~RD-A181 577 IMTEGRRTED INFORNRTION SUPPORT SVSTEH (”55) VOLUNE 5 1/4
COMMON DATR MODEL S (U) GENERARL ELECTRIC
SCHENECTADY NY PRODUCTION RESOURCES CONSU
UNCLASSIFIED D ROLLINS ET AL 81 NOV 85 U--628141801 F/G 5/2

T E

S —

FEEE

FRERE

(44
[4
[

E

el 14
o N

—

01K FiLE Copy o =

AD-A181 577

AFVAL-TR-86-4006
Volume V
Part 1

INTEGRATED INFORMATION

SUPPORT SYSTEM (IISS)

Volume V - Common Data Model Subsystem
Part 1 - CDM Administrator’'s Manual

General Electric Company
Production Resources Consulting
One River Road

Schenectady, New York 12345

Final Report for Period 22 September 1980 - 31 July 1985

November 1985

Approved for public release; distribution is unlimited.

PREPARED FOR: L

MATERIALS LABORATORY -
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND g, JUN 1 01987
WRIGHT-PATTERSON AFB, OH 45433-6533 : E &

)

-

Ry X X RN - o My~

- s
T

- AT o - =, Ty

2,

. -

- DK,

P - PR TRt e s Ty

= A

e

P TS O

NOTICE

When Government drawings. specifications, or other data are used for any purpose other than
in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the
government may have formulated. furnished, or in any way supplied the said drawings.
specifications. or other data, is not to be regarded by implication or otherwise &s in any
manner licensing the hoider or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any way be related
thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the
National Technical Informatuon Service (NTIS) At NTIS. it will be available to the general
public, including foreign nations.

This technical reportyhas been reviewed and is approved for publication.

fa-;—/ Sﬁq /9l

DAYID L. JJUD, ON’ PROJECT MANAGER DATE 0

IGHT PATTERSON AFB OH 45433

FOR THE COMMANDER:

' . At Mo] Qusy e

ERALD C. SHUMAKER, BRANCH CHIEF DATE
AFWALMLTC
WRIGHT PATTERSON AFB OH 45433

"if your address has changed. it you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W PAFB, OH
45433 1o help us maintain a current mailing list.”

Copies of this report should not be returned unless return is required by secunty consideratinnc
contractual obligations, or notice on a specific document

*

e 8, ‘*'v-."- T "'w.’\’-u’_ ERCATY ‘. LRSS
K 'h ;'l.-' LN ' L' Cy- ’u" N DA lﬂ‘c"] AN :".o Bty '.0'&" O e L iy A X M

-

AR G
0,y -

= i

Onclassified UM 620141001
1 November 1985

T SECUR'TY C.aB8S 7:CATION OF TS PAGE

Bad

REPORT DOCUMENTATION PAGE

‘ 1s ALPDAT BECVAITY CLABSIF1CATION e ALSTAICTIVE MaRK inGE
(Unclassaified
, e BECWAITY £LASS:0 . CATION AUTHROMIYY 3 OISTRIPUTION. AVAILADILITY OF REPOAY
Approved for public release;
. > DECLASE #1CATION/DOWNGRADING SCHEDULE distribution is unlimited.
s
‘::: 4. PERFOAMING ORGANIZATION ASPORT NUMBERS) S. MONITORING ORGCANIZATION REPORT AUMBEAS)
ey
o AFVAL-TR-86-4008 Vol V, Part 1
4“
r Ga NaME OF PERFOAMING ORGANIZATION 5 OFFICESYMBOL [Ta WAME OF MONITORING OAGANIZATION
U applimebis)
i General Electiric Company AFVAL/MLTC
) Production Resources Consulting
;'::' Sc ADDARESS (Cin. Sien ens 2IP Coda) ™. ADDARESS (Ciry, Suw ons 21P Code/
)
(
) 31 River Road
" Schenectady, Y 13348 VPAFB, OH 45433-6533
vt . .
G NAME OF PUNDINGBPONSORING . QFFICL EYMBOL 0. PROCUREMENT INSTRUMENT IDENTIBICATION NUMBEA
oae.nmx?non Al epplcadle)
] Materials lLadborator
:’\: AlT Foroe Systess czu;nd. OSAF AFVAL/MLTC ¥33613-80-C-8185
M & ADOARSS (Ciny. Bom and 2IP Coae) 10 SOURCE OF FUNDING NOS
t:t P ™ enosecY vasx wOoRK UNIT
,:: Vright-Pattersos AFS, Ohio 65433 SLBLNT 0. 6. ®o. wo.
B ve011F 7500 62 01
VY TITLE daciote Secunty ClamiAossion)
i (See Reverse)
it 1. PERSONAL AUTHORS)
:eﬁ Rollins, D. Loomis. M. Hogan, J. Leifeste, B.
G 130 TYPE OF REPOART 13 TimE COVERRD 16. OATE OF REPORY (Y7 Mo.. Dwy/ 18 PAGE COUNT
. Piaa! Techaical Repert 82 Sept 1980 - 8) July 3980 1085 November sS02
16 BUPPLEMENTARY NOTATION The computer softvare contained herein are theoretical and/or
o references that in no way reflect Air Force-owned or -developed
?;‘; ICAX Project Priority 6201 computer softvare.
)
5‘1’ COsaT CODLS 1. 8UBJIHECT TERAMS (Contnus on e & nscens™ oAl Miea By by bloch number/
‘ L3
&g:{ ; [LI-104 ue_gn
i { 0905
i

0 ABSTARACY (Conunus on weeree i/ avecemery ond rnily 0y u..u aumber)

3

The Common Data Model Processor (CDMP) is a mechanism by which application
programs can retrieve and update data without knowing where or how the data
are stored. The CDM (Common Data Model) is a database where schemas and
mappings for data access are stored. This is a user manual for the CDM
Administrator. It describes the philosophical and practical objectives

N of the CDM Administrator, the design /of M, and the steps needed to

o enter and maintain data in the CDM. < ,
Vi

§

i

s'.:.

%e' 30 DISTABUTION/AvAILABILITY OF ABSTAACT 3V ABSTARAACT SEICURITY CLABE P ICATION

‘3"

:.': wwcLassioigorvmL i vgp I saut as wer. Covic veens D Unclassified

.l

- 230 mAME OF RLEPONS DLt INDIVIDUAL T2 T8LLoNONE wumBIa 23¢ OF#1CE BYMOOL

Gaciags Ane []

n Bavid L. Judsoa $13-385-007¢ ATVAL/MLTC

N e
o OO0 FORM 1473, 83 APR “EDITION OF 1 4aN T3 18 OBSOLETE. Onclassified

2 . SACURITY CLARSPICATION OF Tiib PAGE
o

1,,

'fl

‘ > - -‘\'\ .._.‘ : R ‘u ™) -
CAAAS SO TIDCTR L Uk 1 R AT AR T g

11.

Title

Integrated Information Support System (IISS)
Vol V - Common Data Model Subsystem
Part 1 - CDM Administrator’'s Manual

Acoessiyq“!gz_
WIS CRA&T
pPTIC TABD

Urmrulo-.mcod
Justifﬁcatim;,,“,

o

8

——

R L

a—

By —— |
Di?tribvticn/ K
| }\vailahwlily et !

Availo A \
Dist ‘ Spoo L

s T e e A AW Y

- e

.- e

UM 620141001
1 November 1985

PREFACE

This user’'s manual covers the work performed under Air
Force Contract F33615-80-C-5155 (ICAM Project 6201). This
contract is sponsored by the Materials Laboratory, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Gerald C.
Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady, New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department,
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardwvare and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewver.

Company (BMAC)

D. Appleton Company Responsible for IDEF support,

(DACOM) state-of-the-art literature
search.

General Dynamics/ Responsible for factary view

Ft. Worth function and information
models.

iii

e,

. - ;
1, !'l'l.l." X

TTRRET |0 . 2 8 e O X
SO GO0 i o e DA B AR L A D D i XS

L O s I AN r\."(.‘.d,(" T LY

B 8RB NN VTR M 4 00 O BN VR VW VL,

Subcontractors

Illinois Institute of
Technology

North American Rockwell

Northrop Corporation

Pritsker and Associates

SofTech

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors

Boeing Military Aircraft
Company (BMAC)

Computer Technology
Associates (CTA)

Control Data Corporation
(cpe)

D. Appleton Company
(DACOM)

iv

UM 620141001
1 November 1985

Role

Responsible for factory view
function research (IITRI)

and information models of
small and medium-size business.

Reviever.

Responsible for factory view
function and information
models.

Responsible for IDEF2 support.

Responsible for IDEFO support.

Role

Responsible for consultation on
applications of the technology
and on IBM computer technology.

Assisted in the areas of
communications systems, system
design and integration
methodology., and design of the
Network Transaction Manager.

Responsible for the Common Data
Model (CDM) implementation and

part of the CDM design (shared

with DACOM).

Responsible for the overall CDM
Subsystem design integration
and test plan, as well as part
of the design of the CDM
(shared with CDC). DACOM also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

Subcontractors

Digital Equipment
Corporation (DEC)

McDonnell Douglas
Automation Company
(McAuto)

On-Line Software
International (OSI)

Rath and Strong Systems
Products (RSSP) (In 1985
became McCormack & Dodge)

SofTech, Inc.

Software Performance

Engineering (SPE)

Structural Dynamics
Research Corporation
(SDRC)

UM 620141001
1 November 1985

Role

Consulting and support of the
performance testing and on DEC
software and computer systems
operation.

Responsible for the support and
enhancements to the Network
Transaction Manager Subsystem
during 1984/1985 period.

Responsible for programming the
Communications Subsystem on the
IBM and for consulting on the
IBM.

Responsible for assistance in

the implementation and use of

the MRP II package (PIOS) that
they supplied.

Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Responsible for directing the
work on performance evaluation
and analysis.

Responsible for the User
Interface and Virtual Terminal
Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology. their contributing
activities and responsible projects are as follows:

ICAM Pro ject

Contributing Activities

Contractors
Boeing Military 1701,
Aircraft Company 2202

(BMAC)

2201,

Enhancements for IBM
node use. Technology

Transfer to Integrated
Sheet Metal Center
(ISMC).

UM 620141001
1 November 1985

' Contractors ICAM Project Contributing Activities
Control Data 1502, 1701 IISS enhancements to
, Corporation (CDC) Common Data Model
: Processor (CDMP).
. D. Appleton Company 1502 IISS enhancements to
(DACOM) Integration Methodology.
General Electric 1502 Operation of the Test
‘MQ Bed and communications
N equipment .
&‘,)
< Hughes Aircraft 1701 Test Bed enhancements.
Company (HAC)
}J; Structural Dynanmics 1502, 1701, IISS enhancements to
o Research Corporation 1703 User Interface/Virtual
i (SDRC) Terminal Interface
i (UI/vTI).
o Systran 1502 Test Bed enhancements.

Operation of Test Bed.

vi

ACH RO A RIS OEOOSOO0N. | 30N] X
ettt RO G I L e 6 T

UM 620141001
1 November 1985

TABLE OF CONTENTS

Page

g SECTION 1.0 INTRODUGTIONoovunnnnnennnnnnnn. 1-1
3 1.1 Managing Data as a Corporate

2 RESOUPCE ... vviiennenaenanennenn. 1-1
‘ SECTION 2.0 CDM OVERVIEWcoieunennnnnn. 2-1
. 2.1 The Fundamental Approach 2-1
A 2.1.1 The Three Schema-Architecture 2-1
b} 2.1.2 Representation of the Three
R Types of Schemas 2-5
oy 2.1.3 Integration Methodology 2-6
R 2.1.4 Contributions to IRRIASSPA 2-9
- 2.2 Basic Components of the Design 2-10
e 2.2.1 The CDM DatabaSe 2-10
e 2.2.2 (o) 5 A 2-11
;ﬁ" 2.2.3 The CDM Processorouueeeeennwn. 2-11
LN
- SECTION 3.0 RESPONSIBILITIES OF THE
_ CDM ADMINISTRATOR 3-1
B 3.1 Establishing Data Standards 3-1
5 3.2 Maintaining the CDM 3-1
B 3.3 Protecting the CDM 3-1
g 3.4 Facilitating Use of the CDM 3-2
: SECTION 4.0 MAINTAINING THE CONCEPTUAL SCHEMA 4-1
5 4.1 Methodology Overview 4-1
i 4.1.1 CS Structure a-1
o 4.1.2 Basic Approach 4-4
N 4.1.3 Modeling Forms 4-4
: 4.2 Building the Initial CS 4-16
. 4.2.1 Phase O: Starting the Project 4-16
B 4.2.2 Phase 1: Defining Entity Classes .. 4-20
Wy 4.2.3 Phase 2: Defining Relation
o ClaSSE@S ..o oviimi e 4-22
o 4.2.4 Phase 3: Defining Key Classes 4-25

4.2.5 Phase 4: Defining Nonkey Attribute

-, Classes 4-33
) 4.3 Expanding the CS 4-35
N 4.3.1 Phase O: Starting the Project 4-36
o 4.3.2 Phase 1: Defining Entity Classes .. 4-38
o4 4.3.3 Phase 2: Defining Relation

' ClasSescouiiumnnennnnnnnn. 4-40
" 4.3.4 Phase 3: Defining Key Classes 4-42
]
i
j, -

1 vii

(]
"b.‘ v‘l' i bi;. ‘1’_&' “t i“tl‘g .‘Q“ AONTIN {‘Q 5.“1“_ .|'i ‘t

O RO

I
w UM 620141001
1 November 1985
o TABLE OF CONTENTS (Continued)
Page
! 4.3.5 Phase 4: Defining Nonkey Attribute
S ClaSSeS ...vviieennnnnenenennnnnns 4-54
SECTION 5.0 MAINTAINING THE CDM 5-1
5.1 Methodology Overview 5-1
o 5.1.1 Using NDDL with the CDM Tables 5-1
?g 5.1.2 Direct Loading of the CDM Tables .. 5-3
i 5.2 Loading the Initial CS Description 5-24
o 5.2.1 Direct Loading of the
Sl CDM Tablesccuuuun.. 5-24
‘ §.2.2 Loading the CS with the NDDL 5-25
gt 5.3 Modifying/Deleting CS Elements 5-26
§¢\ 5§.3.1 Entity Class Changes 5-29
o 5.3.2 Attribute Class Changes 5-30
R 5.3.3 Attribute Use Class Changes 5-32
il 5.3.4 Key Class Changes. 5-33
‘ 5.3.5 Key Class Member Changes 5-34
¥, 5.3.6 Relation Class Changes 5-34
A3 5.3.7 Inherited Key Class Changes 5-36
o 5.3.8 Inherited Attribute
M Class Changes 5-37
= 5.3.9 Summaryc0iiiiaannn. 5-38
5.4 Updating the CS Tables in the CDM ... 5-38
o 5.4.1 Direct Updating of the
b CS CDM Tablesccuiuuun- 5-39
Wy 5.4.2 Updating the CS CDM Tables
b}y with the NDDL 5-46
Y
SECTION 6.0 MAINTAINING INTERNAL SCHEMAS
~ AND MAPPINGS 6-1
Sy 6.1 Methodology Overview 6-1
o 6.1.1 IS and CS-1IS Mapping Structure 6-1
0 6.1.2 Basic Approach 6-2
b 6.1.3 IS Modeling Forms 6-16 l
6.1.4 NDDL Commands for
o Internal Schema 6-25 }
W 6.1.5 Loading the CDM Tables 6-30
sl 6.2 Modifying/Deleting IS Elements
Wy and CS-IS Mappings 6-40 |
o 6.2.1 Database Changes 6-43 !
6.2.2 Database Area Changes 6-46 i
R 6.2.3 Record Type Changes 6-47 |
" |
H viii |
l
-~

(5N

$y8 0 " » n FEg o | Ly
A 4 OB 00 <0 o\ 0
AL *'h'"n"h“'. ?‘a'!',""u'!‘u“.’i‘."-‘!";"'; LY. :., Sodadad st "".“9"‘4" AN

-

UM 620141001
1 November 1985

TABLE OF CONTENTS (Continued)
Page

6.2.4 Database Area Assignment Changes .. 6-51
6.2.5 Data Field Changes 6-53
6.2.6 Record Set Changes 6-60
6.2.7 Record Set Member Changes 6-62
6.2.8 SURMATY - . - it e e e e e e 6-64
6.3 CODASYL Databases 6-65
6.3.1 CODASYL-Specific Considerations ... 6-65
6.3.2 Building a CODASYL

IS and CS-IS Mapping 6-67
6.3.3 Building a CODASYL IS and CS-IS

Mapping with NDDL 6-74
6.3.4 Modifying a CODASYL IS and CS-IS

Mapping Objective 6-75
6.4 Relational Databases 6-80
6.4.1 Relational-Specific

Considerations 6-80
6.4.2 Building a Relational Table IS and

CS-1IS Mapping 6-84
6.4.3 Building a Relational Table IS and

Cs-1IS Mapping with NDDL 6-86
6.4.4 Modifying a Relational Table IS and

CS-1IS Mapping 6-87
6.4.5 Modifying a Relational Table IS and

CS-1S Mapping with NDDL 6-90
6.5 IMS Databases 6-91
6.5.1 IMS Specific Considerations 6-91
6.5.2 Building an IMS IS and CS-1S

Mapping 6-94
6.5.3 Building an IMS IS and CS-IS

Mapping with NDDL 6-99
6.5.4 Modifying an IMS IS and CS-1IS

Mapping 6-100
6.5.5 Modifying an IMS IS and CS-IS

Mapping with NDDL 6-109
6.6 VSAM Files oo, 6-111
6.6.1 VSAM-Specific Considerations 6-111
6.6.2 Building a VSAM IS and CS-1IS

Mapping 6-112
6.6.3 Modifying a VSAM IS and CS-1S

Mapping 6-114
6.7 Sequential Files (Flat Files) 6-117

ix

SECTION

o
)

APPENDIX A

APPENDIX B

UM 620141001
1 November 1985

TABLE OF CONTENTS (Continued)

o

DN -

7
7
7
7
7
7.
7
7
7
7
7

GGG G-

QN+

Page
Sequential-Specific
Considerations 6-117
Building a Sequential File IS
and CS-IS Mapping 6-117
Modifying a Sequential File IS and
CS-1IS Mapping 6-120
MAINTAINING EXTERNAL SCHEMAS
MAPPINGS 7-1
Methodology Overview 7-1
ES and CS-ES Mapping Structure 7-1
Basic Approach 7-1
Modeling Forms 7-11
CDM Tables and ES NDDL 7-12
Building an ES and CS-ES Mapping 7-14
Modifying/Deleting ES Elements and
CS-ES Mappingsciiivunn.. 7-16
User View (ES) Changes 7-18
Data Item Changes 7-19
Summary 7-20
GLOSSARY, A-1
REFERENCES B-1
L1ST OF ILLUSTRATIONS
Title Page
Data as an Integral Part
of the Decision-Making Process 1-3
Two Fundamentally Different
Views of Data: Logical and Physical .. 2-3
Direct Mapping of Logical and
Physical Views, 2-3
The Three-Schema Architecture 2-5

Relation Classes Form 4-7

UM 620141001
1 November 1985

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
4-2 Relation Classes Form Example 4-8
4-3 Owned Attribute Classes Form 4-11 !
: 4-4 Owned Attribute Classes
Form Example 4-12
4-5 Inherited Attribute Classes Form 4-14
) 4-6 Inherited Attribute Classes
o Form Examplec.cuiiuiennn. 4-15
i -7 Refinements of Nonspecific
e Relation Classes Example 4-57
gR 4-8 Triads and Other Dual-Path
i Structure Example 4-58
. 4-9 Migration Through
oy Two Relation Classes Example 4-59
ﬁ& 4-10 Guidelines for Determining Key
POt Classes of Dependent Entity Classes .. 4-60
R 5-1 NDDL COmMMANASccnnvmunennnenn. 5-2
T 5-2 Owned Attribute Classes Form Example .. 5-5
- 5-3 Inherited Attribute Classes
i Form Examplecovcuieunnn. 5-8
Qﬁ 5-4 Entity Class Glossary Form Example 5-11
et 5-5 Inherited Attribute Classes
R Form Examplecciiiuunnenann. 5-14
5-6 Owned Attribute Classes Form Example .. 5-17
. 5-7 Inherited Attribute Classes
R Form Examplecoivvn... 5-18
e 5-8 Owned Attribute Classes Form Example .. 5-19
:gp 5-9 Inherited Attribute Classes
N Form Example 5-20
- 5-10 Relation Classes Form Example 5-23
- 5-11 Impact of Conceptual Schema Changes ... 5-28
00 6-1 Entity Class/Record Type Mapping 6-3
o 6-2 Join Examples 6-10
g 6-3 Join Structures 0. 6-11
i 6-4 Record Type/Entity Class
2 Mapping FOTMc.ouivinann.. 6-18
- 6-5 Record Type/Entity Class
oy Mapping Form Example 6-19
o 6-6 Record Type Join Structures Diagram ... 6-20
o 6-7 Record Type Join Structures
et Diagram Example 6-21
6-8 Data Field/Attribute Use
K Class Mapping 6-23
o
Xi

SOOI 1 3% AV
kT s

TNy, S Y, T AR SN LR,
S T e GG

UM 620141001
1 November 1985

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
6-9 Data Field/Attribute Use Class

Mapping Example 6-24
6-10 Set Type/Relation Class Mapping 6-26
6-11 Set Type’/Relation Class Mapping

Example i, 6-27
6-12 Data Field/Attribute Use Class

Mapping Example 6-32
6-13 Record Type Join Structure

Diagram Example 6-35
6-14 Record Type Entity Class

Mapping Example 6-37
6-15 Set Type’/Relation Class

Mapping Example 6-39
6-16 Impact of Internal Schema Changes 6-42
6-17 Incomplete Join Structure Example 6-73
6-18 Relational Implementation of the

Conceptual Model 6-83
7-1 Data Item/Attribute Use Class

Mappings iiiiiiiiii, 7-3
7-2 ES-CS Join Examples 7-7
7-3 ES-CS Join Structures 7-9
7-4 Impact of External Schema Changes 7-18

xii

UM 620141001
1 November 1985

SECTION 1

INTRODUCTION

The purposes of this document are several and include:

a) Describing the philosophical and practical objectives
of the Common Data Model (CDM) Administrator;

b) Discussing the CDM itself, its underlying design, and
its role in the IISS environment:

c) Describing in detail the steps necessary in entering
and maintaining data kept in the CDM.

After reading and understanding this document, the CDM
Administrator should not only be able to collect, enter, and
maintain CDM-related data, but also be able to understand the
reasons why such activities are performed.

The NDDL statements used to perform the actual CDM
maintenance activities are described in detail in the NDDL User
Guide.

1.1 Managing Data as a Corporate Resource

Managing data as a corporate resource is a philosophy
about the importance of data to an organization. The approach
recognizes that data are assets to be managed along with the
other more generally recognized resources of an enterprise,
including its personnel, inventories, capital, and so forth.
Organizations spend tremendous sums of money collecting and
manipulating data, trying to extract information needed to
support decision making. The CDM Administrator has as one of
his or her primary objectives the preservation of that
continuing. substantial investment in data resources. The CDM
Administrator plays a major role in protecting and properly
managing that investment by managing common data rather than
jJust managing applications that access data.

Data management includes all the activities that ensure
that quality data are available to produce needed information
and knowledge. The objective of data management is to keep data
assets resilient, flexible, and adaptable to supporting
decision-making activities in the business. Data management
responsibilities include: 1) the representation, storage, and

1-1

UM 620141001
1 November 1985

K organization of data so that they can be selectively and

o efficiently accessed, 2) the manipulation and presentation of
data so that they support the user environment effectively, and
3) the protection of data so that they retain their value.

The philosophy of the CDM recognizes that data are

W absolutely necessary to the decision-making cycles of
organizations (Figure 1-1). 1Individuals must no only be able to
collect and retain data for their own use, but also be able to
share data and pool their knowledge resources. The ability to

ﬁ‘ correlate information across traditional applications boundaries
5 and to provide information that supports all levels of decision
Y\ making., from operational through tactical through strategic, is

4 increasingly important as management at all levels is becoming
o more aware of the potential power of information systems.

i; The CDM provides the capability to pull the enterprise’s
¢ database resources together to form an integrated, common source
& of information to support decision making.

” The objectives of data management include the following:

Independence of data access from data descriptions
Increased data accessibility

Improved data integrity

Improved data shareability

Improved data resiliency

Improved data administration and control

Improved data security

b Improved performance

-~
-

B The CDM Administrator needs to understand each of these
- objectives.

B Independence between data access and data descriptions
improves control over the data descriptions, facilitates
standardization of data-naming conventions, and reduces the
programming effort required to accommodate modified data
descriptions. Data independence is perhaps the single most
= important factor in determining the long-range success of a
) data-driven environment.

v 1-2

ATLATAN DN ASD MR NN NI N UK Gl Q W Ao L G F
b R D T R L O OO I RN

fi UM 620141001
1 November 1985

o Knowledge ———¢ Decisions

Actions

Information Facts

Data Pool

i Figure 1-1. Data as an Integral Part of the Decision Making
et Process

Data accessibility refers to the capability for a user to
extract needed information from the data resource. Data

i# accessibility is enhanced by user-friendly interface languages
O and well designed screens. Good accessibility is characterized
e by being able to relate data in many different ways to produce
" information, and by being able to represent that information in

a variety of suitable forms. Data accessibility is improved by
K the CDM in its support of multiple access paths and retrieval
O sequences through the physical databases. Programming effort
' for data manipulation is decreased and cost-effective, general-
purpose query facilities such as the NDML become possible.

Data integrity is essential to maintain the quality of the

A 1-3

VLR Y b G CR MR VL | LANASAR AT p KO0 A :
CRTTAERLANT O O AR B RPN E G Qﬁg‘lfg‘S’,Ai?
N Tty B . N . N < v v U L PR

UM 620141001
1 November 1985

: data resource. Data integrity is measured by the completeness
2 and consistency of the data resource. Does it contain the data
that are relevant to the decision-making needs of the user?
Does it contain all required interrelationships among types of
§ data, and are all consistency constraints satisfied?

b Data shareability is needed to keep common data truly

d common. VWithout shareability, data proliferate and their
quality becomes uncontrollable. Without shareability, data are
private and personal:; their quality is each individual user's
responsibility. The main difficulty with this distribution and
redundancy of control is that it results in no control at all.

' Improved shareability can be achieved by supporting multiple

y access paths through the physical databases, thereby enabling

) them to serve many diverse needs. Shareability is also achieved
by separating individual user’'s views of the data resource from
the actual physical implementation of databases.

5 Data shareability refers not just to database contents, but
also to logic that accesses and manages data. Reduced data
duplication streamlines data access, reduces the programming
effort required for updating data, and reduces the potential for
) inconsistent data. Reduced redundancy in the data management

; effort improves the productivity of data processing personnel.

ﬁ Data recoverability is needed to keep the data resource
resilient in the wake of errors. Error conditions need to be
detected and corrected. Better yet, errors should be prevented

' from occurring in the first place. Part of the difficulty in

N providing a resilient data resource is continuing to make the

K data available to users while recovering from errors.

The CDM Administrator should help to ensure that the data
resource continues to satisfy users’ information needs, even as
E; those needs change through time. Many organizations have
i successfully established data administration functions to help
o develop and protect data assets. The CDM Administrator plays a
similar role for the integrated, overall data resource.

Data security is essential to prevent unauthorized access
to data. Certainly not all environments require the same,
elaborate security schemes, but nearly all organigations’' data
! assets need to have some degree of access protection. Some data
0 are wide open to public retrieve-only access; others require
! strict authentication to provide retrieval. Many databases have
more stringent restrictions on accesses that will change
database contents than on accesses that only read database

. 1-4

“ CCANMOOLN A i) Qo JOLPOUION L DO OO 0 AP .
|'1'~'3 ¢ “q’.tg‘v PPN h‘&'a‘ﬁt 2 ‘u"'b.1‘4'0&5.“0‘:‘23"l‘.f.'.,p“,ca‘?g""",&‘. R) i_g?“.{n

D) b,
v '~'Jb\.,.:"‘..!’*J";:.‘, A

VIR w v e w W ewww

UM 620141001
1 November 1985
i contents.

Performance of the data resource has two facets: efficiency
and effectiveness. Efficiency is a measure of how well the data

ﬁi system utilizes physical computer support, while effectiveness
s is a measure of how well the data system meets users’

‘ﬁe information needs. The characteristics are closely related; for
Kl example, a user may be totally dissatisfied with the system if

response time is measured in hours rather than seconds.
‘ Response time is generally considered to be an efficiency
B measure, but it certainly has an impact on effectiveness.

BTG ¢ ' A PR .. "\'.q“(.’f'
: t Y IRt B L M P Mt B 1 P

UM 620141001
1 November 1985

SECTION 2

CDM OVERVIEW

2.1 The Fundamental Approach

2.1.1 The Three-Schema Architecture

A key to implementing effective data-oriented environments
lies in a framework that is called the Three-Schema
Architecture. This approach was proposed in the mid-1970s, then
developed, and finally published in 1977 in a report from a
committee of the American National Standards Institute - "The
ANS1/X3/SPARC DBMS Framework: Report of the Study Group on Data
Base Management Systems."

The basic concepts proposed in the report have the power to
lead us to more effective information resource management. They
are implemented in the CDM.

The Three-Schema Architecture is based upon several
fundamental facts:

° Computers and users need to be able to view the same
data in different ways

° Different users need to be able to view the same data
in different ways

° It is (more or less) frequently desirable for users
and computers to change the ways they view data

e It is undesirable for the computer to dictate or
constrain the ways that users view data

Thus, it is necessary to be able to support different types
of views of a data resource. Users need to be able to work with
logical representations of data, which are independent of any
physical considerations of how the data are actually stored and
managed on computer facilities. Users view data in terms of
high-level entities, e.g., staff members, tools, vehicles,
products, orders, and customers. Meanwhile, computer
facilities, e.g., access methods, operating systems, and DBMSs,
need to be able to work with more physical representations.

They view data in terms of records and files, with index

UM 620141001
1 November 1985

structures, B-trees,
and so forth.

linked lists, pointers, addresses, pages,

These requirements lead us to conclude first that there are
two fundamentally different types of data views: logical and
physical. The logical views are user-oriented, while the
physical views are computer-oriented (Figure 2-1).

A second conclusion is that there must be a mapping or
transformation between the logical and physical views. After
all, the ultimate objective is to enable users to gain access to
their data that reside on computerized media. This mapping
might be simple if there were only one user view and one
database, but that is not the real-world situation. Rather,
there are multitudes of user views and commonly many (sometimes
hundreds or thousands) databases in an enterprise.

Each user view could be mapped directly to the underlying
databases (Figure 2-2). This solution suffers, however, when
change is introduced in either type of view. 1If a physical
database is restructured on a disk to provide more efficient
performance, then the mapping to each of the user views that
references that database can be affected. If a logical view is
revised to present information in a somewhat different way, then
the mapping to each of the referenced databases may be affected.
Independence of logical and physical considerations would not
have been achieved, and we would find that physical computer
factors would constrain the ways that users logically view their
data. This is undesirable.

Using three-schema architecture terminology, “"external
schemas” represent user views of data, while "internal schemas"”
represent physical implementations of databases. Schemas are
metadata, i.e., they are data about data. As a simple example,
CUSTOMER-NAME and CHARACTER (17) are metadata describing the
data value CHRISTOPHER ROBIN.

To enable multiple users to share a data resource that is
implemented on potentially many physical databases, we insert
betwveen the users’ views and the physical views a neutral,
integrated view of the data resource. This view is called a
“conceptual schema” in three-schema architecture terminology.
Others sometimes call it an "enterprise view."

UM 620141001
1 November 1985

q‘.
/lE'I«i

=

&5

Logical Data Views Physical Data Views

Figure 2-1. Two Fundamentally Different Views of Data: Logical

and Physical

%
Database A

User View 1

@ Database B

User View 2

@ Database C
User View 3
ﬂoatabase D

Figure 2-2. Direct Mapping of Logical and Physical Views

2-3

IS l\‘"

D OPABALR AN B) e\ 2) p who
{ vl RPN | RGOS OU M MO AL 44 ; R O O O)
g R I R N OO S i *,‘l‘L:.‘?II;."’:‘i“L?!.»:‘t,‘*;t,'k«fgzs"!it‘!‘:

Py

»

LR

r ~
P S
4‘5‘!’&

il b dhadi AA A dh i die A i i S hadh il Sk sih R ok e Re

UM 620141001
1 November 1985

As the vehicle for data integration and sharing, the
conceptual schema also carries metadata for enforcement of data
integrity rules. It is extensible, consistent, accessible,
shareable, and enables the data resource to evolve as needs
change and mature.

Figure 2-3 illustrates the relationships between the three
types of schemas. The schemas and the mappings between them are
the mechanism for achieving both data independence and support
of multiple views. An internal schema can be changed to improve
efficiency and take advantage of new technical developments
without altering the conceptual schema.

The conceptual schema represents knowledge of shareable
data. There may be access controls and security restrictions
placed upon these common data, but they are not restricted to
access by only one user. The conceptual schema does not
describe personal data.

The scope of the conceptual schema expands through time.
The conceptual schema extension methodology continually expands
the conceptual schema to include knowledge of more shared data.
The external-conceptual mappings protect the external schemas
and the transactions/programs that depend on them from most
modifications incurred in evolving the conceptual schema.

Adding data to the integrated, common resource does not
start over in defining the data resource, nor does it create
another stand-alone database. Rather, development of its
database must examine questions of how those data relate to what
is already known by the conceptual schema. The result will be
an integrated data resource whose scope is expanded gradually.
It is absolute folly to approach integration of the data
resources of an organization all at once; the job must be taken
on piecemeal. The conceptual schema is the integrator.

The CDM contains all three types of schemas, as well as the
interschema mappings. It not only documents these metadata, but
also supplies appropriate metadata to support transaction
processing.

T — ~—ver

UM 620141001
1 November 1985

Internal
External
< Schema 1 Schema 1
Internal
Schema 2
External Conceptual
Schema 2 Schema
Internal
° Schema 3
°)
®
External internal
Schema N
efn Schema 4

Figure 2-3. The Three-Schema Architecture: One Conceptual
Schema That Provides for Integration and
Independence of Many External Schemas and Many
Internal Schemas

2.1.2 Representation of the Three Types of Schemas

In the IISS, the Three-Schema Architecture is implemented
through the CDM facilities to store each of the three types of
schemas and the interschema mappings. An appropriate
representation mode has been selected for each of the three
types of schemas.

The conceptual schema is represented by an IDEF1 model. The
CDM stores this model in terms of entity classes, attribute
classes, and relation classes.

The external schemas are represented by tables. The user
views the common data resource in terms of flat, simple tables.
The mappings between these tables and the IDEF1 model of the
conceptual schema are part of the CDM database.

The internal schemas are represented in terms of physical
database components, including record types and inter-record
relationships. The CDM Processor routines convert the users’
data access requests, which are phrased in terms of tables, into
requests against the conceptual schema IDEF]l model, then into
requests against the physical database structures described in
the internal schema part of the CDM.

UM 620141001
1 November 1985

S 2.1.3 1Integration Methodology

The Integration Methodology is the set of procedures and
- guidelines that are used to expand the conceptual schema and to
“ increase the sphere of common data available to support users
) and applications. The schemas and schema mappings in the CDM
0 are built, maintained, and accessed using the Integration
Methodology and the CDMP.

The Integration Methodology is intended to guide the CDM

o Administrator in building and maintaining the conceptual schema
and in keeping its mappings to the internal and external schemas
highly accurate. This methodology consists of a set of
techniques for building the conceptual schema in gradual
increments, for building external and internal schemas from
portions of the conceptual schema, for developing schema

¢ mappings, and for keeping these various CDM components current.

- -
g S

g >
G

The first step in populating the CDM is to select a portion
} of the data and to document it in the conceptual schema. Then
' external and internal schemas for those data are built and
" mapped to the conceptual schema. Subsequently, other portions
Wy of the data resource are incorporated into the conceptual
; schema, and new external and internal schemas and mappings are
¢ developed. The CDM is populated gradually, in increments,
o rather than all at once. It evolves through time.

' A conceptual schema is represented by a semantic data
& model. The IISS uses the IDEF1 methodology., with certain

- extensions from DACOM's Data Modeling Technique. (Subsequent to
b the development of CDM subsystem, IDEF]l was formally extended.

h See Appendix C for references.) The data model reflects

. business policy, provides a rigorous view of the meaning of the
‘ data resource, and is independent of the physical implementation
. of the data resource.

y (Building a data model is a rigorous procedure, whose
objective is to discover and document the semantic data

; structure inits most fundamental terms. The modeling is a

" multi-step process that requires substantial input from users
wvho are expert in the subject area.

e
- -

The fundamental steps of the CDM Integration Methodology
are as follows:

-

1. 1Identify the scope of the initial increment of the
conceptual schema.

3 T
N

!

o

~

IO O M XY (X' O /Gl < B PO 2 O OAL WO Sy AL
S K I X Q LA N R oy X XY NAA YA

AN T T o IR N ity Ty SN g
.“'!A..'n‘ ,P, ‘.,\v'ﬁh'"’!.’\’\‘E‘I‘l‘\"’l'l 'all 0) n‘\'l‘!':‘“‘ W, l- A% W, W ..1“. !

™ v g

10.

11.

12.

13.

14.

15.

16.

17.

UM 620141001
1 November 1985

Develop the data model for that initial increment of
the conceptual schema.

Load the data model into the CDM database.

Identify any physical databases or files within the
scope of data in the conceptual schema.

Load their internal schemas into the CDM database.

Build the conceptual-to-internal schema mappings for
the internal schemas loaded in Step 5.

Load the conceptual-to-internal schema mappings into
the CDM database.

Determine which users/application programs should have
external schemas mapped from the conceptual schema.

Design the external schemas identified in Step 8, and
their mappings to the conceptual schema.

Load the external schemas and external-to-conceptual
schema mappings into the CDM database.

Identify the scope of the next increment to the
conceptual schema.

Develop the data model for the next increment of the
conceptual schema.

Integrate the data model from Step 12 with the data
model of the existing conceptual schema.

Load the integrated data model into the CDM database.
Verify that the conceptual-to-internal and
external-to-conceptual schema mappings are still valid,
correcting them as needed.

Identify any additional physical databases or files
that are now within the scope of the extended

conceptual schema.

Load their internal schemas into the CDM database.

ST ik o N -
SRR o MO MO N 0O A A A ¥
L ML TR O ‘_‘q.‘,.;’ B ‘,r_:‘h’«-a& l):,:_’

UM 620141001
1 November 1985

18. Build the conceptual-to-internal schema mappings for
the incremented portions of the conceptual schema.

19. Load the conceptual-to-internal schema mappings into
the CDM database.

20. Identify any additional users or application programs
that should be supported by the extended conceptual
schema.

21. Design external schemas to support the
users/application programs identified in Step 20, and
develop their external-to-conceptual schema mappings.

22. Load the external schemas and external-to-conceptual
schema mappings from Step 21 into the CDM database.

23. Repeat Steps 11 through 22 for each increment to the
conceptual schema.

The evolutionary strategy for the conceptual schema should
be developed early in the life of the above cycle. The strategy
should ensure that the common data resource evolves in a manner
that serves the enterprise’s need for controlled, shared data.
One tactic is to define the initial scope by that of an existing
database that has a corresponding data model. Ideally, that
database would contain core information of high interest to the
target user community.

Perhaps the most important point to understand about the
CDM Integration Methodology is that the incorporation of
additional data into the common data resource MUST be done in
conjunction with the existing conceptual schema. No data can be
accessed using the CDM integrated facilities, including the
Neutral Data Manipulation Language, unless they are known to the
CDM. Adding data causes the conceptual schema to expand in a
consistent manner that enables integration to occur. By
contrast, adding data to an environment that does not use
conceptual schema technology just adds more fragmentation to
what is probably already at best an interfaced (not integrated)
system.

Applying the CDM Integration Methodology is not like
swallowing a pill. It requires precise knowledge of the
meanings of the data that are to be available in the integrated
common data resource. It means not just building IDEFl models
for thosedatabases, but also analyzing the models for overlap,

2-8

A K)
v"_:'.‘_ll

ey

MO OOOOU R T AT I O OO AN VTSN
"’\?‘x")’!‘n’n“\\‘-‘sh AR AN i'g'l'!‘%’c‘.l'l';"‘?‘:"!.‘.':"”"'.'Z= ; h".'.‘.‘c‘:'&'.'e‘.':',‘u' 1t .'.‘Jr‘.:‘n

UM 620141001
1 November 1985

synonyms, homonyms, and all the incipient anomalies and quirks
that somehow have crept into our database structures over the
years. The cost is measured in man-months of effort: the
benefits are integration and a knowledge base that can be built
on and evolved in the future.

2.1.4 Contributions to IRRIASSPA

The use of the Common Data Model and the Three-Schema
Architecture allows an organization to benefit from
contributions to IRRIASSPA, which are part of the objectives of
the USA's Integrated Computer Aided Manufacturing (ICAM) project
to develop the Integrated Information Support System (IISS).

The contributions can best be summarized as follows:

Independence - the IISS allows the separation of the
description and manipulation oflogical data structures
from the actual physical data representations and isolates
implementation changes from user views and programs.

Relatability - the NDDL used in building the CDM allows
the CDM Administrator to define, modify, and maintain
relation-ships among data.

Resiliency/Recoverability - although not specifically
addressed by the CDM, the design of the CDM Processor
provides the ability to recover from failures without
damage to the data resource.

Integrity - is provided through the use of data integrity
constraints, which the application may specify and the CDM
Processor enforces.

Accessibility - the NDDL allows the definition of data
that resides not only in different databases but also on
different computers.

Security - not expressily addressed by the CDM.

Shareability - 1s provided by support of multiple user
views (i.e., external schemas) of the data resource.

Performance - the NDML, by use of the CDM, allows data
from multiple resources to be addressed in a cost-
effective manner in a distributed environment.

Administration - by providing a means of documenting the

ﬁ
R
L]
W
- UM 620141001
1 November 1985
o
N
%
" meanings in the data resource and of providing a vehicle
R by which consistency can be maintained even as the scope
of the CDM is extended. 1t also allows the maintenance of
“u information about data in different databases.
lst
&‘ 2.2 Basic Components of the Design
l‘|
i The Common Data Model(CDM) subsystem is comprised of three
components:
B
ﬁ 1. The CDM database, which is the database dictionary of
K the IISS
X
W
o 2. A logical model of the CDM database called CDM
e 3. The CDM Processor (CDMP), which is the distributed
*) database manager of the IISS
o
; This section will briefly discuss each of these basic
. components and show how they interrelate, one with another.

2.2.1 The CDM Database

: The CDM database is the database dictionary of the IISS.
- It captures knowledge of the locations, characteristics, and
2 interrelationships of all shared data in the system. The most
significant feature of the CDM database is that it implements
the ANSI/X3/SPARC concepts of the three-schema approach to data

o management. These three types of schemas are the conceptual

;ﬂ schema (CS), the internal schemas (IS), and the external schemas
B (ES).

WY

- The conceptual schema describes a neutral, integrated view
of the shared data resource. There is one conceptual schema in

) an enterprise. It is independent of physical database struc-
3 tures and boundaries and is neutral to biases of individual
,}a applications. Each external schema represents a user or

x“’ application view of data. Requests are made against external

schemas. Each internal schema represents an external schema to
g the local DBMS.

\: The CDM database is implemented as a relational database,

" vhich presently resides on a VAX 11/780 computer. It is
accessed by the CDMP at compile-time to generate appropriate
local DBMS calls against internal schemas to process a user's
) NDML request against an external schema.

N R U S U S e " A A . cAT, ", ot R T A S S S

."- N . .
EASUA . . ; AR A A)
. '. ."‘ "' ""\‘ f““" ":.’? ‘\,&",\'s....“|

Co¥ Wy VG o &
: \ R
o LUABNEA AN ST ok AR N A O Y i P

UM 620141001
1 November 1985

The CDM database is represented logically using a semantic
data modeling technique called IDEFl. This method of data
modeling is a hybrid of the entity-relationship approach, the
relational model, and the Smith’'s 2D data abstraction approach.
This logical model of the CDM database is called CDM1.

2.2.2 CDM1

CDM1 is a model of metadata, i.e., data about data. It
gives the logical structure of the CDM database which maintains
the metadata. These metadata describe the meanings and
characteristics of user data.

The conceptual schema portion of the CDM1 model is related
to portions that describe internal and external schemas. An
internal schema describes a local database structure in just
enough detail to give the CDMP adequate information to generate
code that can be processed by the pertinent local DBMS. Because
one of the requirements of the IISS is that it provide inte-
gration of data in existing databases, the mappings between the
conceptual schema metadata and the internal schema metadata are
not simple. 1IISS does not have the luxury of supporting only
certain clean database structures. It is very likely that an
attribute may be represented by one or more data files, which
may be in different databases and even on different computers,
or by relationships between record types.

An external schema describes the portion of the conceptual
schema that is within the purview of a user or application. An
external schema is equivalent to a view in the relational model.
The conceptual-to-external schema mapping part of the CDM1 is
straightforward. The present implementation of the CDM
subsystem supports any external schema that can be formed by
joining conceptual schema entities and selecting attributes.

Thus, the CDM]1 model is a semantic data model that
describes the logical structure of the CDM database. The CDM1
represents the conceptual schema, the internal schemas and their
mappings from the conceptual schema, and the external schemas
and their mappings from the conceptual schema.

2.2.3 The CDM Processor

The CDMP is the distributed database manager of the I1ISS.
It builds on top of local DBMS services to provide data access.
The CDMP plays both a compile-time and a run-time role in the
processing of transactions. The compile-time component is

2-11

i

LPES

UM 620141001
1 November 1985

called the CDMP Precompiler. The run-time components are called
the CDMP Distributed Request Supervisor (DRS) and the CDMP
Aggregator.

2.2.3.1 CDMP Precompiler

The CDMP Precompiler performs the following functions for
each data request:

1. Parses the request

2. Transforms the request from an external schema access
to a conceptual schema access

3. Decomposes the request into subrequests, each of which
accesses one internal schema

4. Determines an appropriate access path for each
subrequest generating code that can be processed by the
pertinent local DBMS

5. Generates code to transform any data to be extracted
from local databases from internal to conceptual schema
format (this code is called a Request Processor Packet
or RPP)

6. Generates code to transform any data results from
conceptual to external schema format (this code is
called a C/E Transformer or CEX)

7. Generates code to invoke appropriate RPPs and CEXs at
run-time, via calls to the NTM Subsystems

The CDMP Precompiler accesses the CDM database to find
metadata for the interschema transforms and integrity
constraints for update requests.

After successful precompilation of a user’s program, which
contains imbedded data requests in a SQL-like language called
the Neutral Definition/Manipulation Language (NDML), the CDMP
has produced the following code modules:

1. Modified user program, which now contains calls to the
NTM, which will activate appropriate processes at
run-time.

2. One Request Processor (RP) per DBMS that manages data

2-12

AT LAY HY YTy Wy 0N GO O 00 AR PO RO ORI WAL T
Lt T R I R W e Tt R R A G T

UM 620141001
1 November 1985

to be accessed by the user program. Each RP contains
one or more RPPs.

3. One Conceptual-to-External Transformer (CEX), which
will deliver query results to the modified user program
at run-time.

2.2.3.2 Distributed Request Supervisor

There is presently one CDMP Distributed Request Supervisor
(DRS)., which has responsibility for scheduling and coordinating
the various subrequests of user transactions. The DRS uses
request graphs produced by the CDMP Precompiler to determine
which operations are to be performed where. The DRS also uses
knowledge of communications costs and intermediate result
volumes in its algorithm for scheduling RPPs.

Request Processors always deliver results as relations.
The relations are operated upon by the Aggregators.

2.2.3.3 Aggregators

An Aggregator is called to perform a single function, e.g.,
a union or a join, on two sets of data, each of which exists in
a single sequential file. These data sets are the results of an
RPP or another Aggregator.

An Aggregator always deals with data in conceptual schema
format.

2-13

LY
i“: N

g , n . ‘ - .~ et .
RSOGO MU A ,),ﬂ_; st it (o D O O,f,t,_‘i.‘

UM 620141001
1 November 1985
|
&
o SECTION 3 |
RESPONSIBILITIES OF THE CDM ADMINISTRATOR |
: The role that the CDM Administrator plays in the IISS
N environment is not unlike that of the database administrator in
I that the CDMA is responsible for the following:
1. Establishing Data Standards
X 2. Maintaining the CDM

3. Protecting the CDM

“ap o d

4. Facilitating Use of the CDM

By

ﬁ Each of these areas is of major importance to the

B organization and a failure to properly administer either of

y these areas of responsibility can cost the organization dearly.

3.1 Establishing Data Standards

One of the early roles of the CDMA is the establishment of
e data standards. Part of this work has already been initiated

i during the development of the CDMl. The work that remains is to
‘ determine what types of standards to implement and to gain
acceptance for the use of these standards. It should be noted
that, without acceptable standards, it will be difficult, if not
impossible, for the CDMA to enforce any level of
standardization.

3.2 Maintaining the CDM

B The CDMA must maintain the CDM. This entails the building
i of the initial conceptual schema (CS), internal schemas (IS), CS

Y to IS mappings., external schemas (ES), and ES to CS mappings, as
@ well as extending the model and modifying and deleting elements
y as needed. It is to be expected that the need for extending and

modifying the CDM will grow over time, slowly at first, then
o growing rapidly as the benefits of the concept are proved before
o leveling off after several years.

. 3.3 Protecting the CDM

One of the most important responsibilities of the CDMA is
iy the protection of the CDM against loss, theft, and corruption,

AN J AT N N AT
.\':‘.“*,‘,‘\i‘f ‘v,l’g“" »’\,lv‘;',.‘yft‘_,:ﬂ.fl.a“:‘??u

ot 'lla"’:\'

DL «,%-- ¢
‘:}’l ['1_\“'“'.

UM 620141001
1 November 1985

be it intentional or not. At issue is the substantial
investment that went into the development of the CDM and the
potential damage that can be caused to the enterprise should the
data fall into the wrong hands.

3.4 Facilitating Use of the CDM

The CDMA must make the CDM available to all those who can
potentially gain from the use of the CDM and have legitimate
reason to do so. This may involve making the CDM available on
other computers in the network. It also involves communicating
with the CDM user and potential users as to the contents and
performance of the CDM, as well as the usability of the data.
Part of this communication will involve solving problems and
answering questions and reporting the status of the CDM.

UM 620141001
1 November 1985

SECTION 4

MAINTAINING THE CONCEPTUAL SCHEMA

4.1 Methodology Overview

This section and its subsections (4.2 - 4.3) introduce the
methodology for building and updating a conceptual schema. The
portion of the CDM database that contains a conceptual schema is
described, and the basic approach to developing a conceptual
schema is presented. Detailed instructions for filling out the
modeling forms are included.

4.1.1 CS Structure

A conceptual schema is essentially a single IDEFl model
that describes all of the common data in an enterprise.
Consequently, its components are those of any IDEF1 model:

Entity Classes

Relation Classes

Attribute Classes

Attribute Use Classes

Inherited Attribute Use Classes
Key Classes

Key Class Members

Detailed explanations of these can be found in the IDEF1
documentation. (Extensions to the IDEF1 language, referenced in
Appendix C, simplify the IDEF1 terminology used here.)

In addition to the usual metadata (data about data)
contained in any IDEFl model, the conceptual schema requires
certain new elements of metadata. Key class numbers are
assigned to enable alternate key classes for the same entity
class to be distinguished from one another. Tag numbers, tags
(names), and tag labels are assigned to enable attribute use
classes within the same entity class to be distinguished from
one another. Data types and sizes are identified for all
attribute classes.

The conceptual schema must conform to several rules that
cause the data relationships and descriptions to be as explicit
as possible. (Note: 1In these rules the phrase "any number"
includes the possibility of zero.)

- ™ «

i DA BTt P A TN N N A 0 0 T " e NN ELATRES ‘ o 1AW
B A A R AR ORI ANAN AR KON AN A LM De LA ST e O R R X Mt R S X W

UM 620141001
1 November 1985

b 1. Single-Owner Rule: An entity class can own any number
i of attribute classes. Every attribute class is owned

by exactly one entity class.

2. Every entity class contains one or more attribute use
classes. Every attribute use class is contained in
: exactly one entity class.

3. Every attribute class appears as exactly one attribute
use class in its owner entity class. An attribute
class can also appear as any number of attribute use

'& classes in any number of other entity classes. Every

. attribute use class corresponds to exactly one

attribute class.

4. Every entity class has one or more key classes. Every

? key class is for exactly one entity class.

3 5. Every key class is composed of one or more key class

R members. Every key class member is in exactly one key
class.

Q 6. An attribute use class can be used as a member of any

3. number of key classes for the entity class in which it

£ is contained. An attribute use class cannot be used as

o more than one member of the same key class; i.e., every

member of a key class must be a different attribute use
R class. An attribute use class in one entity class
K cannot be used as a member of a key class for any other
«4 entity class. Every key class member is exactly one
! attribute use class.

7. An entity class can be independent in any number of
py relation classes and dependent in any number. An

% entity class cannot be both independent and dependent
o in the same relation class. Every relation class has
gﬂ exactly two entity classes: one independent, one

« dependent.

8. A key class can migrate through any number of relation
classes in which its entity class is independent. A

" key class cannot migrate through a relation class in
- which its entity class is dependent or one in which its
& entity class is not involved. Every relation class has

i exactly one key class from the independent entity class
migrating through it into the dependent entity class.

.

W

o,

BAOAOE BOLRCOLINAOOL
N N iy

TR N M T Y, QoL Al { W e 8 A Yy W SAEERAAT e e T P I N
B R RN AR AL A A0 X R AN L. SR

- Y WO T W T R T VT TP

UM 620141001
1 November 1985

9. Every relation class is a migration path for one or
more inherited attribute use classes, one for each
member of the key class that migrates through it.
Every inherited attribute use class has exactly one
relation class as its migration path.

10. Every member of the key class that migrates through a
relation class creates exactly one inherited attribute
use class in the dependent entity class for that
relation class. Every inherited attribute use class is
created from exactly one key class member.

11. Every attribute use class in an entity class represents
either one attribute class that is owned by that entity
class or one inherited attribute use class that
migrated into that entity class. Every inherited
attribute use class is represented by exactly one
attribute use class.

12. Unique-Key Rule: ©No two entity instances in an entity
class can have identical values in the same
key class for that entity class. For a multi-member
key class, instances can have identical values for some
members, but not for all.

13. No-Null Rule: Every entity instance in an entity class
has a value in each attribute use class in that entity
class.

14. No-Repeat Rule: No entity instance in an entity class
can have more than one value in any attribute use class
in that entity class. This rule is equivalent to the
first normal form in the relational database model.

15. Full-Functional -Dependency Rule: No entity instance in
an entity class can have a value in an owned, nonkey
attribute use class that can be identified by less than
the entire key value for that entity instance. This
rule applies only to entity classes with multi-member
key classes and is equivalent to the second normal form
in the relational database model.

16. No-Transitive-Dependency Rule: No entity instance in
an entity class can have a value in an owned, nonkey
attribute use class that can be identified by the value
in another owned or inherited, nonkey attribute use
class in that entity class. This rule is equivalent to

. UM 620141001
1 November 1985

1) the third normal form in the relational database model.

‘ 17. Smallest-Key-Class Rule: No entity class with a
multi-member key class can be split into two or more
¢ entity classes, each with fewer members in its key
class, without losing some information. This rule is a
Wy combination and extension of the fourth and fifth
0 normal forms in the relational database model.

4.1.2 Basic Approach (Onion Concept)

The complete conceptual schema for an enterprise contains
0 thousands of entity classes and a corresponding number of

wy relation classes, attribute classes, etc. It is much too large
* to be built all at once. Instead, it must be built in
- increments -- each one building on the prior ones, until the
R conceptual schema is complete. The increments are like the
N layers of an onion; as each layer is added, the onion gets a

little larger.

D The process of "growing” the conceptual schema involves two
procedures, both of which are enhanced versions of the IDEF1

?ﬁ modeling procedure. The first is used to build the initial
%\ increment only. The second is used to build each additional
vl increment. The only difference between the two is that the
J5 second must be concerned about the integration of the new

increment with the existing conceptual schema. This involves
being continually aware of which components of the conceptual
schema are within the scope of the new increment and how any of
those components will be affected by the addition of the new

'

™

Pk e

) increment. These two procedures are in Sections 4.2 and 4.3,
Uy respectively.
A%
o 4.1.3 Modeling Forms
.
“J Because the methodology for maintaining the conceptual
A schema is based on the IDEF1l information modeling methodology,
e it uses most of the IDEF1 forms:
s)
- Source Material Log
;@ Source Data List
s Entity Class Pool
)% Entity Class Definition
e Relation Class Matrix
KX Attribute Class Pool
- Kit Cover Sheet
oy Entity Class Diagram (optional)

P m P aw

‘-'\‘iﬂ‘ ‘1‘. AP ara e LA AR A AT A R e v

R UM 620141001
1 November 1985

(optional)

Yy Relation Class Definition
(optional)

Sy Attribute Class Diagram

¥ Entity Class/Attribute Class Matrix

Attribute Class Migration Index
Author Page Control Log

Index Control Log

Kit Control Log

Text Control Log

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

(optional)

FEO Control Log
(optional)

Entity Class Set Control Log

i Entity Class/Function View Matrix (optional)

h
53

: Please refer to the IDEF]l documentation for detailed

descriptions of these forms.

ﬁfA A few of the regular IDEF1l forms have certain shortcomings
fﬂ that make them unsuitable for use in directly loading the
%~ conceptual schema tables into the CDM database. The forms
a listed below were designed to eliminate those shortcomings:

W g

i L

Relation Classes

KX, Owned Attribute Classes

e Inherited Attribute Classes

)

ﬁw The rest of this section contains a detailed description
A and two samples (one blank, one filled in) of each of these

- forms.

n

KN NOTE:

A% When using the NDDL (see Neutral Data Definition Language
F} Users Guide - UM 620141100) for maintaining the conceptual

B schema in the CDM database, names should be substituted
for any/all numbers on the modeling forms. A discussion
2y of the NDDL can be found in Section 5.1.1.

%& Relation Classes Form

;k Purpose:

E} To provide a single source of information about relation
%: classes that are to be described in the conceptual schema.
%' Instructions:

Fill in one or more pages for each entity class that is
independent in a relation class. List only those relation

4-5

Ll 0 A En Ty, 1, 0 3 g) gt j P Ta™ - » e -
R O A ,A,.‘.‘n)‘l.lqig SO0 ROCOG0 . -(' -f'-f("‘
‘ A RO AR YL L O MU XN ‘ ".’ ’; bR WSO VAT o5 PR "' 4'0) Wiy ‘\7 M3 “u ‘J 'n:\

;: - L adi i oad _ae oahd At ollac_ B At uact e ket Bat fac Sat sad rat Sal Sall baldenl ad Al heda i i ate ads g i b Sl A A ACA B'AL B Sk Ak E o H. B A h Ml Bl Aol oA Nl o of
A\
:&M
BN X
4588
B
B
B UM 620141001
’ 1 November 1985
ﬁ{b
S
ﬂ?- classes in which the entity class is independent; do not
:}Q list any relation classes in which it is dependent. Do
L, not fill in a page for an entity class that is dependent
" in all of its relation classes.
‘tl'g
f“) Form Area Explanation
oy
w
ﬁQ 1. Independent Entity Name of the entity class that is
e Class Name independent in the relation
class. This will be the same for
A all relation classes entered on a
'53. page. It is included only to
g;Q make the entry readable; it is
o not used in loading the
g conceptual schema.
)
3%5 2. Relation Class Label Label of the relation class.
o This is part of the unique
5% identification of a relation
o0 class.
by >
R 3. R.C. Card. Symbol for the cardinality of the
',&, relation class.
,ZJ*{{_,«; 4. Dependent Entity Name of the entity class that is
Vi Class Name dependent in the relation class.
&ﬁﬁ It is included only to make the
) entry readable; it is not used in
K loading the conceptual schema.
” Y
2 ﬁf\
por 5. Dep. E.C. No. Number of the entity class that
o is dependent in the relation
iy class.
3¢ 6. Ind. X.C. No. Number of the key class in the
VY independent entity class that
A migrates through the relation
\ﬁﬁ class into the dependent entity
04 class.
S 7. Node Number of the entity class that
; is independent in all of the
e relation classes listed on the
Lot age
b page.
Y,
. All other form areas correspond to areas on the regular
0
o]
”y b
ca 4-6
o
04
:v":o
b
N Mt T AT AT T T AT T e T e T e T R A T e T T Ty P TG Y TR O ML S P S S S P T T e
'!“!:','l rb".,\'t, ‘. - " ‘ \' ‘ 2. = e 7045 . ,'.‘ l: .h‘.i‘?‘ ﬂ-‘ Y * ‘ ."

UM 620141001
1 November 1985

wlog4 SISSe[) uoryeiay

‘1-v aangdird

]

$9SSE|D UoNL 9y

3 O,

U XINON 300N
‘ON"OAMION D3 swepy sse Ajul pied {aqe eweN ssej) Kug
‘put ‘daQ wapuadaq oY $Se|) uoNe|aty luapuadapuy
NOLLV DI RN
T30 w05 i 006979509 ¢€2 1L SLUON
v A 120k
AX3NOD [TIva UKIVRS DN IOM ‘31va Lo LV ivasn

. ey
e S, % T

FI T

g = _—
Y al e e e

Ca_on e e oo N o o om w
- - P ool ey

R . PP e - - o e W e e & T e - - w e - . m e

-{I
N,

X

o1dwex3g wio4 sSasse[D uojrerad ‘2-v aIn3did

— 29 $ISSL|D voNe . 13 00N

H RN

LIy J
s GRS
|’, [e A

A T e 7

on
L it B K

UM 620141001
1 November 1985
:‘I"

| Wy
RAALASUA -,n"'\"

', ¥y,

5

kS
oL -
-
-
-
.
o~
S
-
Kot
-
-
- -
-
o
-
e
2,
)
-
-
-

%
¢ 2at
W 13 1590 Uiy 2013 60 OI seH ung 2013 40 =
(P 013 voneiadQ ’.l seH und 2ex3 dO
(3] "3 w0 ulig 23 dO IVI L] umg 2013 4O
" $13 vegumg 01360 | @— | emoemuen oy pesns wng 2013 0
3] 193 bay Wi} POINS d30 OI seH g 2013 dO
" €3 Soquepy 40w 430 .VI- sl umg 2013 4O
ON O'M|ON O3 owep ssry) Amul pie) 12qey aweN sse) kg
puy ‘dag wapuadaq Re)) $SC|D VoKLY Wwapuadapu)
NOH YD R
TWET w05 i 00 60959 C2 i SUON
1 Wl AN WAON NI0Z9 1D WO
1x3n0d | uvd UKV Al onsOm [x] cocs By uva (Wud 'W3ID) WOOVD WOHLNY wvan

- - s P - o s -— @ o o % R L ikt COERCEERN | L B L ol

UM 620141001
1 November 1985
' , L
) Owned Attribute Classes Form
Ve
o Purpose:
" To provide a single source of information about owned
| attribute use classes that are to be described in the
{ﬁ conceptual schema.
L
e
“ay Instructions:
i Fill in one or more pages for each entity class that owns
A an attribute use class, either key or nonkey. List only
R those attribute use classes that are owned by the entity
N class: do not list any attribute use classes that are
i inherited by the entity class. Do not fill in a page for
an entity class that contains only inherited attribute use
e classes.
“ Form Area Explanation
} -
. 1. Tag No. Tag number for the attribute use
class.
e 2. A.C. Name & Label Name. label, and any synonyms of
ﬁt the attribute use class. The
‘f name is listed first. The label
' is enclosed in parentheses and
placed on the line below the
" name. If the name and label are
o identical, the label can be
$Q omitted. If the attribute use
Va class has any synonyms, the term
W+ “Synonyms:" is placed below the
name and label and the synonyms
' are listed under it.
\.q.
kg 3. A.C. No. Attribute class number for the
Q) attribute use class.
..’.?
4. A.C. Definition Definition of the attribute use
X class.
Y
e 5. Type ID. Format description for the
i attribute use class indicating
. data type (numeric, character,
etc.). length, and decimal length
N (if applicable). The data type
']
3l,.: 4-9

T R A L A ORIy W N O -)) On 1500 V e
i S '.'a‘ ‘uril""l‘ L) '."’e‘sl.."‘? \e'n" LR ‘,!\ ’ f‘."..t.z‘\ A -.‘..t.."t'? -l?': LX) '::‘.‘;" a‘!‘e:?‘:‘.:'109..“!':"‘5..“““. c}.‘nl"c’,‘v'. 0!',"

UM 620141001
1 November 1985

must be one from the CDM Data
Type Table.

6. Mbr. of K.C. No. Number(s) of the key class(es) to
which the attribute use class
belongs, if any.

7. Node Number of the entity class that
owns all of the attribute use
classes listed on the page.

All other form areas correspond to areas on the regular
IDEFl forms. Please refer to the 1IDEFl1 documentation for
details about those areas.

Inherited Attribute Classes Form

Purpose:

To provide a single source of information about inherited
attribute use classes that are to be described in the
conceptual schema.

Instructions:

Fill in one or more pages for each entity class that
inherits an attribute use class. List only those
attribute use classes that are inherited by the entity
class; do not list any attribute use classes that are
owned by the entity class. Do not fill in a page for an
entity class that contains only owned attribute use

classes.
Form Area Explanation
1. Tag No. Tag number for the attribute use
class.
2. Tag & Label Name, label, and any synonyms of

the attribute use class. The

. name is listed first. The label

' is enclosed in parentheses and

! placed on the line below the

) name. If the name and label are
identical, the label can be
omitted. 1If the attribute use

B O

BOC -0 SO IO e
: i,tg,’“ LR AROR :?:'.':..‘:2“.\‘“\‘.‘:’.’!:ﬂ.bi‘l(?)

UM 620141001
1 November 1985

[+4
4
3
2
-4
: c
z €
=l ¢
= ®
o
Ilegls| ©
HELEl
HEEE
2 =|2
tH
@
&
[&]
e
2 © :
< =
w <
-2 ©
€ - Q
e [
3
&)
o
o
- -
- 2
[,-]
A -
L «d
-l € ©
- " w
S =
(7]
HIE
<Eg

e b Wy,
. u;‘\»‘ﬂ?’:?:‘s"...‘z‘(l?('ﬁ‘.“

+

o, th‘_) ‘a”

Owned Attribute Classes Form

Figure 4-3.

(AU
o

UM 620141001
1 November 1985

91duwex3y wio4 sSasse[) 91NqII11V POuUAQ “b-p dIndird

69 $95SC anqQu UM 243
L t NINNN 10 ainaqy uv p 0 BRI IQON
dnoib aa dn evew jerg sueyd {sd30m0))
(v)iN UOHNDD 19 VoI EIITO O JBQUIW 10} BY | scvy SUR|d UOANIIXJ UCNRRAO feI0L sCit
o34 oy
SI Wyiim 1 SUed uoynoeE s uoyerado
o 10 0.6 © 13y SHEIPU jRLY SPAO Y "’y snieig il
$UTId VOHIDI® LUOHEIedO jO SANOKE (i dnan) ¢30)
10X (vin Apuign o) paubsse saynuepy enbiun v oy UOHENAUID| NOID URLY LOINIOXF UOLRIAO 141
‘ON O Ol uor .~ 'ON o~ "ON
i JUVT] 2V o |9qeq g dweN DY
o qn | edh) *d o} 2 be)
eI
XN 1s 0L 689S"C2 L SUON
JET. 1] AN WINO NIOZ9 1 D30ud
XUN0D [uw) WOV M SNom [x o6t by 1vo (UG 'W3ID) NODVQ HOHIMY IvQoBNn

4-12

UM 620141001
1 November 1985

class has any synonyms, the term
“Synonyms:" is placed below the
name and label, and the synonyas
are listed under it.

3. A.C. No. Attribute class number for the
attribute use class.

4q. Ind. E.C. No. Number of the independent entity
class from which the attribute
use class was inherited.

5. Ind. K.C. No. Number of the key class in the
independent entity class that
migrated through the relation
class named in the "Migration
Path R.C. Label" area.

6. Ind. Tag No. Tag number of the attribute use
class in the independent entity
class that migrated to become
this attribute use class.

7. Migration Path Label of the relation class
through which the attribute use
class was inherited.

8. Mbr. of K.C. No. Number(s) of the key class(es) to
which the attribute use class
belongs, if any.

9. Node Number of the entity class that
contains all of the attribute use
classes listed on the page.

All other form areas correspond to areas on the regular
IDEFl forms. Please refer to the IDEF]1 documentation for
details about those areas.

UM 620141001
1 November 1985

Mbr. of
K.C. No
®

e —
o & <
g z 3
¥ [}
< -
§'0‘< = U

S 4 =

& f 3

g ® 2
a
) c
) z 2
1:"“ ; 0
K nl t [2]
K 2

1 COMMENDE D)
PUINICATION
No,

o

WOIWING

DINFT
Ind.

Ind.

-
w“.
ind.

EC No. | KC. NolT

DATE
REv

Inherited Attribute Classes
Inherited Attribute Classes Form

AC.
No.

ONBONEONNC,

Figure 4-5.

Tag & Label
TITLE

NOTES t 23456789 10

AUTHOR
FROJECT

USED AT
Tag
No.
®
NOOE

ey 4-14

=

Y
I

. - L MG L) X
. 3 00 D 2R T
VA \.‘.‘!‘49.'“. AXA ‘\!‘.‘m'at.‘ﬁ ettt R R

e
.T‘Z‘
ot
e
ot
UM 620141001
1 November 1985
0",_‘
l‘l‘ (
\
3 _
- < ° o
o x x
22
" 5
5, g o
'C:.x L4 :’ Q
e," "‘ -
0 e g g
3 « | g
s H
g o 3 5]
S c
:(“:5‘. s g E
f»‘; < 2 O
‘,'b; L4 4 b
e d = R R
. o) s 'y w“
g3 o
- - =3 m
i % g S of g
¢ & x .
P E E o118 s B s < T
eg‘;t HE 5} . - - ©
L] r
;-ﬁ;: x - 8 9
':t‘_f\ (4 4
¢ Sl 8 3 s s| &
- Lo x x x ©
c =4 ; & -
K ‘\’5 o x = [
3 - 2 -
X o 4 2
] F: 2 £ &
e < ¥4 8 8 3 < <
(0N vy = O w w w o
‘91‘3 <o w g o)
o'i‘r:: oecs 5 3
A [-
. : ot
O o [+ ~ ~ <
"";,.;, g [=] < z 2 2 2 s
ﬁ;:;ﬁ = o -g
&, ‘5 :
A 2
% i :)
‘!,'i.s -2 @ L) <
ot = - o o .
K o3 & £ ©0
g2 21l @ 2 5 '
‘ 23 ° -g = g c g ¥ c % N
o ENIFE] 2
b 82 ol 5| 2, §i% s iy
G Eg ¥] 52 ~§: 555 =]
%) 5] - x 2¥p = B ©0
1 <z 3 8 -
i3 ¢ 'S5 ? = € = 'Y
e g~ 3 < b
v, & ®
a K4 =]
~
. w
Wi % “
2,45 = o - o~
s o =2 2 2 g
i : - §
s th
' ."'1
; 4-15

o -~

M

O OGO O I o O OO O MU OG> k™ WA TR A NN
B2 MU CIRRALR A X X '6";’5“!‘.‘0‘ Wehe, ".i’q.\'hl'rs"-"“"""!‘a‘ AR ‘l'-fl RN, 's‘.i"ift'u. 'Qf"‘ y U T

S S e

-~

-l

i

A A) - G . P
. A W, { RAS < € Y . ARJERIRIL
AU O) AR RMBRLE LA ¢ £ o My, W R .b,f.\' XA

o Rl A ha adiia-abh oA 2d o' 4 als aid ath bbbl abh el bl LA SRS JEb o

UM 620141001
1 November 1985

4.2 Building the Initial CS

This section and its subsections (4.2.1 - 4.2.5) describe
the procedure for initiating an enterprise’'s conceptual schema.
The procedure is concerned with creating a detailed description
(an information model) of a portion of the enterprise’s common
data and with collecting the data required to place that
description in the CDM database as the first piece of the
conceptual schema (the first layer of the onion). It is not
concerned with deciding which portion of the common data to
describe nor with setting up the CDM database and its utilities;
these things must be done before starting the procedure. The
procedure consists of six phases, the first five of which are
patterned after those in IDEFl. The five IDEFl phases are as
follows:

® Phase O

Starting the Project

° Phase 1 - Defining Entity Classes

° Phase 2 - Defining Relation Classes

) Phase 3 - Defining Key Classes

. Phase 4 - Defining Nonkey Attribute Classes

The procedure for the sixth phase, which consists of populating
the CDM database with the conceptual schema, is described in
Section 5. Each IDEF phase is described in a subsequent
subsection.

4.2.1 Phase 0: Starting the Project

Objectives:
) State the purpose, scope, and viewpoint for the
information model.
[Establish the project team.
[Develop a phase-level project schedule.
® Collect and catalog relevant source material.

This phase is patterned after Phase O of IDEFl1l, and the
description presented here is less detailed than the one in the
IDEF1 documentation. Please refer to that documentation for

4-16

. e NN, A ot LA - “ Al o
AS AL A -"g‘.’\"-‘g"‘.’,‘;"‘;'.'4 A c".‘d.’u'!‘o'- s'f‘. OO O ‘,I!l,i'*l et

L)

“\

UM 620141001
1 November 1985

further information.

Tasks:

The CDM Administrator appoints a project manager.
Usually, this will be the CDM Administrator.

The project manager states the purpose for building the
information model.

This explains why the model is needed, i.e., what it
will be used for. A model built with this procedure is
primarily used to initiate the enterprise’s conceptual
schema. (It is not necessary to explain why the
conceptual schema is needed.) If the model has other
purposes, they should be mentioned also.

The project manager states the scope of the information
model.

This sets the boundary of the model. It should be
specific enough to be useful in deciding whether or not
a particular element of common data should be included
in the model. Some of the things that can be used as
the basis for scoping a model are the following:

° Information subjects: parts, employees, sales
orders, etc.

o Functions: engineering release, shop floor
control, etc.

o Existing computer files or databases
® Existing computer application systems

The project manager states the viewpoints for the
information model.

This explains the mental attitude or role that people
should adopt when looking at and thinking about the
model, i.e., in whose place they should put themselves.
Usually, this will be the job title of someone who is
intimately involved with the common data being modeled.

The project manager appoints the project team members.
4-17

e B XTI IR ""u‘w’o,ﬂ l.o::b “'* Yoy 5. J«‘ S 8:" o (Q *-(\."a Aty

P} O

UM 620141001
1 November 1985

v;
%
" The four roles to be filled are as follows:

® Modeler - one or two IDEFl experts.

-

. Source - several subject experts, i.e., people
who have in-depth knowledge about some or all of
the common data being modeled.

- e -
e s e e

o Reviewer - several subject experts; some sources
may also serve as reviewers. The CDM
K Administrator must also serve as a reviewer to
h ensure that the model, as it is developed, is
: properly documented for loading into the CDM
. database tables.

® Librarian - a person who is trained and
experienced in coordinating kit reviews and in
maintaining files of model documentation; a
modeler may also serve as the librarian.

> W

-~ -

-

6. The project manager appoints the acceptance review
' committee members.

] This committee should consist of subject experts from
o the area being modeled and from other, related areas.

7. The project manager schedules the project phases.

» Estimate the amount of effort needed to complete each

i phase (usually in man-weeks or man-months) and then

K convert those estimates to elapsed times and milestones
based on the availability of the project team members.
At this point, only the phases are scheduled; the

¢ individual tasks within a phase will be scheduled when
X that phase is started.

¢ 8. The project manager schedules the remaining Phase O
0 tasks.

Estimate the amount of effort needed to perform each

o remaining task in this phase (usually in man-hours or
» man-days) and then convert those estimates to elapsed
ﬂ times and milestones based on the availability of the
s project team members who will perform those tasks. The

schedules for the subsequent phases should be adjusted
if they are inconsistent with these task schedules.

P 4-18

S GR w~\~q‘~$q‘~ B
]

ASNADAHATMANR (R DML T A TIANAT WY o p A mahy o TR e e R ATl X
R A AR MR HAOAMI AN 10 R Lo 3 S MY S A KU o i OO L\ RN ORI A MG A SN

UM 620141001
1 November 1985

9. The modeler develops a data collection plan.

Determine what kinds of source material are needed and
where and how to get that material.

10. The project manager conducts a project kick-off meeting
attended by the project team members.

The objectives of the meeting are as follows:

® To introduce the team members to one another and
to the roles they will be performing.

L] To determine which members need IDEFl training.

° To present, discuss, and finalize the statements
of purpose, scope, and viewpoint.

° To present and discuss the project schedule.

° To present, discuss, and finalize the data
collection plan.

11. The modeler collects source material from the sources.

Gather the documents, policies, procedures., database
designs, etc., and interview the sources in accordance
with the data collection plan (Task 9).

12. The modeler catalogs the source material.

Prepare Source Material Log Forms and Source Data List
Forms. If a database design is among the source
material, the record names and data field names should
be included in the source data list.

13. The modeler explains any author conventions.

These are deviations from or additions to the regular
IDEF1 methodology. Mention the use of the three
specially designed modeling forms: Relation Classes
Form, Owned Attribute Classes Form, and
InheritedAttribute Classes Form.

Deviation from IDEF1:

1 W itpetes!
ST i‘ﬂ.b'4..':‘..&.3::..',"":'“:. !

TP W™ Ty L o A & o o 6 o ol B b 2 M o & o Eod el .8 = ok Lo -l ok Lokl sal ok bal ol ol 3ok sl el dall Sad bad - kot Sal hlie Al ol Ak, thile ke dleAle Al

o UM 620141001
v 1 November 1985
W

¥ o '

é Usually, kits are not used to accomplish the review of the
Y Phase O model documentation; the essentials are reviewed during
o the kick-off meeting (Task 10). However, the project manager

may require that kits be used to supplement or replace the
o kick-off meeting.

Y 4.2.2 Phase 1l: Defining Entity Classes

1 Objective:

o L Ident?fy'and define the apparent entity classes that
P are within the scope of the model.

f% This phase is patterned after Fhase 1 of IDEF1l, and the

description presented here is less detailed than the one in the
IDEF]1 documentation. Please refer to thai documentation for
5 further information.

ﬁ Tasks:
g 1. The project manager decides what method to use to
review the Phase 1 model.

Dy, The options are to distribute review kits, to hold a

K walk-through meeting, or to do both. The factors to

BN consider are the following:

KA
- ° Some team members may have to travel to attend a

1y walk-through. How many trips can the project

P budget afford?

Y ° A review can usually be accomplished faster with

» a walk-through than with kits. Is there enough

_ time to circulate kits, perhaps two or three

- times?

’d

. ° Some reviewers may have very limited time to

‘Bl spend on the project. How can their time be

Y used most effectively, by reviewing a kit or by

_ attending a walk-through? Will they devote time

‘S to reviewing a kit on their own?
e 2. The project manager schedules the Phase 1 tasks.
o \
<, Estimate the amount of effort needed to perform each

task in this phase (usually in man-hours or man-days)

K} and then convert those estimates to elapsed times and

= |
‘ <
:0 4-20

3 |
“ I
4

e, - e A R I e S R Tl T Vs Rt W . y “n - e ™ IR e T L R TR e LS R T
iy LI L A 2 G N S S e ENEIN M AR et o e

UM 620141001
1 November 1985

milestones based on the availability of the project
team members who will perform those tasks. The
schedules for the subsequent phases should be adjusted
if they are inconsistent with these task schedules.

The modeler builds an entity class pool.

Examine the entries in the source data list and deduce
what sort of thing each entry identifies, describes,
refers to, etc. For example:

° Employee number, name, birth date, and salary
are data elements about an employee; hence, an
"Employee” entity class.

[Part number, description, and dimensions are all
about a part; hence, a "Part” entity class.

Each sort of thing is represented by an entity class.
Talk to the sources when additional information is
needed. The entity instances within an entity class
should be distinguishable from one another by some
unique identifier. Assign an entity class number to
each entity class, and record it on an Entity Class
Pool Form.

When examining record names from a database design, be
careful to think about the "real-world thing” that each
kind of record represents. Realize that several kinds
of records may represent the same thing or, conversely.
that one kind of record may represent several different
things. Also, realize that certain kinds of records
may be present for technical reasons only (performance,
backup/recovery, etc.). Such records do not represent
"real-world things” and should not result in entity
classes being added to the pool.

The modeler defines each entity class.

Fill out an Entity Class Definition Form for each
entity class in the pool. Talk to the sources when
additional information about an entity class is needed.
Check off each pool entry as it is dealt with.

Watch for synonyms (different names for the same thing)

and homonyms (same name for different things). When
there are synonyms for something, there is only one

4-21

oy UM 620141001
’ 1 November 1985

4 entity class to define. Use the most commonly used

) name as the “"official” entity class name, and record it

i and the corresponding entity class number on an Entity j
Class Definition Form. Record the other names as

synonyms on the form. In the pool, add a note to each

synonym entry referring to the official name or

number.

AP,

For a homonym, there are two or more entity classes to
define, one for each thing that the term represents.
1y Pick a new name for each thing to clarify the

s SE0

2 differences. Record the new names in the entity class
B pool along with a new entity class number for each, and
:" fill out Entity Class Definition Forms. For example,

¢

AN if an order can be either something received by an
enterprise from a customer, or something sent by an

: enterprise to a vendor, call the first a sales order

and the second a purchase order, and fill out two

k! definition forms.
M
" 5. The modeler, reviewers, and librarian participate in

reviewing the Phase 1 model.

The method of review was selected in Task 1. The
modelers prepare the review materials (kits or

it walk-through handouts), the reviewers read and comment
*, on the materials, and the modelers respond to the

B comments. If kits are used, the librarian coordinates
! their circulation. The CDM Administrator reviews the
! model to ensure that all model documents are prepared
3 properly for loading the CDM database tables.

4.2.3 Phase 2: Defining Relation Classes

o Objective:

o Identify and define the apparent relation classes
) that are within the scope of the model.

This phase is patterned after Phase 2 of IDEFl, and the
. description presented here is less detailed than the one in the
IDEF1 documentation. Please refer to that documentation for
further information.

- 'L
> AR a & 4

Tasks :

1. The project manager decides what method to use to

-

« T 3 ‘

ot

1 DU R ™ A e e A " y P € o €4 Y s ¥Y
W 2 EMAL & "] ' Pk
O DT, DAl o T T Do, e ANER A RNAAY S PN IA oo d]

UM 620141001
1 November 1985

"i review the Phase 2 model.

N

W See Phase 1, Task 1. for the options and factors to
consider.

2. The project manager schedules the Phase 2 tasks.

See Phase 1, Task 2, for details.

t"a
3. The modeler builds a relation class matrix.
ﬁb List all of the entity classes across the top and down
e the left side of Relation Class Matrix Forms or on a
oy large sheet of grid paper; the matrix is easier to work
e with when it is all on one sheet of paper. Then,
' determine which pairs of entity classes are related to
. each other. Look for data about one thing that is also
e data about another. For example:
Y
ai, ° Customer and Sales Order
ot
L) ‘_l
A sales order has some data about the customer
. that placed it, such as customer number, name,
e address, etc.
-‘o'!'
t;, ° Part and Purchase Order
hty
A purchase order contains some data about the
n parts being ordered, such as part numbers,
. descriptions. dimensions, etc.
n""..
:t) Department and Employee
One element of data about an employee is the
o department to which he/she is assigned, such as
Qp department number., name, etc.
ﬁ# ° Manufacturing Order and Employee
n':
A manufacturing order has some data about the
T employees who performed its operations, such ac
.Q} employee numbers, names, etc.
e
M
‘Qﬂ Such sharing of data i1mplies a relationship of some
%ﬁ sort. Talk to the sources when additional information
about such sharing of data is needed. If a databasec
" design is among the source material., the relationships
b
Ly
',:: 4-23

{ ¥

L o ra A A T AT o ‘A A n Y
.u'*:-i ¢ @ vﬁ K\ X ’\ m‘f}.

' ¥ -

i OA M 10 f Oy / «
i _!~",,‘n‘1h’ ',.'va"'.',."nt.‘o‘."‘..,‘g’Jt‘,‘f."‘,.'\,h Rt N

WRELUNYRUWML

o UM 620141001
. 1 November 1985

‘. depicts may be useful. Place an "X" in the matrix
at the intersection of each pair of related entity
classes.

L A

4. The modeler prepares overview diagrams (FEOs).

These diagrams are intended to show all of the entity
and relation classes on just a few pages. Reviewers
can usually understand overview diagrams better than
individual entity class diagrams, so they will Dbe
theprimary (or sole) depiction of the model. Each
diagram should focus on a particular subject with which
the reviewers will be comfortable (e.g., major
activities), and each should contain about 10-to0-20
entity classes and their relation classes. Use large
sheets of paper (e.g., 11x17) and photo-reduction, if
necessary.

.y
o T -

v

)

Every entity and relation class in the matrix must

: appear in at least one diagram. Use some author

3 convention to signify the entity classes that appear in
more than one diagram (e.g., by broadening or

‘ double-lining the entity class boxes) and to identify

" which other diagrams they are in (e.g., by listing the
diagram numbers near the entity class boxes). For

' example, if entity class E27 is in diagrams Fl, F3, and

. Fq:

) List F3 and F4 near E27's box on Fl.
® List Fl and F4 near E27's box on F3.
e List Fl1 and F3 near E27°'s box on F4.

- e

-

" Add the appropriate cardinality and a meaningful label
to each relation class as it is drawn in a diagram.

) Talk to the sources when additional information about a

i relation class label and cardinality is needed.

’ Cardinalities may be either specific or nonspecific;

derived entity classes should not be introduced yet to

avoid getting ahead of the reviewers. Check off each

relation class in the matrix as it is drawn in a

diagram (e.g., by circling the X in the matrix).

5. The modeler defines any additional entity classes that
' are introduced during this phase.

Whenever a new entity class is introduced, immediately
document it by performing the tasks in Phases 1 and 2

! 4-24

u am
Tl I :’ al 5

y VN Wl AT~ "‘
‘ " “' "’ g BN “ '7 ‘ '!g! ' :55'\‘." _‘\.u:".}. ‘J"i‘?‘ .‘.‘ o KA Sn) A \l Q ’\- ..""";'Q 5 I‘- I.r'l'» |'n l‘o "‘QQ 'a.‘.‘l'

UM 620141001
1 November 1985

that are needed to:

° Update the entity class pool.

° Prepare an Entity Class Definition Form.

° Update the relation class matrix if it has been
started.

® Update the overview diagrams if they have been
started.

6. The modeler, reviewers, and librarian participate in
reviewing the Phase 2 model.

See Phase 1, Task 5 for details.

Deviation from IDEF1:

Usually, individual entity class diagrams are not prepared
because the overview diagrams are easier to understand and
review, and Relation Class Definition Forms are not filled out
because the relation class labels are supposed to be
self-descriptive. Also, the Related Entity Class Node
Cross-Reference Form is replaced by the specially designed
Relation

Classes Form, which is called for in Phase 3. However, the
project manager may require the use of any or all of these to
supplement the model documentation called for above.

4.2.4 Phase 3: Defining Key Classes

Objectives:
° Refine all nonspecific relation classes in the model.
® Identify the apparent attribute classes that are

within the scope of the model.

° Identify and define a key class for each entity class
in the model.

° Validate every relation class in the model via key
class migration.

This phase is patterned after Phase 3 of IDEFl, and the
description presented here is less detailed than the one in the
IDEF1 documentation. Please refer to that documentation for
further information. Also, please refer to Section 5.2.2.1 for

4-25

EAOOODUOUOUILICGUD Tl
i Wt ‘-“ﬁ?l‘:.‘i‘v"‘l’a.' i' .)? '." "i ‘.t." " " “" "‘ “i l‘ “ ‘!‘li‘ t‘ I\

Sl

lgtv L

(',' :,

UM 620141001
1 November 1985

o details on how to fill out the Relation Classes, Owned Attribute
) Classes, and Inherited Attribute Classes Forms.
y

Tasks:

52 1. The project manager decides what method to use to
3¢ review the Phase 3 model.
c".
e See Phase 1, Task 1, for the options and factors to
consider.
%; 2. The project manager schedules the Phase 3 tasks.
L1 '
X
g See Phase 1, Task 2, for details.
i 3. The modeler refines the nonspecific relation classes.
li“tv
Wi Introduce a derived entity class for each nonspecific
g@ relation class and convert that relation class to a
S pair of specific relation classes as shown in Figure
+ 4-7 at the end of this section. Assign entity class
numbers to the derived entity classes, record them in
P the entity class pool, and fill out Entity Class
.ﬂ‘ Definition Forms. The sources may be able to recommend
) appropriate names and definitions for some derived
J$L entity classes.
Remove the nonspecific relation classes from the
e relation class matrix and the overview diagrams. Add
.% the derived entity classes and the specific relation
"y classes to the matrix and the diagrams. Retain the
" same focus for each diagram unless the reviewers
"y suggested a change.
§$ Also, update any optional documents that are affected.
)
ﬁé 4. The modeler eliminates any unneeded triads or other
~& dual-path structures.
K
- A dual-path structure is one composed of two or more
" related entity classes in which:
:.I i
SN ® There are two paths connecting one entity class
R to another
® One path is a single relation class
e
°
%
R 4-26

LT

w9 o s TaPP o . o
LN !‘”\‘,",, A0 G P W8, 8 L OO0 N 4 Cp N) . - [
SN “‘V‘a“""i' ” ahrdad, - AN FARINY 1"”-'4.;.‘1'.' Ll Tt .0.‘ NI .2 PUMAAT > A SN M.c by

UM 620141001
1 November 1985

° The other path is a series of relation classes
(unless the structure has only two entity
classes in which case the second path is a
single relation class also)

See the examples in Figure 4-8 at the end of this
section. Talk to the sources to determine whether the
two paths are equal, unequal, or indeterminant. The
paths are equal if, for each dependent entity instance,
they both lead to the same independent entity instance.
The paths are unequal if, for each dependent entity
instance, they each lead to a different independent
entity instance. The paths are indeterminant if they
are equal for some dependent entity instances and
unequal for others. 1If the paths are equal, the
single-relation-class path is redundant and must be
removed from the relation class matrix and the overview
diagrams (and from any optional documents in which
appears).

5. The modeler fills out Relation Class Foras.

Record each relation class on a Relation Classes Form.
Leave the Ind. K.C. No. column blank for now. As each
relation class is recorded on a form, check it off on a
copy of each overview diagram in which it appears
(e.g.. by circling the relation class labels).

6. The modeler builds an attribute class pool.

Examine the entries in the source data list and deduce
what sort of characteristic each represents, where a
characteristic is a data element that identifies,
describes, refers to, etc., a thing being modeled.
Each sort of characteristic is represented by an
attribute class. Talk to the sources when additional
information is needed. Assign an attribute class
number to each attribute class, and record it on an
Attribute Class Pool Form.

When examining data field names from a database design,
K8 realize that several data fields may represent the same
g kind of "real-world characteristic” or, conversely,

" that one data field may represent several different
characteristics. For example:

® SALES -ORDER-CUSTOMER-NUMBER, INVOICE-CUSTOMER-

- e -

UM 620141001
1 November 1985

NUMBER, and ACCOUNTS-RECEIVABLE-CUSTOMER-NUMBER
all represent the same characteristic of a
customer, i.e., customer number.

. SALESMAN-ASSIGNMENT-CODE may represent both the
territory and the product for which the salesman
is responsible.

Also, realize that certain data fields may be present
for technical reasons only (e.g., record codes) and
should not be included in the attribute class pool.

The modeler defines the key classes of the totally
independent entity classes.

A totally independent entity class is one that is not
dependent in any relation class. Select any one and
find the attribute classes in the pool that make up its
key class. Watch for attribute class synonyms and
homonyms, and handle them like those for entity classes
(Phase 1, Task 4). A few totally independent entity
classes have two or more alternate key classes (e.g.,
employees can be uniquely identified by either employee
numbers or Social Security Numbers). Be sure to
identify all key classes for such an entity class.
Also, be sure each key class conforms to the following
rules:

Single-Owned Rule
Unique-Key Rule
No-Null Rule
No-Repeat Rule
Smallest-Key-Class-Rule

See Section 4.1.1 for explanations of these rules.
Define any new entity and relation classes needed to
resolve rule violations. See Tasks 11 and 12 for
details. Talk to the sources when additional
information about a key class is needed.

Assign a key class number to each key class of the
entity class (K1 for the first; K2 for the second, if
any, etc.) and a tag number to each key class member.
Fill out an Owned Attribute Classes Form, and record
the key classes in the overview diagrams. Check off
each attribute class in the pool as it is used.

?
i UM 620141001
. 1 November 1985

5 8. The modeler migrates the key clases of the totally
. independent entity classes.
4

One of the key classes of the entity class from Task 7
o must migrate through every relation class in which the
N entity class is independent. 1If it has two or more
e alternate key classes, only one can migrate through
& each relation class. The same one need not migrate
through all of them however; one can migrate through
some, another through others. The sources should be
able to indicate which key class to use for each

§ relation class. Record the number of the key class
ﬁ' that migrates through a relation class in the Ind. X.C.
Y No. column of the Relation Classes Form from Task 7.

Each member of the key class that migrates through a
N relation class becomes an inherited attribute class in
KRy the entity class that is dependent in that relation

5 class. Fill out an Inherited Attribute Classes Form
e for each dependent entity class, i.e., those listed in

g the Dep. E.C. No. and Name columns of the Relation
Classes Form. Record each inherited attribute class as
¢ follows:

QA ° Tag No. column: Assign a new tag number to each
s inherited attribute class.
W

[Tag and Label column: Use the name and label of
- the key class member except in the following two
8 situations:
\,’:
5 4
s ® If the key class member migrates through

two relation classes into the same
dependent entity class, it will appear as
two inherited attribute classes, each of

ﬁ: which must have a distinct name and label
e within the entity class. In this case,
o assign a new name and label to each. See

Figure 4-9 at the end of this section for
an example.

X ° If a new name and label would be more
'ﬁ descriptive, they may be used.
R
X ° A.C. No. column: Use the attribute class number
of the key class member even if a new name and
v label were assigned.

Ji
y 4-29

e OO ML YOOI X AUCONU IOOUOOOOOOUILC U 1 d o ?, 'l Fo¥ 87 N Ra s AT J A
RS LR 1, EROPEERN M TR N PSR D) p 3 X0 o
N Y l" LA ‘l‘).'t‘u & '_’~‘,1 \'./k’-; Iy ,'&'\f 1".""«,. “’.‘y'i.,.'ﬁf.'ft‘.'..‘nl.’v.?ll‘ 'ﬁ.[l.'.'.‘.’: !‘: !l'?" ..tl v"'l "t ‘:' 1’ s“'

,", N i

L T e e
P A N e

UM 620141001
1 November 1985

° Ind. E.C. No. column: Use the number of the
entity class that the key class member migrated
from.

o Ind. K.C. No. column: Use the key class number
of the key class member.

o Ind. Tag No. column: Use the tag number of the
key class member.

° Migration Path R.C. Label column: Use the label
of the relation through which the key class
member migrated.

o Mbr. of K.C. No. column: Leave blank for now.

On copies of the overview diagrams, keep track of which
relation classes have been used for key class migration
(e.g.. by circling the relation class labels).

Repeat Tasks 7 and 8 for each totally independent
entity class.

The modeler defines the key classes of the remaining
entity classes.

The remaining entity classes are those that are not
totally independent, i.e., those that are dependent in
at least one relation class. Key classes have migrated
through some relation classes to appear as inherited
attribute classes in some of these entity classes.

Some have received all of their inherited attribute
classes; others have not. One way to determine whether
an entity class has is to examine the copies of the
overview diagrams that were used to keep track of key
class migration in Task 8. If each relation class in
which the entity class is dependent has been used for
key class migration, then the entity class has received
all of its inherited attribute classes; otherwise, it
has not.

Select any one entity class that has received all of
its inherited attribute classes, and define its key
class(es). The members of its key class(es) may
include some of its inherited attribute classes or some

o

N B

OO0 O DOOLLA
VIR TR ‘afbc.f.‘».‘» P

10.

. tanadiie e st Rl an e go. e

UM 620141001
1 November 1985

new attribute classes from the pool or both. See
Figure 4-10 at the end of this section for guidelines.
Handle any synonyms and homonyms in the attribute class
pool in the same way as those for entity classes (Phase
1, Task 4). Remember that the entity class may have
two or more alternate key classes; be sure to identify
all of them. Be sure each key class conforms to the
following rules:

Single-Owner Rule
Unique-Key Rule

No-Null Rule

No-Repeat Rule
Smallest-Key-Class-Rule

See Section 4.1.1 for explanations of these rules.
Define new entity and relation classes needed to
resolve rule violations. See Tasks 11 and 12 for
details. Talk to the sources when additional
information about a key class is needed.

If a key class member comes from the attribute class
pool, assign a tag number to it, check it off in the
pool, and record it on an Owned Attribute Classes Form.
Assign a key class number to each key class (K1 for the
first; K2 for the second, if any, etc.), and record it
in the Mbr. of K.C. No. column on the Owned Attribute
Classes Form or the Inherited Attribute Classes Form
where each key class member appears. If an attribute
class, either owned or inherited, is a member of more
than one key class, record the key class number of
each. Also, record the key classes and any nonkey
inherited attribute classes in the overview diagrams.

The modeler migrates the key classes of the remaining
entity classes.

If the entity class from Task 9 is not independent in
any relation classes, its key class does not migrate;
see the last paragraph of this task. If it is
independent in one or more relation classes, record the
number of the key class that migrates through each one
in the Ind. K.C. No. column of the Relation Classes
Form. If the entity class has alternate key classes,
record only one key class number for each relation
class, although not all relation classes have to get
the same number; the sources should be able to indicate

4-21

SOOI OO OCOOOUI MO O s % o AN SR AV I e At r
A A e T e T A SR S TS

4

-

-

PN 2 e

PR T N ey

R X X XA

"o e

UM 620141001
1 November 1985

which key class to use for each.

For each entity class that is listed in the Dep. E.C.
No. and Name columns of the Relation Classes Form, fill
out an Inherited Attribute Classes Form as described in
Task 8. Also, as each relation class is used for key
class migration, mark it on the overview diagram
copies from Task 8.

Repeat Tasks 9 and 10 until key classes for all
remaining entity classes have been defined and
migrated.

11. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, immediately
document it by performing the tasks in Phases 1 - 3
that are needed to:

Update the entity class pool.

Prepare an Entity Class Definition Form.

Update the relation class matrix.

Define the relation classes in which it is
involved. See Task 12 for details.

Update the overview diagrams.

Define and migrate its key class(es) at the
appropriate time during Tasks 7 - 10.

[Update any optional documents that are affected.

12. The modeler defines any additional relation classes
that are introduced during this phase.

Whenever a new relation class is introduced,
immediately document it by performing the tasks in
Phases 2 and.s that are needed to:

Update the relation class matrix.

Update the overview diagrams.

Refine it if it is nonspecific.

Eliminate any unneeded dual-path structures.
Record it on a Relation Classes Form.

Validate it via key class migration at the
appropriate time during Task 8 or 10.

Update any optional documents that are affected.

13. The modeler, reviewers, and librarian participate in

4-32

DR "\"vlﬂ

: v 185, 9¢ Vot) >
RAORERSAIOMY X 'k: DX ﬂ,,s’A o ‘o“. 'lgh.o,\o @' ,». K l.c ';o,fp,,‘,o, .p,l,e ‘ ».‘:\':'a‘“:ﬁ.~,:.“ :,s.f.q,k.s,fp‘:.!,l,s ..‘...‘c‘.' .-'t,o'.c..

UM 620141001
1 November 1985

reviewing the Phase 3 model.
See Phase 1, Task 5, for details.
Deviation from IDEF1:

The specially designed Relation Classes, Dwned Attribute
Classes, and Inherited Attribute Classes forms are used in place
of the regular IDEFl forms: Related Entity Ciass Node
Cross-Reference, Attribute Class Definition (2), and Inherited
Attribute Class Cross-Reference. The forms used are designed to
facilitate loading the conceptual schema. Also, the following
IDEF]1 forms are not called for, but may be used at the
discretion of the project manager:

Attribute Class Diagram

Entity Class/Attribute Class Matrix
Attribute Class Migration Index
Refinement Alternative Diagram
Entity Class/Function View Matrix

4.2.5. Phase 4: Defining Nonkey Attribute Classes

Objectives:
° Identify and define the nonkey attribute classes that
are within the scope of the model.
° Identify the entity class that owns each nonkey

attribute class.

This phase is patterned after Phase 4 of IDEFl, and the
description presented here is less detailed than the one in the
IDEF1 documentation. Please refer to that documentation for
further information. Also, please refer to Section 4.1.3 for
details on how to fill out Owned Attribute Classes Forms.

Tasks:

1. The project manager decides what method to use to
review the Phase 4 model.

See Phase 1, Task 1, for the options and factors to
consider.

2. The project manager schedules the Phase 4 tasks.

g . w Ve wwwGOYTTvTOwY e A A At i alh ASE e Al aih B b all Ak ath abh- sl s il odeald

o,

UM 620141001
1 November 1985

See Phase 1, Task 2, for details.

PR
A

3. The modeler populates the model with the nonkey
attribute classes.

The nonkey attribute classes are those that were not
used as members of any key classes in Phase 3, i.e.,
those that have not been checked off in the attribute
class pool. Find the entity class that owns each of
these according to the following rules:

. X}

. 1

Single-Owner Rule

No-Null Rule

Full-Functional -Dependency Rule
No-Transitive-Dependency Rule

% See Section 4.1.1 for explanations of these rules.

) Define any new entity and relation classes needed to
b resolve any rule violations. See Tasks 4 and 5 for
k> details. Talk to the sources when additional

9 information about a nonkey attribute class is needed.

Assign a tag number to each nonkey attribute class, and
record it on an Owned Attribute Classes Form. Check
) off each in the pool as it is used.

¢ 4. The modeler defines any additional entity classes that
are introduced during this phase.

& Whenever a new entity class is introduced, immediately
W document it by performing the tasks in Phases 1 - 3
y that are needed to:

Update the entity class pool.

Prepare an Entity Class Definition Foram.

Update the relation class matrix.

Define the relation classes that it is involved
' in. See Task 5 for details.

Update the overview diagrams.

Define and mi/rate its key class(es).

° Update any optional documents that are affected.

.

-
[N

' 5. The modeler defines any additional relation classes
that are introduced during this phase.

Whenever a new relation class is introduced,
immediately document 1t by performing the tasks in

4-34

q'_.-"‘.',,.- . .\u."_-\- TR TR

oo o, LY . 3 "
. - uty N
ISV O M0 Mg AR S 4N S

; Oal) On/OnBE
A ACAONANL RN Wy Vet

" U ~ N
L AW X D0 D N M -C!'eI ’v"'nl Ma X\ '.' W Mo

UM 620141001
1 November 1985

Phases 2 and 3 that are needed to:

Refine it if it is nonspecific.

Eliminate any unneeded dual-path structures.
Update the relation class matrix.

Record it on a Relation Classes Foras.

Update the overview diagrams.

Validate it via key class migration.

Update any optional documents that are affected.

6. The modeler, reviewvers, and librarian participate in
reviewing the Phase 4 model.

See Phase 1, Task 5, for details.
Deviation from IDEF1:

The specially designed Owned Attribute Classes Form is used
instead of the regular Attribute Class Definition Forms to
facilitate loading the conceptual schema. Also, the following
IDEF1 forms are not called for, but may be used at the
discretion of the project manager:

° Attribute Class Diagram
° Entity Class/Attribute Class Matrix

See Section 56.2.1 for instructions on how to load.

4.3 Expanding the CS

This section and its subsections describe the procedure for
expanding an enterprise’'s conceptual schema. The procedure ic
concerned with creating a detailed description (an information
model) of a portion of the enterprise’'s common data, some or all
of which is not already described in the conceptual schema, and
with collecting the data required to place that description 1in
the CDM database as an additional piece of the conceptual schema
(another layer of the onion).

The procedures described in the following subsections
correspond to the five IDEF1 phases discussed in the previous
section.

1

UM 620141001
1 November 1985

4.3.1 Phage O0: Starting the Project

Objectives:

[State the purpose. scope. and viewpoint for the
information model .

[Establish the project team.
°® Develop a phase-level project schedule.
) Collect and catalog relevant source material.

This phase is patterned after Phase O of IDEFl., and the
description presented here 15 less detailed than the one in the
IDEF1 documsentation Please refer to that documentation for
further inforsation Also,. pleagse refer to Section 4.1.2 for
details on how to fill out the Relation Classes., Owned Attribute
Classes. and Inherited Attribute Classes forms.

Tasks :

1. The CDM Administrator appoints a project manager.
Usually. this vill be the CDM Administrator

2 The project manager states the purpose for building the
inforsation sodel

See Taszk 2 of Section 4 2 |

3 The project manager states the scope of the information
sode!

See Task 3 of Section 4 2]

4 The project sanager states the vievpoint for the
inforsation sode!

See Task 4 of Section 4 2 1
S The pro)ect manager appoint:t the project teas member:
See Task 3 of Section 4 2 |

] The project manager appoint: Lhe acceptance rev,ew
committiee Bembers

w-‘.:‘
1]
coy
7.
l.
* 8 .
-..
, 9.
4
A 10.
e \
"'b
11
By
Y
J
Y
Wt
‘ 12
£ 5Y
R,
A
04| »
B,
1y
13

UM 620141001
1 November 1985

This committee should consist of subject experts from
the area being modeled and from other, related areas.
The project manager schedules the project phases.

See Task 7 of Section 4.2.1.

The project manager schedules the remaining Phase 0
tasks.

See Task 8 of Section 4.2.1.
The modeler develops a data collection plan.

Determine what kinds of source material are needed and
where and how to get that material.

The project manager conducts a project kick-off meeting
attended by the project team members.

See Task 10 of Section 4.2.1.

The modeler collects source material from the sources.
Gather the documente. policies. procedures, database
designs. etc . and 1nterview the sources in accordance
with the data collection plan (Task 9)

The modeler catalogs the source material .

Prepare Source Material Log Forms and Source Data List
Forms If a databaze design 1s among the source
material . the record name:z and data field names should
be included 1n the source data list

The modeler examine:. the exicting conceptual schema

Identi1fy the entity relation, and attribute classe:s in

the exi1=ting conceptual schema that appear to be within
the tcopc of the modcl Fill out the following forme
from the descriptiont 1n the conceptual schema

® Entity Clare Definition Forst

® Relation Clarcer Forms

® Owned Avtribute Claszcse:r Forme

° Inherited Attribute Classer Form:

° Relation Clan:e Matrix Forst

DO A Wy
I OGO AN TN

-

o~ .

UM 620141001
1 November 1985

To distinguish these elements of the conceptual schema
from the new ones that will be documented during the
course of this modeling project, prefix all of the
identification numbers with the letter “C." For

example:
[Entity Class Number = CEl2
® Attribute Class Number = CA94
° Tag Number = CT156
° Key Class Number = CKl

14. The modeler explains any author conventions.

These are deviations from or additions to the regular
IDEF1 methodology. Mention the use of the three
specially designed modeling forms: Relation Classes
Form, Owned Attribute Classes Form, and Inherited
Attribute Classes Form. Also, explain that in order to
distinguish between model elements that are already in
the conceptual schema and those that are not, the
identification numbers of the former will be prefixed
with the letter "C" for conceptual while those of the
latter will be prefixed with the letter "N" for new.

Deviation from IDEF1:

Usually, kits are not used to accomplish the review of the
Phase 0 model documentation; the essentials are reviewed during
the kick-off meeting (Task 10). However, the project manager
may require that kits be used to supplement or replace the
kick-off meeting.

4.3.2 Phase 1: Defining Entity Classes

Objective:

o Identify and define the apparent entity classes that
are within the scope of the model.

This phase is patterned after Phase 1 of IDEFl, and the
description presented here is less detailed than the one in the
IDEF]1 documentation. Please refer to that documentation for
further information.

Tasks .

UM 620141001
1 November 1985

The project manager decides what method to use to
review the Phase 1 model.

See Task 1 of Section 4.2.2.
The project manager schedules the Phase 1 tasks.
See Task 2 of Section 4.2.2.
The modeler builds an entity class pool.
Examine the entries in the source data list and deduce
what sort of thing each entry identifies, describes,
refers to, etc. For example:
e Employee number, name, birth date, and salary
are data elements about an employee:. hence, an

"Employee” entity class.

() Part number, description, and dimensions are all
about a part; hence, a "Part” entity class.

Each sort of thing is represented by an entity class.
Determine whether any of these entity classes are
already in the conceptual schema and, if so, whether
modeling forms were prepared for them in Phase 0, Task
13. Rely on the entity class definitions more than the
names or labels in deciding whether a conceptual schema
entity class represents the same sort of thing as an
entity class deduced from the source data list. 1If any
entity class is in the conceptual schema, but modeling
forms were not prepared. prepare them now: see Phase O,
Task 13 for details. Talk to the sources when
additional information is needed. The entity instances
within an entity class should be distinguishable from
one another by some unique identifier. Assign an
entity class number. prefixed with “N." to each new
entity class, and record them on an Entity Class Ponol
Form. Do not record any conceptual schema entity
classes in the pool.

When exasining record names from a database design. be

careful to think about the "real-world thing" that each
kind of record represents. Realize that several kinds

of records may represent the same thing or, conversely,
that one kind of record may represent several different
things Also. realize that certain kinds of records

UM 620141001
1 November 1985

e may be present for technical reasons only (performance,
o backup/recovery. etc.). Such records do not represent
"real-world things" and should not result in entity
classes being added to the pool.

4. The modeler defines each entity class.
' See Task 4 of Section 4.2.2.

Also, review the names, labels, and definitions of the
N conceptual schema entity classes, record any changes
3 that are required on the Entity Class Definition Forms.
and write “UPDATED" below the entity class number in
the lower left corner.

5. The modeler, reviewers, and librarian participate in
revieving the Phase 1 model.

The method of review was selected in Task 1. The
modelers prepare the review materials (kits or walk-
through handouts), the reviewers read and comment on
the materials, and the modelers respond to the

: comments. If kits are used, the librarian coordinates
‘ their circulation.

. 6. The CDM Administrator reviews the model to ensure that
it is compatible with the conceptual schema.

o Definitions are compared to see wvhether any entity,

" relation, or attribute classes that uare identified as
\ nev in the model are really the same as those that are
W already in the conceptual schesa, possibly with

3 different names or labels. Also, each proposed
conceptual schema update is evaluated to gauge its
impact on the existing CS/ES and CS/IS mappings.

4.3.3. Phase 2: Defining Relation Classes

o e =

Objective:

N o Identify and define the apparent relation classes
o that are within the scope of the model

. This phase is patterned after Phase 2 of IDEF]. and the
description presented here is less detailed than the one 1n the
IDEF1 Aocumentation Please refer to that documentation for
further information

4 40

Tasks:

.

r
o

UM 620141001
1 November 1985

The project manager decides what method to use to
review the Phase 2 model.

See Phase 1, Task 1, for the options and factors to
consider.

The project manager schedule: the Phase 2 tasks.
See Phase 1, Task 2, for details.

The modeler builds a relation class matrix.

See Task 3 of Section 4.2.3.

The modeler prepares overview diagrams (FEOs).
See Task 4 of Section 4.2.3.

The modeler defines any additional entity classes that
are introduced during this phase.

Vhenever a new entity class is introduced, double-check
the conceptual schema to see if it is already there.
Rely on the entity class definitions more than the
names or labels in deciding whether a conceptual schema
entity class represents the same sort of thing as a new
entity class. If a new entity class is already
described in the conceptual schema, prepare the
modeling forms listed in Phase O, Task 13. 1If it is
not. immediately document it by performing the tasks 1in
Phages 1 and 2 that are needed to:

° Update the entity class pool

® Prepare an Entity Class Definition Form

® Update the relation class matrix 1f 1t has been
started

[Update the overview diagrams 1f they have been
started

The modeler. revievers and librarian participate 1n
reviewing the Phase 2 model

See Task 5 of thi1t section for detalls

UM 620141001
1 November 1985

Deviation from IDEF1:

Usually. individual entity class diagrams are not prepared
because the overview diagrams are easier to understand and
review, and Relation Class Definition Forms are not filled out
because the relation class labels are supposed to be
self-descriptive. Also, the Related Entity Class Node
Cross-Reference Form is replaced by the specially designed
Relation Classes Form, which is called for in Phase 3. However,
the project manager may require the use of any or all of these
to supplement the model documentation called for above.

4.3.4 Phase 3: Defining Key Classes

Objectives:

] Refine all nonspecific relation classes in the model.

° Identify the apparent attribute classes that are
vithin the scope of the model.

[] Identify and define a key class for each entity class
in the model.

® Validate every relation class in the model via key
class migration.

This phase is patterned after Phase 3 of IDEFl, and the
description presented here is less detailed than the one in the
IDEF]1 documentation. Please refer to that documentation for
further information. Also. please refer to Section 4.1.3 for
details on how to fill out the Relation Classes, Owned Attribute
Classes. and Inherited Attribute Classes Foras.

Tasks :

1. The project manager decides what method to use to
reviev the Phase 3 model .

See Task 1 of Section 4 2 1.
2 The project sanager schedules the Phase 3 tasks

See Task 2 of Section 4 2)

3 The modeler refines the nonspecific relation classes

UM 620141001
1 November 1985

Introduce a derived entity class for each nonspecific
relation class and convert that relation class to a
pair of specific relation classes as shown in Figure
4-7 at the end of this section. Assign entity class
numbers, prefixed with "N," to the derived entity
classes, record them in the entity class pool, and
fill out Entity Class Definition Forms. The sources
may be able to recommend appropriate names and
definitions for some derived entity classes.

Remove the nonspecific relation classes from the
relation class matrix and the overview diagrams. Add
the derived entity classes and the specific relation
classes to the matrix and the diagrams. Retain the
same focus for each diagram unless the reviewers
suggested a change. Also, update any optional
documents that are affected.

The modeler eliminates any unneeded triads or other
dual-path structures.

A dual-path structure is one composed of two or more
related entity classes in which:

o There are two paths connecting one entity class
to another

® One path 1s a single relation class

o The other path is a series of relation classes

(unless the structure has only two entity
classes 1n which case the second path is a
single relation class also)

See the examples in Figure 4-8 at the end of this
section. Talk to the sources to determine whether
the two paths are equal., unequal, or indeterminant.
The paths are equal '., for each dependent entity
instance. they both lead to the same independent
entity instance. The paths are unequal if, for each
dependent entity instance. they each lead to a
different i1ndependent entity instance. The paths are
indeterminant if they are equal for some dependent
entity instances and unequal for others. If the
paths are equal, the single-relation-class path 1is
redundant and must be removed from the model . 1.e
from the relation class matrix and the overview

4 43

DAL] o ¥ v y L
- LA A .
i AR LA MK JOME N IL S I [E LN

[Y

[4
!“kl

- L
o -

-
-~

UM 620141001
1 November 1985

diagrams (and from any optional documents in which it
appears) .

If the relation class that must be removed is already
described in the conceptual schema, it should already
be listed on a Relation Classes Form from Phase O,
Task 13. Write "DELETE" in the margin next to it and
write "UPDATED" below the entity class number in the
lower left corner.

If the dependent entity class in that relation class
is from the conceptual schema, the inherited attri-
bute classes that it received via key class migration
through that relation class must be removed also.
¥rite "DELETE” in the margin next to each one on the
Inherited Attribute Classes Form, and write “UPDATED"
below the entity class number in the lover left
corner. If any of them is a key class member in the
dependent entity class, that key class is now incom-
plete and must be removed; see Task 13 for details.

The modeler fills out Relation Class Forms.
See Task 5 of Section 4.2.4.
The modeler builds an attribute class pool.

Examine the entries in the source data list and
deduce what sort of characteristic each represents,
wvhere a characteristic is a data element that identi-
fies, describes, or refers to, a thing being modeled.
Each sort of characteristic is represented by an at-
tribute class. Determine whether any of the attri-
bute classes are already in the conceptual schema
and, if so, whether modeling forms wvere prepared for
them in Phase O, Task 13. Rely on the attribute class
definitions more than the names or labels in deciding
wvhether a conceptual schema attribute class repre-
sents the same sort of characteristic as an attribute
class deduced from the source data list. If an attri-
bute class is in the conceptual schema, but modeling
forms were not prepared. prepare them now; see

Phase O, Task 13, for details. Talk to the sources
vhen additional information is needed. Assign an
attribute class number, prefixed with “N," to each
nevw characteristic deduced from the source data list,
and record them on Attribute Class Pool Forms.

4-44

e, ;) « f L ATE
P Gty MAOGMAININ N T i O O R

L

DG WO [}
LS RN,

UM 620141001
1 November 1985

When examining data field names from a database de-
sign, realize that several data fields may represent
the same kind of "real-world characteristic" or,
conversely, that one data field may represent several
different characteristics. For example:

e SALES-ORDER-CUSTOMER-NUMBER, INVOICE-CUSTOMER-
NUMBER, and ACCOUNTS-RECEIVABLE-CUSTOMER-NUMBER
all represent the same characteristic of a
customer, i.e., customer number.

-
-

D ® SALESMAN-ASSIGNMENT-CODE may represent both the
y territory and the product for which the salesman
is responsible.

e

Also, realize that certain data fields may be present
for technical reasons only (e.g., record codes) and
should not be included in the attribute class pool.

: -
oo el -

7. The modeler defines the key clases of the totally
independent entity classes.

A totally independent entity class is one that is not
o dependent in any relation classes. Select any one and
" find the attribute classes in the pool that make up
its key class. If the entity class is already in the |
conceptual schema, at least one key class has already

been defined for it. However, others may be dis-

covered here because of new owned attribute classes. ‘
Watch for attribute class synonyms and homonyas, and |
handle them like those for entity classes (Phase 1,

R Task 4). A few totally independent entity classes

have two or more alternate key classes (e.g..

employees can be uniquely identified by either Social ‘
Security or employee numbers). Be sure to identify

all key classes for such an entity class. Also., be

sure each key class conforms to the following rules:

Single-Owned Rule
Unique-Key Rule |
No-Null Rule \
No-Repeat Rule |
Smallest-Key-Class-Rule

|

See Section 4.1 for explanations of these rules.
Define any new entity and relation classes needed to

4-45

Aot W, A Y
\
(e

. A AR rany oA . A A . Y y
' Ly A 20 ¥ Oy A AN N .
VTR ‘?*a.}n‘?‘o.- SHRYLERE AR '.“.‘) IOSOI .'.l?‘ 5 % wh 3T I Lo S DO U M X M

" arwTrw e

e e A -
o " St > o

UM 620141001 !
1 November 1985 i

“ resolve rule violations. See Tasks 11 and 12 for

K details. If an attribute class that is needed as a

key class member for a new entity class is already

owned by a conceptual schema entity class, a rela-

tionship exists between those two entity classes. 1If

it is not already documented as a new relation class,

. it must be before the key class of the new entity

A class can be defined: see Task 12 for details. If the
nev entity class is dependent in the new relation
class, it is no longer totally independent, so its

: key class cannot be defined until Task 9. If the new

entity class is independent in the relation class,

N the ownership of the attribute class must be changed:

' it is owned by the new entity class, not by the one

’ in the conceptual schema. Record it on an Owned
Attribute Classes Form for the new entity class,

o using the same name, label, definition., domain (type

and size), and attribute class number, prefixed with

" "C.," but assign a new tag number, prefixed with "N."

e Write "DELETE" in the margin next to the attribute

‘ class on the form for the conceptual schema entity
class and write "UPDATED" below the entity class

d number in the lower left corner. If it is a key

class member in the conceptual schema entity class,

that key class is now incomplete and must be removed:

see Task 13 for details. Talk to the sources when

additional information about a key class is needed.

Assign a key class number, prefixed with "N," to each
new key class of the entity class (NK1 for the first;
NK2 for the second, if any, etc.). Assign a tag
number, prefixed with "N," to each new attribute
class that is a key class member:. record it on an
Owned Attribute Classes Form, and check it off in the
attribute class pool. Record the key classes., both
newv ones and ones from the conceptual schema, in the
overview diagrams.

. Also. review the name, label., and definition of each
conceptual schema attribute class that is a key class

' member:. record any changes that are required on the

'3 Owned Attribute Classes Form where it appears. write

A "CHANGE"™ in the margin next to it., and write

‘ "UPDATED" below the entity class number i1n the lower
left corner

8. The modeler migrates the key classec:r of the totally

»rr

UM 620141001
1 November 1985

independent entity class.

One of the key classes of the entity class from

Task 7 must migrate through every relation class an
which the entity class is independent. A key class
has already migrated through every conceptual schema
relation class, but some may have had that migration
undone in Task 13, i.e., those with a circled key
class number in the Ind. K.C. No. column of a
Relation Classes Form and with "OMIT" written in the
margin. Only these and the new relation classes.
i.e., those without a key class number 1i1n that
column, need to be considered here If the entaity
class has two or more alternate key classe: . only onc
can migrate through each relation class The same
one need not migrate through all of them. however,
one can migrate through some. another through otherc
The sources should be able to i1ndicate which key
class to use for each relation class For a new
relation class, record the key class number 1n the
Ind. X.C. No. column of the Relation Classes Form
from Task 7. For a conceptual schema relation clasc
that is having 1ts key class migration redone. :f the
key class number 1s the same as the one that 1.
already in Ind K C No column. erase the circie
around 1t and erase "OMIT" 1n the margin If the kev
class numbers are different. replace the circled one
with the new one and change "OMIT' to "CHANGE :n the
margin.

Each meaber of the Key @ lac: that migrate:s thrsuyh o
relation class become: an 1nherited attribute |
in the entity ciat: that 1: dependent 1n that
relation clas: Fi1ll out an Inherited Attribute
Classes Form for cach dependent entity o las 1
those listed 111 the Ing E C N.o and Name UM +
the Relation Clarrer Form it the dependen: en' s
class 1: already 1n the con.eptual & hema ute the
Inherited Attribute Lo Form thal W prepaared
Phase O Tk 17 R 1 e b onew anhe v test ot o

class as foiiow:

[) Tagy No L UM A Ifn 4 new tay numbe o
prefixe i witt N 1 v bk anher o tent At U bt
i It A inher i ted attraibute S Tep o
Aan owned attribut, v whote swherchip Wi

changet o T ko o ure The Uy numle s

TRy W T W eETTETY WU e YV L ARTVE T T RIS R st e e | o s | A et '

UM 620141001
1 November 1985

prefixed with “C" that was assigned to that
owvned attribute class. and change "DELETE" to
"NEW OVWNER™ in the margin next to that owned
attribute class on the Owned Attribute Classes
Form.

°® Tag and Label column: Use the name and label of
the key class member except in the following two
situations:

L] If the key class member migrates through two
relation classes into the same dependent entity
class. i1t will]l appear as two inherited attribute
classes. each of which must have a distinct name
and label within the entity class. In this
case., assign a newv name and label to each. See
Figure 4-9 at the end of this section for an
example.

° If a newv name and label would be more
descriptive, they may be used.

[A.C. FNo. column: Use the attribute class number
of the key class member, even if a new name and
label were assigned.

® Ind. E.C. No. column: Use the number of the
enti1ty class from which the key class member
migrated.

o Ind. X.C. No. column: Use the key class number

of the key class member.

° Ind. Tag No. column: Use the tag number of the
key class member. .

° Migration Path R.C. Label column: Use the label
of the relation class through which the key
class memaber migrated.

) Mbr. of X.C. No. column: Leave blank for now.

If an inherited attribute class that was removed from
a conceptual schema entity class in Task 4 or 13 is
being reestablished, do not record it as described
above. Instead, reuse the one that is already
recorded on the Inherited Attribute Classes Form.

]

UM 620141001
1 November 1985

Erase “DELETE" from the margin. If any of the values
in the following columns need to be changed, replace
them with the new values and write "CHANGE™ in the
margin:

Tag and Label Column
Ind. E.C. No. Column
Ind. K.C. No. Column
Ind. Tag No. Column
Migration Path R.C. Label Column

If the Mbr. of K.C. No. column contains any key class
numbers, circle each and write "OMIT" in the margin.

On copies of the overview diagrams, keep track of
which relation classes have been used for key class
migration, including those from the conceptual schema
that had already been used (e.g., by circling the
relation class labels).

Repeat Tasks 7 and 8 for each totally independent
entity class.

The modeler defines the key classes of the remaining
entity classes.

The remaining entity classes are those that are not
totally independent, i.e., those that are dependent
in at least one relation class. Key classes have
migrated through some relation classes to appear as
inherited attribute classes in some of these entity
classes. Some have received all of their inherited
attribute classes; others have not. One way to
determine whether an entity class has is to examine
the copies of the overview diagrams that were used to
keep track of key class migration in Task 8. If each
relation class that the entity class is dependent in
has been used for key class migration, then the
entity class has received all of its inherited
attribute classes; otherwise it has not.

Select any one entity class that has received all of
1ts inherited attribute classes, and define its key
class(es). If the entity class is already in the
conceptual schema, at least one key class has already
been defined for it. However, if one was removed in
Task 13. it must be reestablished or a new one must

4-49

5 7 b
‘Ai v, w 2.F "‘ v J‘ J' l' M5 .ﬁ’ b'n o Q“' ')’.'-‘:‘a'. l.".i X

()
AN K S
OO UK

- =

o
()

2 *

v

U
)q’ D) h“‘,_

UN 62014100,
1 Moveaber |9¢%

be defined Alsc other key ¢« lasset aay be discovered
here because of nev owned or 1nherited attribute
classes The sesbers of 1l: Rey clatsier) may
include some of 1ts 1nherited attribute classer or
some of Lthe nev attiribute classes fros the pool or
both See Figure 4-10 at the end of this section for
guidelines Mandle any synonyss and hosonyss 1n the
attribute class pool 1n the same vay at those for
entity classes (Phase | Task 4) Remenber that the
entity class may have two or sore alternate key
classes. be sure to i1dentify all of thems Be ture
each key class confores to the following rulet

Single-Ovner Rule
Unique-Key Rule

No-Mull Rule

No-Repeat Rule
Smallest-Key-Class Rule

See Section 4 | for explanations of these rules
Define nev entity and relation classes needed to
resolve rule violations See Tasks 11 and 12 for
details If an attribute class that is needed as a
key class sember for a nev entity class is already
owvned by a conceptual schema entity class. a
relationship exists betveen those two entity classes
If it 1s not already documented as a new relation
clags. it must be before the key class of the newvw
entity class can be defined. see Task 12 for details
If the nev entity class 15 dependent 1n the relation
class, 1ts key class cannot be defined until] one from
the i1ndependent entity class has migrated through the
nev relation class If the new entity class 1is
independent in the relation class. the ownership of
the attribute class must be changed; it is owned by
the nev entity class, not by the one in the
conceptual schema Record 1t on an Owned Attribute
Classes Form for the new entity class, using the same
name, label, definition. domain (type and size), and
attribute class number, prefixed with "C." but assign
a nev tag number, prefixed with "N." Write “DELETE"
in the margin next to the attribute class on the form
for the conceptual schema entity class and write
"UPDATED" below the entity class number in the lower
left corner. If it is a key class member in the
conceptual schema entity class, that key class is now
incomplete and must be removed:. see Task 13 for

4-50

L - 0 W

T 9 CAYRCA L J N) Y U0 M
15 4 Wens e s SIS gl DR A
OOEIABULAOEDOINO L ERAIATIO R0 LA ot AR OO 00 '.;v"fo?‘.r‘ﬁu’«.,c!'.vf'.o'l.o ey gt

10.

UM 620141001
1 NMovember 1985

deta) s Talk to the source: when additional
information about a4 key clast 1: needed

Assign a key classe number., prefixed with "N.° to each
nev key class (WK1 for the first. MK2 for the second.
1f any. etc) I1f a key class that was remsoved 1n
Task 13 15 being reestablished, reuse 1ts original
key class number. prefixed with "C. .~ Assign a tag
nuaber, prefixed with "N." to each nevw key class
member that comes from the attribute class pool,
check 1L off i1n the pool. and record 1t on an Owvwned
Attribute Classes Fora.

Also, reviev the name. label, and definition of each
conceptual schema attribute class that 15 a key class
meaber . record any changes that are required on the
Owned Attribute Classes Form where 1t appears. write
“CHANGE" 1n the margin next to it, and vrite
“UPDATED" below the entity class number in the lower
left corner.

Ident1fy each nev key class member by recording its
key class number in the Mbr. of K.C. No. column on
either the Owned Attribute Classes Form or the
Inherited Attribute Classes Form. 1If an attribute
class, either owned or inherited, is a member of more
than one key class, record the key class number of
each. 1If an attiribute class is being reestablished
as a member of a key class that was removed in

Task 13, erase the circle around the key class number
in the Mbr. of K.C. No. column of the Owned or
Inherited Attribute Classes Form and erase "OMIT"
from the margin. Also, record the key classes and
any nonkey inherited attribute classes, both new ones
and ones from the conceptual schema, in the overview
diagrams .

The modeler migrates the key classes of the remaining
entity classes.

If the entity class from Task 9 is not independent in
any relation classes, its key class does not migrate;
see the last paragraph of this task. If it is
independent in one or more relation classes, one of
its key classes must migrate through each. A key
class has already migrated through every conceptual
schema relation class, but some may have had that

11.

UM 620141001
1 November 1985

migration undone in Task 13, {.e., those with a
circled key class number in the Ind. X.C. No. column
of a Relation Classes Form and with “OMIT" written in
the margin. Only these and the nev relation classes.
{.e., those without a key class number in that
column, need to be considered here. Record the
number of the key class that migrates through each
nev relation class in the Ind. XK.C. No. column of the
Relation Classes Form. If the entity class has
alternate key classes, record only one key class
number for each relation class, although not all
relation classes have to get the same number; the
sources should be able to indicate which key class to
use for each. For a conceptual schema relation class
that is having its key class migration redone. if the
key class number is the same as the one that is
already in Ind. K.C. No. Column, erase the circle
around it and erase "OMIT" in the margin. If the key
class numbers are different, replace the circled one
with the new one and change "OMIT" to "CHANGE" in the
margin.

For each entity class that is listed in the Dep. E.C.
No. and Name columns of the Relation Classes Form,
fill out an Inherited Attribute Classes Form as
described in Task 8. Also, keep track of which
relation classes have been used for key class
migration, including those from the conceptual
schema, by marking them on the overview diagram
copies from Task 8.

Repeat Tasks 9 and 10 until key classes for all
remaining entity classes have been defined and
migrated.

The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, double-
check the conceptual schema to see if it is already
there. Rely on the entity class definitions more
than the names or labels in deciding whether a
conceptual schema entity class represents the same
sort of thing as a new entity class. If a new entity
class is already described in the conceptual schema,
prepare the modeling forms listed in Phase O,

Task 13. If it is not, immediately document it by

UM 620141001
1 November 19895

performing the tasks in Phases 1| - 3 that are needed
to:

Update the entity class pool.

Prepare an Entity Class Definition Form

Update the relation class matrix.

Define the relation classes in which it 1s
involved. See Task 12 for details.

Update the overview diagrams.

Define and migrate its key class(es) at the
appropriate time during Tasks 7 - 10.

vy ° Update any optional documents that are affected.

" 12. The modeler defines any additional relation classes
) that are introduced during this phase.

See Task 12 of Section 4.2.4.

o 13. The modeler removes any incomplete key classes and all
e resulting inherited attribute classes.

Either the removal of a relation class that is
oy already in the conceptual schema (Task 4) or the
change in ownership of an attribute class that is
(! already in the conceptual schema (Tasks 7 and 9) can
o cause a key class member to be removed from a
conceptual schema entity class, either temporarily
(until Task 8 or 10) or permanently. When this
S happens. the key class that lost the member becomes
e incomplete, so it can no longer fulfill its function.
S Consequently, it must be removed also. The other
KRS attribute classes that are members of that key class,
T if any, can remain in the entity class, but their
membership in that key class must be removed. Circle
'y the key class number in the Mbr. of K.C. No. column
on the Owned or Inherited Attribute Classes Form
where each member appears, write “"OMIT" in the margin
g next to it, and write "UPDATED" below the entity
i class number in the lower left corner.

" If the key class migrated to other conceptual schema
e entity classes, that migration must be undone.

B Circle the key class number in the Ind. K.C. No.

s column of the Relation Classes Form for each relation
o’ class that is affected, write "OMIT" in the margin
next to each, and write "UPDATED" below the entity
class number in the lower left corner. If any of the

4-53

3

RERCARE AR AR OB LA A LA AL A LA A DO LA WSO N
’ b A R J ‘x‘,"7 Vv 'rn. } '&L"‘ 5""1"?“5.(«’.5 ', ‘u_ﬁ'i“?:‘v';-‘-‘ﬁﬁ'a

1

A A
S ER T Ul

1 4

UM 6230141001
1 November 108%

affected dependent entity classes are not already in
the model. add thes nov:. see Phase O. Task 13 ‘or
detailcs. Vrite "DELETE" in the margin of the
Inherited Attribute Classes Forms next to each
inherited attribute class that resulted fros the
sigration of that key class., and vrite "UPDATED"
belov the entity class number in the lowver left
corner.

If any of these inherited atiribute classes is a key
class sember itself, this task must be repeated. and
it must continue to be repeated until all key classes
and all inherited attribute classes that are contin-
gent on the original key class have been marked for
removal. Key classes and inherited attiribute classes
of all affected entity classes will be reestablished
in Tasks 8 - 10, but they may not be exactly the
same .

14. The modeler, reviewvers, and librarian participate in
revieving the Phase 3 model.

See Task 5 of Section 4.2.4.
Deviation from IDEF1:

The specially designed Relation Classes, Owned Attribute
Classes, and Inherited Attribute Classes Forms are used in place
of the following regular IDEF]l forms: Related Entity Class Node
: Cross-Reference, Attribute Class Definition (2)., and Inherited
§ Attribute Class Cross-Reference. The forms used are designed to
! facilitate loading the conceptual schema. Also, the IDEFl foras
listed below are not called for, but may be used at the
discretion of the project manager:

Attribute Class Diagram

Entity Class/Attribute Class Matrix
Attribute Class Migration Index
Refinement Alternative Diagram
Entity Class/Function View Matrix

. 4.3.5 Phase 4: Defining Nonkey Attribute Classes

N Objectives:

® Identify and define the nonkey attribute classes that
‘ are within the scope of the model.

i 4-54

Al L0 A RN AR Ol s g X p 2 W\
? K ”"i ’ h";‘ !i,‘ N .‘.'L', foart .‘m\’?'*. . N .’s‘:’tr.*'lg‘ﬁ..‘ew“s '.‘A‘.\‘ﬁ" !i,".‘k’hb '»“ "(.,‘.".»"?_1‘

UM 620141001
1 November 198%

° ldentify the entity class that own: each nonkey
attribute class

This phase iz patterned after Phase 4 of IDEFl. and the
description presented here 15 less detailed than the one in the
IDEF1 documentation Please refer Lo that docusentation for
further informsation Also. please refer to Section 4 1 3 for
details on hov to fil]l out Owned Attribute Classes Forass

Tasks :
2
R\ 1. The pro)ect manager decides what method to use to
‘u‘ review the Phase 4 model
S8ee Task] of Section 4.2 1.
:p‘ 2. The project manager schedules the Phase 4 tasks
A
»
%‘J See Task 2 of Section 4.2.1.
3. The modeler populates the model with the nonkey
. attribute classes.
S,
9}* See Task 3 of section 4.2.1.
N Assign a tag number, prefixed with "N," to each
nonkey attribute class, and record it on an Owned
o Attribute Classes Form. Check off each in the pool
R as it is used.
i' “
%b Also, review the name, label, and definition of each
e conceptual schema attribute class, record any changes
that are required on the Owned Attribute Classes Form
g where it appears, write "CHANGE" in the margin next
gﬁ to it, and vwrite "UPDATED" below the entity class
ﬂﬁ, number in the lower left corner.
.yi‘.i
o 4. The modeler defines any additional entity classes that
are introduced during this phase.
)
fﬂ Whenever a new entity class is introduced. double-
ﬁﬂ: check the conceptual schema to see if it is already
fﬁ- there. Rely on the entity class definitions more
upf than the names or labels in deciding whether a con-

ceptual schema entity class represents the same sort
of thing as a new entity class. If a new entity class

4-55

ALY ‘..u 0N

DO OO () G P\
IR \' Y s' ‘s' Ay “z" UANKY ' AN 'a‘ 'c‘.‘;‘ Nk Ry "o” 'g (0 ‘o Ly '0',\' o‘, D’, t' 1‘ u‘"u' : '_‘i'a‘b'qf-". 'n‘:'t‘i‘ ;

_

UM 620141001
1 November 1985

is already described in the conceptual schema. pre-
pare the modeling forms listed in Phase O. Task 13.
If i1t is not, immediately document it by perforaing
the tasks in Phases 1-3 that are needed to:

Update the entity class pool.

Prepare an Entity Class Definition Forms.

Update the relation class matrix.

Define the relation classes that it is involved
in. 8See Task 35 for details.

Update the overvievw diagrams.

Define and migrate its key class(es).

Update any optional documents that are affected.

S. The modeler defines any additional relation classes
that are introduced during this phase.

See Task 8 of Section 4.2.1.

6. The modeler, revievers, and librarian particpate in
revieving the Phase 4 model.

See Task 5 of Section 4.2.1.
Deviation from IDEF1:

The specially designed Owned Attribute Classes Form is used
instead of the regular Attribute Class Definition Forms to
facilitate loading the conceptual schema. Also, the following
IDEF]1 forms are not called for, but may be used at the
discretion of the project manager:

o Attribute Class Diagram
[Entity Class/Attribute Class Matrix

See Section 5.2 for instructions on how to update the CS
tables.

) 0

GO0 0)) - A
"‘:"‘u““'. ',“ﬁ"i"‘a‘{‘a“"a?!“uﬂ K ‘l*.'IUc""&’f‘:‘&e"“t""ﬂ'ﬁ‘J;'

UM 620141001
1 November 1985

s

Oo—C 4>
X, (812 ‘a——yl [”5—1

€13

D—C <4+—>
A 1 Lﬁz “T_ﬁ11 [Tﬁz

[C 3
C " < »
A] 1 B | 2 A] 1 8 12
; [C 13
'f Figure 4-7. Refinements of Nonspecific Relation Classes

. . Example

UM 620141001
1 November 1985

I L

B l2‘ B |2 oA
¢--e o4 l>

; A1 (A1

] 9] 4 D 4
, D--»>C->B-->A .
_ 0e i @00
! >
: E-.»>D-->C-->8
E)B

Figure 4-8. Triads and Other Dual-Path Structure Examples

4-58

ARG OBONOA BOACHOSOGOA0
K] K)

OO0 DO MOS0 O A
SE N N R R R HGMOGOC A IR ISR B SN .Git‘o XN MR N

i TS AL TRan 2C it

UM 620141001
1 November 1985

Part Number is the key class of Part. 1t migrates through
each relation class to appear twice in Component Part. The
inherited attribute class that results from the left relation
class could be named “Assembly Part Number: and the one from the
right could be called "Component Part Number“ to associate each
with the appropriate relation class.

|PA A
PART 1
IS IS
COMPQOSED USED
OF AS

O O

ASSY PART NUMBER
COMP PART NUMBER

ICOMPONENT PART| 2

Figure 4-9. Migration Through Two Relation Classes Example

4-59

n .

o A AT BT AT LB B AT Wiy 4%) 3 0%y ¥ v
[r.s-’valub b \en.-"a‘._".a.‘;..,'.b?‘ﬂ’"ﬂ,“gﬁ'ﬁ’_ L",“i

UM 620141001
1 November 1985

A. In a one-to-sero-or-one relation class the key class of
the dependent is usually the same as that of the
independent :

PART NQ {EMP NO [EMP ND ISTAT. DD |

[PART | 1| [€mPLOYEE]+ EMPLOYEE | [sTation | :

1S 1S 1S HAS
PART NQ (EMP ND: [EronD
(BUYER NO) STATION NO

‘ ‘ STATION
MFG PART |2 BUYER]2 "OPERATOR | 3

Figure 4-10. Guidelines for Determining Key Classes of
Dependent Entity Classes

4-60

OO0 \ RN
“":9?.!'r~~f'.‘.',\|'.ﬁ\ H 4‘_1.1‘.\“ :

UM 620141001
1 Noveaber 1985
B The key class of an entity class that was derived to
refine a sany-to-many relation class is usually composed
of attribute classes 1nherited froa the Lwo i1ndependent
entity classes:
;
"-'
3
‘g
i
:
R
a:~
:
& VELDOR NQ [PART ND [PazT N
L
' VENDOR | 1 PART {2 PART |2
K.
o IS 1S 15
i FROVIDES SUBJECT COMPQOSED USED
o TO OF AS
v
3 O O O O
KX VENDOR N ASSY PART NQ
" [PART NO COMP PART NO
o QUOTE |3 COMP PART | 2
0
R
N
‘i
)
4
! Figure 4-10. Guidelines for Determining Key Classes of
Dependent Entity Classes (Continued)
4-61
%

.ﬂ

13

DML MM IR AR e, SRSV T LY ' P, N Ly
D e S SR PON iy P L e M - CUC R T O SO G PO L T

C WA e A 0 . AN A ageE w - ~,~ -- 3 o) \ f\.?\ﬁ .
AR MR e s I':f\'a “!‘.‘..".r LA U ‘h ol

UM 620141001
1 November 1985

C. In this exanpie. Bin Wrhs No and Item Wrhs No always have
the same value so only one must be in the key.

D. In this example, Proj Plan No and Tool Plant No do not
alwvays have the same value, s0 both must be in the key
class.

JEs R HD W/ AREHDUSE 19 PLANT NO eLas g

PAST 1O BN NO [EBQUECT O 100G

WAREHOUSE WAREHOUSE

STOCK ITEM 1 ISTOCK BIN 2 PROJECT K TO0L s

1S
(3 1S
STee? CONTAINS BASIS INVDVES
FOR ~

O O O O

{SIN YEHS NO Poz. o an.uc
BINNO PART NOQ PRl T N }
ITEM WARKS NO 100, o att ey
_BIlM_IYEhT_l 3 m 3

Figure 4-10. Guidelines for Determing Key Classes of Depender:
Entity Classes (Continued)

4-62

RD-R181 377 IITEGRRTED IMFORMTION SUPPORT SYSTEN (HSS) VOLUNE 3 2/4
0 NOM DATA NODEL S (U) GENERAL ELECTRIC
SCHENECTADY NY PRODUCTION RESOURCES CONSU

UNCLRSSIFIED D ROLLINS ET AL 81 NGOV 85 U--6208141081 F/G 572

I A -

v*‘d." ,- ,b b ‘n 5“

¢ K
v o ‘p A H . b,e%-,w ‘:.'. ;‘. t* %
w, ‘ “

*eEFEEE E
EEEE
FEEE

er
r
13

‘ Mﬁ“‘ "u
.l ‘ ‘
[k

'l

1,

\\
a' e
C‘ ;.5'

o‘, A E‘ : \:"‘.s Y f',i“,n

ul,. c" ' u'

s"

UM 620141001
1 November 1985

SECTION 5

MAINTAINING THE CDM

5.1 Methodology Overview

The CDM database can be maintained by either or both of the
following two methods:

1. Using the NDDL Commands

2. Directly loading the CDM Tablecs

Direct loading of the CDM Tables is discussed in Section
5.1.2. The use of the NDDL is the recommended approach and is
discussed in the next section.

$.1.1 Using NDDL with the CDM Tables

The Neutral Data Definition Language, hereafter NDDL, is an
interpretive language that was developed to populate and
maintain the CDM database. Figure 5-1 contains a list of NDDL
commands .

As detailed instructions on the use of NDDL are provided in
the NDDL User’'s Guide UM620141100, this manual will not describe
NDDL syntax and only references NDDL commands, within the
context of the methodology.

Alter Allas
Alter Attribute
Alter Domain
Alter Entity
Alter Map

Alter Model
Alter Relation
Check Model
Combine Entity
Compare Model
Copy Attribute
Copy Description
Copy Entity
Copy Model
Create Alias
Create Attribute
Create Domain
Create Entity
Create Map
Create Model
Create Relation
Create View

Figure 5-1.

NDDL Commands

UM 620141001
1 November 1985

Define Database
Define Record
Define Set
Describe

Drop
Drop
Drop
Drop
Drop
Drop
Drop
Drop
Drop
Drop
Drop
Drop
Drop
Halt

Alias
Attribute
Database
Domain
Entity
Field
Keyword
Map
Model
Record
Relation
Set

View

Merge Model
Renane

NDDL Commands

UM 620141001
1 November 1985

§.1.2 Direct Loading of the CDM Tables

This section explains how to load each of the following
tables in the conceptual schema portion of the CDM database:

Attribute Class Table

Attribute Use Class Table

Data Type Table

Entity Class Table

Inherited Attribute Use Class Table
Key Class Table

Key Class Member Table

Relation Class Table

The following paragraphs are arranged alphabetically by
table name.

5.1.2.1 Attribute Class Table

Source Documents:

Owned Attribute Classes forms from the IDEF] model.
Instructions:

Create one table entry for each page entry.

Table Field Source Field

AC No A.C. No. column. Use the number
following the "A"; do not include
the "A" itself.

AC Name A.C. Name & Label column. Use
the noun phrase that is not in
parentheses.

0 0421)

N

WL

UM 620141001
1 November 1985

Table Field Source Field

AC Label A.C. Name & Label column. Use
the noun phrase that is in
parentheses; do not include the
parentheses themselves. If there
is no noun phrase in parentheses,
use the A.C. Name noun phrase.

EC No Node (lower left corner). Use
the number following the "E"; do
not include the "E”" itself.

Type 1D Type ID column. Use the letter
to the left of the parenthesis.

Max Att Value Len Type ID column. Use the number
that is in parentheses. 1If there
is a decimal point in the number,
only use the portion to the left
(i.e., the integer portion).

Max Att Dec Len Type ID column. If there is a
decimal point in the number in
parentheses, use the portion to
the right (i.e., the decimal
portion). Otherwise, leave blank.

Example:

From the sample form in Figure 5-2, the resulting Attribute
Class Table would be as follows:

Max Max
Att Att
AC EC Type Value Dec
No AC Nanme AC Label No ID Len Len
24 Item Identification Item ID 8 C 10
29 Item Description Item Desc 8 Cc 50
26 Item Name Item Name 8 C 24
27 Item Length Item Length 8 N 8 2
28 Item Quantity Item Qty 8 N 6

UM 620141001
1 November 1985

a1dwex3 wio4 S9sse[) 29NqIIIV PAUAD

-g-g aandid

||— Np— $asse|D eINQUIY PaumQ —_— 83 300N

e N
D P S i S

(9N e~ W2¥ Ayueng wey 251
B Y e S S

(ZoN T 2y yibusy wey 151
———
—_ e l-\o\l:\ll!\/\l\)\

v2)o e e~ | 92V owen wey 0S4
PO S eamma o S o)

(2saQ wiy)

(0s)o e T s2v uondPseQ Wy 6rl
g
gy e PR i Ve

Ot way)

3] (0)o Y~ vev UmBIYHUBP| W) oy

ON'ON| Q1 - "ON - “oN

j0IqN | edh| uoniugaQg ‘O'vY oV |2qeT g sweN 'Oy be)

NOVLV DI KN4
TION WO 1 0L 69 9SS CZ 1 SUON
14v) A '12310ud
IXAUNOD [lIva UKIvRI ONIMIOM ‘31va UOHLWY wvasn

Py : -
.1\..-". - - w ¥ ow

~ e om we Se

UM 620141001
1 November 1985

5.1.2.2 Attribute Use Class Table

Source Documents:
o4 1. Owned Attribute Classes forms from the IDEFl model.
2. Inherited Attribute Classes forms from the IDEF]1 model.
Instructions:

Create one table entry for each entry on either type of
v page.

g Table Field Source Field

Tag No Tag No. column. Use the number
g following the "T"; do not include
N the "T" itself.
)
" Tag Label A.C. Name & Label column on an
Owned Attribute Classes page; Tag
8 Label column on an Inherited
Attribute Classes page. Use the
noun phrase that is enclosed in
parentheses; do not include the
parentheses themselves. If there
is no noun phrase in parentheses,
use the noun phrase that is not
enclosed in parentheses.

- -

- - - e

EC No Node (lower left corner). Use
. the number following the "E"; do
' not include the “E” itself.

" AC No A.C. No. column. Use the number
following the "A"; do not include
: the "A" itself.

W,

PR

5-6

0 B OIOU A DROL O OO AL Py 105 X0 » < B aanare
‘)‘!x"w"“,'t,"i.',.‘ ':': A M l,"‘-",.L'Aiﬁ‘l‘\g’\‘..‘ﬁ.v'.‘."‘?p‘"i'"("‘,"',“‘ R ":‘L‘Jh’;:.l e SR BAAN BN O

UM 620141001
1l November 1985

" Example:

From the example form in Figures 5-2 and 5-3, the resulting
Attribute Use Class Table would be as follows:

\. Tag No Tag Label EC No AC No
§ 48 Item ID 8 24
49 Item Desc 8 25
I 50 Item Rame 8 26
¢ 51 Item Length 8 27
. 52 Item Qty 8 28
o 105 Op Plan ID 20 68
B 106 Iss Resource 1D 20 76
107 Ben Resource 1D 20 76

v 108 Stock Area 1D 20 83
o 109 Item ID 20 24
s

W

|:.

fll

E‘«.

o

.

i

i

i

W,

.‘

:l

[}

"

"

o

2

m;'

" 5-7

: o

DA OO UL W A L AL ML A e 3 0 ¥
AP AT ANAE AL AR RN IR

UM 620141001
1 November 1985

a1duexy swiod Sassel) 94nqiIllV PajtIayul -"g-g aandrd

n £ u 023
, _ . $asse|)) 8inqully pauiayu) —_—
(Qy uoy)
Ag pajadaq sy crl (3] oc3 ey uorjedynuapy Wey| 6011
{01 B2y %201S)
Ag parandaq s vl (3] oc3 cov UOREIYJUIP| BENY ¥I0IS o0l
(01 s01n0s 3y uag)
wo14 Iyoudgq M esi 3] 123 9LV | uosedyuspy sanosey Suyeveg 0L
(Q1 @050y SS1)
sanssy 651 [$"] 123 v UOHEIYHUIP| 82iN0S3Y Sunss) 9014
(1 vnd 9O
SRy "L (3] 143 o9V uoKENUIPE UeLY UONERdO $0iL
ON O e 'Y yied voein ONDBEL ToN O3 [ONJJ[oN teqe 9 bey N
oo | 12981 'Y wed uouesbiy “pul Py o | oy bey
NOILV I WINd
IO 08608295 C2Z 1 SUON
10 A3y 1930044
JAX3WN0 [AIv0 UV Ry ONDRIOM 31vQ UOHLWY v aIsn

5.1.2.3 Data Type Table

Source Documents:

None

Instructions:

UM 620141001
1 November 1985

Create one table entry for each data type.

Table Field

Type ID

Type Desc

Example:

Type ID

HOZ0

5.1.2.4 Entity Class Table

Source Documents:

Source Field

Assign a letter or numeral to
identify the data type.

Briefly describe the data type.

e Desc

Character
Numeric
Date
Time

Entity Class Glossary forms from the IDEFl model.

Instructions:

Create one table entry for each glossary form.

Table Field

EC No

EC Label

EC Name

Source Field

Node (lower left corner). Use
the number following the "E"; do
not include the "E" itself.
Second line in central area.

First line in central area.

OO ;
‘,‘33‘:'- e ﬁ"&'*

UM 620141001
1 November 1985

Example:

From the example form in Figure 5-4, the Entity Class Table
would be as follows:

. EC No EC Label EC Name

) 35 User Assign User Assignment

- e

- o o -

|
et o s . T < T L o Y o]
q'ﬁ’a}‘.vf‘ ¥ 4‘(‘3,’!.; bo AR i I A T U A DA Y

AR MY,
1'391"»‘-““:,‘.

UM 620141001
1 November 1985

CONTEXT:

DAIF

1¥ADFR

1 COMMENDED

PUR ICATION

x | wonkmng
DIWFT

g
:
K>
3%
-]
o
[)
EN
3T ©
$ -
SR
(4]
8% ¢
E 8
%
o
¥
=]

User Assignment

Entity Class Name

User Assign

Entity Class Label’

Such assignment allows decision 10 be made in a conlroltable manner.

Each assigned individual is uniquely idenhfied by a user idenlifior

Specific individuals are assigned responsibiklies for 8 variely of roles.

Enity Class Defimtion;

NUMIMC R

User Assignment

TILE

€35 Gt

5-11

Entity Class Glossary Form Example

Figure 5-4.

e mEweYoHnwToTvewwow

UM 620141001
1 November 1985

$.1.2.5 Inherited Attribute Use Class Table

Source Documents:
' Inherited Attribute Classes forms from the IDEF]l model.
M Instructions:

g Create one table entry for each page entry.

W Table Field Source Field

L)

A}

,ﬁ Tag No Tag No. column. Use the number
& following the "T"; do no include
W the "T" itself.

; KC No Ind. K.C. No. column. Use the

o number following the "K"; do not

include the "K" itself.

2 Tag No of Key Mem Ind. Tag No. column. Use the
number following the "T"; do not
include the "T" itself.

R
- .

Ind EC No Ind. E.C. No. column. Use the
number following the "E"; do not

- -
-

O include the "E" itself.

H Dep EC No Node (lower left corner). Use

f, the number following the "E"; do

f not include the "E" itself. i
K |
g RC Label Migration Path R.C. Label column. ‘
: {
o |
™ !
e

x

§

A

K

!

i 5-12

e |

------ 1 N Y W N

" " -
2T, Vo L) ALY "~
(Y ,!‘a'ﬂ'a_ 'l .‘, l' l l‘ . L %4 “.l .. .l lr"'l’v"‘! () ..Q '. ‘ N

L Sl T - ." 1 . 11\,’{ :..;" ;-..'.i; LA -<--_.-:-.;_-‘\.._
T 10 00,00 Y. ‘uAnl AR A AM.-L-&M ..lﬁ'.hb&.&.:'

e

UM 620141001
1 November 1985

g Example:

W From the example form in Figure 5-5, the resulting table
would be as follows:

% Tag No of Ind Dep
W Tag No KC No Key Mem EC No EC No RC Label

34 11 20 Initiates

59 21 20 Issues

59 21 20 Will benefit from
42 30 20 Is depleted by
43 30 20 Is depleted by

105
106
: 107
) 108
b 109

o

RN 5-13

GO N ACROUOU N OUOUSES ity "a..l’t;i’_g.,'l"g,tzul_'l-* i

i

UM 620141001
1 November 1985

ardwexy wi04 Sasseld aInqiIIV PIjTIdYur -Gg-g aandig

_ EYTE! 023
- $0ss€|D 0INQUIlY Paniayu) -
Q1 wou)
Ag paidaq 5 (171 3] oc3 2y UOHEIYHUNDY Wey) 60iL M
) o
) =~
(o1 easy wor5) =
Ag pmdaQ sj 2] oc3 cov UOREXHUIPY BNy YOOI 0011 ol
(1 samosay uag) =
woIH U WM es1 (§7 123 9Ly | vonesyiuap) somosey Gumyeueg 081 <
(01 sunosay s5) -
sanss esL 3] 123 uv UoIENLUIPY eunosey Bunss) | 901L -
(O uag g0} H .
soeyny vl 3] t13 eV UONEMUUIP| LBG UONEKdO 119} .
ON O : ONDEL'ON DN | ON 3| ON ON -
. eqe viey voneit .) 19qe ¢ be .
10 30 1987 'O 4 wied 4] puj “pul puy Y 1 1 be) -
ALY -
NSO 060950 C2 1 SUON .
_ 1vin) A 12 OuUd -
x3N0o [V WXVR] ONRIOM 31v0 HONLUW avasn

Dy N e b 4

UM 620141001
1 November 1985

5§.1.2.6 Key Class Table

Source Documents:

Key Class Member Table in the CDM (i.e., the table created
with the prior set of instructions).

Instructions:

Create one table entry for each entry in the Key Class
o Member table that has a different entity class or key
v class number than any prior entry. 1If two or more entries
! have the same entity class and key class numbers, create
only one entry in this table.

Table Field Source Field
\"
jf Key Class EC No EC No
o KC No KC No

o~

v 7 e

- >

Example:

Sample Key Class Member Table
(from the example in the prior set of instructions):

P vﬂ‘--ﬁ e
T e B

EC No KC No Tag No

- 8 1 17
o 8 1 16
ﬂ 14 1 70
¥ 14 2 71
* 14 2 72

18 1 101
f Resulting Key Class Table:
Key Class EC No KC No
~ 8 1
, 14 1
i 14 2

18 1

5-15

DD ML j C Wy A W T ~zfa333?,ﬂ‘¢:'” v by

A0 A T R R e A AR A ARCE T
RSLEOOCOOO N ‘o‘t:!si';ég':‘&.—‘!5:'1’..5'9‘1 XSO ST

UM 620141001
1 November 1985

08 5$.1.2.7 Key Class Member Table

Source Documents:
1. Owned Attribute Classes form from the IDEF]l model.
v 2. Inherited Attribute Classes forms from the IDEF]l model.

- Instructions:

Ve Create one table entry for each key class member entry on
* either type of page. A key class member entry is one that
e has a number preceded by "K* in the Mbr. of K.C. No.
B column (right-most column on either type of page).
R
f Table Field Source Field
:? EC No Node (lower left corner). Use
o the number following the "E"; do
& not include the "E" itself.
)
KC No Mbr. of K.C. No. column. Use the
"y number following the "K*; do not
Q include the "K" itself.
o
] Tag No Tag No. column. Use the number
KA following the "T"; do not include
the "T" itself.

,g Example:
gt}
ﬁ. From the forms shown in Figures 5-6, 5-7, 5-8, and 5-9,
. the resulting table is as follows:
pr EC No KC No Tag No
¢y 8 1 17
X 8 1 16
14 1 70

14 2 71
X 14 2 72
W 18 1 101
M
o
n:,
v
R
ﬂ~.
vy

':x 5-16

‘ —— . . I)
OO TtV g AT Tty

UM 620141001
1 November 1985

91dwex3 wmI0o4 Sasseld 2INQII}IV paumQ -9-g aangrd

sasse)) ainqu E1) 83
||I— ‘UXMNWNN 10 eINqUIY paumO ERVITN IQON
POIOIS 87y SLWDI| BIOYM UONEIDT PRI (@190
10x (8)> o1 paubissy uonenyuep| snbiun eov UOUENNUAD] LOYEIO] iy
ON'OX[Qi v ey "ON o~ "ON
. nag ‘o'v o~ (aqeq] § sweN Q'Y
101K | @d4] oV bey
" NOILVYIRING
TIIOO N 0L 69,96 C2Z 1 SUON
1w ‘AY 12304
AWNod [ava WIGY &I ONINLIOM ‘31va UOHLNY vasn

5-17

94

hindien Al dha e il

UM 620141001
1 November 1985

d1dwex3 wio4 sasse[d aInqII}IV POITISYUI " 4-G dandid
_ A $asse|?) eInqully powIdyu; _— 83
(swmrg 207)
0} paubissy s [T{YN 1)) z3 iy SNieIS uoee0 ebesoig IV
(01 eary 2045}
10N 10 pasodwo) § £iL (Y] 623 LoV voneNgudpy vesy ebeiorg 9L
ONON| aqeq Dy yied uoueit TONDELTON DN [ONO'3| oN "ON
oam | 12981 OU wied uoueibiy pul Pl | o 19qe7 ¢ ey be)
ohﬂ“ﬂﬂu 06928 vC2Z 4 SUON
L ‘A “19300td
AXIINOD [itwl [3F ¢\ X 1] ONIDILIOM ‘3ivQ THOMUW -ava¥sn

-

e A
I dogy

e

~
- ‘!(...Av.[

5-18

FR
- Bt

Y

UM 620141001
1 November 1985

a(dwexy wI0o4 Sassse[) a4nqrIl}y paump 8- 2angrd

-] ! 9
- $asse|) eINqUIY paumQO 1 813 ;
(g 10w3)
10N TNE sakohwa yoea o) paubisse s uap] enbiun v 11 volieyquep| eehodwl 1084
ON 0N | Q) voluaQ ‘oY ON 19qe g oweN 'O’y ON
10 g | edA) ov Ge)
NOUI VI WINg
N 5] oL 69 ¢L9SrC2Z i SUON
: 10 AdY "123M0ud
AXIINGD v UV R OrEMIOM ‘31vQ HOHLNY 1va¥sn

5-19

UM 620141001
1 November 1985

a(dwex3a wiog sasseld 9InqII}IV pPaTIdYUI °6-G andrd
_ A $35SE(D SINQUIIY palIdyu| _ i3
(on 040)
zox sey €s1 1o 013 vy 1aquINN UoNe0d0 L 73
{01 430)
uoHEIgNUeD|
0% e '8 (1)] 1043 (33 4 Wd UoNNOsx 3 Uoy 030 124
{01 a0 d30)
UOREIMUIP] WeUOdUoD)

109 L] [19 104 13 Iy elg uosndex3) uonesdo oul
ON O 'Y qied voneib ON DELToN 'O D31 oN be ON
10 "o 19Qe7 D'y yied vos 4] Py U} Uy 5V ieqe] g bey Gey

o 080,95V C2Z1 SUON
1Mad A HbE 40 1Y)
aNod [uvo (T ONMIOM 3ivQ VoUW VOB

5-20

LR Y

‘

-"\ h
o §

b'w) P

AL A

3 X B
By 4t e

4

NS

ooy

LR ,
REVCSCIRC I b X il

()

5.1.2.8 Relation Class Table

Source Documents:

UM 620141001
1 November 1985

Relation Classes pages from the IDEF1l model.

Instructions:

Create one table entry for each page entry.

Table Field

Ind EC No

Dep EC No

RC Label

Min No Dep Ent

Max No Dep Ent

KC No

Source Field

Node (lower left corner). Use
the number following the "E": do
not include the "E" itself.

Dep. E.C. No. column. Use the
number following the "E"; do not
include the "E" itself.

Relation Class Label column.

R.C. Card. column. If a filled-
in diamond () is shown, enter
1 (one): otherwise, enter O
(zero).

R.C. Card. column. If a half
diamond () is shown, enter 1
(one); otherwise, leave blank.

Ind. X.C. No. column. Use the
number following the "K"; do not
include the "K" itself.

5-21

T WEWETEE W T T T T VSIS TY TR VS UWERE R RNV LR VELITRVE MY TR MR M T T .——-m..‘.‘T

UM 620141001
1 November 1985

N Example:

A From the example shown in Figure 5-10, the resulting table
is as follows:

o Ind Dep RC Min No Max No KC
ﬂﬁ EC No EC No Label Dep Ent Dep Ent No

Rt 11 13 Is
11 61 Has
‘ 11 15 Is used to manufacture
e 11 14 Is
¥
B 11 10 Has
i 11 71 Has

1

(oR _Neol _NelNeo]
[
bt bt et et et ot

Bt R R O e s T Dt

! UM 620141001
DN 1 November 1985

Ind.

E.C. No.|K.C. No.
Kt
K1
Kt
K1
K1
K1

E13
E61
EtS
E10
ET

E14

DAt | context
Dep

NUMILA

1A

Dependent
Enlity Class Name

OEP Silored e Req

B
RC
Card
—é OEP Group Mermber
is Used To Manulaciure —. Op Exec Plan Pan

WOINING
S COMMEHNED
PUS ICATION

[o.17.1a1

Relation Classes

DATE
ey

Relation Classes Form Example

Relation Class
Label

Has

Figure 5-10.

TIME

NOTES ' 2) 456789 10

AUTHORN
MoUECT

7
Independent
Entity Class Name

!
Op Exec Plan
Op Exec Plan
Op Exec Plan
Op Exoc Plan
Op Exec Plan
Op Exec Plan

EN

K
.
USEO AT

o 4 5-23

“o

.. ety
A y U | .
XA N V) ‘,_ " 0‘4"5"»“:"‘\‘ “.s‘, m't‘,‘a‘p why Wl T ,’u p"v AR .“‘: 't" ah l*c . aﬁg o ot

AP

‘

{

>

Rogps

N

it UM 620141001
- 1 November 1985

'y 5.2 Loading the Injtial CS Description
N
. Objective:
X ° Load the descriptions of the entity, relationm,
N attr.bute, and key classes contained in the model
w into the following tables in the CDM database:
b
o Entity Class Table
Relation Class Table
Attribute Class Table
; Attribute Use Class Table
A Key Class Table
£ Key Class Member Table
o Inherited Attribute Use Class Table
: If the CDM tables are to be updated with the NDDL
! commands, skip to Section 5.2.2.
)
% §.2.1 Direct Loading of the CS CDM Tables

Please refer to Section 5.1.2 for details on how to load
these tables.

£ Tasks:

1. The CDM Administrator loads descriptions from the
Entity Class Definition Forms.

0 Create one entry in the Entity Class Table from each
" form.

" 2. The CDM Administrator loads descriptions from the
Relation Classes Forms.

& Create one entry in the Relation Class Table from each
P line on each form.
v:
b

3. The CDM Administrator loads descriptions from the Owned
Attribute Classes Forms.

Create one entry in the Attribute Class Table from each
i line on each form.

4. The CDM Administrator loads descriptions from the
Inherited Attribute Class Forms.

I A A o P o o & g T RO Or S O R U T L B R A I RSO A G YU SR LTS T 3
LML N y \ i PR) : y ")
"*"5‘&"-‘*’7'\»?% Sy {) M ! _ Anat - A0 s BARCOCHELENY T)- L~ ") .

UM 620141001
1 November 1985

Create one entry in the Inherited Attribute Use Class
Table from each line on each form.

Create one entry in the Attribute Use Class Table from
each line on each form.

Create one entry in the Key Class Table for each key
class number in the Mbr. of K.C. No. column, if any.

Create one entry in the Key Class table for each key
class number in the Mbr. of K.C. No. column, if any,
unless a duplicate entry is already in the table.

5.2.2 Loading the CS with the NDDL

Objective:

Task:

Load the descriptions of the entity, relation,
attribute, and key classes contained in the model into
the CDM database with NDDL Commands.

The CDM Administrator loads the domains for the
attribute classes from the Owned Attribute Classes
Forms.

For each attribute, use the NDDL CREATE DOMAIN command
to load domain(s) and data types. Data type is
indicated by the Type ID column on the form.

The CDM Administrator loads the attribute classes from
the Owned Attribute Classes Forms.

For each attribute class, use the NDDL CREATE ATTRIBUTE
command .

The CDM Administrator loads the descriptions for the
attribute classes from the Owned Attribute Classes
Forms.

For each attribute, use the NDDL DESCRIBE ATTRIBUTE
command.

e ik aia aih RO HWR TG ETTEETTRTTR YRy YT RSV EETRSC Y T T T T Te T e YT

UM 620141001
1 November 1985

4. The CDM Administrator loads the entity classes from the
Entity Definition Forms.

For each entity class, use the NDDL CREATE ENTITY
command .

Note:

The attributes for independent entity classes come from
the Owned Attribute Form. The attributes for dependent
entity classes come from both the Owned Attribute and
Inherited Attribute Forms.

5. The CDM Administrator loads the descriptions for the
entity classes from the Entity Definition Form.

For each entity class, use the NDDL DESCRIBE ENTITY
command .

6. The CDM Administrator loads the relation classes from
the Relation Classes Forms.

For each relation class, use the NDDL CREATE RELATION
command .

7. The CDM Administrator loads the descriptions for the
relation classes.

Use the NDDL DESCRIBE RELATION command.

5.3 Modifving/Deleting CS Elements

Prior to modifying or deleting elements of the CS. the CDM
Administrator must assess the impact of the proposed change on
the other components of the CDM. The objective of this section
is to provide the CDM Administrator with an approach to the
analysis of the impact that a change in the CS might have upon
the other areas of the CDM or on software modules, such as user
APs and generated APs.

The approach that is taken in analyzing the impact that a
change to the CS might have to other areas of the CDM, or to a
software module, is to list the changes that might be made, and
then for each of those changes, to identify the other changes
that would have to be made -- either in the CS, or another
schema, or in an ES-CS, or an 1IS-CS mapping, or in a software
module. Changes that do not impact any other areas are omitted.

o
- - -
PR

UM 620141001
1 November 1985

lﬁﬁ A similar section appeares in the discussions that follow on
}Eg the Internal Schemas and the IS-CS Mappings and on the External
e Schemas and the ES-CS Mappings, Sections 6 and 7 respectively.
.ﬁg The following assumptions about the nature of the changes
I to the Conceptual Schema and the sequence in which they are made
e have been taken in order to perform the analysis:

1. If the updating the CDM tables directly, components of
the conceptual schema are added in the following sequence:

D ° Entity classes

U ° Attribute classes

gi‘ - An owned attribute class for each

Lo - An attribute use class in the owner entity

class for each

O ° Key classes
w& ° Key class members
el ° Relation classes
S - An inherited key class for each
W - An inherited attribute class for each
member of the key class that migrates to
i become the inherited key class
e - An attribute use class for each inherited
lﬁﬁ attribute class
:0'?'0,
Rt 2. If using the NDDL, components of the conceptual schema
. are added in the following sequence:
R
e ° Data types
e ° Attribute classes
ot ° Attribute domains
KAl ° Entity classes
° Relation classes
’_:,‘_,e.
Egﬁ 3. All changes in the conceptual schema that are needed to
3@; support a change in an external or internal schema are made
?Q‘ before the external or internal schema is changed.
—_ 4. All changes in the conceptual schema that are needed to
@ﬁ‘ support a change in an ES-CS or 1S-CS mapping are made before
e the ES-CS or IS-CS mapping is changed.
u;"i
ﬁy 5. A change in the name or definition of a component of the
e conceptual schema is for cosmetic purposes only and does not

alter the basic meaning of that component.

0000, 0 87 Qg 0% 0%, ¥y 1T Ny N . NS y
RN O R OO OO

: DOOOOLN O
BTN R WA IENN)

UM 620141001
1 November 1985

Finally, a note of explanation about how the changes and
their impacts are ogranized. Only the direct impacts of a
change are listed with it. 1If one change results in a cascade
of other changes, only the first in the cascade is listed with
¢ the initial change. Each subsequent change is listed as an
K impact of the one immediately before it. So to find the total
v extent of the impact of a change, one must trace from the :
initial change to each change that it results in and then to '
each in which that change impacts.

Figure 5-11 shows the relationship between the change and

; the part of the CDM that may be impacted by the change.

¢

* | OVERVIEW I A change to: I
] MATRIX e ettt e e b ittt i J

lemmmme e I Ent.1 Att.) Att.! Key iIKeyCl! Rel.| Inh.!| Inh.!I

IClassiClassiIUseCliClass| Mbr.|Class|KeyClIAttCli

R ittt [R - lmeme R oo e R

I1Att. Class I X
tAtt. Use Cl. |

IKey Class 1 X

b iKey Class Mbr|

A IRelation C1. | X

> iInh. Key Cl. |

IInh. Att. Cl.|

: iOwn. Att. Cl.1

IUser View |

IData Item |

IEC-UV Join |

IAUC-DI Map. |

5 iIRecord Type |

: IData Field]

!

|

|

!

!

|

|

3
i
|

- - -t

M d M M M

IEC-RT Join
IEC-RT Map.

b tAUC-DF Map.

§ IAUC-Set Map.

! IDF Index

g IRC-Set Map.
iSoftware Mod.

L]

Figure 5-11. 1Impact of Conceptual Schema Changes

R MO

)
),

B UM 620141001
1 November 1985

S 5.3.1 Entity Class Changes

°® Add a new entity class.

No other impact.

! ° Change an entity class name.

No other impact.

e ° Change an entity class definition.

No other impact.

Y ° Change an entity class keyword.

No other impact.

° Delete an entity class.

«
N If the entity class has any owned attribute classes,
" either delete them and the corresponding attribute
classes, or change their ownership to another entity

class.

Note:

If using NDDL, the DROP ENTITY command will:

- Delete any owned attribute class occurrences.

- Remove attribute use, inherited attribute, key
class member, and key classes.

Iy - Delete all relation classes for the entity.

L - Delete any keywords associated with the entity.

N - Delete all description texts for the entity.

Delete all the key classes for the entity class.

¥ Delete all the relation classes in which the entity
o class is either independent or dependent.

o0 Delete any EC-RT mappings in which the entity class

g is involved and any corresponding horizontal
partitions and constraint statements and others.

5-29

ERER A . B O T LRSI
g»iﬂ’.‘;‘; "y [SEMCEINE Urbe LA

b qu'gf,a,

UM 620141001
1 November 1985

5.53.2 Attribute Class Changes

LGy g,c.

9 ey A8 Py
t 1' 5’ "' Ig‘w‘ ‘Q 3"

Add a new attribute class.

Add an owned attribute class to specify the entity
class that owns the attribute class. Add an attri-
bute use class in that entity class to represent the
attribute class.

Note:
If using NDDL, the CREATE ATTRIBUTE command will:

- Add a new attribute class

- Associate a domain with the attribute class.
- Create keyword references for the attribute.
The NDDL CREATE ENTITY command is used to add key
classes and owned attributes.

Add an attribute class data description for the
attribute class.

Change an attribute class name.

No other impact.

Change an attribute class definition.

No other impact.

Change an attribute class keyword.

No other impact.

Change the owner entity class of an attribute class.
This is the same as deleting the attribute class and
then re-adding it with a different owner entity
class.

Change the data description of an attribute class.

This requires at least the recompilation of all

5-30

(] 4, !‘f t BOPEOUON0 (] WY,
,t '4|,‘,=‘l,o, h! *,u DAIRSHIKY " R) *,» HOROUTEAS X .i,‘,c Yy '.‘o‘.f|'§~A .t’g.

|:l t

!‘:‘ . fg"

UM 620141001
1 November 1985

software modules that access the attribute class. It
may also involve changing the data descriptions of
the data items and data fields that map to the
attribute class.

1. Identify all the attribute use classes that
correspond to the attribute class.

2. Identify any data field to which those attribute
use classes map.

3. If the data descriptions of any of those data
fields are incompatible with the new data
description of the attribute class, change those
data field data descriptions.

4. Identify any data items which map to the attri-
bute use classes from Step 1.

5. If the data descriptions of any of those data
items are incompatible with the new data
description of the attribute class, change those
data item data descriptions.

6. Identify all the software modules that use any
of those data items.

7. Recompile all those software modules, even if
none of the data item data descriptions or data
field data descriptions were changed.

Note:
This section can be ignored when using the NDDL.

° Delete an attribute class.

Delete the owned attribute class for the attribute
class.

Delete the attribute use class that represents the
attribute class in its owner entity class.

Delete the attribute class data description for the
attribute class.

. UM 620141001
1 November 1985

A 5.3.3 Attribute Use Class Changes

" Note:
If using the NDDL, the ALTER ATTRIBUTE command will:

) - Change domains

K - Add keywords
i - Drop keywords
° Add a new attribute use class.

The addition of an attribute use class is never
initiated on its own; it is always the result of one
of the following conceptual schema changes:

A 1. The addition of an attribute class

W

Q 2. The change in ownership of an attribute class
o

. 3. The addition of an inherited attribute class
N No other impact.

7*

M

i ® Change an attribute use class name.

No other impact.
® Delete an attribute use class.

The deletion of an attribute use class is never
' initiated on its own; it is always the result of one
of the following conceptual changes:

2

% 1. The deletion of an attribute class

)

, 2. The change in ownership of an attribute class

3. The deletion of an inherited attribute class

A
g Delete any key class members that the attribute use
: class is used as.

If the attribute use class maps to any data items,
either delete the AUC-DI mappings and the data items,
or change them to map to other attribute classes.

5-32

-

o vy v v v “r -
a7 O 0T 0 U AT 8 Ve QAT { e I RS) . » LA A 2
A A oy v.’*’td’&‘*"“',-.’ff?".’tf"!“'.‘5,f'e‘f!:’.‘l;‘!'q‘_'-'a k) ..‘:' ."‘i’i‘t ;"‘&.* il ‘:'M""‘ i), aate .‘!!":!"J’

&

L
yzﬁg"c

5.3.4 Key

UM 620141001
1 November 1985

If the attribute use class maps to any data fields,
either delete the AUC-DF mappings and the data
fields, or delete only the mappings leaving the data
fields unmapped, or change them to map to other
attribute use classes.

Delete any repeating data field indexes that the
attribute use class is used as.

Delete any AUC-Set mappings for the attribute use
class.

Class Changes

Note:

If using the NDDL, the DROP ATTRIBUTE command will:
Delete the attribute; if owned, all occurrences
of the attribute are removed from owned
attribute, attribute use class, key class
member, and inherited attribute use class.

- The attribute use class is deleted from the
model .

- Those key class occurrences with no remaining
key class members are deleted.

- If a key clas is deleted, the occurrence of a
complete relation is also deleted.

- All keywords associated with the attribute class
will be dropped.

- The primary name and all aliases for the
attribute class will be deleted.

- All description texts for the attribute class
will be deleted.

Add a new key class

Add a key class member for each attribute use class
that is part of the key class.

Delete a key class.

Delete all the key class members that belong to the
key class.
Delete any inherited key classes that the key class

5-33

Q7 WA Y T A Lo o Ly S

WA W I S -

UM 620141001
1 November 1985

has migrated to become.

5.3.5 Key Class Member Changes

Note:
If using the NDDL, the CREATE ENTITY or ALTER ENTITY
commands are used to add or delete key classes.

° Add a new key class member.
‘ If the new member is being added to a key class that
t has migrated to become one or more inherited key
1 classes, add a corresponding inherited attribute
j class to each of those inherited key classes.
] Delete a key class member.

q Delete any inherited attribute classes that the key
b class member has migrated to become

If the key class member is the last or only member of
the key class, delete the key class also.

g 5.3.6 Relation Class Changes

L

; Note:
If using the NDDL, the CREATE ENTITY or ALTER ENTITY
commands are used to add or delete key members.

° Add a new relation class.

Add the inherited key class for which the relation
class is the migration path.

° Change a relation class name.

No other impact.

L e e o ae s

° Change a relation class definjition.
r No other impact.
® Change a relation class keyword.

No other impact.

o Change the cardinality of a relation class.

5-34

e il el B

v y Uy Vo 090
t 'u, ;! W “h [) “\, "I ",Q : v. At/ R ; I ¥ l‘n, "(l.» AN Y, Ip LA ‘:&,5'13?0‘1?5‘-.l'r'!'.r‘t'gh'-)ﬂ I’, 15,0, X &J‘l [lﬂ QOO X

v UM 620141001
- 1 November 1985

ﬁq Only the cardinality for the entity class that is
o dependent in the relation class can be changed, not
that for the independent entity class; i.e., a
& relation class cannot be changed from specific to
ﬁﬁ: nonspecific. When the cardinality changes from 1:0-1
Wy to 1:M, usually one or more members must be added to
$& the key class of the dependent entity class. When
BRA the cardinality changes from 1:M to 1:0-1, usually
one or more members must be deleted from the key
K class of the dependent entity class.
o
e ° Change which key class migrates through a relation
adk class.
."":‘
- This is the same as deleting the inherited key class
At for which the relation class is the migration path
g and then re-adding it for a different migrating key
R class.
1::‘:
?§ ® Change which entity class is independent in a
relation class.
by
by This is the same as deleting the relation class and
iy then re-adding it for a different independent entity
I class.
B
;s o Change which entity class is dependent in a relation
By class.
ol
;§ This is the same as deleting the relation class and
! then re-adding it for a different dependent entity
e class.
W ' Delete a relation class.
Tt
ﬁs Delete the inherited key class for which the relation
%ﬂ class is the migration path.
0."'
Note:
N If using the NDDL, the CREATE RELATION, ALTER
it RELATION, and DROP RELATION commands are used for
[gé relation class changes. The CREATE RELATION command ‘
0% can: ‘
a - Add a new relation to the model.
' - Add cardinalities for the entities of the
~j§ relation class. ;
)
e
o 5-35

~

T l_«lA;, P20 N0y At 5» '; L ', ,!. l"
. : . J

ST g T ey S i N
T, e NUMIR "‘ 'h.""!..‘.'*.'f:‘:‘“‘ Oiad "'?x""z‘ ".' ’L»’h‘y a‘a‘M‘H' "'.o AR ? T ' X ' N

UM 620141001
1 November 1985

-
o W

- Record key class migration.

- Add keyword references for the relation.

- Create an attribute use and an inherited
attribute use class for the dependent entity
class for each key class member of the
independent entity migrated to the dependent
entity.

The ALTER RELATION command can:

- Change cardinalities.

Change key class migration.

- Change keyword references.

The DROP RELATION command will:

- Remove attribute use and inherited attributes
from the dependent entity and any other entities
to which they have migrated.

- Delete the relation class from the model.

o - Drop all keywords associated with the relation

3 - Delete all description text for the relation.

. on o~

a
(e

oy e
~ oo D,

- -

o 5.3.7 1Inherited Key Class Changes
® Add a new inherited key class.
The addition of an inherited key class is never
initiated on its own; it is always the result of one
¥ of the following conceptual schema changes:

1. The addition of a new relation class

ﬂ 2. The change of which key class migrates through a
B relation class

Add an inherited attribute class for each member of
the key class to which the inherited key class

i corresponds.

.) Delete an inherited key class.

‘ The deletion of an inherited key class is never

n initiated on its own; it is always the result of one

of the following conceptual schema changes:

1. The deletion of a relation class

2. The change of which key class migrates through a

5 relation class

5-36

ROSLACE OGS 0 OO0 1 J /
4’:, ,f\ LN “Y m .1 Y b, LA .‘ ‘i ;l 4' ‘u l".""h‘ A lhg!,.t: .l:..l.g.t'.'t Jh e g’vﬂt -“ ’Q'.,,’. “M .‘!’ “ y “ ﬂ:e";‘?‘v

UM 620141001
1 November 1985

Delete all the inherited attribute classes that
belong to the inherited key class.

Delete any EC-UV joins for which the inherited key
class is the basis, and change the corresponding user
views as necessary to account for the deleted joins
or delete those user views entirely.

Delete any EC-RT joins for which the inherited key
class is the basis, and change the corresponding
record types as necessary to account for the deleted
joins or delete those record types entirely.

Delete any RC-Set mappings for which the inherited
key class is the basis.

Note:

If using the NDDL, inherited key classes are added,
changed, or deleted with the CREATE RELATION, ALTER
RELATION, and DROP RELATION commands.

5.3.8 1Inherited Attribute Class Changes

) Add a new inherited attribute class.

The addition of an inherited attribute class is never
initiated on its own; it is always the result of one
of the following conceptual schema changes:

1. The addition of an inherited key class

2. The addition of a key class member

Delete the attribute use class that represents the
inherited attribute class in the dependent entity
class.

Note:

If using the NDDL, inherited attribute classes and
key class members are added, changed, or deleted with
the CREATE RELATION, ALTER RELATION, and DROP
RELATION commands.

W L s b ok Sk Al i Ak daL Ada Ake ala Aba Aie AR il o Ao bod sl Bl el dak -—.W

UM 620141001
1 November 1985

5.3.9 Summary

The following points are offered in summary

1.

A change in the conceptual schema can result in
additional changes in that schema, in external and
internal schemas, in ES-CS and IS-CS mappings, and in
software modules.

The information in the CDM database and the CDM1
model is inadequate for identifying the software
modules that are impacted by most schema changes.
Specifically, the following information needs to be
added:

- The data items that are accessed by a software
module that contains user views.

- The databases, record types, data fields, record
sets, record set members, and database areas
that are accessed by a software module that
accesses databases directly.

- The record types, data fields, record sets,
record set members, and database areas that are
accessed by a generated AP.

5.4 Updating the CS Tables in the CDM

Objectives:

Load the descriptions of the new entity, relation,
attribute, and key classes contained in the model
into the following tables in the CDM database:

Entity Class Table

Relation Class Table

Attribute Class Table

Attribute Use Class Table

Key Class Table

Key Class Member Table

Inherited Attribute Use Class Table

Change or delete entries in these tables to reflect
updates to the descriptions of the entity, relation,
attribute, and key classes that are already in the
conceptual schema.

i

.

UM 620141001
1 November 1985

If the CDM tables are to be updated with the NDDL
ut commands, skip to Section 5.4.2

5.4.1 Direct Updating of the CS CDM Tables

& Please refer to Section 5.1.2 for details on how to load
: and update these tables.

Tasks:
W 1. The CDM Administrator renumbers the new model elements.

Usually, some of the new entity class, key class,
attribute class, and tag numbers that were assigned
in Phases 1-4, i.e., those prefixed with "N," are the
, same as some that are already in the conceptual

o schema. No attempt is made to prevent this, because
s to do so would impede the development of the model.

W Consequently, all of the new numbers must now be

e examined, and any duplicates must be replaced.

List all of the new entity class numbers from the

o Entity Class Definition Forms in numeric sequence.
5 Compare each to those in the Entity Class Table. 1If
N a match is found, select another number that is not
¢, in the list or the table, and write it on the list

' next to the one to be replaced.

K List all of the new attribute class numbers from the !
Iy Owned Attribute Classes Forms in numeric sequence. ‘
A Compare each to those in the Attribute Class Table.
i If a match is found, select another number that is

not in the list or the table, and write it on the
. s list next to the one to be replaced.

List all of the new tag numbers from the Tag No.
column of the Owned Attribute Classes Forms and the
Inherited Attribute Classes Forms in numeric
sequence. Compare each to those in the Attribute Use
Class Table. If a match is found, select another
number that is not in the list or the table, and
write it on the list next to the one t» be replaced.

P 4. .
L =T e

o e |
- W o @ dm e

List only the new key class numbers for conceptual
schema entity classes, i.e., those in the Mbr. of
K.C. No. column of the Owned Attribute Classes Forms

5-39

lq‘l,!|l'

) e DGO 0 NN v 3
R AR A SO PR DR T T MR AR KRR Dt RO XN O

'\;”Q"
N
Wiy
"
':’}., UM 620141001
) 1 November 1985
o
ﬁﬁ and Inherited Attribute Classes Forms that have an
o entity class number prefixed with “C" in the lower
t b4 P
g left corner. List both the entity class number and
the new key class number; do not list the same pair
aﬁf more than once. Compare each pair to those in the
wh Key Class Table. If a match is found, select another
AN key class number that is not paired with that entity
ﬁg class number in the list or the table, and write it
LQ on the list next to the one to be replaced. Do not
assign another entity class number.
e
B These replacement numbers will be used to update the
- conceptual schema tables rather than the duplicated
R0 numbers on the forms.
e
;l 2. The CDM Administrator updates descriptions from the
ot Entity Class Definition Forms for conceptual schema entity
A classes.
7)'\.!
'j% Each of these forms has an entity class number
gﬁ prefixed with "C" in the lower left corner.
3 If "UPDATED" is written in the lower left corner,
Y change the corresponding entry in the Entity Class
e Table.
[0
"‘f 3. The CDM Administrator loads or updates descriptions from
) the Relation Classes Forms for conceptual schema entity classes.
il
Sr Each of these forms has an entity class number
%g prefixed with "C" in the lower left corner.
R
fmg When creating or changing table entries in this task,
o use the replacement numbers from Task 1 rather than
s the duplicated ones prefixed with "N" on the forms.
g
%)
Jit If a line has an entity class number prefixed with
,§$a "N" in the Dep. E.C. No. column, create one entry in
o the Relation Class Table.
W? If "UPDATED" is written in the lower left corner and:
W
(1)
:Qr "CHANGE" is written next to a line, change the
Q* corresponding entry in the Relation Class Table.
t’l:.’l
"DELETE" is written next to a line:
.;;
N
LT

. R I T T I -
3 O { e e it
W %S .'i.;.p,, R 20 A 2.} J -~ "\ N

e, e e e T .
NI
A V ..'-); W '1$(

UM 620141001
1 November 1985

Remove the corresponding entry from the Relation
Class Table.

Modify any CS-IS mappings and any CS-ES mappings
that are affected; see Sections 6 and 7 for
details.

"OMIT" is written next to a line, a key class did not
migrate through that relation class. That must be
done before the conceptual schema tables are updated.

4. The CDM Administrator loads or updates descriptions from
the Owned Attribute Classes Forms for conceptual schema entity

classes.

Each of these forms has an entity class number
prefixed with “C" in the lower left corner.

When creating or changing table entries in this task,
use the replacement numbers from Task 1 rather than
the duplicated ones prefixed with "N" on the forms.
If a line has an attribute class number prefixed with

in the A.C. No. column:

Create one entry in the Attribute Class Table.

Create one entry in the Attribute Use Class
Table.

Create one entry in the Key Class Member Table
for each key class number in the Mbr. of K.C.
No. column, if any.

Create one entry in the Key Class Table for each
key class number in the Mbr. of K.C. No. column,
if any, unless a duplicate entry is already in
the table.

If a line has an attribute class number prefixed with

.C.

in the A.C. No. column:

Create one entry in the Key Class Member Table
for each key class number prefixed with "N" in
the Mbr. of K.C. No. column, if any.

Create one entry in the Key Class Table for each
key class number prefixed with "N" in the Mbr.

5-41

) K L™ LT ~
,' b b q

UM 620141001
1 November 1985

of K.C. No. column, if any, unless a duplicate
entry is already in the table.

If "UPDATED" is written in the lower left corner and
"CHANGE" is written next to a line, change the
corresponding entry in the Attribute Class Table.

If “"UPDATED"
“"DELETE"

is written in the lowver left corner and
is written next to a line:

o Remove the corresponding entry from the
Attribute Use Class Table.

Remove the entry from the Key Class Member Table
that corresponds to each key class number in the
Mbr. of K.C. No. column, if any.

Remove the entry from the Key Class Table that
corresponds to each key class number in the Mbr.
of K.C. No. column, if any, unless there is
still an entry with the same e2ntity class number
and key class number in the Key Class Member
Table.

Modify any CS-IS mappings and any CS-ES mappings
that are affected; see Sections 6 and 7 for
details.

If “"UPDATED"
"OMIT"

is written in the lowver left corner and
is written next to a line:

° Remove the entry from the Key Class Member Table
that corresponds to each circled key class
number in the Mbr. of K.C. No. column.

Remove the entry from the Key Class Table that
corresponds to each circled key class number in
the Mbr. of K.C. No. column unless therc is
still an entry with the same entity class number
and key class number in the Key Class Member
Table.

If "UPDATED" is written in the lowver left corner and
"NEW OWNER" is written next to a line; make no table
updates from the line. The necessary updates will be
made from lines on other forams.

UM 620141001
1 November 1985

K 5. The CDM Administrator loads or updates descriptions from
o the Inherited Attribute Classes Forms for coneptual schema
" entity classes.

Each of these forms has an entity class number
prefixed with "C" in the lower left corner.

R Vhen creating or changing table entries in this task,
use the replacement numbers from Task 1 rather than
the duplicated ones prefixed with "N" on the forms.

If a line has a tag number prefixed with "N" in the
) Tag No. column:

i ° Create one entry in the Attribute Use Class i
Table. |
|
‘3 [Create one entry in the Inherited Attribute Use
KX, Class Table.

i ° Create one entry in the Key Class Member Table
for each key class number in the Mbr. of K.C.

o No. column, if any.

o

4

5 o Create one entry in the Key Class Table for each
W key class number prefixed with "N" in the Mbr.

ﬁ of K.C. No. column, if any, unless a duplicate
entry is already in the table.

M If a line has a tag number prefixed with "C" in the
Tag No. column:

¢

] . And a tag number prefixed with "N" in the Ind.
' Tag No. column, create one entry in the
Inherited Attribute Use Class Table.

> ® Create one entry in the Key Class Member Table
4 for each key class number prefixed with "N" in
o the Mbr. of K.C. No. column, if any.

B [Create one entry in the Key Class Table for each
N key class number prefixed with "N" in the Mbr.

e of K.C. No. column, if any, unless a duplicate
K entry is already in the table.

If "UPDATED" is written in the lower left corner and
"CHANGE" is written next to a line, change the

Kl 5-43

DUCKIOWO OO OO,
“‘..“‘ 'h‘\"h‘-'t‘,x't“,’l‘

If

If

UM 620141001
1 November 1985

corresponding entry in the Inherited Attribute Use
Class Table.

“"UPDATED is written in the lower left corner and
DELETE"

is written next to a line:

Remove the corresponding entry from the
Attribute Use Class Table.

Remove the corresponding entry from the
Inherited Attribute Use Class Table.

Remove the entry from the Key Class Member Table
that corresponds to each key class number in the
Mbr. of K.C. No. column, if any.

Remove the entry from the Key Class Table that
corresponds to each key class number in the Mbr.
of K.C. No. column, if any, unless there is
still an entry with the same entity class number
and key class number in the Key Class Member
Table.

Modify any CS-IS mappings and any CS-ES mappings
that are affected; see Sections 6 and 7 for
details.

“"UPDATED is written in the lower left corner and
“"OMIT"

is written next to a line:

Remove the entry from the Key Class Member Table
that corresponds to each circled key class
number in the Mbr. of K.C. No. column.

Remove the entry from the Key Class Table that
corresponds to each circled key class number in
the Mbr. of K.C. No. column unless there is
still an entry with the same entity class number
and key class number in the Key Class Member
Table.

6. The CDM Administrator loads descriptions from the Entity
Class Definition Forms for new entity classes.

Each of these forms has an entity class number prefixed
with "N" in the lower left corner.

]
L ‘o‘::"

9 "
DO (
A AR e

UM 620141001
1 November 1985

_f When creating table entries in this task, use the
replacement numbers from Task 1 rather than the
duplicated ones prefixed with "N" on the forms.

o Create one entry in the Entity Class Table from each
»t form.

W 7. The CDM Administrator loads descriptions from the
g Relation Classes Forms for new entity classes.

. Each of these forms has an entity class number
" prefixed with "N" in the lower left corner.

{
. When creating table entries in this task, use the
replacement numbers from Task 1 rather than the
duplicated ones prefixed with "N" on the forms.
: Create one entry in the Relation Class Table from
W each line on each form.

g 8. The CDM Administrator loads or updates descriptions from
i the Owned Attribute Classes Forms for new entity classes.

Each of these forms has an entity class number
B prefixed with "N" in the lower left corner.

g When creating or changing table entries in this task,
use the replacement numbers from Task 1 rather than
the duplicated ones prefixed with "N" on the forms.

Create one entry in the Attribute Use Class Table

)

M

¥ from each line on each form.

;ﬁ Create one entry in the Key Class Member Table for

‘ each key class number in the Mbr. of K.C. No. column,
&y if any.

o

ﬁ Create one entry in the Key Class Table for each key
" class number in the Mbr. of K.C. No. column, if any,
o unless a duplicate entry is already in the table.

o If a line has an attribute class number prefixed with
R *“N" in the A.C. No. column, create one entry in the
o Attribute Class Table.

&

4 If a line has an attribute class number prefixed with

- "C" in the A.C. No. column, change the entity class
number and anything else that is different in the

;‘-fa_' -

5-45

-~ -
-

¥
-

-\3‘-\.1'3" RS ;_". -_""(q‘(. "\’ . Ly ‘('\4‘.!_}:.' f.:_ -

LA 17 4% TN AN BT

-

)

GO O PO AT
RO R SN RN OO

e W

s,--’r'i

(:,:al'

iy UM 620141001

) 1 November 1985

e

e

idQ corresponding entry in the Attribute Class Table.

LML

1‘1.‘,\?

e 9. The CDM Administrator loads descriptions from the
Inherited Attribute Classes Forms for new entity classes.

:ﬁ; Each of these forms has an entity class number

'g& prefixed with "N" in the lower left corner.

i'vi’,

L When creating table entries in this task, use the

replacement numbers from Task 1 rather than the

o duplicated ones prefixed with "N" on the forms.

;'t",g

ey Create one entry in the Attribute Use Class Table

4{{ from each line on each form.

'9f~'ﬁ

. Create one entry in the Inherited Attribute Use Class

o Table from each line on each form.

DO,

b7 5.4.2 Updating the CS CDM Tables with the NDDL

"y

ol Objectives:

W ° Update the descriptions of the new entity, relation,

$f' attribute, and key classes continued in the model into the

wh CDM database with the NDDL.

\! .

; Tasks:

“‘:“;'i

j&% 1. The CDM administrator loads or updates CS attribute

:&f classes.

P

f&' For each new attribute class, use the NDDL CREATE

" ATTRIBUTE, and DESCRIBE ATTRIBUTE commands.

R)L For each modified attribute, use the NDDL ALTER

_xk‘ ATTRIBUTE command. The DESCRIBE ATTRIBUTE command

?Q? should also be considered.

s For each deleted attribute, use the NDDL DROP

) ATTRIBUTE command.

hg

RV Note:

& : All occurrences of the attribute are removed from the

il owned attribute, attribute use class, key class

member, and inherited attribute use class.
i
()

'.:!:Zg 5-46

O

¢ ¥

et

R

?%&‘ijy REASA AT IS SRR A0 J-”Lwﬁﬁﬁﬁﬁﬂwwwpu,ﬂ?“%ﬁ*ﬂ?ﬂhﬁkhﬁ}m&&&mhai

4 N RN

UM 620141001
1 November 1985

2. The CDM administrator loads or updates conceptual schema
entity classes.

For each new entity class, use the NDDL CREATE ENTITY
and DESCRIBE ENTITY commands.

For each modified entity class, use the NDDL ALTER
ENTITY command. The DESCRIBE ENTITY command should
also be considered.

For each deleted entity class, use the NDDL DROP
ENTITY command.

Note:

Any owned attribute class occurrences are deleted.
Also removed are attribut use, inherited attribute,
key class member, and key classes. All relation
classes involving the entity are deleted, as are any
keywords associated with the entity class. The
primary name and all aliases for the entity class are
deleted. All description texts for the entity class
are deleted.

3. The CDM Administrator updates conceptual schema relation
classes.

For each new relation class, use the NDDL CREATE
RELATION and DESCRIBE RELATION commands.

For each modified relation class, use the NDDL ALTER
RET.ATION command. The DESCRIBE RELATION command
should also be considered.

For each deleted relation class, use the NDDL DROP
RELATION command.

Note:

If a key class has been migrated, the attribute use
and inherited attributes are removed from the
dependent entity and from any other entities to which
they have migrated. The relation class and complete
relation are deleted from the model. The keywords
associated with the relation are dropped. All
description texts for the relation are deleted.

Ca AT A AR AR W T N

b2 IOMOUOTIRIACT AKX IR AR N o RSB Sl g N A W,
T Ak AR AOGCE D RO R AP ’-‘9. o 1’: LA {0 ¢

UM 620141001
1 November 1985

SECTION 6

MAINTAINING INTERNAL SCHEMAS AND MAPPINGS

6.1 Methodology Overview

This section and its subsections (6.1.1 - 6.1.4) introduce
the methodology for building and updating internal schemas (IS)
and for mapping them to the conceptual schema (CS). The por-
tion of the CDM database that contains internal schemas and CS-
IS mappings is described, and the basic approach to developing
both is presented. Detailed instructions for filling out the
modeling forms and loading the pertinent CDM database tables are
included.

6.1.1 IS and CS-IS Mapping Structure

There are various generic database models (CODASYL,
relational, hierarchic, etc.), and most database management
systems (DBMSs) are based on one or another of them. 1In
addition, a particular model may be modified or extended for a
particular DBMS. Each of these models generates its own style
of internal schema. While many internal schema components are
common to all styles, some are peculiar to only one or a few.
The CDM does not contain a separate structure for each style of
internal schema. Instead, a single, composite structure that
can support any style is provided. Each internal schema
component is represented by one entity class, regardless of how
many styles that component is in. The relevant entity classes
for each style are listed in the appropriate "Specific
Considerations” section 6.3.1, 6.4.1, etc.). 1In general, they
cover:

DBMSs

Databases

Record Types

Data Fields

Record Keys

Record Relationships

The mapping between the conceptual schema and an internal
schema has three levels:

Entity class to record type

Relation class to record relationship
Attribute use class to data field

O .wl~

A il 3 ’ ML Y) () ¢
s o8 s x’ht‘ Koo .c c'& ”) ‘*’ e 2 LA LA P {A) '5'«.5’.34'.‘0\3‘37,’11‘," "IQH ;’f'l yh *-,Q'li) i

()
Q"I ‘“‘ ’I

UM 620141001
1 November 1985

6.1.2 Basic Approach

This methodology addresses the following subjects:

o Describing existing physical database designs in
the internal schema portion of the CDM.

® Determining the mappings between internal
schemas and the conceptual schema and describing
them in the CS-IS mapping portion of the CDM.

[) Updating these descriptions to reflect changes
in either the physical database designs or the
conceptual schema.

This methodology does not address the creation of physical
database designs. DBMS vendors, books, classes, etc., offer
much more guidance in this area than can be provided here.

A CS-IS mapping is intended to show which components of an
internal schema correspond to those of the conceptual schema. A
record type maps to an entity class if they both represent the
same kind of "real-world" things. For example, in Figure 6-1,
the EMP-MAST record type maps to the Employee entity class
because both represent employees. There is a one-for-one
correspondence between the record type and the entity class;
each employee is represented by one instance of the record type
and by one instance of the entity class. Notice that even
though the record type contains data fields (DIV-NO, DEPT-NAME,
SPOUSE-NAME) that correspond to attribute use classes in other
entity classes, the record type does not map to those other
entity classes. It represents a different kind of "real-world”
things than any of those entity classes and is not in a one-
for-one correspondence with any of them. For example, one
instance of the Department entity class exists for each
department while several instances of the EMP-MAST record type
exist, one for each employee in a department, or if a department
has no employees, no record type instances exists for that
department. As another example, the Married Employee entity
class has an instance for each employee who is married, while
the EMP-MAST record type has an instance for every employee,
married or not.

o UM 620141001
. 1 November 1985
, CONCEPTUAL INTERNAL
q; SCHEMA SCHEMA
DIY NO
e DIV NAME
v
,,'&.f
! DIVISION] 4
" HAS
if,:i‘f
i
-9';‘ '
' DEPTNO
;i DEPT NAME
oy DIVNO
Ry
R DEPT | 2
‘r‘,::c HAS
Tq'i‘
t.ql.
o EMP-MAST
Pt EMP NO EMPNO
= EMP NAME EMP-NAME
o DEPT NO 4——p | DVNO
i DEPT-NO
NS DEPT- NAME
e EMPLOYEE | 3 SPOUSE-NAME
By IS
&
'
.:,:
15"§
B EMP NO
, SPOUSE NAME
W :;q
o MARRIED
S EMPLOYEE 4
- \‘.|
Figure 6-1. Entity Class/Record Type Mapping
6-3
.;:‘
-"T"":, » . . - - N - - r T Y - BN AT
! "."s‘!"‘f J,‘)’){{' ’u“:‘}"5.“\?“‘%"é‘"i’:."ﬁg.ii‘ih">."ﬂ,"}‘,:b"!‘ s‘l,‘haﬂ,:“r.ﬂ "h;! ’.:"".':!q: ,e'ﬁ'b FAY) "]"'.'2‘2!?“!,’,‘.4‘”7“ t':‘%',!.‘:"ﬂ'

UM 620141001
1 November 1985

In a similar manner, a data field maps to an attribute use
class if they both represent the same kind of data about "real-
world* things. Using the example in Figure 6-1 again, the EMP-
NO, EMP-NAME, and DEPT-NO data fields in the EMP-MAST record
type map to attribute use classes in the Employee entity class;
DIV-NO and DEPT-NAME, to those in the Dept entity class; and
SPOUSE-NAME, to one in the Married Employee entity class. Notice
that some data fields could map to more than one attribute use
class. For example, EMP-NO and DEPT-NO could have mapped to
attribute use classes in the Married Employee and Department
entity classes, respectively, instead of those in the Employee
entity class. They map to those in the Employee entity class is
because the record type maps to that entity class. DIV-NO is
another example: it could have mapped to an attribute use class
in the Division entity class rather than to one in the
Department entity class. The reason it maps to the one in the
latter is that the Department entity class is more closely
related to the Employee entity class than the Division entity
class is. Notice also that all these examples involve attribute
use classes that belong to key classes. This is because only
they can migrate to other entity classes; an owned, nonkey
attribute use class appears only in its owner entity class.
These situations are summarized in the following mapping rules:

° If a data field could map to either an attribute use
class in the entity class to which the record type
maps or to one in another entity class, it always
maps to the former (e.g., EMP-NO and DEPT-NO).

° If a data field could map to more than one attribute
use class, none of which are in the entity class to
which the record type maps, it always maps to the one
in the entity class that is most closely related to
the entity class to which the record type maps (e.g.,
DIV-NO).

Finally, a record set maps to a relation class if they both
represent the same kind of association between “real- world"
things. This implies that the two record types in the record
set, the owner and the member, map to the two entity classes in
the relation class, the independent and the dependent,
respectively.

The following subsections (6.1.2.1 - 6.1.2.6) present
various subjects to consider when dealing with CS-1IS mappings.
None of them are mutually exclusive; each can be combined with
one or more of the others.

R UM 620141001
. 1 November 1985

o 6.1.2.1 Vertical Partitions

& An entity class is vertically partitioned when some of its
attribute use classes map to data fields in one record type and

ey others map to those in another. An entity class can have

et several vertical partitions. Each record type maps to the

Loy entity class. AT RT2

A 8 A C

O >

<>

Ry, ECI] 1

04 6.1.2.2 Horizontal Partition

A An entity class is horizontally partitioned when some of
) its entity instances map to instances of one record type and
; others map to instances of another record type. Usually, the
'”§ horizontal partitioning of an entity class is governed by the
'ﬁﬁ values in a particular att-ibute use class.

s The attribute use nlass may be in the entity class being
ka partitioned (as in the example below), or it may be in one that
gg_ that entity class is dependent on, either directly or

KrEh indirectly.

A N OGN AN R i ene
"':'J. N m‘::“::‘.':'f!f‘!n"e"!:'.l“nf*':!l':ﬂ‘v by, M&m “m&'&i

£ NO
EMP NAME
STATE

EMPLOYEE

|

QIY 1O
STATE

DIVISION

| 1

DEST NO
DIV NO

DEPT

EMP NAME
DEPT NO

EMPLOYEE

{3

ALY WY

UM 620141001
1 November 1985

‘q Hnl'q

‘ .,f awr-r W

CALIF, ARIZ.
EMPLOYEE EMPLOYEE
EMP-NO EMP-NQ
EMP-NAME EMP-NAME
‘ . [BN BN
CALIF. ARIZ.
EMPLOYEE EMPLOYEE
EMP-NO P
EMP-NAME EMP-NAME
DEPT-NO DEPT-NO
44— e e
6-6
T VAN RS y \ ‘a LY

.)\'p'-.,\")."\'\"
" ’
v) ‘,l a"l .h' (R '

. 'w\

‘ = hl
. O
;’l‘o,.‘u

‘¢ - YT IR TR TR T T T P Yy T Y R R T T W T T R T iy PO Ty T VWY Ty Ty

iQ :

P,

38

R UM 620141001
- 1 November 1985
R

if: An entity class can have several horizontal partitions.
N Each record type maps to the entity class.

.‘Q".l'

KO

6.1.2.3 Joins

Kix)) If some data fields in a record type map to attribute use

8 classes in one entity class and others map to those in another,
% the two entity classes must be combined to form that record
ook type. This is done with a relational "join" operation, which
LG concatenates the entity instances of one entity class with those
oy of the other. The two entity classes must be directly related
N by a relation class so that their entity instances can be
by Y [Y
B matched using the key class of the independent and the
ﬁg’ corresponding inherited attribute use class(es) of the
IOy dependent .
)
“ y
‘a8 B
-2
L

S [ec 1
W T

AT1

ey C ABD

3

N e
.'.xu
-‘ .
-2
i &
i g,
e)
|a‘|
- EC2 2
e
)
do¢
K If the relation class cardinality is one-to-many, each

ﬁ& independent entity instance is concatenated with each entity
'_\ instance that is dependent on it. 1In the first example in
»‘“ Figure 6-2, each PO-HEADER instance is formed by concatenating a
D Vendor instance with a PO instance based on identical values in
-{%’ Vendor No. 1If a Vendor instance has no dependent PO instances,
2 it is not represented by a PO-HEADER instance. This produces
fﬁd one record instance for each instance in the dependent entity
oy class, so the mapping must be to that entity class. If the
o mapping was to the independent entity class, i.e., if there was
¥ one record instance for each Vendor instance, P. O. NO. and any

]
N
D
1y 6-7
(K
i)
o
:n" 4

NP IIA Nty
DO IS M XC WS

R RN T L IR L2 . e . “
() -f o+ 1-“f"{.’,'.'/‘.’":-y 1 -~ ':.. “1 :' l'/ ,.(’_:)<] ‘.(\I\' . 1 P OVLRS \v IATS -
1 . A o e] S LA L O 3 5 2 V¥ Y

AN s & v ",
i) U ¢ -Flrr
0 ORI AR AN fg. X3 .. R X t,ﬂ,'.!:‘;l. .:}

UM 620141001
1 November 1985

other attribute use classes from the P. 0. entity class could

a@ occur multiple times in each record instance. Since a
relational join cannot form record instances with repeating data
fields, this situation is prohibited.

B If the relation class cardinality is one-to-zero-or-one,

N the mapping can be to either the independent or the dependent
et entity class because neither can cause a repeating data field.
The second and third examples in Figure 6-2 show these two
situations. 1In the second, there is one BUYER record instance
o for an employee who is not a buyer. 1In the third example, there

] is one EMP-MAST instance for each Employee instance. If an
?3- employee is not married, the SPOUSE-NAME data field in the
&5 record instance for that employee is null.
1
L‘ If a record type has data fields that map to attribute use
i classes in several entity classes, they must all be combined to
?ﬁg form the record type. This is done with a series of the join
§§ operations described above, each of which combines two of the
‘ately entity classes. All of the entity classes must be inter-
ﬂé related such that they form one of the following (See Figure 6-
2):
‘ ¢
Q& 1. A regular hierarchy, i.e., a structure in which:
% s
TR
Qﬁ ° One entity class, called the apex, is not
it dependent on any of the others (e.g., ECl)
P Y g
g;- ® Every other entity class is dependent on exactly
ﬂx one entity class (not necessarily the same one
W for all)
!ir,'
e ® Every relation class cardinality is one-to-zero-
or-one
’)A.y' %
ﬁ§ 2. A confluent hierarchy (an upside-down hierarchy), i.e.,
ﬁg a structure in which:
fl:(()
W? ® One entity class, called the apex, has none of
the others dependent on it (e.g., ECl4)

R
ﬂ?' ° Every other entity class has exactly one entity
ha’ class dependent on it (not necessarily the same
ﬁw one for all)
" "t

° Any specific relation class cardinality is
o permitted
b4
A
Hﬁ
l!h‘ 6- 8

,,l.gn'i,.ht RORG !g' ".

T,
OGS ' \'.lt'o.t'g »'.,'

ot
: UM 620141001
1 November 1985
N
Wt
il
' 3. A combination of:
A
® One confluent hierarchy and
o""
Jg ® One or more regular hierarchies, each of whose
Yoy apex entity classes are also in the confluent
e hierarchy (e.g., EC15, EC20, and EC25).
K
Each hierarchy is called a join structure. As shown in the
. examples in Figure 6-3, the record type must map to the apex
‘b entity class of the regular or confluent hierarchy. 1If a
= combination of hierarchies exists, the mapping must be to the
-k apex of the confluent hierarchy.
My
£y
:i:; 4
\'lf
w
)
-4
o
i
hie
n
!‘\
;I:
»b‘
KX
B
X
A

UM 620141001
1 November 1985

ONE-TO-MANY RELATION CLASS'

YENDORNQ
VENDOR NAME

VENDOR I 1

i PO-HEADER
. PONQ
r VEND-NO
; N NE RECEIVES
X EO_NO
¥ VENDOR NO
g
‘ 1
. PO | 2
v
: ONE-TO-ZERO-OR-ONE RELATION CLASS
. "D
o EMP NAME
K
{ ‘
R EMPLOYEE |1
¥ BUYER
’ BUYER O
BUYER-NAME s
]
¥,
: A
: BUYER NO
EMP NO
. [euven 2
1)
!
§ EMP NO
s EMP NAME
[emplovee |3
: EMP-MAST
| EXENO
. EMP-NAME s
: SPOUSE-NAME
A
EMP NQ
SPOUSE NAME
MARRIED
. EMPLOYEE 4
X Figure 6-2. Join Examples
)
:

6-10

W Q) W U AR AT Ny - ST N
: .«_.33!,:,05',0. Sttt O el

M]

0 UM 620141001
g 1 November 1985

vy REGULAR HIERARCHY:

RT-A

e APEX el

'EC1 1

i ECo 2 EC3 |3 ECa |4

it

@]
n
jn
m
O
o
o

[ecy 7

-
o

*i CONFLUENT HIERARCHY

[ecs l 8 ECO]9 [Ecio Jio

K
Wt
'y
' g A (Eciz___ |12
i
i
S
¥ Ecz 13
- RT-B
""
¥
4 APEX sl | 4 -
:, EC14 l14
-
o

Figure 6-3. Join Structures

|

p 6-11

MAAACANADARAICON AL IO (ADADNTO S o 1A QLY.
ST T T T l".’. c"‘ ‘ Wt *'IFQ";""%R,A‘l.vj'a‘.""}’

L3
3
L}

-
N

W me -

beoerons o
N

- -.a&..h,.‘

> e

~
e

~

¥
LAl

UM 620141001
1l November 1985

RY-C

6-12

COMBINATION.

fECis]9 ECie 12

[eci7 3 EC'8_]a4

..

EC19 |5 [Ecze s
w.
Fecar 17 fEc22__ s

[Ec23__]9 EC24__ |10

<

[Eczs__

[EC26__ |12 [Eczr_|a [Eczs__]14

€25 |15

Figure 6-3. Join Structures (Continued)

UM 620141001
1 November 1985

" 6.1.2.4 Unions
A record type can map to two or more entity classes. This

is the case when there is one record instance for each entity
instance in one entity class and one for each in another. 1In

N the example below, each RESUPPLY record instance corresponds to
QQ either one Shop Order instance or one P. O. Item instance.
M
A%
LAY N

PART NO
" SO QTy
:ﬂ FINISH DATE
X SHOP ORDER |
o RESUPPLY
N ORDER.ND
igE LINE-NO
b’ PART NO

QUANTITY
Y AVAIL-DATE
Q'.
q .
PO ND LINEN

i PART NO
h", P.O QTY
o DUE DATE
o) PO ITEM | 2
éf The creation of this sort of record type involves the use
e of the relational "union* operation. This allows the instances
%: from both entity classes to be treated as if they were all the
i same kind of entity instances. Each data field can map to an
o attribute use class in each entity class, but that is not
e required A data field can map to an attribute use class in one
he entity class without mapping to one in another. 1In the example
3 above, these mappings are:
¢
i RESUPPLY SHOP ORDER P.O. LINE
B e e ——— D e —————m e
5 ORDER-NO maps to §$.0. No. and P.O. No.
b LINE-NO maps to Line No.
::: PART-NO maps to Part No. and Part No.
L QUANTITY maps to S.0. Qty. and P.O. Qty.
¢ AVAIL-DATE maps to Finish Date and Due Date
" |
W®
» !
3 6-13 ;
: |
L ;

Bl F o AP ™ T R R IR L TP SO R E AT Pl AT Ty T Vo Py S ST e R b WA
~ R ,.‘?" ”\ “r*‘?’&‘f‘ﬁ'“"l “ ad 08,1 YA AT 0y 3 . L (' l AR .\.'h. N .'-’ ."r' 'l...' ‘ i ’." ~ ' h‘ o

-
4

- o o

- -y

UM 620141001
1 November 1985

LINE-NO does not map to an attribute use class in the Shop
Order entity class. Consequently, each record instance that
corresponds to an instance of that entity class is null in that
data field.

Usually, the entity classes involved in a union are not
directly related, although this is not a requirement.

6.1.2.5 Phantoms

Some DBMSs discourage the creation of data fields that
would map to inherited attribute use classes. In the example
below, P.O. No. in the P.O. Line entity class has no
corresponding data field in the PO-DETAIL record type. Instead,
wvhen the purchase order number for an instance of that record
type is needed, the one in the related PO-HEADER record instance
is used.

P O HEADER
PO _NO PO NO.
P.O. DATE P.O. DATE
+—>
PO JIE
OBTAINS
‘ PO DETALLY
PO NO LINE NO LINE NO.
PO QTY PO -QTY
DUE DATE 44— DUE-DATE
P O LINE | 2

In this example, the P.O. No. in the P.0O. Line entity class
is called a "phantom™ attribute use class because values for it
can be retrieved from the database even though it does not map
to any data field.

6.1.2.6 Puplications (Replications vs Redundancy)

Data duplication exists when the value in an attribute use
class for a particular entity instance is stored in two or more
data fields. 1In general, this is when an attribute use class

6-14

w €A AT A AT AR

O Y BRIV e AN I ST A A L gy, ‘
" ’a' 'l‘n . l""l" U !..O‘ R ° ’i I,‘,‘; '."’J‘t‘, W MJ o.ﬂﬁ'u LA A NN

R N AT
» ~ \r A&)y'.:M‘A)\

PRYY ¥ LRGN
oA iy A.5| !?- N

UM 620141001
1 November 1985

maps to more than one data field. However, there are
exceptions. When an entity class is horizontally partitioned,
some or all of its attribute use classes map to more than one
data field. If the partitions do not overlap though, i.e., if
each entity instance corresponds to only one record instance,
then each value is stored only once. Then, there i no data
duplication. To summarize, data duplication existsd when an
attribute use class maps to two or more data fields unless all
of those mappings result from a non-overlapping horizontal
partition.

There are two types of data duplication:

Data Redundancy: The values in one of the data
fields to which an attribute use
class maps are not kept
synchronized with those in
another to which it maps.

Data Replication: The values in one of the data
fields to which an attribute use
class maps are updated and
controlled to be kept
synchronized with those in
another to which it maps. Data
replication may be used for
performance purposes or for
purposes of joining across
physical record (but not for
joining entity classes).

As indicated by these definitions, data replication can be
useful, but data redundancy is always undesirable. With data
replication, updates to those multiple copies are controlled
from a single source. The multiple copies are kept synchronized
such that they reflect the same history of updates. By
contrast, with data redundancy, updates to the multiple copies
can be controlled by multiple sources, e.g., by different
applications. The result is that the copies may reflect
different histories of updates and carry different values. When

i a user accesses redundant data, there can be no guarantee of the

g& integrity or quality of that data. Depending on which copy is
{? accessed, the user may receive very different results.
B

s Whenever an attribute use class maps to more than one data
field, the CDM Administrator must specify which is the
% "preferred copy.” This is the data field that the CDM Processor

6-15

-y~

LRGN IOCAOAON
AN T e R B

DGO
phery et

O K] WVt
W a.\'uil‘\.ltg‘_!'u.!':!l.

- UM 620141001
) 1 November 1985

4
) will use for retrievals and qualifications in all NDML requests,
ﬁ regardless of application. The others will be used for joining
B across physical records when necessary. If an entity class has
been horizontally partitioned, there should be a preferred copy
q designated in each partition. 1If a particular application
{ wishes to use other than the preferred copy. it must bypass the
W CDM Processor and access that data field directly. It cannot
e use NDML for the request.
N
The CDM Processor treats all duplication as data replica-
v tion; it must consider the values in all data fields to be
synchronized. If, in fact, some duplication is really data
3 redundancy, improper physical record joining may be performed,

resulting in spurious responses.

_ 6.1.3 1S Modeling Forms

A Most DBMSs provide a language for defining databases, a

4 Data Definition Language (DDL). DDL Statements for each

! database are used to directly load the internal schema tables of
b the CDM database or with the appropriate NDDL commands.
Consequently, no internal schema modeling forms are needed.

The following forms are used to model the mappings between

y internal schemas and the conceptual schema:
3.
“ Record Type/Entity Class Mapping Form
Record Type Join Structure Diagram
¥ Data Field/Attribute Use Class Mapping Form
> Set Type/Relation Class Mapping Form
o
) The rest of this section contains a detailed description
w and two samples (one blank, one filled in) of each of these
forms.
) Note: When using NDDL, any references on the above forms to
;j ID's or NO's should be replaced with names.
k)
[}
! Record Type/Entity Class Mapping Form
o Purpose: To provide a single source of information about the
k mappings between record types and entity classes.
R
W Instructions:
Fill in one or more pages for each database. List
:: each entity class to which record type maps.
.32
b
i 6-16
LY

. ‘1
-
"

DD D o b >
i [N \?‘0 Yy J_,‘?‘ ot .‘?"',“9" -

g UM 620141001
1 November 1985

.? Form Area Explanation

L3

«

' 1. Database ID Unique identification code

‘ assigned to the database by the
. CDMA .

: 2. Record Type ID Name or code that the DBMS uses

to identify the record type.

3. Entity Class No. Number of an entity class to
which the record type maps.

4q. Entity Class Name Name of the entity class whose
number is in the prior column.
It is included only to make the
entry readable; it is not used in

5 loading the mapping tables.
u Record Type Join Structure Diagram

Purpose: To provide a single source of information about the
join structures for a record type.

o
W Instructions:
& Fill in one page for each record type that involves
joining two or more entity classes.
. Form Area Explanation
g 1. Database ID Unique identification code
‘ assigned to the database by the
CDHMA.
2. Record Type ID Name or code that the DBMS uses

to identify the record type.
3. (Diagram Area) Depiction of the entity classes

and relation classes that make up
the join structure.

6-17

MR

O X N Nt 0 VAN A P By B TIRNY,
Al) OAOOIOONO00) s [} B
R R N i AR A T UURIOL

UM 620141001
1 November 1985

urod 3urddey ssern Lqr1qulzsadiy paocoay p-9 2andig

B

HHNNN

buidduyy sseD Aulug adh) pioday

Ut

®

®

®©

®

6-18

©

"ON SSU|D i ‘at
sweN ssej) Ainul Amu3 QI edA| pioday eseqejeq
HOI VNI ;
TR IO 0L 60895y CZ L SUON
1vd Ay 1230w
1X3INOD | iva WV A ONM IOM va UOHLNWV tvasn

Sl 2 S : Saracenre P = P
T e e e BRI LTt e T metai «

o . = - v
g NG R ey e

Car Nt iagiag) LA T “

-
(o} +]
oo
— 4
«
o8
a
34
[
x P>
D0
=
-y

a1dwexg waogd Buyddey ssein Aq17uzsadi]l paooay

"6-9 3aandryg

_ c

Buiddepy sse)D Au3sodA] proday

U INNN ERATUY JOON
33A0dW3 813 ' NOSH3d z
LUvd Nv1d 23X3 dO Si3 lHYd NY1d dO 2
ININOJIWOD NVId 23X3 dO vi3 NY1d dO NYWd dO 4
dNOYD NVd D3X3 dO 213 dNOUD NYd dO 2
‘ON ssuiD . ‘at
swep sse) Al Anuy Q1 adA| pioday eseqejeq
MOV RN
TTT IO S i 0L 68 .9SP»C2Z | SUON
_ 1 Ml Al NWON WI029 13O
1IXIINOD {4iva URIVR Otawiom | x tg6l 6ny va (H6Q W3ID) NOOVQ uoHINY v asn

6-19

il

TRy VY TR T

UM 620141001
1 November 1985

CONITEXT.

DAY

1 AN

WOIHKING
[DIWFT

NECOMMLNDED

PUIRICATION

FOUECT

DATE
ity

10

NOTES 1 23456789

Record Type 1D

®

USED AT

O)

Database ID.:

NUMIMLH

Record Type Join Structure Diagram

TITLE

gi

K
‘&'J‘! i.)

6-20

QL
e, ' ODOUH W, ‘.c A .0::,0, 1.

TRV VRN TR T Ve s T

Record Type Join Structure Diagram

Figure 6-6.

AR RIS G B

T Y SV - T WYY W TR T W wem e T e e =

UM 620141001
1 November 1985

5

L
¥
<5

arduexy wesderq aanqonaqs utop adil pIooay 4-9 aandid pje
s
14 weibeiq enponig viop edA] piooa
IL ¢ Y IO 'a eInAIS vior 1P Y 3l WION %
_ VI ALV
A
LNOY W3 A\V4
19NQ0Yd
S —b
A
wW3n
12nQ0Hd —
Y o U 2
r)
ABG3ION3ILHIAIYSI R ©
{-0..
m_lAw oo
g
:
W3y o
\\ ﬁ.
¢ ol
boy-euaew 0l 8dA| picoay Z Qi eseqeleq =
NOI win i..-\
RITETIY %
Tionamosail 0L 68Z9SPC2Z 1 SIUON M
13 AN WIOW WI029 1D3r0ud -
IVEIT o s 1N ETTN) tIQV R ONOOM | X cges by 3Lva {4y W3D) WOOYA HOKLNY v Q38N :

UM 620141001
1 November 1985

Data Field/Attribute Use Class Mapping Form

Purpose: To provide a single source of information about the
mappings between data fields and attribute use
classes.

Instructions:

Fill in one or more pages for each record type in a
database. List each attribute use class to which
each data field maps.

Form Area Explanation

1. Database ID Unique identification code
assigned to the database by the
CDMA.

2. Record Type ID Name or code that the DBMS uses

to identify the record type.

3. Data Field 1D Name or code that the DBMS uses
to identify the data field.

4. Entity Class No. Number of the entity class that
T contains the attribute use class
whose number and tag are in the

next two columns.

5. Att. Use Cl. Tag No. Tag number of an attribute use
class to which data field maps.

6. Attribute Use Class Name of the attribute use class
Tag whose tag number is in the
prior column. It is included
only to make the entry readable;
it is not used in loading the
mapping tables.

Relation Class/Set Type Mapping Form

Purpose: To provide a single source of information about the
mappings between CODASYL set types or IMS paths and
relation classes.

— -

UM 620141001
1 November 1985

Suiddey sserp asn a4nqIIIIV/PIaTd eyeqd -8-9 aandid

II— U XNNN

buiddepy ssepD oSN eInqQuuy; Pl 4 eleq

EXITTY IQON
"ON be) ‘ON SS¢|1)]
bey sseiQ esn einquuy vesnuy | Awu3 QI poi4 eleq
@ -01edhy prooay ® Q1 eseqereq
NV R RHWY
T Ty T oL 60 L9SP C2 i SUON
1Vt Ay 10 WOed
FLET L oo B ETT) YV ki Otam 1I0M 31vo HOMUW wvasn

6-23

UM 620141001
1 November 1985

ardwexy Zuiddey sseid asn 24NQIIIIV/PIABTL eyeqd " 6-9 2InIrg
(174 buddeyy sseyn) asn engu 4 eje
— . HIBNON uiddey ssejd 9s) eInquiy/pIdt4 eleQ Jun 300
3dAl VIHY O4n SSiy 123 3dAL SN
ONILYYH IOVNNOL 1299 123 ONILYY IDVNNOL S3Y
ON dNOUYD XY 6viL \23 94O XYW S3u
ON dNOYD LX3IN 151t 123 OdO LXIN SIY
ON O3d Xviy eris 123 UWNd XYW S3Y
ON D3I LX3IN 0Si1 123 ¥nd LX3N S
31vQ Nd IX3N 2511 123 31v0 Nd IX3N S
SNLVLS YIHY D4 641 123 SNLVLIS SIY
Q1 Y34y 94 €cL 123 Qr'S3y
ON bej "ON $s¢|)
ﬂ .
Gey sseiD osn einquuy 10950 Ny Amug Q1 por4 eieg
sunosay (| 6dA} pIo0aYy Q) eseqeleq
NOLFY I NI
33N hi 0F 6 89S % C2 1 SUON
L) A WNON NI0Z9 1DM0wd
1XINO2 {UVD UXvh ONNUOM £e6l 6oy 31vu (UHG WID) WODVA UOHUW ivaxn

g™ gt

Pt

. e -

ha

. - - i 2 e g 5
o - e Te T, ESE M E

- - '

6-24

UM 620141001
1 November 1985

Instructions:
Fill in one or more pages for each database. List

all of the set types that map to relation classes and
all of the record types that are members in each set

type.
Form Area Explanation
1. DB ID Unique identification code
assigned to the database by the
CDMA .
2. Set Type ID Name or code that the DBMS uses

to identify the set type.

3. Member Record Type ID Name or code that the DBMS uses
to identify a record type that is
a member in the set type.

49. Ind. E.C. No. Number of the entity class that
is independent in the relation
class to which the set type maps.

5. Relation Class Label Label of the relation class to
which the set type maps.

6. Dep. E.C. No. Number of the entity class that
is dependent in the relation
class to which the set type maps.

6.1.4 NDDL Commands for Internal Schema

The following is a summary of the NDDL commands required to
load and maintain database definitions (internal schemas) and
their mappings to the integrated model (conceptual schema):

® The DEFINE DATABASE command is used to add a new
database. The command will:

- Define the DBMS.

- Define the database name.

- Describe the host.

- Record passwords.

- Associate schemas, subschemas, areas, and files.

- Supply PSB name and feedback length for IMS
databases.

)

SR Gttty sy Y RS
Sanehn it JOSOO

durdden ssern uorjeraysadil 49s -01-9 2and1d

U ANON

buiddeyy sse|D uoNe|oLy;0dA] 183G

ERITTDY

UM 620141001
1 November 19895

®

Q)

G) ®

N D3 N33 - - -
dag 1aqe sse|) uoejeyy o0l Q1 8dA} picvayy 1oquapy g1 944} ws mﬂ
HOULY DI Wi
G308 G 1 0L 66 ¢ 9SVyYC2 L SUON
fmx A 420N
IXINOD [TV DHNLIOM 31va UOHLNY vQmsNn

- e

P e [

W W et e SN EIC Y

6-26

UM 620141001
1 November 1985

atdwexy Suiddey sser) uojjeiaysadiy 119s

"11-9 9@andr 4

_ ot

buiddeyy sse|) uonedLyadi) 135

t WeIN ERITNS 300N
€23 sey 8c3 ININNOISSY H3SN A8 03N0UINOI TSI z
€3 Ag umouy §) 123 SYIVY AB NMONX OSTV St z
023 sanss) 123 O34 LYW QOud S3NSSI 2
v93 SoH 213 034 LYW 00Yd dNOYO HOS SILVILNI 2z
193 seH 13 034 LYW Q0ud SIVIUN z
$13 ainpdenUERW 01 PISN §| 13 1dvd NY1d dO QOYd HO4 LN3QI 2
613 seH 813 TUNS NOSH3Id SA10H z
€13 sey 213 NV1d NOILVHIEO SdNOUD 2
213 seH 123 dNOYO NVYId dO S3IHOLVCSIO b4
0¢3 581015 623 W31 V3V NO0LS 39VHOLS SIOHINOD 2
oc3] 43 W31 v3dv ®I01S A8 03IMOULINOD 2z
0t3 sey 13 NOILVH3dO 407 S1SISNOD b4
v23 sey 123 32HNOS3Y 3DBNOS3Y SNIVINOD z
v3 Ag peunoysad $i 043 32HNOS3IH LV A8 1IN0 Q3IWHYI z
{53 Ag pawioysad s| 953 32HNOS3H LIV dOUHLUON A8 03NHO4U3d 38 NVD 2
ON D3 £ -ss€|) UoHE|d ©OoN'D3 -1 904} PI003Y 1aQWa ‘) odA] 1@ al
"dag jaqe’) 1D vonejay ou) al 1P Y 19Quap a 1 8BS a0
NOHIVE RN
TN 33 oL 68 29SSy C 21 SAON
1) A WPIOW WI029 1D 3OUd
AXIINGD fuvD UMV R Orawmiom | x ca6L 6oy v (u4Q 'W3D) WOOVA HOoNLW tvarn

6-27

? UM 620141001
1 November 1985

Once a database is defined to the CDM, any

change in the parameters referenced above requires
that the database be deleted from the CDM database
(DROP DATABASE command) and redefined.

: The NDDL DROP DATABASE command will:

- Delete the database from the CDM. All
associated record types, record sets, data
fields and mappings are also deleted.

- All descriptive texts for the database will
be removed.

- W

[Database record/segment definitions are added to
the CDM with the DEFINE RECORD command. This command
is used to:)

X - Describe a table/record/segment for a

! previously defined database.

' - Define the key field and whether or not it
must be unique.

- Define what area a record physically
resides in.

- Provide an IMS segment’'s length.

- Define the fields/columns/elements/items
within tables/records/segments.

W A B i e

° Once a record has been defined to the CDM, any
_ changes require that the record be deleted from the
‘ CDM database (NDDL DROP RECORD command) and
redefined.

The NDDL DROP RECORD command will:

- Delete the record and all associated
fields, areas, and sets.

- If any of the datafields for the deleted
record were mapped to the integrated model,
their mapping will be dropped. 1If it was a

primary mapping, any secondary mapping,]
i

' even to other databases, will also be

k dropped. If it was a secondary mapping,

’ the primary mapping would not be dropped.

; - All description texts will be deleted for
the record and any fields.

N TN ’
‘-Fl‘ ‘a"g?l‘ ",‘l':!i!s,ﬂe»), 3

-~
e M

UM 620141001
1 November 1985

The DEFINE SET command is used to create setis
(paths in IMS). This command can:

- Define a particular set of a database
- Relate database records.
- Define TOTAL LINK fields.

Any modifications to a set that has already
been defined to the CDM database require that the set
be deleted with the DROP SET command and redefined.

The DROP SET command is used to delete sets
(paths in IMS). This command will:

- Delete the set specified, and all
associated mappings.
- Remove all description texts for the set.

Mappings between the integrated model (entity
classes, attribute classes and relation classes) and
databases are defined with the NDDL CREATE MAP
command. This command can:

- Map tag names (attribute class) from a
conceptual schema entity class to
datafields in a Record/Table/Segment.

- Map an attribute use class to a set.

- Map a relation class to a set member.

Mappings between the integrated model (entity
classes, attribute classes and relation classes) and
databases can be changed with the NDDL ALTER MAP
command. This command can:

- Add a nev mapping between a tag name and a
datafield.

- Drop a mapping between a tag name and a
datafield. A primary datafield map will
not be dropped if secondary maps exist for
a particular attribute use class.

- Modify the primary-secondary indicator
and/or the datatype name.

Mappings between the integrated model (entity
classes, attribute classes and relation classes) and
databases can be deleted with the NDDL DROP

MAP command. This command will delete all mappings.

6-29

.
U, TR ML IO N) Y
st it Y

N i %
Qw2 o i)
R AN 5“‘3\ ¥ 'a“:'-)‘r

4

I!g

(DL
1A

SRy

RN

At ARG

'. \ .,A_\"r,h} A 5.5‘4,.}‘.».;3 .
PSR

UM 620141001
1 November 1985

6.1.5 Loading the CDM Tables

The following {ables in the internal schema portion of the
CDM database must be loaded directly with NDDL commands:

Component Data Field Table

Database Table

Database Area Table

Database Area Assignment Table

Data Field Table

Data Field Redefinition Table

Record Set Table

Record Set Member Table

Record Type Table

Repeating Data Field Occurence Counter Table

In addition, the following tables in the CS-IS portion of
the CDM database must also be loaded:

Attribute Use Class/Data Field Mapping Table
Entity Class/Record Type Join Table

Entity Class/Record Type Mapping Table
Relation Class/Set Type Mapping Table

The loading of the CS-IS mapping tables from the analysis
forms is discussed in the following paragraphs.

Attribute Use Class/Data Field Mapping Table

Source Documents:

Data Field/Attribute Use Class Mapping pages from the CS-IS
mapping model.

Instructions:

For each record type, use the NDDL CREATE MAP command to
map entity class tag names to the record’'s datafields.

WCOSOBAROOO SRR BT TR 40 B Wy N WY BV 0 0T 1Ty 6 6% Ty e Ty e 0 Ty Ve
8. SR I I L N o LN ‘fs'(‘a'u'm,'.?f'a’,'\’.fc'gfﬂﬁ:@:'la’-."l!.‘,h“; ah v,sf.'o’,‘,s?‘fafhlf.f

™
\
Vagtn,

UM 620141001 ‘
1 November 1985

Table Field Source Field

EC No Entity Class No. column. Use the
number following the "E"; do not
include the "E" itself.

Tag No Att. Use Cl. Tag No. column. Use the
number following the "T": do not
include the "T" itself.

DB ID Database ID area near the top of the
page.

RT ID Record Type ID area near the top of
the page.

DF ID Data Field ID column.

Example:

The following Attribute Use Class/Data Field Mapping Table
results from the example in Figure 6-12:

EC No Tag No DB ID RT ID DF ID

8 53 2 Locatn Loc ID

i,
+
14
a UM 620141001
1 November 1985
ot
&
,t;
ot
k%
RN .
h g g et
& i 2,
n a -]
oy D <
i (& o]
o g s o = £
2 =
© § s w
e 2 =) s
e% 2 g z oy
I £ - a,
i c | 3 B
KN = < Fd o
« < ™ s
) g ¥
%, 73 7]
= w
z
g5 <
R S : — o 8
“i‘ » O ° h=
3‘ E oot g ez Q Q
ot oe] P [Lot a
3 = -3 o o v g w
Py = " =| o
5 z :
1) z 2 Q
- 6 ‘;
- L o =} <
\ J' 8 ->: 2 g n
Wb - ‘E’ @ 3 o] :
o . - & =]
,‘:f‘ v, o ‘:’ :
1 < w = ~
Y oX s
g |
- ° —
. ° w 2
= |l g 2| &
¥ L 3
.’A'z - ¢4 o g
N ~
: : 2
' «
-
i o] N‘
.'\“ . ~ =t -
3“‘ 5 g ©
L -
. 2 é g2ll~ 1o ®
S .. h- =
s 1l @
HE r:f
. p
*, - 8| = o b
.q’ < ﬁ o 8
iy o s s
‘:v g o g
e
sy
W
e
(s
e 6-32
A
A
-
'l.
- v DA I OJOQOUTCOLA JOOIOU OO0 LT EV.. - OO0 1 ALY
PSS AL, T a0 W I,Q,u,f,.'e.s,g.. o e O Tk o KRR AR N e T AT

UM 620141001
1 November 1985

Entity Class/Record Type Join Table

Source Documents:

Record Type Join Structure Diagrams from the CS/IS mapping
model.

New Instructions:

For each appropriate record type, use the NDDL CREATE MAP
command to map the entity class/record type joins.

Table Field Source Field

EC No Number in the upper left corner of the
entity class box that maps to the
record type.

DB ID Da abase ID area near the top of the
di gram.
RT ID Record Type ID area near the top of

the diagram.

Ind EC No Number in the upper left corner of the
independent entity class box.

Dep EC No Number in the upper left corner of the
dependent entity class box.

RC Label Verb phrase connected to the relation
class line by a squiggle (see sample
diagram page).

Example:

UM 620141001
1 November 1985

The following Entity Class/Record Type Join Table results

from the example in Figure 6-13:

EC DB Ind Dep

No ID RT ID EC No EC No RC Label

18 4q Pegging Record 23 5 Is

18 4q Pegging Record 23 12 Is

18 4 Pegging Record 10 18 Is Satisfied By
18 4 Pegging Record 23 18 Is Treated As

'5'\

Ay

LR s T S ROSCLEL LTS SR T RLE IR
YA DU R S .c‘t'l A ,'a 2PN GRS 0N

o1duexg weadeiqg aanyonaqys uyjop adil pIooay ‘¢1-9 aandi 4

— weibei) einonng vio «dA| pIo2a3
a S wor Lo u ER T FOON

t RINNN

UM 620141001
1 November 1985

H30uO H3QW0 43Qu0
ynd 949N Q39934

BN

N

X
6-35

SvY Ag
Sl —p st Q3iv3idyl Q314SILVYS
S| St
H30HO LNOY
N31d3Y

~ y A

pioosy buibbay (3| 0UA| PI0O3YY v 'QlI eseqeieQq

HNOH VDL RN

TRE IO 11 0L 6@, 9SPY CZ 1 SUON

1M 133r0ud
TR SR 1] ONDIIOM HOHLNY

UM 620141001
1 November 1985

! Entity Class/Record Type Mapping Table
LX»
& Source Documents:

. Record Type/Entity Class Mapping pages from the CS/IS
. mapping model.

Instructions:

For each record type, use the NDDL CREATE MAP command to

X map the entity class to the record.

3

X Table Field Source Field

kX, EC No Entity Class No. column. Use the
- number following the "E"; do not
;9 include the "E" itself.

W&
N DB ID Database ID column.
3
fes RT ID Record Type ID column.

& Example:
R 1
H The following Entity Class/Record Type Mapping Table
R results from the example in Figure 6-14:

N EC No DB ID RT ID
j: 8 2 Locatn
,:

4

S

‘e

6-36

U
¢

L S oy P Ty 3 y ; R (]
1, Py (4 J Pt (AR ." " N " “ N A ()
IO R R ARG O DLU J’::'?t'."}":’.*, WAk A e e e ettt RGN

UM 620141001

1 November 1985

P
.
CONTL XY

DATE

iy At

WOHKING
0418

1L COMMENNED
UL CATION

NUMBL R

_—

oAalf

HEv

AUTHOR

MUECT

NOTES 1 234568789 10

.'
ust D AT

Record Type/Entity Class Mapping

TLE

Database
1D

[-]
£
2
4
w
'
2
(&)
21 s
| 2
ol
-
L
4
<
-
g
w
o
3-2
o 2
w e
(&
)
S
—
T
[o]
(%)
[
<
4
-
<
Q
(e}
-t
o~

NOOE

T

o

3 Ly W
DL M IR SOt S M)

"

R AINTAL 2
Rl By \ RO

Record Type/Entity Class Mapping Example

Figure 6-14.

.l ¥
DUCK KN ',n,’m -

L ¥)
T ‘\’ .(i’-. ‘..%Q;J“') L

UM 620141001
1 November 1985

Relation Class/Record Set Mapping Table

Lt
AL

Source Documents:

Set Type/Relation Class Mapping pages from the CS/IS
mapping model.

“ Instructions:

For each set, use the NDDL CREATE MAP command to map a
relation class to a set (path in IMS).

Table Field Source Field

g Ind EC No Ind E.C. No. column. Use the
number following the “"E"; do not
include the "E”" itself.

o Dep EC No Dep E.C. No. column. Use the number
R following the "E"; do not include the
b "E" itself.
o RC Label Relation Class Label column.
R
0
b DB ID Database ID column.
W,
i Set ID Set Type ID column.
. Member RT ID Member Record Type ID column.
“
h
' Example:
L)

The following Relation Class/Record Set Mapping Table
results from the example in Figure 6-15:

;Q Ind Dep Member
K EC No EC No RC Label DB ID Set 1Id RT ID
,!t

3 29 8 Is Composed of 2 Physically Locatn
5 Controls

O

AL L 0 0
. \, 'y N
TR R R L

atdwexy Suirddey sserp uoijeraysadil 18s

"g1-9 aandrd

-
O o
_ buiddepy ssejy voiejayyadA) 19
m m U KIWON 1OCL SSEID 1918041 185 E)ITT 300M
<
o 0
(@]
S
©
Q
= >
f=Je)
=
-4
83 10 pusodwo) s 623 NLY201 51009 Ayexsiyg 4
ON 'D'3 ° ON ‘03 . : ‘al
B7) $S€)9) uoije|d 0dA| pi0oay 2qwd odA)] 1@
"dag |eqe" 1D voijejdy ‘o) ai 1P Y Joquapy a 1 19§ a0
ETELY ,
TI WOD Rl 0L 6895 vC2Z 1 SAUON
[A Y 12 3rOud
IX3INOD | v U IV R DNINLIOM 1va HOHINY wvarn
RS TS LS RESSDTLT VIR SRR FEEEY OSTEEENELD RRa SRR

6-39

UM 620141001
1 November 1985

6.2 Modifying/Deleting IS Elements and CS-IS Mappings

Prior to modifying or deleting elements of the IS or the
CS-1IS, the CDM Administrator must assess the impact of the
proposed change on the other components of the CDM. The
objective of this section is to provide the CDM Administrator
with an approach to the analysis of the impact that a change in
the IS or CS-IS might have upon the other areas of the CDM or on
software modules, such as user APs and generated APs.

The approach that is taken in analyzing the impact that a
change to the IS or CS-IS might have to other areas of the CDM
or to a software module is to list the changes that might be
made and then for each of those changes to identify the other
changes that would have to be made either in the CS or another
schema or in an ES-CS or an IS-CS mapping or in a software
module. Changes that do not impact any other areas are omitted.

A similar section appears in the discussions on the
Conceptual Schema and and on the External Schemas and the ES-CS
Mappings, Sections 5 and 7 respectively.

The following assumptions about the nature of the changes
to the Internal Schema and the CS-IS Mappings and the sequence
in which they are made have been taken in order to perform the
analysis:

1. Components of an internal schema are added in the
following sequence

® Databases
- a database password
- each database area
- a schema and subschema name
- a PCB for an IMS database
° Record types
- each database area assignment
- an IMS segment for a record type in an IMS
database
° Data fields
- a data field redefinition for a data field
that redefines another
- an elementary data field for a data field
that is not part of a group data field
- a component data field for a data field
that is part of a group data field

UM 620141001
1 November 1985

PR A S A

- a segment data field for a data field in an 3
IMS database
- a data field/record set linkage for the
data field in a TOTAL variable file that is i
used as a linkpath to a TOTAL master file -
® Record sets
® Record set members

2. All changes in the internal schema that are needed to 3
support a change in an ES-CS or IS-CS mapping are made :
before the ES-CS or IS-CS mapping is changed.

3. A change in the name or definition of a component of
the internal schema is for cosmetic purposes only and
does not alter the basic meaning of that component.

EEE o

Finally, a note of explanation about how the changes and
their impacts are organized. Only the direct impacts of a
change are listed with it. If one change results in a cascade
of other changes, only t* first in the cascade is listed with '
the initial change. Eac subsequent change is listed as as \
impact of the one immediately before it. So to find the total k
extent of the impact of a change, one must trace from the
initial change to each change that it results in and, then to !
each in which that change impacts. o

Figure 6-16 shows the relationship between the change and
the possible impacts upon other parts of the CDM that the change
may affect.

e e -

A0A0AMGAS AL WA O Mo Ao 30
Tt R e e B

? 1y
. =.~,z'~.‘9,‘_v Hi

T T T h |
tf:‘,
v'»,‘l
o

Ny

o UM 620141001
‘ 1 November 1985
g .
%§ Overview -—-———cmmme -
3' Matrix | A change to: |
Ur: [et etttk |

" IData-) D/B | Rec.lArea |Data | Rec.| Set |
A ICan impact: iIbase | Areal! TypelAssgniField! Set | Mbr.|
R R I i R fmmm e | mmm—— I - fmmeeu |
e ID/B Area X | [[[([
o [| | | ([| | l
o IRecord Type ! X | | | | | | |
! [[[| 1 [I [

"y IArea Assgn | X 1 X I I I I
. [| I [[[I | |
A iData Field | | X X X
2 | | | | | | | : :
W IRecord Set | [I S | [| :
-~ 1 I | 1 I I] I !
. ISet Member | [FoX o X 1 X !
q. ! I I I I ! I ! I
] IEC-RT Join | | X | | | |

" | I | | I I [| [
o IEC-RT Map. | I X 1 X] I

e | I [I | I [I |
ot IAUC-DF Map. | [I X X [[
hoX] | | ! | [[[[[
(B
"y IAUC-Set Map. | [| [[X |
'QQ | | | I) i [I !
L)
h IDF Index | | X X ! |

: [| I [[[| [[
IRC-Set Map. | I I G I I X
K | | | | | | | | |
i ISoftware Modi X | X ¢ X | X 1 X 1 X 1 X |
-+
:I‘.
" Figure 6-16. Impact of Internal Schema Changes

t
Y
',‘b":

v
Yn
w
A
I{.:

. 6-42 J
» h ‘
- \
o4 “

LR Y

y (R A
\ :aN,-'\)

2 . e
S RN T .‘.‘.‘Q!\'-

UM 620141001
1 November 1985

6.2.1 Database Changes

Please see section 6.1.4 for a description of NDDL IS
Commands. Note that, any modification to a database that has
i already been defined to the CDM requires the following:

o ° The database must be deleted from the CDM with
e the NDDL DROP DATABASE command.

) The revised database must be defined to the CDM
with the NDDL DEFINE DATABASE command.

o ° All datafields, records, sets and map.ings must
also be defined.

The following is a list of data base related changes and
their potential impact:

* ® Add a new database.

. Add all the record types that the database
contains.

Use the NDDL DEFINE DATABASE command.

® Change a database name.

PERTT

Change the database name in any generated APs that
access the database and recompile those generated
APs.

e -

Change the database name in any software modules
that directly access the database and recompile those

modules.

-l -
-

§§ Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
W the software modules that directly access a
) database.
° Change a database definition.
No other impact.
° C..ange a database keyword.

No other impact.

6-43

O M I G I It I N COGOOOOR
R I’A"’q’ W\ ‘u!’v'j's""&’; 0"'1"':5 ERRENEN R Lt B

UM 620141001
1 November 1985

Change the DBMS name of a database.

Depending on which two DBMSs are involved, this
could have a dramatic impact on the entire structure
of an internal schema. A description of this impact
is beyond the scope of this report. Suffice it to
say that in such cases it would be advisable to
delete the database and then to read it using the new
DBMS name.

Regardless of the extent of the impact on the inter-
nal schema itself, recompile any software modules
that resulted in generated APs that access the data-
base.

Also, change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
database.

Change the host identification for a database.

Recompile any software modules that resulted in
generated APs that access the database.

Change a database password.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1l model
contains the information needed to identify
the software modules that directly access a
database.

Change a database schema name.

Recompile any software modules that resulted in
generated APs that access the database.

6-44

UM 620141001
1 November 1985

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
database.

Change a database subschema name.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1l model
contains the information needed to identify
the software modules that directly access a
database.

Change the PSB name for an IMS database.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
database.

Change the PCB name for an IMS database.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDMl1 model
contains the information needed to
identify the software modules that directly
access a database.

UM 620141001
1 November 1985

° Change the key feedback length for an IMS database.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile any software modules that
directly access the database.

Note: Neither the CDM database nor the CDM1
model contains the information needed to
identify the software modules that directly
access a database.

° Delete a database.

Delete all the record types in the database.

Delete any database password for the database.

Delete any schema names for the database.

Delete any database areas in the database.

Delete the PCB if this is an IMS database.

Use the NDDL DROP DATABASE command.

Recompile any software modules that resulted in
generated APs that access the database.

Change and recompile all the software modules that
directly access the database or discard them
entirely.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
database.

6.2.2 Database Area Changes

The following is a summary of the impact of charger to
database areas: (See 6.1.4 for the NDDL.)

e Add a new database area.

No other impact.

6-46

G VR "y OO I N R G S G R AL AU RERT RS R Y ~ A
RN N RN MO NI NN 1 o i 3O W oS LA i SO et SO OO O OO YOG

UM 620141001
1 November 1985

e Delete a database area.

Delete any database area assignments for the database
area.

Recompile any software modules that resulted in
generated APs that use area searchs to access record
types in the database area.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that use database area
searches to access record types.

Change and recompile any software modules that use
area searches to access record types in the database
area.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that use database area
searches to access record types.

6.2.3 Record Type Changes

The following is a summary of the impact of changes to
record types:

® Add a new record type. Add all the data fields that
the record type contains. Use the NDDL DEFINE RECORD
command .

Add any EC-RT joins from which the record type
results.

Add an EC-RT mapping from for any entity class to
which the record type maps. Use the NDDL CREATE MAP
command .

If the record type is assigned to one or more
database areas, add a database area assignment for
each.

Note: Any change to a record type requires that
it first be deleted with the NDDL DROP
RECORD command then added with the DEFINE

6-47

o] N J
MOS0

O oSN
"R.i:l‘.!lt‘!!!_‘h".h ,:’., (¥

R T RR ST T RN WETTAeT R e T T e T R T R T R T R T

UM 620141001
1 November 1985

b RECORD command. The set must be added with
% the DEFINE SET command and then all
mappings must be added with the CREATE MAP
command .

° Change a record type name.

Change the record type name in all the following in
which it appears:

. Data fields
k)
K]

Data field redefinitions

- =

Elementary data fields
Component data fields
Record sets

Record set members

s Database area assignments

1 IMS segment

. Segment data fields

Data field/record set linkages
EC-RT mappings

' Horizontal partitions

EC-RT union discriminators

-

i

AUC-DF mappings

Repeating data field indexes

3 RC-Set mappings
} EC-RT joins

Recompile any software modules that resulted in
generated APs that access the record type,

e ctncltiline £oall itk Bilcictioc

« . -~
o P

- .
" " t
DR "’\‘31’.'@.,‘.‘.91' ‘l'.“ ‘.Q TROOOBLERIOR ' "’ "v'i'n‘i‘o RN "0,"%"0 M,

UM 620141001
1 November 1985

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a record

type.

Change and recompile any software modules that
directly access the record type.

Note: Neither the CDM database nor the CDMl1 model
contains the information needed to identify
the software modules that directly access a
record type.

Change a record type definition.
No other impact.

Change a record type keyword.

No other impact.

Change the segment name of a record type in an IMS
database.

Recompile any software modules that resulted in
generated APs that access the record type.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a recorc

type.

Change and recompile any software modules that
directly access the record type.

Not.e: Neither the CDM database nor the CDM]1 mode)l
contains the information needed to i1dentify
the software modules that directly acces:
record type.

Change the segment size of a record type 1n an IM:
database.

Recompile any software modules that resulted ;-
generated APs that access the record type

Note: Neither the CDM database nor the (i =

6-49

AD-A181 577 INTEGRATED mrgnnanansupponr SYSTEN mssa VOLUNE 5 1/4
con

F/6 5/2 NL

= s
FEEFEEER
EEEE

_.
——
=

13

[3

(1]
ib

. ""i'l'i RN

c'v‘ A

W, 1' ;'; W
0' t'c i‘

TS

N

UM 620141001
1 November 1985

contains the information needed to identify
the generated APs that access a record

type.

. Change and recompile any software modules that
: directly access the record type.

Note: Neither the CDM database nor the CDM1l model
contains the information needed to identify
the software modules that directly access a
record type.

o Change the mapping between a record type and the
% entity classes to which it corresponds.

Add, change, and delete any of tre following as
Aé necessary:
f‘ "1
B
ﬁ» EC-RT mappings
R
. Horizontal partitions and constraint statements,
EC-RT union discriminators
E‘ AUC-DF mappings
ﬁf Use the Alter Map command.

Recompile any software modules that resulted in
generated APs that access the record type.

0 Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a record

type.

° Change the entity class joins that must be done to
form a record type. \

Add, change, and delete EC-RT joins as necessary.

Use the ALTER MAP command.

o !

O

Recompile any software modules that resulted in
generated APs that access the record type.

- !

Note: Neither the CDM database nor the CDMl1 model
contains the information needed to identify

6-50

1.

P)

X n AR ; n)) .
R AT S A% ¥ AT, AR OO K AKAD CEANA A e e Ve, Lot "y p N
' ’ B 0 B s B R AR "\'.is‘-v'c'wv-‘;‘n"‘5,'i'q,t'ufl'zgi?o,"!:l".,i‘lnl -.‘B:‘ Mft.v"?,‘3!3"_9,'!!,",9,’

i 3RO oy N B
A WL A
Attt e e e

UM 620141001
1 November 1985

the generated APs that access a record
type.

° Delete a record type.

f Delete all the data fields that the record type
S contains.

Delete any record sets in which the record type is
owner.

} Delete any record set members that the record type is
o used as.

Delete any database area assignments for the record
type.

¢ Delete the IMS segment if the record type is in an
o IMS database.

¥ Delete any EC-RT mappings for the record type.
Delete any horizontal partitions for the record type.

v The NDDL DROP RECORD command will accomplish all of
: the above.

Recompile any software modules that resulted in
generated APs that access the record type.

& Note: Neither the CDM database nor the CDM1 model
! contains the information needed to identify
the generated APs that access a record

type.

Change and recompile any software modules that
directly access the record type or discard them
entirely.

P S Y

-

Note: Neither the CDM database nor the CDMl model
contains the information needed to identify
the software modules that directly access a
record type.

IR
o o .

P 6.2.4 Database Area Assignment Changes

The following is a summary of the impact of changes to

. g P g gt W

RO e O R O ’d?gj'-fi".i“v‘».i‘h‘:-—‘alt‘;:'vb.l’_"wl*fo‘

- 3
PR

UM 620141001
1 November 1985

database area assignments. (See 6.2.1 for the NDDL statements.)

Yo \".4 1 Cfi C-!nlgl '\»\Outgll

Add a new database area assignment.

Recompile any software modules that resulted in
generated APs that use area searches to access the
record type referenced in the database area
assignment.

Note: Neither the CDM database nor the CDM1
model contains the information needed to
identify the generated APs that use
database area searches to access a record

type.

Change and recompile any software modules that use
area searches to directly access the record type
referenced in the database area assignment.

Note: Neither the CDM database nor the CDM1
model contains the information needed to
identify the software modules that directly
access a record type.

Delete a database area assignment.

Recompile any software modules that resulted in
generated APs that use area searches to access the
record type referenced in the database area
assignment.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to
identify the generated APs that use data-
base area searches to access a record type.

Change and recompile any software modules that use
area searches to directly access the record type
referenced in the database area assignment.

Note: Neither the CDM database nor the CDM1
model contains the information needed to
identify the software modules that directly
access a record type.

6-52

L1 U
s * ? ﬂg ﬂ .. "‘Cm" ¢ V i . *r‘ ’ | ‘.) ‘C:"’.th'!’t‘ .’ .' e P a‘ '.' ’ W, ‘ A 0'{‘0* .

i.tlﬁg

.‘0 e

UM 620141001
1 November 1985

6.2.5 Data Field Changes

Note that a change to the structure of a record type
requires that the record first be deleted with the NDDL DROP
RECORD command. Then the modified record type is added again
with the NDDL DEFINE RECORD command. All mappings must also be
added with the DEFINE SET and CREATE MAP commands.

The following is a summary of the impact of changes to data
fields:

® Add a new data field.

If the data field redefines another data field, add a
data field redefinition.

If the data field is not a group of component data
fields, add an elementary data field.

If the data field is a component of another data
field, add a component data field.

If the data field is in an IMS database, add a
segment data field.

If the data field is used as a linkpath from a TOTAL
variable file to a TOTAL master file, add a data
field/record set linkage.

Add an AUC-DF mapping for any attribute use class to
which the data field maps.

Add an EC-RT union discriminator for any EC-RT
mapping that the data field is used to distinguish
among .

If the data field occurs more than once in the record
type, add a repeating data field index for any
attribute use class that is used to access the data
field.

° Change a data field name.

Use the NDDL DROP RECORD, DEFINE RECORD, DEFINE SET,
and CREATE MAP commands.

Change the data field name in all the following in

6-53

o e R TS - A NAadl AN PLACH MO A DO iy Py b " 0N hop
S e t’e’ ?".‘f“‘ ;'5',""‘.'." e R B e i’-"l'ﬁ.,"..‘t‘tkl’}l“fﬁ‘e,?-:,‘.},‘.'h?'*!‘ Lot l|:'t'@‘l'».l‘;;ﬂf’:f!‘é"'

UM 620141001
1 November 1985
3 vhich it appears:
Data field redefinitions
Elementary data field
Component data fields
EC-RT union discriminators
s AUC-DF mappings
S Repeating data field indexes
| Segment data field

" Data field/record set linkage

Az Recompile any software modules that resulted in
vﬁ generated APs that access the data field.

Note: Neither the CDM database nor the CDM1 model
¢ contains the information needed to identify
S the generated APs that access a data field.

" Change and recompile any software modules that
: directly access the data field.

Note: Neither the CDM database nor the CDM1 model
o contains the information needed to
5 identify the software modules that directly
B access a data field.
° Change a data field definition.

No other impact.
° Change a data field keyword.

No other impact.

° Change the record key code of a data field.

S

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDM database nor the CDM]1 model

6-54

i) 3 0 y 1 i X4 e) ¥ e,
SOOI MMM M A XA AN ¥ ‘ O b A ‘S
AR 5:*°?='~f'?a§%’:"’zf5‘»'4'?1"afﬂfsf\’:f"!**'9"‘!?‘?1:’58“5'c‘f*. (it X, A W M

UM 620141001
1 November 1985

contains the information needed to identify
the generated APs that access a data field.

Change and recompile any software modules that
directly access the data field.

nile Note: Neither the CDM database nor the CDM1 model
0 contains the information needed to
N identify the software modules that directly

access a data field.
S ° Change the number of occurrences of a data field.

If the number of occurrences is being changed from
one to something else, add a repeating data field
index for any attribute use class that can be used to
access the data field.

o If the number of occurrences is being changed to one
jQ} from something else, delete any repeating data field
-t indexes for the data field.

Recompile any software modules that resulted in
generated APs that access the data field.

Ko Note: Neither the CDM database nor the CDM1 model
: contains the information needed to identify
the generated APs that access a data field.

S Change and recompile any software modules that
ety directly access the data field.

oyt Note: Neither the CDM database nor the CDM1 model
' contains the information needed to identify
e the software modules that directly access a
o data field.

aten ° Change which data field is redefined by a data field.

Recompile any software modules that resulted in
- generated APs that access the data field, i.e., the

P one that redefines another, not the one being

g redefined.

l!":f

ﬁf Note: Neither the CDM database nor the CDM1 model

contains the information needed to identify
the generated APs that access a data

el 6-55

3 i

IO ICA TOU I XL Iak O XN O AIOUC L OIOL000 DU LA P M P i M oyl oy (Lo
PSP LA LRI AN Nt BASHARS AL afyaty ot OOGA0N)
RSN AN R SO ACRNALE LRI S ali‘,h';"l RIS l.'o'_..1,['i‘e‘o,q‘:y‘.,'i!,'l’.’l’g‘.t.'l‘q.l.l'.-.Q B\ I.;!’t‘-;:lh’l‘., BT W, .‘"t,_:'t,,:"d X

UM 620141001
1 November 1985

field.

Change and recompile any software modules that
directly access the data field, i.e., the one that
redefines another, not the one being redefined.

P R

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
data field.

Change which group data field of which a component
data field is part.

Recompile any software modules that resulted in
generated APs that access the component data field.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a data field.

W e s

Change and recompile any software modules that
directly access the component data field.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a
data field.

e T e >

Change the data description of a data field.
Use the NDDL ALTER MAP command.)

Recompile any software modules that resulted in
generated APs that access the data field.

Note: Neither the CDM database nor the CDMl model
contains the information needed to identify
the generated APs that access a data field.

Change the data description of the data field in any
software modules that directly access it and
recompile those software modules.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access a

6-56

) ()

ST TR0 A TARAT 200 N AN IO N AN YOG '
AL W f\‘.:ﬂ;fc};_ﬁ;ﬂ '3‘,}'3’}'%&‘" i ',a!a'»u‘_-_";?,:s‘lf;','af.‘f;* ’ —‘40.&;!‘&;!_19 DU ARARY

DOCOM IO
“.;.:«"ci'vs\l‘ ?i‘&.l'f‘

3298, P X

= UM 620141001
1 November 1985

e data field.
° Change the segment start byte of an IMS data field.

) Use the NDDL DROP SEGMENT, DEFINE SEGMENT, DEFINE SET
ol and CREATE MAP commands.

UL Recompile any software modules that resulted in
e generated APs that access the data field.

Note: Neither the CDM database nor the CDM1 model
O contains the information needed to identify
e the generated APs that access a data field.

B Change and recompile any software modules that
directly access the data field.

;ﬁﬁ Note: Neither the CDM database nor the CDM1 model
B contains the information needed to identify
N the software modules that directly access a
s data field.

° Change the IMS data field indicator of a data field.
;ﬁ% Recompile any software modules that resulted in
o generated APs that access the data field.
AL
¥ Note: Neither the CDM database nor the CDM1 model

contains the information needed to identify
the generated APs that access a data field.

S Change and recompile any software modules that
4 directly access the data field.

Note: Neither the CDM database nor the CDM1 model
el contains the information needed to identify
f@t the software modules that directly access a
e data field.

e ° Change the record set name of a TOTAL data field.

Lah Use the NDDL DROP SET, DEFINE SET and CREATE MAP

é} commands .
:t_""!l
Eﬁ Recompile any software modules that resulted in
. generated APs that access the data field.
o Note: Neither the CDM database nor the CDM1 model
N
e
-4 6-57
.

; Aq‘.»'.‘ %\,_“ ' .. 4

nli RN AT AR I LN R LTI A Ca
s 4}‘?‘-‘,-‘!' s %if.ﬂ”'fh"!h‘ "-‘""'\5‘.".!.."'5.' f °\“}.-'.‘!’-;‘:'“,h“!,"q* *A’\‘B‘?’t“‘é"'k‘i'r?g“l‘g_l\tg'ﬁ‘s‘}![_

UM 620141001
1 November 1985

- contains the information needed to identify
the generated APs that access a data field.

Change and recompile any software modules that
“ directly access the data field.

L Note: Neither the CDM database nor the CDM1 model

R contains the information needed to identify

wh the software modules that directly access a
data field.

o Change the linkage type code of a TOTAL data field.

Recompile any software modules that resulted in
generated APs that access the data field.

. ae - -

o Note: Neither the CDM database nor the CDMl model
& contains the information needed to identify
t& the generated APs that access a data

e field.

Change and recompile any software modules that
directly access the data field.

Note: Neither the CDM database nor the CDMl model
contains the information needed to identify
the software modules that directly access a
data field.

e B e W

;ﬁ ° Change the mapping between a data field and the
Y attribute use classes to which it corresponds.

e Add, change, and delete AUC-DF mappings as necessary.
Use the NDDL ALTER MAP commands.

A Recompile any software modules that resulted in
! generated APs that access the data field.

Note: Neither the CDM database nor the CDM1 model
- contains the information needed to identify
‘ the generated APs that access a data

& field.

“ e Delete a data field.

! Delete any data field redefinition that the data

8, 6-58

‘ 00 0 '(Ry CR N
RN ¢ Qs'.'n (% Wt 'iw' .,~ = 'l'g’a Oy q’s,, a“.‘o".’u Ly \‘l .’1 .'f‘.'u .’u' ' i '0 o ,.'o,.' “' .'0,,'., 'cf. ,.'t,g';.,‘v Jh _ o E, \

".‘ Q,“ ‘ '40 1, "' 5

UM 620141001
1 November 1985

ety field is used as.

W Delete the data field redefinition by which the data
field is redefined. 1If there is more than one,

g delete only one of them and replace the redefined

i data field name in all the others with the redefining

it data field name from the one deleted.

R Delete any elementary data field for the data field.
Delete any component data fields of which the data

- field is a group.

g

$3 Delete any component data field that the data field
it is used as.

Delete any segment data field for the data field.

}? Delete any data field/record set linkage that the

&, data field appears as.

28

)

%f Delete any AUC-DF mappings in which the data field is
! involved.

KN

%ﬁ Delete any EC-RT union discriminators that the data
i field 1is used as.

vf"

(LN

At Delete any repeating data field indexes by which the
; data field is accessed.

e Use the NDDL DROP RECORD, DEFINE RECORD, DEFINE SET
0 and CREATE MAP commands.

)

oL . .

ﬁ; Recompile any software modules that resulted in

- generated APs that access the data field.

o0

Al Note: Neither the CDM database nor the CDM1 model

o

W contains the information needed to identify

ﬁq the generated APs that access a data field.

l.':l

—~ Change and recompile any software modules that

I directly access the data field.

A

,,’%. Note: Neither the CDM database nor the CDM1 model

O contains the information needed to identify

ﬁ@ the software modules that directly access a
. data field.

o

0 6-59

o \ L AP RN VA R er SN
AAAN 3);‘5-5“1’"(! lnlsl:‘ub‘&t"t“‘k ll"sheu u.v) £) nl‘~ i ‘\ '

UM 620141001
1 November 1985

& 6.2.6 Record Set Changes

""¢

! The following is a summary of the impact of change to
record sets:

]

ﬁ ° Add a new record set.

o

ﬂ! Add all the record set members that the record set

B has.

" Add an AUC-Set mapping if the record set maps to a

" value for an attribute use class.

0

kﬁ Use the NDDL DEFINE SET and CREATE MAP command.

. [Change a record set name.

o}

g; Change the record set name in all the following in

B which it appears:

Record set members
AUC-Set mappings

Use the NDDL DROP SET, DEFINE SET and CREATE MAP
K commands .

Recompile any software modules that resulted in

: generated APs that access record types via the record
3 set.
‘

h Note: Neither the CDM database nor the CDM]1 model
contains the information needed to identify
the generated APs that access record types

o via a record set.

iy Change and recompile any software modules that
3 directly access record types via the record set.

, Note: Neither the CDM database nor the CDM1 model
ah contains the information needed to identify
7 the software modules that directly access

record types via a record set.
° Change a record set definition.

VT No other impact.

1;5,, 6-60

Rop " w A

BSHNRA. L) .' o e O DA D R ’ '-(.(;
BRI e AT RN D) COGICNOOONER e K X K MR R

-

R LN

e R R0

-

- -

. -

b

D

OGN 2 S OO MO W
Ak .!.‘.n.“n""-‘.‘q.,u’gr ’!‘l‘n?i‘n.l‘». LI ‘-

UM 620141001
1 November 1985

Change a record set keyword.
No other impact.
Change the total number of members in a record set.

The change of the total number of members in a record
set is never initiated on its own; it is always the
result of either the addition or deletion of a record
set member.

No other impact.
Change which record type is owner in a record set.

Use the NDDL DROP SET, DEFINE SET and CREATE MAP
commands .

Recompile any software modules that resulted in
generated APs that access record types via the re-
cord set.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access record types
via a record set.

Change and recompile any software modules that
directly access record types via the record set.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access
record types via a record set.

Change the mapping between a record set and the
attribute use class to which it corresponds.

Add, change, and delete AUC-Set mappings as
necessary.

Use the NDDL ALTER MAP command.
Recompile any software modules that resulted in

generated APs that access record types via the record
set.

1.‘ -\;‘

NN
L)

L T e T e e L I N e e VR T R SR T TR N S
| X 3. AN ;o) ‘
AN RERIAGS iy A L T ‘

LA

UM 620141001
1 November 1985

Note: Neither the CDM database nor the CDM! model
contains the information needed to identify
the generated APs that access record types
via a record set.

° Delete a record set.

Delete all the record set members that the record
set has.

Delete any AUC-Set mapping for the record set.
Use the NDDL DROP SET command.

Recompile any software modules that resulted in
generated APs that access record types via the record
set.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access record types
via a record set.

Change and recompile any software modules that
directly access record types via the record set.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly access
record types via a record set.

6.2.7 Record Set Member Changes

The following is a summary of the impact of changes to
record set members:

° Add a new record set member.

Add an RC-Set mapping for any relation class that is
the basis for the record set member.

Increase the total number of members in the record
set by one.

Use the NDDL DROP SET, DEFINE SET, and ALTER MAP
commands .

UM 620141001
1 November 1985

Change the required membership indicator of a record
set member.

Use the NDDL DROP SET, DEFINE SET and CREATE MAP
commands .

Recompile any software modules that resulted in
generated APs that update the record type that is
used as the record set member.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that update record types.

Change and recompile any software modules that
directly update the record type that is used as the
record set member.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the software modules that directly update
record types.

Change the mapping between a record set member and
the inherited key classes on which it is based.

Add and delete RC-Set mappings as necessary.
Use the NDDL ALTER MAP command.

Recompile any software modules that resulted in
generated APs that access the record set member.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access record set
members .

Delete a record set member.

Decrease the total number of members in the record
set by one.

Delete any RC-Set mappings on which the record set
member is based.

Delete any data field/record set linkage for the

6-63

=,

6.2.

UM 620141001
1 November 1985

record set member.
Use the NDDL ALTER MAP command.

Recompile any software modules that resulted in
generated APs that access the record type that is
used as the record set member.

Note: Neither the CDM database nor the CDM1 model
contains the information needed to identify
the generated APs that access a record

type.

Change and recompile any software modules that
directly access the record type that is used as the
record set member.

Note: Neither the CDM database nor the CDMl model
contains the information needed to identify
the software modules that directly access a
record type.

Summary

The following points are offered in summary:

1.

A change in an internal schema can result in additional
changes in that schema, in its IS-CS mapping, and in
software modules. However, it cannot impact other
internal schemas or 1S-CS mappings, nor any external
schemas or ES-CS mappings, nor the conceptual schema.

A change in IS-CS mapping is always the result of
another change to either the corresponding internal
schema or to the conceptual schema.

The information in the CDM database and the CDM1 model
is inadequate for identifying the software modules that
are impacted by most schema changes. Specifically, the
following information needs to be added:

- The data items that are accessed by a software
module that contains user views.

- The databases, record types, data fields, record

sets, record set members, and database areas
that are accessed by a software module that

R

BOGOROGOAUIN W Iy A% 0y, % 1PN BN W VG WY O a8 e e
SRR S S .,'_sa,:ﬁ RIS 3 '°s'.-l’~'l'e.~' p N e RN

UM 620141001
1 November 1985

accesses databases directly.

- The record types, data fields, record sets,
record set members, and database areas that are
accessed by a generated AP.

6.3 CODASYL Databases

6.3.1 CODASYL-Specific Considerations

CODASYL DBMSs offer two database design features that are
not available in most others: multi-member set types and
optional membership set types. The first is a single set type
that has one owner record type and two or more member record
types. An owner instance can be associated with any number of
instances of each type of member: they are not mutually

exclusive. In essence, several logical relationships (relation
classes) are combined into one physical relationship (set type).

RT1

ST

RC1 RC2 RC3 4>

RT2 RT3 RT4

—Eczlz | ECala ‘ECA 4

RATHER THAN

RT1
STy ST3
ST2
RT2 RT3 RT4

6-65

0 “‘0“) |'l J

. : » (3 y
T Y he =t

UM 620141001
1 November 1985

The CS-IS mapping for a multi-member set type involves the
following:

[The owner and member record types each have a primary
mapping to a different entity class. Any of them can
have secondary mappings also.

° The set type maps to several relation classes, one
per member.
[The entity class that the owner maps to is

independent in all of these relation classes.

o Each entity class that a member maps to is dependent
in one of these relation classes.

In the example above:

RT1 maps to ECl.
RTZ2 maps to EC2.
RT3 maps to ECS.
RT4 maps to EC4.
ST1 maps to RCl, RC2, and RC3.

An optional membership set type is one in which an instance
of the member record type is allowed to exist without being
associated with an instance of the owner record type. This is in
contrast with any other set type in which every member instance
must be associated with an owner instance. An optional
membership set type is equivalent to a nonspecific relation
class whose cardinality is zero-or-one-to-zero-one-or- many.
Such a relation class is refined, as shown below, before it is
incorporated into the conceptual schema.

'> 4 NEF {nbafut
o pt—-
1 AN 2 gy 1 1 l [Ec2 2

K1

Consequently, the CS-IS mapping for an optional membership
set type involves the following:

° The owner record type has a primary mapping to one
entity class, and the member record type has a

UM 620141001
1 November 1985

primary mapping to another, and a secondary mapping
to a third. Either one can have additional secondary

mappings also.

° The set type maps to a one-to-many relation class.

° The entity class that the owner maps to is
independent in that relation class.

° The secondary entity class for the member is
dependent in that relation class.

° The primary and secondary entity classes for the
member are independent and dependent, respectively,
in a one-to-zero-or-one relation class, which is a
Join linkage for the member.

In the example above:

RT1 has
RT2 has
RT2 has
STl has

a primary mapping to ECl.
a primary mapping to EC2.
a secondary mapping to EC3.

a mapping to RCl.
ping RT1

EC1

1 EC2 I2

RC1 RC2 4—P ST1

(OPT. MBR
"y RT2

[eca 3

6.3.2 Building a CODASYL IS and CS-IS Mapping

Objectives:

[Load the description of a CODASYL database into the
following tables in the CDM database:

HAFEAS NI ER IV e 3.9 hy nhe R DM L)
AT '-'u'\“’v:'l?"/"-.”La"" Y, '<\?‘\-\!‘§"5 9!.3_"':"4,""..‘_'-!.2'! BA) '}l'.'»’!". .‘*"'t’“:”'?“‘: ‘T ‘»‘.".v‘:

Database Table
Record Type Table

6-67

B A
et ~:c!".-!':"'a"ﬁ?'!ﬁ"ﬁ:.".ﬂ"t. ,0'.!:', AN,

'.‘.... A L L
e ,.‘ﬂm ’h

W

s

UM 620141001
1 November 1985

Database Area Table

Database Area Assignment Table

Data Field Table

Component Data Field Table

Data Field Redefination Table

Repeating Data Field Occurrence Counter Table
Record Set Table

Record Set Member Table

° Build a model of the mapping between the CODASYL
database and the conceptual schema.

[Load the descriptions of the CS-IS mapping into the
following tables in the CDM database:

Entity Class/Record Type Mapping Table
Entity Class/Record Type Join Table

Relation Class/Set Type Mapping Table
Attribute Use Class/Data Field Mapring Table

Refer to Section 6.13 for details on how to fill out the
CS-1S mapping forms.

If the CDM tables are to be loaded with NDDL commands, skip
to Section 6.3.3. Building a CODASYL IS and CS-IS Mapping with
the NDDL.

Tasks:

1. The CDM Administrator loads descriptions from the
database DDL statements.

Create one entry in the Record Type Table for each
record type in the database.

Create one entry in the Database Area Assignment
Table for each record type that is assigned to a
database area. If a record type is assigned to more
than one area, create a table entry for each.

Create one entry in the Data Field Table for each
data field in each record type in the database.

Create one entry in the Component Data Field Table
for each data field that is part of another data
field.

AN SN P SR ot A D O b SOt SO A OIS x4 ’ R ODAOHAOMEAN .
B N O N A O MR SO

a

FLINIRY A)

UM 620141001
1 November 1985

Create one entry in the Data Field Redefination Table
for each data field that redefines another data
field.

Create one entry in the Repeating Data Field
Occurrence Counter Table for each data field that
occurs more than once in a record type.

Create one entry in the Record Set Table for each set
type in the database.

Create one entry in the Record Set Member Table for
each record type that is a member of a set type. If
a record type is a member of more than one set type,
create a table entry for each. 1If a set type has
more than one member record type, create a table
entry for each.

The CDM Administrator determines the mapping for each
record type.

Usually, it is easier to map the record types that

are not members in any set types first. Those that
are set type members should not be mapped until all
of their owner record types have been mapped.

Determine what sort of "real-world® thing the record
type represents. Each instance of a record type
contains data about a specific person, place, object,
etc., that is significant to the enterprise.

Usually, all of the instances of the same type are
about the same sort of thing. This is not always the
case, however. An instance of the RESUPPLY-ORDER
record type could represent either an order to the
production department to make a certain quantity of
parts (i.e., a manufacturing order) or an order to a
vendor to furnish a certain quantity of parts (i.e.,
a purchase order). This is similar to defining an
entity class. The data fields in the record type,
especially those that uniquely identify its
instances, and the set types that it participates in,
especially as a member, can all be useful in
determining what the record type represents.

A few record types do not represent real-world
things; they exist to improve database performance.
Examples include SYSTEM-OWNER and entry points. Such

6-69

e . . - N \
A O Y000 gy (e = o RNy S (n
RO OO SRR A s DO AN S 4 e D

UM 620141001
1 November 1985

record types do not map to any entity classes and can
be ignored. .

Determine which entity class in the conceptual schema
represents the same sort of thing as the record type.
This primarily involves finding the entity class
whose definition corresponds to the intent of the
record type. Comparing the key classes, attribute
use classes, and relation classes of the entity
classes to the keys, data fields, and set types of
the record types can be helpful also. If the record
type represents several sorts of things, it will map
to several entity classes, one for each sort of
thing; see Section 6.1.2.4 regarding relational
unions. If none of the entity classes represent what
the record type does, either the record type exists
only to improve database performance or the
conceptual schema must be expanded; see Section

4.3.

Fill out a line on a Record Type/ Entity Class
Mapping Form for each entity class to which the
record type maps.

The CDM Administrator determines the mapping for each
data field.

Determine what sort of data about real-world things
that the data field contains. If the record type
that contains the data field represents more than one
sort of thing, i.e., if it has more than one mapping,
the data field may contain several sorts of data.

All of these must be identified.

A few data fields do not contain data about real-
world things; they exist for technical reasons only.
Examples include record codes and record activity
dates. Such data fields do not map to any attribute
use classes and can be ignored.

Determine which attribute use classes in the
conceptual schema represent the same sort of data as
the data field. This involves finding the attribute
use class whose definition or migration path
corresponds to the intent of the data field. The
first place to look is the entity class to which the
record type maps. If the record type maps to more

AN UM 620141001
' 1 November 1985

Wi than one entity class, the data field may map to an
i attribute use class in each. The value in the data
jﬁ! field in each instance of the record type must be the

same as the one in the attribute use class in the
corresponding instance of the entity class. If two

7@2 or more inherited attribute use classes that come
ﬁg from the same owned attribute use class have
ﬁ% identical values in every entity instance, the data

field may map to some or all of them.

If none of the attribute use classes in the mapped-to

‘ﬂﬂ entity class(es) correspond to the data field, the
:ﬁﬁ next places to look are the entity classes that are
ﬂﬁ related to those entity class(es). Again, the value
o in each record instance must be the same as the value

in the corresponding entity instance. If the

- attribute use class is not in any of these entity

%33 classes, the search must be widened to include the
il entity classes that are related to them. This

3 continues until the proper attribute use class is
Aol found or until it is determined that a new attribute
! class must be added to the conceptual schema; see
Section 4.93.

ﬁﬁﬁ' Fill out a line on a Data Field/ Attribute Use Class
g Mapping Form for each attribute use class to which
Rk the data field maps.

,;. 4. The CDM Administrator determines any joins that are
42@ needed for each record type.

o

%ﬁ; Determine whether any of the data fields in the

) record type map to attribute use classes that are not
R in the entity class(es) to which the record type

— maps. This can be done by comparing the entity class
py numbers that are entered on the Data Field/Attribute
@ . Use Class Mapping Forms for the record type to those
el that are entered on the Record Type/Entity Class

pg; Mapping Form for the record type. 1If an entity class
L number is on the first form but not on the second,

e that entity class must be joined with the one to

m@ which the record type maps.

[

54 Determine whether any other entity classes are needed
e to complete the join structure(es). The entity

classes that must be joined to form the record type
must form one or more join structures as described in

$
e 6-71

N . .
& L)

» : - D S T T AT et TR T ATt N W a8ty PR S NS
(Y \l"‘a. A |‘ “ .‘ |' R 1‘. 1 Al
R AL A AT AN A T A g X TR IANAT B AT RN A S KR T

v Kt TE A AT A W 0 ve
; »'.l-“‘s'_‘r.'x_ LRI -,n.'bi&o LX) ‘l"}\t.‘a"‘.;u"‘.b‘?;’h‘.-‘St".‘.‘!‘?"ﬁ

W W v wTwwwyw

Y UM 620141001
' 1 November 1985

Section 6.1.2.3. 1If the join structures are not
contiguous, one or more additional joins may be
needed. For example, if the record type in Figure
6-17 maps to EC4 and involves joins with EC1l and EC3,
it must also have a join with EC2. Without it, ECI
cannot be joined to the EC3-EC4 join result. The
join must involve EC2 even though none of its
attribute use classes map to data fields in the
record type.

Prepare Record Type Join Structure Diagrams for the
record types involve joins.

The CDM Administrator determines the mapping for each
record set.

Determine what sort of relationship between “real-
world" things the set type represents. If the set
type has more than one member record type, each must
be considered separately. If either the owner or the
member record type has no mapping to an entity class,
the set type will have no mapping to a relation
class, so it can be ignored.

Determine which relation class in the conceptual
schema represents the same sort of relationship as
the set type. Usually, this is the relation class
whose independent entity class maps to the owner
record type and whose dependent entity class maps to
the member record type.

Fill out a line on a Set Type/ Relation Class Mapping
Form for the relation class to which the set type
maps .

The CDM Administrator loads descriptions from the
Record Type/Entity Class Mapping Forms.

Create one entry in the Entity Class/Record Type
Mapping Table from each line on each form.

P > i e
" - . s P e e o et o et e

N T Tt IR g BTN AT lo e e e e et

. .

7. The CDM Administrator loads descriptions from the
Field/Attribute Use Class Mapping Forms.

~ - o -

Create one entry in the Entity Class/Record Type Join
Table for each relation class in a diagram.

W

l’

P

LRy,

L Py) B AL AS S - e e = S
"“a'.."‘.v.‘.%:f‘*.,:,ﬁ. LA LE Lr S D DAL M B EY ALOUN

S

‘ YOO ™ A
N TARPIIRM W TR RS A w) M

UM 620141001
1 November 1985

‘; EC1 1

g EC2 2 uv

ity EC3 3

“ EC4 4

o Figure 6-17. Incomplete Join Structure Example

A VT G PR Vil W TR IR P e i Wy P 1 AR TR RERT T
RPN iy A X e O D DeX b PO T OO R

UM 620141001
1 November 1985

" 8. The CDM Administrator loads descriptions from the
! Data Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form.

9. The CDM Administrator loads descriptions from the Set
Type/Relation Class Mapping Forms.

Create one entry in the Relation Class/Set Type
Mapping Table from each line on each form.

6.3.3 Building a CODASYL IS and CS-IS Mapping with NDDL

A summary of the NDDL commands required to load and
maintain an IS and CS-1S Mappings is contained in Section 6.1.4.

e

Tasks:
1. Load descriptions from the database DDL statements.
e Use the NDDL DEFINE DATABASE command to:

Y - Define the database name.
- Define the DBMS.
K - Describe the host.
- Record password(s).
- Define schemas, subschemas, and areas.

° For each record in the database, Use the NDDL
DEFINE RECORD command to:

e ok e

- Attach record to database.
£ - Define the key field and state whether or
not it must be unique.
; - Define the datafields within the record.
/i - Define what area a record is to physically
reside in.

Note: The DEFINE RECORD syntax does not support
repeating groups, component data fields, or
redefined data fields.

» e e e -

® For each set in the database, use the NDDL
DEFINE SET command to:

> 5 o“l 'a‘.'a‘.‘l‘ ¥ l,.;‘ ‘gﬂl

0 g oy O NN T4 <
W p'i‘g':’ '\‘1 Xl whiehs g’t i"o 0'1 i) CAMIISA R A 2 g’!,; \ a et I W ‘ ARs AN

.

e e
1

Determine
° See
Determine
° See

Determine

UM 620141001
1 November 1985

Define the set.

Relate database records.

the primary mapping for each record type.
Task 2 of Section 6.3.2.

the primary mapping for each data field.
Task 3 of Section 6.3.2

any secondary mappings for each record type.

i ® See Task 4 of Section 6.3.2.

5. Determine any secondary mappings for each data field.

N ° See Task 5 of Section 6.3.2.

6. Determine the mapping for each set type.

° See Task 6 of Section 6.3.2.

Load descriptions from the Record Type/Entity Class

: Mapping Form, the Record Type Join Structure Diagrams,
K the Data Field/Attribute Use Class Mapping Forms, and
' the Set Type/Relation Class Mapping Forms.

2 ° For each record, use the NDDL CREATE MAP command ,
:: to: y
W
4 - Map tag names (attribute classes) from a
N} conceptual schema entity class to a !
datafield.
- Map attribute use class to a set.
° For each set, use the NDDL CREATE MAP

command to:

- Map a conceptual schema relation class to a
¥ set.

6.3.4 Modifying a CODASYL IS and CS-IS Mapping Objective:

v Add one or more new record type(s) as follows:

g ° Load the description of a new record type(s) within a

\
1t

POy L

Q'q""' y A e N R e oY) y
BN O U 7 .
AR RSN e, DR MR

D) " Vi &%
B ?ﬂ‘.-.sﬁ.gc'f'!’:"‘.'

UM 620141001
1 November 1985

‘ previously mapped CODASYL database into the following
. tables in the CDM database:

_ Record Type Table
¢ Database Area Table

“y Database Area Assignment Table
Y Data Field Table
" Component Data Field Table

Data Field Redefination Table

Repeating Data Field Occurance Counter Table
o Record Set Table
po Record Set Member Table
4

® Build a model of the new mapping between the CODASYL
database and the conceptual schema.

» ® Load the description of the new CS-IS mapping into
N the following tables in the CDM database:

0 Entity Class/Record Type Mapping Table

o Entity Class/Record Type Join Table
Relation Class/Set Type Mapping Table

5 Attribute Use Class/Data Field Mapping Table

R/ Refer to Section 6.1.3 for details on how to fill out the
N CS-1IS mapping forms.

If the CDM tables are to be modified with the NDDL
) commands, skip to Section 6.3.5: Add One or More New Record
B Type(s) to a CODASYL Database with the NDDL.
% Tasks :

1. The CDM Administrator loads descriptions for the new
record type from the database DDL statements.

& Create one entry in the Database Area Table for each
K> new area (if any) in the database.

Create one entry in the Record Type Table for each
o new record type added to the database.

ﬁ Create one entry in the Database Area Assignment
g Table for each new record type that is assigned to a
‘ database area.

Create one entry in the Daita Field Table for each

6-76

- - - N o - - N 3 A L A I
AR W O a | O 200N IO VN T R Y ML AN L - "
' ‘a"h‘l‘.'. asl.‘.(-",‘.\‘»‘%' “0‘" .i",.i“’)i‘.‘i"jn"-A‘.Q.?t‘t.l' ’0"";"“»“.\‘}%‘).\(‘ A Yﬁbi'\' 'c',’:hf«h‘.‘,?.ﬁ.,t'y‘o',fl‘-!a‘-sll."“i, 'r‘l&(, ‘\"’r‘i‘a.'@‘l'u 'ﬂ, .Q'..!#B‘

UM 620141001
1 November 1985

o data field in each new record type added to the
M database.

Create one entry in the Component Data Field Table
for each data field that is part of another data

.@ field.

o

o) Create one entry in the Data Field Redefinition Table

g for each data field that redefines another data
field.

LS A ;‘

ak Create one entry in the Repeating Data Field

B Occurrence Counter Table for each data field that

ny occurs more than once in a record type.

] Create one entry in the Record Set Table for each set
<y type the nev record type participates in as an owner.

R Create one entry in the Record Set Member Table for
My each new record type that is a member of a set type.
o If a new record type is a member of more than one set
create a table entry for each.

ﬁr 2. The CDM Administrator determines the mapping for each
(¥ new record type.

Usually, it is easier to map the record types that
are not members in any set types first. Those that
¢ are set type members should not be mapped until all
iy of their owner record types have been mapped.

; Determine what sort of "real-world” thing the new
" record type represents. Each instance of a record
type contains data about a specific person, place,

q‘ object, etc., that is significant to the enterprise.

{% Usually, all of the instances of the same type are

o about the same sort of thing. This is not always the

4‘ case, however. An instance of the RESUPPLY--ORDER

K record type could represent either an order to the
production department to make a certain quantity of

19 parts (i.e., a manufacturing order) or an order to a

2 vendor to furnish a certain quantity of parts (i.e.,

! a purchase order). This is similar to defining an

;ﬁ entity class. The data fields in the record type,

i especially those that uniquely identify its

) instances, and the set types that it participates in,

b especially as a member, can all be useful in

A 6-77

L\ A N U AN MO0 OSSO MO i M Y M M0 \
' *"A'e' ; ‘.1",:" "".‘r‘:v""'f v'\ . '.‘l»"lﬁ"-{"’i"‘g‘i,"“ ‘0’11‘!'3'5,_'(1‘

A0
bt ‘-ltf':'

RN

f)
**'o? g

5 ot

. "%

ne
.
ety

UM 620141001
1 November 1985

determining what the record type represents.

A few record types do not represent real-world
things; they exist to improve database performance.
Examples include SYSTEM-OWNER and entry points. Such
record types do not map to any entity classes and can
be ignored.

Determine which entity class in the conceptual schema
represents the same sort of thing as the nev record
type. This primarily involves finding the entity
class whose definition corresponds to the intent of
the record type. Comparing the key classes,
attribute use classes, and relation classes of the
entity classes to the keys, data fields, and set
types of the record type can be helpful also. If the
record type represents several sorts of things, it
will map to several entity classes, one for each sort
of thing; see Section 6.1.2.4 regarding relational
unions. If none of the entity classes represent what
the record type does, either the record type exists
only to improve database performance or the
conceptual schema must be expanded; see Section

4.3.

Fill out a line on a Record Type/Entity Class Mapping
Form for each entity class to which the new record
type maps.

The CDM Administrator determines the mapping for each
data field in the new record type.

Determine what sort of data about real-world things
that the data field contains. If the record type
that contains the data field represents more than one
sort of thing, i.e., if it has more than one primary
mapping, the data field may contain several sorts of
data. All of these must be identified.

A few data fields do not contain data about real-
world things; they exist for technical reasons only.
Examples include record codes and record activity
dates. Such data fields do not map to any attribute
use classes and can be ignored.

Determine which attribute use classes in the
conceptual schema represent the same sort of data as

6-78

S S

qiv(q...v\ ltl;1|l' %)
R TR .',‘;h‘."‘o’ DR "05 v.‘ e:‘ ‘:ﬂ"‘ "*s‘ g . '|=°.Oo. (2 a"k“"' o

UM 620141001
1 November 1985

the data field. This involves finding the attribute
use class whose definition or migration path
corresponds to the intent of the data field. The
first place to look is the entity class to which the
record type maps. If the record type maps to more
than one entity class, the data field may map to an
attribute use class in each. The value in the data
field in each instance of the record type must be the
same as the one in the attribute use class in the
corresponding instance of the entity class. If two
or more inherited attribute use classes that come
from the same owned attribute use class have
identical values in every entity instance, the data
field may map to some or all of them.

If none of the attribute use classes in the mapped-to
entity class(es) correspond to the data field, the
next places to look are the entity classes that are
related to those entity class(es). Again, the value
in each record instance must be the same as the value
in the corresponding entity instance. 1If the
attribute use class is not in any of these entity
classes, the search must be widened to include the
entity classes that are related to them. This
continues until the proper attribute use class is
found or until it is determined that a new structure
class must be added to the conceptual schema; See
Section 4.3.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the data field maps.

The CDM Administrator determines any joins that are
needed for each new record type.

Determine whether any of the data fields in the
record type map to attribute use classes that are not
in the entity class(es) to which the record type
maps. This can be done by comparing the entity class
numbers that are entered on the Data Field/Attribute
Use Class Mapping Forms for the record type to those
that are entered on the Record Type/Entity Class
Mapping Form for the record type. 1If an entity class
number is on the first form but not on the second,
that entity class must be joined with the one to
which the record type maps.

6-79

DO MM N TS Wi W WM
5‘!3"’ 'l"‘l.ﬁ.l‘n‘i,n’l.‘ AY) ".S‘a‘ai,_"“'» "3"’5'?37«'

OO YO
a0 TS et
I N V"’}“""‘“‘!‘

. - . e A

— o gme W w2t

UM 620141001
1 November 1985

Determine whether any other entity classes are needed
to complete the join structure(s). The entity
classes that must be joined to form record type must
form one or more join structures as described in
Section 6.1.2.3. If the join structures are not
contiguous, one or more additional joins may be
needed. For example, if the record type in Figure
6-18 maps to EC4 and involves joins with ECl and
EC3, it must also have a join to EC2. Without it,
EC1 cannot be joined to the EC3-EC4 join result. The
join must involve EC2 even though none of its
attribute use classes map to data fields in the
record type.

Prepare Record Type Join Structure Diagrams for each
new record type that has any secondary mappings.

S$5. The CDM Administrator determines the mapping for each
record set in which the new record type is a member.

6.4 Relational Databases

6.4.1 Relational-Specific Considerations

A relational DBMS provides a simple, uniform way of looking
at data, which is completely independent of actual storage
structures and of access techniques used to retrieve the data.

All relationships between data are expressed in terms of
the actual data values, not by pointers or storage adjacency.
The ability to relate common fields of data found in more than
one table is provided by the data access language. This enables
a user or program to specify the desired data in terms of
properties the data possess.

In a hierarchical or network DBMS data model, access paths
are predefined in the data stucture definition. A user or
program can use only the predefined paths to navigate through
the data structure. This could limit the use of the data.
However, it is a strength if only those paths are needed,
because the system can provide quick access through the
predefined paths.

In a relational data model, paths need not be predefined.

Data requests are not expressed in terms of access paths. All
access is done by matching field values.

6-80

AX) e DGO DO E LD A MU AR OUOLOLOL NS

P
¥

g
M

-

]
|
t
t

by :H“'

O
-1
Fpt

« "‘!

UM 620141001
1 November 1985

Relational DBMS(s) represent data as relations or two-
dimensional tables. These tables consist of attributes
(columns) and tuples (rows). Each entity in a database will
have a corresponding relation defined, which consists of a set

ﬁﬁ: of attributes (a set of values for one attribute type is
iy referred to as a domain). Each occurrence of the entity within
f&' the database can be thought of as a tuple within the relation.

These two-dimensional tables have the following properties:

. (1) Each entry in a table-column represents one data item
L (attribute). There are no repeating groups.

ﬁﬁ (2) They are column-homogeneous (in any column, all items
are of the same kind).

Ny (3) Each column is assigned a distinct name.

o8
At
i)
l&- (4) All rows are distinct. Duplicate rows are not
e allowed.
N
_ Figure 6-18 is an illustration of a relational implementation
e of the conceptual data model.
;2: The mapping from the Conceptual Schema to a relational
:fi database is very straightforward where:
e) Nonspecific relationships have been resolved.
§g,8
DY L)
55: ° Keys have been migrated.
e
‘hn [No role names are used.
b
. In mapping to a relational DBMS:
o
ﬁig ° Each entity class becomes a table (relation).
»
LTy
,%ﬁ ® Each attribute of an entity becomes a data item
ah (column or field) in the corresponding table.
;ﬁ; o The key of each entity becomes the primary key in
A the corresponding table.
KN
ﬂ? ° A relationship 1is represented by foreign keys in
d the dependent entity.
;ﬁf In Figure 6-18, each entity becomes a relational table
vl ®
W
48
er 6-81

Y Pt A

H;s 403‘\ 19,0 %2 b Co Lol In, | OO
LA ﬁcl" N Q_-_A!‘...a,'\e‘ *“'*‘*"1«‘?“"‘;';* “, i“t"‘v,. o.a. e 2o (O P 0‘. 4’ AE AR

j e -

e e

UM 620141001
1 November 1985

. where:

El maps to Supplier Table
E2 maps to Order Table

E3 maps to Line-item Table p.
E4 maps to Quotation Table v
ES maps to Part Table

- -

The relationships from the CS in Figure 6-18 are
represented by attributes within tables and map as follows:

RT1 maps to Supplier # in the QUOTATION Table
RT2 maps to Supplier # in the ORDER Table
RT3 maps to Supplier # in the LINE-ITEM Table
RT4 maps to Part # in the QUOTATION Table
RT5 maps to Part # in the LINE-ITEM Table

Tty > o

-
g -

- -
e o

-

1

6-82 :

A, W%y AV Wy B (RY §
v',‘l),"i.»‘. A',_n{l Al bi“ t.'\'.ll

DA O] i) A A% i 5
5,’.".".‘”% 'fw'?';‘l‘:.‘-‘s"'n'?‘a"'x‘r;“l‘b-"s"‘a‘-';‘.‘e‘ Bt ~7.-'4“»'-:','&"‘.5‘!‘“!’9'371L-.t!..iia, 4

UM 620141001
1 November 1985
o
‘;
o
'Q
¢ SUPPLIER
SUPPLIER-NO | SUPPLIER-NAME | BILL-TO-ADDRESS | SHIP-TO-ADDRESS
o KEY
)
o
0 PART
:t
N PART-NO| PART-NAME | PART-DESCRIPTION | QTY-ON-HAND
' KEY
o QUOTATION
.
',:f SUPPLIER-NO | PART-NO [QUOTE-PRICE | LEAD-TIME
. KEY
l\
ORDER
;" | ORDER.NO| SUPPLIER-NO| ORDER.DATE | DELIVERY-DATE
] KEY
‘s
) LINE-ITEM
ORDER-NO| LINE-ITEM-NO| PART-NO | QUANTITY | PRICE
¥ KEY
t’|
)
N
‘!
¥
H NEENERS) SUPPLIER ND BART.ND
RT1 PART NO RTe
. p————a o————————
XY] | |
::' [sPoLiER | €1 ouo ATIO] g4 W_—] ES
i
:s RT2
o
=R ER
gt SUPPLIER
"
i ORDER | €2
it nTs
’i
L
[l AT
X QRDER.NG
"0 1 IN“IE MNQ
-': PART.NO -
::: UNE-ITEM [€3
I
Figure 6-18. Relational Implementation of the Conceptual Model
:
. 6-83

VeR

' < L5805 o YA '
el ".g’iiv“ 1% .'h’.‘fif‘«f‘ﬁ.'« '!’c\, AR AT NSO

OO O Ax y " A r
R "! ,."‘.‘A'JJ LY)’:f"‘gfﬁ" 3‘,"':""’!’“{’,.‘.

L

B

A

UM 620141001
- 1 November 1985
k¥
i
PUEY
3§ 6.4.2 Building a Relational Table IS and CS-IS Mapping
g
o Objectives:
?r ° Load the description of a relational database table
;: into the following tables in the CDM database:
)
e Database Table
o Record Type Table

Database Area Table

o Database Area Assignment Table
;:, Data Field Table
e Component Data Field Table
o
- ° Build a model of the mapping between the relational
- table and the conceptual schema.
'ﬁ ° Load the descriptions of the CS-IS mapping into the
% following tables in the CDM database:
o Entity Class/Record Type Mapping Table
. Attribute Use Class/Data Field Mapping Table
Wt
LA
KA Refer to Section 6.1.3 for details on how to fill out the

CS-1IS mapping forms.

[If the CDM tables are to be loaded with the NDDL commands,

‘ skip to Section 6.4.3.
ARy

)

o Tasks:

.

:m 1. The CDM Administrator loads descriptions from the
L de'abase DDL statements.

t Create one entry in the Database Table for the
“{ relational table.

¢
K

13 Create one entry in the Database Area Table for the

; portion of the storage pool the table occupies.
- (DBSPACE Statements in SQL/DB2.)

!'.'

¥

j? Create an entry in the Record Type Table for the
PNl relational table record (row).
3 ":

3 Create an entry in the Database Area Assignment Table

) for the table reccrd.

A
‘." ;

0
B

N 6-84

-

N

iy

orr Y 3 i e : TN OOV . R A P R e Sy O ST S RN
AN LER AT TR A B ey DRA) Y Ll e, A WOV VAT
R R R N A D A ‘4"‘.J".-"Eo"ﬂ',',c"?p'iw'ft'.!.u':?v"t" ARSI 4 "% ?t’l'ql.‘.l H X 12 ARSI W

I UM 620141001
' 1 November 1985

L]
L3 * s
iy Create one entry in the Data Field Table for each
yﬁ data field (column) in the table.

) Create one entry in the Component Data Field Table
O for each data field that is part of another data
s field
:‘j\‘: .
A
;3$ 2. The CDM Administrator determines the mapping for each
N table.
o Determine what sort of "real-world” thing the table
3% represents. Each instance of a record type within a
ema table contains data about a specific person, place,
e object, etc., that is significant to the enterprise.
e With a relational DBMS, all of the instances of the

same type are about the same sort of thing and map
directly to an entity.

Determine which entity class in the conceptual schema
represents the same sort of thing as the table. This
g primarily involves finding the entity whose
definition corresponds to the intent of the table.

Fill out a line on a Record Type/Entity Class Mapping

i% Form for the entity class to which the table maps.

l.0'|

) 3. The CDM Administrator determines the mapping for each

R colunmn.

AR

ﬁ? Determine what sort of data about real-world things

Q@ that the data field contains. There should always be

oo a one-for-one mapping between the attributes of an

L entity and the data fields of its corresponding
table. A table, however, could contain data fields

9 that exist only to maintain a relationship. These

éa. data fields will not have a mapping.

kﬂ A few data fields may not contain data about real-

i h world things; they exist for technical reasons only.
Examples include record codes and record activity

o4 dates. Such data fields do not map to any attribute

0" use classes and can be ignored.

03"0

5& Determine which attribute use classes in the

o' conceptual schema represent the same sort of data as

. the data field. This involves finding the attribute

‘R. use class whose definition or migration path

4’:‘

e 6-85

L‘

|

V"" v o

{
"’. 2L # ul‘b-.!

ST AT A Y

- .
LI P Ko Pl Py

UM 620141001
1 November 1985

corresponds to the intent of the data field.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the data field maps.

4. The CDM Administrator loads descriptions from the
Record Type/Entity Class Mapping Forms.

Create one entry in the Entity Class/Record Type
Mapping Table from each line on each form.

5. The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form.

6.4.3 Building a Relational Table IS and CS-IS Mapping with
NDDL

A summary of the NDDL commands required to load and
maintain on IS and CS-IS mappings is contained in Section 6.1.4.

Tasks:

1. The CDM Administrator loads descriptions from the
database DDL statements.

Use the NDDL DEFINE DATABASE command to+

Define the database name.
Define the DBMS.
Describe the host.
Record the password(s).

For each table in the database, use the NDDL DEFINE
TABLE command to:

) Define the table name.
° Define the columns.
Note: The DEFINE TABLE command does not support

repeating groups, component datafields, or
redefined datafields.

2. The CDM administrator determines the primary mapping

e

UM 620141001
1 November 1985
for each new table.
See Task 2 of Section 6.4.2.

3. The CDM Administrator determines the primary mapping
for each field.

See Task 3 of Section 6.4.2.

4. The CDM Administrator loads the descriptions from the
Data Field/Attribute Use Class Mapping Forms.

For each new table, use the NDDL CREATE MAP command

to:

[Map tag names (attribute classes) from a
conceptual schema entity class to column names.

® Map attribute use classes to a column name.

6.4.4 Modifvying a Relational Table IS and CS-IS Mapping

6.4.4.1 Modify a Mapped Table by Adding, Modifying, and/or
Deleting Columns

Objective:
° Modify the description of a previously defined
relational table within the tables in the CDM
database:

Data Field Table
Component Data Field Table

° Build a model of the new CS-IS mapping between the
relational table and the conceptual schema.

° Load the description of the new CS-IS mapping into
the following table in the CDM database:

Attribute Use Class/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
CS-1S mapping forms.

If the CDM tables are to be modified with the NDDL
commands, skip to Section 6.4.5.

- -
- e e o

-

Tasks:

UM 620141001
1 November 1985

The CDM Administrator loads descriptions for the
modified table from the database DDL statements.

Create one entry in the Data Field Table for each new
data field added to the table.

Delete the entry for each data field deleted from the
table. Modifications to previously defined data
fields are made in the Data Field Table as
appropriate.

Create one entry in the Component Data Field Table
for each new data field that is part of another data
fielad.

Delete the entry in the Component Data Field Table
for each data field deleted that is part of another
data field.

Create a new entry in the Record Key Table for each
nev data field or set of new data fields that is
designated as the key of the table.

Delete the entry(s) in the Record Key Table for each
data field deleted or set of data fields that is
designated as part of the key of a table. Remember,
a table must have a key, and it must be unique.

The CDM Administrator determines the mapping for each
new column in the table.

NOTE: This task is to be omitted when modifying
or deleting a previously defined data
field.

Determine what sort of data about real-world things
that the data field contains. See Task 3 of Section
6.5.2.

Determine which attribute use class in the conceptual
schema represents the same sort of data as the data
field. See Task 3 of Section 6.5.2.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for the attribute use class to which the

6-88

PR I W o BRI B) Y T+) y) A 0wt
b M, AT, RXAARR AN WO AL bl NNy

LU

b

T wr Modad Bl o R g Aal Lo g 4ok ha A Al n M4 4ia aaa 4 2 m

a8
DS
]
N
I UM 620141001
) 1 Nocmber 1985
b
;2 new data field maps.
ki 3. The CDM Administrator loads descriptions from the y
Data Field/Attribute Use Class Mapping Forms.
o
Q‘ Create one entry in the Attribute Use Class/Data
i Field Mapping Table from each line on each form that I
b references a new data field. g
o
Delete each entry in the Attribute Use Class Data
X Field Mapping Table that references a deleted data
) field.
Qf 6.4.4.2 Delete a Previously Defined Relational Table by ;
¥ Modifying the CS-IS Mapping. :
3 Objective:
<
") Delete the description of a previously defined ;
" relational table from the tables in the CDM database: ;
% 1
Record Type Table
) Database Area Table)
M Database Area Assignment Table]
@ Data Field Table -
% Component Data Field Table
»
- [Load the description of the new CS-IS mapping into
N the following tables in the CDM database:

Entity Class/Record Type Mapping Table
’ Attribute Use Class/Data Field Mapping Table

) Refer to Section 6.1.3 for details on how to fill out the
' CS-1IS mapping forms.

N Tasks:
L 1. The CDM Administrator deletes descriptions from the
] tables in the CDM database for the deleted relational
2 table.
‘
) Delete the entry in the Record Type Table for the 4
2 deleted table.
&
Delete the entry in the Database Area Assignment
g Table for the deleted table.

4 - o
.-.-

"’

--- -
-

¥ . 5 A% e S e T P A R T A . « .) § - SN
t,0 (] t & “ ol ANP? "W paiC Y s) LRI »
'«‘!'-'l‘!'t‘.fﬂ”»,t':”o';.'n'.,a'.. (5., »v ""’" ¥, -.Q. 'F N O U e S "t R WEA o, ey

et R N
e "'""..L\' N

o

T

- - -

LI

EEE

L)

UM 620141001
1 November 1985

Delete the entry in the Data Field Table for each
data field in the table to be deleted.

Delete the entry in the Component Data Field Table
for each data field that is part of another data
field for the deleted table.

The CDM Administrator deletes descriptions from the
Record Type/Entity Class Mapping Forms.

Delete the entry in the Record Type Component Table
from each line on each form that references a deleted
table.

The CDM Administrator deletes descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Delete the entry in the Attribute Use Class/Data
Field Mapping Table for each data field in a deleted
table.

6.4.5 Modifying a Relational Table IS and CS-IS Mapping with

Tasks:

NDDL

A summary of the NDDL commands required to load and
maintain on IS and CS-IS mapping is contained in Section 6.1.4.

1.

BEIOUIORN O

The CDM Administrator loads descriptions for the
modified table from the database DDL statements.

Use the NDDL DROP TABLE command to delete the table
that is to be modified.

Use the NDDL DEFINE TABLE command to define the columns
that were added, changed, or deleted.

The CDM Administrator determines the mapping for each
new column in the table.

See Task 2 of Section 6.4.4.

The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Form.

IR

UM 620141001
1 November 1985

For each modified table, use the NDDL CREATE MAP
command to:

° Recreate the mappings between tag names
(attribute classes) from a conceptual schema
entity class to column names.

[Recreate the mappings between attribute use
classes and column names.

6.5 IMS Databases

6.5.1 IMS Specific Considerations

Whereas the basic construct of the CODASYL model is a set
and complicated structures can be built from sets, the IMS model
represents data in the form of a tree structure. A tree
consists of different levels of entities referred to as nodes. A
node can have many occurrences, that is, sets of data values
for its data items. Each higher level implies dominance over
the levels below it, thus creating a hierarchy. The highest
level contains only one node called a root node. All nodes,
with the exception of the root, must be connected at a level
above it. The node at the higher level is called a parent node
and “"owns" all of the lover level nodes in the limb. The node
at the lower level is called achild node. A child node must
have one and only one parent node. A parent node can have none,
one, or many nodes connected to them as children. There can
be many occurrences of a specific child node under a single
parent. A parent and its children at each level are
considered a physical tree. A database may consist of many of
these physical trees. Even though the set construct is not
supported by the IMS model, a parent and all of its children are
to be considered analogous to a set. The following example
depicts the IMS hierarchical model.

LEVEL 1 ROOT NODE (PARENT)
[I
LEVEL 2 CHILD NODE (PARENT,
1 1
LEVEL 3 THE NEXT NODE
(CHILD)

N
LS

\!
,I
A

R s AR A SRR

UM 620141001
1 November 1985

A node is called an IMS segment. A logical record in the
database consists of a root and all of its children. A
database record can consist of a tree with up to 15 levels. 1In
essence, many logical relations (relation classes) could be
combined into one physical hierarchy. This is called a regular
hierarchy and is defined via an IMS Database Definition (DBD).

AT

RC1 RC3
ECH 1
A
‘L c2 RT2 | RT3 RT: |
EC? ?f [Ec3] 3 {ECa] «

The CS-1IS mapping for a regular hierarchy involves the
following:

° Each parent-child relationship within the hierarchy
maps to a relation classes.

° The parent in each relationship maps to the entity
class that is independent in that relation class.

° The child in each relationship maps to the entity
class is dependent in that relation class.

In the example above:

RT1 maps to EC1
RT2 maps to EC2
RT3 maps to EC3
RT4 maps to EC4
RT1:RT2 maps to RCl
RT1:RT3 maps to RC2
RT1:RT4 maps to RC3

The previous diagram jillustrates that each dependent
segment has a parent segment and exists as one element in a
child-parent relationship. These relationships can have both a
physical and a logical form. The physical form of the
parent-child relationship is a consequence of (1) the definition
of a given data base and (2) the method by which the data
elements are stored. The logical relationship is established
solely by express definition and exists externally to any

6-92

Ant - g)" O3 X ’ OO A T 1 AN
BISLSCAC 0 Wi WSO L ML NI A 1 MU V5. V8. ; ‘ 9 Tt o ; 28 3y (AN A
SRR EUSHRA u,“ntg.‘ '.""J.'a"‘v)ﬁ‘,‘aﬁt(‘iﬂ?qh,a‘ b *,,h“"z‘.\‘s'!' e .'t‘f‘ﬁ-v AU f,‘.}!!‘!‘i"r]"’ &‘ﬁ‘i‘ti‘"l’os“@‘i!é At

i UM 620141001
. 1 November 1985

O physical organization constraints.

S IMS has an additional relationship called a "twin." As with
K the parent-child relationship, two forms of twins exist:
physical and logical twins. Physical twin segments are multiple
occurrences of a common segment format. At the root segment

K3 level, the set of physical twins is the set of all root segment
% occurrences of a given database. At the dependent segment

v level, a set of physical twins is the set of physical child

" occurrences for a given segment format within a hierarchy. At
the logical level, twins are multiple occurrences of a common
segment format having a common logical parent. The physical and

p; logical concepts give IMS the capability of storing network type
9 relationships (sets) between entities. These network physical
) structures are viewed by users and programmers as one Or more

N hierarchical views.

Every logical relationship involves the use of three

&

g segments; no more, no less. Two of these segment types (the

! physical parent and the logical parent) can exist in separate
o databases or they may exist in the same physical database. The

W third segment type (the logical child) is used to construct the
logical linkage. This segment type is very special since it has
tvo parents.

A nonspecific membership set type whose cardinality is

“ many- to-many, is one in which (1) each member of entity class
it "1l" is related to zero, one, or many members of entity class "2"
and (2) each member of entity class "2" is related to zero, one,
or many members of entity class "1." Such a relation class is

h refined, as shown in Figure 4-7, before it is incorporated into

\ the conceptual schema.

5 RTY RT2

!'

b

Z R E [€c2 2

!

¢ RC1 RC2

&,

[

fi, RT3 R4
LEecs 3

The CS-1IS mapping for a many-to-many membership set type
! involves the following.

]
Ll
» 6-93
_‘&
3

OO N O N O O OO M O A DTN T il ALt I AT
KRR N AN O RO ..atv,_,tts,f‘z,f’v,}‘}.‘,..‘a.f._,at.‘v.c:ip W) }‘g“_‘a,{.p,,’,,,:a e

5 SO "y N iAgbi.s

UM 620141001
1 November 1985

ot L Each parent segment has a primary mapping to one
entity class.

o The child segments have a primary mapping to a
single entity class (RT4 may or may not exist
physically on the database depending on the IMS
options that were chosen).

[Two IMS DBDs are required and map to one-to-many
relation classes.
if ® The entity classes to which the parents map are
X independent in their respective relation classes.
o o The entity class to which the children map is
) dependent in that relation class.
jg In the example above:
o
,? RT1 maps to ECl1

N RT2 maps to EC2
RT3 maps to EC3

e RT4 maps to EC3

A RT1:RT3 maps to RC1

& RT2:RT4 maps to RTC2

5

B 6.5.2 Building an IMS IS and CS-IS Mapping

- Objectives:

0

o ° Load the description of an IMS database into the
3 following tables in the CDM database:

Database Table
" Record Type Table

- Database Area Table

" Data Field Table

Yy Component Data Field Table

o Data Field Redefinition Table

Repeating Data Field Occurance Counter Table
e Record Set Table

i Record Set Member Table

.‘,‘

h

" ° Build a model of the mapping between the IMS database
B and the conceptual schema.

° Load the descriptions of the CS-IS mapping into the

6-94

Ry »n‘aq DR cn \ 0 y v BT, T T, 00 V) ' X
: g B RIS ‘&’4’;‘A3 21X *.' I ’*'. . Ryt ',’h ‘t“, S ‘a' Y, ‘n',. ‘Q°a'. o . o"‘b Wy |'»'i :-';:-?.gt‘..o‘,,t!.vo‘. NIRRT o!.:of.‘oﬁl

UM 620141001
1 November 1985

following tables in the CDM database:

Entity Class/Record Type Mapping Table
Entity Class/Record Type Join Table
Relation Class/Set Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
CS-IS mapping forms.

Skip to Section 6.5.3 if the IMS description is to be
loaded with the NDDL.

Tasks:

1. The CDM Administrator loads descriptions from the
database DDL (DBD) statements.

Create one entry in the Database Table for the
database.

Create one entry in the Record Type Table for each
segment type in the database.

Create on entry in the Data Field Table for each
data element in each segment type in the database.

Create one entry in the Component Data Field Table
for each data element that is part of another data
field.

Create one entry in the Data Field Redefination Table
for each data element that redefines another data
field.

Create one entry in the Repeating Data Field
Occurrence Counter Table for each data element that
occurs more than once in a segment type.

Create one entry in the Set Type Table for each
parent: child relationship in the database.

Create one entry in the Set Type Member Table for
each segment type that is a child (member of a set
type). 1If a segment type is a member of more than
one set type (this can only occur if it is a logical
child), create a table entry for each. If a parent

6-95

" .ﬂ' . \;."...“ \.‘q.‘ <.F.‘P . --' (%f.‘:;.’ ‘o, “
X b N L b L L | M L0 MELA L v 2 b e N

347 4% A X
" et
BOGN A SO0

UM 620141001
1 November 1985

segment type has more than one child segment type,
create a table entry for each.

The CDM Administrator determines the mapping for each
segment type.

Usually, it is easier to map an IMS database by

starting with the root segment and working down each
limb of the tree. A child segment type should not be
mapped until its parent segment type has been mapped.

Determine what sort of "real-world” thing the
segment type represents. Each instance of a segment
type contains data about a specific person, place,
object, etc., that is significant to the enterprise.
With IMS, all of the instances of the same type are
about the same sort of thing. Usually, all of the
instances of the same type are about the same sort
of thing.

A few segment types do not represent real-world
things; they exist to provide database pointers
between logically related segments. Such segment
types do not map to any entity classes and can be
ignored.

Determine which entity class in the conceptual schema
represents the same sort of thing as the segment
type. This primarily involves finding the entity
class whose definition corresponds to the intent of
the segment type. Comparing the key classes,
attribute use classes, and relation classes of the
entity classes to the keys, data elements,and parent-
child relationships of the segment types can be
helpful also. If the segment type represents

several sorts of things, it will map to several
entity classes, one for each sort of thing: see
Section 6.1.2.4 regarding relational unions. If none
of the entity classes represent what the segment type
does, either the segment type exists only to provide
a logical relationship or the conceptual schema must
be expanded. (See Section 4.3.)

Fill out a line on a Record Type/Entity Class
Mapping Form for each entity class to which the
segment type maps.

Fy 4

AN e

QL IONOLONOI0 OO '
Vot ‘1'4‘v',,’\‘"i':.’af!‘o!:'l,.ht,flf,_-’af, Af,‘nf,'i!.':f.'t,:'o,, "

et ST

Ty UM 620141001
1 November 1985

N 3. The CDM Administrator determines the mapping for each
SCX] data element.

Determine what sort of data about real-world things

oy that the data element contains. If the segment type

' that contains the data element represents more than

e one sort of thing, i.e., if it has more than one

T mapping, the data field may contain several sorts of

Ky data. All of these must be identified.

oo A few data elements do not contain data about real-

?W world things; they exist for technical reasons only.

oY Examples include segment codes and segment activity

;ﬂ dates. Such data elements do not map to any

e e attribute use classes and can be ignored.

;h{ Determine which attribute use classes in the

.ﬁ' conceptual schema represent the same sort of data as

KX the data element. This involves finding the

:ﬁa attribute use class whose definition or migration

R path corresponds to the intent of the data element. The
first place to look is the entity class to which the

& segment type maps. If the segment type maps to more

Q@: than one entity class, the data element may map to an

¥y attribute use class in each. The value in the data

element in each instance of the segment type must be
W the same as the one in the attribute use class in the

} corresponding instance of the entity class. If two or
St more inherited attribute use classes that come from the

iy same owned attribute use class have identical values in

ﬂé. every entity instance, the data element may map to some

ﬁ?‘ or all of them.

Wt

e If none of the attribute use classes in the mapped to

R entity class(es) correspond to the data element, the

5&' next places to look are the entity classes that are

oy related to the primary entity class(es). Again, the

Ay value in each segment instance must be the same as the

@N value in the corresponding entity instance. 1If the
attribute use class is not in any of these entity

vy classes, the search must be widened to include the

S entity classes that are related to them. This continues

:i until the proper attribute use class is found or until

& it is determined that a new attribute class must be

KoL added to the conceptual schema; see Section 4.3.

Y Fill out a line on a Data Field/Attribute Use Class

PR h SLSELEDANEAS NS
" ‘ } (K ...

" p Ry ¢ - A R e e ety ’.v -
n . AN e < i \ " Lt e e e . o ¥
had AR A2 e XA AN ROLLLL D C L REAEAh o S Tt

UM 620141001
1 November 1985

Mapping Form for each attribute use class to which the
data element maps.

[A A Ay~ PN

4. The CDM Administrator determines any joins that are
needed for each segment type.

P&~ !

Determine whether any of the data elements in the

segment type map to attribute use classes that are 3
not in the entity class(es) to which the segment type .
maps. This can be done by comparing the entity class z

numbers that are entered on the Data Field/Attribute
Use Class Mapping Forms for the segment type to
those that are entered on the Record Type/Entity
Class Mapping Form for the segment type. If an
entity class number is on the first form but not on
the second, that entity class must be joined with the -
one to which the segment type maps. 9

Determine whether any other entity classes are needed
to complete the join structure(s). The entity classes y
that must be joined to form the segment type must a
form one or more join structures as described in
Section 6.1.2.3. If the join structures are not
contiguous, one or more additional joins may be
needed. For example, if the segment type in Figure
6-17 maps to EC4 and involves joins with ECl and EC3,)
it must also have a join with EC2. Without it, EC1

cannot be joined to the EC3-EC4 join result. The

jJoin must involve EC2 even though none of its

attribute use classes map to data elements in the

segment type. :

Prepare Rzcord Type Join Structure Diagrams for the
segment types that involve joins.

5. The CDM Administrator determines the mapping for each
parent-child relationship.

Determine what sort of relationship between “"real-

world" things the set type represents. If the set

type has more than one child segment type, each must .
be considered separately. If either the parent or the :
child segment type has no mapping to an entity class,

the set type will have no mapping to a relation

class, so it can be ignored.

Determine which relation class in the conceptual

. LI
BENACN MO 3OM YOO8 M 1 gt et e

A PRSI VRN o L AR SR RS Yy .
. t e b - * ~
RS A O R RS S o Lo IR A AN L » s L) ¥ W

'
¢

-

-
-

UM 620141001
1 November 1985

schema represents the same sort of relationship as
the set type. Usually, this is the relation class
vhose independent entity class maps to the parent
segment type and whose dependent entity class maps to
the child segment type.

Fill out a line on a Set Type/ Relation Class Mapping
Form for the relation class to which the set type
maps.

The CDM Administrator loads descriptions from the
Record Type/Entity Class Mapping Forms.

Create one entry in the Entity Class/Record Type
Mapping Table from each line on each form.

The CDM Administrator loads descriptions from the
Record Type Join Structure Diagrams.

Create one entry in the Entity Class/Record Type Join
Table for each relation class in a diagram.

The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Forms.

Create on entry in the Attribute Use Class/Data Field
Mapping Table from each line on each form.

The CDM Administrator loads descriptions from the Set
Type/Relation Class Mapping Forms.

Create one entry in the Relation Class/Set Type
Mapping Table from each line on each form.

6.5.3 Building an IMS IS and CS-IS Mapping with NDDL

Tasks:

1.

B { «
NS A TS a._"- DGR
- teoos d T A LA

The CDM Administrator loads descriptions from the
database DDL (DBD) statements.

Use the NDDL DEFINE DATABASE command to:

Define the DBMS

Define the database name
Describe the host

Record par-sword(s)

6-99

Al o
AN,
ot

~~~~~

Sl PPCIe, . Lty N Vo W 1YY ' AR T N,
B0 IO YL /4 o ) SR gl,!\l,ﬁ|._\9'f.i"'|.l. A |’l.|'l.|'l' R K ‘,‘l.’;



N

UM 620141001
1 November 1985

® Define the PBS name
N ™ Define database areas (dataset)
q ° Supply key feedback length

i S Ay A

Use the DEFINE SEGMENT command to:

e ° Attach the segment(s) to the database
p ° Define the key fields and state whether or not '
¢ it must be unique
° Define what area a segment is to physically
. reside in
K ° Define the elements within the segment

i Use the DEFINE PATH command for each new parent/child ‘
g relationship. ‘

2. The CDM Administrator determines the mapping for each

g segment type.
A See Task 2 of Section 6.5.2.
! 3. The CDM Administrator determines the mapping for each
: data field (element).
;z See Task 3 of Section 6.5.2. 5
; 4. The CDM Administrator determines any joins that are ‘
needed for each segment type.

g See Task 4 of Section 6.5.2. :
%. 5. The CDM Administrator determines the mapping for each ;
" parent/child relationship.
4 See Task 5 of Section 6.5.2 ;
3 6. The CDM Administrator loads the mappings. E
! Use the NDDL CREATE MAP command for each segment.

6.5.4 Modifying an IMS IS and CS-1IS Mapping é
: 6.5.4.1 Add One or More New Segment Type(s) i
ﬁ Objective: )
i ° Load the description of a new segment type(s) within
a
é 6-100

-
Pl

OO0 ° AT L € IR KA A {.(".f({\r Ry -(‘.' .".(I.* <~!..‘._.._'..- RS '-."').",‘
LR "l‘t M I s A L ) RN L0 L0 : ARG ATRCI L O TR T



UM 620141001
1l November 1985

'\
5ﬁ an IMS database into the following tables in the CDM
it database:

Record Type Table
R Database Area Table

B Data Field Table
XX Component Data Field Table
o Data Field Redefinition Table

B Repeating Data Field Occurance Counter Table
Record Set Table
Record Set Member Table

! ° Build a model of the new mapping between the IMS
W database and the conceptual schema.

o Load the description of the new CS-IS mapping into
the following tables in the CDM database:

e Entity Class/Record Type Mapping Table
o Entity Class/Record Type Join Table

Uy Relation Class/Set Type Mapping Table

) Attribute Use Cla. s/Data Field Mapping Table
el
> Refer to Section 6.1.3 for details on how to fill out the
;2 CS-1S mapping forms.

)]
& Skip to Section 6.5.5 if the IMS description is to be

loaded with NDDL.

AR
.% Tasks:
:ﬁ 1. The CDM Administrator loads descriptions for the new
Zﬁ segment type from the database DDL (DBD) statements.
X Create one entry in the Record Type Table for each
oy new segment type added to the database.
‘q,' y
%ﬁ Create one entry in the Data Field Table for each
o data field in each new segment type added to the

' database.
35 Create one entry in the Component Data Field Table
q; for each data element that is part of another data
‘,‘0;2 field.

o Create one entry in the Data Field Redefinition Table
K for each data element that redefines another data

Al

W 6-101
-

G

- LY
% (] ¥, ¥
(U Q,i's l':‘,l'g . “sqﬁ",o ¥, '[‘

AR AT AT K R, p A T R T T T N R A A Y R T
AR S R R AT e ' N QUL OOy Lo D o TNV R S



2 UM 620141001
. 1 November 1985

¥, field.

-
K A A A

Create one entry in the Repeating Data Field
Occurrence Counter Table for each data field that
occurs more than once in a segment type.

i+
B!

Create one entry in the Record Set Table for each
parent-child relationship (“set type") the new :
segment type participates in as a parent. [

B, e

Create one entry in the Record Set Member Table for ;
each new segment type that is a child (member of a

set type). If a segment type is a member of more than

one set type (this can only occur if it is a logical

child), create a table entry for each. If adding a

parent segment with multiple children, create a table

entry for each child.

-
-

-
.-

- =
- . o

2. The CDM Administrator determines the mapping for each
new segment type.

= el o o -

See Task 2 of Section 6.5.2.
. Fill out a line on a Record Type/Entity Class Mapping ;
. Form for each entity class to which the segment type 3
. naps.
1%

3. The CDM Administrator determines the mapping for each
: element in the new segment type.

& See Task 3 of Section 6.5.2.

¥ Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the data field maps.

h 4. The CDM Administrator determines any joins that are
] needed for each new segment type.
]
L
'l

See Task 4 of Section 6.5.2. '

Prepare Record Type Join Structure Diagrams for each }
newv segment type that has any secondary mappings.

¢ 5. The CDM Adminstrator determines the mapping for each 4
! parent-child relationship. ’

6-102

o e

e -

b

.' -‘v . v an
R UIA D ARANSEXE AN

o et Al ot ot e AR AT A L
oA R I R LN IR ¢ Ca
f..ql‘) v, a‘Mi 3 AN L3 [ v‘ R A UL AANPLE A KN X

P - . s e o n
1 { N AY wn. N\, LAY ‘,.
"A"ua"“! p.478, .0‘ N ‘0:‘!‘!"'-. ‘. oW O'A‘o.n (]



o Wy v

o e &
E B O & N ¥

6.5.4.2

UM 620141001
1 November 1985

See Task 5 of Section 6.5.2.

Fill out a line on a Set Type/Relation Class Mapping
Form for the relation class to which the set type
maps.

The CDM Administrator loads descriptions from the
Record Type/Entity Class Mapping Form.

Create one entry in the Entity Class/Record Type
Mapping Table from each line on each form.

The CDM Administrator loads descriptions from the
Record Type dJoin Structure Diagrams.

Create one entry in the Entity Class/Record Type Join
Table for each relation class in a diagram.

The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form.

The CDM Administrator loads descriptions from the Set
Type/Relation Class Mapping Forms.

Create one entry in the Relation Class/Set Type
Mapping Table from each line on each form.

Modify an Existing Segment Type Database by
Adding Modifving, and/or Deleting Data Fields

Objective:

(¥

Modify the description of a previously defined
segment type within the tables in the CDM database:

Data Field Table

Data Field Redefinition Table

Component Data Field Table

Repeating Data Field Occurance Counter Table

Build a model of the new CS-IS mapping between
the IMS database and the conceptual schema.

Load the description of the new CS-1IS mapping

6-103

e

A,

AR NN o e N . AU A 5 Wi _-,_\_.‘M,;i‘. " N P ‘."-._\J-.--.*\ N
f;n.dahﬂﬁu.iu‘f‘JMm&hﬁﬂna.mﬂﬁﬂWuﬁﬁ.?-...§$32§b¢¢Fmsdﬁﬂgufkhfﬂhddé‘



»

UM 620141001
1 November 1985

N into the following table in the CDM database: o

i Attribute Use Class/Data Field Mapping Table g
K Refer to Section 6.1.3 for details on how to fill out the

; Cs-1S mapping forms.

X, Skip to Section 6.5.5 if the IMS description is to be 1

) modified with NDDL. ¢
Tasks:

1. The CDM Administrator loads descriptions for the
modified segment type from the database DDL statements.

L Ty s
L

Create one entry in the Data Field Table for each new
data element added to the database.

Delete the entry for each data element deleted from

the database. Modifications to previously defined J
data elements are made in the Data Field Table as :
appropriate.

- ‘:: D

Create one entry in the Component Data Field Table
) for each new data element that is part of another
: data field.

P =gy

Delete the entry in the Component Data Field Table
for each data element deleted that is part of another
data element.

X Create one entry in the Data Field Redefinition Table
% for each new data element that redefines another data
element .

' Delete the entry in the Data Field Redefinition Table
i for each deleted data element that redefines another
B data element. Care must be taken to ensure the

v deletion of the redefined field also.

“ Create one entry in the Repeating Data Field
9 Occurrence Counter Table for each new data element
. that occurs more than once in a segment type.

y Delete the entry in the Repeating Data Occurance
Counter Table Field for each deleted data element
that occurs more than once in a segment type.

6-104

I S R R L SRR 1~H-\1.‘- S oS as
! - » - A
/| A Cn S A e Ul o LAt D ]



UM 620141001
1 November 1985

2. The CDM Administrator determines the mapping for each
new data element in the segment type.

NOTE : This task is to be omitted when modifying
or deleting a previously defined data
element.

See Task 2 of Section 6.5.2.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the new data field maps.

3. The CDM Administrator loads descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form that
references a new data field.

Delete each entry in the Attribute Use Class/Data
Field Mapping Table that references a deleted data
field.

6.5.4.3 Delete a Previously Defined Segment Type by Modifvying
the IMS and CS-IS Mapping

Objective:

.
N

o Delete the description of a previously defined\y
segment type from the tables in the CDM database:

Record Type Table

Database Area Table

Database Area Assignment Table

Data Field Table

Component Data Field Table ~
Data Field Redefinition Table

Repeating Data Field Occurance Counter Table

Record Set Table

Record Set Member Table

° Build a model of the new mapping between the IMS
database and the conceptual schema.
[ Load the description of the new CS-IS mapping into

6-105

R S AL P
.u?n",s""’ ' d

Y » N . - P e P ETRT MTpTp . p o iy - .
ATEAN N LA ) ; < (R T 1% ) ‘ . Qur Y,
S AT T VT h,tfc,lg.l”;,i!p.l’,‘ 9 ‘10 g ..'!la Ve h’ﬁ‘%é,n iyt “M' & “‘!‘u!"".:'.“( ?:G 8 ¥4 (RN AR R W Q," ;b‘

WA Y



UM 620141001
1 November 1985

the following tables in the CDM database:
Entity Class/Record Type Mapping Table \
Entity Class/Record Type Join Table
Relation Class/Set Type Mapping Table
Attribute Use Class/Data Field Mapping Table

- a

t
. Refer to Section 6.1.3 for details on how to fill out the e
CS-1S mapping forms. b

Skip to Section 6.5.5 if the IMS description is to be
modified with the NDDL.

’ Tasks: g

1. The CDM Administrator deletes descriptions from the
tables in the CDM database for the deleted segment
types.

Delete the entry in the Record Type Table for each
' segment type deleted from the database.

Delete the entry in the Database Area Assignment
Table for each deleted segment type that is assigned
to a database area.

Delete the entry in the Data Field Table for each
data field in each segment type deleted from the
database.

S e e e

Delete the entry in the Component Data Field Table
. for each data field that is part of another data
¢ field for each segment type deleted from the
' database.

Delete the entry in the Redefined Data Field Table
for each data field that redefines another data field
for each segment type deleted from the database.

’ Delete the entry in the Repeating Data Field Table
for each data field that occurs more than once in a
deleted segment type.

Delete the entry in the Set Type Table for each
deleted segment type that is a parent. If a deleted
R segment type is the parent of more than one child,

' delete the table entry for each.

6-106

R

'y, l

BOROSOGON R Ve s T W RN e B 00y NN 't !
Rt NS 1y | g agp ) §2, 1 KN ‘g b6 ’l’ i‘|l ! ‘;!,“.!“ ua‘ .", LYY ig‘ t‘,pl .'0..'0 I.;‘ .|’t.|'l‘.‘l‘|'d.. l.. “'h"

e



e ‘
oA UM 620141001
: 1 November 1985
R
S
t e
U
;&Q Delete the ent 7 in the Set Type Member Table for
R each deleted segment type that is a child.
‘t:"c

2. The CDM Administrator deletes descriptions from the
e Record Type/Entity Class Mapping Forms. Delete the
ol entry in the Entity Class/Record Type Mapping Table
;&f from each line on each form that references a deleted
Wl segment type.
£t

3. The CDM Administrator deletes descriptions from the
‘pé Record Type Join Structure Diagrams.
A'ﬂ:
ﬁ&g Delete the entry in the Entity Class/Record Type Join
%& Table for each relation class in a diagram that
ity references a delcted segment type.

4. The CDM Administrator deletes descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Delete the entry in the Attribute Class/Data Field
Mapping Table for each data field in a deleted
segment type.

Q& 5. The CDM Administrator deletes descriptions from the Set
'§§ Type/Relation Class Mapping Forms.
B
ﬁ% Delete all entries in the Relation Class/Set Type
y Mapping Table for each segment type deleted.
g
-i;‘,;i 6.5.4.4 Delete an IMS Database from the CS-IS Mapping
i.'
BN
N Objective:
e ° Delete the description of a previously mapped IMS
*8 database from the following tables in the CDM
2? database:
AR
Wiy
o Database Table
R Record Type Table
Data Field Table
ah Component Data Field Table
g Data Field Redefinition Table
nmg Repeating Data Field Occurance Counter Table
W Record Set Table
B Record Set Member Table
"0 . Delete the description of the CS-IS mapping from

)
o4
§
i 6"107

X,

1 2 : .. ~ e ) R
SN AR DT TR I A M ™ W AN I Tt ANOO0 SOOI W O T e
' .‘ B 2 \‘4" »Q-'v""»-‘“ i"h‘ . ‘.f-l ,‘l,-,"";g\‘i),5_‘({.\?!:“'!;"‘0,,-%23843’ e"f%“l?“e-"""’"'a, A .gblmi'~‘l‘\‘|. ;‘:‘.ltgflndi.n!ﬁ':.l'g




T

UM 620141001
1 November 1985

the following tables in the CDM database:

Entity Class/Record Type Mapping Table
Entity Class/Record Type Join Table
Relation Class/Set Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Refer to Section 6.1.3 for details on how to fill out the
CS-1IS mapping forms.

Skip to Section 6.5.5 if the database is to be deleted with

NDDL.
Tasks :

1.

RAOSCAORONMIASOE

The CDM Administrator deletes descriptions from the CDM
database table.

Delete the entry in the Record Type Table for each
segment in the database.

Delete the entry in the Data Field Table for each data
element in each segment type in the database.

Delete the entry in the Component Data Field Table for
each data element that is part of another data field.

Delete the entry in the Data Field Redefinition Table
for each data element that redefines another data
field.

Delete the entry in the Repeating Data Field Occurrence
Counter Table for each data element that occurs more
than once in a segment type.

Delete the entry in the Record Set Table for each set
type in which a segment type participates.

Delete the entry in the Record Set Member Table for
each segment type that is a member of a set type. If
a segment type is a member of more than one set type,
delete the table entry for each.

The CDM Administrator deletes descriptions from the
Record Type/Entity Class Mapping Forms.

Delete the entry(s) in the Entity Class/Record Type
6-108

M0 L MO N N S AR MR NTIIOCAN P BT n BRSO O A L T D A
B . B e e A S i OO O N




UM 620141001
1 November 1985

Mapping Table for each segment type in the deleted
database.

3. The CD# Administrator deletes descriptions from the
Record Type Join Structure Diagrams. Delete the entry
in the Entity Class/Record Type Join Table for each
relation class that is referenced by a deleted segment

type.-

4. The CDM Administrator deletes descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Delete the entry in the Attribute Use Class/Data
Field Mapping Table for all data elements to be
deleted.

5. The CDM Administrator deletes descriptions from the Set
Type/Relation Class Mapping Forms.

Delete the entry in the Relation Class/Set Type
Mapping Table for all set types within the database
to be deleted.

6.5.5 Modifying an IMS IS and CS-IS Mapping with the NDDL

6.5.5.1 Add One or More Segment Types

Tasks:

1. The CDM Administrator loads descriptions for the new
segment type(s) from the database DDL (DBD) statements.

See Task 1 of Section 6.5.4.

Use the NDDL DEFINE SEGMENT to describe each new j
segment type.

2. The CDM Administrator determines the mapping for each
new segment type.

See Task 2 of Section 6.5.4.

3. The CDM Administrator determines the mapping for each
element in the new segment type.

See Task 3 of Section 6.5.4.

6-109




6.5.5.2

Tasks:

UM 620141001
1 November 1985

The CDM Administrator determines any joins that are
needed for each new segment type.

See Task 4 of Section 6.5.4.

The CDM Administrator determines the mapping for each
parent-child relationship.

See Task 5 of Section 6.5.4.

Use the DEFINE PATH command for each nevw parent/child
relationship.

Use the CREATE MAP command for each new segment to be
described.

Modify and Existing IMS Segment Type by Adding,
Modifying or Deleting Data Fields

The CDM Administrator loads descriptions for the
modified segment type from the database DDL (DBD)
statements.

Each segment to be modified must be deleted and
redefined. Use the NDDL DROP SEGMENT command. This
will also delete all mappings. These must be added
later.

Use the DEFINE SEGMENT command for each segment to be
modified.

Use the DEFINE PATH command to add the path again.

The CDM Administrator determines the mapping for each
new data element in the segment type.

Note: This task is to be omitted when modifying or
deleting a previously defined data element.

See Task 2 of Section 6.5.4.

The CCM Adminisirator loads descriptions from the Data
Field/Attribute Use Class Forms.

Use the CREATE MAP command to redefine each modified

6-110

N e CTE Y S, Tt ST Te v 2T Cr AN MO i r
DN O Dl i, LA L TN AR (D Lo DI IR O

- e - - S

e W, -

i

\




UM 620141001
1 November 1985
segnent. Don’'t forget to include all mappings.

6.5.5.3 Delete a Previously Defined Segment Type by Modifying
the IMS and CS-1IS Mapping

Tasks:

1. Delete the segment type with the NDDL DROP SEGMENT
command

6.5.5.4 Delete an IMS Database from the CS-1S Mapping

Tasks:

1. The CDM Administrator deletes descriptions from the CDM
database tables.

Delete each segment in the database with the DROP
SEGMENT command.

Delete the database with the DROP DATABASE command.
6.6 VSAM Files

6.6.1 VSAM-Specific Considerations

The Virtual Storage Access Method (VSAM) is a component of
the IBM operating system’'s data management services. VSAM
supports both direct and sequential processing. VSAM data sets
cannot be accessed by any other access method.

VSAM support consists of the following:

° Three data sets organizations: Entry-Sequenced Data
Sets (ESDS), Key-Sequenced Data Sets (KSDS), and
Relative-Record Data Sets (RRDS). They are supported
on DASD (Direct Access Storage Devices) only.

- A VSAM ESDS is a sequential data set (similar to
a SAM data set).

- A VSAM KSDS is a sequential data set with an
index (similar to an ISAM data set).

- A VSAM RRDS is a data set with preformatted

slots for fixed length records to be accessed
by a record number (similar to a DAM data set).

6-111

S ETAT)

0 0 ar .
W 1- b ‘g? “V F a’a"‘l’o.a’.'i') l‘a‘i‘g () i‘g‘l‘. b “i'J. !::..t"‘l‘ K i) l,‘,l."&.“‘ PR A b§ ] ‘ ’ ‘




)
‘,‘ﬁfx‘
Y, UM 620141001
‘ 1 November 1985
) NOTE: As VSAM RRDSs are rarely used, they are
ERIR excluded from this document.
2""5‘,'
' As the mappings for an ESDS and KSDS are identical, the
AN following discussions will not make any differentiations.
*, ’ L]
g?’ The mapping from the Conceptual Schema to a VSAM file is
i very straightforward where:
|,l:t
i ° Nonspecific relationships have been resolved.
j$§ ° Keys have been migrated.
POLT
Sﬁ: ° No role names are used.
‘!ﬁ:l'
e In mapping to a VSAM file:
? ® Each entity class becomes a record.
o
él? ° Each attribute of an entity becomes a data item in
a%; the corresponding VSAM record.
8 ° The key of each entity becomes the primary key in the
! corresponding record.
2y
Q¥4 If relationships between VSAM files are implied (foreign
o keys have been migrated), please refer to Section 6.4 for
e mapping instructions.
i 6.6.2 Building a VSAM IS and CS-IS Mapping
.H
m@ Objectives:
_'i"
e ) Load the description of a VSAM file into the
"y following tables in the CDM database:
g
% Database Table
Ks Record Type Table
b Data Field Table
- Component Data Field Table
i
ey ° Build a model of the mapping between the VSAM file
2 and the conceptual schema.
K
ﬁﬁ? ° Load the descriptions of the CS-IS mapping into the
" following tables in the CDM database:
- &
T3

A 6-112

) L ," - oy - X 0 .. v ‘ W w", f‘-d‘,.'q"~ \.-\I\-'\“‘( (‘:'yr_..\ ‘,- At q‘,*v
;50!"{"!11'!.7",’1'. (LT LA LANA A:’.;L“..E ..‘.Q LX) ,q'i‘q". q‘! gb.‘u'."ﬂ!‘.n" L W ,. .50, 5% < \ Sa LA x ‘.‘* Sl Yt

- v PV, 2



@g
AL
Sl
o
,s:,‘i
R0% UM 620141001
¥ 1 November 1985
i";“
,h(‘l
ned Entity Class/Record Type Mapping Table
'*w Attribute Use Class/Data Field Mapping Table
:""!’ .

Please refer to Section 6.1.3 for details on how to fill
AL, out the CS-IS mapping forms. Note that, NDDL does not support
9%: VSAM data sets.
R
:ég Tasks :

l. The CDM Administrator loads descriptions from the VSAM
LN file design.
R
S
J&S Create one entry in the Database Table for the VSAM
Hhe file.
R
¥

— Create an entry in the Record Type Table for the VSAM

o record.

A%
&)% Create one entry in the Data Field Table for each
g ' data field in the record.
‘L“i‘é

Create one entry in the Component Data Field Table
oYy for each data field that is part of another data
;~} field.
98
e 2. The CDM Administrator determines the mapping for each
"hy record type.
RAK, Determine what sort of "real-world" thing the record
i represents. Each instance of a record type contains
yﬁ data about a specific person, place, object, etc.,
:m' that is significant to the enterprise. With a VSAM
i file, all of the instances of the same type are about

s the same sort of thing and map directly to an entity.

Determine which entity class in the conceptual schema
represents the same sort of thing as the VSAM record.
This primarily involves finding the entity whose
definition corresponds to the intent of the record.

E Fill out a line on a Record Type/Entity Class Mapping
.ﬁy Form for the entity class to which the record maps.
ey

f}. 3. The CDM Administrator determines the mapping for each
T data field.
7:¢‘ Determine what sort of data about real-world things
1G]

¥
o 6-113

R

‘l.
Kl

‘.n'-'l-c RO OO I A X A Y M O A ORI . o O R BCd -' hd St = I ‘-‘- hOSL
RN IO SOOI rLChy Q00 L f\'-, SOIAR AP S
: it ”-“:-‘ *“ h " ot n'l RF/\ "!. ety e l.fhﬁ ". ARSI .‘). AN A-l " f ‘.'_“ 2




UM 620141001
1 November 1985

that the data field contains. There should always be >
a one-for-one mapping between the attributes of an :
i entity and the data fields of its corresponding ”
record.

4 A few data fields might not contain data about real- 2
world things; they exist for technical reasons only.

Examples include record codes and record activity Z
By dates. Such data fields do not map to any attribute t
' use classes and can be ignored.

Determine which attribute use classes in the !

conceptual schema represent the same sort of data as ’
) the data field. This involves finding the attribute v
o use class whose definition or migration path v

corresponds to the intent of the data field.

K Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which
the data field maps.

4. The CDM Administrator loads descriptions from the
Record Type/Entity Class Mapping Forms. 3

X Create one entry in the Entity Class/Record Type 3
: Mapping Table from each line on each form. b

5. The CDM Administrator loads descriptions from the Data P
Field/Attribute Use Class Mapping Forms. '

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form.

e 4,
- e g

i

6.6.3 Modifying a VSAM IS and CS-IS Mapping

6.6.3.1 Modify a Mapped VSAM Record by Adding, Modifving,
and/or Deleting Data Fields K

W

Objectives:
o Modify the description of a previously defined .
relational table within the tables in the CDM !
database:

-
-

’ Data Field Table
: Component Data Field Table

5 6-114

R ey e o ]

e O GO A ST T A (R e

T
) O NN A I DOOGHOOGARS IO



k’ |.‘l Rl Ra. 4
(¥
-
.y
b
R
B
i UM 620141001
’ 1 November 1985
.ie?;;
nX; . .
gh ° Build a model of the new CS-IS mapping between the
i&g VSAM record and the conceptual schema.
L W
Wk
' ) Load the description of the new CS-IS mapping into
w% the following table in the CDM database:
by
\}
B Attribute Use Class/Data Field Mapping Table
.“:':‘:
i&, Please refer to Section 6.1.3 for details on how to fill
out the CS-IS mapping forms. Note that, NDDL does not support
“4 VSAM data sets.
s‘y'
fy‘ Tasks:
s
ﬁﬂ 1. The CDM Administrator loads descriptions for the
o modified record type.
RPN
;@% Create one entry in the Data Field Table for each new
B data field added to the record.
o
)
ﬁ; Delete the entry for each data field deleted from the
' record. Modifications to previously defined data fields
o are made in the Data Field Table as appropriate.
IX)
(AN
%i Create one entry in the Component Data Field Table for
Wiy each new data field that is part of another data field.
Ry,
’.4'93‘1
P Delete the entry in the Component Data Field Table for
i each data field deleted that is part of another data
o field.
R
ey
ﬁg' 2. The CDM Administrator determines the mapping for each
T new data field in the record type.
o NOTE: This task is to be omitted when modifying or
-:).: deleting a previously defined data field.
Ly
Exe)
%@t Determine what sort of data about real-world things
"2y that the data field contains.
i Determine which attribute use class in the conceptual
zﬁﬁ schema represents the same sort of data as the data
}Q‘ field.
;‘,.l
25 Fill out a line on a Data Field/Attribute Use Class
i Mapping Form for the attribute use class to which the
ﬁﬂ new data field maps.
N
0
e 6-115
0‘.‘.
it
i
' \.‘
)
T AT A A N R <. I . ) TR T AT A" A ™ LTS T P IR R c Nt a®
'."f'.'"'f‘,'f’:'-“‘t"ﬁ Bth .‘A"a'."i'a'f’t’ OB IR R A DB VNI T ;‘,.!:f'., (LI e N ey - , )




s W ee -

-'.V ‘ﬂ

-

XXX 1
e

£

e m
S - T,

“an o . —
By -

,.

- e

6.6.3.2

UM 620141001
1 November 1985

The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form that
references a new data field.

Delete each entry in the Attribute Use Class Data
Field Mapping Table that references a deleted data
field.

Delete a Previously Defined VSAM Record by Modifvying
the CS-IS Mapping

Objective:

Delete the description of a previously defined VSAM
record from the tables in the CDM database:

Record Type Table
Data Field Table
Component Data Field Table

Load the description of the new CS-IS mapping into
the following tables in the CDM database:

Entity Class/Record Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Please refer to Section 6.1.3 for details on how to fill
out the CS-1IS mapping forms.

Tasks:

4 A f [ a’, t“ l'z.!‘, " ,‘7

The CDM Administrator deletes descriptions from the

tables in the CDM database for the deleted record type.

Delete the entry in the Record Type Table for the
record to be deleted.

Delete the entry in the Data Field Table for each data
field in the deleted record.

Delete the entry in the Component Data Field Table for
each data field that is part of another data field.

6-116

A(‘

)
)
o
!
A




- — il TP T W T Y T T W W W W W

UM 620141001
1 November 1985

2. The CDM Administrator deletes descriptions from the
Record Type/Entity Class Mapping Forms.

Delete the entry in the Record Type Component Table
from each line on each form that references a deleted
record.

3. The CDM Administrator deletes descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Delete the entry in the Attribute Use Class/Data
Field Mapping Table for each data field in a deleted
record.

6.7 Sequential Files (Flat Files)

6.7.1 Sequential-Specific Considerations

The mapping from the Conceptual Schema to a sequential file
is very straightforward where:

° Nonspecific relationships have been resolved.
o Keys have been migrated.
° No role names are used.

In mapping to a sequential file:
° Each entity class becomes a record.

) Each attribute of an entity becomes a data item
(column or field) in the corresponding record.

® The key of each entity becomes the primary key in the
corresponding record.

If relationships between sequential files are implied
(foreign keys have been migrated), please refer to Section 6.4
for mapping instructions.

6.7.2 Building a Sequential File IS and CS-IS Mapping

Objectives:

° Load the description of a sequential file into the
following tables in the CDM database:

6-117

o ., N ‘v W e,
A S ofY Py Py W
(et 2 n \’l d “‘ ‘.'t .N‘ .‘ ‘o. ‘a‘ '1 '\.‘.Q " “‘t.‘ .'0 "0." ." .'.0. U :‘-'0. 'l .'0" ) o .'.O. } .0. iy




UM 620141001
1 Noyember 1985

Database Table

Record Type Table

Data Field Table

Component Data Field Table

Build a model of the mapping between the sequential
file and the conceptual schema.

Load the descriptions of the CS-IS mapping into the
following tables in the CDM database:

Entity Class/Record Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Please refer to Section 6.1.3 for details on how to fill
out the CS-IS mapping forms. Note that, NDDL does not support
sequential files.

Tasks:

1.

- 1 - AT .
IR UL A P e WA R T ) Vel
PR !'e, (‘-\!»"3“ T _.‘1_:9“"5‘0_ &T t"l‘u“'i ‘.'A 'A.“‘&‘v:»‘ ’Q.i'

The CDM Administrator loads descriptions from the
sequential file design.

Create one entry in the Database Table for the
sequential file.

Create an entry in the Record Type Table for the
sequential record.

Create one entry in the Data Field Table for each
data field in the record.

Create one entry in the Component Data Field Table
for each data field that is part of another data
field.

The CDM Administrator determines the mapping for each
record type.

Determine what sort of "real-world” thing the record
represents. Each instance of a record contains data
about a specific person, place, object, etc., that is
significant to the enterprise.

Determine which entity class in the conceptual schema
represents the same sort of thing as the record. This

6-118

v

..
5
vatd

RO AR AN
IRARE I KRN




£
R UM 620141001
1 November 1985

. primarily involves finding the entity whose
'* definition corresponds to the intent of the record.

Fill out a line on a Record Type/Entity Class Mapping
Form for the entity class to which the record maps.

et 3. The CDM Administrator determines the mapping for each
KA data field.

Determine what sort of data about real-world things
that the data field contains. There should alwvays be

ﬂg a one-for-one mapping between the attributes of an
X entity and the data fields of its corresponding
o record.

A few data fields may not contain data about real-
world things; they exist for technical reasons only.

;ﬁd Examples include record codes and record activity

25 dates. Such data fields do not map to any attribute
A use classes and can be ignored.

L]

Determine which attribute use classes in the
. conceptual schema represent the same sort of data as

ﬁg the data field. This involves finding the attribute
Qq use class whose definition or migration path
A corresponds to the intent of the data field.

Fill out a line on a Data Field/Attribute Use Class
Mapping Form for each attribute use class to which

o the data field maps.
St
Qﬁ 4. The CDM Administrator loads descriptions from the

W Record Type/Entity Class Mapping Forms.

- Create one entry in the Entity Class/Record Type

n; Mapping Table from each line on each form.

~'9:n

el 5. The CDM Administrator loads descriptions from the Data
e Field/Attribute Use Class Mapping Forms.

e Create one entry in the Attribute Use Class/Data

n$u Field Mapping Table from each line on each form.

Wt

I 6-119

v 3
PR S D A B N

PO A MUt OGO OO IO O e N RN S WA y AR N
R LA L L0 e RN AR L Y AR\ W EY A 3 oy %y AGA 1 k) \)
R : ,.,:i‘ LA "u‘;’ AR N ')‘ ! “ y A l‘s lp;' ‘;h_,!a‘,h‘ ‘l"@"é-3’>':"":'0‘.»‘0.z“ ‘n"':"' "“' & ‘

BN "




UM 620141001
1 November 1985

bﬁ 6.7.3 Modifyving a Sequential File IS and CS-IS Mapping
v
" 6.7.3.1 Modify a Mapped Record by Adding, Modifying, and/or
" Deleting Data Fields
;% Objectives:
‘:{‘;
;Q ° Modify the description of a previously defined

Y relational table within the tables in the CDM

‘ database:

KU
R Data Field Table
S Component Data Field Table
.ﬂ ° Build a model of the new CS-IS mapping between

. the sequential record and the conceptual schema.
5' ® Load the description of the new CS-1IS mapping into
& the following table in the CDM database:

»
'b’ Attribute Use Class/Data Field Mapping Table
a Please refer to Section 6.1.3 for details on how to fill
i out the CS-IS mapping forms. Note that, NDDL does not support
Bt sequential fields.
;t Tasks:

l. The CDM Administrator loads descriptions for the
modified record type.

.ﬁ Create one entry in the Data Field Table for each new
¥ data field added to the record.

Delete the entry for each data field deleted from the

bg record. Modifications to previously defined data
ﬁ% fields are made in the Data Field Table as

Jb appropriate.

N

Create one entry in the Component Data Field Table
- for each new data field that is part of another data

N field.

8

?: Delete the entry in the Component Data Field Table
N for each data field deleted that is part of another
! data field.

ok 6~-120

¥

e AN Y
SN
AR

N AR IR AR i T WA ™ A A AR AT S OO ) > Al
\ d . ! 0 OO0 U0 . f
ICR M AL |'-“'~'l‘u'l' W :59'?* [N ‘: '\:h"‘. !‘a, "‘,I- "‘*.‘.‘u .h‘ ‘\i'h.""-"‘ ":\\E“o“i‘."h‘. 5.“,.6.%‘.”-.“0‘.5’1".5r.l‘»‘!‘p‘..'p"’r‘!h"‘l‘. "z..’l “l" R

......



UM 620141001
1 November 1985

2. The CDM Administrator determines the mapping for each
nev data field in the record type.

NOTE: This task is to be omitted when modifying or
deleting a previously defined data field.

Determine what sort of data about real-world things
that the data field contains.

Determine which attribute use class in the conceptual
schema represents the same sort of data as the data
field.

Fill out a line on a Data Field/ Attribute Use Class
Mapping Form for the attribute use class to which the
nev data field maps.

3. The CDM Administrator loads descriptions from the Data
Field/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data
Field Mapping Table from each line on each form that
references a new data field.

Delete each entry in the Attribute Use Class Data
Field Mapping Table that references a deleted data
field.

6.7.3.2 Delete a Previously Defined Sequential File by
Modifying the IMS and CS-1IS Mapping

Objectives:

° Delete the description of a previously defined
sequential file from the tables in the CDM database:

Record Type Table
Data Field Table
Component Data Field Table

[ Load the description of the new CS-IS mapping into
the following tables in the CDM database:

Entity Class/Record Type Mapping Table
Attribute Use Class/Data Field Mapping Table

Please refer to Section 6.1.3 for details on how to fill
out the CS-IS mapping forms.

6-121

.5:1“:“

-

B v L a s A ’ CRTRTT PR 5 0 SR 0 o O AR A
PO AT Wl DS . ] l. ¥, < % ") .,
AR AN N ORI BOUOOCEIORY, TOEOAAL N g ‘.'! WO Pttty .‘.»!,‘::‘.!‘ < .v?':o'ia!':u?‘::"."ﬁf‘f&!-ﬁ?ﬁ e T S



UM 620141001
1 November 1985

Tasks:
1. The CDM Administrator deletes descriptions from the
tables in the CDM database for the deleted record
type.

Delete the entry in the Record Type Table for the
sequential record to be deleted.

Delete the entry in the Data Field Table for each
data field in the deleted record.

Delete the entry in the Component Data Field Table g
for each data field that is part of another data :
field.

2. The CDM Administrator deletes descriptions from the
Record Type/Entity Class Mapping Forms.

Delete the entry in the Record Type Component Table
from each line on each form that references a deleted
record.

3. The CDM Administrator deletes descriptions from the
Data Field/Attribute Use Class Mapping Forms.

Delete the entry in the Attribute Use Class/Data

Field Mapping Table for each data field in a deleted
record.

6-122

R IAOOOCONUOOOCO0 OV X OO
P Mg ,‘4‘.*:‘31‘2’0’50’.-; FOCRN A A Pl



UM 620141001
1 November 1985

SECTION 7

MAINTAINING EXTERNAL SCHEMAS MAPPINGS

7.1 Methodology Overview

This section and its subsections (7.1.1 - 7.1.4) introduce
the methodology for building and updating external schemas and
for mapping them to the conceptual schema. The portion of the
CDM database that contains external schemas and CS-ES mappings
is described, and the basic approach to developing both is
presented. Detailed instructions for filling out the modeling
forms and loading the pertinent CDM database tables are
included.

7.1.1 ES and CS-ES Mapping Structure

External schemas are patterned after the relational data
model. They are described using only two entity classes: User
view and data item. A user view is equivalent to a table in the
relational data model; a data item, to a column.

The mapping between the conceptual schema and an external
schema has only one level:

Attribute Use Class to Data Item.

7.1.2 Basic Approach

This methodology addresses the following subjects:

° Describing user views and data items in the
external schema portion of the CDM.

° Determining the mappings between external
schemas and the conceptual schema and
describing them in the CS-ES mapping portion of

the CDM.

° Updating these descriptions to reflect changes
in either the external schemas or the conceptual
schema .

A CS-ES mapping is intended to show which components of an
external schema correspond to those of the conceptual schema. A
data item maps to an attribute use class if they both are the

)
1]

’ " - A . . : - ~ Ay
AP D) (] . ) ¢
R 'u‘q».,‘.’ ."4*‘}-’,“,".*_‘“5"3'5 KRAREN ~..‘:‘l'r'.?.tl';‘l‘q "!.‘,""9.“ '



P ]
K

UM 620141001
1 November 1985

: same kind of data about real-world things. A data item is not

* to map to more than one attribute use class. In Figure 7-1, the
EMP-NAME, DEPT-NAME, and SPOUSE-NAME data items each have only N
one attribute use class to which to map. If there is more than
one attribute use class to which a data item could map, the
choice depends on which entity class each attribute use class is
in. There must be one entity class that has one entity instance
for each row in the user view. 1If one of the attribute use
classes is in that entity class, the data item maps to it. 1In §
Figure 7-1, the Employee entity class has one instance for each
row in the EMP-MAST user view, so the EMP-NO and DEPT-NO data
items map to the equivalent attribute use classes are that
entity class. If none of the attribute use classes are in that
; entity class, the data item maps to the one in the entity class
: that is most closely related to that entity class. Thus, DIV-NO
maps to Div No in the Dept entity class because that entity
class is closer to Employee than the Division entity class.

o 1 e
R

o=
P

-

The following subsections (7.1.2.1 - 7.1.2.2) present two
subjects to consider when dealing with CS-ES mappings. They are
not mutually exclusive; a user view can involve neither, either,
or both. '

s e ke

NS
Pt 12}

-
£

- A B Ko -

-

« CROACEY «

L™ d o w
b 3¢ ). N S ) 0, ) .’ 1)
g R T TR L A S o SR '.:".}‘ W0, N




MW R ARG,

N

kK od ) "
RUGUGRUOL

UM 620141001
1 November 1985

0 CONCEPTUAL EXTERNAL
SCHEMA SCHEMA
DIYNO
DIV NAME
DIVISION K
HAS
DEPTNQ
DEPT NAME ~~__
DIVNO o ™~ - -
: = 4~ ™~
§ S
| DEPT ]2 ~—_ ~ —
-~ ~
S~
HAS ~ - ~—
; ~ <\
: EMP-MAST \L \
MPNQ — — — }—~ — — — — — - [EMPNO | }
EMP NAME — — |—— — — —— — — T~ EMP-NAME /
DEPT NO ~— —— —f — OIv-NO y
T = — —-D0EPTNO— A
DEPT- NAME —
: EMPLOYEE | 3 SPOUSE-NAME
/
IS P
J/
EMP NQ /”/
P
SPOUSE NAME ry
: MARRIED
EMPLOYEE 4
Figure 7-1. Data Item/Attribute Use Class Mappings

7-3 i

U

- . ... [P ‘- Fo 0o
AR "l‘,.}“', KIUGCOOA A 0 DO L U DU KO
. ' . [y Lor )’ PRLAFINEY DERZ 20 SFOETE D ALY D PR 4 R [




UM 620141001
a 1 November 1985

& 7.1.2.1 Vertical Partitions

b An entity class is vertically partitioned when some of its
attribute use classes map to data items in one user view and
others map to those in another. An entity class can have

& several vertical partitions.

Uvi
A B

() d

EC1 BE

uv2
A C

o

P A R

. ma w

A
cherntlenll S5

* 4
«
A L
s
[
\.'
) 7-4
.w’
-
.
[
I T C P SR TRIGTG R G L MERFOLRLS.TETLE B g

N BN YT 0 i " T,
DRSS TOEANCIG e L DO IR A a‘i” DRI SR A T l':‘m‘l N AR



UM 620141001
1 November 1985

7.1.2.2 Jdoins

If the data items in a user view map to attribute use
clases in two entity classes, those entity classes must be
combined to form that user view. This is done with a relational
"join" operation, which concatenates the entity instances of one
entity class with those of the other. These two entity classes
must be directly related by a relation class so that their
entity instances can be matched using the key class of the
independent and the corresponding inherited attribute use
class(es) of the dependent.

A
B8
EC1 2
Uvi
C A B D
- —
QA D
EC2 3
7-5

N e A At e e ak an
) ) % W N s PR Vo v e
RUUS , 0 AL ANERRE TG

» - ~ -
AR AR AR AR °':"‘."‘.“ o .!‘w"n“"a‘\l”.s‘i



-

UM 620141001
1 November 1985

If the relation class cardinality is one-to-many, each
independent entity instance is concatenated with each entity
instance that is dependent on it. In the first example in
Figure 7-2, each PO-HEADER instance is formed by concatenating a
Vendor instance with a PO instance based on identical values in
Vendor No. If a Vendor instance has no dependent PO instances,
it is not represented by a PO-HEADER instance. This produces
one row in the user view for each instance in the dependent
entity class. Since a relational join cannot form user view
rows with repeating data items, this concentration cannot be
done from dependent to independent.

If the relation classs cardinality is one-to-zero-or-one,
the concentration can be done in either direction, independent
to dependent or dependent to independent, because neither can
cause a repeating data field. The second and third examples in
Figure 7-2 show these two situations. 1In the second, there is
one BUYER user view row for each Buyer entity instance, and
there is no rowv for an employee who is not a buyer. 1In the
third example, there is one EMP-MAST instance for each Employee
instance. If an employee is not married, the SPOUSE-NAME data
item in the user view row for that employee contains a null
value.

NG a2

()

..-,»- A N - - o X
. .‘.,‘\:.,“ , ",.,",, i" "‘Q "".\. “0'. ‘9' ‘\1‘.‘0 ."'lg'\ ‘l. 0,L ;\.,‘.\'.l“,'\!".'. q", W .‘q".'t"‘-‘ LX) .:'.a\




UM 620141001
1 November 1985

(R
*;o}:
';ie."
LI ONE-TO-MANY RELATION CLASS.
!;ﬁ L)Y
e
‘ YENDOR NO,
. VENDOR NAME
x‘i
Ky
\:’s [Venoor ] PO-HEADER
W BO:NO.
VEND-NO
‘ RECEIVES VEND-NAME
L
i P.O.NO.
¢ VENDOR NO
)
;lrn‘l
’ PO | 2
g:i&c'
BJLA
& o ONE-TO-ZERO-OR-ONE RELATION CLASS:
W
hal EMP NO
EMP NAME
b
i MPLOVEE UYER
X% .
el BUYER- NAME
':': ]
LX)
AN EMP NO.
L
!;“
st ]
Mt BUYER ] 2
RO
"(‘l
k',..‘
e -
EMP NAME
L .
e ‘ MP.MAST
) [EMPLOVEE ] £
B EMPLOVEE ]3 EVPNO
RN EMP- NAME
R SPOUSE-NAME
b,
i
X
D)
}‘::
3
t'::l'
f‘:'t"
ety
Figure 7-2. ES-CS Join Examples
ﬂ,:.;
. 55 _
'q,:.. 7 7
R
't .
o
"
l/‘"!
a|" . — = .y » - . FOREPIOOCS Tk -~ . . . "
BOSCOACARACLAN AN To 40 47 0 OO0 O (R ) . } d :
e ot s "’b"rf!"«?b':'t"'\'?f ‘:fi'a'0'3'"‘q?"f—!":f‘?of‘.'la‘,l-."!- !:t‘.fg‘?': RASINEY NG, J !‘) ' A f""’!‘!’o""‘-‘.‘t '».’.‘t'.‘s' '\'A\t'f“i




.."0;2;;
g0

it

o

b

g

b UM 620141001
. 1 November 1985
,;“(
gf‘ If the data items in a user view map to attribute use

Wy classes in several entity classes, they must all be combined to
gf form the user view. This is done with a series of the join

* operations described above, each of which combines two of the

4 entity classes. All of the entity classes must be interrelated
s such that they form one of the following (See Figure 7-3):
&

Qﬂ 1. A regular hierarchy, i.e., a structure in which:

D)

B \

o ° One entity class, called the apex, is not
" dependent on any of the others (e.g.., ECl)

)

iy

'% ® Every cther entity class is dependent on exactly
Qﬁ one entity class (not necessarily the same one
ot for all)

‘-’i
> ] Every relation class cardinality is one-to-zero-
2 or-one
o
b 2. A confluent hierarchy (an upside-down hierarchy), i.e.,
iy a structure in which:
[ 343

, ° One entity class, called the apex, has none of
) the others dependent on it (e.g., EC14)

o,

n”:

e ° Every other entity class has exactly one entity
&i class dependent on it (not necessarily the same
o one for all)

.
R ° Any specific relation class cardinality is
K permitted

|‘l
1)
ﬁﬁ 3. A combination of:
Tt

" ° One confluent hierarchy
b
.: ° One or more regular hierarchies, each of whose
::: apex entity classes is also in the confluent

4 hierarchy (e.g., EC15, EC20, and EC25).

o Each hierarchy is called a join structure. As shown in the
5 examples in Figure 7-3, the user view must have one row for each
5’ instance of the apex entity class of the regular or confluent
:ﬁ hierarchy. 1If a combination of hierarchies exists, the user
?, view must have this correspondence to the apex of the confluent
i hierarchy.

B

l' :

5

s

S
A '
&

PR A S S AN A S o S L A S R R e Ty e Y T TR I I Y N ) v i B T e A T T )
Lo, Al L e 8 ) < Y y AELER S -
A R U QR e R o S TR R, 2l NI e

AL

N $| - ..- .f."- L q_'(-_
ISR AN Y i W



T T T

N

. UM 620141001
1 November 1985

;:‘o REGULAR HIERARCHY:

X
Y APEX =l
< wW-A Ecr

T~ | 1s

£C2 2 €C3

EC4 ]4

¥ [Ecs__1s ECs__1s (ec-__1-

ih CONFLUENT HIERARCHY:

iy EC8 8 | 3051 EC10 l10

.. 1
f':o UV-B EC1 |11 £EC12 [1

- EC13 113

W
" APEX - |

S |

PRTY
b otnd,

Figure 7-3. ES-CS Join Structures

7-9

w

) ;1
A '."“‘-'i .an’u

[

C Y SRR, J A RN AR A AN ’ S GIRTY LA ’ >, -y
A PNl WSS ) « ¢ v U J OO0 U et
,L".‘_ta‘,v'.’ LN lzg:ﬂ U AL Ty *_‘,’ﬁ' Wy t..} ‘\!y.t!q.h t’\'hb'..‘. L Eh ‘ki';.i. X !\,1. ‘[J,Q..!y,‘.!y\.h'i!,J.ln\!g(..,;.h(.‘. '!:‘.I!p. \-'F ,.f"l‘gv,

DALY 5 S



qf UM 620141001
1 November 1985

COMBIMATION:

‘ ECYS  }1 g LEcis 12

EC17 |3 EC18

4
|
i Ec19 |s EC20__ |6
&
#
X A IR

0 EC2t_|7 [ecz2 e
4
)
¥,

5 EC23__ |9 [EC24 10

A uv-C

EC25 111
5
(4

[Ec26 |12 [(Ec27 It [ EC28 |14

: [Ec2s is

Figure 7-3. CS-ES Join Structures (Continued)

7-10

N

AROESASABCHC OO0 i W P 0 Y
A A M) “t\'ga‘ﬁi' g "u"‘t’»‘:‘.ﬁ'& LARF U



v

oy

D UM 620141001

1 November 1985

i

3% 7.1.3 Modeling Forms

l""

tet,

o The IISS NDDL is used to describe external schemas. Since
they are simple in structure, consisting of only user views and

o data items, no external schema modeling forms are needed.

'i’-;‘}

ﬁ$f The following forms are used to model the mappings between

el external schemas and the conceptual schema:

‘ User View Join Structure Diagram

o Data Item/Attribute Use Class Mapping Form

‘sl

;ﬁg The rest of this section contains a detailed description of

$Q each of these forms.

D)

LM |

7 User View Join Structure Diagram

Y

&& Purpose: To provide a single source of information about the

B join structures for a user view.

-." t )

5; Instructions:

KR Fill in one page for each join structure for a user

Z@@ view whose data items map to attribute use classes in

~$ two or more entity classes.

a0

a

“gt Form Area Explanation

”x 1. User View No. Unique identification code assigned to

ﬁf the user view by the CDMA.

DA

ﬁ? 2. User View Name Name or code by which users identify

i the user view.

e 3. (Diagram Area) Depiction of the entity classes and

?ﬂ relation classes that make up the

%} join structure.

f"&

bﬁ Data Item/Attribute Use Class Mapping Form

Tﬁ' Purpose: To provide a single source of information about the

o mappings between external schema data items and con-

gg ceptual schema attribute use classes.

t

Y

" Instructions:

o Fill in one or more pages for each user view

:,:

ot

“ 7-11

¥
’




UM 620141001
1 November 1985

ol (external schema). List the attribute use class that
:@ each data item maps to.
!
Form Area Explanation
“ 1. User View No. Unique identification code assigned to
W the user view by the CDMA.
s
vt
o 2. User View Name Name or code by which users identify

the user view.

(& 3. Data Item Name Name or code by which user identify
i the data item.

N q. Entity Class No. Number of the entity class that
contains the attribute use class whose
o number and tag are in the next two

N columns.

Lhy

R, 5. Att. Use Cl.Tag No. Tag number of an attribute use class

R to which the data item maps.

) 6. Attribute Use Class Name of the attribute use class

A Tag whose tag number is in the prior

! column. It is included only to make

R the entry readable; it is not used in
W loading the mapping tables.

g 7.1.4 CDM Tables and ES NDDL

b This section explains how to load the following tables in
) the CS-ES portion of the CDM database:

Attribute Use Class/Data Item Mapping Table
s Entity Class/User View Join Table

The following pages are arranged alphabetically by table

S name within these two portions, i.e., in the sequence shown

i above.

i The tables in the external schema portion of the CDM

) database are loaded with NDDL statements

)

5{ The NDDL CREATE VIEW command is used to define the external
vy schema and map data items from the view to attributes

(tag-names) in the conceptual schema.

"\ylw\ M \Q». ‘s\ A

08 400
e RN A AN AN |‘.’¢' 'ﬂ ) ey “s' ‘, ! Uy .f"o. n‘ ,D\‘b’ '.*' s‘.‘u‘ 0 ‘L'-'n' o"‘l‘.‘s“‘v ke, ! DR ol



UM 620141001
1 November 1985

Attribute Use Class/Data Item Mapping Table

Source Documents:

1. Data Item/Attribute Use Class Mapping pages from the
CS/ES mapping model.

Instructions:

Table Field Source Field

UV No. User View No. area near the top
of the page.

DI Name Data Item Name column.

Tag No. Att. Use Cl. Tag No. column. Use

the number following the "T"; do
not include the "T" itself.

Example:
UV No. D1 Name Tag No.
2 Loc ID 53

User View Join Linkage Table

Source Documents:

1. User View Join Structure Diagrams from the CE/ES
mapping model.

Instructions:

Table Field Source Field

UV No User View No. area near the top
of the diagram.

Ind EC No Number in the upper left coraer
of the independent entity class
box.

Dep EC No Number in the upper left corner

of the dependent entity class
7-13

By "?J‘i’li“‘t"?‘ ‘?"'.‘!'!‘;’.f")'ih‘w‘.‘.“ )

i

M oA N LT o o
DRI LE OGRS SO MR R D I R A N OOt SR DD

ot

)




UM 620141001
1 November 1985

-
.

Table Field Source Field

. .

box.

RC No. Verb phrase connected to the
relation class line by a squiggle
(see sample diagram page).
Example:

) UV _No Ind Ec No Dep EC No RC Label 1

23 5 Is

23 12 Is

10 18 Is Satisfied By
23 18 Is Treated As

bbb

.. o
e

7.2 Building an ES and CS-ES Mapping

Objectives:

° Load the description of an external schema into the
following tables in the CDM database:

L PR
P N S i

User View Table
Data Item Table

° Build a model of the mapping between the external
schema and the conceptual schema.

_...,__
- -

o Load the descriptions of the CS-ES mapping into the
following tables in the CDM database:

; User View Join Linkage Table
Attribute Use Class/Data Item Mapping Table

J Note: Use the NDDL CREATE VIEW command to describe the
Attribute Use Class to Data Item mappings.

? Please refer to Section 7.1.3 for details on how to fill
out the CS-ES mapping forms and to Section 7.1.4 for
details on how to load these CDM tables.

Tasks :

A

7-14

i i A{) RO R v M % N A X \ .
2T, _.4’\.'14 }9".::“5%“‘0!:‘0“,1 g l‘l:,"'- b ..’"‘.',‘!‘“'-‘*‘r."e‘u:;‘-“ DRORAA O e
ER AR RIS DI s ) e T el




UM 620141001
1 November 1985

A 1. The CDM Administrator loads descriptiors for an
o] external schema.

Create one entry in the User View Table using NDDL.

(R

o Create one entry in the Data Item Table for each data
! item in the user view using NDDL.

N

‘ﬁg 2. The CDM Administrator determines the mapping for each
‘ data item.

Determine what sort of data about the real-world
(X things that the data item represents.

R Determine which attribute use class in the conceptual
B schema represents the same sort of data as the data

- item. This involves finding the attribute use class
0 whose definition or migration path corresponds to the
Qg intent of the data field. The first place to look is
GED the entity class that has one entity instance for

by each row in the user view. The value in the data

' item in each row of the user view must be the same as
the one in the attribute use class in the
corresponding instance of the entity class.

W If none of the attribute use classes in that entity
class correspond to the data item, the next places to
look are the entity classes that are related to that
entity class. Again, the value in each user view row

KRN must be the same as the value in the corresponding
& entity instance. If the attribute use class is not
R0 in any of these entity classes, the search must be
e widened to include the entity classes that are

related to them. This continues until the proper
attribute use class is found or until it is

B determined that a new attribute class must be added
e to the conceptual schema; see Section 4.3.

Agqyt

ﬁ? Fill out a line on a Data Item/Attribute Use Class

Mapping Form for the attribute use class to which the
- data item maps.

" 3. The CDM Administrator determines any joins that are
needed for the user view.

Determine whether the data items in the user view map
to attribute use classes in more than one entity

j 7-15

RO I ‘ { O ) 0 - LR LT P LA TR A R TR R o« AERLAESCA] o .."1 1 o/
A [N LR S LAt L i L AW Y b f kN : . Y Id A S AP (S
! e [ ) 55 LA A y \i' Ao o Pt B gt A M e F37 1 S50 e Anfintta “ “‘QA»‘.!‘ S Ln .'.!“ i .5 ’Q;‘y




T T

R

UM 620141001

1 November 1985

class. This can be done by comparing the entity
class numers that are entered on the Data
Item/Attribute Use Class Mapping Forms for the user
view. 1If all the numbers are the same, the data
items all map to attribute use classes in one entity
class.

If the data items map to attribute use classes in
more than one entity class, prepare a User View Join
Structure Diagram. The entity classes must form one
or more join structures as described in Section
7.1.2.2. If the join structures are not contiguous,
one or more additional entity classes may be needed.

The CDM Administrator loads descriptions from the User

View Join Structure Diagrams.

Create one entry in the Entity Class/User View Join
Table for each relation class in the diagram.

The CDM Administrator loads descriptions from the Data

Item/Attribute Use Class Mapping Forms.

Create one entry in the Attribute Use Class/Data Item
Mapping Table from each line on each form.

Note: The NDDL CREATE VIEW command is used to
define the external schema and map data
items from the view to attributes (tag-
names) in the conceptual schema.

7.3 Modifying/Deleting ES Elements and CS-ES Mappings

Prior to modifying or deleting elements of the ES or the
CS-ES, the CDM Administrator must assess the impact of the
proposed change on the other components of the CDM. The
objective of this section is to provide the CDM Administrator

with an approach to the analysis of the impact that a change in
the ES or CS-ES might have upon the other areas of the CDM or on

software modules, such as user APs and generated APs.

The approach that is taken in analyzing the impact that a
change to the ES or CS-ES might have to other areas of the CDM
or to a software module is to list the changes that might be
sade and then for each of those changes to identify the other
changes that would have to be made either in the ES or another
schema or in an ES-CS or an IS-CS mapping or in a software

7-16

AL s s
R R A O A A AN A AR AR
AR ‘:"-'u" v‘n’-‘».“t LN N MMM UL R R W

e e AN N
R



AR

UM 620141001
1 November 1985

module. Changes that do not impact any other areas are omitted.

A similar section appears in the discussions on the
Conceptual Schema and and on the Internal Schemas and the IS-CS
Mappings, Sections 5 and 6 respectively.

The following assumptions about the nature of the changes
to the External Schema and the CS-ES Mappings and the sequence
in which they are made have been taken in order to perform the
analysis:

1. Components of an external schema are added in the
following sequence

) User Views
® Data Items

2. All changes in the external schema that are needed to
support a change in an ES-CS or IS-CS mapping are made
before the ES-CS or IS-CS mapping is changed.

3. A change in the name or definition of a component of
the external schema is for cosmetic purposes only and
does not alter the basic meaning of that component.

Finally, a note of explanation about how the changes and
their impacts are organized. Only the direct impacts of a
change are listed with it. 1If one change results in a cascade
of other changes, only the first in the cascade is listed with
the initial change. Each subsequent change is listed as as
impact of the one immediately before it. So to find the total
extent of the impact of a change, one must trace from the
initial change to each change that it results in and, then to
each in which that change impactis.

Figure 7-4 shows the relationship between the change and
the possible impacts upon other parts of the CDM that the change
may affect.

. y . i .
RN ) A%\ 2" 1)
R UL Rt . rn‘\a".l"“.'!‘fa"‘b""l' '\’]‘.‘Y: ".,»‘%’.’:",.?,.i.‘

MR

At ii‘-'* :




UM 620141001
1 November 1985

N Ooverview  -———--——ce—w_-
i Matrix A change tol
o boom e fomm I
————————————— 1User IData |
o iCan impact: IView IItem |
u R R e |
L IUser View | X
B | { | \
et {Data Item I X 1 i
| | | |
N I1EC-UV Join 1 X 1 i
o 1 [ [ [
oy |AUC-DI Map. | X
o | i i i
i iISoftware Modt X |« X |
- | | ! |
- iUV Reference! X | !
.
82
s Figure 7-4. Impact of External Schema Changes
h 7.3.1 User View (ES) Changes:
The potential impact from the changing User Views is as
follows:
° Add a new user view.
. Add all the data items that the user view contains.
»
p Add any EC-UV joins from which the user view results.
X
ﬁ ° Change a user view name.
, Change the user view name in any software modules in
i wvhich it appears and recompile those modules.
ﬁ Change the user view name in any user view references
2 in which it appears.
e Change a user view definition.
. No other impact.
. ° Change a user view keyword.
No other impact.
7-18

[ 2 Ll SO DO OO



UM 620141001
1 November 1985

° Change the entity class joins that must be done to
form a user view.

Add, change, and delete EC-UV joins as necessary.

Recompile any software modules in which the user view
appears.

® Delete a user view.
Delete all the data items contained in the user view.

Delete any EC-UV joins from which the user view
results.

Remove the user view from any software modules in
which it appears and recompile those modules, or
discard them entirely.

Delete any user view references in which the user
view name appears.

7.3.2 Data Item Changes:

The potential impact from the changing of Data Items is as

follows:

o Add a new data item.
Add an AUC-DI mapping to specify any attribute use
class to which the data item maps.

° Change a data item name.
Change the data item name in any AUC-DI mapping for
the data item.
Change the data item name in any software modules
that access it and recompile those modules.

Note: Neither the CDM database nor the CDM1}
model contains the information needed
to identify the software modules that
access a data item.

° Change a data item definition.

7-19




UM 620141001
1 November 1985

-

No other impact.

T
- -

° Change a data item keyword.
0 No other impact.
o ° Change the data description of a data item.
Change the data description of the data item in any

software modules that access it and recompile those
modules.

a _n
P R

Note: Neither the CDM database nor the CDM1
model contains the information needed
to identify the software modules that
access a data item.

“ o e
= -

° Change the mapping between a data item and the
o attribute use classes to which it corresponds.

Add, change, and delete AUC-DI mappings as necessary.

Recompile any software modules that access the data
item.

A o

Note: Neither the CDM database nor the CDM1
model contains the information needed
to identify the software modules that
access a data item.

) Delete a data item. ]

2w

If the data item is the last or only one in the user
view, delete the user view also.

e

]

Delete any AUC-DI mapping for the data item. Remove
the data item from any software modules that access
it and recompile those modules, or discard them
entirely.

- - -
e

-
-’

7.3.3 Summary

The following points are offered in summary:

. .- -
S ~

1. A change in an external schema can result in additional
changes in that schema, in its ES-CS mapping., and in

7-20

Cu gt . <, i
) ' ’ { * ‘ " N » U }
1 AT, 1 \’ Ve ' 0‘- Ve, 'y, u" . l‘y “‘l'.‘t‘ t'l‘a*.‘u’.'

g ‘ , Neo
‘,b ’i.o 1’;( g 1“‘5’“‘;. 81 \;0 0‘ \




- )
-
=3

N W
o

<- o .

. -

BROOORCH D O
‘ S !'\'.'31"‘ ;"-".5%‘

UM 620141001
1 November 1985

software modules. However, it cannot impact other
external schemas or ES-CS mappings, nor any internal
schemas or IS-CS mappings, nor the conceptual schema.

A change in an ES-CS mapping is always the result of
another change to either the corresponding external
schema or to the conceptual schema.

Always use the NDDL CREATE VIEW command to describe
the ES-CS amppings.

The information in the CDM database and the CDM1 model
is inadequate for identifying the software modules that
are impacted by most schema changes. Specifically, the
following information needs to be added:

- The data items that are accessed by a software
module that contains user views.

- The databases, record types, data fields, record
sets, record set members, and database areas
that are accessed by a software module that
accesses databases directly.

- The record types, data fields, record sets,

record set members, and database areas that are
accessed by a generated AP.

DU, W P o v
g TR H KN




UM 620141001
1 November 1985

APPENDIX A

GLOSSARY

Alpha-Numeric Data Format

A data format for values that can contain characters other
than numerals (0-9). Numerals may be permitted also.

Attribute Class

A collection of all the same kind of attributes, i.e.,
those that have the same meaning. An attribute is a
characteristic or fact about an entity. An attribute consists
of a name (e.g., employee hire date) and a value (e.g., 15
August 1980). An attribute value may be:

A. Nondivisible (e.g., state name)
B. Divisible, i.e., a concatenation of two or more other

attribute values (e.g., part number formed by
concatenating drawing number and material code).

C. Computed from one or more other attribute values
(e.g., age computed as current date minus birth
date).

Attribute Class Data Description

A generic data description that applied to a particular
attribute class.

Attribute Use Class

A model attribute class that appears in a model entity
class. Each attribute use class represents either an owned
attribute class or an inherited attribute class.

Attribute Use Class/Data Field Mapping

Indicates that an attribute use class corresponds to a data
item;: i.e. that they have the same meaning and that the data
item can be used to access the values for the attribute use
class.




UM 620141001
1 November 1985

Attribute Use Class/Data Item Mapping

Indicates that an attribute use class corresponds to a data
item; i.e., that they have the same meaning and that the data
item can be used to access values for the attribute use class.

Attribute Use Class/Internal Schema Mapping

Indicates that an attribute use class corresponds to some
portion of an internal schema.

Attribute Use Class/Record Set Mapping

Certain attribute use classes can be represented in a
database by a group of record sets rather than be a data field
For example, Project: Task record sets called Pending,
In-Process, On-Hold, and Completed. An attribute use
class/record set mapping indicates that a particular record set
corresponds to a particular attribute use class value.

Component Data Field

A data field that is part of another data field; e.g., if
data field A is made up of data fields B, C, and D, each of
these latter data fields is a component of A. A data field
cannot be a component of more than one other data field.

Component Domain

An elementary domain that is part of another domain; e.g.,
a Date domain might be made up of a Month domain, a Day of Month
domain, and a Year domain. Each of these latter domains would
be a cojmponent of the Date domain. An elementary domain can be
a component of several other domains.

Component Unit of Measure

An elementary unit of measure that is part of another urit
of measure; e.g.. the "inch” unit of measure is a component of
the “foot-inch” unit of measure. An elementary unit of measure
can be a component of several other units of measure.

Conceptual Schema

The description of all the shared data items within an
enterprise’'s databases and of the allowable operations on and
integrity constraints for those shared data items  Represented

A-2




o1 377 lmmm lrommou WT SVSTEI (llSS) VOLUE S 4/4
- A MODEL S.. (U) GENERAL ELE
ADY_NY PRWUCTION RESOURCES CONSV. .
UNCLASSIFIED D RG.LIIS ET AL. 81 NOV 83 UH-‘M“.M F/6 372




-

T L.

-

P e AP

¥

Comat v %o LYY
L ea eatvs o vs e LT et '.‘\-"(-."..",".t‘o'?““.‘I'—‘I‘:"‘)i“"".‘.""‘.l‘. w. 3.

Dk

VoAb
R
0..'0{1 et

DO I "i'}:
AR

%

IH

o
EEEL
EEEE

ErFl’Fr
EEFE

Il
I

22 s |

o

7

o

.Q
\J

:‘

Sl
- -

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

o
oS
o'

Py 5.‘ L

."
.l
o) ‘.ﬁ

W e

o0 . 349 19 0 " PO f b TORITAS i ;'\ﬂ 5}\‘ T JEINe 1;‘§"’"§:"."‘
" .‘i:ﬁ:::::!::‘j“gh:gﬁ* B AR e R #; M@ e o o
M0 ™ LA T WS W0 P X ! ¥

. o . s @ 0 ... 0 » :
i ‘ il . T
ARG, A

o (A HESA
L ¢~f~"~f- )

T LA
‘-.~.~~::;::.Q' " X AT AT T

(d\)
Nttty that

- > g N g R
R - NN NN L SR
DBON it -
TR %
"



RO

UM 620141001
1 November 1985

by a fully normalized information model in which integrity
constraints have been completely specified. Not influenced by
any usage or storage considerations. A software module that
must be used to access or transform data that is stored in a
manner that the CDMP is not designed to handle.

Constraint Statement

One complete NDDL description of either an assertion, a
trigger, or a horizontal partition fragment. An assertion is a
rule about values for attribute use classes. If an NDML command
attempts to violate an assertion, the CDMP rejecis the command
with an error message. A trigger is a set of conditions and a
set of actions, both involving entity classes and attribute use
classes. If the conditions are satisfied all the actions are
taken. If the conditions are not satisfied, none of the actions
are taken. See the definitions of Horizontal Partition and
Horizontal Partition Fragment for details about this use of
constraint statements.

Database Area

A subdivision of a CODASYL database. This subdivision is
a technique for improving the efficiency accessing database
record type instances. When a database is subdivided into
database areas, some or all of its records types are assigned to
particular areas. Instances of these record types are stored
only within the assigned areas. Then, these record type
instances can be accessed by searching only the appropriate
areas rather than the entire database. This access method is
only used when the record type instances cannot be located by
other means (e.g., by calc keys or record sets).

Database Area Assignment

Indicates that a record type is assigned to a database
area.

Database Directory

A software library that must be used when accessing a
database.

Database Password

A code that must be supplied when logging on to a DBMS to
use a database. The DBMS verifies the password before accepting

A-3

-, mawa [P S

AN - S S N W L T T e T AT A RO T R RS ) -« ..
.}'. .|,l‘|, | " D\ {\" < - f- o *lf ' AR OACS '\" Sl LA R A g -'\-‘\J‘ ¢\'. v*\-ﬂ"" =, " ‘o



UM 620141001
1 November 1985

any other messages.

Data Field

A portion of a record type in which data values can be
stored.

Data Field/Record Set Linkage

A data field in a variable data set in a TOTAL database
that is used as the variable control key for a linkpath from a
master data set.

Data Field Redefinition

A data field that occupies the same space in a record type
as another data field. A record instance cannot contain values
in both data fields. One instance can contain a value in one
field while another contains a value in the other.

Data Format

The portion of a generic data description that includes the
structural characteristics such as data type, length, storage
method, etc. If a generic data description is for elementary
values (e.g., customer names), it will have only one data format
(e.g., Data Type - alphanumeric, Length = 30). If it is for
compound values (e.g., part numbers consisting of six numerals
followed by three letters followed by four more numerals), it
will have more than one data format, one for each elementary
portion of the values. For the part number example the data
formats would be:

l. Data Type = numeric Length = 6
2. Data Type = alphabetic Length = 3
3. Data Type = numeric Length = 4

A generic data description with a compound unit of measure,
i.e., one that is a group of component unit of measures, must
have a data format for each component unit of measure.

Data Item

An attribute class as seen by a user in a user view, i.e.,
a kind of data (e.g., employee hire date), not a particular data
value (e.g., 15 August 1980).

Sa b Lo .;fl‘._-'\_f.,-‘.‘ O e N L T T L L
& [)

. .
----- ! 0\ . L) » g =

.
(]

Py

.

‘.

oY

1
g

A
‘In‘l

-
P Iﬁ;‘-’ L

P Ll

FTE?
, ‘:.5'-_"‘-"

A

ChE A

¢ 4

N

AL L



-----

UM 620141001
1 November 1985

Data Management System

Either a database management system or a file management
system, i.e., a set of computer programs that must be used to
establish and maintain a database or a computer file.

Data Type

The combination of a type of values (e.g., alphanumeric,
signed numeric, etc.) and a type of storage (e.g., binary,
packed, etc.)

Dependent Entity

The entity class that is dependent in a specific relation
class. A dependent entity, i.e., an entity is a dependent
entity class, can exist only if it is related to an independent
entity. Contrast with independent.

Description Type

A generic object may have several different kinds or styles
of description (short, long, technical, nontechnical, etc.).
Each is a description type.

DMS on Host

A data management system that is available on a particular
host.

Domain

A set of rules about the values that are allowed for a data
item, attribute class, or data field. A domain is either an
elementary domain or a group of two or more elementary domains,
called component domains.

Domain Range

A series of consecutive values that represent all or part
of an elementary domain.

Domain Value

A single value within an elementary domain.

LK l‘“-

RA L HLESSCRD
S PRSI

ANV

N

‘v’:-' ]
St

LS
f:q' -



[ IS T A

va s 4'a B' 6°2 4la 8°2 8%2 $'2°8"2 $°2 22 A" L

UM 620141001
1 November 1985

Elementary Data Field

A data field that does not have any component data fields.

Elementary Domain

A domain that does not have any component domains. An
elementary domain can be expressed as a series of values or
value ranges.

Elementary Unit of Measure

A unit of measure that does not have any component units of
measure.

Entity Class

A collection of similar entities, i.e., those that have the
same kinds of attributes. An entity is a person, place, event,
thing, concept, etc.

Entity Class/Record Type Join

A relational join operation that combines two related
entity classes as part of the design of a record type.

Entity Class/Record Type Mapping

Indicates that an entity class corresponds to a record
type, i.e., that they both have the same meaning and that the
record type can be used to store instances of the entity class.

If a record type has more than one EC-RT mapping, some of
its instances correspond to instances of one entity class while
others correspond to instances of another, i.e., the record type
is the relational union of the entity classes. An example is a
Replenishment Order record type that maps to both the Purchase
Order and Manufacturing Order entity classes. Each record
instance represents either a purchase order or a manufacturing
order.

Entity Class/Record Type Union Discriminator

If a record type corresponds to more than one entity class,
i.e., if it has more than one EC-RT mapping, it is the
relational union of those entity classes. Some instances of

such a record type correspond to instances of one of the entity

'(l.fl.'. -&\"\ ﬁ.? :" L
LRI, fod

L}

PR
r.(" 'V.,-,)

2

J




. "1,5

oy n . . - -
LU X 0 Ny
OO L W LN o Pyl o8, 5 A LS AdUe D", (N i)

UM 620141001
1 November 1985

classes, others to those of another. For such a reoord type
there must be a wvay to determine which record instances
correspond to instances of each entity class. An entity
class/record type union discriminator provides this by
specifying that a given value in a given data field indicates
that a given EC-RT mapping should be used.

Entity Class/User View Join

A relational join operation that combines two related
entity classes as part of the design of a user view.

External Schema

See User View.

File

A set of stored data that is managed by a file management
system (e.g., VSAM).

File/Database

A set of stored data, i.e., either a computer file (e.g., a
VSAM or flat file) or a database (e.g., an ORACLE or IMS
database).

Generated Request Processor

A software module that was created by the CDMP Precompiler.

Generic Data Description

A detailed description of the values for one or more data
items, attribute classes, data fields, and/or module parameter.
It includes format, measurement, and domain characteristics of
the values.

Generic Data Description Component Unit of Measure

A component unit of measure that is specified as part of a
data format. These are only specified for a generic data
description that includes a compound unit of measure, {.e., one
that is a group of component units of measure.

LT T g % U .

VL WL R R S S S L

.
L% AN
- Ol Wha o'a A o o Lot

SR TS R TR TA TR TR

PR



“ i)
UM 6820141001 J5
1 November 1985

N "
4
Generic Data Description Domain o
|.|‘|,I
A domain that is specified as part of a generic data e
description.

Generic Data Description Unit of Measure

A unit of measure that is specified as part of a generic g
data description. Nk’
Generic Object —i,:::

N

Anything with a name that distinguishes it from other :f:

things of the same type and with a description that explains AN
v

what it is (e.g., any entity class or attribute class).

'l
»

"
'S

Generic Object Description

s
P

%
.

An explanation of what a particular object is.

s

Generic Object Description Line

One fixed-length portion of a generic object description. E;:

“Is

Generic Object Keyword :f-‘
A keyword for a particular generic object. ﬁ?.

Generic Object Name

An noun or noun phrase by which a generic object is known.
Two objects can have the same name.

Horizontal Partition

Indicates that the same record type is not used to store
all instances of an entity class, i.e., that one is used to
store some instances while another is used to store others. Each
record type represents a "fragment" of the entity class. These
fragments do not overlap, i.e., no entity instance appears in
more than one fragment. An entity class can be partitioned into
any number of fragments, usually with each being in a different
database or file, although that is not a requirement; some or
all may be stored as different record types in the same database
or file. A constraint statement defines each fragment, i.e.,
describes the conditions that must be met by each entity
instance that is stored as a given record type. If an entity

.
[l

~
“
‘w
‘.
“
.

"l
Pas 'y l',"

T
[}

B ‘s e
L]

[\G
»




T T T T N T I I T ww e L 4 - W EW S

UM 620141001
1 November 1985

class is replicated, i.e., if each of its instances is stored in
more than one database instances is stored in more than one
database or file, each replication can be horizontally
partitioned. For example, for the first replication the
instances could be partitioned based on the values in one
attribute use class, and for the second replication they could
be partitioned based on the values in another.

Horizontal Partition Fragment

A record type that is used to store some, but not all, of
the instances of an entity class. A constraint statement
describes the conditions that must be met by each entity
instance that is stored as the record type. If the conditions
are satisfied by the attribute values of an entity instance, it
can be stored as an instance of the record type; otherwise, it
cannot be.

Host
A computer in the IISS.
IMS Segment
DBNS A record type in a database that is controlled by IBM's IMS

Independent Entity

The entity class that is not dependent in a specific
relation class. An independent entity. i.e., an entity in an
independent entity class, can exist without being related to a
dependent entity. Contrast with dependent entity class.

Inherited Attribute Class

An attribute class that appears in a dependent entity class
because it has migrated from an independent entity class. Must
be part of a key class in the independent entity class.

Inherited Attribute Classes Form

Provides a single source of information about inherited
attribute use classes that are to be described in the conceptual
schema.

A G R

A e A

-

XA RN,
LRRES
¢ ‘I‘a' » :.l’ (A




UM 620141001
1 November 1985

Inherited Key Class

A key class in the independent entity class of a relation
class that has migrated to appear in the dependent entity class
of that relation class.

Internal Schemna

A description of the data items in a database. Described
from DBMS User’'s perspective. Usually not fully normalized.

dJoin

A relational operator that creates a new relation by
combining two or more source relations according to specified
criteria. A natural join combines the relations by matching
tuples with equal values for a common attribute class (column).

Key

An assortment of attributes in an entity that can be used
to uniquely identify that entity within its entity class. An
entity can have more than one key, e.g., an employee can be
uniquely identified by either an employee number or a Social
Security Number.

Key Class

A group of one or more of an entity’s attributes that can
be used to uniquely identify the entity within its entity class.
An entity can have more than one key. A key class is a
collection of the attribute classes whose member attributes
comprise the keys for the entities in an entity class. An
entity class has the same number of key classes as each of its
member entities has keys. For example, if each entity has three
keys, the entity class has three key classes.

Key Class Member

An attribute use class that is part of a key class.

Key Class Migration

The process of moving key classes from independent to
dependent entity classes.




UM 620141001
1 November 1985

Library Module

A software module that is stored in a software library.
Model

A representation of the information requirements of all or
part of an enterprise in terms of entity classes, relation
classes, and attribute classes.

Model Glossary Name

A name of a model entity class or a modle attribute class,
either an official name or an alias.

Module Parameter

A means of supplying values to a software module and of
receiving results from a module.

Numeric Data Format

A data format for values that can only contain numerals
(0-9) and associated punctuation (decimal point, comma, etc.).

Owned Attribute Class

An attribute class that is not an inherited attribute
class.

Owned Attribute Classes Form

Provides a single source of information about owned
attribute use classes that are to be described in the conceptual
schema.

Program Control Block

A portion of a PSB that describes and controls how an IMS
database can be accessed.

Program Specification Block

A group of logical views of IMS databases that is used for
interacting with the IMS DBMS.

A-11

RS LN

-~y e AT T I T e I U e e T T T e T R P L SR He i P LS R T
:’I’..\“. v ..-.|.. O, f L4 \ ( '. ('_‘ . q' { ..I'.F' .- }' .. ‘... AT - .-_‘q ........ AN, WO - .\.. -~ N NN

*

) d
Sy

????3f
2P

.
> v

Tala g
ot DI RN -""/‘.?
AR

e
St

1
.,

XA I
»2"¢
Y rrrY.re

u)
iy -\.u}
i

XA
”

>

~
Pl af o NN Y

l"‘ 'l

i
MGy
&L

X B
S

Ay

. .-:/".' o
'y N
e



UM 620141001
1 November 1985

Record Set

An association between one record type, called the owner,
and one or more other record types. called the members.

Record Set Member

A record type that is a member of a record set.

Record Type

A group of data values that are stored together as a unit
in a computer file or database. A record type is the collection
of all the records of the same kind, i.e., all the records that
contain the same kind of data values.

Relation Class

An association between an entity in one entity class and
one in another. A relationship has a label that describes the
association. For example, a customer named ABC Corp. is
associated with an order numbered 123 in a manner labeled
“placed™. A relation class is a collection of the identically
labeled relationships between the members of the same two entity
classes. Each relation class is either specific or nonspecific.

In a specific relation class, one entity class is
"independent” while the other is "dependent”; i.e., entities in
the first can exist without being associated with any in the
second, but those in the second cannot exist without being
associated with one in the first. One key class from the
independent entity class “"migrates” through each specific
relation class to appear in the dependent entity class as
inherited attribute classes.

In an nonspecific relation class, neither entity class is
dependent on the other; i.e., entities in either entity class
can exist without being associated with any in the other. For
convenience, one entity class is arbitrarily called
“independent” and the other is called “"dependent”.

Relation Class Form

Provides a single source of information about relation
classes that are to be described in the conceptual schema.

[
-.AI

% 9 W
,l'.

¥
CrRe
KRR

Ie
[

[d
[4

44

P
7

Xe

@A
A

PR XA
~
\,‘-\‘_,{,

’

¥{"r
LA

":l .
A

g
PR s
T S

Y h
{yn”f‘s' )

X

(N



UM 620141001
1 November 1985

Relation Class/Record Set Mapping

Indicates that a record set represents the same association
as a relation class. If a record set has more than one member
record type. it may represent several relation classes, a
different one for each member. Hence, this entity class 1s only
indirectly dependent on record set (via record set member).

Repeating Data Field Occurrence Counter

A data field whose data values indicate how many
occurrences of a repeating data field actually contain values.

Segment Data Element

A data field is an IMS segment.

Software Library

A computer file in which software modules can be stored.

Software Module

A set of computer instructions that are treated as a whole
(i.e., stored, compiled, and executed together).

Subschema

The description, in the DDL of a CODASYL DBMS, of all or
part of a database. For IISS, only one subschema is needed for
a CODASYL database, and it must describe all the common data
within the database that is to be accessible with NDML.

Unit of Measure

A standard scale for determining the magnitude of
something. Examples include inch, foot, foot-inch, meter,
ounce, pound, hour, minute, second, etc.

Unit of Measure Conversion

A means of transforming a value expressed in one unit of
measure into an equivalent value expressed in another (e.g..
transforming inches to feet or feet to meters).

rV R
.\l'.\

-\ \- \' \-.\:\\ ' ; ‘- \-:' .
- -

h)
"J'

A
\’

i

r“ll ',-‘,'
oy

.t
oot

.
.
.

e,
R
.

2

o 0.
* -

NSNS
o~ N \. ': ‘s a



ap bl Vb d,d

UM 620141001
1 November 1985

Unit of Measure Conversion Constant

A number in a unit of measure conversion step that is the
same every time the conversion is performed. A software module
that can be used to perform a unit of measure conversion. A
module parameter that is used to supploy values to or receive
values from a unit of measure conversion module.

Unit of Measure Conversion Step

One of a series of arithmetic steps that can be used to
perform a unit of measure conversion. Each step takes the value
resulting from the prior step (the first step uses the value to
be converted) and auds, subtracts, multipiies, or divides by
another value. either a constant or a variable. The result of
the last step is the converted value. The processing sequence
is always first steps to last;. parentheses, branching, and
conditional tests are not allowed. Consequently, some unit of
measure conversions cannot be performed in this manner (e.g.,
converting meters to feet-and-inches).

Unit of Measure Conversion Variable

A number in a unit of measure conversion step that can be
different every time the conversion is performed. This is only
used when the unit of measure being converted from has two or
more component units of measure. Each component is a variable
and each is involved in a separate step.

User Application Process

A softwvare module that supports business activities rather
than data processing activities and that can be executed
directly., i.e., a main routine, not a subroutine. A user AP may
contain NDML commands for accessing stored data via the CDM,or
it may access them directly via DMSs, or it may call subroutines
that contain NDML commands or that access stored data directly.

User View

A group of data items that a user wants to deal with as a
group. It is similar to an entity class but does not
necessarily meet all the conditions for being one, it can be
thought of as an unnormalized entity class. A user view is
often the result of combining several entity classes via
relational join operations and selecting particular attribute
use classes as data items via relational project operations.

e

-
2
> -

=

. PAPSX
e e
an oyl

a
%

AT
l“.

PP NENE
L

AP SR
PO

'l

ALK

XN

AR RARNS
b )

[d

- .'{ )

7’
Ay

7




UM 620141001 et
1 November 1985 £s

Vertical Partitions R

An entity class is vertically partitioned when some of its
attribute use classes map to data items in one user view and "t
others map to those in another. An entity class can have M
several vertical partitions.

&%
oy

"
.

o
)

A-15

55

"
h'?
=

Nt
N
9
. Cw oW . A AT - - - N

‘.:‘:.:.“ r,ﬁ:‘; » ‘. ,' o AR -"._ ,’-I_'-: "l \ r,'. {{.‘f .,\(\ 5.,. 'U'.' v_.‘-‘.\'_.- -_.\'\t \{:‘_? \;\ .\7'\!"\('.' \'\*5 )

. 0 3 B



i'a pip 70 £ M i 1e Atadia i tia AVe &) e AN, ko At at. al \ i, gt U win AP IOUN ol val - ¢ "‘||‘.I"

R I IS LI LTI Y Sl Y S gy e
5-__4"-" Ca OO "'.\"F\'.‘-\'\ ol "f.' g

3}
b
o
1!
'n":;:
)
(} 1
!""..
UM 620141001 g
1 November 1985
o
APPENDIX B et
‘l:;:\‘
REFERENGES it
bGeS
ICAM Life Cycle Documents :,,.:
I
FTR11021000U0 Volume V, Information Modeling Manual ﬁ'"\
(IDEF1) X
PRM620141200 Embedded NDML Programmers Reference Manual b
&N
UM620141100 Neutral Data Definition Language (NDDL) .':i
User's Guide "
UM620141002 Information Modeling Manual - IDEF1l- -
Extended (IDEF1X) A,
,\}‘.-
TBM62014100  CDM1 - An IDEF1 Model of the Common Data X
Model LR
el
Other References 21N
LN,
“The ANSI/X3/SPARC DBMS Framework: Report of the Study &:
Group on Data Base Management System”’' American National Stan- 5\*
dards Institute, AFIPS Press, Montrole New Jersey, 1977. g
Atre, S., "Data Base, Structure Techniques for Design, e
Performance, and Management”, John Wiley and Sons, Inc., New a
York, 1980. :.::.)
hA%e
Martin, James, "Managing the Data Base Environment", o]
Volumes I and II, Savant Institute, 1981.
'\"-
o
P
A ()
)
L) ’
L) ::s
3
!""::‘.
N
R
2%
B-l LS Ganvtvr st dn gt g 149y 4 ¢ [T B FAR D s “‘
‘ U
KN
AR N R A PR ‘.ﬁ'

AR COIR AT Ny
« . ~

AT T A
- - L)

".‘:':l it M Kol oy 3




ORI
I RNCRRHRORRR

2 ie




