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\l Abstract

Continued increases in clock rates of VLSI processors demand a reduc-
tion in the frequency of expensive off-chip memory references. With-
out such a reduction, the chip crossing time and the constraints of
external logic will severely impact the clock cycle. By shotbmg a
large fraction of instruction refe , on~chip cach t Iy
reduce off-chip communication. Mm:mmn; the average instruction
access time with & limited silicon budget requires careful analysis of
both cache architecture and implementati This paper examines
some important design issues and tradeofls that maximize the perfoe-

mance of on-chip instruction caches, while retaining implementation
ease. Our discussion focuses on the instruction cache design for MIPS-
X, a pipelined, 32-bit, reduced instruction set, 20 MIPS peak, CMOS
processor designed at Stanford. The on-chip instruction cache is 2K
bytes and allows single-cycle instruction accesses. Trace driven simu-
lations show that the cache has an average miss rate of 12% resulting
in an average instruction access time of 1.24 cycles. Pc p“& S -—

2 Introduction

With the rapid improvement in p architecture, led by the
RISC processors, and with advances in VLSI technology, the cost
of off-chip communication has not kept pace with improvements in
the clock rates of VLSI processors. Consequently, the performance
of current high-performance VLSI processors is memory bandwidth
limited. Including memory on the processor chip to reduce the cost
of memory accesses becomes imperative to attain higher performance
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cost of increasing the miss service time. Moreover, both the miss rate
and the traffic ratio do not ider implementati This omission
is significant because, as we show later, performance is often more
sensitive to the implementation than to the cache architecture.

In this paper we concentrate on the average instruction access
time which depends both on the mise rate and the mise penalty. If
the cache miss rate is m, and the miss service time is T,,,,, cycles,
average instruction sccess time, T,,, = 1 + mT,,,, cycles; we assume
an instruction access takes one cycle if it is present in the instruction
cache.

The cache parameters of interest include the cache size, number of
sets (or rows) set size, block size, sub-block sise, and replacement al-
gorithm [20]. Write policies are not relevant to us because we disallow
writes into the instruction stream. The set size or degree of associa-
tivity is the scope of associative search. Block sise or line sise is the
smount of storsge sssociated with an address tag. A sub-block (or
transfer block {11]) is the portion of a block transferred from memory
on a cache miss. Since a block can simultaneously have invalid sub
blocks in addition to valid ones, each sub block must have a valid
bit associated with it. The replacement algorithm is the proceas used
to select one of the blocks in a given set for occupation by a newly
referenced block.

Cache size is limited by the amount of chip space available for
bothwdimtnxtiommd the address tags. The choice of cache

ters d dsona ber of factors including (1) the miss rate
u:lumble (2) the timing of a cache accens and how it fits in with the
timing of the rest of the machine, and (3) implementation ease.

3.2 Evaluation methodology

Initially, we investigate the miss rates of various cache organisations.
Then, from an implementation standpoint, we analyze the cache ac-
cess timing and the miss penally associated with each organization.
Finally, we determine the average instruction sccess time.

Trace driven simulation (TDS) is used to obtain the cache mise
rates. Because of its flexibility and ease of use, TDS is a popular
technique for cache performance evaluation (20,2]; however, TDS does
have some drawbacks. It may not be as accurate as hardware mea-
surement because traces seldom reflect true workload behavior. TDS
results are often optimistic because large applications, wsually with
poor cache performance, are hard to trace; m,tbeeﬂ'utol

multiprogramming, another cause of cache performance degradation,
is hard to include in TDS studies.

Fortunately, these problems are not very serious in studying small
instruction caches. Since small caches self purge after a few thousand
references, multiprogramming has little effect on performance. Even
simple models for multiprogramming, such as starting with an empty
cache every few thousand references, are sufficient. In some cases
(e.g., MIPS-X) this simple model can be an tati
of an actual virtual address cache, whmtheuche-ﬂmhedm
time a new user process is started. Our initial analyses ignore the
effects of multiprogramming. Later, we use the cache flushing model
to study the impact of context switching.

In tbe initial phases of the MIPS-X processor design we did not
hav- either & running software system or an instruction simulator for
MIP3-X. Much of the design was based on MIPS traces (MIPS (8]
is the predecessor to MIPS-X) assuming a similar behavioral trend
for MIPS-X. The MIPS-X software system and a simulator have since
been developed and we have corroborated our earlier findings, with
the only difference being that the MIPS-X cache performance turned
out to be slightly worse than predicted because MIPS-X code is less
dense, and our current benchmarks are larger.

In this paper, we present the results using large MIPS-X bench-
mark traces obtained from a MIPS.X instruction level simulator. Ten
Pascal (P) and Lisp (L) benchmarks are used:

Bigfm Fiduccia-Mattheyss graph partiticning algorithm (P).
Daf Conwerts logic equations to disjunctive sormal form (P).
Hopt A simple global optimiser for Pascal (P).

Simu  Operating sy paging simulator (P).

Upas  Pascal compiler froat ead (P).

Comp Firet pass of the PSL compiler {macro expand) (L).

rl Frame representation language (L).

Ge Deduction with garbage collection (L).

Rat Rational expression evalvator (L).

Opt  Compiler - data flow and optimisation (L).

These programs are fairly large, ranging from 50,000 to 800,000
bytes in static code size, and we feel they provide realistic cache per-




4 Cache Organization

This section die tradeolfs in the selection of cache parameters
including number of sste, set size, and block sise. The basic ques-
tion is bow to best utilise a given amount of chip area of a particular
aspect ratio to obtain the maximum performance. Early cache stud-
ies (e.g., Strecker (22}, and Smith {20]) compared cache performance
for various cache organisations sssuming a fixed amount of data stoe-
age. Alpert [3] stressed that the total circuit ares associated with
the cache, including both tags and dats, must be considered for inte-
grated microprocessor caches. Our experience shows that in addition
to area, the aspect ratio is also important.

To reasonably limit the number of variables, we explore the design
space available for the MIPS-X p We »ge the read
to concentrate on the evaluation procedure rather than on the final
result, which may well be different given other basic constraints. Al-
though the total cache sise is fixed, & wide variety of orgmaizations
exploiting various features of program bebavior are possible. We will
consider in turn a conventional cache or a c-cache, a buffer, and what
we call & hybrid buffer.

A c-cache, for the purpose of this analysis, is an organization that
uses sbout half the available memory space for the tags. Each block
consists of one to four words (each word is 4 bytes). A possible 512-
word c-cache organization could have 512 sets (rows), associativity
one, and block size one word. A portion of the address first indexes
into a cache set, followed by an iative tag pare against the
blocks in that set.

A buffer ia u set of a few large blocks, block size being eight words
or move. For example, a 512-word buffer could be organized with set
size eight, and block size 64 words. Since a buffer has only one set,
the associative search can be started without the indexing operation.
This organisation hss the minimum number of tags.

A Aybrid buffer is also investigated because the more straightfor-
ward organizations typically used in instruction buffers (e.g., CRAY-1
{5]), or in previous VLSI processor instruction caches (e.g., Motorola
MC68020 (18], Zilog 280,000 (3}), are not optimal in our case. As the
name suggests, & hybrid buffer has the features of both a ¢-cache and
a buffer. Like a buffer it has a large block size and few tage; conse-
quently the tag store is small. It is similar to a c-cache and differs
from a buffer because it has more than one set, typically two or four.
A typical 812-word hybrid buffer could have two sets, set sise 16, and

block sise 16 words.

We assume a sub-block sise of ore word. In other words, a single
instruction is fetched into the cache on a mise.! Each word in the cache
or buffer is associated with a valid bit. The replacement algorithm
(discussed in detail later) is paeudo-random.

4.1 Technology Constraints

The technology, organization, and performance of MIPS-X greatly
constrained the cache design. The most important constraint was
size. Roughly half of the interior die aren was allocated to the cache,
giving it & epace of 4mm by 6mm. The Soorplan of the processor fixed
the aspect ratio. The datapath was expected to be at least 6mm long
and the cache bad to fit above the datapath. In our design rules, the
area of a 6 transistor static memory cell was 30um by 40um, which
allowed us to build roughly a 16K-bit memory in the available ares
We idered using dy ic memory cells, but decided it was not
worth the technology risk.

From preliminary design and layouts for the sense-amplifiers, col-
umn multiplexers and tag compare logic associated with the cache,
the column multiplexers and the sense-amplifiers were estimated to
require around 300pm of space below the cache RAM avray, and the
tag logic an sdditional 300um. The large space for the tag logic was
a result of the 24 wires needed to provide the comparison address for
the tags. The wire pitch was about 10um (second-level metal).

In addition to the area constraints, MIPS-X also constrained the
access time of the cache; an instruction fetch had to complete in »
single 50ns clock cycle. To meet the cycle time constraint, we felt the
cache would only have time for a single RAM access per cache access.
Thus, we were ed about imp) ting & set iative eache
since we would need to first fetch the tags and then fetch the correct
data word. To alleviate the need for sequential fetches, we organized
the cache s0 that the tag information could arrive late in the cycle.
The tage were only used for the column decods. In this organisation,
when the word-line rose, all possible data words were fetched onto
the bit-lines. The tag information was used to select the correct set
of bit-lines to the sense amplifiers. The delay from the tag becoming
valid to output valid was short since it bypassed the delay incurred
in driving the bit-lines. The limitation of this technique was that it

1Many papers support sub-block placement in wmall ca-chip caches [3,11,13).
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Figure 1: Miss rate of a 2K-byte instruction c-cache with block size
4 bytes. The aggregate miss rates are calculated as the average miss
rate of all benchmarks weighted by the number of references.

required 32 bit-lines for each degree of associativity used. A 4-way
set-associstive cache would need 128 pairs of bit-lines.

The cache designs described below attempt to meet both the size
snd organizational constraints described in this section.

4.2 C-cache

For the c-cache study we initially use a block sise of one word (4
bytes). Therefore, half the srea is taken up by the tags; the data
store consists of 256 words. To reduce the area required by the tag
store, we also try caches with a larger cache block size. We assume
that if the block sise is greater than two words, we can squeeze in 512
words for instruciions.

Figure 1 shows tbe mise rate for an instruction c-cache with as-
sociativity ranging from ope through 16. The number of seta corre-
spondingly range from 258 to 16. The best possible aggregate miss
rate of 32.26%, interestingly enough, is achieved by a direct mapped c-
cache. We felt that some anomaly in the repl t scheme (pseud

random) caused the miss rate to go up with associativity for the small
cache. A later simulation with LRU replacement also showed this
behavior for all the Pascal benchmarks with the exception of Upas.
This behavior can be explained by examining the reference and colli-
sion pettern in a small cache, and is further discussed in [21,1]. Lisp

2880 __ 000 320 300
$os0

1 g
TAGS  oioare™™ DATA TAGS OATA
(») Size: 6040 by 3840 um. (b) Size: 6960 by 3160 um.

Figure 2: Floorplans of a c-cache with 1K bytes of data store. Number
of sets is 64, associativity is four, and block sise is four bytes; all
dimensions are in um.

sl§s

benchmarks do not show this anomalous behavior to the same extent
as Pascal, because Lisp tends to have a higher freq y of p d
calls and shorter bodies of sequential code. This causes an incremsed
probability of interference that can be reduced by associativity.

Possible floorplans for & four-way set-associative c-cache are shown
in Figure 2. Note that lesser associativity caches can use the same
basic floorplan. The actual dimensions are alightly greater than shown
in the figure when the precharge and decode logic is added. Although
bothmmgemenuhnthcumeues.onlythefotm&wmhbk
to our purpose due to the aspect ratio

We have assumed, thus far, that hdfthenmnoecup:edbyhp.
Other c-cache types with larger block sizes and a fewer number of
tags are also possible. For instance, a c-cache with & block sise of four
would have the tags occupying only a fourth as much srea as the data
portion. For these large block sizes we thought that we might be able
to squeese in 2K bytes of data (the same as for & buffer scheme) with
the corresponding tags. °

Tbemmnt«forbloeknu-ofl 16, and 32 bytes are given in
Table 1. BmmelfuﬂZKhytcofmtmcmmow. the miss
rate is reduced substantially for the larges block sises. A c-cache with
16 sets, set sise 8, and block size 16 bytes achieves the lowest mise
rate of 20.96%. Unfortunately, the combined area occupied by the
tage and data (see Figure 3) is 4420 by 7680 um, which exceeds the
space we had available.

Clearly, for caches as small as 2K bytes, sise is the single most




Data Miss Rate (R)

Sise Sise 1] D=2 Dud | Da¥
AWyt | K Sytes | 3236 | 35.80 | 36.67 | 56.82
16 bytes | 2K bytes | 23.28 | 22.16 | 2100 | 20.9¢
32 bytes | 3K bytes | 24.91 | 23.65 | 22.96 | 21.90

Table 1: Effect of large cache-block sise. D is degree of associativity.

Umll
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Figure 3: Floorplan of a c-cache with 2K bytes of data store, set sise
8, and block sise 16 bytes. Sise: 7680 by 4420 um.

play only a secondary role; e.g., doubling the associativity for the 2K
byte cache with block size 16 bytes, causes the miss rate to decrease
slightly from 23.28% to 22.16%; and doubling the block size causes
the miss rate to marginally increase from 23.28% to 24.91%. Some
parameters, however, affect the cache timing. For instance, an asso-
ciative cache requires tag access, compare, a select and a drive; while
a direct-mapped cache requires just the pare, and drive.

4.3 Buffer

Alpert [3] showed that reducing the number of tage ia desirable when
the area available for the cache is small and fixed. Our experiments
show that this is true even to a greater extent for instruction caches.
Instructions tend to show high spatial locality, which large block sizes
can effectively exploit. Large block sises are particularly attractive for
reduced instruction set computers because of poorer code density and
the correspondingly larger basic block sises in the code. Buffers are
attractive because they the number of tags, and have the
sdded advantage that they are well suited to prefetch schemes such as

Asssatemuty
Figure 4: Miss rate of a 2K-byte instruction buffer.

load forward,? as well as the MIPS-X prefetch schems outlined later.

Most of the ares is used for storing instructions in a buffer; hence,
we do not show tage in our buffer icorplans. Access time can be made
lower by (1) eliminating the indexing operation to choose a set, and
(2) decreasing the tag access time by using fast circuite® and placing
the few tags and the valid bits close to the address generation logic.
For example, in MIPS-X the tags are located in the datapath itself.

We studied instruction buffers ranging from s block size of 1024
bytes and associativity two to a block sise of 64 bytes and associativ-
ity 32. Figure 4 shows the mise rates. The most striking festure of
the graph is the importance of block sise. Smaller block sizes allow &
larger associativity. Clearly, the miss rate can be very high for large
block sizes. The reason is that for low assaciativity and a correspond-
ingly large block size, major portions of blocks tend to be left unused.
The lowest miss rate is 22.79% for a 32-way set-associative buffer,
which is substantially lower than that for a direct mapped c-cache,
and very similar to the best miss rate achieved for a c-cache (20.96%).
It achieves this miss rate at a smaller silicon area than the comparable
c-cache because it uses a smaller number of tage.

A buffer is more effective for Pascal benchmarks than for Lisp
benchmarks, while the opposite is true for & ccache organisation.
Because Lisp code has on average shorter bodies of sequential code

cad forward was implemented in {6] and also studied by Hill and Smich (3],

SAlthough faster circuits ave larger and consume more power, the overall sise
and power increase i» snll because of fewer tage.

.
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(o) Sise: 6040 by 3840 pan. (b) Sise: 7680 by 2860 um.
Figure 5: Floorplans of a buffer with set sise 8, block sise 2868 bytes.

than Pascal, large buffer blocks tend to be under-utilised resulting
in poorer cache performance for Lisp. Empirical evidence of this be-
havior is givea by the average number of words utilised per block in
a fully-associative 2K-byte buffer with block sise 16 words for both
Pescal and Lisp. The sverage block utilisations by Pascal and Lisp
beachmarks are 10.9 and 8.8 respectively.

Possible loorplans for the various buffers are given in Figure 5. A
set sise of 8 is implementable using the layout shown in Figure 5(s).
The layout shown in Figure 5(b) is too long in one dimension. Unfos-
tunately, larger set sises required to achieve ble perform
are hard to implement. Figure 6 shows the floorplan for an associativ-
ity of 16. The layout is wider because of the extra bus routing channels
required. When the ares required by the decode and precharge logic
for each of the banks is added, the dimensions along the width become
much larger then we can allow.

4.4 Hybrid Buffer

A c-cache suffers from the drawbacks that tags occupy valuable space
and tag access requires & RAM accems. A buffer reduces these prob-
lems by reducing the number of tags and using epecial structures to
reduce the effective tag access time. A pure buffer requires & high
degree of associativity, making the actual RAM harder to design (it
needs 10 have a large number of bit lines). Since the large associa-
tivity is required oaly to keep the block sise down, we will provide
the same block sise with a lower associativity in a structure called &
hybrid buffer.

A hybeid buffer simulates a higher sssociativity in the following
manner. Consider two regular buffers where instructions map to either

3]

Figure 6: Bufler with set eise 16 and block sise 128 bytes. Sise: 6900
by 3840 um.

ooe of the buffers depending on the value of a bit in the address. This
is similar to & c-cache with two sets indexed by a bit in the address.
If each set (or buffer) has oqual probability of being the target of &
block, the number of instructions that will fall into any one buffer
is halved, which effectively doubles the available associativity. Thus,
this scheme provides the benefits of a higher associativity without
implementation problems. For example, the miss rate for a hybrid
buffer with two sets and associativity 16 is 22.48% which is very close
to 22.79% for a buffer with associativity 32.

From an implementation point of view, associativity of 16 is etill
hard to achieve. A hybrid buffer with associativity 8 is implementable;
unfortunately the mies rate incresses from 22% to 26%. The solution
is to extend the number of sets to four with the assumption that the
probability distribution of blocks into the four sets s uniform. Two
bits are now wsed to index into one of four sets. The miss rates for &
hybrid buffer with four sets are plotted in Figure 7.

In this case the mies rate for & hybrid buffer with degree of asso-
ciativity eight is slightly worse than for the buffer with associativity
32: 23.17% compared to 22.79%. The difference is because our as-
sumption that each set is equally likely to be the target of a block is
not quite true. The variance in the number of instructions that map
to any one set causes & higher number of misecs.

A flooeplan for an eight-way set-associative hybrid buffer is shown
in Figure 8. Two bits index into one of four sets, four bite form the
block offest, and the rest of the word address forma the tag. The sise
of 3840 by 6040 ym can comfortably fit in the available silicon area.
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Pigure 7: Miss rate of & 2K-byte hybrid buffer with four sets.

4.5 Timing Considerations

Now that we have determined several possible cache organisations
based on their hit ratics and on their physical layouts, we must exam-
ine how they 8¢t in with the timing of the rest of the machine. The oaly
timing specification used so far has been that the cache access must
be within the 50 »s cycle time of the machine. The other important
timing comsiderstion is how ceche misses can be bandled. To un-
miss timing of MIPS-X, we will first dascribe the MIPS-X pipeline.*
Then we will show how the timing of the cache hit detection affects
the aumber of cycles nseded to sarvice a cache miss. We will also use
these timings to show how two imstructions can be fetched back on a
cache mise 40 almost halve the mise rate.

4.5.1 The MIPS-X Pipeline

MIPS-X is heavily pipelined 80 that one instruction can be issued ev-
ery 30 ne. Each instruction is divided into five pipeline stages and
each stage i divided into two 25 os pbases called ¢, and ¢;. The
pipeline stages and their functions are described in Figure 9. The
pipeling is conceptually easier to understand if you think of an addi-
tional stage called JF_, that cccure before the /F stage. During IF_,,
the Program Counter wnit gmmerates the address of the instruction to

A dorailed Simrumsion i prasented in [34,9]
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Figure 8: A oot sise 8 hybrid buffer Soorplan. Sise: 6040 by 3840 um.

be fetched on the following /F. To denote sn inserted cache mise
cyele we use CM,, where n is the number of the cache miss cycle.

4.5.3 Instruction Cache Miss Timing

Hit detection timing affects the number of cycles nesded to service
an instruction miss in MIPS-X. The short cycle time, coupled with
the necessary chip crossings, means that axternal memery fetches take
longer than one cycle. The address must be presented to the processor
pads eufficiently early to ensure it is valid oa the external pins by
the time ¢y falls (ees Figure 9). Therefore, the datapath must drive
the address bus early in ¢y to start & memory fetch on the following
cycle. The external eache memory then drives the processor pins with

_ the required word by the end of ¢ of the following cycle. Thus, &

memory access takes one and & half cycles from the time the addres
is computed.

For the c-cache configurations, the tage and tag comparsison have
to be put ia the cache arvay 1o make the implementation feasible. This
means the critical path for miss detection invalves driving the address
up to the cache armay, fotching the tags, doing the compatieon, and
then getting the hit or miss result back to the datapath Referring
to Figure 10, the instruction addrem is generated during ¢é; of IF_,,
driven to the cache array during ¢, of IF, the tag fatch begine late in
éy of 1F, and the comparison is computed and driven to the datapath
during ¢y of IF, t00 late to start ea external fetch in the same cycle.

If the aumber of tage is small, as in the bufSer or hybrid buffer
schemes, the tage can actually be placed in the datapath close to the
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Figure 9: MIPS-X pipeline stages.

PC unit, making hit or mise detection in the tage much quicker. Tag
compare is simply achieved by doing an sssociative compare of the
tage to the PC bus and “OR-ing” all the match lines. However, the
critical path for mise detection still involves driving the address to the
cache array to fetch the valid bita.® Therefore, as for the c-cache, the
mise signal arrives at the datapath by the end of ¢; of IF.

The miss penalty for the c-cache or buffer echemes with valid bits
stored in the cache array is three cycles. The timing of an instruction
cache mise for the c-cache is shown in Figure 10. Because the miss
signal asrives at the datapath late in ¢, of IF, the PC can be driven
out to the external cache ounly in the next cycle. Three cache miss
cycles were inserted ot this point: CM! to drive the instruction ad-
dress out to the external cache (normally a data address is potentially
sent out), CM2 for the external cache access, and CMJ to write the
instruction intn the instruction cache and instruction register.

A three cycle penalty, with a miss rate of over 20%, degrades
processor performance by over 60%. A cache miss penalty of two
cycles, which reduces the lows to 40%, can be achieved by combining
CM?2 and CM into one cycle. The critical path now involves accessing
the external cache memory, getting the data to the processar pads, and
writing into the instruction cache. Since the data from the external
cache arrives late in the cycle, this approach can essily affect the cycle
time of the machine. Although it decreases the miss penalty, it might

SNote thet cur sub-block sise of ons word requires & valid bit for every word.
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Figure 10: Miss Timing for & C-cache.

incresse the average cost of a fetch by increasing the cycle time of
every instruction.

Clearly, if we require a minimum of two cycles to access the ex-
ternal cache and write the instruction into the instruction cache, the
only way to reduce the mise penalty is to detect the mise If
s miss can be detected before the end of ¢; of IF, the PC can be
driven out right away, eliminating ooe cache miss cycle. In the buffer
scheme, driving the address to the cache array to fetch the valid bits
causes the miss signal to appear late. The solution is to move the valid
bits into the datapath along with the tags. Then, tag comparieon and
valid bit checking can be done a phase earlier.

There is one problem, however. To know which valid bit to fetch,
we need to know which tag matched. Instead of ing the valid bit
after the tag comparison, we fetch all possible valid bits in parallel,
one for each tag, along with the tag compare. The result of each
tag compare is “AND-ed” with its corresponding valid bit. A cache
miss occurs if none of these outpute is true. Figure 11 shows the miss
timing for & buffer with the valid bits and tags stored in the datapath.
The mise penalty is now reduced to two cycles.

An interesting and important side effect of moving the tazs and the
valid bite into the datapath is that the cache array becomes strictly &
RAM array. With the valid bits in the cache array, the array would
need to be customised to our specific cache configuration because
the valid bits must be cleared when a new tag is written into that
block. Now, the valid bit circuitry is independent of the RAM and
aleo simpler to implement.

With s two cycle penalty, and & 20% mies rete, the performance
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Figure 11: Miss Timing for a Buffer

Joss is 40% which is still significant. We can reduce the miss penalty to
one cycle by combining CM! and CM?2 into one cycle. As mentioned
before, this extends the machine cycle time. An alternate solution is
to use the extra cycle wisely to prefetch another word.

4.5.3 Prefetching

A side effect of the two cycle miss penalty in MIPS-X ia that the timing
allows fetching back not only the instruction that missed but also the
pext instruction (not the next sequential one, but the instruction to
be exocuted pext) during the extra cache mise cycle. This means that
the worst mies rate for the cache is 50%, and the average mise rate is
about balf of what it would be without prefetching.

The method of prefetching an extrs word can be explained with the
aid of the cache mies timing in Figure 12. In the phaase following mise
detection for the t instruction (whose address 8 PC...), the
address of the next instruction (PCa.et) has already been calculated.
This address would have been sent to the instruction cache in the
normal sequence. While the external cache is being accessed, the next
instruction address is eet up on the address pads (in CM1); and while
the missed instruction is written into the inatruction cache during
CM8, the external cache is accessed for the next inatruction. Then,
in the following phase ( R ), when execution of the missed instruction
is commenced, the next instruction is simult. ly written into the
instruction cache and instruction register. Thus, the timing of the
pipeline allows the prefetch to occur quite naturally.

Prefetching the extra word hes » tremendous performance impact.
For the MIPS-X hybrid buffer, the miss rate drops from 23.17% to
11.85%, or performance degradation drops from about 40% to 20%.

Compute PCpise

Drive PC onto PCBus

Do tag compare and detect mies; Computs PCoear
Drive PC,,,, Out to external cache

Instructionmi,, back from external cache
Drive PC;.J out to external cache

CM,

Write instructionmi,, into cache and instruction register
Instruction,, ¢ back from external cache

Mies sequence completed

Write instructiona., into cache and instruction register

RF

o
X
$H 3 ey

Figure 12: Fetching Back Two Words on & Miss

Note that this scheme has the effective performance impact of & one
cycle miss penalty, but without the risk of i ing the hine cycle
time. Implementation is also simple because fetching the second word
fits in with the natural flow of the cache miss sequence. This shows
that careful matching of the cache miss timing to the pipeline of the
machine can give significant performance benefits.

Other prefetching schemes that exploit the available excess band-
width were also idered. For le, in MIPS-X, when the pro-
cessor is not fetching data, the /O pins are free and instructions could
be prefetched into the cache without affecting any other activity of
the processor. However, these schemes could not be used in MIPS-
X because the instruction cache doea not have sufficient band .idth.
MIPS-X uses 100% of the instruction cache bandwidth for fetches,
preventing a prefetcher from using the cache. The instruction cache
is only free during instruction cache misses. Thus, no prefetch scheme
can do better without d tically changing the cache organization.

4.6 Summary of Organization Choice

Table 2 summarizes the cache performance statistics for the various
schemes assuming that two words are fetched back on & mise. Con-
ventional cache organizations perform worse than buffers because of
their high mise penalty. Note that the lowest miss rate does not yield
the best performance. A hybrid buffer with four sets, associativity
eight, and block size 64 bytes performs best with an access time of
1.24 cycles, and is wed in the MIPS-X design.
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Cache | Implemeat- | Nam. | Set | Block | Mis Mise

type able Sets | size | size | rate(%) | penalty | Toue
C-cache “YES 256 1 4 16.7¢ 3 150
C-cache NO 168 8 16 10.90 3 133

Buffer YES 1 8 256 14.78 2 1.30
H. buffer YES 4 8 64 11.85 2 1.24

Table 2: Summary of cache performance. Block size is in bytes; miss
penalty and access time are in cycles.

5 Selection of Other Cache Parameters

5.1 Replacement

The replacement slgorithm has traditionally been very important in
cache design. Of the feasible schemes, least recently used replacement
is considered to perform the best, although Smith and Goodman [21]
show evidence that it might be inferior to random replacement for

instruction cache design. After idering a ber of repl t
strategies, including LRU, RAND, FIFO, RING, and RING-M, we
came to the lusion that the repl t algorithm is not critical

to the design for small caches.

LRU (least recently used) is where the least recently accessed block
in any given set is replaced. In rand pl t (RAND), a truly
random choice of block to be replaced is made. FIFO is first in first
out, where the block present the longest in any given set is replaced
first. RING, is a peeud d pl t sch where & ring
counter with the same number of states as the set size is maintained.
The counter points to the block in each set that must be replaced on
 block miss or if sn address tag does not match any of the cache tags.
The counter is bumped one state after every block miss. RING-M.is
» modification of the above scheme.

Table 3 compares the relative performance of our bybrid buffer for
the various replacement schemes. RAND, FIFO, RING, and RING-M
have about equal performance. LRU is slightly better than the other
echernes. For the MIPS-X design, we chose one of the RING schemes
because of its simpler implementation. The RING-M scheme was ueed
10 solve a subtle problem with the double fetch on instruction cache
misses. As stated before, two instructions, In;,, and [y, are fetched
on & cache miss. The problem arises when the first word (Ini,) hits in
the tage, but is not valid yet, and the next instruction (leeer) misses

2t

t N »
Miss Rate (%) [ 1091 | 11711 u.ml 178 11.88

Table 3: Comparison of replscement schemes.

lnun.uml 5!(] TOK | 20K | 30K | 40K | 50K
Miss Rate (%) | 14.00 | 12.08 | 12.43 [ 12.28 | 12.12 | 12.00

Table 4: Effect of cache flushing on context switches.

in the tags.® If the ring counter points to the block that .., will
occupy, then that block will be replaced by the tag corresponding to
Lset, causing I, to bave nowhere to go when it is received from the
external cache. To avoid this state, we bump the counter if it points
to a cache block corresponding to the most recent address tag.

5.2 Context Switch Mechanisms

Virtual caches, or caches addressed using the virtual address gener-
ated by the processor, have the advantage that virtual to physical
t lation is d from the critical path. However, they have
other multiprogramming related problems. For one, the integrity of »
process address space is harder to maintain. A simple sclution is to
flush the cache on every process switch. The performance degradation
due to cache flushes is not serious for small caches.

Table 4 shows the mise rate for a hybrid buffer flushed every Q
instructions, where Q ranges from 5000 to 50000. A higher frequency
of flushing is expected in time sharing workloads while batch jobe
will be much lower. Flushing the entire cache is emsily achieved in
VLSI by providing a cache reset signal. However, a cache flush would
require & special instruction. To avoid defining snother instruction,
we decided to use a simple software technique and trade off a little
performance. The virtual address space is balf system and half user.
To flush the cache of user instructions, we cause the processor to
jump to 32 specific system addresses making all the tags be in system
space. This requires 32 extra instructions or 64 extra cycles’ every
cache flush. Even if cache flushing takes place, say, ouce every 20000
cycles, the mise rate would go up from 11.85% to 12.33%.

@ nset is DOt constrained (o be in the same block as [,
TNote thet enly 16 of the 33 instructions suffer cache minsss.
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5.3 Tesatability Features

We bave included & ber of feat into the design to enhance the
testability of the instruction cache and the processor. The instruction
cache and the rest of the p: have separate power supplies mak-

ing it possible to power the processor independent of the cache. An
external signal (ICacheDisable) forces the processor to always cache
miss oo instruction fetches allowing the processor to run even if the
cache is not completely functional.

The sise of the instruction cache forced us to include a method to
directly access the RAM When an externnl signal called ICacheTest
is asserted, the PC is forced to g tial add These
nddr..mﬂmntnllyunumtbeeuhe.undduumllbebadedﬁom
the dats pade. After filling up the cache, the processor can be reset
and the entire cache read. Although this interface does not allow us
to perform random reads and writes into the cache, it does Jet us
directly test the basic functionality of the cache before we use it for
supplying instructions to the p

6 Conclusions

Cache design a8 already been ltudsed in great detail but only re-
cently has it been feasible to imp t caches on the same chip as
@ processor. We showed that for on-chip caches other iderati
besides hit rate are important. These include the total usable ares,
the timing of cache accesses, the physical organization of the cache,
and the aspect ratio of the resulting design. Minimizing the average
instruction access time - & combination of both the miss rate and the
miss penalty - is the key goal. We showed that given several physical
organisations that satisfy the tpace and size conatraints, the resulting
miss rate can vary considerably, and the organization with the lowest
miss rate does not necessarily result in the best performance.

We showed the importance of the tradeoffs between cache archi-
tecture and implementation by describing the design of a real on-chip
cache for MIPS-X. Given an initial set of constraints for the phywical
dimensions and the cycle time of the desired cache, we used trace
driven simulations to measure the performance of three basic cache
configurations, varying seve -] parameters such as set sise, and block
sise. With these results, we computed the average instruction access
times by taking into account the number of cycles needed to service
& mise for each of the configurations, and made our choice besed on
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the minimum average instruction access time. The result was a cache
organization that is a hybrid bet s tional cache and an
instruction buffer. This organisation has a miss rate of roughly 12%
for a set of large benchmarks, and results in an average instruction
accese time of 1.24 cycles. This penalty is roughly 3 times smaller
than the penalty of our first cache organization, although the basic
cache organization (cache size, block size, etc.) remasined unchanged.
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