting the data required to place that
description in the CDM database as the first piece of the
conceptual schema (the first layer of the onion). It is not
concerned with deciding which portion of the common data to
describe nor with setting up the CDM database and its utilities;
these things must be done before starting the procedure. The
procedure consists of six phases, the first five of which are
patterned after those in IDEFI. The five IDEFI phases are as
follows:

0 Phase 0 - Starting the Project

0 Phase 1 - Defining Entity Classes

0 Phase 2 - Defining Relation Classes

* Phase 3 - Defining Key Classes

0 Phase 4 - Defining Nonkey Attribute Classes

The procedure for the sixth phase, which consists of populating
the CDM database with the conceptual schema, is described in
Section 5. Each IDEF phase is described in a subsequent
subsection.

4.2.1 Phase 0: Starting the Project

Objectives:

0 State the purpose, scope, and viewpoint for the
information model.

" Establish the project team.

" Develop a phase-level project schedule.

" Collect and catalog relevant source material.

This phase is patterned after Phase 0 of IDEF1, and the
description presented here is less detailed than the one in the
IDEFl documentation. Please refer to that documentation for

4-16

- 'f- . --. V

UM 620141001

1 November 1985

further information.

Tasks:

1. The CDM Administrator appoints a project manager.

Usually, this will be the CDM Administrator.

2. The project manager states the purpose for building the
information model.

This explains why the model is needed, i.e., what it
will be used for. A model built with this procedure is
primarily used to initiate the enterprise's conceptual

schema. (It is not necessary to explain why the
conceptual schema is needed.) If the model has other
purposes, they should be mentioned also.

3. The project manager states the scope of the information
model.

This sets the boundary of the model. It should be

specific enough to be useful in deciding whether or not
a particular element of common data should be included

in the model. Some of the things that can be used as
the basis for scoping a model are the following:

0 Information subjects: parts, employees, sales
orders, etc.

" Functions: engineering release, shop floor

control, etc.

" Existing computer files or databases

, Existing computer application systems

4. The project manager states the viewpoints for the
information model.

This explains the mental attitude or role that people
should adopt when looking at and thinking about the
model, i.e., in whose place they should put themselves.
Usually, this will be the job title of someone who is
intimately involved with the common data being modeled.

5. The project manager appoints the project team members.

4-17

11 1 11 , 1 113m1I

UM 620141001
1 November 1985

The four roles to be filled are as follows:

" Modeler - one or two IDEF1 experts.

0 Source - several subject experts, i.e., people
who have in-depth knowledge about some or all of
the common data being modeled.

" Reviewer - several subject experts; some sources
may also serve as reviewers. The CDM
Administrator must also serve as a reviewer to
ensure that the model, as it is developed, is
properly documented for loading into the CDM
database tables.

* Librarian - a person who is trained and
experienced in coordinating kit reviews and in
maintaining files of model documentation; a
modeler may also serve as the librarian.

6. The project manager appoints the acceptance review
committee members.

This committee should consist of subject experts from
the area being modeled and from other, related areas.

7. The project manager schedules the project phases.

Estimate the amount of effort needed to complete each
phase (usually in man-weeks or man-months) and then
convert those estimates to elapsed times and milestones
based on the availability of the project team members.
At this point, only the phases are scheduled; the
individual tasks within a phase will be scheduled when
that phase is started.

8. The project manager schedules the remaining Phase 0
tasks.

Estimate the amount of effort needed to perform each
remaining task in this phase (usually in man-hours or
man-days) and then convert those estimates to elapsed
times and milestones based on the availability of the
project team members who will perform those tasks. The
schedules for the subsequent phases should be adjusted
if they are inconsistent with these task schedules.

4-18

UM 620141001
1 November 1985

9. The modeler develops a data collection plan.

Determine what kinds of source material are needed and
where and how to get that material.

10. The project manager conducts a project kick-off meeting

attended by the project team members.

The objectives of the meeting are as follows:

0 To introduce the team members to one another and
to the roles they will be performing.

To determine which members need IDEFl training.

To present, discuss, and finalize the statements
of purpose, scope, and viewpoint.

* To present and discuss the project schedule.

* To present, discuss, and finalize the data
collection plan.

11. The modeler collects source material from the sources.

Gather the documents, policies, procedures, database
designs, etc., and interview the sources in accordance
with the data collection plan (Task 9).

12. The modeler catalogs the source material.

Prepare Source Material Log Forms and Source Data List

Forms. If a database design is among the source
material, the record names and data field names should
be included in the source data list.

13. The modeler explains any author conventions.

These are deviations from or additions to the regular
IDEFI methodology. Mention the use of the three
specially designed modeling forms: Relation Classes
Form, Owned Attribute Classes Form, and
InheritedAttribute Classes Form.

Deviation from IDEFI:

4-19

I IL ... ' 1 1 1 Il I l 1 d d

d"94'i

UM 620141001
1 November 1985

Usually, kits are not used to accomplish the review of the
Phase 0 model documentation; the essentials are reviewed during
the kick-off meeting (Task 10). However, the project manager
may require that kits be used to supplement or replace the
kick-off meeting.

4.2.2 Phase 1: Defining Entity Classes

Objective:

0 Identify and define the apparent entity classes that
are within the scope of the model.

This phase is patterned after Phase 1 of IDEFI, and the
description presented here is less detailed than the one in the
IDEF1 documentation. Please refer to that documentation for
further information.

Tasks:

1. The project manager decides what method to use to
review the Phase 1 model.

The options are to distribute review kits, to hold a
walk-through meeting, or to do both. The factors to

consider are the following:

0 Some team members may have to travel to attend a
walk-through. How many trips can the project
budget afford9

* A review can usually be accomplished faster with
a walk-through than with kits. Is there enough
time to circulate kits, perhaps two or three
times 9

0 Some reviewers may have very limited time to
=spend on the project. How can their time be

used most effectively, by reviewing a kit or by
attending a walk-through9 Will they devote time
to reviewing a kit on their own9

2. The project manager schedules the Phase 1 tasks.

Estimate the amount of effort needed to perform each
task in this phase (usually in man-hours or man-days)
and then convert those estimates to elapsed times and

4-20

I

UM 620141001
1 November 1985

milestones based on the availability of the project
team members who will perform those tasks. The
schedules for the subsequent phases should be adjusted
if they are inconsistent with these task schedules.

3. The modeler builds an entity class pool.

Examine the entries in the source data list and deduce
what sort of thing each entry identifies, describes,
refers to, etc. For example:

* Employee number, name, birth date, and salary
are data elements about an employee; hence, an
"Employee" entity class.

* Part number, description, and dimensions are all
about a part; hence, a "Part" entity class.

Each sort of thing is represented by an entity class.
Talk to the sources when additional information is
needed. The entity instances within an entity class
should be distinguishable from one another by some
unique identifier. Assign an entity class number to
each entity class, and record it on an Entity Class
Pool Form.

When examining record names from a database design, be
careful to think about the "real-world thing" that each
kind of record represents. Realize that several kinds
of records may represent the same thing or, conversely,
that one kind of record may represent several different
things. Also, realize that certain kinds of records
may be present for technical reasons only (performance,
backup/recovery, etc.). Such records do not represent
"real-world things" and should not result in entity
classes being added to the pool.

4. The modeler defines each entity class.

Fill out an Entity Class Definition Form for each
entity class in the pool. Talk to the sources when
additional information about an entity class is needed.
Check off each pool entry as it is dealt with.

Watch for synonyms (different names for the same thing)
and homonyms (same name for different things). When
there are synonyms for something, there is only one

4-21

UM 620141001
1 November 1985

entity class to define. Use the most commonly used
name as the "official" entity class name, and record it
and the corresponding entity class number on an Entity
Class Definition Form. Record the other names as
synonyms on the form. In the pool, add a note to each
synonym entry referring to the official name or
number.

For a homonym, there are two or more entity classes to
define, one for each thing that the term represents.
Pick a new name for each thing to clarify the
differences. Record the new names in the entity class
pool along with a new entity class number for each, and
fill out Entity Class Definition Forms. For example,
if an order can be either something received by an
enterprise from a customer, or something sent by an
enterprise to a vendor, call the first a sales order
and the second a purchase order, and fill out two
definition forms.

5. The modeler, reviewers, and librarian participate in
reviewing the Phase 1 model.

The method of review was selected in Task 1. The
modelers prepare the review materials (kits or
walk-through handouts), the reviewers read and comment
on the materials, and the modelers respond to the
comments. If kits are used, the librarian coordinates
their circulation. The CDN Administrator reviews the
model to ensure that all model documents are prepared
properly for loading the CDM database tables.

4.2.3 Phase 2: Defining Relation Classes

Objective:

0 • Identify and define the apparent relation classes
that are within the scope of the model.

This phase is patterned after Phase 2 of IDEFI, and the
description presented here is less detailed than the one in the
IDEF1 documentation. Please refer to that documentation for
further information.

Tasks:

1. The project manager decides what method to use to

4-22

UM 620141001
1 November 1985

review the Phase 2 model.

See Phase 1. Task 1. for the options and factors to

consider.

2. The project manager schedules the Phase 2 tasks.

See Phase 1. Task 2. for details.

3. The modeler builds a relation class matrix.

List all of the entity classes across the top and down
the left side of Relation Class Matrix Forms or on a
large sheet of grid paper; the matrix is easier to work
with when it is all on one sheet of paper. Then,
determine which pairs of entity classes are related to
each other. Look for data about one thing that is also
data about another. For example:

* Customer and Sales Order

A sales order has some data about the customer
that placed it, such as customer number, name,
address, etc.

* Part and Purchase Order

A purchase order contains some data about the
parts being ordered, such as part numbers,
descriptions, dimensions, etc.

0 Department and Employee

One element of data about an employee is the
department to which he/she is assigned, such as
department number, name, etc.

* Manufacturing Order and Employee

A manufacturing order has some data about the
employees who performed its operations. such aL
employee numbers, names, etc.

Such sharing of data implies a relationship of some
sort. Talk to the sources when additional information
about such sharing of data is needed. If a database
design is among the source material, the relationships

4-23

UM 620141001
1 November 1985

depicts may be useful. Place an *X" in the matrix
at the intersection of each pair of related entity
classes.

4. The modeler prepares overview diagrams (FEOs).

These diagrams are intended to show all of the entity
and relation classes on just a few pages. Reviewers
can usually understand overview diagrams better than
individual entity class diagrams, so they will be
theprimary (or sole) depiction of the model. Each
diagram should focus on a particular subject with which
the reviewers will be comfortable (e.g., major
activities), and each should contain about lO-to-20
entity classes and their relation classes. Use large
sheets of paper (e.g., lix17) and photo-reduction, if
necessary.

Every entity and relation class in the matrix must
appear in at least one diagram. Use some author
convention to signify the entity classes that appear in
more than one diagram (e.g., by broadening or
double-lining the entity class boxes) and to identify
which other diagrams they are in (e.g., by listing the
diagram numbers near the entity class boxes). For
example, if entity class E27 is in diagrams Fl, F3, and
F4:

" List F3 and F4 near E27's box on Fl.
" List Fl and F4 near E27's box on F3.
" List Fl and F3 near E27's box on F4.

Add the appropriate cardinality and a meaningful label
to each relation class as it is drawn in a diagram.
Talk to the sources when additional information about a
relation class label and cardinality is needed.
Cardinalities may be either specific or nonspecific;
derived entity classes should not be introduced yet to
avoid getting ahead of the reviewers. Check off each
relation class in the matrix as it is drawn in a
diagram (e.g., by circling the X in the matrix).

5. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, immediately
document it by performing the tasks in Phases 1 and 2

4-24

.3 .3 ~ 1. . - ~

UM 620141001
1 November 1985

that are needed to:

" Update the entity class pool.
0 Prepare an Entity Class Definition Form.
" Update the relation class matrix if it has been

started.
" Update the overview diagrams if they have been

started.

6. The modeler, reviewers, and librarian participate in
reviewing the Phase 2 model.

See Phase 1, Task 5 for details.

Deviation from IDEFl:

Usually, individual entity class diagrams are not prepared
because the overview diagrams are easier to understand and
review, and Relation Class Definition Forms are not filled out
because the relation class labels are supposed to be
self-descriptive. Also, the Related Entity Class Node
Cross-Reference Form is replaced by the specially designed
Relation

Classes Form, which is called for in Phase 3. However, the
project manager may require the use of any or all of these to
supplement the model documentation called for above.

4.2.4 Phase 3: Defining Key Classes

Objectives:

0 Refine all nonspecific relation classes in the model.

0 Identify the apparent attribute classes that are
within the scope of the model.

0 Identify and define a key class for each entity c'iss
in the model.

0 Validate every relation class in the model via key
class migration.

This phase is patterned after Phase 3 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFi documentation. Please refer to that documentation for
further information. Also, please refer to Section 5.2.2.1 for

4-25

p 1

UM 620141001
1 November 1985

details on how to fill out the Relation Classes, Owned Attribute
Classes, and Inherited Attribute Classes Forms.

Tasks:

1. The project manager decides what method to use to
review the Phase 3 model.

See Phase 1, Task 1, for the options and factors to
consider.

2. The project manager schedules the Phase 3 tasks.

See Phase 1. Task 2. for details.

3. The modeler refines the nonspecific relation classes.

Introduce a derived entity class for each nonspecific
relation class and convert that relation class to a
pair of specific relation classes as shown in Figure
4-7 at the end of this section. Assign entity class
numbers to the derived entity classes, record them in
the entity class pool, and fill out Entity Class
Definition Forms. The sources may be able to recommend
appropriate names and definitions for some derived
entity classes.

Remove the nonspecific relation classes from the
relation class matrix and the overview diagrams. Add
the derived entity classes and the specific relation
classes to the matrix and the diagrams. Retain the
same focus for each diagram unless the reviewers
suggested a change.

Also, update any optional documents that are affected.

4. The modeler eliminates any unneeded triads or other

dual-path structures.

A dual-path structure is one composed of two or more
related entity classes in which:

* There are two paths connecting one entity class
to another

* One path is a single relation class

4-26

UM 620141001
1 November 1985

* The other path is a series of relation classes
(unless the structure has only two entity
classes in which case the second path is a
single relation class also)

See the examples in Figure 4-8 at the end of this
section. Talk to the sources to determine whether the
two paths are equal, unequal, or indeterminant. The
paths are equal if, for each dependent entity instance,
they both lead to the same independent entity instance.
The paths are unequal if, for each dependent entity
instance, they each lead to a different independent
entity instance. The paths are indeterminant if they
are equal for some dependent entity instances and
unequal for others. If the paths are equal, the
single-relation-class path is redundant and must be
removed from the relation class matrix and the overview
diagrams (and from any optional documents in which
appears).

5. The modeler fills out Relation Class Forms.

Record each relation class on a Relation Classes Form.
Leave the Ind. K.C. No. column blank for now. As each
relation class is recorded on a form, check it off on a
copy of each overview diagram in which it appears
(e.g., by circling the relation class labels).

6. The modeler builds an attribute class pool.

Examine the entries in the source data list and deduce
what sort of characteristic each represents, where a
characteristic is a data element that identifies.
describes, refers to. etc.. a thing being modeled.
Each sort of characteristic is represented by an
attribute class. Talk to the sources when additional
information is needed. Assign an attribute class
number to each attribute class, and record it on an
Attribute Class Pool Form.

When examining data field names from a database design,
realize that several data fields may represent the same
kind of "real-world characteristic" or, conversely,
that one data field may represent several different
characteristics. For example:

* SALES-ORDER-CUSTOMER-NUMBER, INVOICE-CUSTOMER-

4-27

UM 620141001
1 November 1985

NUMBER, and ACCOUNTS-RECEIVABLE-CUSTOMER-NUMBER
all represent the same characteristic of a
customer, i.e., customer number.

0 SALESMAN-ASSIGNMENT-CODE may represent both the
territory and the product for which the salesman
is responsible.

Also, realize that certain data fields may be present
for technical reasons only (e.g., record codes) and
should not be included in the attribute class pool.

7. The modeler defines the key classes of the totally
independent entity classes.

A totally independent entity class is one that is not
dependent in any relation class. Select any one and
find the attribute classes in the pool that make up its
key class. Watch for attribute class synonyms and
homonyms, and handle them like those for entity classes
(Phase 1, Task 4). A few totally independent entity
classes have two or more alternate key classes (e.g.,
employees can be uniquely identified by either employee
numbers or Social Security Numbers). Be sure to
identify all key classes for such an entity class.
Also, be sure each key class conforms to the following
rules:

0 Single-Owned Rule
0 Unique-Key Rule
0 No-Null Rule
0 No-Repeat Rule
0 Smallest-Key-Class-Rule

See Section 4.1.1 for explanations of these rules.
Define any new entity and relation classes needed to
resolve rule violations. See Tasks 11 and 12 for
details. Talk to the sources when additional
information about a key class is needed.

Assign a key class number to each key class of the
entity class (K1 for the first; K2 for the second, if
any, etc.) and a tag number to each key class member.
Fill out an Owned Attribute Classes Form, and record
the key classes in the overview diagrams. Check off
each attribute class in the pool as it is used.

4-28

AMU*,

UM 620141001

1 November 1985

8. The modeler migrates the key clases of the totally
independent entity classes.

One of the key classes of the entity class from Task 7
must migrate through every relation class in which the
entity class is independent. If it has two or more
alternate key classes, only one can migrate through
each relation class. The same one need not migrate
through all of them however; one can migrate through
some, another through others. The sources should be
able to indicate which key class to use for each
relation class. Record the number of the key class
that migrates through a relation class in the Ind. K.C.
No. column of the Relation Classes Form from Task 7.

Each member of the key class that migrates through a
relation class becomes an inherited attribute class in
the entity class that is dependent in that relation
class. Fill out an Inherited Attribute Classes Form
for each dependent entity class, i.e., those listed in
the Dep. E.C. No. and Name columns of the Relation
Classes Form. Record each inherited attribute class as
follows:

* Tag No. column: Assign a new tag number to each
inherited attribute class.

* Tag and Label column: Use the name and label of
the key class member except in the following two
situations:

* If the key class member migrates through
two relation classes into the same
dependent entity class, it will appear as
two inherited attribute classes, each of
which must have a distinct name and label
within the entity class. In this case,
assign a new name and label to each. See
Figure 4-9 at the end of this section for
an example.

0 If a new name and label would be more
descriptive, they may be used.

" A.C. No. column: Use the attribute class number
of the key class member even if a new name and
label were assigned.

4-29

IN1

UM 620141001
1 November 1985

* Ind. E.C. No. column: Use the number of the
entity class that the key class member migrated
from.

0 Ind. K.C. No. column: Use the key class number
of the key class member.

0 Ind. Tag No. column: Use the tag number of the
key class member.

0 Migration Path R.C. Label column: Use the label
of the relation through which the key class
member migrated.

0 Mbr. of K.C. No. column: Leave blank for now.

On copies of the overview diagrams, keep track of which
relation classes have been used for key class migration
(e.g., by circling the relation class labels).

Repeat Tasks 7 and 8 for each totally independent
entity class.

9. The modeler defines the key classes of the remaining
entity classes.

The remaining entity classes are those that are not
totally independent, i.e., those that are dependent in
at least one relation class. Key classes have migrated
through some relation classes to appear as inherited
attribute classes in some of these entity classes.
Some have received all of their inherited attribute
classes; others have not. One way to determine whether
an entity class has is to examine the copies of the
overview diagrams that were used to keep track of key
class migration in Task 8. If each relation class in
which the entity class is dependent has been used for
key class migration, then the entity class has received
all of its inherited attribute classes; otherwise, it
has not.

Select any one entity class that has received all of
its inherited attribute classes, and define its key
class(es). The members of its key class(es) may
include some of its inherited attribute classes or some

4-30

UM 620141001

1 November 1985

new attribute classes from the pool or both. See
Figure 4-10 at the end of this section for guidelines.
Handle any synonyms and homonyms in the attribute class
pool in the same way as those for entity classes (Phase
1, Task 4). Remember that the entity class may have
two or more alternate key classes; be sure to identify
all of them. Be sure each key class conforms to the
following rules:

0 Single-Owner Rule
0 Unique-Key Rule
* No-Null Rule
0 No-Repeat Rule
0 Smallest-Key-Class-Rule

See Section 4.1.1 for explanations of these rules.
Define new entity and relation classes needed to
resolve rule violations. See Tasks 11 and 12 for
details. Talk to the sources when additional
information about a key class is needed.

If a key class member comes from the attribute class
pool, assign a tag number to it, check it off in the
pool, and record it on an Owned Attribute Classes Form.
Assign a key class number to each key class (K1 for the
first; K2 for the second, if any, etc.), and record it
in the Mbr. of K.C. No. column on the Owned Attribute
Classes Form or the Inherited Attribute Classes Form
where each key class member appears. If an attribute
class, either owned or inherited, is a member of more
than one key class, record the key class number of
each. Also, record the key classes and any nonkey
inherited attribute classes in the overview diagrams.

10. The modeler migrates the key classes of the remaining
entity classes.

If the entity class from Task 9 is not independent in
any relation classes, its key class does not migrate;
see the last paragraph of this task. If it is
independent in one or more relation classes, record the
number of the key class that migrates through each one
in the Ind. K.C. No. column of the Relation Classes
Form. If the entity class has alternate key classes,
record only one key class number for each relation
class, although not all relation classes have to get
the same number; the sources should be able to indicate

4-31

UM 620141001
1 November 1985

which key class to use for each.

For each entity class that is listed in the Dep. E.C.
No. and Name columns of the Relation Classes Form, fill
out an Inherited Attribute Classes Form as described in
Task 8. Also, as each relation class is used for key
class migration, mark it on the overview diagram
copies from Task 8.

Repeat Tasks 9 and 10 until key classes for all
remaining entity classes have been defined and
migrated.

11. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, immediately
document it by performing the tasks in Phases 1 - 3
that are needed to:

* Update the entity class pool.
0 Prepare an Entity Class Definition Form.
0 Update the relation class matrix.
0 Define the relation classes in which it is

involved. See Task 12 for details.
0 Update the overview diagrams.
0 Define and migrate its key class(es) at the

appropriate time during Tasks 7 - 10.
0 Update any optional documents that are affected.

12. The modeler defines any additional relation classes
that are introduced during this phase.

Whenever a new relation class is introduced,
immediately document it by performing the tasks in
Phases 2 and 3 that are needed to:

0 Update the relation class matrix.
0 Update the overview diagrams.
0 Refine it if it is nonspecific.
0 Eliminate any unneeded dual-path structures.
0 Record it on a Relation Classes Form.
0 Validate it via key class migration at the

appropriate time during Task 8 or 10.
* Update any optional documents that are affected.

13. The modeler, reviewers, and librarian participate in

4-32

mI

UM 620141001
1 November 1985

reviewing the Phase 3 model.

See Phase 1, Task 5, for details.

Deviation from IDEFi:

The specially designed Relation Classes, Owned Attribute
Classes, and Inherited Attribute Classes forms are used in place
of the regular IDEFI forms: Related Entity Ciass Node
Cross-Reference, Attribute Class Definition (2), and Inherited
Attribute Class Cross-Reference. The forms used are designed to
facilitate loading the conceptual schema. Also, the following
IDEFI forms are not called for, but may be used at the
discretion of the project manager:

* Attribute Class Diagram
* Entity Class/Attribute Class Matrix
0 Attribute Class Migration Index
* Refinement Alternative Diagram
0 Entity Class/Function View Matrix

4.2.5. Phase 4: Defining Nonkey Attribute Classes

Objectives:

0 Identify and define the nonkey attribute classes that
are within the scope of the model.

0 Identify the entity class that owns each nonkey
attribute class.

This phase is patterned after Phase 4 of IDEFi, and the
description presented here is less detailed than the one in the
IDEFl documentation. Please refer to that documentation for
further information. Also, please refer to Section 4.1.3 for
details on how to fill out Owned Attribute Classes Forms.

Tasks:

1. The project manager decides what method to use to
review the Phase 4 model.

See Phase 1. Task 1. for the options and factors to
consider.

2. The project manager schedules the Phase 4 tasks.

4-33

:. "

UM 620141001
1 November 1985

See Phase 1, Task 2, for details.

3. The modeler populates the model with the nonkey
attribute classes.

The nonkey attribute classes are those that were not
used as members of any key classes in Phase 3. i.e.,
those that have not been checked off in the attribute
class pool. Find the entity class that owns each of
these according to the following rules:

0 Single-Owner Rule
0 No-Null Rule
* Full-Functional-Dependency Rule
* No-Transitive-Dependency Rule

See Section 4.1.1 for explanations of these rules.
Define any new entity and relation classes needed to
resolve any rule violations. See Tasks 4 and 5 for
details. Talk to the sources when additional
information about a nonkey attribute class is needed.

Assign a tag number to each nonkey attribute class, and
record it on an Owned Attribute Classes Form. Check
off each in the pool as it is used.

4. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, immediately
document it by performing the tasks in Phases I - 3
that are needed to:

* Update the entity class pool.
* Prepare an Entity Class Definition Form.
* Update the relation class matrix.
0 Define the relation classes that it is involved

in. See Task 5 for details.
0 Update the overview diagrams.

" Define and mirate its key class(es).
* Update any optional documents that are affected.

5. The modeler defines any additional relation classes
that are introduced during this phase.

Whenever a new relation class is introduced,
immediately document it by performing the tasks in

4-34

* *R

UM 620141001
1 November 1985

Phases 2 and 3 that are needed to:

" Refine it if it is nonspecific.
* Eliminate any unneeded dual-path structures.
* Update the relation class matrix.
" Record it on a Relation Classes Form.
" Update the overview diagrams.
* Validate it via key class migration.
* Update any optional documents that are affected

6. The modeler, reviewers, and librarian participate in

reviewing the Phase 4 model.

See Phase 1. Task 5, for details.

Deviation from IDEFI:

The specially designed Owned Attribute Classes Form is used
instead of the regular Attribute Class Definition Forms to
facilitate loading the conceptual schema. Also, the following
IDEF1 forms are not called for, but may be used at the
discretion of the project manager:

* Attribute Class Diagram
0 Entity Class/Attribute Class Matrix

See Section 5.2.1 for instructions on how to load.

4.3 Expanding the CS

This section and its subsections describe the procedure for
expanding an enterprise's conceptual schema. The procedure is
concerned with creating a detailed description (an Information
model) of a portion of the enterprise's common data, some or all
of which is not already described in the conceptual schema, and
with collecting the data required to place that description in
the CDM database as an additional piece of the conceptual schema
(another layer of the onion).

The procedures described in the following subsections
correspond to the five IDEFI phases discussed in the previous
section.

4-35

IR I "1 1 11 %

UK 620141001
1 November 1985

4.3.1 Phase 0: Startinf the Project

Objectives:

. State the purpose. scope. and viewpoint for the
information model.

0 Establish the project team.

0 Develop a phase-level project schedule.

0 Collect and catalog relevant source material.

This phase is patterned after Phase 0 of IDEFI. and the
description presented here is less detailed than the one in the
IDEFI documentation Please refer to that documentation for
further information Also. please refer to Section 4.1.2 for
details on how to fill out the Relation Classes. Ovned Attribute
Classes. and Inherited Attribute Classes forms.

Tasks:

1 The CEO Administrator appoints a project mmnager.
Usually. this will be the CDH Administrator

2 The project manager states the purpose for building the
information model

See Task 2 of Section 4 2 1

3 The project manager states the scope of the information
mode l

See Task 3 of Section 4 2 1

4 The project manager states the viewpoint for the
information model

See Task 4 of Section 4 ; 1

5 The project manager &ppointE the project team membert

See Task 5 of Section 4 2 1

6 The project manager &ppointt. the &4((.ept&n-, review
comittee members

4 V,

*4 % . - S 5

UM 620141001
1 November 1985

This committee should consist of subject experts from

the area being modeled and from other, related areas.

7. The project manager schedules the project phases.

See Task 7 of Section 4.2.1.

8. The project manager schedules the remaining Phase 0
tasks.

See Task 8 of Section 4.2.1.

9. The modeler develops a data collection plan.

Determine what kinds of source material are needed and
where and how to get that material.

10. The project manager conducts a project kick-off meeting
attended by the project team members.

See Task 10 of Section 4.2.1.

11. The modeler collects source material from the sources

Gather the documents, policies, procedures, database
designs. etc . and interview the sources in accordance
with the data collection plan (Task 9)

12. The modeler catalogs the source material.

Prepare Source Material Log Forms and Source Data List
Forms If a ddtabaLe design is among the source
material, the reccrd name-- and data field names should
be included in the source data list

13 The modeler exmxinc:. the exiLting conceptual schema

Identify the entity relation, and attribute classeL in
the exi.ting ('on(,ptui.i 1.hema that appear to bc within
the scop(. of th, moPl Fill out the following form
from the deLcription. in the conceptual schema

9 Entity .1,a_. Definition Formi
* Relit r it Frrm

* Owned Attr ibute Gla eL Form--
* Inherited Attribute Classes FormL

Re E"a t I (,. ' . Mt IIX Formt'

V ~ * ,. E'

UM 620141001
1 November 1985

To distinguish these elements of the conceptual schema
from the new ones that will be documented during the
course of this modeling project, prefix all of the
identification numbers with the letter "C." For
example:

" Entity Class Number - CE12
* Attribute Class Number - CA94
* Tag Number - CT156
• Key Class Number - CK1

14. The modeler explains any author conventions.

These are deviations from or additions to the regular
IDEFI methodology. Mention the use of the three
specially designed modeling forms: Relation Classes
Form, Owned Attribute Classes Form, and Inherited
Attribute Classes Form. Also, explain that in order to
distinguish between model elements that are already in
the conceptual schema and those that are not, the
identification numbers of the former will be prefixed
with the letter OC" for conceptual while those of the
latter will be prefixed with the letter "N" for new.

Deviation from IDEFI:

Usually, kits are not used to accomplish the review of the
Phase 0 model documentation; the essentials are reviewed during
the kick-off meeting (Task 10). However, the project manager
may require that kits be used to supplement or replace the
kick-off meeting.

4.3.2 Phase 1: Defining Entity Classes

Objective:

* Identify and define the apparent entity classes that
are within the scope of the model.

This phase is patterned after Phase 1 of IDEFI, and the
description presented here is less detailed than the one in the
IDzrI documentation. Please refer to that documentation for
further information.

Tasks:

4-38

- a * - .

UM 620141001
1 November 1985

1. The project manager decides what method to use to

review the Phase 1 model.

See Task I of Section 4.2.2.

2. The project manager schedules the Phase 1 tasks.

See Task 2 of Section 4.2.2.

3. The modeler builds an entity class pool.

Examine the entries in the source data list and deduce
what sort of thing each entry identifies, describes,
refers to, etc. For example:

* Employee number, name, birth date, and salary
are data elements about an employee; hence, an
"Employee" entity class.

0 Part number, description, and dimensions are all
about a part; hence, a "Part" entity class.

Each sort of thing is represented by an entity class.
Determine whether any of these entity classes are

already in the conceptual schema and, if so, whether
modeling forms were prepared for them in Phase 0, Task
13. Rely on the entity class definitions more than the
names or labels in deciding whether a conceptual schema

entity class represents the same sort of thing as an
entity class deduced from the source data list. If any
entity class is in the conceptual schema, but modeling
forms were not prepared, prepare them now; see Phase 0.
Task 13 for details. Talk to the sources when
additional information is needed. The entity instances
within an entity class should be distinguishable from

one another by some unique identifier. Assign an
entity class number, prefixed with "N." to each new
entity class, and record them on an Entity Class Pool
Form. Do not record any conceptual schema entity
classes in the pool

When examining record names from a database design. be
careful to think about the "real-world thing" that each
kind of record represents Realize that several kinds
of records may represent the same thing or, conversely.
that one kind of record may represent several different
things Also, realize that certain kinds of records

4-39

W*AU&hA-b AM.I .. "r, .

UN 620141001
1 November 1985

may be present for technical reasons only (performance.
backup/recovery. etc.). Such records do not represent
"real-world things" and should not result in entity
classes being added to the pool.

4. The modeler defines each entity class.

See Task 4 of Section 4.2.2.

Also, review the names, labels, and definitions of the
conceptual schema entity classes, record any changes
that are required on the Entity Class Definition Forms.
and write "UPDATED" below the entity class number in
the lower left corner.

5. The modeler, reviewers, and librarian participate in
reviewing the Phase I model.

The method of review was selected in Task 1. The
modelers prepare the review materials (kits or walk-
through handouts), the reviewers read and comment on
the materials, and the modelers respond to the
comments. If kits are used, the librarian coordinates
their circulation.

6. The CDI Administrator reviews the model to ensure that
it is compatible with the conceptual schema.

Definitions are compared to see whether any entity.
relation, or attribute classes that "re identified as
new in the model are really the same as those that are
already in the conceptual schema, possibly with
different names or labels. Also. each proposed
conceptual schema update is evaluated to gauge its
impact on the existing CS/ES and CS/IS mappings.

4.3.3. Phase 2: Defining Relation Classes

Objective:

0 Identify and define the apparent relation classes
that are within the scope of the model

This phase is patterned after Phase 2 of IDEFI. and the
description presented here Is less detailed than the one in the
IDZFl 4ocumentation Please refer to that documentation for
further information

4 40

UM 620141001
1 November 1985

Tasks:

1. The project manager decides what method to use to
review the Phase 2 model.

See Phase 1, Task 1, for the options and factors to

consider.

2. The project manager schedule-. the Phase 2 tasks.

See Phase 1, Task 2. for details.

3. The modeler builds a relation class matrix.

See Task 3 of Section 4.2.3.

4. The modeler prepares overview diagrams (FEOs).

See Task 4 of Section 4.2.3.

5. The modeler defines any additional entity classes that

are introduced during this phase.

Vhenever a new entity class is introduced, double-check
the conceptual schema to see if it is already there
Rely on the entity class definitions more than the
names or labels in deciding whether a conceptual schema
entity class represents the same sort of thing as a new
entity class. If a new entity class is already
described in the conceptual schema, prepare the
modeling forms listed in Phase 0, Task 13. If it is
not. immediately document it by performing the tasks in
Phases 1 and 2 that are needed to:

0 Update the entity class pool
0 Prepare an Entity Class Definition Form
0 Update the relation class matrix if it haL been

started
• Update the overview diagrams if they have been

started

6 The modeler, reviewers, and librarian participate in
reviewing the Phase 2 model

See Task 5 of thiL sction foi detaill

4 41

UN 620141001
1 November 1985

Deviation from IDEFI:

Usually. Individual entity class diagrams are not prepared
because the overview diagrams are easier to understand and
review, and Relation Class Definition Forms are not filled out
because the relation class labels are supposed to be
self-descriptive. Also, the Related Entity Class Node
Cross-Reference Form is replaced by the specially designed
Relation Classes Form, which is called for in Phase 3. However,
the project manager may require the use of any or all of these
to supplement the model documentation called for above.

4.3.4 Phase 3: Defining Key Classes

Objectives:

0 Refine all nonspecific relation classes in the model.

0 Identify the apparent attribute classes that are
within the scope of the model.

* Identify and define a key class for each entity class
in the model.

0 Validate every relation class in the model via key
class migration.

This phase is patterned after Phase 3 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFl documentation. Please refer to that documentation for
further information. Also. please refer to Section 4.1.3 for
details on how to fill out the Relation Classes, Owned Attribute
Classes. and Inherited Attribute Classes Forms.

Tasks:

1 The project manager decides what method to use to
review the Phase 3 model.

See Task I of Section 4 2 1

2 The project manager schedule& the Phase 3 tasks

See Task 2 of Section 4 2 1

3 The modeler refines the nonspecific' relation classes

4 42

UM 620141001
1 November 1985

Introduce a derived entity class for each nonspecific
relation class and convert that relation class to a
pair of specific relation classes as shown in Figure
4-7 at the end of this section. Assign entity class
numbers, prefixed with "N," to the derived entity
classes, record them in the entity class pool, and
fill out Entity Class Definition Forms. The sources
may be able to recommend appropriate names and
definitions for some derived entity classes.

Remove the nonspecific relation classes from the
relation class matrix and the overview diagrams. Add
the derived entity classes and the specific relation
classes to the matrix and the diagrams. Retain the
same focus for each diagram unless the reviewers
suggested a change. Also, update any optional
documents that are affected.

4. The modeler eliminates any unneeded triads or other
dual-path structures.

A dual-path structure is one composed of two or more
related entity classes in which:

* There are two paths connecting one entity class

to another

* One path is a single relation class

* The other path is a series of relation classes
(unless the structure has only two entity
classes in which case the second path is a
single relation class also)

See the examples in Figure 4-8 at the end of this
section. Talk to the sources to determine whether
the two paths are equal, unequal, or indetermainant
The paths are equal ii. for each dependent entity
instance, they both lead to the same independent
entity instance The paths are unequal if. for each
dependent entity instance, they each lead to a
different independent entity instance. The paths are
indeterminant if they are equal for some dependent
entity instances and unequal for others If the
paths are equal, the single-relation-class path is
redundant and must be removed from the model, i e
from the reltion (lass matrix and the overview

4 43

I

UN 620141001
1 November 1985

diagrams (and from any optional documents in which it
appears).

If the relation class that must be removed is already
described in the conceptual schema, it should already
be listed on a Relation Classes Form from Phase 0,
Task 13. Write "DELETE" in the margin next to it and
write "UPDATED" below the entity class number in the
lower left corner.

If the dependent entity class in that relation class
is from the conceptual schema, the inherited attri-
bute classes that it received via key class migration
through that relation class must be removed also.
Write "DELETE" in the margin next to each one on the
Inherited Attribute Classes Form, and write "UPDATED"
below the entity class number in the lover left
corner. If any of them is a key class member in the
dependent entity class, that key class is now incom-
plete and must be removed; see Task 13 for details.

5. The modeler fills out Relation Class Forms.

See Task 5 of Section 4.2.4.

6. The modeler builds an attribute class pool.

Examine the entries in the source data list and
deduce what sort of characteristic each represents,
where a characteristic is a data element that identi-
fies, describes, or refers to, a thing being modeled.

Each sort of characteristic is represented by an at-
tribute class. Determine whether any of the attri-
bute classes are already in the conceptual schema
and, if so. whether modeling forms were prepared for

them in Phase 0, Task 13. Rely on the attribute class
definitions more than the names or labels in deciding
whether a conceptual schema attribute class repre-

sents the same sort of characteristic as an attribute
class deduced from the source data list. If an attri-
bute class is in the conceptual schema, but modeling
forms were not prepared, prepare them now; see
Phase 0, Task 13. for details. Talk to the sources
when additional Information is needed. Assign an
attribute class number, prefixed with "N." to each
new characteristic deduced from the source data list.
and record them on Attribute Class Pool Forms

4-44

UM 620141001
1 November 1985

When examining data field names from a database de-
sign, realize that several data fields may represent
the same kind of "real-world characteristic" or,
conversely, that one data field may represent several
different characteristics. For example:

0 SALES-ORDER-CUSTOMER-NUMBER, INVOICE-CUSTOMER-
NUMBER, and ACCOUNTS-RECEIVABLE-CUSTOMER-NUMBER
all represent the same characteristic of a
customer, i.e., customer number.

0 SALESMAN-ASSIGNMENT-CODE may represent both the
territory and the product for which the salesman
is responsible.

Also, realize that certain data fields may be present
for technical reasons only (e.g., record codes) and
should not be included in the attribute class pool.

7. The modeler defines the key clases of the totally
independent entity classes.

A totally independent entity class is one that is not
dependent in any relation classes. Select any one and
find the attribute classes in the pool that make up
its key class. If the entity class is already in the
conceptual schema, at least one key class has already
been defined for it. However, others may be dis-
covered here because of new owned attribute classes.
Watch for attribute class synonyms and homonyms, and
handle them like those for entity classes (Phase 1,
Task 4). A few totally independent entity classes
have two or more alternate key classes (e.g..
employees can be uniquely identified by either Social
Security or employee numbers). Be sure to identify
all key classes for such an entity class. Also, be
sure each key class conforms to the following rules:

- Single-Owned Rule
* Unique-Key Rule
, No-Null Rule
0 No-Repeat Rule
* Smallest-Key-Class--Rule

See Section 4.1 for explanations of these rules.
Define any new entity and relation cla,ses needed to

4 -45

. . .MAN&

UM 620141001
1 November 1985

resolve rule violations. See Tasks 11 and 12 for
details. If an attribute class that is needed as a
key class member for a new entity class is already
owned by a conceptual schema entity class, a rela-
tionship exists between those two entity classes. If
it is not already documented as a new relation class.
it must be before the key class of the new entity
class can be defined; see Task 12 for details. If the
new entity class is dependent in the new relation
class, it is no longer totally independent, so its
key class cannot be defined until Task 9. If the new
entity class is independent in the relation class.
the ownership of the attribute class must be changed;
it is owned by the new entity class, not by the one
in the conceptual schema. Record it on an Owned
Attribute Classes Form for the new entity class,
using the same name, label, definition, domain (type
and size), and attribute class number, prefixed with
"C," but assign a new tag number, prefixed with "N."
Write "DELETE" in the margin next to the attribute
class on the form for the conceptual schema entity
class and write "UPDATED" below the entity class
number in the lower left corner. If it is a key
class member in the conceptual schema entity class.
that key class is now incomplete and must be removed;
see Task 13 for details. Talk to the sources when
additional information about a key class is needed.

Assign a key class number, prefixed with "N." to each
new key class of the entity class (NKI for the first;
NK2 for the second, if any, etc.). Assign a tag
number, prefixed with "N," to each new attribute
class that is a key class member; record it on an
Owned Attribute Classes Form, and check it off in the
attribute class pool. Record the key classes, both
new ones and ones from the conceptual schema, in the
overview diagrams.

Also. review the name. label, and definition of each
conceptual schema attribute class that is a key class
member; record any changes that are required on the
Owned Attribute Classes Form where it appears. write
"CHANGE" in the margin next to it. and write
"UPDATED" below the entity class number in the lower
left corner

S. The modeler nigraten the key cla~ses, of the totailly

4-46

UM 620141001
1 November 1985

independent entity class.

One of the key classes of the entity class from
Task 7 must migrate through every relation clas , in
which the entity class is independent A key class
has already migrated through every conceptual schema
relation class, but some may have had that migration
undone in Task 13. i.e.. those with a circled key
class number in the Ind. K.C. No. column of a
Relation Classes Form and with "OMIT" written in the
margin. Only these and the new relation classes.
i.e., those without a key class number in that
column, need to be considered here If the entity
class has two or more alternate key classet. only onc
can migrate through each relation class The same
one need not migrate through all of them, however,
one can migrate through some, another through other".
The sources should be able to indicate which key
class to use for each relation class For a new
relation class, record the key class number in the
Ind. K.C. No. column of the Relation Classes Form
from Task 7. For a conceptual schema relation clasE
that is having its key class migration redone if tht
key class number is the same as the one that it
already in Ind K C No column, erase the circl(
around it and erase "OMIT" in the margin If thc key
class numbers are different replace the circled onf
with the new one and change "OMIT to "CHANGE ;n th(
margin.

Each member of thf' ke *.tc . that isn.pttc- tht)u?'h
relation 'l..u Ii(um. ,n inhc ited ,tttr ibut', :.
in the entity (la!: thtt i: dependent in th~tt
relation clalt Fill out ati Inhe7ited Attribut,
Classes Form f!.,i t'.%(h AepEnd v ne t ent I tv (1,%!
those IiF~tvd ii tht 16~ E C N, tnd N~a. IR11
the Relation ClL: !c, V'. im, if tht depend'r' #-W : t
class i alreadv % n tho, *n .I hema U1.0 th.
Inherited At t but . F..rkl 't, w * :

Phase 0 Titk I.' R I k n, w I'
c I s t As & ,, f-I ,w:

T. A~ .i nvw.. t q' umt-.
Fi- Cf I X- I w N ; ih' T i

If I: A :, I I ,tt l I'u t. t, .

,ti rwnf'td Att I 1 t' 0 1 wh,, * .,w h

h~~ % . l',V ! '; T~ 'V - 'J • .*t) m ,

UM 620141001
1 November 1985

prefixed with "C' that was assigned to that
owned attribute class, and change "DELETE" to
"NEW OWNER" in the margin next to that owned
attribute class on the Owned Attribute Classes
Form

* Tag and Label column: Use the name and label of
the key class member except in the following two
situations:

9 If the key class member migrates through two
relation classes into the same dependent entity
class, it will appear as two inherited attribute
classes, each of which must have a distinct name
and label within the entity class. In this
case. assign a new name and label to each. See
Figure 4-9 at the end of this section for an
example.

0 If a new name and label would be more
descriptive, they may be used.

0 A.C. No. column: Use the attribute class number
of the key class member, even if a new name and
label were assigned.

* Ind E.C. No. column: Use the number of the
entity class from which the key class member
migrated.

0 Ind. K.C. No. column: Use the key class number
of the key class member.

0 Ind. Tag No. column: Use the tag number of the
key class member.

* Migration Path R.C. Label column: Use the label
of the relation class through which the key
class member migrated.

0 Mbr. of K.C. No. column: Leave blank for now.

If an inherited attribute class that was removed from
a conceptual schema entity class in Task 4 or 13 is
being reestablished, do not record it as described
above Instead. reuse the one that is already
recorded on the Inherited Attribute Classes Form.

4-48

UM 620141001
1 November 1985

Erase "DELETE" from the margin. If any of the values
in the following columns need to be changed, replace
them with the new values and write "CHANGE" in the
margin:

0 Tag and Label Column
S Ind. E.C. No. Column
* Ind. K.C. No. Column
9 Ind. Tag No. Column
0 Migration Path R.C. Label Column

If the Mbr. of K.C. No. column contains any key class
numbers, circle each and write "OMIT" in the margin.

On copies of the overview diagrams, keep track of
which relation classes have been used for key class
migration, including those from the conceptual schema

'/. that had already been used (e.g., by circling the
relation class labels).

Repeat Tasks 7 and 8 for each totally independent
entity class.

9. The modeler defines the key classes of the remaining
entity classes.

The remaining entity classes are those that are not
totally independent, i.e., those that are dependent
in at least one relation class. Key classes have
migrated through some relation classes to appear as
inherited attribute classes in some of these entity
classes. Some have received all of their inherited
attribute classes; others have not. One way to
determine whether an entity class has is to examine
the copies of the overview diagrams that were used to
keep track of key class migration in Task 8. If each
relation class that the entity class is dependent in
has been used for key class migration, then the
entity class has received all of its inherited
attribute classes; otherwise it has not.

Select any one entity class that has received all of
Its inherited attribute classes, and define its key
class(es). If the entity class is already in the
conceptual schema, at least one key class has already
been defined for it. However, if one was removed in
Task 13. it must be reestablished or a new one must

4-49

l|P

UN 6IS2 j4 1(9,
I November J

be defined Also other key , lasct may be disnctvere"I
here because of new owned or inherited attribt t
classes The members of itt key clatLtet.) may
include some of its inherited attribute (lsset or
some of the now attribute classes from the pool or
both See Figure 4-10 at the end of this section for
guidelines ale any synonyms and homonyms in the
attribute class pool in the same Way aL those for
entity classes (Phase I Task 4) Remember that th-
entity class may have two or more alternate key
classes, be sure to identify all of them Be Furc

*each key class conforms to the following ruleL

0 Single-Owner Rule
" Unique-Key Rule
" No-pull Rule
S No -Repeat Rule
- Smallest-Key-Class-Rule

See Section 4 1 for explanations of these rules
Define new entity And relation classes needed to
resolve rule viol&tions See Tasks 11 And 12 for
details If aI attribute class that Is needed as a
key class member for A now entity class is already
owned by a conceptual schema entity class, a
relationship exists between those two entity classes
If it is not already documented as a new relation
class, it must be before the key class of the new
entity class can be defined, see Task 12 for detailL
If the new entity class iL dependent in the relation
class. its key class cannot be defined until one from
the independent entity class has migrated through the
new relation class If the new entity class is
independent in the relation class, the ownership of
the attribute class must be changed; it is owned by
the new entity class, not by the one in the
conceptual schema Record it on an Owned Attribute
Classes Form for the new entity class, using the same
name, label, definition, domain (type and size), and
attribute class number, prefixed with "C." but assign
a new tag number, prefixed with "N." Write "DELETE"
in the margin next to the attribute class on the form
for the conceptual schema entity class and write
'UPDATED" below the entity class number in the lower
left corner. If it is a key class member in the
conceptual schema entity class, that key class is now
incomplete and must be removed; see Task 13 for

4-50

UM b20141OOI

I November 1985

detail~t Talk to the EourceL when additional
Information about A key (las. it- needed

Assign a key class number, prefixed with "N.' to each
now key class (NKI for the first. NK2 for the second.
if any. etc) If a key class that was removed in
Task 13 is being reestablished, reuse its original
key class number, prefixed with "C - Assign a tag
number, prefixed with 'S." to each new key class
member that comes from the attribute class pool.
check it off in the pool. and record it on an Owned
Attribute Classes Form

Also. review the name. label, and definition of each
conceptual schema attribute class that is a key class
member, record any changes that are required on the
Owned Attribute Classes Form where it appears. write
'CHANGE" in the margin next to it. and write
"UPDATED" below the entity class number in the lower
left corner

Identify each new key class member by recording its
key class number in the Mbr. of K.C. No. column on
either the Owned Attribute Classes Form or the
Inherited Attribute Classes Form. If an attribute
class, either owned or inherited, is a member of more
than one key class, record the key class number of
each. If an attribute class is being reestablished
as a member of a key class that was removed in
Task 13. erase the circle around the key class number
in the Hbr. of K.C. No. column of the Owned or
Inherited Attribute Classes Form and erase "OMIT"
from the margin. Also. record the key classes and
any nonkey inherited attribute classes, both new ones
and ones from the conceptual schema, in the overview
diagrams.

10. The modeler migrates the key classes of the remaining
entity classes.

If the entity class from Task 9 is not independent in

any relation classes, its key class does not migrate;
see the last paragraph of this task. If it is
independent in one or more relation classes, one of
its key classes must migrate through each. A key

class has already migrated through every conceptual
schema relation class, but some may have had that

4-51

UN 620141001
1 November 1985

migration undone in Task 13. i.e.. those with a
circled key class number in the Ind. X.C. go. column
of a Relation Classes Form and with "ONIT" written in
the margin. Only these and the new relation classes.
i.e.. those without a key class number in that
column, need to be considered here. Record the
number of the key class that migrates through each
now relation class in the Ind. K.C. No. column of th
Relation Classes Form. If the entity class has
alternate key classes, record only one key class
number for each relation class, although not all
relation classes have to get the same number; the
sources should be able to indicate which key class to
use for each. For a conceptual schema relation class
that is having its key class migration redone, if the
key class number is the same as the one that is
already in Ind. X.C. No. Column, erase the circle
around it and erase "OMIT* in the margin. If the key
class numbers are different, replace the circled one
with the new one and change *OMIT" to "CHANGE" in the
margin.

For each entity class that is listed in the Dep. E.C.
No. and Name columns of the Relation Classes Form,
fill out an Inherited Attribute Classes Form as
described in Task 8. Also, keep track of which
relation classes have been used for key class
migration, including those from the conceptual
schema, by marking them on the overview diagram
copies from Task 8.

Repeat Tasks 9 and 10 until key classes for all
remaining entity classes have been defined and
migrated.

11. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, double-
check the conceptual schema to see if it is already
there. Rely on the entity class definitions more
than the names or labels in deciding whether a
conceptual schema entity class represents the same
sort of thing as a new entity class. If a new entity
class is already described in the conceptual schema,
prepare the modeling forms listed in Phase 0,
Task 13. If it is not, immediately document it by

4-52

UM 620141001
1 November 1985

performing the tasks in Phases I - 3 that are needed
to:

• Update the entity class pool.
* Prepare an Entity Class Definition Form
" Update the relation class matrix.
* Define the relation classes in which it is

involved. See Task 12 for details.
* Update the overview diagrams.
0 Define and migrate its key class(es) at the

appropriate time during Tasks 7 - 10.
* Update any optional documents that are affected.

12. The modeler defines any additional relation classes
that are introduced during this phase.

See Task 12 of Section 4.2.4.

13. The modeler removes any incomplete key classes and all
resulting inherited attribute classes.

Either the removal of a relation class that is
already in the conceptual schema (Task 4) or the
change in ownership of an attribute class that is
already in the conceptual schema (Tasks 7 and 9) can
cause a key class member to be removed from a
conceptual schema entity class, either temporarily
(until Task 8 or 10) or permanently. When this
happens, the key class that lost the member becomes
incomplete, so it can no longer fulfill its function.
Consequently, it must be removed also. The other
attribute classes that are members of that key class.
if any, can remain in the entity class, but their
membership in that key class must be removed. Circle
the key class number in the Nbr. of K.C. No. column
on the Owned or Inherited Attribute Classes Form
where each member appears, write "OMIT" in the margin
next to it, and write "UPDATED" below the entity
class number in the lower left corner.

If the key class migrated to other conceptual schema
entity classes, that migration must be undone.
Circle the key class number in the Ind. K.C. No.
column of the Relation Classes Form for each relation
class that is affected, write "OMIT" in the margin
next to each, and write "UPDATED" below the entity
class number in the lower left corner. If any of the

4-53

UN 620141001
1 November 1965

affected dependent entity classes are not already in
the model, add them now; see Phase 0. Task 13 for
detailt. Vrite "DgLT" in the margin of the
Inherited Attribute Classes Forms next to each
inherited attribute class that resulted from the
migration of that key class, and write "UPDATED"
below the entity class number in the lower left
corner.

If any of these inherited attribute classes is a key
class member itself, this task must be repeated, and
It must continue to be repeated until all key classes
and all inherited attribute classes that are contin-
gent on the original key class have been marked for
removal. Key classes and inherited attribute classes
of all affected entity classes will be reestablished
in Tasks 8 - 10. but they may not be exactly the
same.

14. The modeler, reviewers, and librarian participate in

reviewing the Phase 3 model.

See Task 5 of Section 4.2.4.

Deviation from IDEFI:

The specially designed Relation Classes. Owned Attribute
Classes. and Inherited Attribute Classes Forms are used in place
of the following regular IDEFI forms: Related Entity Class Node
Cross-Reference. Attribute Class Definition (2). and Inherited
Attribute Class Cross-Reference. The forms used are designed to
facilitate loading the conceptual schema. Also. the IDEFI forms
listed below are not called for, but ay be used at the
discretion of the project manager:

0 Attribute Class Diagram
0 Entity Class/Attribute Class Matrix
- Attribute Class Migration Index
• Refinement Alternative Diagram
• Entity Class/Function View Matrix

4.3.5 Phase 4: Defining Nonkey Attribute Classes

Objectives:

0 Identify and define the nonkey attribute classes that
are within the scope of the model.

4-54

LIM 62014 100(1

I November 1985

* Identify the entity class that ownb each nonkey
attribute class

This phase is patterned after Phase 4 of IDEFI. and the
description presented here is less detailed than the one in the
wD9Fl documentation Please refer to that documentation for
further information Also, please refer to Section 4 1 3 for
details on how to fill out Owned Attribute Classes Forms

Tasks.

1 The project manager decides what method to use to
review the Phase 4 model

See Task I of Section 4.2-1.

2. The project manager schedules the Phase 4 tasks

See Task 2 of Section 4.2.1.

3. The modeler populates the model with the nonkey
attribute classes.

See Task 3 of section 4.2.1.

Assign a tag number, prefixed with "N." to each
nonkey attribute class, and record it on an Owned
Attribute Classes Form. Check off each in the pool
as it is used.

Also, review the name, label, and definition of each
conceptual schema attribute class, record any changes
that are required on the Owned Attribute Classes Form
where it appears, write "CHANGE" in the margin next
to it, and write "UPDATED" below the entity class
number in the lower left corner.

4. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, double-
check the conceptual schema to see if it is already
there. Rely on the entity class definitions more
than the names or labels in deciding whether a con-
ceptual schema entity class represents the same sort
of thing as a new entity class. If a new entity class

4-55

21,M

UN 620141001
1 November 1965

is already described in the conceptual schema, pre-
pare the modeling forms listed in Phase 0. Task 13.
If It is not. immediately document it by performing
the tasks in Phases 1-3 Lhat are needed to:

0 Update the entity class pool.
e Prepare an Rntity Class Definition Form.
* Update the relation class matrix.
* Define the relation classes that it is involved

in. See Task 5 for details.
" Update the overview diagrams.
" Define and migrate its key class(es).
" Update any optional documents that are affected.

5. The modeler defines any additional relation classes
that are introduced during this phase.

See Task 5 of Section 4.2.1.

6. The modeler, reviewers, and librarian particpate in
reviewing the Phase 4 model.

See Task 5 of Section 4.2.1.

Deviation from IDEFI:

The specially designed Owned Attribute Classes Form is used
instead of the regular Attribute Class Definition Forms to
facilitate loading the conceptual schema. Also, the following
IDEFi forms are not called for, but may be used at the
discretion of the project manager:

" Attribute Class Diagram
" Entity Class/Attribute Class Matrix

See Section 5.2 for instructions on how to update the CS
tables.

4-56

UN 620141001
1 November 1985

rC 3

C 3

A --- B 2

C 3

Figure 4-7. Ref inements of Nonspecific Relation Classes
Examupl e

4-57

UM 620141001
1 November 1985

C A

CS A

21 2 2

3 1

Do........ 3,A E i-A

E I

Figure 4-8. Triads and Other Dual-Path Structure Examples

4-58

UH 620141001
1 November 1985

Part Number is the key class of Part. It migrates through
each relation class to appear twice in Component Part. The
inherited attribute class that results from the left relation
class could be named 'Assembly Part Number: and the one from the
right could be called 'Component Part Number" to associate each
with the appropriate relation class.

PART NUMBER

PART 1

IS IS

COMPOSED USED
OF AS

ASSY PART NUMBER

COMP PART NUMBER

tCOMPONENT PART 2

Figure 4-9. Migration Through Two Relation Classes Example

4-59

UN 620141001
1 November 1985

A. In & one-to-sero--or-one relation class the key class of
the dependent is usually the ese as that of the
independent.

PATNO ENMP NO FkI NO STAT Y. 7

PATEMPLOYEE EMPLOYEE 1 STATior,,

Is is Is HAS

PART NO (EMP NO fc
(BUYER NO) STATION NO

STATIONMFG PART7 2 BUYER 12 OPERATOP 3

Figure 4-10. Guidelines for Determining Key Classes of
Dependent Entity Classes

4-60

UM 6201410CO
I November 1985

3 The key class of an entity class that was derived to
refine a many-to-many relation class is usually composed
of attribute classes inherited from the two independent
entity classes

V:-: %7) 0 R NO0 PART NO PAqT NO

VENDOR 1 PART, 21 PART 2

is is is
PROVIDE-S SUBJECT COMAPOSED ujS.-

TO OF AS

VENDOR NO ASSY PART NO
PART NQ COMP PART NO

QUOTE 13 COMP PAT 2

Figure 4-10. Guidelines for Determining Key Classes of
Dependent Entity Classes (Continued)

4-61

W - 11

UM 620141001
1 November 1985

C. In this example. Bin Wrhs No and Item Wrhs No always have
the same value so only one must be in the key.

D. In this example, Proj Plan No and Tool Plant No do not
always have the same value, so both must be in the key
class.

A I -
P L A N T N

P ' . .

PAri EftA iQr CTN CQ

WAREHOUSE A RE HOUS ESTOCK ITEM IT OC BIN 2 PROJECT 7 1

IS IS iS
STORED CONTAINS BASIS INVZ, VE

AS FR IN

ITEM WRI4S NO 0-f

BIN ITEM TOO L-st

Figure 4-10. Guidelines for Determing Key Cl&sses of Dependr,
Entity Classes (Continued)

4-62

Auk

".'.j1-H ;

r -A.BI 577 INTEGRATED INFORMATION SUPPORT SYSTEM (IISS) VOLUME 5 214
COMMON DATA MODEL S (U) GENERAL ELECTRIC CO
SCHENECTADY NV PRODUCTION RESOURCES CONSU

SIFIED D ROLLN ET AL 81 NOV 85 U--628141881 F/G 5/2

lolllllllllll
llmmlllllmlll
mllllllllloll
lolllolllmlll

1625~E 134"2

i 36

tuI ,

UM 620141001
1 November 1985

SECTION 5

MAINTAINING THE CDM

5.1 Methodology Overview

The CDM database can be maintained by either or both of the

following two methods:

1. Using the NDDL Commands

2. Directly loading the CDM Tablcs

Direct loading of the CDM Tables is discussed in Section
5.1.2. The use of the NDDL is the recommended approach and is
discussed in the next section.

5.1.1 Using NDDL with the CDM Tables

The Neutral Data Definition Language, hereafter NDDL, is an
interpretive language that was developed to populate and
maintain the CDM database. Figure 5-1 contains a list of NDDL
commands.

As detailed instructions on the use of NDDL are provided in
the NDDL User's Guide UM620141100, this manual will not describe
NDDL syntax and only references NDDL commands, within the
context of the methodology.

5-1

.611aAWL&VJ1! W

UM 620141001
1 November 1985

NDDL Commands

Alter Alias Define Database
Alter Attribute Define Record
Alter Domain Define Set
Alter Entity Describe
Alter Map Drop Alias
Alter Model Drop Attribute
Alter Relation Drop Database
Check Model Drop Domain
Combine Entity Drop Entity
Compare Model Drop Field
Copy Attribute Drop Keyword
Copy Description Drop Map
Copy Entity Drop Model
Copy Model Drop Record
Create Alias Drop Relation
Create Attribute Drop Set
Create Domain Drop View
Create Entity Halt
Create Map Merge Model
Create Model Rename
Create Relation
Create View

Figure 5-1. NDDL Commands

5-2

UM 620141001
1 November 1985

5.1.2 Direct Loading of the CDM Tables

This section explains how to load each of the following

tables in the conceptual schema portion of the CDM database:

Attribute Class Table

Attribute Use Class Table

Data Type Table

Entity Class Table

Inherited Attribute Use Class Table

Key Class Table

Key Class Member Table

Relation Class Table

The following paragraphs are arranged alphabetically by
table name.

5.1.2.1 Attribute Class Table

Source Documents:

Owned Attribute Classes forms from the IDEF1 model.

Instructions:

Create one table entry for each page entry.

Table Field Source Field

AC No A.C. No. column. Use the number
following the "A"; do not include
the "A" itself.

AC Name A.C. Name & Label column. Use
the noun phrase that is not in
parentheses.

5-3

UM 620141001
1 November 1985

Table Field Source Field

AC Label A.C. Name U Label column. Use
the noun phrase that is in
parentheses; do not include the
parentheses themselves. If there
is no noun phrase in parentheses,
use the A.C. Name noun phrase.

EC No Node (lower left corner). Use
the number following the "E"; do
not include the NE" itself.

Type ID Type ID column. Use the letter
to the left of the parenthesis.

Max Att Value Len Type ID column. Use the number

that is in parentheses. If there
is a decimal point in the number,
only use the portion to the left
(i.e., the integer portion).

Max Att Dec Len Type ID column. If there is a
decimal point in the number in
parentheses, use the portion to

the right (i.e., the decimal
portion). Otherwise, leave blank.

Example:

From the sample form in Figure 5-2, the resulting Attribute
Class Table would be as follows:

Max Max
Att Att

AC EC Type Value Dec
No AC Name AC Label No ID Len Len

24 Item Identification Item ID 8 C 10
25 Item Description Item Desc 8 C 50
26 Item Name Item Name 8 C 24
27 Item Length Item Length 8 N 8 2
28 Item Quantity Item Qty 8 N 6

5-4

'M11!~liillllll~li

UN 620141001
1 November 1985

, a,

i

5-54

00

E
in

C4 w

05-5

UNV

UM 620141001
1 November 1985

5.1.2.2 Attribute Use Class Table

Source Documents:

1. Owned Attribute Classes forms from the IDEFI model.

2. Inherited Attribute Classes forms from the IDEFI model.

Instructions:

Create one table entry for each entry on either type of
page.

Table Field Source Field

Tag No Tag No. column. Use the number
following the "T"; do not include
the "T" itself.

Tag Label A.C. Name f Label column on an
Owned Attribute Classes page; Tag
9 Label column on an Inherited
Attribute Classes page. Use the
noun phrase that is enclosed in
parentheses; do not include the
parentheses themselves. If there
is no noun phrase in parentheses,
use the noun phrase that is not
enclosed in parentheses.

EC No Node (lower left corner). Use
the number following the "E"; do
not include the "E" itself.

AC No A.C. No. column. Use the number
following the "A"; do not include
the "A" itself.

5-6

UM 620141001
1 November 1985

Example:

From the example form in Figures 5-2 and 5-3, the resulting
Attribute Use Class Table would be as follows:

Tag No Tag Label EC No AC No

48 Item ID 8 24
49 Item Desc 8 25
50 Item Name 8 26
51 Item Length 8 27
52 Item Qtj 8 28
105 Op Plan ID 20 68
106 Iss Resource ID 20 76
107 Ben Resource ID 20 76
108 Stock Area ID 20 83
109 Item ID 20 24

5-7

629&

UM 620141001
1 November 1985

~L

2 aa

0U'
z it

1a2

z .02

5-84

UM 620141001
1 November 1985

5.1.2.3 Data Type Table

Source Documents:

None

Instructions:

Create one table entry for each data type.

Table Field Source Field

Type ID Assign a letter or numeral to
identify the data type.

Type Desc Briefly describe the data type.

Example:

Type ID Type Desc

C Character
N Numeric
D Date
T Time

5.1.2.4 Entity Class Table

Source Documents:

Entity Class Glossary forms from the IDEFI model.

Instructions:

Create one table entry for each glossary form.

Table Field Source Field

EC No Node (lower left corner). Use
the number following the "E"; do
not include the "E" itself.

EC Label Second line in central area.

EC Name First line in central area.

5-9

M j-W 11" Id =v ! , ' l._i,,

UM 620141001
1 November 1985

Example:

From the example form in Figure 5-4, the Entity Class Table
would be as follows:

EC No EC Label EC Name

35 User Assign User Assignment

5-10

!

UM 620141001
1 November 1985

uL

0

o 0
I

VII U uU

c0

*1 C

>j

5-11

UM 620141001
1 November 1985

5.1.2.5 Inherited Attribute Use Class Table

Source Documents:

Inherited Attribute Classes forms from the IDEF1 model.

Instructions:

Create one table entry for each page entry.

Table Field Source Field

Tag No Tag No. column. Use the number
following the "T"; do no include
the "T" itself.

KC No Ind. K.C. No. column. Use the
number following the "K"; do not
include the "K" itself.

Tag No of Key Mem Ind. Tag No. column. Use the
number following the "T'; do not
include the "T" itself.

Ind EC No Ind. E.C. No. column. Use the
number following the "E"; do not
include the "E" itself.

Dep EC No Node (lower left corner). Use
the number following the "E"; do
not include the "E" itself.

RC Label Migration Path R.C. Label column.

11

~5-12

UM 620141001
1 November 1985

Example:

From the example form in Figure 5-5, the resulting table
would be as follows:

Tag No of Ind Dep
Tag No KC No Key Mem EC No EC No RC Label

105 1 34 11 20 Initiates
106 1 59 21 20 Issues
107 1 59 21 20 Will benefit from
108 1 42 30 20 Is depleted by
109 1 43 30 20 Is depleted by

5-13

UM 620141001
1 November 1985

w2

ii
.

IIni " !
.1 I

5-14

!(

UM 620141001
1 November 1985

5.1.2.6 Key Class Table

Source Documents:

Key Class Member Table in the CDM (i.e., the table created
with the prior set of instructions).

Instructions:

Create one table entry for each entry in the Key Class
Member table that has a different entity class or key
class number than any prior entry. If two or more entries
have the same entity class and key class numbers, create
only one entry in this table.

Table Field Source Field

Key Class EC No EC No
KC No KC No

Example:

Sample Key Class Member Table
(from the example in the prior set of instructions):

EC No KC No Tag No

8 1 17
8 1 16
14 1 70
14 2 71
14 2 72
18 1 101

Resulting Key Class Table:

Key Class EC No KC No

8 1
14 1
14 2
18 1

5-15

UN 620141001
1 November 1985

5.1.2.7 Key Class Member Table

Source Documents:

1. Owned Attribute Classes form from the IDEFI model.

2. Inherited Attribute Classes forms from the IDEFI model.

Instructions:

Create one table entry for each key class member entry on
either type of page. A key class member entry is one that
has a number preceded by "K" in the Mbr. of K.C. No.
column (right-most column on either type of page).

Table Field Source Field

EC No Node (lower left corner). Use
the number following the "E"; do
not include the "E" itself.

KC No Mbr. of K.C. No. column. Use the
number following the "K"; do not
include the "K" itself.

Tag No Tag No. column. Use the number

following the "T"; do not include
the "T" itself.

Example:

From the forms shown in Figures 5-6, 5-7, 5-8, and 5-9,

the resulting table is as follows:

EC No KC No Tag No

8 1 17
8 1 16

14 1 70
14 2 71
14 2 72
18 1 101

5-16

UM 620141001
1 November 1985

-z a

0 0

3

C4

M 2

-R-
it)

5-17

UN 620141001

1 November 1985

z-

.0S 0

40

5-18

UM 620141001
1 November 1985

0
a

ii

Iw IA.

SD

o

ZDC ci4

~5-19

DC .

- , , , t~t *0

UM 620141001
1 November 1985

is 0

"4

fn0

V1

-ac
~~ U

S)

in

IL 0

5-204

UN 620141001
1 November 1985

5.1.2.8 Relation Class Table

Source Documents:

Relation Classes pages from the IDEF1 model.

Instructions:

Create one table entry for each page entry.

Table Field Source Field

Ind EC No Node (lover left corner). Use
the number following the 'E"; do
not include the OE" itself.

Dep EC No Dep. E.C. No. column. Use the
number following the OE"; do not
include the "E" itself.

RC Label Relation Class Label column.

Min No Dep Ent R.C. Card. column. If a filled-
in diamond () is shown, enter
1 (one); otherwise, enter 0
(zero).

Max No Dep Ent R.C. Card. column. If a half
diamond () is shown, enter 1
(one); otherwise, leave blank.

KC No Ind. K.C. No. column. Use the
number following the "K"; do not
include the OK" itself.

5-21

__ . .__.'',

UM 620141001
1 November 1985

Example:

From the example shown in Figure 5-10, the resulting table
is as follows:

Ind Dep RIC Min No Max No KC
EC No EC No Label Dep Ent Dep Ent No

11 13 Is 0 1 1
11 61 Has 0 1
11 15 Is used to manufacture 1 1
11 14 Is 011
11 10 Has 1I
11 71 Has 01

5-22

UM 620141001
1 November 1985

2

CL z

LW z w Am wj wl

E Z

0 CL u

~ vi 0

a. IL WA S W

0 0)

a a

G 0

c 4

N0 .03 ~

C,

ii 9 9 99 ,

5-23

Magi-

UM 620141001
1 November 1985

5.2 Loading the Initial CS Description

Objective:

0 Load the descriptions of the entity, relation,
attribute, and key classes contained in the model
into the following tables in the CDM database:

Entity Class Table
Relation Class Table
Attribute Class Table
Attribute Use Class Table
Key Class Table
Key Class Member Table
Inherited Attribute Use Class Table

If the CDM tables are to be updated with the NDDL

commands, skip to Section 5.2.2.

5.2.1 Direct Loading of the CS CDM Tables

Please refer to Section 5.1.2 for details on how to load
these tables.

Tasks:

1. The CDM Administrator loads descriptions from the
Entity Class Definition Forms.

Create one entry in the Entity Class Table from each
form.

2. The*CDM Administrator loads descriptions from the
Relation Classes Forms.

Create one entry in the Relation Class Table from each
line on each form.

3. The CDM Administrator loads descriptions from the Owned
Attribute Classes Forms.

Create one entry in the Attribute Class Table from each
line on each form.

4. The CDM Administrator loads descriptions from the
Inherited Attribute Class Forms.

5-24

UM 620141001
1 November 1985

Create one entry in the Inherited Attribute Use Class
Table from each line on each form.

Create one entry in the Attribute Use Class Table from
each line on each form.

Create one entry in the Key Class Table for each key
class number in the Nbr. of K.C. No. column, if any.

Create one entry in the Key Class table for each key
class number in the Xbr. of K.C. No. column, if any,
unless a duplicate entry is already in the table.

5.2.2 Loading the CS with the NDDL

Objective:

0 Load the descriptions of the entity, relation,
attribute, and key classes contained in the model into
the CDM database with NDDL Commands.

Task:

1. The CDM Administrator loads the domains for the
attribute classes from the Owned Attribute Classes
Forms.

For each attribute, use the NDDL CREATE DOMAIN command
to load domain(s) and data types. Data type is
indicated by the Type ID column on the form.

2. The CDM Administrator loads the attribute classes from
the Owned Attribute Classes Forms.

For each attribute class, use the NDDL CREATE ATTRIBUTE
command.

3. The CDM Administrator loads the descriptions for the
attribute classes from the Owned Attribute Classes
Forms.

For each attribute, use the NDDL DESCRIBE ATTRIBUTE
command.

5-25

- * - - - -..

UM 620141001
1 November 1985

4. The CDM Administrator loads the entity classes from the
Entity Definition Forms.

For each entity class, use the NDDL CREATE ENTITY
command.

Note:
The attributes for independent entity classes come from
the Owned Attribute Form. The attributes for dependent
entity classes come from both the Owned Attribute and
Inherited Attribute Forms.

5. The CDM Administrator loads the descriptions for the
entity classes from the Entity Definition Form.

For each entity class, use the NDDL DESCRIBE ENTITY
command.

* 6. The CDM Administrator loads the relation classes from
the Relation Classes Forms.

For each relation class, use the NDDL CREATE RELATION
command.

7. The CDM Administrator loads the descriptions for the
relation classes.

Use the NDDL DESCRIBE RELATION command.

5.3 Modifyinl/Deleting CS Elements

Prior to modifying or deleting elements of the CS. the CDM
Administrator must assess the impact of the proposed change on
the other components of the CDM. The objective of this section
is to provide the CDM Administrator with an approach to the
analysis of the Impact that a change in the CS might have upon
the other areas of the CDM or on software modules, such as user
APs and generated APs.

The approach that is taken in analyzing the impact that a
change to the CS might have to other areas of the CDM. or to a
software module, is to list the changes that might be made. and
then for each of those changes, to identify the other changes
that would have to be made -- either in the CS, or another
schema, or in an ES-CS, or an IS-CS mapping, or in a software
module. Changes that do not impact any other areas are omitted.

5-26

UN 620141001
1 November 1985

A similar section appears in the discussions that follow on
the Internal Schemas and the IS-CS Mappings and on the External
Schemas and the ES-CS Mappings, Sections 6 and 7 respectively.

The following assumptions about the nature of the changes
to the Conceptual Schema and the sequence in which they are made
have been taken in order to perform the analysis:

1. If the updating the CDM tables directly, components of
the conceptual schema are added in the following sequence:

" Entity classes
" Attribute classes

- An owned attribute class for each
- An attribute use class in the owner entity

class for each
" Key classes
" Key class members
* Relation classes

- An inherited key class for each
- An inherited attribute class for each

member of the key class that migrates to
become the inherited key class

- An attribute use class for each inherited
attribute class

2. If using the NDDL, components of the conceptual schema
are added in the following sequence:

* Data types
0 Attribute classes
* Attribute domains
" Entity classes
* Relation classes

3. All changes in the conceptual schema that are needed to
support a change in an external or internal schema are made
before the external or internal schema is changed.

4. All changes in the conceptual schema that are needed to
support a change in an ES-CS or IS-CS mapping are made before
the ES-CS or IS-CS mapping is changed.

5. A change in the name or definition of a component of the
conceptual schema is for cosmetic purposes only and does not
alter the basic meaning of that component.

5-27

UM 620141001
1 November 1985

Finally, a note of explanation about how the changes and
their impacts are ogranized. Only the direct impacts of a
change are listed with it. If one change results in a cascade
of other changes, only the first in the cascade is listed with
the initial change. Each subsequent change is listed as an
impact of the one immediately before it. So to find the total
extent of the impact of a change. one must trace from the
initial change to each change that it results in and then to
each in which that change impacts.

Figure 5-11 shows the relationship between the change and
the part of the CDI that may be impacted by the change.

I OVERVIEW I A change to:I
I MATRIX I-- I
I -- --- I Ent.1 Att.I Att.I Key IleyCil Rel.I Inh.I Inh.l
I Can Impact: iClassiClasslUseClIClassI Nbr. IClassIKeyClIAttClI
I--------------I------ I------ I------ I------ I------I------I------I------ I
IAtt. Class I X I I IIIIII
IAtt. Use Cl. I I X I I I
IKey Class I X I I X I I I I
IKey Class Mbrl I I K I K I I I I
IRelation Cl. i X I I I I I I I
IInh. Key Cl. i I I I X I I K I I
IInh. Att. C1.1 I I I I K I I X I I
Own. Att. C1.1 X I X I I I
lUser View I I I I I I
IData Item I I I X I I I I I I
IEC-UV Join I II I I I I K II
IAUC-DI Map. I I I K I I I I II
IRecord Type I I I I I I I K I I
IData Field I I K I K I I I I I I
IEC-RT Join I I I I I I I K I I
IEC-RT Map. I K I I I I I I I I
IAUC-DF Map. I I I K I I I I I I
IAUC-Set Map. I I I K I I I I I
IDF Index I I I K I I III I
IRC-Set Map. I I I I I I I I
ISoftware Mod.I I K X I I I I I

Figure 5-11. Impact of Conceptual Schema Changes

5-28

UM 620141001
1 November 1985

5.3.1 Entity Class Changes

" Add a new entity class.

No other impact.

" Change an entity class name.

No other impact.

* Change an entity class definition.

No other impact.

" Change an entity class keyword.

No other impact.

* Delete an entity class.

If the entity class has any owned attribute classes,
either delete them and the corresponding attribute
classes, or change their ownership to another entity
class.

Note:
If using NDDL, the DROP ENTITY command will:
- Delete any owned attribute class occurrences.
- Remove attribute use, inherited attribute, key

class member, and key classes.
- Delete all relation classes for the entity.
- Delete any keywords associated with the entity.
- Delete all description texts for the entity.

Delete all the key classes for the entity class.

Delete all the relation classes in which the entity
class is either independent or dependent.

Delete any EC-RT mappings in which the entity class
is involved and any corresponding horizontal
partitions and constraint statements and others.

5-29

UM 620141001
1 November 1985

5.3.2 Attribute Class Changes

" Add a new attribute class.

Add an owned attribute class to specify the entity
class that owns the attribute class. Add an attri-
bute use class in that entity class to represent the
attribute class.

Note:
If using NDDL, the CREATE ATTRIBUTE command will:

- Add a new attribute class
- Associate a domain with the attribute class.
- Create keyword references for the attribute.
The NDDL CREATE ENTITY command is used to add key
classes and owned attributes.

Add an attribute class data description for the
attribute class.

" Change an attribute class name.

No other impact.

* Change an attribute class definition.

No other impact.

" Change an attribute class keyword.

No other impact.

* Change the owner entity class of an attribute class.

This is the same as deleting the attribute class and
then re-adding it with a different owner entity
class.

• Change the data description of an attribute class.

This requires at least the recompilation of all

5-30

UM 620141001
1 November 1985

software modules that access the attribute class. It
may also involve changing the data descriptions of
the data items and data fields that map to the
attribute class.

1. Identify all the attribute use classes that
correspond to the attribute class.

2. Identify any data field to which those attribute
use classes map.

3. If the data descriptions of any of those data
fields are incompatible with the new data
description of the attribute class, change those
data field data descriptions.

4. Identify any data items which map to the attri-
bute use classes from Step 1.

5. If the data descriptions of any of those data
items are incompatible with the new data
description of the attribute class, change those
data item data descriptions.

6. Identify all the software modules that use any
of those data items.

7. Recompile all those software modules, even if
none of the data item data descriptions or data
field data descriptions were changed.

Note:

This section can be ignored when using the NDDL.

0 Delete an attribute class.

Delete the owned attribute class for the attribute
class.

Delete the attribute use class that represents the
attribute class in its owner entity class.

Delete the attribute class data description for the
attribute class.

5-31

UM 620141001
1 November 1985

5.3.3 Attribute Use Class Changes

Note:
If using the NDDL, the ALTER ATTRIBUTE command will:

- Change domains
- Add keywords
- Drop keywords

" Add a new attribute use class.

The addition of an attribute use class is never
initiated on its own; it is always the result of one
of the following conceptual schema changes:

1. The addition of an attribute class

2. The change in ownership of an attribute class

3. The addition of an inherited attribute class

No other impact.

" Change an attribute use class name.

No other impact.

* Delete an attribute use class.

The deletion of an attribute use class is never
initiated on its own; it is always the result of one
of the following conceptual changes:

1. The deletion of an attribute class

2. The change in ownership of an attribute class

3. The deletion of an inherited attribute class

Delete any key class members that the attribute use
class is used as.

If the attribute use class maps to any data items,
either delete the AUC-DI mappings and the data items,
or change them to map to other attribute classes.

5-32

WI IM, R

UM 620141001
1 November 1985

If the attribute use class maps to any data fields,
either delete the AUC-DF mappings and the data
fields, or delete only the mappings leaving the data
fields unmapped, or change them to map to other
attribute use classes.

Delete any repeating data field indexes that the
attribute use class Is used as.

Delete any AUC-Set mappings for the attribute use
class.

5.3.4 Key Class Changes

Note:
If using the NDDL, the DROP ATTRIBUTE command will:
- Delete the attribute; if owned, all occurrences

of the attribute are removed from owned
attribute, attribute use class, key class
member, and inherited attribute use class.

- The attribute use class is deleted from the
model.

- Those key class occurrences with no remaining
key class members are deleted.

- If a key clas is deleted, the occurrence of a

complete relation is also deleted.
- All keywords associated with the attribute class

will be dropped.
- The primary name and all aliases for the

attribute class will be deleted.
- All description texts for the attribute class

will be deleted.

" Add a new key class

Add a key class member for each attribute use class
that is part of the key class.

" Delete a key class.

Delete all the key class members that belong to the
key class.

Delete any inherited key classes that the key class

5-33

.....

UM 620141001
1 November 1985

has migrated to become.

5.3.5 Key Class Member Changes

Note:
If using the NDDL, the CREATE ENTITY or ALTER ENTITY
commands are used to add or delete key classes.

0 Add a new key class member.

If the new member is being added to a key class that
has migrated to become one or more inherited key
classes, add a corresponding inherited attribute
class to each of those inherited key classes.

0 Delete a key class member.

Delete any inherited attribute classes that the key
class member has migrated to become

If the key class member is the last or only member of
the key class, delete the key class also.

5.3.6 Relation Class Changes

Note:
If using the NDDL, the CREATE ENTITY or ALTER ENTITY
commands are used to add or delete key members.

0 Add a new relation class.

Add the inherited key class for which the relation
class is the migration path.

0 Change a relation class name.

No other impact.

0 Change a relation class definition.

No other impact.

0 Change a relation class keyword.

No other impact.

* Change the cardinality of a relation class.

5-34

bill,

UM 620141001
1 November 1985

Only the cardinality for the entity class that is
dependent in the relation class can be changed, not
that for the independent entity class; i.e., a
relation class cannot be changed from specific to
nonspecific. When the cardinality changes from 1:0-1
to 1:M, usually one or more members must be added to
the key class of the dependent entity class. When
the cardinality changes from 1:M to 1:0-1, usually
one or more members must be deleted from the key
class of the dependent entity class.

* Change which key class migrates through a relation
class.

This is the same as deleting the inherited key class
for which the relation class is the migration path
and then re-adding it for a different migrating key
class.

* Change which entity class is independent in a
relation class.

This is the same as deleting the relation class and
then re-adding it for a different independent entity
class.

* Change which entity class is dependent in a relation
class.

This is the same as deleting the relation class and
then re-adding it for a different dependent entity
class.

* Delete a relation class.

Delete the inherited key class for which the relation
class is the migration path.

Note:
If using the NDDL, the CREATE RELATION, ALTER
RELATION, and DROP RELATION commands are used for
relation class changes. The CREATE RELATION command
can:
- Add a new relation to the model.
- Add cardinalities for the entities of the

relation class.

5-35

UM 620141001
1 November 1985

- Record key class migration.
- Add keyword references for the relation.
- Create an attribute use and an inherited

attribute use class for the dependent entity
class for each key class member of the
independent entity migrated to the dependent
entity.

The ALTER RELATION command can:
- Change cardinalities.

Change key class migration.
- Change keyword references.
The DROP RELATION command will:
- Remove attribute use and inherited attributes

from the dependent entity and any other entities
to which they have migrated.

- Delete the relation class from the model.
- Drop all keywords associated with the relation
- Delete all description text for the relation.

5.3.7 Inherited Key Class Changes

" Add a new inherited key class.

The addition of an inherited key class is never
initiated on its own; it is always the result of one
of the following conceptual schema changes:

1. The addition of a new relation class

2. The change of which key class migrates through a
relation class

Add an inherited attribute class for each member of
the key class to which the inherited key class
corresponds.

* Delete an inherited key class.

The deletion of an inherited key class is never
initiated on its own; it is always the result of one
of the following conceptual schema changes:

1. The deletion of a relation class

2. The change of which key class migrates through a
relation class

5-36

-
- -

ENEWW

UM 620141001
1 November 1985

Delete all the inherited attribute classes that
belong to the inherited key class.

Delete any EC-UV joins for which the inherited key
class is the basis, and change the corresponding user
views as necessary to account for the deleted joins
or delete those user views entirely.

Delete any EC-RT joins for which the inherited key
class is the basis, and change the corresponding
record types as necessary to account for the deleted
joins or delete those record types entirely.

Delete any RC-Set mappings for which the inherited
key class is the basis.

Note:
If using the NDDL, inherited key classes are added,
changed, or deleted with the CREATE RELATION, ALTER
RELATION, and DROP RELATION commands.

5.3.8 Inherited Attribute Class Changes

0 Add a new inherited attribute class.

The addition of an inherited attribute class is never
initiated on its own; it is always the result of one
of the following conceptual schema changes:

1. The addition of an inherited key class

2. The addition of a key class member

Delete the attribute use class that represents the
inherited attribute class in the dependent entity
class.

Note:
If using the NDDL, inherited attribute classes and
key class members are added, changed, or deleted with
the CREATE RELATION, ALTER RELATION, and DROP
RELATION commands.

5-37

* * ~ . Si'~A?

UM 620141001
1 November 1985

5.3.9 Summary

The following points are offered in summary

1. A change in the conceptual schema can result in
additional changes in that schema, in external and
internal schemas, in ES-CS and IS-CS mappings, and in
software modules.

2. The information in the CDM database and the CDM1
model is inadequate for identifying the software
modules that are impacted by most schema changes.
Specifically, the following information needs to be
added:

- The data items that are accessed by a software
module that contains user views.

- The databases, record types, data fields, record
sets, record set members, and database areas
that are accessed by a software module that
accesses databases directly.

- The record types, data fields, record sets,
record set members, and database areas that are
accessed by a generated AP.

5.4 Updating the CS Tables in the CDM

Objectives:

0 Load the descriptions of the new entity, relation,
attribute, and key classes contained in the model
into the following tables in the CDM database:

* Entity Class Table
0 Relation Class Table
0 Attribute Class Table
* Attribute Use Class Table
0 Key Class Table
0 Key Class Member Table
0 Inherited Attribute Use Class Table

* Change or delete entries in these tables to reflect
updates to the descriptions of the entity, relation,
attribute, and key classes that are already in the
conceptual schema.

5-38

UM 620141001
1 November 1985

If the CDM tables are to be updated with the NDDL

commands, skip to Section 5.4.2

5.4.1 Direct Updating of the CS CDM Tables

Please refer to Section 5.1.2 for details on how to load

and update these tables.

Tasks:

1. The CDM Administrator renumbers the new model elements.

Usually, some of the new entity class, key class,
attribute class, and tag numbers that were assigned
in Phases 1-4, i.e., those prefixed with "N," are the
same as some that are already in the conceptual
schema. No attempt is made to prevent this, because
to do so would impede the development of the model.
Consequently, all of the new numbers must now be
examined, and any duplicates must be replaced.

List all of the new entity class numbers from the
Entity Class Definition Forms in numeric sequence.
Compare each to those in the Entity Class Table. If
a match is found, select another number that is not
in the list or the table, and write it on the list
next to the one to be replaced.

List all of the new attribute class numbers from the
Owned Attribute Classes Forms in numeric sequence.
Compare each to those in the Attribute Class Table.
If a match is found, select another number that is
not in the list or the table, and write it on the
list next to the one to be replaced.

List all of the new tag numbers from the Tag No.
column of the Owned Attribute Classes Forms and the
Inherited Attribute Classes Forms in numeric
sequence. Compare each to those in the Attribute Use
Class Table. If a match is found, select another
number that is not in the list or the table, and
write it on the list next to the one tV be replaced.

List only the new key class numbers for conceptual
schema entity classes, i.e., those in the Mbr. of
K.C. No. column of the Owned Attribute Classes Forms

5-39

UM 620141001
1 November 1985

and Inherited Attribute Classes Forms that have an
entity class number prefixed with "C" in the lower
left corner. List both the entity class number and
the new key class number; do not list the same pair
more than once. Compare each pair to those in the
Key Class Table. If a match is found, select another
key class number that is not paired with that entity
class number in the list or the table, and write it
on the list next to the one to be replaced. Do not
assign another entity class number.

These replacement numbers will be used to update the
conceptual schema tables rather than the duplicated
numbers on the forms.

2. The CDM Administrator updates descriptions from the
Entity Class Definition Forms for conceptual schema entity
classes.

Each of these forms has an entity class number
prefixed with "C" in the lower left corner.

If "UPDATED" is written in the lower left corner,
change the corresponding entry in the Entity Class

Table.

3. The CDM Administrator loads or updates descriptions from
the Relation Classes Forms for conceptual schema entity classes.

Each of these forms has an entity class number
prefixed with "C" in the lower left corner.

When creating or changing table entries in this task.
use the replacement numbers from Task I rather than
the duplicated ones prefixed with "N" on the forms.

If a line has an entity class number prefixed with
"N" in the Dep. E.C. No. column, create one entry in
the Relation Class Table.

If "UPDATED" Is written in the lower left corner and:

"CHANGE" is written next to a line, change the
corresponding entry in the Relation Class Table.

"DELETE" is written next to a line:

5-40

• " " "
%""%""" i . "% " %' q . ZA

UM 620141001
1 November 1985

" Remove the corresponding entry from the Relation

Class Table.

" Modify any CS-IS mappings and any CS-ES mappings
that are affected; see Sections 6 and 7 for
details.

"OMIT" is written next to a line, a key class did not
migrate through that relation class. That must be
done before the conceptual schema tables are updated.

4. The CDM Administrator loads or updates descriptions from
the Owned Attribute Classes Forms for conceptual schema entity
classes.

Each of these forms has an entity class number
prefixed with "C" in the lower left corner.

When creating or changing table entries in this task,
use the replacement numbers from Task 1 rather than
the duplicated ones prefixed with "N" on the forms.
If a line has an attribute class number prefixed with
"N" in the A.C. No. column:

* Create one entry in the Attribute Class Table.

0 Create one entry in the Attribute Use Class
Table.

0 Create one entry in the Key Class Member Table
for each key class number in the Mbr. of K.C.
No. column, if any.

0 Create one entry in the Key Class Table for each
key class number in the Mbr. of K.C. No. column,
if any, unless a duplicate entry is already in
the table.

If a line has an attribute class number prefixed with
"C" in the A.C. No. column:

" Create one entry in the Key Class Member Table
for each key class number prefixed with "N" in
the Mbr. of K.C. No. column, if any.

* Create one entry in the Key Class Table for each
key class number prefixed with "N" in the Mbr.

5-41

UM 620141001
1 November 1985

of K.C. No. column, if any, unless a duplicate
entry is already in the table.

If "UPDATED" is written in the lower left corner and
"CHANGE" is written next to a line, change the
corresponding entry in the Attribute Class Table.

If "UPDATED" is written in the lower left corner and
"DELETE" is written next to a line:

* Remove the corresponding entry from the
Attribute Use Class Table.

* Remove the entry from the Key Class Member Table
that corresponds to each key class number in the
Mbr. of K.C. No. column, if any.

" Remove the entry from the Key Class Table that
corresponds to each key class number in the Mbr.
of K.C. No. column, if any, unless there is
still an entry with the same entity class number
and key class number in the Key Class Member
Table.

" Modify any CS-IS mappings and any CS-ES mappings
that are affected; see Sections 6 and 7 for
details.

If "UPDATED" is written in the lower left corner and
"OMIT" is written next to a line:

" Remove the entry from the Key Class Member Table
that corresponds to each circled key class
number in the Mbr. of K.C. No. column.

" Remove the entry from the Key Class Table that
corresponds to each circled key class number in
the Mbr. of K.C. No. column unless there is
still an entry with the same entity class number
and key class number in the Key Class Member
Table.

If OUPDATED" is written in the lower left corner and
"NEW OWNER" is written next to a line; make no table
updates from the line. The necessary updates will be
made from lines on other forms.

5-42

UM 620141001
1 November 1985

5. The CDM Administrator loads or updates descriptions from
the Inherited Attribute Classes Forms for coneptual schema
entity classes.

Each of these forms has an entity class number
prefixed with "C" in the lower left corner.

When creating or changing table entries in this task,
use the replacement numbers from Task 1 rather than
the duplicated ones prefixed with "N" on the forms.

If a line has a tag number prefixed with "N" in the
Tag No. column:

" Create one entry in the Attribute Use Class
Table.

" Create one entry in the Inherited Attribute Use
Class Table.

" Create one entry in the Key C)ass Member Table
for each key class number in the Hbr. of K.C.
No. column, if any.

* Create one entry in the Key Class Table for each
key class number prefixed with "N" in the Mbr.
of K.C. No. column, if any, unless a duplicate
entry is already in the table.

If a line has a tag number prefixed with "C" in the
Tag No. column:

* And a tag number prefixed with "N" in the Ind.
Tag No. column, create one entry in the
Inherited Attribute Use Class Table.

0 Create one entry in the Key Class Member Table
for each key class number prefixed with "N" in
the Mbr. of K.C. No. column, if any.

* Create one entry in the Key Class Table for each
key class number prefixed with "N" in the Mbr.
of K.C. No. column, if any, unless a duplicate
entry is already in the table.

If "UPDATED" is written in the lower left corner and
"CHANGE" is written next to a line, change the

5-43

UM 620141001
1 November 1985

corresponding entry in the Inherited Attribute Use
Class Table.

If "UPDATED is written in the lower left corner and
DELETE" is written next to a line:

* Remove the corresponding entry from the
Attribute Use Class Table.

* Remove the corresponding entry from the
Inherited Attribute Use Class Table.

" Remove the entry from the Key Class Member Table
that corresponds to each key class number in the
Mbr. of K.C. No. column, if any.

* Remove the entry from the Key Class Table that
corresponds to each key class number in the Mbr.
of K.C. No. column, if any, unless there is
still an entry with the same entity class number
and key class number in the Key Class Member
Table.

- Modify any CS-IS mappings and any CS-ES mappings
that are affected; see Sections 6 and 7 for
details.

If "UPDATED is written in the lower left corner and
"OMIT" is written next to a line:

" Remove the entry from the Key Class Member Table
that corresponds to each circled key class
number in the Mbr. of K.C. No. column.

" Remove the entry from the Key Class Table that
corresponds to each circled key class number in
the Mbr. of K.C. No. column unless there is
still an entry with the same entity class number
and key class number in the Key Class Member
Table.

6. The CDM Administrator loads descriptions from the Entity
Class Definition Forms for new entity classes.

Each of these forms has an entity class number prefixed
with "N" in the lower left corner.

5-44

UM 620141001
1 November 1985

When creating table entries in this task, use the
replacement numbers from Task 1 rather than the
duplicated ones prefixed with "N" on the forms.

Create one entry in the Entity Class Table from each
form.

7. The CDN Administrator loads descriptions from the
Relation Classes Forms for new entity classes.

Each of these forms has an entity class number
prefixed with "N" in the lower left corner.

When creating table entries in this task, use the
replacement numbers from Task 1 rather than the
duplicated ones prefixed with "N" on the forms.
Create one entry in the Relation Class Table from
each line on each form.

8. The CDH Administrator loads or updates descriptions from
the Owned Attribute Classes Forms for new entity classes.

Each of these forms has an entity class number
prefixed with "N" in the lower left corner.

When creating or changing table entries in this task,
use the replacement numbers from Task 1 rather than
the duplicated ones prefixed with "N" on the forms.

Create one entry in the Attribute Use Class Table
from each line on each form.

Create one entry in the Key Class Member Table for
each key class number in the Mbr. of K.C. No. column,
if any.

Create one entry in the Key Class Table for each key
class number in the Hbr. of K.C. No. column, if any,
unless a duplicate entry is already in the table.

If a line has an attribute class number prefixed with
"N" in the A.C. No. column, create one entry in the
Attribute Class Table.

If a line has an attribute class number prefixed with
"C" in the A.C. No. column, change the entity class
number and anything else that is different in the

5-45

UM 620141001
1 November 1985

corresponding entry in the Attribute Class Table.

9. The CDN Administrator loads descriptions from the
Inherited Attribute Classes Forms for new entity classes.

Each of these forms has an entity class number
prefixed with "N" in the lower left corner.

When creating table entries in this task, use the
replacement numbers from Task 1 rather than the
duplicated ones prefixed with "N" on the forms.

Create one entry in the Attribute Use Class Table
from each line on each form.

Create one entry in the Inherited Attribute Use Class

Table from each line on each form.

5.4.2 Updating the CS CDM Tables with the NDDL

Objectives:

0 Update the descriptions of the new entity, relation,
attribute, and key classes continued in the model into the
CDM database with the NDDL.

Tasks:

1. The CDM administrator loads or updates CS attribute
classes.

For each new attribute class, use the NDDL CREATE
ATTRIBUTE, and DESCRIBE ATTRIBUTE commands.

For each modified attribute, use the NDDL ALTER
ATTRIBUTE command. The DESCRIBE ATTRIBUTE command
should also be considered.

For each deleted attribute, use the NDDL DROP
ATTRIBUTE command.

Note:
All occurrences of the attribute are removed from the
owned attribute, attribute use class, key class
member, and inherited attribute use class.

5-46

UM 620141001
1 November 1985

2. The CDM administrator loads or updates conceptual schema
entity classes.

For each new entity class, use the NDDL CREATE ENTITY
and DESCRIBE ENTITY commands.

For each modified entity class, use the NDDL ALTER
ENTITY command. The DESCRIBE ENTITY command should
also be considered.

For each deleted entity class, use the NDDL DROP
ENTITY command.

Note:
Any owned attribute class occurrences are deleted.
Also removed are attribut use, inherited attribute,
key class member, and key classes. All relation
classes involving the entity are deleted, as are any
keywords associated with the entity class. The
primary name and all aliases for the entity class are
deleted. All description texts for the entity class
are deleted.

3. The CDM Administrator updates conceptual schema relation
classes.

For each new relation class, use the NDDL CREATE
RELATION and DESCRIBE RELATION commands.

For each modified relation class, use the NDDL ALTER
RET.&TION command. The DESCRIBE RELATION command
should also be considered.

For each deleted relation class, use the NDDL DROP
RELATION command.

Note:
If a key class has been migrated, the attribute use
and inherited attributes are removed from the
dependent entity and from any other entities to which
they have migrated. The relation class and complete
relation are deleted from the model. The keywords
associated with the relation are dropped. All
description texts for the relation are deleted.

5-47

UM 620141001
1 November 1985

SECTION 6

MAINTAINING INTERNAL SCHEMAS AND MAPPINGS

6.1 Methodology Overview

This section and its subsections (6.1.1 - 6.1.4) introduce
the methodology for building and updating internal schemas (IS)
and for mapping them to the conceptual schema (CS). The por-
tion of the CDM database that contains internal schemas and CS-
IS mappings is described, and the basic approach to developing
both is presented. Detailed instructions for filling out the
modeling forms and loading the pertinent CDM database tables are
included.

6.1.1 IS and CS-IS Mapping Structure

There are various generic database models (CODASYL,
relational, hierarchic, etc.), and most database management
systems (DBMSs) are based on one or another of them. In
addition, a particular model may be modified or extended for a
particular DBMS. Each of these models generates its own style

of internal schema. While many internal schema components are
common to all styles, some are peculiar to only one or a few.
The CDM does not contain a separate structure for each style of
internal schema. Instead, a single, composite structure that
can support any style is provided. Each internal schema
component is represented by one entity class, regardless of how
many styles that component is in. The relevant entity classes
for each style are listed in the appropriate "Specific
Considerations" section 6.3.1, 6.4.1, etc.). In general, they
cover:

DBMSs
Databases
Record Types
Data Fields
Record Keys
Record Relationships

The mapping between the conceptual schema and an internal
schema has three levels:

Entity class to record type
Relation class to record relationship
Attribute use class to data field

6-1

UM 620141001
1 November 1985

6.1.2 Basic Approach

This methodology addresses the following subjects:

" Describing existing physical database designs in
the internal schema portion of the CDM.

" Determining the mappings between internal
schemas and the conceptual schema and describing
them in the CS-IS mapping portion of the CDM.

* Updating these descriptions to reflect changes
in either the physical database designs or the
conceptual schema.

This methodology does not address the creation of physical
database designs. DBMS vendors, books, classes, etc., offer
much more guidance in this area than can be provided here.

A CS-IS mapping is intended to show which components of an
internal schema correspond to those of the conceptual schema. A
record type maps to an entity class if they both represent the
same kind of "real-world" things. For example, in Figure 6-1,
the EMP-MAST record type maps to the Employee entity class
because both represent employees. There is a one-for-one
correspondence between the record type and the entity class;
each employee is represented by one instance of the record type
and by one instance of the entity class. Notice that even
though the record type contains data fields (DIV-NO, DEPT-NAME,
SPOUSE-NAME) that correspond to attribute use classes in other
entity classes, the record type does not map to those other
entity classes. It represents a different kind of "real-world"
things than any of those entity classes and is not in a one-
for-one correspondence with any of them. For example, one
instance of the Department entity class exists for each
department while several instances of the EMP-MAST record type
exist, one for each employee in a department, or if a department
has no employees, no record type instances exists for that
department. As another example, the Married Employee entity
class has an instance for each employee who is married, while
the EMP-MAST record type has an instance for every employee,
married or not.

6-2

.4'~ d (..~(, ~ %'~pV

UK 620141001
1 November 1985

CONCEPTUAL INTERNAL
SCHEMA SCHEMA

DIV NAME

DIVISION

HAS

DEPT NO

DEPT NAME
DIV NO

DEPT 2

HAS

0 EMP-MAST

EMP NO EMP NO

EMP NAME EMP-NAME
DEPT NO .DIV-NODT NDEPT-NO

DEPT- NAME
EMPLOYEE 3 SPOUSE-NAME

Is

EMPN
SPOUSE NAME

MARRIED
EMPLOYEE 4

Figure 6-1. Entity Class/Record Type Happing

6-3

, t

UM 620141001

1 November 1985

In a similar manner, a data field maps to an attribute use
class if they both represent the same kind of data about "real-
world" things. Using the example in Figure 6-1 again, the EMP-
NO, EMP-NAME, and DEPT-NO data fields in the EMP-MAST record
type map to attribute use classes in the Employee entity class;
DIV-NO and DEPT-NAME, to those in the Dept entity class; and
SPOUSE-NAME, to one in the Married Employee entity class. Notice
that some data fields could map to more than one attribute use
class. For example, EMP-NO and DEPT-NO could have mapped to
attribute use classes in the Married Employee and Department
entity classes, respectively, instead of those in the Employee
entity class. They map to those in the Employee entity class is
because the record type maps to that entity class. DIV-NO is
another example; it could have mapped to an attribute use class
in the Division entity class rather than to one in the
Department entity class. The reason it maps to the one in the
latter is that the Department entity class is more closely
related to the Employee entity class than the Division entity
class is. Notice also that all these examples involve attribute
use claLses that belong to key classes. This is because only
they can migrate to other entity classes; an owned, nonkey
attribute use class appears only in its owner entity class.
These situations are summarized in the following mapping rules:

0 If a data field could map to either an attribute use
class in the entity class to which the record type
maps or to one in another entity class, it always
maps to the former (e.g., EMP-NO and DEPT-NO).

0 If a data field could map to more than one attribute
use class, none of which are in the entity class to
which the record type maps, it always maps to the one
in the entity class that is most closely related to
the entity class to which the record type maps (e.g.,
DIV-NO).

Finally, a record set maps to a relation class if they both
represent the same kind of association between "real- world"
things. This implies that the two record types in the record
set, the owner and the member, map to the two entity classes in
the relation class, the independent and the dependent,
respectively.

The following subsections (6.1.2.1 - 6.1.2.6) present
various subjects to consider when dealing with CS-IS mappings.
None of them are mutually exclusive; each can be combined with
one or more of the others.

6-4

AQLWXJQF kA A(U6V

UM 620141001
1 November 1985

*6.1.2.1 Vertical Partitions

An entity class is vertically partitioned when some of its
attribute use classes map to data fields in one record type and
others map to those in another. An entity class can have
several vertical partitions. Each record type maps to the
entity class. RT1 RT2

A B_

B

ECI 1

6.1.2.2 Horizontal Partition

An entity class is horizontally partitioned when some of
its entity instances map to instances of one record type and
others map to instances of another record type. Usually, the
horizontal partitioning of an entity class is governed by the
values in a particular att-ibute use class.

The attribute use class may be in the entity class being
partitioned (as in the example below), or it may be in one that
that entity class is dependent on, either directly or
indirectly.

6-5

UM 620141001
1 November 1985

CALIF. ARIZ.
EMPLOYEE EMPLOYEE

EMP I'O FEP-N EMP-NO
EMP NAME EMP-NAME EMP-NAME
STATE011 0

EMLOYEEI

OTY NO
STATE

DtVISION: 1

QDT NO
DIV NO

DEPT 2

CALIF. ARIZ.
EMPLOYEE EMPLOYEE

EMPN MP-NEMPfIQ
EMP NAME EMP-NAME EMP-NAME
DEPT NO DEPT-NO DEPT-NO

EMPLOYEE 3 L --------------------------- i_

6-6

UM 620141001
1 November 1985

An entity class can have several horizontal partitions.

Each record type maps to the entity class.

6.1.2.3 Joins

If some data fields in a record type map to attribute use
classes in one entity class and others map to those in another,
the two entity classes must be combined to form that record
type. This is done with a relational "join" operation which
concatenates the entity instances of one entity class with those
of the other. The two entity classes must be directly related
by a relation class so that their entity instances can be
matched using the key class of the independent and the
corresponding inherited attribute use class(es) of the
dependent.

A B,

hRT

_d12

All

V A. B. D

A
D

EC2 12

V If the relation class cardinality is one-to-many, each
independent entity instance is concatenated with each entity
instance that is dependent on it. In the first example in
Figure 6-2. each PO-HEADER instance is formed by concatenating a
Vendor instance with a PO instance based on identical values in
Vendor No. If a Vendor instance has no dependent PO instances,
it is not represented by a PO-HEADER instance. This produces

4? one record instance for each instance in the dependent entity
class, so the mapping must be to that entity class. If the
mapping was to the independent entity class, i.e., if there was
one record instance for each Vendor instance. P. 0. NO. and any

6-7

UM 620141001
1 November 1985

other attribute use classes from the P. O. entity class could
occur multiple times in each record instance. Since a
relational join cannot form record instances with repeating data
fields, this situation is prohibited.

If the relation class cardinality is one-to-zero-or-one,
the mapping can be to either the independent or the dependent
entity class because neither can cause a repeating data field.
The second and third examples in Figure 6-2 show these two
situations. In the second, there is one BUYER record instance
for an employee who is not a buyer. In the third example, there
is one EMP-MAST instance for each Employee instance. If an
employee is not married, the SPOUSE-NAME data field in the
record instance for that employee is null.

If a record type has data fields that map to attribute use
classes in several entity classes, they must all be combined to
form the record type. This is done with a series of the join
operations described above, each of which combines two of the
entity classes. All of the entity classes must be inter-
related such that they form one of the following (See Figure 6-
2):

1. A regular hierarchy, i.e., a structure in which:

0 One entity class, called the apex, is not
dependent on any of the others (e.g., ECI)

* Every other entity class is dependent on exactly
one entity class (not necessarily the same one
for all)

* Every relation class cardinality is one-to-zero-
or-one

2. A confluent hierarchy (an upside-down hierarchy), i.e.,
a structure in which:

" One entity class, called the apex, has none of
the others dependent on it (e.g., EC14)

* Every other entity class has exactly one entity
class dependent on it (not necessarily the same
one for all)

" Any specific relation class cardinality is
permitted

6-8

UM 620141001
1 November 1985

3. A combination of:

" One confluent hierarchy and

* One or more regular hierarchies, each of whose
apex entity classes are also in the confluent
hierarchy (e.g., EC15, EC20, and EC25).

Each hierarchy is called a join structure. As shown in the
examples in Figure 6-3, the record type must map to the apex
entity class of the regular or confluent hierarchy. If a
combination of hierarchies exists, the mapping must be to the
apex of the confluent hierarchy.

6-9

.......

UM 620141001
1 November 1985

ONE -TO-MANY RELATION CLASS

VENDOR NAME

VENDOR

P0-HEADER

1VENN j RECEIVES

VENDOR NO

P 0 12

ONE TO-ZERO-OR ONE RELATION CLASS

EMP NAME

BUYER

BYRNAME

ROVCR NO
EMP NO

BUYER 2

FMP N
EMP NAME

EMPLOYEE 3

EMP-MAST

EMP-NAMEI

SPOSE-AME

SPOUSE NAME

MARRIED
EMPLOYEE '

Figure 6-2. Join Examples

6-10

UM 620141001
1 November 1985

REGULAR HIERARCHY.

RT-A

CONFLUEN7r HIERARCHY:

EC9 8 E

EC 1 III C2 1

RT.B

APEX 00 4 1
Figure 6-3. Join Structures

6-11

UM 620141001
1 November 1985

COMBINATION.

IEC21 71 E2

Figure 6-3. Join Structures (Continued)

6-12

UM 620141001
1 November 1985

6.1.2.4 Unions

A record type can map to two or more entity classes. This
is the case when there is one record instance for each entity
instance in one entity class and one for each in another. In
the example below, each RESUPPLY record instance corresponds to
either one Shop Order instance or one P. 0. Item instance.

Q N-)
PART NO
So CITY
FINISH DATE

SHOP ORDER

RESUPPLY

LINC.NO
PART NO
OUANTITY
A VA IL-DATE

PART NO
P.O OTY
DUE DATE

P 0 ITEM 2

The creation of this sort of record type involves the use
of the relational "union" operation. This allows the instances
from both entity classes to be treated as if they were all the
same kind of entity instances. Each data field can map to an
attribute use class in each entity class, but that is not
required A data field can map to an attribute use class in one
entity class without mapping to one in another. In the example
above, these mappings are:

RESUPPLY SHOP ORDER P.O. LINE

ORDER-NO maps to S.O. No. and P.O. No.
LINE-NO maps to Line No.
PART-NO maps to Part No. and Part No.
QUANTITY maps to S.O. Qty. and P.O. Qty.
AVAIL-DATE maps to Finish Date and Due Date

6-13

-0 N N

UM 620141001
1 November 1985

LINE-NO does not map to an attribute use class in the Shop
Order entity class. Consequently, each record instance that
corresponds to an instance of that entity class is null in that
data field.

Usually, the entity classes involved in a union are not
directly related, although this is not a requirement.

6.1.2.5 Phantoms

Some DBMSs discourage the creation of data fields that
would map to inherited attribute use classes. In the example
below, P.O. No. in the P.O. Line entity class has no
corresponding data field in the PO-DETAIL record type. Instead,
when the purchase order number for an instance of that record
type is needed, the one in the related PO-HEADER record instance
is used.

P 0 HEADER

P.O. DATE P.O. DATE

OBTAINS

_ _ _ P 0 DETAIL,

P 0.NO LIjE NO LINE NO
P 0 O PO -OTY

DUE DATE 4 DUE-DATE

P 0 LINE 2_

In this example, the P.O. No. in the P.O. Line entity class
is called a "phantom" attribute use class because values for it
can be retrieved from the database even though it does not map
to any data field.

6.1.2.6 Ddpl!oations (Replications vs Redundancy)

Data duplication exists when the value in an attribute use
class for a particular entity instance is stored in two or more
data fields. In general, this is when an attribute use class

6-14

UM 620141001
1 November 1985

maps to more than one data field. However, there are
exceptions. When an entity class is horizontally partitioned,
some or all of its attribute use classes map to more than one
data field. If the partitions do not overlap though, i.e., if
each entity instance corresponds to only one record instance,
then each value is stored only once. Then, there i no data
duplication. To summarize, data duplication existsd when an
attribute use class maps to two or more data fields unless all
of those mappings result from a non-overlapping horizontal
partition.

There are two types of data duplication:

Data Redundancy: The values in one of the data
fields to which an attribute use
class maps are not kept
synchronized with those in
another to which it maps.

Data Replication: The values in one of the data
fields to which an attribute use
class maps are updated and
controlled to be kept
synchronized with those in
another to which it maps. Data
replication may be used for
performance purposes or for
purposes of joining across
physical record (but not for
joining entity classes).

As indicated by these definitions, data replication can be
useful, but data redundancy is always undesirable. With data
replication, updates to those multiple copies are controlled
from a single source. The multiple copies are kept synchronized
such that they reflect the same history of updates. By
contrast, with data redundancy, updates to the multiple copies
can be controlled by multiple sources, e.g., by different
applications. The result is that the copies may reflect
different histories of updates and carry different values. When
a user accesses redundant data, there can be no guarantee of the
integrity or quality of that data. Depending on which copy is
accessed, the user may receive very different results.

Whenever an attribute use class maps to more than one data
field, the CDM Administrator must specify which is the
"preferred copy." This is the data field that the CDM Processor

6-15

1 a j cm j n ll'lIlil 1 111111

UM 620141001
1 November 1985

will use for retrievals and qualifications in all NDML requests,
regardless of application. The others will be used for joining
across physical records when necessary. If an entity class has
been horizontally partitioned, there should be a preferred copy
designated in each partition. If a particular application
wishes to use other than the preferred copy, it must bypass the
CDM Processor and access that data field directly. It cannot
use NDML for the request.

The CDM Processor treats all duplication as data replica-
tion; it must consider the values in all data fields to be
synchronized. If, in fact, some duplication is really data
redundancy, improper physical record joining may be performed,
resulting in spurious responses.

6.1.3 IS Modeling Forms

Most DBMSs provide a language for defining databases, a
Data Definition Language (DDL). DDL Statements for each
database are used to directly load the internal schema tables of
the CDM database or with the appropriate NDDL commands.
Consequently, no internal schema modeling forms are needed.

The following forms are used to model the mappings between
internal schemas and the conceptual schema:

Record Type/Entity Class Mapping Form
Record Type Join Structure Diagram
Data Field/Attribute Use Class Mapping Form
Set Type/Relation Class Mapping Form

The rest of this section contains a detailed description
and two samples (one blank, one filled in) of each of these
forms.

Note: When using NDDL, any references on the above forms to
ID's or NO's should be replaced with names.

Record Type/Entity Class Mapping Form

Purpose: To provide a single source of information about the
mappings between record types and entity classes.

Instructions:

Fill in one or more pages for each database. List
each entity class to which record type maps.

6-16

UM 620141001
1 November 1985

Form Area Explanation

1. Database ID Unique identification code
assigned to the database by the
CDMA.

2. Record Type ID Name or code that the DBNS uses
to identify the record type.

3. Entity Class No. Number of an entity class to
which the record type maps.

4. Entity Class Name Name of the entity class whose
number is in the prior column.
It is included only to make the
entry readable; it is not used in
loading the mapping tables.

Record Type Join Structure Diagram

Purpose: To provide a single source of information about the
join structures for a record type.

Instructions:

Fill in one page for each record type that involves
joining two or more entity classes.

Form Area Explanation

1. Database ID Unique identification code
assigned to the database by the
CDMA.

2. Record Type ID Name or code that the DBMS uses
to identify the record type.

3. (Diagram Area) Depiction of the entity classes
and relation classes that make up
the join structure.

6-17

MA

UM 620141001
1 November 1985

E

00

r- - S.

6 0L

LU

(0

0(
Q-

IVr

cc _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ I
NU

toC

W P

-6a18

UM 620141001
1 November 1985

L

E
z

3. 0 o
a 8. 0 C.

a u r 4

61 Lai LkU 0x -Jx
Lu LUJ LU

0 0 0 w E

ua.j L" A

* cc

2 z
4-. 0

z .3

0.

s!o 14-.
U.1 cc

o 064

ww IMM

UM 620141001
1 November 1985

I '4
!D b

CL

S0

cc

0 0 4

t o

6-2

.1I & I 911 i , 1 , I 1?

I. '4 i m*
, 90

UM 620141001
1 November 1985

L w

M
x

mU

-C uc 02

w
C

fn,

0

2 0 6

'C a:ua
t: 0

6-21

-. 4

6-2

*0ai

UM 6201410011 November 1985

Data Field/Attribute Use Class Mapping Form

Purpose: To provide a single source of information about the
mappings between data fields and attribute use
classes.

Instructions:

Fill in one or more pages for each record type in a
database. List each attribute use class to which
each data field maps.

Form Area Explanation

1. Database ID Unique identification code
assigned to the database by the
CDMA.

2. Record Type ID Name or code that the DBMS uses
to identify the record type.

3. Data Field ID Name or code that the DBMS uses
to identify the data field.

4. Entity Class No. Number of the entity class that

contains the attribute use class
whose number and tag are in the
next two columns.

5. Att. Use Cl. Tag No. Tag number of an attribute use
class to which data field maps.

6. Attribute Use Class Name of the attribute use class
Tag whose tag number is in the
prior column. It is included
only to make the entry readable;
it is not used in loading the
mapping tables.

Relation Class/Set Type Mapping Form

Purpose: To provide a single source of information about the
mappings between CODASYL set types or INS paths and
relation classes.

6-22

UM 620141001
1 November 1985

*to

ID P4

L:

0 S

Ccm.

- 4

- .3ft
oc

dA

- 6-23

le U-

M

q (0

.. ,.

0-

6-23

UM! 620141001
1 November 1985

S w

tiC.l

z 0 0 ow 2 w
a w 0 C

- ~ ~ ~ ~ c 0__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ z1

t-c t-
LP LA LAJ LAJ 'i)

L)

C3 I. P. I.-f.

cc C Wn w "A UA J la l W j J U J

'V *3

u 4_,

92 :ii N)i
C.

3,2 h I I b1 . X1 x ' 4

6-24

UM 620141001
1 November 1985

Instructions:

Fill in one or more pages for each database. List
all of the set types that map to relation classes and
all of the record types that are members in each set
type.

Form Area Explanation

1. DB ID Unique identification code
assigned to the database by the
CDMA.

2. Set Type ID Name or code that the DBMS uses
to identify the set type.

3. Member Record Type ID Name or code that the DBMS uses
to identify a record type that is
a member in the set type.

4. Ind. E.C. No. Number of the entity class that
is independent in the relation
class to which the set type maps.

5. Relation Class Label Label of the relation class to
which the set type maps.

6. Dep. E.C. No. Number of the entity class that
is dependent in the relation
class to which the set type maps.

6.1.4 NDDL Commands for Internal Schema

The following is a summary of the NDDL commands required to
load and maintain database definitions (internal schemas) and
their mappings to the integrated model (conceptual schema):

0 The DEFINE DATABASE command is used to add a new
database. The command will:

- Define the DBMS.
- Define the database name.
- Describe the host.
- Record passwords.
- Associate schemas, subschemas, areas, and files.
- Supply PSB name and feedback length for IMS

databases.

6-25

- 6 1 l 1- . .

UM 620141001
1 November 1985

0

0.0

E
Q

6-26,

PA k..

UM 620141001
1 November 1985

wj a U a La ew L

. CD t

li 100

c 3

*u SM ui L uuj u A

Q 0

I 0 SM SM a.
9- SM P.~ - 1-1 = f - 0 0 0 'S.

> MW 1 0 a. SMZ S

cc 0 0 ILL Q. S2 z '
cD 0 -M z J V) J

E X1 < 11- z

EE c 0 cc L. 0- . a., c SM a , 0 a wc
a: 4) V) w 0 ni c 0 0 0 a. a. a.

cc 0 0 0. C

-0 0 co

En a. >- c
0, 0 uU)I

0 1J En SMC A

U~U~UU 0

r9 -j L .-. a u

6-27

UM 620141001
1 November 1985

, Once a database is defined to the CDM, any
change in the parameters referenced above requires
that the database be deleted from the CDM database
(DROP DATABASE command) and redefined.

The NDDL DROP DATABASE command will:

- Delete the database from the CDM. All
associated record types, record sets, data
fields and mappings are also deleted.

- All descriptive texts for the database will
be removed.

" Database record/segment definitions are added to
the CDM with the DEFINE RECORD command. This command
is used to:

- Describe a table/record/segment for a
previously defined database.

- Define the key field and whether or not it
must be unique.

- Define what area a record physically
resides in.

- Provide an INS segment's length.
- Define the fields/columns/elements/items

within tables/records/segments.

* Once a record has been defined to the CDM. any
changes require that the record be deleted from the
CDM database (NDDL DROP RECORD command) and
redefined.

The NDDL DROP RECORD command will:

Delete the record and all associated
fields, areas, and sets.
If any of the datafields for the deleted
record were mapped to the integrated model,
their mapping will be dropped. If it was a
primary mapping, any secondary mapping,
even to other databases, will also be
dropped. If it was a secondary mapping,
the primary mapping would not be dropped.
All description texts will be deleted for
the record and any fields.

6-28

UM 620141001
1 November 1985

" The DEFINE SET command is used to create sets
(paths in INS). This command can:

- Define a particular set of a database
- Relate database records.
- Define TOTAL LINK fields.

* Any modifications to a set that has already
been defined to the CDM database require that the set
be deleted with the DROP SET command and redefined.

The DROP SET command is used to delete sets
(paths in IMS). This command will:

Delete the set specified, and all
associated mappings.
Remove all description texts for the set.

" Mappings between the integrated model (entity
classes, attribute classes and relation classes) and
databases are defined with the NDDL CREATE MAP
command. This command can:

Map tag names (attribute class) from a
conceptual schema entity class to
datafields in a Record/Table/Segment.

- Map an attribute use class to a set.
- Map a relation class to a set member.

" Mappings between the integrated model (entity
classes, attribute classes and relation classes) and
databases can be changed with the NDDL ALTER MAP
command. This command can:

Add a new mapping between a tag name and a
datafield.
Drop a mapping between a tag name and a
datafield. A primary datafield map will
not be dropped if secondary maps exist for
a particular attribute use class.

- Modify the primary-secondary indicator
and/or the datatype name.

* Mappings between the integrated model (entity
classes, attribute classes and relation classes) and
databases can be deleted with the NDDL DROP
MAP command. This command will delete all mappings.

6-29

UM 620141001
1 November 1985

6.1.5 Loading the CDM Tables

The following tables in the internal schema portion of the
CDM database must be loaded directly with NDDL commands:

Component Data Field Table
Database Table
Database Area Table
Database Area Assignment Table
Data Field Table
Data Field Redefinition Table
Record Set Table
Record Set Member Table
Record Type Table
Repeating Data Field Occurence Counter Table

In addition, the following tables in the CS-IS portion of
the CDM database must also be loaded:

Attribute Use Class/Data Field Mapping Table
Entity Class/Record Type Join Table
Entity Class/Record Type Mapping Table
Relation Class/Set Type Mapping Table

The loading of the CS-IS mapping tables from the analysis

forms is discussed in the following paragraphs.

Attribute Use Class/Data Field Mapping Table

Source Documents:

Data Field/Attribute Use Class Mapping pages from the CS-IS
mapping model.

Instructions:

For each record type, use the NDDL CREATE MAP command to
map entity class tag names to the record's datafields.

6-30

6-"161

UM 620141001
1 November 1985

Table Field Source Field

EC No Entity Class No. column. Use the
number following the "E"; do not
include the "E" itself.

Tag No Att. Use Cl. Tag No. column. Use the
number following the "T"; do not
include the "T" itself.

DB ID Database ID area near the top of the
page.

RT ID Record Type ID area near the top of
the page.

DF ID Data Field ID column.

Example:

The following Attribute Use Class/Data Field Mapping Table
results from the example in Figure 6-12:

EC No Tal No DB ID RT ID DF ID

8 53 2 Locatn Loc ID

6-31

II IIII WIiSnli |

UM 620141001
1 November 1985

L
(C -
#A
U)

C.) x
_i, - .

D~
D 9_
z -0

z W
CiC

L__ C- S
-- . .,.

6-.2

in 0r CL

x E cm
0 -

L~ W *O~

V 0

--

6-32

UM 620141001
1 November 1985

Entity Class/Record Type Join Table

Source Documents:

Record Type Join Structure Diagrams from the CS/IS mapping
model.

New Instructions:

For each appropriate record type, use the NDDL CREATE MAP
command to map the entity class/record type joins.

Table Field Source Field

EC No Number in the upper left corner of the
entity class box that maps to the
record type.

DB ID Da-abase ID area near the top of the
di gram.

RT ID Record Type ID area near the top of
the diagram.

Ind EC No Number in the upper left corner of the
independent entity class box.

Dep EC No Number in the upper left corner of the
dependent entity class box.

RC Label Verb phrase connected to the relation
class line by a squiggle (see sample
diagram page).

6-33

UM 620141001
1 November 1985

Example:

The following Entity Class/Record Type Join Table results
from the example in Figure 6-13:

EC DE Ind Dep
No ID RT ID EC No EC No RC Label

18 4 Pegging Record 23 5 Is
18 4 Pegging Record 23 12 Is
18 4 Pegging Record 10 18 Is Satisfied By
18 4 Pegging Record 23 18 Is Treated As

6-34

UM 620141001
1 November 1985

.
4

wi x

C

E 0

CL

9 8 0

0 -4

JC

tA.-

6--

UM 620141001
1 November 1985

Entity Class/Record Type Mapping Table

Source Documents:

Record Type/Entity Class Mapping pages from the CS/IS
mapping model.

Instructions:

For each record type, use the NDDL CREATE MAP command to
map the entity class to the record.

Table Field Source Field

EC No Entity Class No. column. Use the
number following the "E"; do not
include the "E" itself.

DB ID Database ID column.

RT ID Record Type ID column.

Example:

The following Entity Class/Record Type Mapping Table
results from the example in Figure 6-14:

EC No DB ID RT ID

8 2 Locatn

6-36

UM 620141001
1 November 1985

* L

E
z

C:
UX

C)

- Cu

00

0'

0

-6-37

UM 620141001
1 November 1985

Relation Class/Record Set Mapping Table

Source Documents:

Set Type/Relation Class Mapping pages from the CS/IS
mapping model.

Instructions:

For each set, use the NDDL CREATE MAP command to map a
relation class to a set (path in IHS).

Table Field Source Field

Ind EC No Ind E.C. No. column. Use the
number following the "E"; do not
include the "E" itself.

Dep EC No Dep E.C. No. column. Use the number
following the "E"; do not include the
NE" itself.

RC Label Relation Class Label column.

DB ID Database ID column.

Set ID Set Type ID column.

Member RT ID Member Record Type ID column.

Example:

The following Relation Class/Record Set Mapping Table
results from the example in Figure 6-15:

Ind Dep Member
ECNo ECNo RC Label DB ID Set Id RT ID

29 8 Is Composed of 2 Physically Locatn
Controls

6-38

I IPK l

UiM 620141001
1 November 1985

0CL z

n -

L) x:1 h 02

x -c
I

- . -.. &0

0

L)

a:.O

.1)E-

Ch W

.C) C

6-39

UM 620141001
1 November 1985

6.2 Modifyinl/Deleting IS Elements and CS-IS Mappings

Prior to modifying or deleting elements of the IS or the
CS-IS, the CDM Administrator must assess the impact of the
proposed change on the other components of the CDM. The
objective of this section is to provide the CDM Administrator
with an approach to the analysis of the impact that a change in
the IS or CS-IS might have upon the other areas of the CDM or on
software modules, such as user APs and generated APs.

The approach that is taken in analyzing the impact that a
change to the IS or CS-IS might have to other areas of the CDM
or to a software module is to list the changes that might be
made and then for each of those changes to identify the other
changes that would have to be made either in the CS or another
schema or in an ES-CS or an IS-CS mapping or in a software
module. Changes that do not impact any other areas are omitted.

A similar section appears in the discussions on the
Conceptual Schema and and on the External Schemas and the ES-CS
Mappings, Sections 5 and 7 respectively.

The following assumptions about the nature of the changes
to the Internal Schema and the CS-IS Mappings and the sequence
in which they are made have been taken in order to perform the
analysis:

1. Components of an internal schema are added in the
following sequence

" Databases
- a database password
- each database area
- a schema and subschema name
- a PCB for an IMS database

* Record types
- each database area assignment
- an IMS segment for a record type in an IMS

database
0 Data fields

- a data field redefinition for a data field
that redefines another

- an elementary data field for a data field
that is not part of a group data field

- a component data field for a data field
that is part of a group data field

6-40

v**

UM 620141001

1 November 1985

- a segment data field for a data field in an
INS database

- a data field/record set linkage for the
data field in a TOTAL variable file that is
used as a linkpath to a TOTAL master file

* Record sets
* Record set members

2. All changes in the internal schema that are needed to
support a change in an ES-CS or IS-CS mapping are made
before the ES-CS or IS-CS mapping is changed.

3. A change in the name or definition of a component of
the internal schema is for cosmetic purposes only and
does not alter the basic meaning of that component.

Finally, a note of explanation about how the changes and
their impacts are organized. Only the direct impacts of a
change are listed with it. If one change results in a cascade
of other changes, only t- first in the cascade is listed with
the initial change. Eac subsequent change is listed as as
impact of the one immediaLely before it. So to find the total
extent of the impact of a change, one must trace from the
initial change to each change that it results in and, then to
each in which that change impacts.

Figure 6-16 shows the relationship between the change and
the possible impacts upon other parts of the CDM that the change
may affect.

6-41

UM 620141001
1 November 1985

Overview -- -
Matrix I A change to: I

I-- I
-------- Data-i D/B I Rec.IArea IData I Rec.I Set I

Can impact: lbase IAreal TypelAssgniFieldi Set I Mbr.I
I--------------I------I------I------I------I------I------I------ I
ID/B Area I X I I I I I I I

lRecord Typel I K I I I I I I
I I I I I I I I I
[Area Assgn I I X I X I I I I I

I I I I I I I I
IData Field I I I X I I X I I X I
II I I I I I
lRecord Set I I I X I I I I
I II I I I I I I
ISet Member I I I X I I X I X I I
I I I I I I I I I
IEC-RT Join I I I K I I I I I
I I I I I I I I I
IEC-RT Map. I I I X I I X I I I
I I I I I I I I I
IAUC-DF Map. I I I X I I X I I I
I I I I I I I I I
IAUC-Set Map.I I I I I I X I I
I I I I I I I I I

I F I d x I I I X I X I I I

IRC-Set Map. I I I I I II x I
III I I I I II

ISoftware Modl X IXI X IX lxi l X Ix I

Figure 6-16. Impact of Internal Schema Changes

6-42

UM 620141001
1 November 1985

6.2.1 Database Changes

Please see section 6.1.4 for a description of NDDL IS
Commands. Note that, any modification to a database that has
already been defined to the CDM requires the following:

" The database must be deleted from the CDM with
the NDDL DROP DATABASE command.

" The revised database must be defined to the CDM
with the NDDL DEFINE DATABASE command.

* All datafields, records, sets and map.jings must
also be defined.

The following is a list of data base related changes and
their potential impact:

" Add a new database.

Add all the record types that the database
contains.

Use the NDDL DEFINE DATABASE command.

* Change a database name.

Change the database name in any generated APs that
access the database and recompile those generated
APs.

Change the database name in any software modules
that directly access the database and recompile those
modules.

Note: Neither the CDN database nor the CDN1 model
contains the information needed to identify
the software modules that directly access a
database.

" Change a database definition.

No other impact.

" C:.ange a database keyword.

No other impact.

6-43

UM 620141001
1 November 1985

" Change the DBMS name of a database.

Depending on which two DBMSs are involved, this
could have a dramatic impact on the entire structure
of an internal schema. A description of this impact
is beyond the scope of this report. Suffice it to
say that in such cases it would be advisable to
delete the database and then to read it using the new
DBMS name.

Regardless of the extent of the impact on the inter-
nal schema itself, recompile any software modules
that resulted in generated APs that access the data-
base.

Also, change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
database.

" Change the host identification for a database.

Recompile any software modules that resulted in
generated APs that access the database.

• Change a database password.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
database.

" Change a database schema name.

Recompile any software modules that resulted in
generated APs that access the database.

6-44

UM 620141001
1 November 1985

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
database.

* Change a database subschema name.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
database.

* Change the PSB name for an INS database.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
database.

* Change the PCB name for an INS database.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDMl model
contains the information needed to
identify the software modules that directly
access a database.

6-45

HIJ

UM 620141001
1 November 1985

" Change the key feedback length for an IMS database.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1
model contains the information needed to
identify the software modules that directly
access a database.

" Delete a database.

Delete all the record types in the database.

Delete any database password for the database.

Delete any schema names for the database.

Delete any database areas in the database.

Delete the PCB if this is an INS database.

Use the NDDL DROP DATABASE command.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile all the software modules that
directly access the database or discard them
entirely.

Note: Neither the CDM database nor the CDMl model
contains the information needed to identify
the software modules that directly access a
database.

6.2.2 Database Area Changes

The following is a summary of the impact of charger to
database areas: (See 6.1.4 for the NDDL.)

0 Add a new database area.

No other impact.

6-46

UM 620141001
1 November 1985

* Delete a database area.

Delete any database area assignments for the database
area.

Recompile any software modules that resulted in
generated APs that use area searchs to access record
types in the database area.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that use database area
searches to access record types.

Change and recompile any software modules that use
area searches to access record types in the database
area.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that use database area
searches to access record types.

6.2.3 Record Type Changes

The following is a summary of the impact of changes to
record types:

0 Add a new record type. Add all the data fields that
the record type contains. Use the NDDL DEFINE RECORD
command.

Add any EC-RT joins from which the record type
results.

Add an EC-RT mapping from for any entity class to
which the record type maps. Use the NDDL CREATE MAP
command.

If the record type is assigned to one or more
database areas, add a database area assignment for
each.

Note: Any change to a record type requires that
it first be deleted with the NDDL DROP
RECORD command then added with the DEFINE

6-47

. . .P 1, 11 , 1 1 1'" i A WW W

UM 620141001
1 November 1985

RECORD command. The set must be added with
the DEFINE SET command and then all
mappings must be added with the CREATE MAP
command.

0 Change a record type name.

Change the record type name in all the following in
which it appears:

Data fields

Data field redefinitions

Elementary data fields

Component data fields

Record sets

Record set members

Database area assignments

INS segment

Segment data fields

Data field/record set linkages

EC-RT mappings

Horizontal partitions

EC-RT union discriminators

AUC-DF mappings

Repeating data field indexes

RC-Set mappings

EC-RT joins

Recompile any software modules that resulted in

generated APs that access the record type,

6-48

&P.Mft

UM 620141001
1 November 1985

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a record
type.

Change and recompile any software modulev that
directly access the record type.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
record type.

* Change a record type definition.

No other impact.

. Change a record type keyword.

No other impact.

P • Change the segment name of a record type in an INS
database.

Recompile any software modules that resulted in
generated APs that access the record type.

Note: Neither the CDM database nor the CDMI model
contains the information needed to identify
the generated APs that access a record
type.

Change and recompile any software modules that
directly access the record type.

Note: Neither the CDM database nor the CDMI model
contains the information needed to identifv
the software modules that directly acceE.!
record type.

* Change the segment size of a record type in an IMS
database.

Recompile any software modules that resulted .r
generated APs that access the record typt

Note: Neither the CDM database nor th f:,"

6-49

COMMON DATA MODEL S (U) GENERAL ELECTRIC CO
SCHENECTADY NY PRODUCTION RESOURCES CONSU

NCLS-'SUCLSSIIE DROLIN ETAL GiNOV 85 U-628i408i F/G 5/2 N

llllllllllmlll
lllllmllImolll
Iollllllmlllll
EL EE~hhh

11.21"4

-wow,1I1" .

UM 620141001
1 November 1985

contains the information needed to identify
the generated APs that access a record
type.

Change and recompile any software modules that
directly access the record type.

Note: Neither the CDH database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
record type.

* Change the mapping between a record type and the
entity classes to which it corresponds.

Add, change, and delete any of tne following as
necessary:

EC-RT mappings

Horizontal partitions and constraint statements,
EC-RT union discriminators

AUC-DF mappings

Use the Alter Map command.

Recompile any software modules that resulted in
generated APs that access the record type.

Note: Neither the CDM database nor the CDMI model
contains the information needed to identify
the generated APs that access a record
type.

* Change the entity class joins that must be done to

form a record type.

Add, change, and delete EC-RT joins as necessary.

Use the ALTER MAP command.

Recompile any software modules that resulted in
generated APs that access the record type.

Note: Neither the CDM database nor the CDMl model
contains the information needed to identify

6-50

UN 620141001

1 November 1985

the generated APs that access a record

type.

0 Delete a record type.

Delete all the data fields that the record type
contains.

Delete any record sets in which the record type is
owner.

Delete any record set members that the record type is
used as.

Delete any database area assignments for the record
type.

Delete the INS segment if the record type is in an

INS database.

Delete any EC-RT mappings for the record type.

Delete any horizontal partitions for the record type.

The NDDL DROP RECORD command will accomplish all of
the above.

Recompile any software modules that resulted in
generated APs that access the record type.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a record
type.

Change and recompile any software modules that
directly access the record type or discard them
entirely.

Note: Neither the CDM database nor the CDMI model
contains the information needed to identify
the software modules that directly access a
record type.

6.2.4 Database Area Assignment Changes

The following is a summary of the impact of changes to

6-51

UM 620141001
1 November 1985

database area assignments. (See 6.2.1 for the NDDL statements.)

* Add a new database area assignment.

Recompile any software modules that resulted in
generated APs that use area searches to access the
record type referenced in the database area
assignment.

Note: Neither the CDM database nor the CDM1
model contains the information needed to
identify the generated APs that use
database area searches to access a record
type.

Change and recompile any software modules that use
area searches to directly access the record type
referenced in the database area assignment.

Note: Neither the CDM database nor the CDM1
model contains the information needed to
identify the software modules that directly
access a record type.

0 Delete a database area assignment.

Recompile any software modules that resulted in
generated APs that use area searches to access the
record type referenced in the database area
assignment.

Note: Neither the CDN database nor the CD1 model
contains the information needed to
identify the generated APs that use data-
base area searches to access a record type.

Change and recompile any software modules that use
area searches to directly access the record type
referenced in the database area assignment.

Note: Neither the CDM database nor the CDM1
model contains the information needed to
identify the software modules that directly
access a record type.

6-52

UN 620141001
1 November 1985

6.2.5 Data Field Changes

Note that a change to the structure of a record type
requires that the record first be deleted with the NDDL DROP
RECORD command. Then the modified record type is added again
with the NDDL DEFINE RECORD command. All mappings must also be
added with the DEFINE SET and CREATE NAP commands.

The following is a summary of the impact of changes to data

fields:

" Add a new data field.

If the data field redefines another data field, add a
data field redefinition.

If the data field is not a group of component data
fields, add an elementary data field.

If the data field is a component of another data
field, add a component data field.

If the data field is in an INS database, add a
segment data field.

If the data field is used as a linkpath from a TOTAL
variable file to a TOTAL master file, add a data
field/record set linkage.

Add an AUC-DF mapping for any attribute use class to
which the data field maps.

Add an EC-RT union discriminator for any EC-RT
mapping that the data field is used to distinguish
among.

If the data field occurs more than once in the record
type, add a repeating data field index for any
attribute use class that is used to access the data
field.

" Change a data field name.

Use the NDDL DROP RECORD, DEFINE RECORD, DEFINE SET,
and CREATE NAP commands.

Change the data field name in all the following in

6-53

UN 620141001
1 November 1985

which it appears:

Data field redefinitions

Elementary data field

Component data fields

EC-RT union discriminators

AUC-DF mappings

Repeating data field indexes

Segment data field

Data field/record set linkage

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a data field.

Change and recompile any software modules that
directly access the data field.

Note: Neither the CDN database nor the CDNl model
contains the information needed to
identify the software modules that directly
access a data field.

" Change a data field definition.

No other impact.

• Change a data field keyword.

No other impact.

" Change the record key code of a data field.

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDH database nor the CDN1 model

6-54

UM 620141001

1 November 1985

contains the information needed to identify
the generated APs that access a data field.

Change and recompile any software modules that
directly access the data field.

Note: Neither the CDN database nor the CDM1 model
contains the information needed to
identify the software modules that directly
access a data field.

* Change the number of occurrences of a data field.

If the number of occurrences is being changed from
one to something else, add a repeating data field
index for any attribute use class that can be used to
access the data field.

If the number of occurrences is being changed to one
from something else, delete any repeating data field
indexes for the data field.

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDN database nor the CDM1 model
contains the information needed to identify
the generated APs that access a data field.

Change and recompile any software modules that
directly access the data field.

Note: Neither the CDN database nor the CDN1 model
contains the information needed to identify
the software modules that directly access a
data field.

* Change which data field is redefined by a data field.

Recompile any software modules that resulted in
generated APs that access the data field, i.e., the
one that redefines another, not the one being
redefined.

Note: Neither the CDN database nor the CDM1 model
contains the information needed to identify
the generated APs that access a data

6-55

UM 620141001
1 November 1985

field.

Change and recompile any software modules that
directly access the data field, i.e., the one that
redefines another, not the one being redefined.

Note: Neither the CDM database nor the CDN1 model
contains the information needed to identify
the software modules that directly access a
data field.

* Change which group data field of which a component
data field is part.

Recompile any software modules that resulted in
generated APs that access the component data field.

Note: Neither the CDM database nor the CDMI model
contains the information needed to identify
the generated APs that access a data field.

Change and recompile any software modules that
directly access the component data field.

Note: Neither the CDM database nor the CDMI model
contains the information needed to identify
the software modules that directly access a
data field.

• Change the data description of a data field.

Use the NDDL ALTER MAP command.

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDM database nor the CDMI model
contains the information needed to identify
the generated APs that access a data field.

Change the data description of the data field in any
software modules that directly access it and
recompile those software modules.

Note: Neither the CDM database nor the CDMI model
contains the information needed to identify
the software modules that directly access a

6-56

..'N

UM 620141001
1 November 1985

data field.

* Change the segment start byte of an INS data field.

Use the NDDL DROP SEGMENT, DEFINE SEGMENT, DEFINE SET
and CREATE MAP commands.

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDM database nor the CDMI model
contains the information needed to identify
the generated APs that access a data field.

Change and recompile any software modules that
directly access the data field.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
data field.

* Change the IMS data field indicator of a data field.

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a data field.

Change and recompile any software modules that
directly access the data field.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
data field.

* Change the record set name of a TOTAL data field.

Use the NDDL DROP SET. DEFINE SET and CREATE MAP
commands.

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDM database nor the CDMI model

6-57

UM 620141001
1 November 1985

contains the information needed to identify
the generated APs that access a data field.

Change and recompile any software modules that
directly access the data field.

Note: Neither the CDM database nor the CDMl model
contains the information needed to identify
the software modules that directly access a
data field.

* Change the linkage type code of a TOTAL data field.

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a data
field.

Change and recompile any software modules that
directly access the data field.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
data field.

" Change the mapping between a data field and the

attribute use classes to which it corresponds.

Add, change, and delete AUC-DF mappings as necessary.

Use the NDDL ALTER MAP commands.

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a data
field.

" Delete a data field.

Delete any data field redefinition that the data

6-58

mom-

UM 620141001
1 November 1985

field is used as.

Delete the data field redefinition by which the data
field is redefined. If there is more than one,
delete only one of them and replace the redefined
data field name in all the others with the redefining
data field name from the one deleted.

Delete any elementary data field for the data field.
Delete any component data fields of which the data
field is a group.

Delete any component data field that the data field
is used as.

Delete any segment data field for the data field.

Delete any data field/record set linkage that the
data field appears as.

Delete any AUC-DF mappings in which the data field is
involved.

Delete any EC-RT union discriminators that the data
field is used as.

Delete any repeating data field indexes by which the
data field is accessed.

Use the NDDL DROP RECORD, DEFINE RECORD, DEFINE SET

and CREATE NAP commands.

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDM database nor the CDMl model
contains the information needed to identify
the generated APs that access a data field.

Change and recompile any software modules that
directly access the data field.

Note: Neither the CDM database nor the CDNI model

contains the information needed to identify
the software modules that directly access a
data field.

6-59

UM 620141001
1 November 1985

6.2.6 Record Set Changes

The following is a summary of the impact of change to
record sets:

" Add a new record set.

Add all the record set members that the record set
has.

Add an AUC-Set mapping if the record set maps to a

value for an attribute use class.

Use the NDDL DEFINE SET and CREATE MAP command.

" Change a record set name.

Change the record set name in all the following in
which it appears:

Record set members

AUC-Set mappings

Use the NDDL DROP SET, DEFINE SET and CREATE MAP
commands.

Recompile any software modules that resulted in
generated APs that access record types via the record
set.

Note: Neither the CDM database nor the CDMl model
contains the information needed to identify
the generated APs that access record types
via a record set.

Change and recompile any software modules that
directly access record types via the record set.

Note: Neither the CDM database nor the CDMI model
contains the information needed to identify
the software modules that directly access
record types via a record set.

* Change a record set definition.

No other impact.

6-60

UM 620141001
1 November 1985

* Change a record set keyword.

No other impact.

• Change the total number of members in a record set.

The change of the total number of members in a record
set is never initiated on its own; it is always the
result of either the addition or deletion of a record
set member.

No other impact.

* Change which record type is owner in a record set.

Use the NDDL DROP SET, DEFINE SET and CREATE MAP
commands.

Recompile any software modules that resulted in
generated APs that access record types via the re-
cord set.
Note: Neither the CDM database nor the CDM1 model

contains the information needed to identify
the generated APs that access record types
via a record set.

Change and recompile any software modules that
directly access record types via the record set.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access
record types via a record set.

* Change the mapping between a record set and the
attribute use class to which it corresponds.

Add, change, and delete AUC-Set mappings as

necessary.

Use the NDDL ALTER MAP command.

Recompile any software modules that resulted in
generated APs that access record types via the record
set.

6-61

UK 620141001
1 November 1985

Note: Neither the CDM database nor the CDN1 model
contains the information needed to identify
the generated APs that access record types
via a record set.

0 Delete a record set.

Delete all the record set members that the record
set has.

Delete any AUC-Set mapping for the record set.

Use the NDDL DROP SET command.

Recompile any software modules that resulted in
generated APs that access record types via the record
set.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access record types
via a record set.

Change and recompile any software modules that
directly access record types via the record set.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access
record types via a record set.

6.2.7 Record Set Member Changes

The following is a summary of the impact of changes to
record set members:

0 Add a new record set member.

Add an RC-Set mapping for any relation class that is
the basis for the record set member.

Increase the total number of members in the record
set by one.

Use the NDDL DROP SET, DEFINE SET, and ALTER MAP
commands.

6-62

UN 620141001
1 November 1985

* Change the required membership indicator of a record
set member.

Use the NDDL DROP SET, DEFINE SET and CREATE MAP
commands.

Recompile any software modules that resulted in
generated APs that update the record type that is
used as the record set member.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that update record types.

Change and recompile any software modules that
directly update the record type that is used as the
record set member.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly update
record types.

* Change the mapping between a record set member and
the inherited key classes on which it is based.

Add and delete RC-Set mappings as necessary.

Use the NDDL ALTER HAP command.

Recompile any software modules that resulted in
generated APs that access the record set member.

Note: Neither the CDM database nor the CDN1 model
contains the information needed to identify
the generated APs that access record set
members.

* Delete a record set member.

Decrease the total number of members in the record
set by one.

Delete any RC-Set mappings on which the record set
member is based.

Delete any data field/record set linkage for the

6-63

UM 620141001

1 November 1985

record set member.

Use the NDDL ALTER MAP command.

Recompile any software modules that resulted in
generated APs that access the record type that is
used as the record set member.

Note: Neither the CDM database nor the CDN1 model
contains the information needed to identify
the generated APs that access a record
type.

Change and recompile any software modules that
directly access the record type that is used as the
record set member.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
record type.

6.2.8 Summary

The following points are offered in summary:

1. A change in an internal schema can result in additional
changes in that schema, in its IS-CS mapping, and in
software modules. However, it cannot impact other
internal schemas or IS-CS mappings, nor any external
schemas or ES-CS mappings, nor the conceptual schema.

2. A change in IS-CS mapping is always the result of
another change to either the corresponding internal
schema or to the conceptual schema.

3. The information in the CDM database and the CDMI model
is inadequate for identifying the software modules that
are impacted by most schema changes. Specifically, the
following information needs to be added:

- The data items that are accessed by a software
module that contains user views.

- The databases, record types, data fields, record
sets, record set members, and database areas
that are accessed by a software module that

6-64

UM 620141001
I November 1985

accesses databases directly.
-- The record types, data fields, record sets,

record set members, and database areas that are
accessed by a generated AP.

6.3 CODASYL Databases

6.3.1 CODASYL-Specific Considerations

CODASYL DBMSs offer two database design features that are
not available in most others: multi-member set types and
optional membership set types. The first is a single set type
that has one owner record type and two or more member record
types. An owner instance can be associated with any number of
instances of each type of member; they are not mutually
exclusive. In essence, several logical relationships (relation
classes) are combined into one physical relationship (set type).

RTI

R1 6 RC21 R RT RT3 RT4

RATHER THAN

RT1

PT2 RT3 PT4

6-65

UM 620141001
1 November 1985

The CS-IS mapping for a multi-member set type involves the
following:

" The owner and member record types each have a primary
mapping to a different entity class. Any of them can
have secondary mappings also.

" The set type maps to several relation classes, one
per member.

" The entity class that the owner maps to is
independent in all of these relation classes.

" Each entity class that a member maps to is dependent
in one of these relation classes.

In the example above:

RTI maps to EC1.
RT2 maps to EC2.
RT3 maps to EC3.
RT4 maps to EC4.
STI maps to RC1, RC2, and RC3.

An optional membership set type is one in which an instance
of the member record type is allowed to exist without being
associated with an instance of the owner record type. This is in
contrast with any other set type in which every member instance
must be associated with an owner instance. An optional
membership set type is equivalent to a nonspecific relation
class whose cardinality is zero-or-one-to-zero-one-or- many.
Such a relation class is refined, as shown below, before it is
incorporated into the conceptual schema.

Consequently, the CS-IS mapping for an optional membership
set type involves the following:

* The owner record type has a primary mapping to one
entity class, and the member record type has a

6-66

Em~

UN 620141001
1 November 1985

primary mapping to another, and a secondary mapping
to a third. Either one can have additional secondary
mappings also.

* The set type maps to a one-to-many relation class.

" The entity class that the owner maps to is
independent in that relation class.

* The secondary entity class for the member is
dependent in that relation class.

" The primary and secondary entity classes for the
member are independent and dependent, respectively,
in a one-to-zero-or-one relation class, which is a
join linkage for the member.

In the example above:

RT1 has a primary mapping to EM.
RT2 has a primary mapping to EC2.
RT2 has a secondary mapping to EC3.
STI has a mapping to RC1.

RT1

1EC2
RCL RC2

f ST1(OPT. MBR)

RT2 i

EC3 131

6.3.2 Building a CODASYL IS and CS-IS Napping

Objectives:

$ Load the description of a CODASYL database into the
following tables in the CDM database:

Database Table
Record Type Table

6-67

,J II ii

UN 620141001

1 November 1985

Database Area Table
Database Area Assignment Table
Data Field Table
Component Data Field Table
Data Field Redefination Table
Repeating Data Field Occurrence Counter Table
Record Set Table
Record Set Member Table

* Build a model of the mapping between the CODASYL
database and the conceptual schema.

0 Load the descriptions of the CS-IS mapping into the
following tables in the CDM database:

Entity Class/Record Type Napping Table
Entity Class/Record Type Join Table
Relation Class/Set Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Refer to Section 6.13 for details on how to fill out the
CS-IS mapping forms.

If the CDM tables are to be loaded with NDDL commands, skip
to Section 6.3.3. Building a CODASYL IS and CS-IS Mapping with
the NDDL.

Tasks:

1. The CDM Administrator loads descriptions from the
database DDL statements.

Create one entry in the Record Type Table for each
record type in the database.

Create one entry in the Database Area Assignment
Table for each record type that is assigned to a
database area. If a record type is assigned to more
than one area, create a table entry for each.

Create one entry in the Data Field Table for each
data field in each record type in the database.

Create one entry in the Component Data Field Table
for each data field that is part of another data
field.

6-68

N

UM 620141001
1 November 1985

Create one entry in the Data Field Redefination Table
for each data field that redefines another data
field.

Create one entry in the Repeating Data Field
Occurrence Counter Table for each data field that
occurs more than once in a record type.

Create one entry in the Record Set Table for each set
type in the database.

Create one entry in the Record Set Member Table for
each record type that is a member of a set type. If
a record type is a member of more than one set type,
create a table entry for each. If a set type has
more than one member record type, create a table
entry for each.

2. The CDM Administrator determines the mapping for each
record type.

Usually, it is easier to map the record types that
are not members in any set types first. Those that
are set type members should not be mapped until all
of their owner record types have been mapped.

Determine what sort of "real-world" thing the record
type represents. Each instance of a record type
contains data about a specific person, place, object,
etc., that is significant to the enterprise.
Usually, all of the instances of the same type are
about the same sort of thing. This is not always the
case, however. An instance of the RESUPPLY-ORDER
record type could represent either an order to the
production department to make a certain quantity of
parts (i.e., a manufacturing order) or an order to a
vendor to furnish a certain quantity of parts (i.e.,
a purchase order). This is similar to defining an
entity class. The data fields in the record type,
especially those that uniquely identify its
instances, and the set types that it participates in,

especially as a member, can all be useful in
determining what the record type represents.

A few record types do not represent real-world
things; they exist to improve database performance.
Examples include SYSTEM-OWNER and entry points. Such

6-69

UM 620141001
1 November 1985

record types do not map to any entity classes and can
be ignored.

Determine which entity class in the conceptual schema
represents the same sort of thing as the record type.
This primarily involves finding the entity class
whose definition corresponds to the intent of the
record type. Comparing the key classes, attribute
use classes, and relation classes of the entity
classes to the keys, data fields, and set types of
the record types can be helpful also. If the record
type represents several sorts of things, it will map
to several entity classes, one for each sort of
thing; see Section 6.1.2.4 regarding relational
unions. If none of the entity classes represent what
the record type does, either the record type exists
only to improve database performance or the
conceptual schema must be expanded; see Section
4.3.

Fill out a line on a Record Type/ Entity Class
Mapping Form for each entity class to which the
record type maps.

3. The CDM Administrator determines the mapping for each
data field.

Determine what sort of data about real-world things
that the data field contains. If the record type
that contains the data field represents more than one
sort of thing, i.e., if it has more than one mapping,
the data field may contain several sorts of data.
All of these must be identified.

A few data fields do not contain data about real-
world things; they exist for technical reasons only.
Examples include record codes and record activity
dates. Such data fields do not map to any attribute
use classes and can be ignored.

Determine which attribute use classes in the
conceptual schema represent the same sort of data as
the data field. This involves finding the attribute
use class whose definition or migration path
corresponds to the intent of the data field. Thefirst place to look is the entity class to which the

record type maps. If the record type maps to more

6-70

UM 620141001
1 November 1985

than one entity class, the data field may map to an
attribute use class in each. The value in the data
field in each instance of the record type must be the
same as the one in the attribute use class in the
corresponding instance of the entity class. If two
or more inherited attribute use classes that come
from the same owned attribute use class have
identical values in every entity instance, the data
field may map to some or all of them.

If none of the attribute use classes in the mapped-to
entity class(es) correspond to the data field, the
next places to look are the entity classes that are
related to those entity class(es). Again, the value
in each record instance must be the same as the value
in the corresponding entity instance. If the
attribute use class is not in any of these entity
classes, the search must be widened to include the
entity classes that are related to them. This
continues until the proper attribute use class is
found or until it is determined that a new attribute
class must be added to the conceptual schema; see
Section 4.3.

Fill out a line on a Data Field/ Attribute Use Class
Mapping Form for each attribute use class to which
the data field maps.

4. The CDM Administrator determines any joins that are
needed for each record type.

Determine whether any of the data fields in the
record type map to attribute use classes that are not
in the entity class(es) to which the record type
maps. This can be done by comparing the entity class
numbers that are entered on the Data Field/Attribute

UUse Class Mapping Forms for the record type to those
that are entered on the Record Type/Entity Class
Mapping Form for the record type. If an entity class
number is on the first form but not on the second,
that entity class must be joined with the one to
which the record type maps.

Determine whether any other entity classes are needed
to complete the join structure(es). The entity
classes that must be joined to form the record type
must form one or more join structures as described in

6-71

AS..,..

UM 620141001

1 November 1985

Section 6.1.2.3. If the join structures are not

contiguous, one or more additional joins may be
needed. For example, if the record type in Figure
6-17 maps to EC4 and involves joins with EC1 and EC3,
it must also have a join with EC2. Without it, ECI
cannot be joined to the EC3-EC4 join result. The
join must involve EC2 even though none of its
attribute use classes map to data fields in the
record type.

Prepare Record Type Join Structure Diagrams for the
record types involve joins.

5. The CDM Administrator determines the mapping for each
record set.

Determine what sort of relationship between "real-
world" things the set type represents. If the set
type has more than one member record type, each must
be considered separately. If either the owner or the
member record type has no mapping to an entity class,
the set type will have no mapping to a relation
class, so it can be ignored.

Determine which relation class in the conceptual
schema represents the same sort of relationship as
the set type. Usually, this is the relation class
whose independent entity class maps to the owner
record type and whose dependent entity class maps to
the member record type.

Fill out a line on a Set Type/ Relation Class Mapping
Form for the relation class to which the set type
maps.

6. The CDM Administrator loads descriptions from the
Record Type/Entity Class Mapping Forms.

Create one entry in the Entity Class/Record Type
Mapping Table from each line on each form.

7. The CDM Administrator loads descriptions from the
Field/Attribute Use Class Mapping Forms.

Create one entry in the Entity Class/Record Type Join

Table for each relation class in a diagram.

6-72

UM 620141001

1 November 1985

EC1

D
A

EC2 2 UV

B. E, F, H

C

EC3 3

H
E4

Figure 6-17. Incomplete Join Structure Example

6-73

UM 620141001

1 November 1985

8. The CDM Administrator loads descriptions from the
Data Field/Attribute Use Class Napping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form.

9. The CDM Administrator loads descriptions from the Set
Type/Relation Class Napping Forms.

Create one entry in the Relation Class/Set Type

Napping Table from each line on each form.

6.3.3 Building a CODASYL IS and CS-IS Mapping with NDDL

A summary of the NDDL commands required to load and

maintain an IS and CS-IS Mappings is contained in Section 6.1.4.

Tasks:

1. Load descriptions from the database DDL statements.

* Use the NDDL DEFINE DATABASE command to:

- Define the database name.
- Define the DBMS.
- Describe the host.
- Record password(s).
- Define schemas, subschemas, and areas.

* For each record in the database, Use the NDDL
DEFINE RECORD command to:

- Attach record to database.
- Define the key field and state whether or

not it must be unique.
- Define the datafields within the record.
- Define what area a record is to physically

reside in.

Note: The DEFINE RECORD syntax does not support
repeating groups, component data fields, or
redefined data fields.

0 For each set in the database, use the NDDL
DEFINE SET command to:

6-74

"ki

101.*

UM 620141001
1 November 1985

- Define the set.

- Relate database records.

2. Determine the primary mapping for each record type.

0 See Task 2 of Section 6.3.2.

3. Determine the primary mapping for each data field.

0 See Task 3 of Section 6.3.2

4. Determine any secondary mappings for each record type.

* See Task 4 of Section 6.3.2.

5. Determine any secondary mappings for each data field.

• See Task 5 of Section 6.3.2.

6. Determine the mapping for each set type.

* See Task 6 of Section 6.3.2.

7. Load descriptions from the Record Type/Entity Class
Mapping Form, the Record Type Join Structure Diagrams,
the Data Field/Attribute Use Class Mapping Forms, and
the Set Type/Relation Class Mapping Forms.

0 For each record, use the NDDL CREATE MAP command
to:

- Map tag names (attribute classes) from a
conceptual schema entity class to a
datafield.

- Map attribute use class to a set.

* For each set, use the NDDL CREATE MAP
command to:

- Map a conceptual schema relation class to a
set.

6.3.4 Modifying a CODASYL IS and CS-IS MappJInObjective:

Add one or more new record type(s) as follows:

0 Load the description of a new record type(s) within a

6-75

UM 620141001
1 November 1985

previously mapped CODASYL database into the following
tables in the CDM database:

Record Type Table
Database Area Table
Database Area Assignment Table
Data Field Table
Component Data Field Table
Data Field Redefination Table
Repeating Data Field Occurance Counter Table
Record Set Table
Record Set Member Table

" Build a model of the new mapping between the CODASYL
database and the conceptual schema.

" Load the description of the new CS-IS mapping into
the following tables in the CDM database:

Entity Class/Record Type Mapping Table
Entity Class/Record Type Join Table
Relation Class/Set Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
CS-IS mapping forms.

If the CDM tables are to be modified with the NDDL
commands, skip to Section 6.3.5: Add One or More New Record
Type(s) to a CODASYL Database with the NDDL.

Tasks:

1. The CDM Administrator loads descriptions for the new
record type from the database DDL statements.

Create one entry in the Database Area Table for each
new area (if any) in the database.

Create one entry in the Record Type Table for each
new record type added to the database.

Create one entry in the Database Area Assignment
Table for each new record type that is assigned to a
database area.

Create one entry in the DaLa Field Table for each

6-76

UM 620141001
1 November 1985

data field in each new record type added to the
database.

Create one entry in the Component Data Field Table
for each data field that is part of another data
field.

Create one entry in the Data Field Redefinition Table
for each data field that redefines another data
field.

Create one entry in the Repeating Data Field
Occurrence Counter Table for each data field that
occurs more than once in a record type.

Create one entry in the Record Set Table for each set
type the new record type participates in as an owner.

Create one entry in the Record Set Member Table for
each new record type that is a member of a set type.
If a new record type is a member of more than one set
create a table entry for each.

2. The CDI Administrator determines the mapping for each
new record type.

Usually, it is easier to map the record types that
are not members in any set types first. Those that
are set type members should not be mapped until all
of their owner record types have been mapped.

Determine what sort of "real-world" thing the new
record type represents. Each instance of a record
type contains data about a specific person, place,
object, etc., that is significant to the enterprise.
Usually, all of the instances of the same type are
about the same sort of thing. This is not always the
case, however. An instance of the RESUPPLY-ORDER
record type could represent either an order to the
production department to make a certain quantity of
parts (i.e., a manufacturing order) or an order to a
vendor to furnish a certain quantity of parts (i.e.,
a purchase order). This is similar to defining an
entity class. The data fields in the record type.
especially those that uniquely identify its
instances, and the set types that it participates in,
especially as a member, can all be useful in

6-77

UM 620141001
1 November 1985

determining what the record type represents.

A few record types do not represent real-world
things; they exist to improve database performance.
Examples include SYSTEM-OWNER and entry points. Such
record types do not map to any entity classes and can
be ignored.

Determine which entity class in the conceptual schema
represents the same sort of thing as the new record
type. This primarily involves finding the entity
class whose definition corresponds to the intent of
the record type. Comparing the key classes,
attribute use classes, and relation classes of the
entity classes to the keys, data fields, and set
types of the record type can be helpful also. If the
record type represents several sorts of things, it
will map to several entity classes, one for each sort
of thing; see Section 6.1.2.4 regarding relational
unions. If none of the entity classes represent what
the record type does, either the record type exists
only to improve database performance or the
conceptual schema must be expanded; see Section
4.3.

Fill out a line on a Record Type/Entity Class Mapping
Form for each entity class to which the new record
type maps.

3. The CDM Administrator determines the mapping for each
data field in the new record type.

Determine what sort of data about real-world things
that the data field contains. If the record type
that contains the data field represents more than one
sort of thing, i.e., if it has more than one primary
mapping, the data field may contain several sorts of
data. All of these must be identified.

A few data fields do not contain data about real-
world things; they exist for technical reasons only.
Examples include record codes and record activity
dates. Such data fields do not map to any attribute
use classes and can be ignored.

Determine which attribute use classes in the
conceptual schema represent the same sort of data as

6-78

UM 620141001
1 November 1985

the data field. This involves finding the attribute
use class whose definition or migration path
corresponds to the intent of the data field. The
first place to look is the entity class to which the
record type maps. If the record type maps to more
than one entity class, the data field may map to an
attribute use class in each. The value in the data
field in each instance of the record type must be the
same as the one in the attribute use class in the
corresponding instance of the entity class. If two
or more inherited attribute use classes that come
from the same owned attribute use class have
identical values in every entity instance, the data
field may map to some or all of them.

If none of the attribute use classes in the mapped-to
entity class(es) correspond to the data field, the
next places to look are the entity classes that are
related to those entity class(es). Again, the value
in each record instance must be the same as the value
in the corresponding entity instance. If the
attribute use class is not in any of these entity
classes, the search must be widened to include the
entity classes that are related to them. This
continues until the proper attribute use class is
found or until it is determined that a new structure
class must be added to the conceptual schema; See
Section 4.3.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the data field maps.

4. The CDM Administrator determines any joins that are
needed for each new record type.

Determine whether any of the data fields in the
record type map to attribute use classes that are not
in the entity class(es) to which the record type
maps. This can be done by comparing the entity class
numbers that are entered on the Data Field/Attribute
Use Class Mapping Forms for the record type to those
that are entered on the Record Type/Entity Class
Mapping Form for the record type. If an entity class
number is on the first form but not on the second,
that entity class must be joined with the one to
which the record type maps.

6-79

JI .

UM 620141001

1 November 1985

Determine whether any other entity classes are needed
to complete the join structure(s). The entity
classes that must be joined to form record type must
form one or more join structures as described in
Section 6.1.2.3. If the join structures are not
contiguous, one or more additional joins may be
needed. For example, if the record type in Figure
6-18 maps to EC4 and involves joins with EC1 and
EC3, it must also have a join to EC2. Without it,
EC1 cannot be joined to the EC3-EC4 join result. The
join must involve EC2 even though none of its
attribute use classes map to data fields in the
record type.

Prepare Record Type Join Structure Diagrams for each
new record type that has any secondary mappings.

5. The CDM Administrator determines the mapping for each
record set in which the new record type is a member.

6.4 Relational Databases

6.4.1 Relational-Specific Considerations

A relational DBMS provides a simple, uniform way of looking
at data, which is completely independent of actual storage
structures and of access techniques used to retrieve the data.

All relationships between data are expressed in terms of
the actual data values, not by pointers or storage adjacency.
The ability to relate common fields of data found in more than
one table is provided by the data access language. This enables
a user or program to specify the desired data in terms of
properties the data possess.

In a hierarchical or network DBMS data model, access paths
are predefined in the data stucture definition. A user or
program can use only the predefined paths to navigate through
the data structure. This could limit the use of the data.
However, it is a strength if only those paths are needed,
because the system can provide quick access through the
predefined paths.

In a relational data model, paths need not be predefined.
Data requests are not expressed in terms of access paths. All
access is done by matching field values.

6-80

| ,

UM 620141001
1 November 1985

Relational DBMS(s) represent data as relations or two-
dimensional tables. These tables consist of attributes
(columns) and tuples (rows). Each entity in a database will
have a corresponding relation defined, which consists of a set
of attributes (a set of values for one attribute type is
referred to as a domain). Each occurrence of the entity within
the database can be thought of as a tuple within the relation.
These two-dimensional tables have the following properties:

(1) Each entry in a table-column represents one data item
(attribute). There are no repeating groups.

(2) They are column-homogeneous (in any column, all items
are of the same kind).

(3) Each column is assigned a distinct name.

(4) All rows are distinct. Duplicate rows are not
allowed.

Figure 6-18 is an illustration of a relational implementation
of the conceptual data model.

The mapping from the Conceptual Schema to a relational
database is very straightforward where:

* Nonspecific relationships have been resolved.

" Keys have been migrated.

" No role names are used.

In mapping to a relational DBMS:

* Each entity class becomes a table (relation).

* Each attribute of an entity becomes a data item
(column or field) in the corresponding table.

* The key of each entity becomes the primary key in
the corresponding table.

0 A relationship is represented by foreign keys in
the dependent entity.

In Figure 6-18, each entity becomes a relational table

6-81

UM 620141001
1 November 1985

where:

El maps to Supplier Table
E2 maps to Order Table
E3 maps to Line-item Table
E4 maps to Quotation Table
E5 maps to Part Table

The relationships from the CS in Figure 6-18 are
represented by attributes within tables and map as follows:

RTl maps to Supplier # in the QUOTATION Table
RT2 maps to Supplier # in the ORDER Table
RT3 maps to Supplier # in the LINE-ITEM Table
RT4 maps to Part * in the QUOTATION Table
RT5 maps to Part # in the LINE-ITEM Table

6-82

UM 620141001
1 November 1985

SUPPLIER

KUPLEY-O SUPPLIER-NAME IBILL-TO-ADDRESS I SNIP-TO-ADDRESS

PART

PART-NO PART-NAME I PART -DESCRIPTION IOTh'-ON-HN

KEY

OUOTATION

SUPPLIER-NO I PART-NO OUOTE-PRICET LEAD-TIME]

KEY

ORDER

ORE-OSUPPLIER-NOj ORDER-DATELDELIVERY-DATE

KEY

LINE-ITEM

I ORDER-NOI LINE-ITEM-NO PART-NO IQUANTITY PRICE
KEYI

AT25

Figure~~~;; 6-8 Reltoa or--nato fth ocpta oe

SUPP6-8R

OIRDER~ I 21RT

UM 620141001

1 November 1985

6.4.2 Building a Relational Table IS and CS-IS Mapping

Objectives:

0 Load the description of a relational database table
into the following tables in the CDM database:

Database Table
Record Type Table
Database Area Table
Database Area Assignment Table
Data Field Table
Component Data Field Table

0 Build a model of the mapping between the relational
table and the conceptual schema.

0 Load the descriptions of the CS-IS mapping into the
following tables in the CDM database:

Entity Class/Record Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
CS-IS mapping forms.

If the CDM tables are to be loaded with the NDDL commands,
skip to Section 6.4.3.

Tasks:

1. The CDM Administrator loads descriptions from the
do'abase DDL statements.

Create one entry in the Database Table for the
relational table.

Create one entry in the Database Area Table for the
portion of the storage pool the table occupies.
(DBSPACE Statements in SQL/DB2.)

Create an entry in the Record Type Table for the
relational table record (row).

Create an entry in the Database Area Assignment Table
for the table recerd.

6-84

I Ciz

UM 620141001
1 November 1985

Create one entry in the Data Field Table for each
data field (column) in the table.

Create one entry in the Component Data Field Table
for each data field that is part of another data
field.

2. The CDM Administrator determines the mapping for each
table.

Determine what sort of "real-world" thing the table
represents. Each instance of a record type within a
table contains data about a specific person, place,
object, etc., that is significant to the enterprise.
With a relational DBMS, all of the instances of the
same type are about the same sort of thing and map
directly to an entity.

Determine which entity class in the conceptual schema
represents the same sort of thing as the table. This
primarily involves finding the entity whose
definition corresponds to the intent of the table.

Fill out a line on a Record Type/Entity Class Mapping
Form for the entity class to which the table maps.

3. The CDM Administrator determines the mapping for each
column.

Determine what sort of data about real-world things
that the data field contains. There should always be
a one-for-one mapping between the attributes of an
entity and the data fields of its corresponding
table. A table, however, could contain data fields
that exist only to maintain a relationship. These
data fields will not have a mapping.

A few data fields may not contain data about real-
world things; they exist for technical reasons only.
Examples include record codes and record activity
dates. Such data fields do not map to any attribute
use classes and can be ignored.

Determine which attribute use classes in the
conceptual schema represent the same sort of data as
the data field. This involves finding the attribute
use class whose definition or migration path

6-85

UM 620141001
1 November 1985

corresponds to the intent of the data field.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the data field maps.

4. The CDM Administrator loads descriptions from the
Record Type/Entity Class Mapping Forms.

Create one entry in the Entity Class/Record Type
Mapping Table from each line on each form.

5. The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form.

6.4.3 Building a Relational Table IS and CS-IS Mapping with
NDDL

A summary of the NDDL commands required to load and
maintain on IS and CS-IS mappings is contained in Section 6.1.4.

Tasks:

I. The CDM Administrator loads descriptions from the
database DDL statements.

Use the NDDL DEFINE DATABASE command to+

" Define the database name.
* Define the DBMS.
" Describe the host.
" Record the password(s).

For each table in the database, use the NDDL DEFINE
TABLE command to:

" Define the table name.
" Define the columns.

Note: The DEFINE TABLE command does not support
repeating groups, component datafields, or
redefined datafields.

2. The CDM administrator determines the primary mapping

6-86

(1 1.,0 11 111w
p

UM 620141001
1 November 1985

for each new table.

See Task 2 of Section 6.4.2.

3. The CDM Administrator determines the primary mapping
for each field.

See Task 3 of Section 6.4.2.

4. The CDM Administrator loads the descriptions from the
Data Field/Attribute Use Class Mapping Forms.

For each new table, use the NDDL CREATE MAP command
to:

" Map tag names (attribute classes) from a
conceptual schema entity class to column names.

• Map attribute use classes to a column name.

6.4.4 Modifying a Relational Table IS and CS-IS Mapping

6.4.4.1 Modify a Mapped Table by Adding, Modifying, and/or
Deleting Columns

Objective:

" Modify the description of a previously defined
relational table within the tables in the CDM
database:

Data Field Table
Component Data Field Table

" Build a model of the new CS-IS mapping between the
relational table and the conceptual schema.

" Load the description of the new CS-IS mapping into
the following table in the CDM database:

Attribute Use Class/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
CS-IS mapping forms.

If the CDM tables are to be modified with the NDDL
commands, skip to Section 6.4.5.

6-87

UM 620141001
1 November 1985

Tasks:

1. The CDM Administrator loads descriptions for the
modified table from the database DDL statements.

Create one entry in the Data Field Table for each new
data field added to the table.

Delete the entry for each data field deleted from the
table. Modifications to previously defined data
fields are made in the Data Field Table as
appropriate.

Create one entry in the Component Data Field Table
for each new data field that is part of another data
field.

Delete the entry in the Component Data Field Table
for each data field deleted that is part of another
data field.

Create a new entry in the Record Key Table for each
new data field or set of new data fields that is
designated as the key of the table.

Delete the entry(s) in the Record Key Table for each
data field deleted or set of data fields that is
designated as part of the key of a table. Remember,
a table must have a key, and it must be unique.

2. The CDM Administrator determines the mapping for each
new column in the table.

NOTE: This task is to be omitted when modifying
or deleting a previously defined data
field.

Determine what sort of data about real-world things
that the data field contains. See Task 3 of Section

6.5.2.

Determine which attribute use class in the conceptual
schema represents the same sort of data as the data
field. See Task 3 of Section 6.5.2.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for the attribute use class to which the

6-88

r.- - . --.

UM 620141001
1 No.mber 1985

new data field maps.

3. The CDM Administrator loads descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form that
references a new data field.

Delete each entry in the Attribute Use Class Data
Field Mapping Table that references a deleted data
field.

6.4.4.2 Delete a Previously Defined Relational Table by
Modifying the CS-IS Mapping.

Objective:

" Delete the description of a previously defined
relational table from the tables in the CDM database:

Record Type Table
Database Area Table
Database Area Assignment Table
Data Field Table
Component Data Field Table

" Load the description of the new CS-IS mapping into
the following tables in the CDM database:

*} Entity Class/Record Type Mapping Table
*, Attribute Use Class/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
*CS-IS mapping forms.

Tasks:

1. The CDM Administrator deletes descriptions from the
tables in the CDM database for the deleted relational
table.

Delete the entry in the Record Type Table for the
deleted table.

Delete the entry in the Database Area Assignment
Table for the deleted table.

6-89

UM 620141001
1 November 1985

Delete the entry in the Data Field Table for each
data field in the table to be deleted.

Delete the entry in the Component Data Field Table
for each data field that is part of another data
field for the deleted table.

2. The CDM Administrator deletes descriptions from the
Record Type/Entity Class Mapping Forms.

Delete the entry in the Record Type Component Table
from each line on each form that references a deleted
table.

3. The CDM Administrator deletes descriptions from the
Data Field/Attribute Use Class Happing Forms.

Delete the entry in the Attribute Use Class/Data
Field Mapping Table for each data field in a deleted
table.

6.4.5 Modifying a Relational Table IS and CS-IS Mapping with
NDDL

A summary of the NDDL commands required to load and

maintain on IS and CS-IS mapping is contained in Section 6.1.4.

Tasks:

1. The CDM Administrator loads descriptions for the
modified table from the database DDL statements.

Use the NDDL DROP TABLE command to delete the table
that is to be modified.

Use the NDDL DEFINE TABLE command to define the columns
that were added, changed, or deleted.

2. The CDM Administrator determines the mapping for each

new column in the table.

See Task 2 of Section 6.4.4.

3. The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Form.

6-90

* . -,

UN 620141001

1 November 1985

For each modified table, use the WDDL CREATE MAP
command to:

" Recreate the mappings between tag names
(attribute classes) from a conceptual schema
entity class to column names.

" Recreate the mappings between attribute use
classes and column names.

6.5 INS Databases

6.5.1 IMS Specific Considerations

Whereas the basic construct of the CODASYL model is a set
and complicated structures can be built from sets, the INS model
represents data in the form of a tree structure. A tree
consists of different levels of entities referred to as nodes. A
node can have many occurrences, that is, sets of data values
for its data items. Each higher level implies dominance over
the levels below it, thus creating a hierarchy. The highest
level contains only one node called a root node. All nodes,
with the exception of the root, must be connected at a level
above it. The node at the higher level is called a parent node
and owns" all of the lower level nodes in the limb. The node
at the lower level is called achild node. A child node must
have one and only one parent node. A parent node can have none,
one, or many nodes connected to them as children. There can
be many occurrences of a specific child node under a single
parent. A parent and its children at each level are
considered a physical tree. A database may consist of many of
these physical trees. Even though the set construct is not
supported by the IMS model, a parent and all of its children are
to be considered analogous to a set. The following example
depicts the INS hierarchical model.

LEVEL 1 ROOT NODE (PARENT)

II

LEVEL 2 CHILD NODE (PARENT)

L I

LEVEL 3 THE NEXT NODE
(CHILD)

6-91

.....

UM 620141001
1 November 1985

A node is called an INS segment. A logical record in the
database consists of a root and all of its children. A
database record can consist of a tree with up to 15 levels. In
essence, many logical relations (relation classes) could be
combined into one physical hierarchy. This is called a regular
hierarchy and is defined via an INS Database Definition (DBD).

RT1

EC I

E C2
RT2

R3
T

The CS-IS mapping for a regular hierarchy involves the
following:

0 Each parent-child relationship within the hierarchy
maps to a relation classes.

" The parent in each relationship maps to the entity
class that is independent in that relation class.

• The child in each relationship maps to the entity
class is dependent in that relation class.

In the example above:

RT1 maps to ECI
RT2 maps to EC2
RT3 maps to EC3
RT4 maps to EC4
RT1:RT2 maps to RC1
RTI:RT3 maps to RC2
RTI:RT4 maps to RC3

The previous diagram illustrates that each dependent
segment has a parent segment and exists as one element in a
child-parent relationship. These relationships can have both a
physical and a logical form. The physical form of the
parent-child relationship is a consequence of (1) the definition
of a given data base and (2) the method by which the data
elements are stored. The logical relationship is established
solely by express definition and exists externally to any

6-92

UK 620141001
1 November 1985

physical organization constraints.

INS has an additional relationship called a "twin." As with
the parent-child relationship, two forms of twins exist:
physical and logical twins. Physical twin segments are multiple
occurrences of a common segment format. At the root segment
level, the set of physical twins is the set of all root segment
occurrences of a given database. At the dependent segment
level, a set of physical twins is the set of physical child
occurrences for a given segment format within a hierarchy. At
the logical level, twins are multiple occurrences of a common
segment format having a common logical parent. The physical and
logical concepts give IMS the capability of storing network type
relationships (sets) between entities. These network physical
structures are viewed by users and programmers as one or more
hierarchical views.

Every logical relationship involves the use of three
segments; no more, no less. Two of these segment types (the
physical parent and the logical parent) can exist in separate
databases or they may exist in the same physical database. The
third segment type (the logical child) is used to construct the
logical linkage. This segment type is very special since it has
two parents.

A nonspecific membership set type whose cardinality is
many- to-many, is one in which (1) each member of entity class
"I" is related to zero, one, or many members of entity class "2"
and (2) each member of entity class "2" is related to zero, one,
or many members of entity class "l.1 Such a relation class is
refined, as shown in Figure 4-7, before it is incorporated into
the conceptual schema.

RTI RT2

E I I I

RC RC T3 RT4

EC3 3

The CS-IS mapping for a many-to-many membership set type
involves the following.

6-93

¥~~~~~~~~~~~~~111 1 11 1 "" , ,, "" ' ,

UM 620141001
1 November 1985

* Each parent segment has a primary mapping to one
entity class.

* The child segments have a primary mapping to a
single entity class (RT4 may or may not exist
physically on the database depending on the IMS
options that were chosen).

" Two IMS DBDs are required and map to one-to-many
relation classes.

* The entity classes to which the parents map are
independent in their respective relation classes.

" The entity class to which the children map is
dependent in that relation class.

In the example above:

RTl maps to ECI
RT2 maps to EC2
RT3 maps to EC3
RT4 maps to EC3
RTI:RT3 maps to RCl
RT2:RT4 maps to RTC2

6.5.2 Building an IMS IS and CS-IS Mapping

Objectives:

* Load the description of an IMS database into the
following tables in the CDM database:

Database Table
Record Type Table
Database Area Table
Data Field Table
Component Data Field Table
Data Field Redefinition Table
Repeating Data Field Occurance Counter Table
Record Set Table
Record Set Member Table

1 Build a model of the mapping between the INS database
and the conceptual schema.

0 Load the descriptions of the CS-IS mapping into the

6-94

UM 620141001
1 November 1985

following tables in the CDM database:

Entity Class/Record Type Mapping Table
Entity Class/Record Type Join Table
Relation Class/Set Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
CS-IS mapping forms.

Skip to Section 6.5.3 if the IMS description is to be
loaded with the NDDL.

Tasks:

1. The CDM Administrator loads descriptions from the
database DDL (DBD) statements.

Create one entry in the Database Table for the
database.

Create one entry in the Record Type Table for each
segment type in the database.

Create on entry in the Data Field Table for each
data element in each segment type in the database.

Create one entry in the Component Data Field Table
for each data element that is part of another data
field.

Create one entry in the Data Field Redefination Table
for each data element that redefines another data
field.

Create one entry in the Repeating Data Field
Occurrence Counter Table for each data element that
occurs more than once in a segment type.

Create one entry in the Set Type Table for each
parent: child relationship in the database.

Create one entry in the Set Type Member Table for
each segment type that is a child (member of a set
type). If a segment type is a member of more than
one set type (this can only occur if it is a logical
child), create a table entry for each. If a parent

6-95

UM 620141001

1 November 1985

segment type has more than one child segment type,
create a table entry for each.

2. The CD Administrator determines the mapping for each
segment type.

Usually, it is easier to map an IMS database by
starting with the root segment and working down each
limb of the tree. A child segment type should not be
mapped until its parent segment type has been mapped.

Determine what sort of "real-world" thing the
segment type represents. Each instance of a segment
type contains data about a specific person, place,
object, etc., that is significant to the enterprise.
With INS, all of the instances of the same type are
about the same sort of thing. Usually, all of the
instances of the same type are about the same sort
of thing.

A few segment types do not represent real-world
things; they exist to provide database pointers
between logically related segments. Such segment
types do not map to any entity classes and can be
ignored.

Determine which entity class in the conceptual schema
represents the same sort of thing as the segment
type. This primarily involves finding the entity
class whose definition corresponds to the intent of
the segment type. Comparing the key classes,
attribute use classes, and relation classes of the
entity clpsses to the keys, data elements,and parent-
child relationships of the segment types can be
helpful also. If the segment type represents
several sorts of things, it will map to several
entity classes, one for each sort of thing; see
Section 6.1.2.4 regarding relational unions. If none
of the entity classes represent what the segment type
does, either the segment type exists only to provide
a logical relationship or the conceptual schema must
be expanded. (See Section 4.3.)

Fill out a line on a Record Type/Entity Class
Mapping Form for each entity class to which the
segment type maps.

6-96

UM 620141001
1 November 1985

3. The CDM Administrator determines the mapping for each
data element.

Determine what sort of data about real-world things
that the data element contains. If the segment type
that contains the data element represents more than
one sort of thing, i.e., if it has more than one
mapping, the data field may contain several sorts of
data. All of these must be identified.

A few data elements do not contain data about real-
world things; they exist for technical reasons only.
Examples include segment codes and segment activity
dates. Such data elements do not map to any
attribute use classes and can be ignored.

Determine which attribute use classes in the
conceptual schema represent the same sort of data as
the data element. This involves finding the
attribute use class whose definition or migration
path corresponds to the intent of the data element. The
first place to look is the entity class to which the
segment type maps. If the segment type maps to more
than one entity class, the data element may map to an
attribute use class in each. The value in the data
element in each instance of the segment type must be
the same as the one in the attribute use class in the
corresponding instance of the entity class. If two or
more inherited attribute use classes that come from the
same owned attribute use class have identical values in
every entity instance, the data element may map to some
or all of them.

If none of the attribute use classes in the mapped to
entity class(es) correspond to the data element, the
next places to look are the entity classes that are
related to the primary entity class(es). Again, the
value in each segment instance must be the same as the
value in the corresponding entity instance. If the
attribute use class is not in any of these entity
classes, the search must be widened to include the
entity classes that are related to them. This continues
until the proper attribute use class is found or until
it is determined that a new attribute class must be
added to the conceptual schema; see Section 4.3.

Fill out a line on a Data Field/Attribute Use Class

6-97

UM 620141001
1 November 1985

Mapping Form for each attribute use class to which the
data element maps.

4. The CDM Administrator determines any joins that are
needed for each segment type.

Determine whether any of the data elements in the
segment type map to attribute use classes that are
not in the entity class(es) to which the segment type
maps. This can be done by comparing the entity class
numbers that are entered on the Data Field/Attribute
Use Class Mapping Forms for the segment type to
those that are entered on the Record Type/Entity
Class Mapping Form for the segment type. If an
entity class number is on the first form but not on
the second, that entity class must be joined with the
one to which the segment type maps.

Determine whether any other entity classes are needed
to complete the join structure(s). The entity classes
that must be joined to form the segment type must
form one or more join structures as described in
Section 6.1.2.3. If the join structures are not
contiguous, one or more additional joins may be
needed. For example, if the segment type in Figure
6-17 maps to EC4 and involves joins with EC1 and EC3,
it must also have a join with EC2. Without it, EC1
cannot be joined to the EC3-EC4 join result. The
join must involve EC2 even though none of its
attribute use classes map to data elements in the
segment type.

Prepare Record Type Join Structure Diagrams for the
segment types that involve joins.

5. The CDM Administrator determines the mapping for each
parent-child relationship.

Determine what sort of relationship between "real-
world" things the set type represents. If the set
type has more than one child segment type, each must
be considered separately. If either the parent or the
child segment type has no mapping to an entity class,
the set type will have no mapping to a relation
class, so it can be ignored.

Determine which relation class in the conceptual

6-98

- -l.

UM 620141001
1 November 1985

schema represents the same sort of relationship as
the set type. Usually, this is the relation class
whose independent entity class maps to the parent
segment type and whose dependent entity class maps to
the child segment type.

Fill out a line on a Set Type/ Relation Class Mapping
Form for the relation class to which the set type
maps.

6. The CDM Administrator loads descriptions from the
Record Type/Entity Class Happing Forms.

Create one entry in the Entity Class/Record Type
Happing Table from each line on each form.

7. The CDM Administrator loads descriptions from the
Record Type Join Structure Diagrams.

Create one entry in the Entity Class/Record Type Join
Table for each relation class in a diagram.

8. The CDK Administrator loads descriptions from the Data
Field/Attribute Use Class Happing Forms.

Create on entry in the Attribute Use Class/Data Field
Happing Table from each line on each form.

). The CDM Administrator loads descriptions from the Set
Type/Relation Class Happing Forms.

Create one entry in the Relation Class/Set Type

Happing Table from each line on each form.

6.5.3 Building an INS IS and CS-IS Mapping with NDDL

Tasks:

1. The CDM Administrator loads descriptions from the

database DDL (DBD) statements.

Use the NDDL DEFINE DATABASE command to:

" Define the DBMS
* Define the database name
" Describe the host
" Record pa-rword(s)

6-99

UM 620141001
1 November 1985

0 Define the PBS name
* Define database areas (dataset)
0 Supply key feedback length

Use the DEFINE SEGMENT command to:

" Attach the segment(s) to the database
" Define the key fields and state whether or not

it must be unique
" Define what area a segment is to physically

reside in
* Define the elements within the segment

Use the DEFINE PATH command for each new parent/child
relationship.

2. The CDM Administrator determines the mapping for each

segment type.

See Task 2 of Section 6.5.2.

3. The CDM Administrator determines the mapping for each
data field (element).

See Task 3 of Section 6.5.2.

4. The CDM Administrator determines any joins that are
needed for each segment type.

See Task 4 of Section 6.5.2.

5. The CDM Administrator determines the mapping for each
parent/child relationship.

See Task 5 of Section 6.5.2

6. The CDM Administrator loads the mappings.

Use the NDDL CREATE MAP command for each segment.

6.5.4 Modifying an IMS IS and CS-IS Mapping

6.5.4.1 Add One or More New Segment Type(s)

Objective:

* Load the description of a new segment type(s) within

6-100

UM 620141001
1 November 1985

an INS database into the following tables in the CDM
database:

Record Type Table
Database Area Table
Data Field Table
Component Data Field Table
Data Field Redefinition Table
Repeating Data Field Occurance Counter Table
Record Set Table
Record Set Member Table

* Build a model of the new mapping between the INS
database and the conceptual schema.

0 Load the description of the new CS-IS mapping into
the following tables in the CDM database:

Entity Class/Record Type Mapping Table
Entity Class/Record Type Join Table
Relation Class/Set Type Mapping Table
Attribute Use Cla s/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
CS-IS mapping forms.

Skip to Section 6.5.5 if the IMS description is to be
loaded with NDDL.

Tasks:

1. The CDM Administrator loads descriptions for the new

segment type from the database DDL (DBD) statements.

Create one entry in the Record Type Table for each
new segment type added to the database.

Create one entry in the Data Field Table for each
data field in each new segment type added to the
database.

Create one entry in the Component Data Field Table
for each data element that is part of another data
field.

Create one entry in the Data Field Redefinition Table
for each data element that redefines another data

6-101

~1

UM 620141001
I November 1985

field.

Create one entry in the Repeating Data Field
Occurrence Counter Table for each data field that
occurs more than once in a segment type.

Create one entry in the Record Set Table for each
parent-child relationship ("set type") the new
segment type participates in as a parent.

Create one entry in the Record Set Member Table for
each new segment type that is a child (member of a
set type). If a segment type is a member of more than
one set type (this can only occur if it is a logical
child), create a table entry for each. If adding a
parent segment with multiple children, create a table
entry for each child.

2. The CDM Administrator determines the mapping for each
new segment type.

See Task 2 of Section 6.5.2.

Fill out a line on a Record Type/Entity Class Mapping
Form for each entity class to which the segment type
maps.

3. The CDM Administrator determines the mapping for each
element in the new segment type.

See Task 3 of Section 6.5.2.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the data field maps.

4. The CDM Administrator determines any joins that are
needed for each new segment type.

See Task 4 of Section 6.5.2.

Prepare Record Type Join Structure Diagrams for each
new segment type that has any secondary mappings.

5. The CDM Adminstrator determines the mapping for each
parent-child relationship.

6-102

UM 620141001
1 November 1985

See Task 5 of Section 6.5.2.

Fill out a line on a Set Type/Relation Class Mapping
Form for the relation class to which the set type
maps.

6. The CDM Administrator loads descriptions from the
Record Type/Entity Class Mapping Form.

Create one entry in the Entity Class/Record Type
Mapping Table from each line on each form.

7. The CDM Administrator loads descriptions from the
Record Type Join Structure Diagrams.

Create one entry in the Entity Class/Record Type Join
Table for each relation class in a diagram.

8. The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form.

9. The CDM Administrator loads descriptions from the Set
.Type/Relation Class Mapping Forms.

Create one entry in the Relation Class/Set Type
Mapping Table from each line on each form.

6.5.4.2 Modify an Existing Segment Type Database by
Adding Modifying, and/or Deleting Data Fields

Objective:

* Modify the description of a previously defined
segment type within the tables in the CDM database:

Data Field Table
Data Field Redefinition Table
Component Data Field Table
Repeating Data Field Occurance Counter Table

" Build a model of the new CS-IS mapping between
the IMS database and the conceptual schema.

* Load the description of the new CS-IS mapping

6-103

V1 1 ̂ ?

UM 620141001
1 November 1985

into the following table in the CDM database:

Attribute Use Class/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
CS-IS mapping forms.

Skip to Section 6.5.5 if the IMS description is to be
modified with NDDL.

Tasks:

1. The CDM Administrator loads descriptions for the
modified segment type from the database DDL statements.

Create one entry in the Data Field Table for each new
data element added to the database.

Delete the entry for each data element deleted from
the database. Modifications to previously defined
data elements are made in the Data Field Table as
appropriate.

Create one entry in the Component Data Field Table
for each new data element that is part of another
data field.

Delete the entry in the Component Data Field Table
for each data element deleted that is part of another
data element.

Create one entry in the Data Field Redefinition Table
for each new data element that redefines another data
element.

Delete the entry in the Data Field Redefinition Table
for each deleted data element that redefines another
data element. Care must be taken to ensure the
deletion of the redefined field also.

Create one entry in the Repeating Data Field
Occurrence Counter Table for each new data element
that occurs more than once in a segment type.

Delete the entry in the Repeating Data Occurance
Counter Table Field for each deleted data element
that occurs more than once in a segment type.

6-104

UM 620141001
1 November 1985

2. The CDM Administrator determines the mapping for each
new data element in the segment type.

NOTE: This task is to be omitted when modifying
or deleting a previously defined data
element.

See Task 2 of Section 6.5.2.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the new data field maps.

3. The CDM Administrator loads descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form that
references a new data field.

Delete each entry in the Attribute Use Class/Data
Field Mapping Table that references a deleted data
field.

6.5.4.3 Delete a Previously Defined Segment Type by Modifying
the IMS and CS-IS Mapping

Objective:

• Delete the description of a previously defined\
segment type from the tables in the CDM database:

Record Type Table
Database Area Table
Database Area Assignment Table
Data Field Table
Component Data Field Table
Data Field Redefinition Table
Repeating Data Field Occurance Counter Table
Record Set Table
Record Set Member Table

,0 Build a model of the new mapping between the INS
database and the conceptual schema.

0 Load the description of the new CS-IS mapping into

6-105

UM 620141001
1 November 1985

the following tables in the CDM database:
Entity Class/Record Type Mapping Table
Entity Class/Record Type Join Table
Relation Class/Set Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
CS-IS mapping forms.

Skip to Section 6.5.5 if the IMS description is to be
modified with the NDDL.

Tasks:

1. The CDM Administrator deletes descriptions from the
tables in the CDM database for the deleted segment
types.

Delete the entry in the Record Type Table for each
segment type deleted from the database.

Delete the entry in the Database Area Assignment
Table for each deleted segment type that is assigned
to a database area.

Delete the entry in the Data Field Table for each
data field in each segment type deleted from the
database.

Delete the entry in the Component Data Field Table
for each data field that is part of another data
field for each segment type deleted from the
database.

Delete the entry in the Redefined Data Field Table
for each data field that redefines another data field
for each segment type deleted from the database.

Delete the entry in the Repeating Data Field Table
for each data field that occurs more than once in a
deleted segment type.

Delete the entry in the Set Type Table for each
deleted segment type that is a parent. If a deleted
segment type is the parent of more than one child,
delete the table entry for each.

6-106

UM 620141001
1 November 1985

Delete the ent ' in the Set Type Member Table for
each deleted segment type that is a child.

2. The CDM Administrator deletes descriptions from the
Record Type/Entity Class Mapping Forms. Delete the
entry in the Entity Class/Record Type Mapping Table
from each line on each form that references a deleted
segment type.

3. The CDM Administrator deletes descriptions from the
Record Type Join Structure Diagrams.

Delete the entry in the Entity Class/Record Type Join
Table for each relation class in a diagram that
references a deleted segment type.

4. The CDM Administrator deletes descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Delete the entry in the Attribute Class/Data Field

Mapping Table for each data field in a deleted
segment type.

5. The CDM Administrator deletes descriptions from the Set
Type/Relation Class Mapping Forms.

Delete all entries in the Relation Class/Set Type
Mapping Table for each segment type deleted.

6.5.4.4 Delete an IMS Database from the CS-IS MappinR

Objective:

0 Delete the description of a previously mapped IMS
database from the following tables in the CDM
database:

Database Table
Record Type Table
Data Field Table
Component Data Field Table
Data Field Redefinition Table
Repeating Data Field Occurance Counter Table
Record Set Table
Record Set Member Table

* Delete the description of the CS-IS mapping from

6-107

UM 620141001
1 November 1985

the following tables in the CDM database:

Entity Class/Record Type Mapping Table
Entity Class/Record Type Join Table
Relation Class/Set Type Happing Table
Attribute Use Class/Data Field Happing Table

Refer to Section 6.1.3 for details on how to fill out the
CS-IS mapping forms.

Skip to Section 6.5.5 if the database is to be deleted with
NDDL.

Tasks:

1. The CDM Administrator deletes descriptions from the CDM
database table.

Delete the entry in the Record Type Table for each
segment in the database.

Delete the entry in the Data Field Table for each data
element in each segment type in the database.

Delete the entry in the Component Data Field Table for
each data element that is part of another data field.

Delete the entry in the Data Field Redefinition Table
for each data element that redefines another data
field.

Delete the entry in the Repeating Data Field Occurrence
Counter Table for each data element that occurs more
than once in a segment type.

Delete the entry in the Record Set Table for each set
type in which a segment type participates.

Delete the entry in the Record Set Member Table for
each segment type that is a member of a set type. If
a segment type is a member of more than one set type,
delete the table entry for each.

2. The CDM Administrator deletes descriptions from the
Record Type/Entity Class Mapping Forms.

Delete the entry(s) in the Entity Class/Record Type

6-108

UM 620141001
1 November 1985

Napping Table for each segment type in the deleted
database.

3. The CD Administrator deletes descriptions from the
Record Type Join Structure Diagrams. Delete the entry
in the Entity Class/Record Type Join Table for each
relation class that is referenced by a deleted segment
type.

4. The CDM Administrator deletes descriptions from the
Data Field/Attribute Use Class Napping Forms.

Delete the entry in the Attribute Use Class/Data
Field Mapping Table for all data elements to be
deleted.

5. The CDM Administrator deletes descriptions from the Set
Type/Relation Class Mapping Forms.

Delete the entry in the Relation Class/Set Type
Mapping Table for all set types within the database
to be deleted.

6.5.5 Modifying an INS IS and CS-IS Mapping with the NDDL

6.5.5.1 Add One or More Segment Types

Tasks:

1. The CDM Administrator loads descriptions for the new
segment type(s) from the database DDL (DBD) statements.

See Task I of Section 6.5.4.

Use the NDDL DEFINE SEGMENT to describe each new
segment type.

2. The CDM Administrator determines the mapping for each
new segment type.

See Task 2 of Section 6.5.4.

3. The CDM Administrator determines the mapping for each
element in the new segment type.

See Task 3 of Section 6.5.4.

6-109

UM 620141001
1 November 1985

4. The CDM Administrator determines any joins that are

needed for each new segment type.

See Task 4 of Section 6.5.4.

5. The CDM Administrator determines the mapping for each
parent-child relationship.

See Task 5 of Section 6.5.4.

Use the DEFINE PATH command for each new parent/child
relationship.

Use the CREATE MAP command for each new segment to be
described.

6.5.5.2 Modify and Existing IMS Segment Type by Adding,
Modifying or Deleting Data Fields

Tasks:

1. The CDM Administrator loads descriptions for the
modified segment type from the database DDL (DBD)
statements.

Each segment to be modified must be deleted and
redefined. Use the NDDL DROP SEGMENT command. This
will also delete all mappings. These must be added
later.

Use the DEFINE SEGMENT command for each segment to be
modified.

Use the DEFINE PATH command to add the path again.

2. The CDM Administrator determines the mapping for each
new data element in the segment type.

Note: This task is to be omitted when modifying or
deleting a previously defined data element.

See Task 2 of Section 6.5.4.

3. The CD-N Administrator loads descriptions from the Data
Field/Attribute Use Class Forms.

Use the CREATE MAP command to redefine each modified

6-110

Loll ~kruli Ill 0111,1A 1

UM 620141001
1 November 1985

segment. Don't forget to include all mappings.

6.5.5.3 Delete a Previously Defined Segment Type by Modifying
the INS and CS-IS Mapping

Tasks:

1. Delete the segment type with the NDDL DROP SEGMENT
command

6.5.5.4 Delete an INS Database from the CS-IS Mapping

Tasks:

1. The CDM Administrator deletes descriptions from the CDM
database tables.

Delete each segment in the database with the DROP
SEGMENT command.

Delete the database with the DROP DATABASE command.

6.6 VSAM Files

6.6.1 VSAM-Specific Considerations

The Virtual Storage Access Method (VSAM) is a component of
the IBM operating system's data management services. VSAM
supports both direct and sequential processing. VSAM data sets
cannot be accessed by any other access method.

VSAM support consists of the following:

* Three data sets organizations: Entry-Sequenced Data
Sets (ESDS), Key-Sequenced Data Sets (KSDS), and
Relative-Record Data Sets (RRDS). They are supported
on DASD (Direct Access Storage Devices) only.

A VSAM ESDS is a sequential data set (similar to
a SAM data set).

A VSAM KSDS is a sequential data set with an
index (similar to an ISAM data set).

A VSAM RRDS is a data set with preformatted
slots for fixed length records to be accessed
by a record number (similar to a DAM data set).

6-111

1 1, Q

UM 620141001
1 November 1985

NOTE: As VSAM RRDSs are rarely used, they are
excluded from this document.

As the mappings for an ESDS and KSDS are identical, the
following discussions will not make any differentiations.

The mapping from the Conceptual Schema to a VSAM file is
very straightforward where:

* Nonspecific relationships have been resolved.

* Keys have been migrated.

" No role names are used.

In mapping to a VSAM file:

-" Each entity class becomes a record.

" Each attribute of an entity becomes a data item in
the corresponding VSAM record.

" The key of each entity becomes the primary key in the
corresponding record.

If relationships between VSAM files are implied (foreign
keys have been migrated), please refer to Section 6.4 for
mapping instructions.

6.6.2 Building a VSAM IS and CS-IS Mapping

Objectives:

* Load the description of a VSAM file into the
following tables in the CDM database:

Database Table
Record Type Table
Data Field Table
Component Data Field Table

* Build a model of the mapping between the VSAM file
and the conceptual schema.

" Load the descriptions of the CS-IS mapping into the
following tables in the CDM database:

6-112

--------

UM 620141001

1 November 1985

Entity Class/Record Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Please refer to Section 6.1.3 for details on how to fill
out the CS-IS mapping forms. Note that, NDDL does not support
VSAM data sets.

Tasks:

1. The CDM Administrator loads descriptions from the VSAM
file design.

Create one entry in the Database Table for the VSAM
file.

Create an entry in the Record Type Table for the VSAM
record.

Create one entry in the Data Field Table for each
data field in the record.

Create one entry in the Component Data Field Table
for each data field that is part of another data
field.

2. The CDM Administrator determines the mapping for each
record type.

Determine what sort of "real-world" thing the record
represents. Each instance of a record type contains
data about a specific person, place, object, etc.,
that is significant to the enterprise. With a VSAM
file, all of the instances of the same type are about
the same sort of thing and map directly to an entity.

Determine which entity class in the conceptual schema
represents the same sort of thing as the VSAM record.
This primarily involves finding the entity whose
definition corresponds to the intent of the record.

Fill out a line on a Record Type/Entity Class Mapping
Form for the entity class to which the record maps.

3. The CDM Administrator determines the mapping for each
data field.

Determine what sort of data about real-world things

6-113

UM 620141001
1 November 1985

that the data field contains. There should always be
a one-for-one mapping between the attributes of an
entity and the data fields of its corresponding
record.

A few data fields might not contain data about real-
world things; they exist for technical reasons only.
Examples include record codes and record activity
dates. Such data fields do not map to any attribute
use classes and can be ignored.

Determine which attribute use classes in the
conceptual schema represent the same sort of data as
the data field. This involves finding the attribute
use class whose definition or migration path
corresponds to the intent of the data field.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the data field maps.

4. The CDM Administrator loads descriptions from the
Record Type/Entity Class Mapping Forms.

Create one entry in the Entity Class/Record Type
Mapping Table from each line on each form.

5, The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form.

6.6.3 Modifying a VSAM IS and CS-IS Mapping

6.6.3.1 Modify a Mapped VSAM Record by Adding, Modifying,
and/or Deleting Data Fields

Objectives:

0 Modify the description of a previously defined
relational table within the tables in the CDM
database:

Data Field Table
Component Data Field Table

6-114

* ..

UM 620141001
1 November 1985

* Build a model of the new CS-IS mapping between the
VSAM record and the conceptual schema.

0 Load the description of the new CS-IS mapping into
the following table in the CDM database:

Attribute Use Class/Data Field Mapping Table

Please refer to Section 6.1.3 for details on how to fill
out the CS-IS mapping forms. Note that, NDDL does not support
VSAM data sets.

Tasks:

1. The CDM Administrator loads descriptions for the
modified record type.

Create one entry in the Data Field Table for each new
data field added to the record.

Delete the entry for each data field deleted from the
record. Modifications to previously defined data fields
are made in the Data Field Table as appropriate.

Create one entry in the Component Data Field Table for
each new data field that is part of another data field.

Delete the entry in the Component Data Field Table for
each data field deleted that is part of another data
field.

2. The CDM Administrator determines the mapping for each
new data field in the record type.

NOTE: This task is to be omitted when modifying or
deleting a previously defined data field.

Determine what sort of data about real-world things
that the data field contains.

Determine which attribute use class in the conceptual
schema represents the same sort of data as the data
field.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for the attribute use class to which the
new data field maps.

6-115

UM 620141001
1 November 1985

3. The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form that
references a new data field.

Delete each entry in the Attribute Use Class Data
Field Mapping Table that references a deleted data
field.

6.6.3.2 Delete a Previously Defined VSAM Record by Modifying
the CS-IS Mapping

Objective:

0 Delete the description of a previously defined VSAM
record from the tables in the CDM database:

Record Type Table
Data Field Table
Component Data Field Table

* Load the description of the new CS-IS mapping into
the following tables in the CDM database:

Entity Class/Record Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Please refer to Section 6.1.3 for details on how to fill
out the CS-IS mapping forms.

Tasks:

1. The CDM Administrator deletes descriptions from the
tables in the CDM database for the deleted record type.

Delete the entry in the Record Type Table for the
record to be deleted.

Delete the entry in the Data Field Table for each data
field in the deleted record.

Delete the entry in the Component Data Field Table for
each data field that is part of another data field.

a6

-1 1 6

UM 620141001
1 November 1985

2. The CDM Administrator deletes descriptions from the
Record Type/Entity Class Mapping Forms.

Delete the entry in the Record Type Component Table
from each line on each form that references a deleted
record.

3. The CDM Administrator deletes descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Delete the entry in the Attribute Use Class/Data
Field Mapping Table for each data field in a deleted
record.

6.7 Sequential Files (Flat Files)

6.7.1 Sequential-Specific Considerations

The mapping from the Conceptual Schema to a sequential file
* is very straightforward where:

* Nonspecific relationships have been resolved.

" • Keys have been migrated.

• No role names are used.

In mapping to a sequential file:

" Each entity class becomes a record.

0 Each attribute of an entity becomes a data item
(column or field) in the corresponding record.

* The key of each entity becomes the primary key in the
corresponding record.

If relationships between sequential files are implied
(foreign keys have been migrated), please refer to Section 6.4
for mapping instructions.

6.7.2 Building a Sequential File IS and CS-IS Mapping

Objectives:

0 Load the description of a sequential file into the
following tables in the CDM database:

6-117

bun

UM 620141001
I November 1985

Database Table
Record Type Table
Data Field Table
Component Data Field Table

0 Build a model of the mapping between the sequential
file and the conceptual schema.

* Load the descriptions of the CS-IS mapping into the
following tables in the CDM database:

Entity Class/Record Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Please refer to Section 6.1.3 for details on how to fill
out the CS-IS mapping forms. Note that, NDDL does not support
sequential files.

Tasks:

1. The CDM Administrator loads descriptions from the
sequential file design.

Create one entry in the Database Table for the
sequential file.

Create an entry in the Record Type Table for the
sequential record.

Create one entry in the Data Field Table for each
data field in the record.

Create one entry in the Component Data Field Table
for each data field that is part of another data
field.

2. The CDM Administrator determines the mapping for each
record type.

Determine what sort of "real-world" thing the record
represents. Each instance of a record contains data
about a specific person, place, object, etc., that is
significant to the enterprise.

Determine which entity class in the conceptual schema
represents the same sort of thing as the record. This

6-118

UN 620141001
1 November 1985

primarily involves finding the entity whose
definition corresponds to the intent of the record.

Fill out a line on a Record Type/Entity Class Mapping
Form for the entity class to which the record maps.

3. The CDM Administrator determines the mapping for each
data field.

Determine what sort of data about real-world things
that the data field contains. There should always be
a one-for-one mapping between the attributes of an
entity and the data fields of its corresponding
record.

A few data fields may not contain data about real-
world things; they exist for technical reasons only.
Examples include record codes and record activity
dates. Such data fields do not map to any attribute
use classes and can be ignored.

Determine which attribute use classes in the
conceptual schema represent the same sort of data as
the data field. This involves finding the attribute
use class whose definition or migration path
corresponds to the intent of the data field.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the data field maps.

4. The CDM Administrator loads descriptions from the
Record Type/Entity Class Mapping Forms.

Create one entry in the Entity Class/Record Type
Mapping Table from each line on each form.

5. The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form.

6-119

UM 620141001
1 November 1985

6.7.3 Modifying a Sequential File IS and CS-IS Napping

6.7.3.1 Modify a Mapped Record by Adding, Modifying, and/or
Deleting Data Fields

Objectives:

* Modify the description of a previously defined
relational table within the tables in the CDM
database:

Data Field Table
Component Data Field Table

0 Build a model of the new CS-IS mapping between
the sequential record and the conceptual schema.

" Load the description of the new CS-IS mapping into
the following table in the CDM database:

Attribute Use Class/Data Field Mapping Table

Please refer to Section 6.1.3 for details on how to fill
out the CS-IS mapping forms. Note that, NDDL does not support
sequential fields.

Tasks:

1. The CDM Administrator loads descriptions for the
modified record type.

Create one entry in the Data Field Table for each new
data field added to the record.

Delete the entry for each data field deleted from the
record. Modifications to previously defined data
fields are made in the Data Field Table as
appropriate.

Create one entry in the Component Data Field Table
for each new data field that is part of another data
field.

Delete the entry in the Component Data Field Table
for each data field deleted that is part of another
data field.

6-120

UM 620141001
1 November 1985

2. The CDM Administrator determines the mapping for each
new data field in the record type.

NOTE: This task is to be omitted when modifying or
deleting a previously defined data field.
Determine what sort of data about real-world things
that the data field contains.

Determine which attribute use class in the conceptual
schema represents the same sort of data as the data
field.

Fill out a line on a Data Field/ Attribute Use Class
Mapping Form for the attribute use class to which the
new data field maps.

3. The CDH Administrator loads descriptions from the Data
Field/Attribute Use Class Happing Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form that
references a new data field.

Delete each entry in the Attribute Use Class Data
Field Mapping Table that references a deleted data
field.

6.7.3.2 Delete a Previously Defined Sequential File by
Modifying the IMS and CS-IS Mapping

Objectives:

" Delete the description of a previously defined
sequential file from the tables in the CDM database:

Record Type Table
Data Field Table
Component Data Field Table

" Load the description of the new CS-IS mapping into
the following tables in the CDM database:

Entity Class/Record Type Mapping Table
Attribute Use Class/Data Field Happing Table

Please refer to Section 6.1.3 for details on how to fill
out the CS-IS mapping forms.

6-121

-11 NAW -

UM 62014100]
1 November 1985

Tasks:

1. The CDM Administrator deletes descriptions from the
tables in the CDM database for the deleted record
type.

Delete the entry in the Record Type Table for the
sequential record to be deleted.

Delete the entry in the Data Field Table for each
data field in the deleted record.

Delete the entry in the Component Data Field Table
for each data field that is part of another data
field.

2. The CDM Administrator deletes descriptions from the
Record Type/Entity Class Mapping Forms.

Delete the entry in the Record Type Component Table
from each line on each form that references a deleted
record.

3. The CDM Administrator deletes descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Delete the entry in the Attribute Use Class/Data
Field Mapping Table for each data field in a deleted
record.

6-122

UM 620141001
1 November 1985

SECTION 7

MAINTAINING EXTERNAL SCHEMAS MAPPINGS

7.1 Methodology Overview

This section and its subsections (7.1.1 - 7.1.4) introduce
the methodology for building and updating external schemas and
for mapping them to the conceptual schema. The portion of the
CDM database that contains external schemas and CS-ES mappings
is described, and the basic approach to developing both is
presented. Detailed instructions for filling out the modeling
forms and loading the pertinent CDM database tables are
included.

7.1.1 ES and CS-ES Mapping Structure

External schemas are patterned after the relational data
model. They are described using only two entity classes: User
view and data item. A user view is equivalent to a table in the
relational data model; a data item, to a column.

The mapping between the conceptual schema and an external

schema has only one level:

Attribute Use Class to Data Item.

7.1.2 Basic Approach

This methodology addresses the following subjects:

* Describing user views and data items in the
external schema portion of the CDM.

" Determining the mappings between external
schemas and the conceptual schema and
describing them in the CS-ES mapping portion of
the CDM.

" Updating these descriptions to reflect changes
in either the external schemas or the conceptual
schema.

A CS-ES mapping is intended to show which components of an
external schema correspond to those of the conceptual schema. A
data item maps to an attribute use class if they both are the

7-1

UM 620141001
1 November 1985

same kind of data about real-world things. A data item is not
to map to more than one attribute use class. In Figure 7-1, the
EMP-NAME, DEPT-NAME, and SPOUSE-NAME data items each have only
one attribute use class to which to map. If there is more than
one attribute use class to which a data item could map, the
choice depends on which entity class each attribute use class is
in. There must be one entity class that has one entity instance
for each row in the user view. If one of the attribute use
classes is in that entity class, the data item maps to it. In
Figure 7-1, the Employee entity class has one instance for each
row in the EMP-MAST user view, so the EMP-NO and DEPT-NO data
items map to the equivalent attribute use classes are that
entity class. If none of the attribute use classes are in that
entity class, the data item maps to the one in the entity class
that is most closely related to that entity class. Thus, DIV-NO
maps to Div No in the Dept entity class because that entity
class is closer to Employee than the Division entity class.

The following subsections (7.1.2.1 - 7.1.2.2) present two
subjects to consider when dealing with CS-ES mappings. They are
not mutually exclusive; a user view can involve neither, either,
or both.

7-2

9111151111

UM 620141001
1 November 1985

CONCEPTUAL EXTERNAL
SCHEMA SCHEMA

DIV NAME

DIVSION

HAS

12EPT NO
DEPT NAME
DIV NO

DEPT 12

HAS

EMP-MAST N
EMP N O------------- E-PNO---/

. .. . EMP-NAME)
EMPLOYEE 1 3 SPOUSE-NAME

DEP N--- DP-N
is

SPOUSE NAME

MARRIED
EMPLOYEE 4

Figure 7-1. Data Item/Attribute Use Class Mappings

7-I

a j1

UM 620141001

1 November 1985

7.1.2.1 Vertical Partitions

An entity class is vertically partitioned when some of its

attribute use classes map to data items in one user view and

others map to those in another. An entity class can have
several vertical partitions.

UVI
A. B

A

B C

EC1 3
UV2

A.C

7-4

UM 620141001
1 November 1985

7.1.2.2 Joins

If the data items in a user view map to attribute use
clases in two entity classes, those entity classes must be
combined to form that user view. This is done with a relational
"join" operation, which concatenates the entity instances of one
entity class with those of the other. These two entity classes
must be directly related by a relation class so that their
entity instances can be matched using the key class of the
independent and the corresponding inherited attribute use
class(es) of the dependent.

A-B

EC1 2

Uvi
Q A. B, D,

A D

EC2 13

7-5

5 . . *. -. *

UM 620141001
1 November 1985

If the relation class cardinality is one-to-many, each
independent entity instance is concatenated with each entity
instance that is dependent on it. In the first example in
Figure 7-2. each PO-HEADER instance is formed by concatenating a
Vendor instance with a PO instance based on identical values in
Vendor No. If a Vendor instance has no dependent PO instances,
it is not represented by a PO-HEADER instance. This produces
one row in the user view for each instance in the dependent
entity class. Since a relational join cannot form user view
rows with repeating data items, this concentration cannot be
done from dependent to independent.

If the relation classs cardinality is one-to-zero-or-one,
the concentration can be done in either direction, independent
to dependent or dependent to independent, because neither can
cause a repeating data field. The second and third examples in
Figure 7-2 show these two situations. In the second, there is
one BUYER user view row for each Buyer entity instance, and
there is no row for an employee who is not a buyer. In the
third example, there is one EMP-MAST instance for each Employee
instance. If an employee is not married, the SPOUSE-NAME data
item in the user view row for that employee contains a null
value.

7-6

UM 620141001
1 November 1985

ONE--TO-MANY RELATION CLASS.

VENDOR NAME

VENDOR NM

VEND-NO
RECEIVES1 VEND-NAME

VENDOR NO

PO 2

ONE-TO-ZERO-OR-ONE RELATION CLASS

EkIP NO
EMP NAMEBU

E
EMPLOYEE 1 UYERN_

tsi
BUYER- NAME

EMP NO.

BUYER 2

EMP NAME

EMPLOYEE 13-A
~ EMP-NO,

EMP- NAME
Is SPOUSE-NAME

EP N
SPOUSE NAME

MARRIED

Figure 7-2. ES-CS Join Examples

7-7

UM 620141001

1 November 1985

If the data items in a user view map to attribute use
classes in several entity classes, they must all be combined to
form the user view. This is done with a series of the join
operations described above, each of which combines two of the
entity classes. All of the entity classes must be interrelated
such that they form one of the following (See Figure 7-3):

1. A regular hierarchy, i.e., a structure in which:

" One entity class, called the apex, is not
dependent on any of the others (e.g., ECI)

" Every other entity class is dependent on exactly
one entity class (not necessarily the same one
for all)

* Every relation class cardinality is one-to-zero-
or-one

2. A confluent hierarchy (an upside-down hierarchy), i.e.,
a structure in which:

* One entity class, called the apex, has none of
the others dependent on it (e.g., ECl4)

* Every other entity class has exactly one entity
class dependent on it (not necessarily the same
one for all)

* Any specific relation class cardinality is
permitted

3. A combination of:

* One confluent hierarchy

" One or more regular hierarchies, each of whose
apex entity classes is also in the confluent
hierarchy (e.g., ECl5, EC20, and EC25).

Each hierarchy is called a join structure. As shown in the
examples in Figure 7-3, the user view must have one row for each
instance of the apex entity class of the regular or confluent
hierarchy. If a combination of hierarchies exists, the user
view must have this correspondence to the apex of the confluent
hierarchy.

7-8

%

.w.-

UM 620141001
1 November 1985

* REGULAR HIERARCHY:

CONFLUENT HIERARCHY:

EC8 8

UV*B EH i

APEX-- 4

Figure 7-3. ES-CS Join Structures

7-9

111111,111-1311

UM1 620141001
1 November 1985

COMBIMATION:

5EC20 6

EC23 7 9

tVzv

Figure 7-3. CS-ES Join Structures (Continued)

7-10

UM 620141001
1 November 1985

7.1.3 Modeling Forms

The IISS NDDL is used to describe external schemas. Since
they are simple in structure, consisting of only user views and
data items, no external schema modeling forms are needed.

The following forms are used to model the mappings between
external schemas and the conceptual schema:

User View Join Structure Diagram
Data Item/Attribute Use Class Mapping Form

The rest of this section contains a detailed description of

each of these forms.

User View Join Structure Diagram

Purpose: To provide a single source of information about the

join structures for a user view.

Instructions:

Fill in one page for each join structure for a user
view whose data items map to attribute use classes in
two or more entity classes.

Form Area Explanation

1. User View No. Unique identification code assigned to
the user view by the CDMA.

2. User View Name Name or code by which users identify
the user view.

3. (Diagram Area) Depiction of the entity classes and
relation classes that make up the
join structure.

Data Item/Attribute Use Class Mapping Form

Purpose: To provide a single source of information about the
mappings between external schema data items and con-
ceptual schema attribute use classes.

Instructions:

Fill in one or more pages for each user view

7-11

UM 620141001
1 November 1985

(external schema). List the attribute use class that

each data item maps to.

Form Area Explanation

1. User View No. Unique identification code assigned to
the user view by the CDMA.

2. User View Name Name or code by which users identify
the user view.

3. Data Item Name Name or code by which user identify
the data item.

4. Entity Class No. Number of the entity class that
contains the attribute use class whose
number and tag are in the next two
columns.

5. Att. Use Cl.Tag No. Tag number of an attribute use class
to which the data item maps.

6. Attribute Use Class Name of the attribute use class
Tag whose tag number is in the prior
column. It is included only to make
the entry readable; it is not used in
loading the mapping tables.

7.1.4 CDN Tables and ES NDDL

This section explains how to load the following tables in
the CS-ES portion of the CDM database:

Attribute Use Class/Data Item Mapping Table
Entity Class/User View Join Table

The following pages are arranged alphabetically by table
name within these two portions, i.e., in the sequence shown
above.

The tables in the external schema portion of the CDM
database are loaded with NDDL statements

The NDDL CREATE VIEW command is used to define the external
schema and map data items from the view to attributes
(tag-names) in the conceptual schema.

7-12

UM 620141001
1 November 1985

Attribute Use Class/Data Item Mapping Table

Source Documents:

1. Data Item/Attribute Use Class Mapping pages from the
CS/ES mapping model.

Instructions:

Table Field Source Field

UV No. User View No. area near the top
of the page.

DI Name Data Item Name column.

Tag No. Att. Use Cl. Tag No. column. Use
the number following the "T"; do
not include the "T" itself.

Example:

UV No. DI Name Tag No.

2 Loc ID 53

User View Join Linkage Table

Source Documents:

1. User View Join Structure Diagrams from the CE/ES
mapping model.

Instructions:

Table Field Source Field

UV No User View No. area near the top
of the diagram.

Ind EC No Number in the upper left corner
of the independent entity class
box.

Dep EC No Number in the upper left corner
of the dependent entity class

7-13

UM 620141001
1 November 1985

Table Field Source Field

RC No. Verb phrase connected to the
relation class line by a squiggle
(see sample diagram page).

UV No Ind Ec No Dep EC No RCOLabel

4 23 5 Is
4 23 12 Is
4 10 18 Is Satisfied By
4 .23 18 Is Treated As

7.2 Building an ES and CS-ES appin

Objectives:

* Load the description of an external schema into the

following tables in the CDM database:

User View Table
Data Item Table

" Build a model of the mapping between the external
schema and the conceptual schema.

" Load the descriptions of the CS-ES mapping into the
following tables in the 0DM database:

User View Join Linkage Table
Attribute Use Class/Data Item Mapping Table

Note: Use the NDDL CREATE VIEW command to describe the
Attribute Use Class to Data Item mappings.

Please refer to Section 7.1.3 for details on how to fill
out the CS-ES mapping forms and to Section 7.1.4 for
details on how to load these 0DM tables.

Tasks:

7-14

UM 620141001
1 November 1985

1. The CDM Administrator loads descriptions for an

external schema.

Create one entry in the User View Table using NDDL.

Create one entry in the Data Item Table for each data
item in the user view using NDDL.

2. The CDM Administrator determines the mapping for each
data item.

Determine what sort of data about the real-world
things that the data item represents.

Determine which attribute use class in the conceptual
schema represents the same sort of data as the data
item. This involves finding the attribute use class
whose definition or migration path corresponds to the

intent of the data field. The first place to look is
the entity class that has one entity instance for
each row in the user view. The value in the data
item in each row of the user view must be the same as
the one in the attribute use class in the
corresponding instance of the entity class.

If none of the attribute use classes in that entity
class correspond to the data item, the next places to
look are the entity classes that are related to that
entity class. Again, the value in each user view row
must be the same as the value in the corresponding
entity instance. If the attribute use class is not
in any of these entity classes, the search must be
widened to include the entity classes that are

related to them. This continues until the proper
attribute use class is found or until it is
determined that a new attribute class must be added
to the conceptual schema; see Section 4.3.

Fill out a line on a Data Item/Attribute Use Class
Mapping Form for the attribute use class to which the
data item maps.

3. The CDM Administrator determines any joins that are
needed for the user view.

Determine whether the data items in the user view map
to attribute use classes in more than one entity

7-15

UN 620141001
1 November 1985

class. This can be done by comparing the entity
class numers that are entered on the Data
Item/Attribute Use Class Mapping Forms for the user
view. If all the numbers are the same, the data
items all map to attribute use classes in one entity
class.

If the data items map to attribute use classes in
more than one entity class, prepare a User View Join
Structure Diagram. The entity classes must form one
or more join structures as described in Section
7.1.2.2. If the join structures are not contiguous,
one or more additional entity classes may be needed.

4. The CDM Administrator loads descriptions from the User
View Join Structure Diagrams.

Create one entry in the Entity Class/User View Join
Table for each relation class in the diagram.

5. The CDM Administrator loads descriptions from the Data
Item/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data Item
Mapping Table from each line on each form.

Note: The NDDL CREATE VIEW command is used to
define the external schema and map data
items from the view to attributes (tag-
names) in the conceptual schema.

7.3 Modifying/Deleting ES Elements and CS-ES Mappings

Prior to modifying or deleting elements of the ES or the
CS-ES, the CDM Administrator must assess the impact of the
proposed change on the other components of the CDM. The
objective of this section is to provide the CDM Administrator
with an approach to the analysis of the impact that a change in
the ES or CS-ES might have upon the other areas of the CDM or on
software modules, such as user APs and generated APs.

The approach that is taken in analyzing the impact that a
change to the ES or CS-ES might have to other areas of the CDM
or to a software module is to list the changes that might be
made and then for each of those changes to identify the other
changes that would have to be made either in the ES or another
schema or in an ES-CS or an IS-CS mapping or in a software

7-16

I C&

UM 620141001
1 November 1985

module. Changes that do not impact any other areas are omitted.

A similar section appears in the discussions on the
Conceptual Schema and and on the Internal Schemas and the IS-CS
Mappings, Sections 5 and 6 respectively.

The following assumptions about the nature of the changes
to the External Schema and the CS-ES Mappings and the sequence
in which they are made have been taken in order to perform the
analysis:

1. Components of an external schema are added in the
following sequence

" User Views

* Data Items

2. All changes in the external schema that are needed to
support a change in an ES-CS or IS-CS mapping are made
before the ES-CS or IS-CS mapping is changed.

3. A change in the name or definition of a component of
the external schema is for cosmetic purposes only and
does not alter the basic meaning of that component.

Finally, a note of explanation about how the changes and
their impacts are organized. Only the direct impacts of a
change are listed with it. If one change results in a cascade
of other changes, only the first in the cascade is listed with
the initial change. Each subsequent change is listed as as
impact of the one immediately before it. So to find the total
extent of the impact of a change, one must trace from the
initial change to each change that it results in and, then to
each in which that change impacts.

Figure 7-4 shows the relationship between the change and
the possible impacts upon other parts of the CDM that the change
may affect.

7-17

UM 620141001
1 November 1985

Overview
Matrix 1A change tol

I ------ I------I
------------- lUser Data I

ICan impact: IView Item I
I-------------- I------ I------ I
User View I X I

IData Item I X I

IEC-UV Join I X I
I I II
IAUC-DI Map. I X I

I I I I
tSoftware Nodi X I i

IUV Referencei X I I

Figure 7-4. Impact of External Schema Changes

7.3.1 User View (ES) Changes:

The potential impact from the changing User Views is as
follows:

" Add a new user view.

Add all the data items that the user view contains.

Add any EC-UV joins from which the user view results.

" Change a user view name.

Change the user view name in any software modules in
which it appears and recompile those modules.

Change the user view name in any user view references
in which it appears.

* Change a user view definition.

No other impact.

• Change a user view keyword.

No other impact.

7-18

UM 620141001

1 November 1985

0 Change the entity class joins that must be done to

form a user view.

Add, change, and delete EC-UV joins as necessary.

Recompile any software modules in which the user view
appears.

* Delete a user view.

Delete all the data items contained in the user view.

Delete any EC-UV joins from which the user view
results.

Remove the user view from any software modules in
which it appears and recompile those modules, or
discard them entirely.

Delete any user view references in which the user

view name appears.

7.3.2 Data Item Changes:

The potential impact from the changing of Data Items is as
follows:

* Add a new data item.

Add an AUC-DI mapping to specify any attribute use
class to which the data item maps.

* Change a data item name.

Change the data item name in any AUC-DI mapping for
the data item.

Change the data item name in any software modules
that access it and recompile those modules.

Note: Neither the CDM database nor the CDM1
model contains the information needed
to identify the software modules that
access a data item.

0 Change a data item definition.

7-19

UM 620141001
1 November 1985

No other impact.

* Change a data item keyword.

No other impact.

* Change the data description of a data item.

Change the data description of the data item in any
software modules that access it and recompile those
modules.

Note: Neither the CDM database nor the CDM1
model contains the information needed
to identify the software modules that
access a data item.

* Change the mapping between a data item and the

attribute use classes to which it corresponds.

Add, change, and delete AUC-DI mappings as necessary.

Recompile any software modules that access the data
item.

Note: Neither the CDM database nor the CDMl
model contains the information needed
to identify the software nodules that
access a data item.

* Delete a data item.

If the data item is the last or only one in the user
view, delete the user view also.

Delete any AUC-DI mapping for the data item. Remove
the data item from any software modules that access
it and recompile those modules, or discard them
entirely.

7.3.3 Summary

The following points are offered in summary:

1. A change in an external schema can result in additional

changes in that schema, in its ES-CS mapping, and in

7-20

"alar , i.'

UM 620141001
1 November 1985

software modules. However, it cannot impact other
external schemas or ES-CS mappings, nor any internal
schenas or IS-CS mappings, nor the conceptual schema.

2. A change in an ES-CS mapping is always the result of
another change to either the corresponding external
schema or to the conceptual schema.

Always use the NDDL CREATE VIEW command to describe
the ES-CS amppings.

3. The information in the CDM database and the CDH1 model
is inadequate for identifying the software modules that
are impacted by most schema changes. Specifically, the
following information needs to be added:

The data items that are accessed by a software
module that contains user views.

The databases, record types, data fields, record
sets, record set members, and database areas
that are accessed by a software module that
accesses databases directly.

The record types, data fields, record sets,
record set members, and database areas that are
accessed by a generated AP.

7-21

UM 620141001
1 November 1985

APPENDIX A

GLOSSARY

Alpha-Numeric Data Format

A data format for values that can contain characters other
than numerals (0-9). Numerals may be permitted also.

Attribute Class

A collection of all the same kind of attributes, i.e..
those that have the same meaning. An attribute is a
characteristic or fact about an entity. An attribute consists
of a name (e.g., employee hire date) and a value (e.g., 15
August 1980). An attribute value may be:

A. Nondivisible (e.g., state name)

B. Divisible, i.e., a concatenation of two or more other
attribute values (e.g., part number formed by
concatenating drawing number and material code).

C. Computed from one or more other attribute values
(e.g., age computed as current date minus birth
date).

Attribute Class Data Description

A generic data description that applied to a particular
attribute class.

Attribute Use Class

A model attribute class that appears in a model entity
class. Each attribute use class represents either an owned
attribute class or an inherited attribute class.

Attribute Use Class/Data Field Mapping

Indicates that an attribute use class corresponds to a data
item; i.e. that they have the same meaning and that the data
Item can be used to access the values for the attribute use
class.

A-I

LmM

UM 620141001
1 November 1985

Attribute Use Class/Data Item Happi

Indicates that an attribute use class corresponds to a data
item; i.e., that they have the same meaning and that the data
item can be used to access values for the attribute use class.

Attribute Use Class/Internal Schema Mapping

Indicates that an attribute use class corresponds to some
portion of an internal schema.

Attribute Use Class/Record Set Napping

Certain attribute use classes can be represented in a
database by a group of record sets rather than be a data field
For example, Project: Task record sets called Pending,
In-Process, On-Hold, and Completed. An attribute use
class/record set mapping indicates that a particular record set
corresponds to a particular attribute use class value.

Component Data Field

A data field that is part of another data field; e.g., if
data field A is made up of data fields B, C, and D, each of
these latter data fields is a component of A. A data field
cannot be a component of more than one other data field.

Component Domain

An elementary domain that is part of another domain; e.g.,
a Date domain might be made up of a Month domain, a Day of Month
domain, &nd a Year domain. Each of these latter domains would
be a cojmponent of the Date domain. An elementary domain can be
a component of several other domains.

Component Unit of Measure

An elementary unit of measure that is part of another urit
of measure; e.g.. the 'inch" unit of measure is a component of
the "foot-inch" unit of measure. An elementary unit of measure
can be a component of several other units of measure.

Conceptual Schema

The description of all the shared data items within an
enterprise's databases and of the allowable operations on and
integrity constraints for those shared data items Represented

A-2

ft5?? IfTEIRTED INFOWTION SUPPORT SYSTEN (IISS) VOLUNE 5 4
rnMDRTR MODEL S.. (U) GENERAL ELECTRIC CO
SNNCTRD MY PRODUCTION RESOURCES CONSU.

U RSIFIED D ROLLINS ET RL 01 NOY 65 UN-629141NI F/0 5.'2 M

son.

II 0 I:5 ir " 8 12.5

Wo 13 .0

11111.25 111'4 ff .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

4,

%5

UM 620141001
1 November 1985

by a fully normalized information model in which integrity
constraints have been completely specified. Not influenced by
any usage or storage considerations. A software module that
must be used to access or transform data that is stored in a
manner that the CDMP is not designed to handle. I

Constraint Statement

One complete NDDL description of either an assertion, a
trigger, or a horizontal partition fragment. An assertion is a
rule about values for attribute use classes. If an NDML command
attempts to violate an assertion, the CDMP rejects the command
with an error message. A trigger is a set of conditions and a

set of actions, both involving entity classes and attribute use
classes. If the conditions are satisfied all the actions are
taken. If the conditions are not satisfied, none of the actions
are taken. See the definitions of Horizontal Partition and

Horizontal Partition Fragment for details about this use of
constraint statements.

Database Area

A subdivision of a CODASYL database. This subdivision is
a technique for improving the efficiency accessing database

record type instances. When a database is subdivided into
database areas, some or all of its records types are assigned to
particular areas. Instances of these record types are stored
only within the assigned areas. Then, these record type
instances can be accessed by searching only the appropriate
areas rather than the entire database. This access method is

only used when the record type instances cannot be located by
other means (e.g., by calc keys or record sets). .,.

Database Area Assignment

Indicates that a record type is assigned to a database
area.

Database Directory

A software library that must be used when accessing a
database.

Database Password

A code that must be supplied when logging on to a DBMS to
use a database. The DBMS verifies the password before accepting

A-3 ''

UN 620141001

1 November 1985

any other messages.

Data Field

A portion of a record type in which data values can be
stored.

Data Field/Record Set Linkage

A data field in a variable data set in a TOTAL database
that is used as the variable control key for a linkpath from a
master data set.

Data Field Redefinition

A data field that occupies the same space in a record type
as another data field. A record instance cannot contain values
in both data fields. One instance can contain a value in one
field while another contains a value in the other.

Data Format

The portion of a generic data description that includes the
structural characteristics such as data type, length, storage
method, etc. If a generic data description is for elementary
values (e.g., customer names), it will have only one data format
(e.g., Data Type - alphanumeric, Length - 30). If it is for
compound values (e.g., part numbers consisting of six numerals
followed by three letters followed by four more numerals), it
will have more than one data format, one for each elementary
portion of the values. For the part number example the data
formats would be:

1. Data Type - numeric Length - 6
2. Data Type - alphabetic Length - 3
3. Data Type - numeric Length - 4

A generic data description with a compound unit of measure,
i.e., one that is a group of component unit of measures, must
have a data format for each component unit of measure.

Data Item

An attribute class as seen by a user in a user view, i.e.,
a kind of data (e.g., employee hire date), not a particular data
value (e.g., 15 August 1980).

A-4

z' . .'

UM 620141001
1 November 1985

Data Management System

Either a database management system or a file management
system, i.e., a set of computer programs that must be used to
establish and maintain a database or a computer file.

Data Type

The combination of a type of values (e.g., alphanumeric,
signed numeric, etc.) and a type of storage (e.g., binary,
packed, etc.)

Dependent Entity

The entity class that is dependent in a specific relation
class. A dependent entity, i.e., an entity is a dependent
entity class, can exist only if it is related to an independent
entity. Contrast with independent.

Description Type

A generic object may have several different kinds or styles
of description (short, long, technical, nontechnical, etc.).
Each is a description type.

DMS on Host

A data management system that is available on a particular
host.

Domain

A set of rules about the values that are allowed for a data
item, attribute class, or data field. A domain is either an
elementary domain or a group of two or more elementary domains,
called component domains.

Domain Range

A series of consecutive values that represent all or part
of an elementary domain.

Domain Value

A single value within an elementary domain.

A-5

A_5

UM 620141001
1 November 1985

Elementary Data Field

A data field that does not have any component data fields.

Elementary Domain

A domain that does not have any component domains. An
elementary domain can be expressed as a series of values or
value ranges.

Elementary Unit of Measure

A unit of measure that does not have any component units of r
measure. W

elf

Entity Class

A collection of similar entities, i.e., those that have the
same kinds of attributes. An entity is a person, place, event,
thing, concept, etc.

Entity Class/Record Type Join

A relational join operation that combines two related
entity classes as part of the design of a record type.

Entity Class/Record Type MappinA

Indicates that an entity class corresponds to a record
type, i.e., that they both have the same meaning and that the
record type can be used to store instances of the entity class.

If a record type has more than one EC-RT mapping, some of
its instances correspond to instances of one entity class while
others correspond to instances of another, i.e., the record type
is the relational union of the entity classes. An example is a
Replenishment Order record type that maps to both the Purchase '

Order and Manufacturing Order entity classes. Each record
instance represents either a purchase order or a manufacturing
order.

Entity Class/Record Type Union Discriminator

If a record type corresponds to more than one entity class,
i.e., if it has more than one EC-RT mapping, it is the
relational union of those entity classes. Some instances of [
such a record type correspond to instances of one of the entity "

A-6

-%

UN 620141001
1 ovember 1985

classes, others to those of another. For such a reoord type
there must be a way to determine which record instances
correspond to instances of each entity class. An entity
class/record type union discriminator provides this by
specifying that a given value in a given data field indicates
that a given EC-RT mapping should be used.

Entity Class/User View Join

A relational join operation that combines two related
entity classes as part of the design of a user view.

External Schema

See User View.

File

A set of stored data that is managed by a file management
system (e.g., VSA).

File/Database

A set of stored data, i.e., either a computer file (e.g., a
VSAM or flat file) or a database (e.g., an ORACLE or INS
database).

Generated Request Processor

A software module that was created by the CDMP Precompiler.

Generic Data Description

A detailed description of the values for one or more data
items, attribute classes, data fields, and/or module parameter.
It includes format, measurement, and domain characteristics of
the values.

Generic Data Description Component Unit of Measure

A component unit of measure that is specified as part of a
data format. These are only specified for a generic data
description that includes a compound unit of measure. i.e., one
that is a group of component units of measure.

A-7

11111111111,56, %- %- ..

UK 620141001

1 November 1985

Generic Data Description Domain

A domain that is specified as part of a generic data
description.

Generic Data Description Unit of Measure

A unit of measure that is specified as part of a generic
data description.

Generic Object .'

Anything with a name that distinguishes it from other "A
things of the same type and with a description that explains
what it is (e.g., any entity class or attribute class).

Generic Object Description

An explanation of what a particular object is. .

Generic Object Description Line

One fixed-length portion of a generic object description.

Generic Object Keyword

A keyword for a particular generic object.

Generic Object Name

An noun or noun phrase by which a generic object is known.
Two objects can have the same name.

Horizontal Partition

Indicates that the same record type is not used to store
all instances of an entity class, i.e., that one is used to
store some instances while another is used to store others. Each
record type represents a "fragment" of the entity class. These
fragments do not overlap, i.e., no entity instance appears in
more than one fragment. An entity class can be partitioned into
any number of fragments, usually with each being in a different
database or file, although that is not a requirement; some or "I
all may be stored as different record types in the same database
or file. A constraint statement defines each fragment, i.e.,
describes the conditions that must be met by each entity
instance that is stored as a given record type. If an entity

A-B .,

UM 620141001
1 November 1985

class is replicated, i.e.. if each of its instances is stored in
more than one database instances is stored in more than one
database or file. each replication can be horizontally
partitioned. For example, for the first replication the
instances could be partitioned based on the values in one
attribute use class, and for the second replication they could
be partitioned based on the values in another.

Horizontal Partition Fragment

A record type that is used to store some, but not all, of
the instances of an entity class. A constraint statement
describes the conditions that must be met by each entity
instance that is stored as the record type. If the conditions
are satisfied by the attribute values of an entity instance, it
can be stored as an instance of the record type; otherwise, it
cannot be.

Host

A computer in the IISS.

INS Segment

A record type in a database that is controlled by IBM's IlS
DBMS.

Independent Entity

The entity class that is not dependent in a specific
relation class. An independent entity. i.e., an entity in an
independent entity class, can exist without being related to a
dependent entity. Contrast with dependent entity class.

Inherited Attribute Class

An attribute class that appears in a dependent entity class
because it has migrated from an independent entity class. Must
be part of a key class in the independent entity class.

Inherited Attribute Classes Form

Provides a single source of information about inherited
attribute use classes that are to be described in the conceptual
schema.

.i

UN 620141001

1 November 1985

Inherited Key Class

A key class in the independent entity class of a relation
class that has migrated to appear in the dependent entity class
of that relation class.

Internal Schema

A description of the data items in a database. Described
from DBMS User's perspective. Usually not fully normalized.

Join

A relational operator that creates a new relation by
combining two or more source relations according to specified
criteria. A natural join combines the relations by matching
tuples with equal values for a common attribute class (column).

Keyo

An assortment of attributes in an entity that can be used
to uniquely identify that entity within its entity class. An
entity can have more than one key, e.g., an employee can be
uniquely identified by either an employee number or a Social
Security Number.

Key Class

A group of one or more of an entity's attributes that can
be used to uniquely identify the entity within its entity class.
An entity can have more than one key. A key class is a
collection of the attribute classes whose member attributes
comprise the keys for the entities in an entity class. An
entity class has the same number of key classes as each of its
member entities has keys. For example. if each entity has three
keys, the entity class has three key classes.

Key Class Member

An attribute use class that is part of a key class.

Key Class Migration

The process of moving key classes from independent to U
dependent entity classes.

A-10

UM 620141001
1 November 1985

Library Module

A software module that is stored in a software library.

Model

A representation of the information requirements of all or
part of an enterprise in terms of entity classes, relation
classes, and attribute classes.

Model Glossary Name

A name of a model entity class or a modle attribute class,
either an official name or an alias.

Module Parameter

A means of supplying values to a software module and of
receiving results from a module.

Numeric Data Format

A data format for values that can only contain numerals
(0-9) and associated punctuation (decimal point, comma, etc.).

Owned Attribute Class

An attribute class that is not an inherited attribute

class. .

Owned Attribute Classes Form .

Provides a single source of information about owned
attribute use classes that are to be described in the conceptual
schema.

Program Control Block

A portion of a PSB that describes and controls how an INS
database can be accessed.

Program Specification Block

A group of logical views of INS databases that is used for .'..,-

interacting with the INS DBMS.

A-l

UM 620141001
1 November 1985

Record Set

An association between one record type, called the owner,
and one or more other record types, called the members.

Record Set Member

A record type that is a member of a record set. p .

Record Type .

A group of data values that are stored together as a unit
in a computer file or database. A record type is the collection
of all the records of the same kind, i.e., all the records that
contain the same kind of data values.

Relation Class

An association between an entity in one entity class and
one in another. A relationship has a label that describes the
association. For example, a customer named ABC Corp. is
associated with an order numbered 123 in a manner labeled
"placed". A relation class is a collection of the identically
labeled relationships between the members of the same two entity
classes. Each relation class is either specific or nonspecific.

In a specific relation class, one entity class is
"independent" while the other is "dependent"; i.e., entities in
the first can exist without being associated with any in the
second, but those in the second cannot exist without being
associated with one in the first. One key class from the
independent entity class "migrates" through each specific
relation class to appear in the dependent entity class as
inherited attribute classes.

In an nonspecific relation class, neither entity class is
dependent on the other; i.e.., entities in either entity class
can exist without being associated with any in the other. For
convenience, one entity class is arbitrarily called
"independent" and the other is called "dependent".

Relation Class Form

Provides a single source of information about relation
classes that are to be described in the conceptual schema.

A- 12 p '

--I~

UN 620141001 ,.i*

1 November 1985

Relation Class/Record Set Mapping

Indicates that a record set represents the same association

as a relation class. If a record set has more than one member
record type. it may represent several relation classes, a
different one for each member. Hence, this entity class is only
indirectly dependent on record set (via record set member).

Repeating Data Field Occurrence Counter

A data field whose data values indicate how many
occurrences of a repeating data field actually contain values.

Segment Data Element

A data field is an INS segment.

Software Library

A computer file in which software modules can be stored.

Software Nodule

A set of computer instructions that are treated as a whole
(i.e., stored, compiled, and executed together).

Subschema

The description, in the DDL of a CODASYL DBMS. of all or
part of a database. For IISS, only one subschema is needed for
a CODASYL database, and it must describe all the common data
within the database that is to be accessible with NDML.

Unit of Measure

A standard scale for determining the magnitude of
something. Examples include inch, foot, foot-inch, meter.
ounce, pound, hour, minute, second, etc.

Unit of Measure Conversion

A means of transforming a value expressed in one unit of
measure into an equivalent value expressed in another (e.g.,
transforming inches to feet or feet to meters).

A-13

SI

UM 620141001

1 November 1985

Unit of Measure Conversion Constant

A number in a unit of measure conversion step that is the
same every time the conversion is performed. A software module
that can be used to perform a unit of measure conversion. A
module parameter that is used to supploy values to or receive
values from a unit of measure conversion module.

Unit of Measure Conversion Step

One of a series of arithmetic steps that can be used to
perform a unit of measure conversion. Each step takes the value
resulting from the prior step (the first step uses the value to
be converted) and a.mds. subtracts, multiphies, or divides by
another value, either a constant or a variable. The result of
the last step is the converted value. The processing sequence
is always first steps to last; parentheses, branching, and
conditional tests are not allowed. Consequently, some unit of
measure conversions cannot be performed in this manner (e.g.,
converting meters to feet-and-inches).

Unit of Measure Conversion Variable

A number in a unit of measure conversion step that can be ,
different every time the conversion is performed. This is only
used when the unit of measure being converted from has two or
more component units of measure. Each component is a variable '
and each is involved in a separate step.

User Application Process A-

A software module that supports business activities rather
than data processing activities and that can be executed
directly, i.e., a main routine, not a subroutine. A user AP may
contain NDML commands for accessing stored data via the CDM,or
it may access them directly via DMSs. or it may call subroutines
that contain NDML commands or that access stored data directly.

User View

A group of data items that a user wants to deal with as a
group. It is similar to an entity class but does not
necessarily meet all the conditions for being one, it can be
thought of as an unnormalized entity class. A user view is
often the result of combining several entity classes via
relational join operations and selecting particular attribute
use classes as data items via relational project operations.

A- 14

V

UM 620141001
1 November 1985

Vertical Partitions

An entity class is vertically partitioned when some of its
attribute use classes map to data items in one user view and
others map to those in another. An entity class can have
several vertical partitions.

J. %_

.'..15

A-iS 54

UN 620141001
1 November 1985

APPENDIX B

REFERENCES

ICAM Life Cycle Documents

FTR11021000U Volume V, Information Modelinz Manual
(IDEFI)

PRM620141200 Embedded NDML Programmers Reference Manual f.
UN620141100 Neutral Data Definition Language (NDDL)

User's Guide

UM620141002 Information Modeling Manual - IDEFI-
Extended (IDEFIX) k -

TBM62014100 CDMI - An IDEFI Model of the Common Data
Model

Other References .

"The ANSI/X3/SPARC DBMS Framework: Report of the Study
Group on Data Base Management System"' American National Stan-
dards Institute, AFIPS Press, Montrole New Jersey. 1977.

Atre, S., "Data Base, Structure Techniques for Design,
Performance, and Management", John Wiley and Sons, Inc.. New
York, 1980.

Martin, James, "Managing the Data Base Environment". AL
Volumes I and II, Savant Institute. 1981.

B'.1 .

8 - 1 ,% , ,,,,,,,,,.. ,,, ,,,,,,, ,,,, , ,, . ,R ,,. , ,*,

1%

D . .----- -c

