AD-A181 562 INTEGRATING SYNTAX SEMANTICS AND DISCOURSE DARPA
- NATURAL LANGUAGE UNDERST.. (U> UNISYS CORP PROLI PR
PAOLI RESEARCH CENTER D DRAHL ET AL. 14 MAY 8?7
NO9914-85-C-0012

10§l
=l
LpoE™ R

1.8

E
F
E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

S

g‘\‘..l"‘,l'

Lt :h*a*ﬁo'!

‘_“ “l". I @ .‘\
‘1.0: .‘t:\' ; A
Aty ;. ¢ NG ‘

:‘ -» »",- RN h . AR]
’q"' R ., " .)'; oty s

AD-A181 562

INTEGRATING SYNTAX, SEMANTICS, AND DISCOURSE
DARPA NATURAL LANGUAGE UNDERSTANDING PROGRAM

R&D STATUS REPORT

Unisys/Defense Systems " DT'C |

TLECT=]
JUND 4-19877 :

D

el s®

-

Volume II -~ APPENDICES

DISTRIBUTION STATEMENT X
Approved for public release|
Distribution Unlimited ~\-

Deborah Dahl, John Dowding, Lynette Hirschman,
Francois Lang, Marcia Linebarger, Martha Palmer,
Rebecca Passonneau, Leslie Riley

‘ May 14, 1987

. Unlsys Defense Systems Integrating Syntax, Semantics, Discourse

~
2 4
» o/1]) Construction of a qualitative model of a starting air compressor;

o/5) Use of the qualitative model to simulate normal and faulty behavior

described by natural-language phrases. . ——-

Because this research has been conducted jointly at Unisys (Paoli) and
NYU (New York), the two groups have focused on different modules within the
system, merging each module into the system as it becomes stable. The Unisys
effort has focused primarily on the semantic and pragmatic modules, while the
NYU effort has been focused on development of a qualitative domain model
(starting air compressors), use of .this model in resolving noun phrase references,
and qualitative reasoning about the fault-diagnosis process. The Unisys work,

as specified in the original Statement of Work, has been conducted primarily in

Prolog, to take advantage of the the excellent match between Prolog and the
requirements for building a natural language processing system. This has
resulted in a system with good performance and ready portability to a variety
of hardware: the system runs on Vax, Sun, Explorer and Xerox Lisp Machines.
The NYU work has been in Lisp and their completed system will be delivered in

CommonLisp.

2. Objectives

-

"""'7 The overall objective of the natural-language understanding work is to
8 n ’xiumfﬁs
- - —— \ -~
demonstrate capabilities for Cﬂt:aerstandingwinf‘ormation contained in free nar-

rative. This understanding can be demonstrated in several ways: simulation of ‘?

DARPA Final Report -2- May 13, 1987

Unlsys Defense Systems Integrating Syntax, Semantics, Discourse

Z—py events described in the narrative (as done by the current Proteus system); sum-
marization of events described in the narrative (also done by the current Pro-
teus system); or creation of database or knowledge base updates, to add infor-
mation to an existing database or knowledge base. Such an understanding
depends on the application of many sources of information, including syntactic,
semantic, and pragmatic information, as well as detailed information about the

specific domain in question. Wthis report 4wme focused on

several critical research issues in building Proteus:

/ Portability,, supported by clear factoring of domain-independent and

n-specific information, and by a collection of tools to support creation

of the various modules;

(

e “DModularity, ;supporting incremental development of a large-scale system

; and vpei'-mitting a division of labor between Unisys and NYU;

C— Integration of multiple sources of information, to provide search focus dur-

_~ing parsing and convergence on a correct interpretation of individual sen-

s

/ tences (and ultimately of the entire discourse);

0\5 Robustness, provided by a broad-coverage grammar, integration of multiple

/JanV\;l:edge sources to fletect inconsistent information, and feedback to the

-

'd
/ user to provide help in diagnosing missing or incorrect information;

g

0wd "D . .
° evelopment environment for the construction of a large-scale natural-
| language processing system, including tools for debugging, testing, updat-

ing, and tailoring the system to different types of development.

DARPA Final Report -3- May 13, 1987

LGOI o C T UOL O OUBUINOC 0 2 I O N D

INTEGRATING SYNTAX, SEMANTICS, AND DISCOURSE
DARPA NATURAL LANGUAGE UNDERSTANDING PROGRAM

R&D STATUS REPORT
Unisys/Defense Systems

Volume IT - APPENDICES

Deborah Dahl, John Dowding, Lynette Hirschman,
Frangois Lang, Marcia Linebarger, Martha Palmer,
Rebecca Passonneau, Leslie Riley

May 14, 1987

H R LA .] l . (] [? ’, L}
A T L L L T T N N A S o T W A T O T B T TR CT S LI B

V ‘ TABLE OF APPENDICES

Appendix A -~ An Overview of the PUNDIT Text Processing System

Appeadix B — Recovering Implicit Information

Appendix C —~ Focusing and Reference Resolution in PUNDIT

Appendix D - A Dynamic Translator for Rule Pruning in Restriction Grammar

Appendix E -~ Determiners, Entities, and Contexts

Appendix F - Verb Taxonomy

Appendix G - Conjunction in Meta-Restriction Grammar

Appendix H -- A Prolog Structure Editor

Appendix I —~ Designing Lexical Entries for a Limited Domain

Appendix J ~ A Computational Model of the Semantics of Tense and Aspect
0 Appendix K ~ Nominalisations in PUNDIT

Appendix L -~ Situations and Intervals

Appendix M —~ The Interpretation of Tense in Discourse

Appendix N .. Report on an Interaction between the Syﬂtactic and Semantic Components

Appendix O - Improved Parsing Though Interactive Acquisition of Selectional Patterns

Appendix P — Grammatical Coverage of the CASREPs

{ Accesion For ‘
NTIS CRA&I
DTIC TAB
Urannounced 0
RE: Distribution Statement Justification
Approved for Public Release. Distribution .
Unlimited. Bye'ﬂ-‘ P"'lc :
Per Dr. Alan Meyrowitz, ONR/Code 1133 DiYib:tioh}
Availability Codes
| 1 X&au'; d[o(
Dist Special
0 l
&'l l

APPENDIX A

An Overview of the PUNDIT Text Processing System

This paper by Lynette Hirschman, Deborah Dahl, John Dowding, Francois
Lang, Marcia Linebarger, Martha Palmer, Leslie Riley, and Rebecca Schiffman
was presented at the Penn Linguistics Colloquium, Philadelphia, February,
1087. .

Unisys Defonse Systems Integrating Syntax, Semanties, Discourse

The PUNDIT Natural Language Processing System?

Lynette Hirschman, Deborah Dahl,
John Dowding, Francois Lang,
Marcia Linebarger, Martha Palmer,
Leslie Riley, Rebecca Schiffman

Paoli Research Center,
UNISYS Defense Systems

P.O. Box 517, Paoli, PA 19301

TELEPHONE NUMBER: (215) 648-7554

1This work has beea supported in part by DARPA under contract N00014-85-C-0012, administered by the Office
of Naval Research,aad ia part by National Science Foundation coatracts DCR-8202387 and DCR-8$5-02208, as well as
by Indepeandent RED funding from System Development Corporation, now part of Unisys Defense Systems. AP-
PROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

1. Introduction

This paper describes the PUNDIT system for processing natural language inputs.
PUNDIT, written in Prolog, is a highly modular system consisting of distinct syntactic, seman-
tic, and pragmatic components. Each component draws on one or more sets of data, including a
lexicon, a broad coverage grammar of English, semantic verb decompositions, rules mapping
between syntactic and semantic constituents, and a domain model. PUNDIT has been
developed cooperatively with the NYU PROTEUS system. These systems are funded by
DARPA as part of the work in natural language understanding for the Strategic Comput-
ing Battle Management Program. Modularity, careful separation of declarative and procedural
information and separation of domain specific and domain independent information all contri-
bute to an overall system which is flexible, extensible and portable. See Figure 1 for the overall
design of the system.

ld-uulcudbl. C <
<D
ANALYII!
lﬁn.d'ndm

Figure 1 -- Organiszation of PUNDIT

2. Current Application Domains

PUNDIT has been used as part of two different applications. The first is a text processing
applcation and the second is as a natural language front end for a database query system. In
developing these applications, the basic natural language analysis components have remained
the same. Application modules have been developed which take the general representation of
the meaning of a text which PUNDIT produces and create an output tailored for the specific
application. For the text processing application, the application module produces 2 summary of
the text. For the database query application, the application module produces a logic query.
This flexibility of the basic PUNDIT system has two important consequences. New applications
can be developed by designing a new application module, without changing the basic system,
and in addition, extensions to the basic linguistic coverage which are motivated by the need to
deal with problems in one application will also be available in the other applications. In addi-
tion, several applications can be combined in a single multipurpose system.

2.1. Maintenanee Report Domain

In this application, Navy CASREP messages (CASualty REPorts), PUNDIT was applied to
a Navy battle management domain focused on force readiness. In the CASREPS application,
the system processes the remarks field of messages about failures in starting air compressors
(sacs). The system creates a set of logical forms to represent the message content, and from
this set it then generates a brief tabular summary of the major problems and findings (see Fig- -
ure 2).

2.2. Naval Ship Database Domain

We have also built an interface for processing English queries to a database. For this
application, the system accepts English queries and produces a logic form which is passed to a
logic/database interface. The interface translates the query into QUEL and sends it to an
‘INGRES database residing on a different machine; the interface then returns the results from

failure of sac. loss of air pressure resulted in slow gas turbine start. troubleshooting re-
vealed normal sac lube oil pressure. erosion of impellor blade tip evident. received new sac.

Status of Sac:

Part: sac ‘State: inoperative

Finding:

Part: air pressure State: lowered
Damage:

Part: blade tip State: eroded
Finding:

Agent: ship’s force State: has new sac

Figure 2 —- Sample CASREP and Automatically Generated Summary

i ' the query for display to the user. Only the back-end production of the logical form is unique to
c this application. The changes to the rest of the system consist of the modifications required for
any new domain application, namely the domain-specific information in the lexicon and the
domain model.

8. The Syntactic Component

In Pundit, syntactic analysis yields two syntactic descriptions of the sentence. One is a
very detailed surface parse tree, and the other is a more regularised parse tree called the Inter-
mediate Syntaciic Representation. The surface structure parse tree is produced while per-
forming a careful syntactic analysis and is used to construct the less detailed ISR, which is a
more appropriate input to semantics and selection.

3.1. The Grammar

The grammar is written in the Restriction Grammar framework
(Hirschman1982, Hirschman1985}, which is a logic grammar with facilities for writing and main-
taining large grammars. Restriction Grammar is a descendent of Sager’s string grammar
[Sager1981]. The grammar consists of a set of context-free BNF definitions (currently number-
ing approximately 80), augmented by restrictions (approximately 35). The restrictions enforce
context-sensitive well-formedness constraints and, in some cases, apply optimisation strategies
to prevent unnecessary structure-building. The grammar can either be interpreted or
transiated, or a mixture of both. It uses a top-down left-to-right parsing strategy, augmented
by dynamic rule pruning for efficient parsing [Dowding1988]. In addition, it uses a meta-
grammatical approach to generate definitions for a full range of co-ordinate conjunction struc-
tures [Hirschman1986]. The current grammar covers declarative sentences, questions, sentence

G fragments?, sentence adjuncts, conjunction, relative clauses, complex complement structures, and
. & wide variety of nominal structures, including compound nouns, nominalised verbs and embed-
ded clauses.

3.2. Intermediate Syntactic Representation

The syntax processor uses the rules of the grammar to produce a detailed surface structure
parse for each sentence. This surface structure is converted into an "intermediate syntactic
representation” (ISR) which regularises the syntactic parse. That is, it eliminates surface struc-
ture detail not required for semantic analysis. This regularisation is done by annotating each
rule in the grammar with an expression in the franslaison rule language. These expressions
tell the interpreter how to combine the ISR from the children of a node into the ISR of their
parent.

An important part of regularisation involves mapping fragment structures onto canonical
verb-subject-object patterns, with missing elements flagged. For example, the tvo fragment
consists of a tensed verb + object as in Replaced spindle motor. Regularisation of this
fragment, for example, maps the tvo syntactic structure into a verb+-subject+object structure.
The semantic and pragmatic components provide a semantic filler for the missing subject using
general pragmatic principles and specific domain knowledge[Palmer1988).

4. Clause analysis

In order to produce a semantic representation of a clause, the verb is first decomposed into
s semantic predicate representation appropriate for the domain. The arguments of the predi-
@ cates constitute the SEMANTIC ROLES of the verb, which are similar to cases{Palmer1985]. For

2The rules for fragments enable the grammar to parss the "telegraphic” style characteristic of message traffic,
such as disk drive down, and has seleet loch

SO R O e O N Y

example, feil decomposes into become Inoperative, with patient as its only semantic role.’
In this domain the semantic roles include: actor, agent, experiencer, goal, Instigator,
instrument, loeation, patient, reference_pt, souree and theme. A dramatically
different domain such as children’s birthday parties would require much more redefinition of
semantic roles and decomposition rules. However, the algorihtm that fills the roles in the verb

~ decompositions stays the same across different domains. The algorithm for the processing of

nominalisations, which is described below, is equally domain independent.

Semantic roles can be filled either by a syntactic constituent or by reference resolution
from defaults or contextual information. We have categorized the semantic roles into three
classes, based on how they are filled [Palmer1988]. Semantic roles such as theme, actor and
patient are syntactically OBLIGATORY, and must be filled by surface constituents. Semantic
roles are categorised as semantically ESSENTIAL when they must be filled even if there is no syn-
tactic constituent available.! In this case they are filled pragmatically, making use of reference
resolution, as explained below. The default categorization is NON-ESSENTIAL, which does not

‘require that thea role be filled.

The algorithm makes use of syntactic mapping rules that associate types of syntactic con-
stituents with semantic roles. For example, the rul: instigator(l) <- subj(I) indicates that
the subject is a likely filler for the instigator role. These rules can be tailored to account for
particular verb idiosyncracies, but for the most part they are fairly general, and port readily
from one domain to similar ones. There are also selection restriction rules associated with the
semantic roles. These are more domain specific, since they are heavily dependent on the exact
sense of the verb that is relevant.

Nominalisations are processed very similarly to clauses, but with a few crucial differences,
both in linguistic information accessed and in the control of the algorithm. With respect to the
linguistic information, the decomposition of a nominalisation is the same as its corresponding
verb, but the mapping rules differ, since syntactically a nominalisation is a noun phrase. For
example, where a likely filler for the patient of fail, is the syntactic subject, a likely filler for
the patient of failure is an of prepositional phrase. The processing of nominalisations is dis-
cussed in detail in[Dahl1987).

6. Pragmatics Components

§.1. Reference Resolution

Reference resolution is called by the clause semantics interpreter when clause semantics is
ready to instantiate a role with a specific referent. Reference resolution finds the referent of a
noun phrase, and also finds other semantic relationships among the entities mentioned in texts.
Some features of the reference resolution component include treatments of: pronouns (including
seroes) and ome-anaphora using a syntax-based focusing algorithm([Dahl1988,Dahl1984], definite
and indefinite noun phrases, as well as noun phrases without determiners, implicit associaies
[Dahl1986,Dah11987.......], conjoined noun phrases, nominal references to events and situations
first mentioned in clauses[Dahl1987], non-specific noun phrases[Palmer1986), and referents not
mentioned explicitly[Palmer1988].

Processing for pronominals; that is, pronouns, one-anaphora, and seroes, selects the
referent from a list of entities in focus. The referents for full noun phrases and implicit referents
are salected from all of the entities that have been mentioned in the discourse. If there is no
previously mentioned referent for a definite noun phrase, or for one without a determiner, the

“There are domain specific criteria for selecting » range of samantic roles. The criteria which we have used are
described in[Schilmul”O].

¢ Wae are in the process of defining criteria for categorising a role as BSSENTIAL. It is clearly very domain depen-
dent, and relies beavily on what can be assumed from the context.

N N A N N R AT L T A AT g AT ALY

’ system essocisies the entity with one in focus. This processing is described in more detail
in[Dahl1986]. Indefinite noun phrases are assumed to introduce new referents. While this is is
not strictly correct[Dahl1987.......), it seems to be sufficient for this domain. After a referent is
found, control returna to the clause semantics interpreter.

§.2. Time ml'.‘.

PUNDIT’s temporal analyser determines the temporal properties of all the situations men-
tioned in each input sentence. It recognises three types of situations: states, processes and
events, and derives distinct types of representations of their temporal structures indicating
what time intervals the situations hold over. It also identifies the temporal loeation of a
situation with respect to the time at which the text was produced and any other explicit times
mentioned in the sentence associated either with other situations (The pump failed when the
engine seized) or with clock/calendar times (The pump failed at 0800 howrs).

To determine the temporal structure of a predication, PUNDIT needs two kinds of seman-
tic input: the decomposition produced by the semantic analyzer and the surface tense and

aspect markings (tense, taxis® and grammatical aspect.)® Specific components of the decomposi-
tion represent the inherent temporal properties (aspect) of the predicate. The way in which
these aspectual components interact with surface tense and aspect markings is semantically reg-
ular. The aspectual class of a predicate depends on the domain specific semantics. The time of
the text production, used in interpreting the temporal location of a situation, is contextual or
pragmatic information. Thus the temporal analyser uses semantic and domain specific input in
a semantically regular way to derive information relative to the current context. The modular-
ity of the PUNDIT system is a great advantage to the temporal analyser as the following sam-
ple analysis illustrates.

6. Portability

6.1. Automatic Generation of Selectional Restrictions

Since the ISR regularises syntactic patterns into a canonical form, we were able to write a
program to snalyse the ISR and examine the syntactic patterns as they are being generated.
This program is called after the BNF grammar has assembled an NP or a complete sentence
and constructed its ISR.

The program presents to the user a syntactic pattern from the ISR and asks about the
validity of that pattern. The user can then accept that pattern, allowing parsing to proceed, or
reject it (if the parse being constructed is wrong), causing the parser to backtrack.

For example, the correct parse for "Retained oil sample for future analysis” has an elided
subject, "retained” as the verb, and "oil sample” as its direct object: "[Somebody]| retained [the]
oil sample for future analysis”. An incorrect parse, however, might analyse the sentence as a
serocopula fragment, with “retained oil sample” as subject: (“[The| retained oil sample [was] for
future analysis”). In this case, when the program asks the user about the adjective/noun pat-
tern "retained sample”, the user would reject that pattern and fail the parse being constructed.

This interactive program greatly reduces the number of incorrect parses generated as well
as the number of BNF grammar rules tried, because the user can immediately fail any (partial)
parse containing an invalid syntactic pattern. More importantly, however, the information
about good and bad syntactic patterns can be stored and classified as good or bad, so that no
pattern is ever presented more than once. The system can thus interactively acquire domain-

@ specific semantic information, and eflectively bootstrap into a completely new domain.
SPJ

£

$ Tanie (Jakobeon, 1957) refers to the seamantic effect of the presence or absence of the perfect suxiliary.
SGrammatical aspect is signalled by the presence or absence of the progressive suffix -ing.

(marer—ar—ar—

M O O £ O N AN DA 3 o A O N A S it £ RS < S

The mechanism as currently implemented deals only with patterns containing lexical
items. However, we are currently investigating methods to generalise the program by using
information in the domain isa hierarchy to construct semantic class patterns: In our domain
model, OIL is a type of FLUID. If the user accepts the noun/noun pattern "oil sample”, he/she
would then be asked for which X such that X isa FLUID is "X sample” a good noun/noun pat-
tern. '

8.1.1. The Development Environment

We have developed a set of tools that makes writing, modifying and testing code easier
and more efficient, as well as making it easier to port Pundit to a new domain. These include:
switches (to tailor the operation of PUNDIT differently depending on what one is working on),
the Prolog Structure Editor (a general structure editor that makes it easy to traverse and edit
Prolog terms), a lexical entry procedure {that assists in the arduous task of creating new lexical
entries), and a semantic rule editor (that assists in the creation and consistency of semantic
rules).

6.2. Conclusion

PUNDIT is an extremely modular natural language processing system. This modularity
allows clean coordination of a large number of components performing separate tasks, such as
the handling of implicit information, including syntactically elided and semantically inferred.
This modularity also contributes to the entensiblity and flexibility of the system both in terms
of new applications and new domains of discourse.

REFERENCES

[Dahl1984]
Deborah A. Dahl, The Structure and Function of One-Anaphora in English, PhD
¢ Thesis; (also published by Indiana University Linguistics Club, 1985), University of
" Minnesota, 1984,

[Dahi1986]
Deborah A. Dahl, Focusing and Reference Resolution in PUNDIT, Presented at
AAAl, Philadelphia, PA, 1988.

[Dahl1987]

Deborah A. Dahl, Determiners, Entities, and Contexts, To be presented at Tinlap-3,
Las Cruces, New Mexico, January 7-9, 1987.

[Dahl1987]
Deborah A. Dahl, Martha S. Palmer, and Rebecca J. Schiffman , Nominalisations in
PUNDIT, submitted to the 25 Annual Meeting of the Association for Computational
Linguistics, Stanford University, Stanford, California, July 1987.

[Dowding1986]
John Dowding and Lynette Hirschman, Dynamic Translation for Rule Pruning in Res-
triction Grammar, Logic-Based Systems Technical Memo No. 43, Paoli Reserach
Center, System Development Corporation, 1986.

0 ﬁmmmmmj

[Hirschman1982]
L. Hirschman and K. Puder, Restriction Grammar in Prolog. In Pree. of the First
International Logic Programming Conference, M. Van Caneghem (ed.), Association
pour la Diffusion et le Developpement de Prolog, Marseilles, 1982, pp. 85-90.
[Hirschman19885}
L. Hirschman and K. Puder, Restriction Grammar: A Prolog Implementation. In Leg-
ic Programming and its Applications, DHD. Warren and M. VanCaneghem (ed.),
1985.

[Hirschman1986)
L. Hirschman, Conjunction in Meta-Restriction Grammar. J. of Legic Programming,
1986.

[Palmer1985]
Martha S. Palmer, Driving Semantics for a Limited Domain, Ph.D. thesis, University
of Edinburgh, 1985,

[Palmer1986]
Martha S. Palmer, Deborah A. Dahl, Rebecca J. Schiffman , Lynette Hirschman,
Marcia Linebarger, and John Dowding, Recovering Implicit Information, to be
presented at the 24th Annual Meeting of the Association for Computational Linguis-
tics, Columbia University, New York, August 1986.

[Sager1981]
N. Sager, Naturel Language Information Processing: A Computer Grammar of
English and Its Applications. Addison-Wesley, Reading, Mass., 1981,

[Schiffman1986] '

" Raebecep J. Schiffman, Designing Lexical Entries for a Limited Domain, Logic-Based
Systems Technical Memo MNo. 42, Paoli Research Center, System Development Cor-
poration, April, 19886.

{
P W R e P S Y s e A A AL AR o S50 o < o T ol

‘ APPENDIX B

Recovering Implicit Information

This paper by Martha S. Palmer, Deborah A. Dahl, Rebecca J. [Passon-
neau} Schiffman, Lynette Hirschman, Marcia Linebarger, and John Dowding,
was presented at the 24th Annual Meeting of the Association for Computational
Linguistics, New York, June, 1988. It describes the communication between the
syntactic, semantic, and pragmatic modules that is necessary for making impli-
cit information explicit.

Unisys Defense Systems Integrating Syntax, Semantlies, Discourse

Y‘
Mew vory 14¢6

Recovering Implicit Information

RECOVERING IMPLICIT INFORMATION

Martha S. Palmer, Deborah A. Dahl, Rebecca J. Schiffman, Lynette Hirschman,
Marcia Linebarger, and John Dowding
Research and Development Division
*SDC - A Burroughs Company
P.O Box 517
Paoli, PA 19301 USA

ABSTRACT

This paper describes the SDC PUNDIT, (Prolog UNDerstands Integrated Text),

system for processing natural language messages.! PUNDIT, written in Prolog,
is a highly modular system consisting of distinct syntactic, semantic and prag-
matics components. Each component draws on one or more sets of data, includ-
ing a lexicon, a broad-coverage grammar of English, semantic verb decomposi-
tions, rules mapping between syntactic and semantic constituents, and a
domain model.

This paper discusses the communication between the syntactic, semantic
and pragmatic modules that is necessary for making implicit linguistic informa-
tion explicit. The key is letting syntax and semantics recognize missing linguis-
tic entities as implicit entities, so that they can be labelled as such, and refer-
ence resolution can be directed to find specific referents for the entities. In this
way the task of making implicit linguistic information explicit becomes a subset
of the tasks performed by reference resolution. The success of this approach is
dependent on marking missing syntactic constituents as elided and missing
semantic roles as ESSENTIAL so that reference resolution can know when to look
for referents.

1 This work is supported in part by DARPA uader contract N00O14-85-C-0012, administered by the Office of Na-
val Research. APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

February 13, 1987 -1-

#SDC is now Unisys Corporation

Recovering Implielit Information

‘ 1. Introduction

This paper describes the SDC PUNDIT? system for processing natural
language messages. PUNDIT, written in Prolog, is a highly modular system
consisting of distinct syntactic, semantic and pragmatics components. Each
component draws on one or more sets of data, including a lexicon, a broad-
coverage grammar of English, semantic verb decompositions, rules mapping
between syntactic and semantic constituents, and a domain model. PUNDIT
has been developed cooperatively with the NYU PROTEUS system (Prototype
Text Understanding System), These systems are funded by DARPA as part of
the work in natural language understanding for the Strategic Computing Bat-
tle Management Program. The PROTEUS/PUNDIT system will map Navy
CASREP’s (equipment casualty reports) into a database, which is accessed by
an expert system to determine overall fleet readiness. PUNDIT has also been

applied to the domain of computer maintenance reports, which is discussed
here.

The paper focuses on the interaction between the syntactic, semantic and
pragmatic modules that is required for the task of making implicit information
explicit. We have isolated two types of implicit entities: syntactic entities which
are missing syntactic constituents, and semantic entities which are unfilled
semantic roles. Some missing entities are optional, and can be ignored. Syntax

6 and semantics have to recognize the OBLIGATORY missing entities and then
mark them so that reference resolution knows to find specific referents for those
entities, thus making the implicit information explicit. Reference resolution uses
two different methods for filling the different types of entities which are also
used for general noun phrase reference problems. Implicit syntactic entities,
ELIDED CONSTITUENTS, are treated like pronouns, and implicit semantic enti-
ties, ESSENTIAL ROLES are treated like definite noun phrases. The pragmatic
module as currently implemented consists mainly of a reference resolution com-
ponent, which is sufficient for the pragmatic issues described in this paper. We
are in the process of adding a time module to handle time issues that have
arisen during the analysis of the Navy CASREPS.

2. The Syntactic Component

The syntactic component has three parts: the grammar, a parsing mechan-
ism to execute the grammar, and a lexicon. The grammar consists of context-
free BNF definitions (currently numbering approximately 80) and associated res-
trictions (approximately 35). The restrictions enforce context-sensitive well-
formedness constraints and, in some cases, apply optimization strategies to
prevent unnecessary structure-building. Each of these three parts is described
further below.

@ ! Prolog UNDderstands Integrated Text

February 13, 1987 -2

FORY ~mxmmm&mm:-mm¢mm&j

Resovering Implicit Information

3.1. Grammar Coverage

The grammar covers declarative sentences, questions, and sentence frag-
ments. The rules for fragments enable the grammar to parse the “telegraphic”
style characteristic of message traffic, such as disk drive down, and Aes select
lock. The present grammar parses sentence adjuncts, conjunction, relative
clauses, complex complement structures, and a wide variety of nominal struc-
tures, including compound nouns, nominalised verbs and embedded clauses.

The syntax produces a detailed surface structure parse of each sentence
~ (where "sentence” is understood to mean the string of words occurring between
two periods, whether a full sentence or a fragment). This surface structure is
converted into an "intermediate representation” which regularizes the syntactic
parse. That is, it eliminates surface structure detail not required for the seman-
- tic tasks of enforcing selectional restrictions and developing the final representa-
tion of the information content of the sentence. An important part of regulari-
sation involves mapping fragment structures onto canonical verb-subject-object
patterns, with missing elements flagged. For example, the tvo fragment con-
sists of a tensed verb + object as in Replaced spindle motor. Regulariza-
tion of this fragment, for example, maps the tvo syntactic structure into a -
verb+subject+object structure:

verb(replace),subject(X),0bsect(Y)

As shown here, verb becomes instantiated with the surface verb, e.g., replace
while the arguments of the subject and objeet terms are variables. The
semantic information derived from the noun phrase object spindle motor
becomes associated with Y. The absence of a surface subject constituent
results in a lack of semantic information pertaining to X. This lack causes the
semantic and pragmatic components to provide a semantic filler for the missing
subject using general pragmatic principles and specific domain knowledge.

32.3. Parsing

The grammar uses the Restriction Grammar parsing framework
[Hirschman1982, Hirschman1985|, which is a logic grammar with facilities for
writing and maintaining large grammars. Restriction Grammar is a descendent
of Sager's string grammar [Sager1981). It uses a top-down left-to-right parsing
strategy, augmented by dynamic rule pruning for efficient parsing [Dowd-
ing1986]. In addition, it uses a meta-grammatical approach to generate
definitions for a full range of co-ordinate conjunction structures [Hirsch-
man19886).

3.3. Lexical Processing

The lexicon contains several thousand entries related to the particular sub-
domain of equipment maintenance. It is a modified version of the LSP lexicon
with words classified as to part of speech and subcategorized in limited ways
(e.g., verbs are subcategorized for their complement types). It aiso handles

February 13, 1987 -8-

Recovering Implicit Information

0 multi-word idioms, dates, times and part numbers. The lexicon can be
expanded by means of an interactive lexical entry program.

The lexical processor reduces morphological variants to a single root form
which is stored with each entry. For example, the form Aes is transformed to
the root form Aeve in Has select lock. In addition, this facility is useful in
handling abbreviations: the term ewp is regularized to the multi-word expres-
sion waiting ‘for “pert. This expression in turn is regularised to the root form
wast “for “part which takes as a direct object a particular part or part number,
as in s ewp 2155-6147.

Multi-word expressions, which are typical of jargon in specialized domains,
are handled as single lexical items. This includes expressions such as disk drive
or select lock, whose meaning within a particular domain is often not readily
computed from its component parts. Handling such frozen expressions as
“idioms" reduces parse times and number of ambiguities.

Another feature of the lexical processing is the ease with which special
forms (such as part numbers or dates) can be handled. A special "forms gram-
mar”, written as a definite clause grammar|Pereiral980] can parse part
numbers, as in aewasting part £2155-6147, or complex date and time expres-
sions, as in disk drive up at 11/17-1236. During parsing, the forms grammar
performs a well-formedness check on these expressions and assigns them their

0 appropriate lexical category.

3. Sem.ntic-'

There are two separate components that perform semantic analysis, NOUN
PHRASE SEMANTICS and CLAUSE SEMANTICS. They are each called after parsing
the relevant syntactic structure to test semantic well-formedness while produc-
ing partial semantic representations. Clause semantics is based on Inference
Driven Semantic Analysis [Palmer1985| which decomposes verbs into component
meanings and fills their semantic roles with syntactic constituents. A
KNOWLEDGE BASE, the formalization of each domain into logical terms, SEMAN-
TIC PREDICATES, is essential for the effective application of Inference Driven
Semantic Analysis, and for the final production of a text representation. The
result of the semantic analysis is a set of PARTIALLY instantiated semantic
predicates which is similar to a frame representation. To produce this represen-
tation, the semantic components share access to a knowledge base, the DOMAIN
MODEL, that contains generic descriptions of the domain elements corresponding
to the lexical entries. The model includes a detailed representation of the types
of assemblies that these elements can occur in. The semantic components are
designed to work independently of the particular model, and rely on an inter-
face to ensure a well-defined interaction with the domain model. The domain

@ mode], noun phrase semantics and clause semantics are all explained in more
detail in the following three subsections. ‘

Pebruary 13, 1987 ol

A 1 (o fmmmm,uj

Regovering Implicit Informatien

$.1. Demaila Model

The domain currently being modelled by SDC is the Maintenance Report
domain. The texts being analysed are actual maintenance reports as they are
called into the Burroughs Telephone Tracking System by the field engineers and
typed in by the telephone operator. These reports give information about the
customer who has the problem, specific symptoms of the problem, any actions
take by the fleld engineer to try and correct the problem, and success or failure
of such actions. The goal of the text analysis is to automatically generate a
data base of maintenance information that can be used to correlate customers
to problems, problem types to machines, and so on.

The first step in building a domain model for maintenance reports is to
build a semantic net-like representation of the type of machine involved. The
machine in the example text given below is the B4700. The possible parts of a
B4700 and the associated properties of these parts can be represented by an isa
hierarchy and a haspart hierarchy. These hierarchies are built using four
basic predicates: system,isa,hasprop, haspart. For example the system
itself is indicated by system(b4700). The isa predicate associates TYPES
with components, such as isa(apindle “motor,motor). Properties are associ-
ated with components using the hasprop relationship, are are inherited by
anything of the same type. The main components of the system: epu,
power_supply, disk, printer, peripherals, etc.,, are indicated by
haspart relations, such as haspart(b4700,cpu),
baspart(b4700,power_supply), haspart(b4700,disk),.etc. These parts
are themselves divided into subparts which are also indicated by haspart rela-
_ tions, such as haspart(power_supply, converter).

This method of representation results in a general description of a com-
puter system. Specific machines represent INSTANCES of this general represen-
tation. When a particular report is being processed, id relations are created by
noun phrase semantics to associate the specific computer parts being mentioned
with the part descriptions from the general machine representation. So a par-
ticular B4700 would be indicated by predicates such as these:
id(b4700,system1), id(cpu,epul), id(power_supply,power_supplyl),
ete.

3.2. Noun phrase semantics

Noun phrase semantics is called by the parser during the parse of a
sentence, after each noun phrase has been parsed. It relies heavily on the
domain model for both determining semantic well-formedness and building par-
tial semantic representations of the noun phrases. For example, in the sen-
tence, field engineer replaced disk drive at 11/2/0800, the phrase disk drive
et 11/2/0800 is a syntactically acceptable noun phrase, (as in partici-
pents at the meeting). However, it is not semantically acceptable in that at
11/20/800 is intended to designate the time of the replacement, not a

FPebruary 13, 1987 -§-

Recovering Implielit Information

property of the disk drive. Noun phrase semantics will inform the parser
that the noun phrase is not semantically acceptable, and the parser can
then look for another parse. In order for this capability to be fully utilised,
however, an extensive set of domain-specific rules about semantic acceptability
is required. At present we have only the minimal set used for the development
of the basic mechanism. For example, in the case described here, st 11/2/0800
is excluded as a modifier for dssk drive by a rule that permits only the name of
a location as the object of &t in a prepositional phrase modifying a noun
phrase.

The second function of noun phrase semantics is to create a semantic
representation of the noun phrase, which will later be operated on by refer-
ence resolution. For example, the semantics for the dad disk drive would be
represented by the following Prolog clauses.

[id(disk " drive X),

bad(X),

def(X), that is, X was referred to with a full, definite noun phrase,
full_npe(X)] rather than a pronoun or indefinite noun phrase.

3.3. Clause iemmties

In order to produce the correct predicates and the correct instantiations,
the verb is first decomposed into a semantic predicate representation appropri-
ate for the domain. The arguments to the predicates constitute the SEMANTIC
ROLES of the verb, which are similar to cases. There are domain specific cri-
teria for selecting a range of semantic roles. In this domain the semantic roles
include: agent,instrument,theme, objectl,object2, symptom and
mod. Semantic roles can be filled either by a syntactic constituent supplied by
a mapping rule or by reference resolution, requiring close cooperation between
semantics and reference resolution. Certain semantic roles are categorized as
ESSENTIAL, so that pragmatics knows that they need to be filled if there is no
syntactic constituent available. The default categorization is NON-ESSENTIAL,
which does not require that the role be filled. Other semantic roles are categor-
ised as NON-SPECIFIC or SPECIFIC depending on whether or not the verb requires
a specific referent for that semantic role (see Section 4). The example given in
Section 5 illustrates the use of both a non-specific semantic role and an essen-
tial semantic role. This section explains the decompositions of the verbs
relevant to the example, and identifies the important semantic roles.

The decomposition of hAave is very domain specific.
have(time(Per)) <-
symptom(obje¢t1(O1),symptom(S),time(Per))

It indicates that a particular symptom is associated with a particular
object, as in "the disk drive has select lock." The objeetl semantic role

February 18, 1987 -8-

Reeovering Implicit Information

would be filled by the disk drive, the subject of the clause, and the symptom
semantic role would be filled by select lock, the object of the clause. The
time(Per) is always passed around, and is occasionally filled by a time
adjunct, as in the disk drive had select lock at 0800.

In addition to the mapping rules that are used to associate syntactic con-
stituents with semantic roles, there are selection restrictions associated with
each semantic role. The selection restrictions for have test whether or not the
filler of the objeetl role is allowed to have the type of symptom that fills the
symptom role. For example, only disk drives have select locks.

Mapping Rules

The decomposition of replace is also a very domain specific decomposition
that indicates that an agent can use an instrument to exchange two
objects.

replace(time(Per)) <-

cause(agent(A),
use(instrument(I),
exchange(object1(O1),object2(02),time(Per))))
The following mapping rule specifies that the agent can be indicated by the
subject of the clause.

agent(A) <- subject(A) / X

The mapping rules make use of intuitions about syntactic cues for indi-
cating semantic roles first embodied in the notion of case
[Fillmore1968, Palmer1981]. Some of these cues are quite general, while other
cues are very verb-specific. The mapping rules can take advantage of generali-
ties like "SUBJECT to AGENT" syntactic cues while still preserving context
sensitivities. This is accomplished by making the application of the mapping
rules "situation-specific" through the use of PREDICATE ENVIRONMENTS. The
previous rule is quite general and can be applied to every agent semantic role
in this domain. This is indicated by the X on the right hand side of the "/"
which refers to the predicate environment of the agent, i.e., anything. Other
rules, such as "WITH-PP to OBJECT?2,” are much less general, and can only
apply under a set of specific circumstances. The predicate environments for
an objeetl and object3 are specified more explicitly. An objeetl can
be the object of the sentence if it is contained in the semantic decomposition
of a verb that includes an agent and belongs to the repasr class of verbs. An
objeet3 can be indicated by a wsth prepositional phrase if it is contained in
the semantic decomposition of a replace verb:

object1(Partl) <- obj(Partl)/ cause(agent(A)Repair_event)

object2(Part2) <-
pp(with,Part2) /

February 13, 1987 -7-

Recovering Implicit Information

cause(agent(A),use(l,exchange(object1(O1),0bject2(Part2),T)))

Selection Restrictions

The selection restriction on an agent is that it must be a field engineer,
and an instrument must be a tool. The selection restrictions on the two
objects are more complicated, since they must be machine parts, have the same
type, and yet also be distinct objects. In addition, the first object must already
be associated with something else in a haspart relationship, in other words it
must already be included in an existing assembly. The opposite must be true of
the second object: it must not already be included in an assembly, so it must
not be associated with anything else in a haspart relationship.

There is also a pragmatic restriction associated with both objects that has
not been associated with any of the semantic roles mentioned previously. Both
objectl and object2 are essential semantic roles. Whether or not they are
mentioned explicitly in the sentence, they must be filled, preferably by an an
entity that has already been mentioned, but if not that, then entities will be
created to fill them [Palmer1983]. This is accomplished by making an explicit
call to reference resolution to find referents for essential semantic roles, in the
same way that reference resolution is called to find the referent of a noun
phrase. This is not done for non-essential roles, such as the agent and the
instrument in the same verb decomposition. If they are not mentioned they
are simply left unfilled. The imstrument is rarely mentioned, and the agent

could easily be left out, as in The disk drive was replaced at 0800.3 In other
domains, the agent might be classified as obligatory, and then it wold have to
be filled in.

There is another semantic role that has an important pragmatic restriction
on it in this example, the object3 semantic role in wait “for “part (awp).

idiomVerb(wait"for"part,time(Per)) <-
ordered(object1(O1),object2(02),time(Per))

The semantics of weit “for “part indicates that a particular type of part has
been ordered, and is expected to arrive. But it is not a specific entity that
might have already been mentioned. It is a more abstract object, which is indi-
cated by restricting it to being non-specific. This tells reference resolution that
although a syntactic constituent, preferably the object, can and should fill this
semantic role, and must be of type machine-part, that reference resolution
should not try to find a specific referent for it (see Section 4).

The last verb representation that is needed for the example is the represen-
tation of be.

be(time(Per)) <-

"Note that as elided subject is handled quite differently, as in repleced diek drive. Then the missing subject is

February 13, 1987 -8-

TS € Ol (o Calfa) € P P v, o oo Cu it s*, &
(A .‘l O m&‘,w DAYV A RV A, |

m

Recovering Implicit Information

‘ attribute(theme(T),mod(M),time(Per))

In this domain be is used to associate predicate adjectives or nominals with an
object, as in disk drive is wp or spindle motor is bad. The representation
merely indicates that a modifier is associated with an theme in an attribute
relationship. Noun phrase semantics will eventually produce the same represen-
tation for the bad spindle motor, although it does not yet.

4. Reference Resolution

Reference resolution is the component which keeps track of references to
entities in the discourse. It creates labels for entities when they are first
directly referred to, or when their existence is implied by the text, and recog-
nizes subsequent references to them. Reference resolution is called from clause
semantics when clause semantics is ready to instantiate a semantic role. It is
also called from pragmatic restrictions when they specify a referent whose
existence is entailed by the meaning of a verb.

The system currently covers many cases of singular and plural noun
phrases, pronouns, ome- anaphora, nominalizations, and non-specific noun
0 phrases; reference resolution also handles adjectives, prepositional phrases
and possessive pronouns modifying noun phrases. Noun phrases with and
without determiners are accepted. Dates, part numbers, and proper names
are handled as special cases. Not yet bhandled are compound nouns,
quantified noun phrases, conjoined noun phrases, relative clauses, and pos-
sessive nouns.

The general reference resolution mechanism is described in detail in [Dahl19886).
In this paper the focus will be on the interaction between reference resolution
and clause semantics. The next two sections will discuss how reference resolu-
tion is affected by the different types of semantic roles.

4.1. Obligatory Constituents and Essential Semantic Roles

A slot for a syntactically obligatory constituent such as the subject appears
in the intermediate representation whether or not a subject is overtly present in
the sentence. It is possible to have such a slot because the absence of a subject
is a syntactic fact, and is recognized by the parser. Clause semantics calls
reference resolution for such an implicit constituent in the same way that it
calls reference resolution for explicit constituents. Reference resolution treats
elided noun phrases exactly as it treats pronouns, that is by instantiating them

@ to the first member of a list of potential pronominal referents, the FocusList.

sssumed to f1] the agent role, asd aa appropriate referent is found by reference resolution.

February 13, 1987 -9-

Mﬁmm\m:;w;w;ﬁm;f:-r.y:f:‘-j

Recovering Implicit Information

The general treatment of pronouns resembles that of{Sidner1979|, although
there are some important differences, which are discussed in detail in
[Dabl1986]. The hypothesis that elided noun phrases can be treated in much
the same way as pronouns is consistent with previous claims by ({Gundel19080],
and [Kameyamal985], that in languages which regularly allow sero-np’s, the
sero corresponds to the focus, If these claims are correct, it is not surprising
that in a sublanguage that allows sero-np's, the gero should also correspond to
the focus.

After control returns to clause semantics from reference resolution, seman-
tics checks the selectional restrictions for that referent in that semantic role of
that verb. If the selectional restrictions fail, backtracking into reference resolu-
tion occurs, and the next candidate on the FocusList is instantiated as the
referent. This procedure continues until a referent satisfying the selectional res-
trictions is found. For example, in Disk drive is down. Has select lock, the
system instantiates the disk drive, which at this point is the first member of the
FocusList, as the objectl of Aave:

[event39]
have(time(timel))
symptom(objectl([drive10]),
symptom([lock17)),
time(timel))

Essential roles might also not be expressed in the sentence, but their
absence cannot be recognised by the parser, since they can be expressed by syn-
tactically optional constituents. For example, in the field engineer replaced
the motor., the new replacement motor is not mentioned, although in this
domain it is classified as semantically essential. With verbs like replece, the
type of the replacement, motor, in this case, is known because it has to be the
same type as the replaced object. Reference resolution for these roles is called
by pragmatic rules which apply when there is no overt syntactic constituent to
fill a semantic role. Reference resolution treats these referents as if they were
full noun phrases without determiners. That is, it searches through the context
for a previously mentioned entity of the appropriate type, and if it doesn’t find
one, it creates a new discourse entity. The motivation for treating these as full
noun phrases is simply that there is no reason to expect them to be in focus, as
there is for elided noun phrases.

4.3. Noun Phrases in Non-Specific Contexts

Indefinite noun phrases in contexts like the field engineer ordered e disk
drive are generally associated with two readings. In the specific reading the
disk drive ordered is a particular disk drive, say, the one sitting on a certain
shelf in the warehouse. In the non-specific reading, which is more likely in this

February 13, 1987 -10-

Recovering Implieit Information

sentence, no particular disk drive is meant; any disk drive of the appropriate
type will do. Handling noun phrases in these contexts requires careful integra-
tion of the interaction between semantics and reference resolution, because
semantics knows about the verbs that create non-specific contexts, and refer-
ence resolution knows what to do with noun phrases in these contexts. For these
verbs a constraint is associated with the semantics rule for the semantic role

object3 which states that the filler for the object3 must be non-specific.*
This constraint is passed to reference resolution, which represents a non-specific

noun phrase as having a variable in the place of the pointer, for example,
id(motor,X).

Non-specific semantic roles can be illustrated using the objeet2 semantic
role in wast“for “part (awp). The part that is being awasted is non-specific,
i.e., can be any part of the appropriate type. This tells reference resolution not
to find a specific referent, so the referent argument of the id relationship is left
as an uninstantiated variable. The analysis of fe is awp spindle motor would
fill the objeetl semantic role with fel from id(fe,fel), and the object2
semantic role with X from id(spindle*motor,X), as in
ordered(objectl(fel),object2(X)). If the spindle motor is referred to later
on in a relationship where it must become specific, then reference resolution can
instantiate the variable with an appropriate referent such as spindle*motors
(See Section 5.8).

6. Sample Text: A sentence-by-sentence analysis

The sample text given below is a slightly emended version of a mainte-
nance report. The parenthetical phrases have been inserted. The following
summary of an interactive session with PUNDIT illustrates the mechanisms by
which the syntactic, semantic and pragmatic components interact to produce a
representation of the text.

1. disk drive {was) down (at) 11/18-2305.
2. (has) select lock.

3. spindle motor is bad.

4. (is) awp spindle motor.

5. (disk drive was) up (at) 11/17-1236.

8. replaced spindle motor.

6.1. Sentence 1: Disk drive was down at 11/18-2305.

As explained in Section 3.2 above, the noun phrase disk drive leads to the
creation of an id of the form: id(disk“drive,[drivel]) Because dates and
names generally refer to unique entities rather than to exemplars of a general
type, their ids do not contain a type argument: date([11/18-

¢ The speciic reading is not available at present, since it is considered to be unlikely to occur in this domain.

February 132, 1987 -11-

’-cv:"-f-gnyn‘:t'i:\:s:;:;ﬁtgcg t‘q:‘:tgﬂﬁmj

Recovering Implicit Information

1100]),name([paoli]).

The interpretation of the first sentence of the report depends on the
semantic rules for the predicate be. The rules for this predicate specify three
semantic roles, an theme to whom or which is attributed a modifier, and the
time. After a mapping rule in the semantic component of the system instan-
tiates the theme semantic role with the sentence subject, disk drsve, the refer-
ence resolution component attempts to identify this referent. Because dssk drive
is in the first sentence of the discourse, no prior references to this entity can be
found. Further, this entity is not presupposed by any prior linguistic expres-
sions. However, in the maintenance domain, when a disk drive is referred to it
can be assumed to be part of a B3700 computer system. As the system tries to
resolve the reference of the noun phrase dssk drive by looking for previously
mentioned disk drives, it finds that the mention of a disk drive presupposes the
existence of a system. Since no system has been referred to, a pointer to a sys-
tem is created at the same time that a pointer to the disk drive is created.

Both entities are now available for future reference. In like fashion, the
propositional content of a complete sentence is also made available for future
reference. The entities corresponding to propositions are given event labels;
thus eventl is the pointer to the first proposition. The newly created disk
drive, system and event entities now appear in the discourse information in the
form of a list along with the date.

id(event,[eventl])

id(disk “drive,[drivel])

date([11/18-2305])

id(system,[system1])
Note however, that only those entities which have been explicitly mentioned
appear in the FocusList:

FocusList: [[eventl],[drivel],[11/18-2305]]

The propositional entity appears at the head of the focus list followed by the
entities mentioned in full noun phrases.®

In addition to the representation of the new event, the pragmatic informa-
tion about the developing discourse now includes information about part-whole
relationships, namely that drivel is a part which is contained in systeml.

Part-Whole Relationships:
haspart([systeml],[drivel])

The complete representation of eventl, appearing in the event list in the form
shown below, indicates that at the time given in the prepositional phrase at
11/16-2305 there is a state of affairs denoted as eventl in which a particular

¥ The order in which full acun phrase mentions are added to the PocuaList depends on their syntactic function
and linear order. Por full noun phrases, direct object mentions precede subject mentions followed by all other men-
tions givea in the order in which they occur in the sentence. See [Dahi1086], for details.

Pebruary 13, 18987 -12-

Recovering Implicit Information

disk drive, i.e., drivel, can be described as down.

[eventl]
be(time([11/18-3305]))
attribute(theme([drivel]),
mod(down),time([11/168-3305)))

5.2. Sentence 3: Has select lock.

The second sentence of the input text is a sentence fragment and is recog-
nized as such by the parser. Currently, the only type of fragment which can be
parsed can have a missing subject but must have a complete verb phrase.
Before semantic analysis, the output of the parse contains, among other things,
the following constituent list: [subj([X]),obj([Y])]. That is, the syntactic
component represents the arguments of the verb as variables. The fact that
there was no overt subject can be recognized by the absence of semantic infor-
mation associated with X, as discussed in Section 3.2. The semantics for the

maintenance domain sublanguage specifies that the thematic role instantiated
" by the direct object of the verb #o have must be a symptom of the entity
referred to by the subject. Reference resolution treats an empty subject much
like a pronominal reference, that is, it proposes the first element in the
FocusList as a possible referent. The first proposed referent, eventl is
rejected by the semantic selectional constraints associated with the verb Asve,
which, for this domain, require the role mapped onto the subject to be classified
as a machine part and the role mapped onto the direct object to be classified as
a symptom. Since the next item in the FoeusList, drivel, is a machine part,
it passes the selectional constraint and becomes matched with the empty sub-
ject of has select lock. Since no select lock has been mentioned previously, the
system creates one. For the sentence as a whole then, two entities are newly
created: the select lock ([loek1]) and the new propositional event ([event2]):
id(event,[event3]), id(select“lock,[lock1]). The fcllowing representation
is added to the event list, and the FocusList and Ids are updated appropri-
ately.®

[event2]

have(time(timel))
symptom(objectl([drivel]),
symptom([lockl]),time(timel))

5.3. Sentence 3: Motor is bad.

In the third sentence of the sample text, a new entity is mentioned, motor.
Like disk drive from sentence 1, motor is a dependent entity. However, the
entity it presupposes is not a computer system, but rather, a disk drive. The

® This version oaly deals with explicit meations of time, s0 for this sentence the time argument is Slled ia with a
gessym that stande for an uaknowa time period. The curreat version of PUNDIT uses verd tense aad verb somaatics

Pebruary 13, 1987 -18-

Recovering Implicit Information

newly mentioned motor becomes associated with the previously mentioned disk
drive.

After processing this sentence, the new entity motor8 is added to the
FoecusList along with the new proposition event3. Now the discourse infor-
mation about part-whole relationships contains information about both depen-

dent entities, namely that motorl is a part of drivel and that drivel is a
part of systeml.

haspart([drivel],[motorl])
haspart([system1l],[drivel])

§.4. Sentence 4: is awp spindle motor.

Awp is an abbreviation for an idiom specific to this domain, awasting part.
It has two semantic roles, one of which maps to the sentence subject. The
second maps to the direct object, which in this case is the non-specific spindle
motor as explained in Section 4.2. The selectional restriction that the first
semantic role of awp be an engineer causes the reference resolution component
to create a new engineer entity because no engineer has been mentioned previ-
ously. After processing this sentence, the list of available entities has been
incremented by three:

i e id(event,[event4])

id(part,[_2317))
id(fleld “engineer,[engineerl))

The new event is represented as follows:

event4 :

| {diomvlerb(wait‘for‘put,time(tlmez))

wait(object1([engineerl]),
object3([_3317]),time(time2))

5.5. Sentence §: disk drive was up at 11/17-0800 In the emended
version of sentence 5 the disk drive is presumed to be the same drive referred
to previously, that is, drivel. The semantic analysis of sentence 5 is very
similar to that of sentence 1. As shown in the following event representation,
the predicate expressed by the modifier up is attributed to the theme drivel
at the specified time.

[event§]
be(time([11/17-1338]))
attribute(theme([drivel]),
mod(up),time([11/17-13386)))

te derive implicit time arguments.

Pebruary 12, 1987 -14-

X Mﬁﬂ%ﬂﬁﬂﬁﬁﬁﬁﬁﬁ&j

Recovering Implicit Information

§.6. Sentence 6: Replaced motor.

The sixth sentence is another fragment consisting of a verb phrase with no
subject. As before, reference resolution tries to find a referent in the current
FocusList which is a semantically acceptable subject given the thematic
structure of the verb and the domain-specific selectional restrictions associated
with them. The thematic structure of the verb replace includes an agent role
to be mapped onto the sentence subject. The only agent in the maintenance
domain is a field engineer. Reference resolution finds the previously mentioned
engineer created for awp spindle motor, [engineerl]. It does not find an
instrument, and since this is not an essential role, this is not a problem. It
simply fills it in with another gensym that stands for an unknown filler, unk-
nownl.

When looking for the referent of a spindle motor to fill the objeetl role, it
first finds the non-specific spindle motor also mentioned in the awp spsindle
motor sentence, and a specific referent is found for it. However, this fails the
selection restrictions, since although it is a machine part, it is not already asso-
ciated with an assembly, so backtracking occurs and the referent instantiation
is undone. The next spindle motor on the FocusList is the one from spindle °
motor is bad, ([motorl]). This does pass the selection restrictions since it par-
ticipates in a haspart relationship.

The last semantic role to be filled is the object3 role. Now there is a res-
" triction saying this role must be filled by a machine part of the same type as
objectl, which is not already included in an assembly, viz., the non-specific
spindle motor. Reference resolution finds a new referent for it, which automati-
cally instantiates the variable in the id term as well. The representation can
be decomposed further into the two semantic predicates missing and
inecluded, which indicate the current status of the parts with respect to any
existing assemblies. The haspart relationships are updated, with the old
haspart relationship for [motorl] being removed, and a new haspart rela-
tionship for [motor3] being added. The final representation of the text will be
passed through a filter so that it can be suitably modified for inclusion in a
database.

FPebruary 13, 1987 -16-

Recovering Implieit Information

[events]

replace(time(times))

cause(agent([engineerl)),

use(instrument(unknownl),
exchange(object1([motorl]),

object2([motori}),
time(time3))))

included(object2([motor3]),time(time3))

missing(objectl([motorl)),time(time3))

Part-Whole Relationships:

haspart([drivel],[motor3])
" haspart([system1],[drivel])

8. Conclusion

This paper has discussed the communication between syntactic, semantic and
pragmatic modules that is necessary for making implicit linguistic information
explicit. The key is letting syntax and semantics recognize missing linguistic
entities as implicit entities, s0 that they can be marked as such, and reference
" resolution can be directed to find specific referents for the entities. Implicit enti-
ties may be either empty syntactic constituents in sentence fragments or
unfilled semantic roles associated with domain-specific verb decompositions. In
this way the task of making implicit information explicit becomes a subset of
the tasks performed by reference resolution. The success of this approach is
dependent on the use of syntactic and semantic categorizations such as ELLIDED
and ESSENTIAL which are meaningful to reference resolution, and which can
guide reference resolution’s decision making process.

ACKNOWLEDGEMENTS
We would like to thank Bonnie Webber for her very helpful suggestions on
exemplifying semantics /pragmatics cooperation.

February 13, 1987 -18-

Recovering Implicit Information

[Dabi1986)
Deborah A. Dahl, Focusing and Reference Resolution in PUNDIT,
Presented at AAAI, Philadelphia, PA, 1986.

[Dowding19086]
John Dowding and Lynette Hirschman, Dynamic Translation for Rule

Pruning in Restriction Grammar, submitted to AAAI-86, Philadelphia,
1988.

[Fillmore1968]
C. J. Fillmore, The Case for Case. In Unisversals sn Linguistic Theory,
E. Bach and R. T. Harms (ed.), Holt, Rinehart, and Winston, New
York, 1968.
[Gundel1980)
Jeanette K. Gundel, Zero-NP Anaphora in Russian. Chicago Linguis-
tic Society Parasession on Pronouns and Anaphora, 1980.
[Hirschman1982]
L. Hirschman and K. Puder, Restriction Grammar in Prolog. In Proec.
of the First International Logic Programming Conference, M. Van
® Caneghem (ed.), Association pour la Diffusion et le Developpement de
Prolog, Marseilles, 1982, pp. 85-90.
[Hirschman1985]
L. Hirschman and K. Puder, Restriction Grammar: A Prolog
Implementation. In Logic Programming and its Applications, D.HD.
Warren and M. VanCaneghem (ed.), 1985.
[Hirschman1986]
L. Hirschman, Conjunction in Meta-Restriction Grammar. J. of Logse
Programming, 1986.
(Kameyama1985]
Megumi Kameyama, Zero Anaphora: The Case of Japanese, Ph.D.
thesis, Stanford University, 1985.
[Palmer1983]
M. Palmer, Inference Driven Semantic Analysis. In Proceedings of the
National Conference on Artificial Intelligence (AAAI-83), Wash-
ington, D.C., 1983.
[Palmer1981]
Martha S. Palmer, A Case for Rule Driven Semantic Processing. Proe. ;
of the 19th ACL Conference, June, 1981. f

L4

Pebruary 13, 1987 -17-

< RN
- z’,~'.,“"’ % El

ROSDROSBANA OSSO IR ASKT) SEXBRIOR P AT K P a P 5 % P AT NN
P N Ot O R R A DN, DO O SO0 DU O A O OO K ot - SO 0 AR VLA '...‘\..' AN,

N AN L)

Recovering Implicit Information

[Palmer1985)
Martha S. Palmer, Driving Semantics for a Limited Domain, Ph.D.
thesis, University of Edinburgh, 1985.

[Pereira1980]
F. C. N. Pereira and D. H. D. Warren, Definite Clause Grammars for
Language Analysis — A Survey of the Formalism and a Comparison
with Augmented Transition Networks. Artificiel Intelligence 18, 1980,
PpP. 231-278.

[Sager1981]
N. Sager, Neturel Languege Informetion Processing: A Computer
Gremmar of English end Its Applications. Addison-Wesley, Reading,
Mass., 1981.

[Sidner1979]
Candace Lee Sidner, Towards a Computational Theory of Definite Ana-

phora Comprehension in English Discourse, MIT-AI TR-537, Cam-
bridge, MA, 1979.

Pebruary 132, 1987 -18-

‘ APPENDIX C

Focusing and Reference Resolution in PUNDIT

This paper by Deborah Dahl was presented at AAAI-88 in Philadelphia,
August, 1986. It describes the syntactic focusing algorithm used in PUNDIT,
and its uses in reference resolution for pronouns, elided noun phrases, one-
anaphora, and implicit associates.

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

FOCUSING AND REFERENCE RESOLUTION IN PUNDIT

Deborah A. Dahl
Research and Development Division *
o S SDC — A Burroughs Company
PO Box 517
Paoli, PA 19301

(Presented at AAAI-86, Ahgust 11-15, 1986, Philadelphia, PA)

* Now Paoli Research Center, Unisys

May 3, 1987 1=

ABSTRACT

This paper describes the use of focusing in the PUNDIT text processing sys-
tem.* Focusing, as discussed by [Sidner1979] (as well as the closely related con-
cept of centering, as discussed by [Grosz1983|), provides a powerful tool for
pronoun resolution. However, its range of application is actually much more
general, in that it can be used for several problems in reference resolution.
Specifically, in the PUNDIT system, focusing is used for one-anaphora, elided
noun phrases, and certain types of definite and indefinite noun phrases, in addi-
tion to its use for pronouns. Another important feature in the PUNDIT refer-
ence resolution system is that the focusing algorithm is based on syntactic con-
stituents, rather than on thematic roles, as in Sidner's system. This feature is
based on considerations arising from the extension of focusing to cover one-
anaphora. These considerations make syntactic focusing a more accurate pred-
ictor of the interpretation of one-anaphoric noun phrases without decreasing
the accuracy for definite pronouns.

* This work i sup&orted in part by DARPA under contract N00014-85-C-
0012 a.dxg.m’ istere blY.I e Office of Naval Research. APPROVED FOR PUBLIC
RELEASE, DISTRIBUTION UNLIMITED.

May 3, 1987 -2-

I BACKGROUND
A. FOCUSING

Linguistically reduced forms, such as pronouns, are used to refer to the
entity or entities with which a discourse is most centrally concerned. Thus,
keeping track of this entity, (the topic of [Gundell1974), the focus of
[Sidner1979}, and the backward-looking center of [Grosz1983, Kameyama1985])
is clearly of value in the interpretation of pronouns. However, while 'pronoun
resolution’ is generally presented as a problem in computational linguistics to
which focusing can provide an answer (See for example, the discussion in
[Hirst1981]), it is useful to consider focusing as a problem in its own right. By
looking at focusing from this perspective, it can be seen that its applications are
more general than in simply finding referents for pronouns. Focusing can in fact
play a role in the interpretation of several types of noun phrases. In support of
this position, I will show how focus is used in the PUNDIT (Prolog UNDer-
stander of Integrated Text) text processing system to interpret a variety of
forms of anaphoric reference; in particular, pronouns, elided noun phrases,
one-anaphora, and context-dependent full noun phrase references.

A second position advocated in this paper is that surface syntactic form
can provide an accurate guide to determining what entities are in focus. Unlike
previous focusing algorithms, such as that of [Sidner1979], which used thematic
roles (for example, theme, agent, instrument as described in [Gruber1976]),
the algorithm used in this system relies on surface syntactic structure to deter-
mine which entities are expected to be in focus. The extension of the focusing
mechanism to handle one-anaphora has provided the major motivation for the
choice of syntactic focusing.

The focusing mechanism in this system consists of two parts—a
FocusList, which is a list of entities in the order in which they are to be con-
sidered as foci, and a focusing algorithm, which orders the FocusLiast. The
implementation is discussed in detail in Section 5.

" B. OVERVIEW OF THE PUNDIT SYSTEM

I will begin with a brief overview of the PUNDIT system, currently under
development at SDC. PUNDIT is written in Quintus Prolog 1.5. It is designed
to integrate syntax, semantics, and discourse knowledge in text processing for
limited domains. The system is implemented as a set of distinct interacting
components which communicate with each other in clearly specified and res-
tricted ways.

The syntactic component, Restriction
Grammar,[Hirschman1982, Hirschman1985), performs a top-down parse by inter-
preting a set of context-free BNF definitions and enforcing context-sensitive res-
trictions associated with the BNF definitions. The grammar is modelled after
that developed by the NYU Linguistic String Project [Sager1981).

May 3, 1987 -3-

®

After parsing, the semantic interpreter is called. This interpreter is based
on Palmer’s Inference Driven Semantic Analysis system, [Palmer1985], which
decomposes verbs into their component meanings and fills their thematic roles.
In the process of filling a thematic role the semantic analyzer calls noun phrase
analysis on a specific syntactic constituent in order to find a referent to fill the
role. Reference resolution instantiates the referent.

Domain-specific information is available in the knowledge base. The
knowledge base is implemented as a semantic net containing a part-whole
hierarchy and an isa hierarchy of the components and entities in the applica-
tion domain. The current domain is that of reports of computer equipment
failures. The system is being ported to reports of air compressor failures.

Following the semantic analysis, a discourse component is called which
updates the discourse representation to include the information from the
current sentence and which runs the focusing algorithm.

II USES OF FOCUSING

Focusing is used in four places in PUNDIT -- for definite pronouns, elided
noun phrases, one-anaphora, and implicit associates.

As stated above, reference resolution is called by the semantic interpreter
when it is filling a thematic role. Reference resolution proposes a referent for
the constituent associated with that role. For example, if the verb is replace
and the semantic interpreter is filling the role of agent, reference resolution
would be called for the surface syntactic subject. After a proposed referent is
chosen for the subject, any specific selectional restrictions on the agent of
replace (such as the constraint that the agent has to be a human being) are
checked. If the proposed referent fails selection, backtracking into reference
resolution occurs and another referent is selected. Cooperation between refer-
ence resolution and the semantic interpreter is discussed in detail in [Pal-
mer1986]. The semantic interpreter itself is discussed in [Palmer1985].

A. PRONOUNS AND ELIDED NOUN PHRASES

Pronoun resolution is done by instantiating the referent of the pronoun to
the first member of the FocusList unless the instantiation would violate syn-
tactic constraints on coreferentiality.* (As noted above, if the proposed referent
fails selection, backtracking occurs, and another referent is chosen.)

The reference resolution situation in the maintenance texts however, is
complicated by the fact that there are very few overt pronouns. Rather, in

* The syntactlc constraints on coreferentiality currently used by the system
are very SImF the direct object is reflexive it must be instantiated to the
same re feren a.s the sub_;ect Otherwise it must be a different referent. Obwous-
ly, as the sys m is extended to cover sentences with more complex structures, a
n}ore sophisticated treatment of syntactic constraints on coin exxnﬁ using some

the insights of [Reinhart1976), and TChomskywsn] will be require

May 32, 1987 -4-

e e N M e T W e S

-~

o contexts where a noun phrase would be expected, there is often elision, or a
zero-np as in Won’t power up and Has not fasled since Hill’s arrival. Zeroes
are handled as if they were pronouns. That is, they are assumed to refer to the
focus. The hypothesis that elided noun phrases can be treated in the same way
as pronouns is consistent with previous claims in [Gundel1980] and
[Kameyama1985] that in languages such as Russian and Japanese, which regu-
larly allow zero-np’s, the zero corresponds to the focus. If these claims are
correct, it is not surprising that in a sublanguage like that found in the mainte- !
nance texts, which also allows zero-np's, the zero should correspond to the
focus.*

B. IMPLICIT ASSOCIATES

Focusing is also used in the processing of certain full noun phrases, both ;
definite and indefinite, which involve smplicit associates. The term implicit '
associates refers to the relationship between a disk drive and the motor in 3
examples like The field engineer installed a disk drive. The motor failed. It '
is natural for a human reader to infer that the motor is part of the disk drive. -
In order to capture this intuition, it is necessary for the system to relate the
motor to the disk drive of which it is part. Relationships of this kind have been
extensively discussed in the literature on definite reference. For example, impli-
cit associates correspond to inferrable entities described by [Princel981], the

é associated use definites of [Hawkins1978|, and the associated type of implicit
backwards specification discussed by [Sidner1979]. Sidner suggests that implicit
associates should be found among the entities in focus. Thus, when the system
encounters a definite noun phrase mentioned for the first time, it examines the |,
members of the FocusList to determine if one of them is a possible associate
of the current noun phrase. The specific association relationships (such as
part-whole, object-property, and so on) are defined in the knowledge base.

.

PRI ™

-]

g -

XX

This approach is also used in the processing of certain indefinite noun
phrases. In every domain, there are certain types of entities which can be
classified as dependent. By this is meant an entity which is not typically men- ¢
tioned on its own, but which is referred to in connection with another entity, on
which it is dependent. In the maintenance domain, for example, parts such as
keyboards, and printed circuit boards are dependent, since they are normally 3
mentioned with reference to something else, such as a disk drive, or printer.* In »

-

. * Another kind of pronoun (or zero) also occurs in the maintenance texts,
which is not associated with the local focus, but is concerned with glooal as-
pects of the text. For eg:amiple., the field engineer is a default agent in the ,
maintenance domain, as in Ths problem 13 in head select area. This is |
handled by defining default elided referents for the domain. The referent is in- .
srtantnatl,‘ehtto one of these if no suitable candidate can be found in the v

ocus .

* There are exceptions to this generalization. For example, in a sentence
like field engineer ordered motor, the motor on order is not part of anything
m fxlzs.ihuet . In lPUtNhDI'%' thtesef cases ax:, .asauzned to gepend on the yﬁerb méaanifng.
ample, the object of ordered is categorized as non-specific, and refer-
ence re::lutign is not cg. led. See [Palmer1986 gt'or details. P

C AR IS

May 2, 1987 -B-

)

R T 1 e Ty o g B S N TR A WL R RTITRY

&

l,"' o, l'..', l

an example like The system is down. The field engsneer replaced a bad
printed circust board, it seems clear that a relationship between the printed
circuit board and the system should be represented. These are treated in the
same way as the definites discussed above.

C. ONE-ANAPHORA

PUNDIT extends focusing to the analysis of one-anaphora following
[Dahl1984], which claims that focus is central to the interpretation of one-
anaphora. Specifically, the referent of a one-anaphoric noun phrase (e.g., the
blue one, some large ones) is claimed to be a member or members of a set
which is the focus of the current clause. For example, in Installed two disk
drives. One fasled, the set of two disk drives is assumed to be the focus of One
fasled, and the disk drive that failed is a member of that set. This analysis can
be contrasted with that of [Halliday1976], which treats ome-anaphora as a sur-
face syntactic phenomenon, completely distinct from reference. It is more con-
sistent with the theoretical discussions of [Hankamer1976], and [Webber1983].
These analyses advocate a discourse-pragmatic treatment for both one-
anaphora and definite pronouns.* The main computational advantage of treat-
ing one-anaphora as a discourse problem is that the basic anaphora mechanism
then requires little modification in order to handle one-anaphora. In contrast,
an implementation following the account of Halliday and Hasan would be much
more complex and specific to one-anaphora.

The process of reference resolution for one-anaphora occurs in two stages.
The first stage is resolution of the anaphor, one, and this is the stage that
involves focusing. When the system analyzes the head noun one, it instantiates
it with the category of the first set in the FocusList (disk drive in this exam-
ple).** In other words, the referent of the noun phrase must be a member of the
previously mentioned set of disk drives. The second stage of reference resolu-
tion for one-anaphora assigns a specific disk drive as the referent of the entire
noun phrase, usi~g the same procedures that would be used for a full noun
phrase, @ disk drive.

The extension of the system to one-anaphora provides the clearest motiva-
tion for the choice of a syntactic focus in PUNDIT. Before I discuss the kinds of
examples which support this approach, I will briefly describe the relevant part
of the focusing algorithm based on thematic roles which is proposed
by(Sidner1979]. After each sentence, the focusing algorithm orders the elements
in the sentence in the order in which they are to be considered as potential foci
in the next sentence. Sidner's ordering and that of PUNDIT are compared in

* Webber’s analysis in [Webber1978|, is more syntactically based than
[Webber19837
proposing an approach similar to Halliday and Hasan's.
* Currently the onl¥ sets in the FocusLlst are those wh ch were e phctl
entioned owever, as goxn ed out T
WV bber1983, Dah11984‘1 other sets besides those explictl ly mentxoned are avan -
able for anaphoric reference. These have not yet been added to the system.

May 2, 1987 : -8-

A A Gt

VAR ’4‘«4. L0 o BT A X

(3a MM A L)

.......

.....

o

Figure 1.

The feature of one-anaphora which motivates the syntactic algorithm is
that the availability of certain noun phrases as antecedents for one-anaphora is
affected by surface word order variations which change syntactic relations, but
which do not affect thematic roles. If thematic roles are crucial for focusing,
then this pattern would not be observed.

Consider the following examples:

(1) A: I'd like to plug in this lamp, but the bookcases are blocking the electri-
cal outlets.

B: Well, can we move one?

(2) A: I'd like to plug in this lamp, but the electrical outlets are blocked by
the bookcases.

B: Well, can we move one?

In both (1) and (2) the electrical outlets are the theme, which means that
in a thematic-role based approach, the outlets represent the expected focus in
both sentences. However, only in (1), do informants report an impression that
B is talking about moving the electrical outlets. This indicates that the
expected focus following (1) A is the outlets, while it is the bookcases in (1) B.*

Sidner PUNDIT
Theme Sentence
Other thematic roles Direct Object
Agent Subject
Verb Phrase Objects of

Prepontlonal
Phrases

Figure 1: Comparison of Potential Focus
Ordering in Sidner’s System and PUNDIT

* In the case of (1), the expected focus is eventually re%ected on the basis of
world knowledge about what is likely to_be movable, focusing is only in-
tended to determine the order in which dj scourse entxtles are considered as re-
ferents, not to determine which referent is actual ly correct The referent pro-
posed by focusing must always be confirmed by world knowledge.

May 2, 1987 -7-

. Similar examples using definite pronouns do not seem to exhibit the same
effect. In (3) and (4), they seems to be ambiguous, until world knowledge is
brought in. Thus, in order to handle definite pronouns alone, either algorithm
would be adequate.

(3) A: I'd like to plug in this lamp, but the bookcases are blocking the electri-
cal outlets.

B: Well, can we move them?

(4) A: I'd like to plug in this lamp, but the electrical outlets are blocked by
the bookcases.

B: Well, can we move them?

Another example with one-anaphora can be seen in (5) and (8). In (5) but
not in (8), the initial impression seems to be that a bug has lost its leaves. As
in (1) and (2), however, the thematic roles are the same, so a thematic-role-
based algorithm would predict no difference between the sentences.

(5) The plants are swarming with the bugs. One’s already lost all its leaves.
(8) The bugs are swarming over the plants. One’s already lost all its leaves.

In addition to theoretical considerations, there are a number of practical
e advantages to defining focus on constituents rather than on thematic roles. For
example, constituents can often be found more reliably than thematic roles. In
addition, thematic roles have to be defined individually for each verb.* Further-
more, since thematic roles for verbs can vary across domains, defining focus on
syntax makes it less domain dependent, and hence more portable.

T MPLEMENTATION
A. THE FOCUSLIST AND CURRENTCONTEXT

The data structures that retain information from sentence to sentence in
the PUNDIT system are the FocusList and the CurrentContext. The
FocusList is a list of all the discourse entities which are eligible to be con-
sidered as foci, listed in the order in which they are to be considered. For exam-
ple, after a sentence like The field engineer replaced the disk drive, the fol-
lowing FoeusList would be created.

[[eventl],[drivel],[engineerl]]

The members of the FocusList are unique identifiers that have been assigned

to the three discourse entities — the disk drive, the fleld engineer, and the state

of affairs of the field engineer's replacement of the disk drive. The

CurrentContext contains the information that has been conveyed by the

discourse so far. After the example above, the CurrentContext would con-
@ tain three types of information: :

* Of course, so%e generalizations can be made about how arguments map
to thematic roles. However, they are no more than guidelines for finding the

May 3, 1987 8-

LR T N T £ T TN R A M A N vl

(1)
Discourse id’s, which represent classifications of entities. For example,
id(fleld “engineer,[engineerl]) means that [engineerl] is a a field
engineer. *

(2) Facts about part-whole relationships (hasparts).

(3) Representations of the events in the discourse. For example, if the event is
that of a disk drive having been replaced, the representation consists of a
unique identifier ([eventl]), the surface verb (replace(time(_))), and
the decomposition of the verb with its (known) arguments instantiated.
The thematic roles involved are objeetl, the replaced disk drive,
objeet2, the replacement disk drive, time and instrument which are
uninstantiated, and agent, the field engineer. (See[Palmer1986|, for
details of this representation). Figure 2 illustrates how the CurrentCon-
text looks after the discourse-initial sentence, The field engineer
replaced the disk drive.

B. THE FOCUSING ALGORITHM

The focusing algorithm used in this system resembles that of [Sidner1979),
although it does not use the actor focus and uses surface syntax rather than
thematic roles, as discussed above. It is illustrated in Figure 3.

IV SUMMARY

This paper has described the reference resolution component of PUNDIT, a
large text understanding system in Prolog. A focusing algorithm based on sur-
face syntactic constituents is used in the processing of several different types of
reduced reference: definite pronouns, one-anaphora, elided noun phrases, and
implicit associates. This generality points out the usefulness of treating focusing
as a problem in itself rather than simply as a tool for pronoun resolution.

ACKNOWLEDGMENTS
I am grateful for the helpful comments of Lynette Hirschman, Marcia Line-
barger, Martha Palmer, and Rebecca Schiffman on this paper. John Dowding
and Bonnie Webber also provided useful comments and suggestions on an ear-
lier version.

References

themes of verbs. The verbs still have to be classified individually.
';i fleld“engineer is an example of the representation used in PUNDIT for
an idiom.

May 3, 1987 -9-

Py

id(fleld “engineer,[engineerl]),
id(disk“drive,[drivel]),
id(system,[system1])),

id(disk “drive,[drives]),
id(event,[eventl]),

haspart([system1],[drivel]),
haspart([systeml],[drive2])]

event([eventl],

replace(time(_)),

[included(object2([drive2]),time(_)),

missing(object1([drivel]),time(_)),

use(instrument(_8405),

exchange(objectl([drivel]),
object2([drive2]),time())),
cause(agent([engineerl])),
use(instrument(_8405),

exchange(objectl([drivel]),
object2([drive2]),time(_))))])

Figure 2: CurrentContext after
The field engineer replaced the disk drive.

May 3, 1987 -10-

LA Y K [} & 0 L] Y g
RIS TR \.'.0.'.i"."u“u",o".'.':i“.ﬂ".v".i‘,‘ Tt S0 0 T 0 6 0T 0

MU RSN Rt P I LI TS R M Rt R M AR

I"

(1) First Sentence of a Discourse:

Establish expected foci for the next sentenece (order
FocusList): the order reflects how likely that constituent is to
become the focus of the following sentence.

Sentence

Direct Object

Subject

Objects of (Sentence-Level)
Prepositional Phrases

(2) Subsequent Sentences (update FocusList):

If there is a pronoun in the current sentence, move the focus
to the referent of the pronoun. If there is no pronoun, retain
the focus from the previous sentence. Order the other ele-
ments in the sentence as in (1).

Figure 3: The Focusing Algorithm

[Chomsky1981]
Noam Chomsky, Lectures on Government and Binding. Foris Publi-
cations, Dordrecht, 1981.

[Dahl1982.]
Deborah A. Dahl, Discourse Structure and one-anaphora in English,
presented at the 57th Annual Meeting of the Linguistic Society of
America, San Diego, 1982.. B

[Dahl1984]
Deborah A. Dahl, The Structure and Function of One-Anaphora in En-
glish, PhD Thesis; (also published by Indiana University Linguistics
Club, 1985), University of Minnesota, 1984.

[Grosz1983]
Barbara Grosz, Aravind K. Joshi, and Scott Weinstein, Providing a
Unified Account of Definite Noun Phrases in Discourse. Proceedings of
the 21st Annual Meeting of the Association for Computational
Linguistics, 1983, pp. 44-50.

&

May 3, 1987 -11-

N S TR O e o W A A A A

[Gruber1978]
Jeffery Gruber, Lezical Structure in Syntaz and Semantics. North
Holland, New York, 1976.

[Gundel1974]
Jeanette K. Gundel, Role of Topic and Comment in Linguistic Theory,
Ph.D. thesis, University of Texas at Austin, 1974.

[Gundel1980)
Jeanette K. Gundel, Zero-NP Anaphora in Russian. Chicago Linguis-
tic Society Parasession on Pronouns and Anaphora, 1980.

(Halliday1976]
Michael A. K. Halliday and Ruqaiya Hasan, Coheston in
English. Longman, London, 1876.

[Hankamer1976]
Jorge Hankamer and Ivan Sag, Deep and Surface Anaphora. Linguistic
Inquiry 7(3), 1976, pp. 391-428.

[Hawkins1978]
John A. Hawkins, Definiteness and Indefiniteness. Humanities Press,
Atlantic Highlands, New Jersey, 1978.

[Hirschman1982] »
L. Hirschman and K. Puder, Restriction Grammar in Prolog. In Proc.
of the First International Logic Programming Conference, M. Van
Caneghem (ed.), Association pour la Diffusion et le Developpement de
Prolog, Marseilles, 1982, pp. 85-90.

[Hirschman1985]
L. Hirschman and K. Puder, Restriction Grammar: A Prolog

Implementation. In Logic Programming and its Applications, D.H.D.
Warren and M. VanCaneghem (ed.), 1985.

[Hirst1981]
Graeme Hirst, Anaphora in Natural Language
Understanding. Springer-Verlag, New York, 1981.

[Kameyama1985]

Megumi Kameyama, Zero Anaphora: The Case of Japanese, Ph.D.
thesis, Stanford University, 1985.

[Palmer1985)
Martha S. Palmer, Driving Semantics for a Limited Domain, Ph.D.
thesis, University of Edinburgh, 1985.

May 2, 1987 -12-

T, L) T R A U T VL ER AR B L TN |

(Palmer1986}
Martha S. Palmer, Deborah A. Dahl, Rebecca J. [Passonneau]
Schiffman, Lynette Hirschman, Marcia Linebarger, and John Dowding,
Recovering Implicit Information, Presented at the 24th Annual Meet-
ing of the Association for Computational Linguistics, Columbia Univer-
sity, New York, August 1986.

[Prince1981)
Ellen F. Prince, Toward a Taxonomy of Given-New Information. In
Radical Pragmatics, Peter Cole (ed.), Academic Press, New York,
1981.

[Reinhart1976]
Tanya Reinhart, The Syntactic Domain of Anaphora, Ph.D. thesis,
Massachusetts Institute of Technology, 1976.

[Sager1981) .
N. Sager, Natural Language Information Processing: A Computer

Grammar of English and Its Applications. Addison-Wesley, Reading,
Mass., 1981.

[Sidner1979]
Candace Lee Sidner, Towards a Computational Theory of Definite Ana-
phora Comprehension in English Discourse, MIT-AI TR-537, Cam-
bridge, MA, 1979. '

[Webber1978)

Bonnie Lynn Webber, A Formal Approach to Discourse
Anaphora. Garland, New York, 1978.

[Webber1983]
Bonnie Lynn Webber, So What Can We Talk About Now?. In Compu-
tational Models of Discourse, Michael Brady and Robert C.
Berwick (ed.), 1983.

May 3, 1987 -13-

ORI A A AL G]

APPENDIX D

A Dynamic Translator for Rule Pruning in Restriction Grammar

This paper by John Dowding and Lynette Hirschman has been submitted
to the 2nd International Workshop on Natural Language Processing and Logic
Programming, to be held in Vancouver, B.C., Canada, August 17-19, 1987.

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

i) Y [} - A 3 f .
L N R T S SO T A KN X6 NSO TR KRNl W MO YOO M X U OO OO OO W M

4
9
t

OO NI

. A Dynamic Translator for Rule Pruning in Restriction Grammar!
John Dowding and Lynette Hirschman

Paoli Research Center
Unisys Defense Systems
P.O. Box 517
Paoli, PA 19301

Submitted to the Second International Workshop on
Natural Language Understanding
and Logic Programming

Vancouver, B.C., Canada
August 17-19, 1987

o ABSTRACT

This paper describes a Dynamic Translator for Restriction Grammar, a logic (Prolog) environ-
ment for syntactic processing of natural language text. The dynamic translator supports
Dynamie Rule Pruning, a method of focusing search for a parse. Rule pruning permits elimination
of options from BNF definitions, based on information from the partially constructed parse tree
and the word input stream. It is particularly effective for pruning verb complement options based
on the particular verb in the input stream. The dynamic translator combines the flexibility of an
interpreter (needed for grammar development and for dynamic pruning) with the runtime perfor-
mance efficiency of a translator. This combination has produced an execution mechanism that is
more efficient than either an interpreter or a translator alone. The paper presents results
demonstrating & 20-fold speed-up in parse times obtained via rule-pruning supported by the
dynamic translator.

! This work is supported in part by DARPA under contract N0O0014-85-C-0012, administered by the Office of Naval
Research; and in part by National Science Foundation contracts DCR-8202397 and DCR-85-02205.

A Dynamiec Translator for Rule Pruning in Restriction Grammar

‘ 1. Introduction

‘ This paper describes execution strategies used by the Restriction Grammar to implement efficient

| syntactic processing for natural language text. These include a mechanism for dynamic rule pruning

‘ and a dynamic transiator. Dynamic rule pruning uses information from the input word stream to
focus the search for a correct parse. This facility is supported efficiently by the Dynamic Transla-
tor, which allows the use of an inherently interpretive mechanism within a translated system.

I

/ The Restriction Grammar [Hirschman1982a, Hirschman1985a] is the syntactic component of PUN-
DIT, the Unisys natural language understanding system [Palmer1986a], whick includes modules for
semantics [Palmer1983a] and discourse analysis [Dahl1988a], in addition to the syntactic component
described here. Because the other components of PUNDIT rely on the parser, efficient parsing is a
prerequisite for productive development of the entire natural language understanding system.

The Restriction Grammar belongs to the rapidly expanding class of logic grammars, including
Metamorphosis Grammar [Colmerauer1978a], Definite Clause Grammar (Pereira1980a], Extraposition
Grammar (Pereira1981a), Definite Clause Translation Grammar| Abramson1984a], Modifier Structure
Grammar[Dahl1983a}, and Gapping Grammar [Dahl1984a). It shares with other logic grammars a set
of production rules (BNF definitions) interspersed with Prolog constraints. It extends the DCG notion of
*implicit® parameters to include not only the word stream, but also an automatically constructed
parse tree. The Restriction Grammar differs from other logic grammars in that the constraints are res-
trictions on the well-formedness of the parse tree; this requires a more complex execution mechanism to
support the grammar, as will be explained in the following sections. The Restriction Grammar is
implemented in Prolog, which provides a highly interactive environment required for developing
natural language systems. Prolog also provides great flexibility for writing alternative control struc-
tures and interpreters, and we have made extensive use of this capability in our research.

Traditionally, the execution mechanisma for logic grammars have either been interpreters or
) translators. A (top-down) interpreter parses a string as a phrase of a given category by choosing a
0 grammar rule of that category, dividing the phrase into sub-phrases, and parsing those sub-phrases into
the categories required by the grammar rule. Thus, at runtime the interpreter requires not only the
string that is to be -parsed, but also the set of grammar rules. Alternatively, the process can be -
broken down into two phases, the translation phase and the runtime phase. The translator takes the
complete set of grammar rules and produces a set of Prolog procedures which, when called at run
time, will parse the phrase in exactly the same way that the original grammar would have. The trans-
lation phase converts the information explicit in the grammar rules into information implicit in the
Prolog procedures. The translation phase requires the set of grammar rules but does not have the
input string available to it, while the runtime phase after translation has access to the input string, but
does not have explicit access to the original grammar rules. Due to this loss of explicit information
when moving from interpretation to translation, the transiated Prolog code will be more efficient than
the interpreter, but the interpreter will be more flexible.

In contrast to these traditional approaches, the Restriction Grammar uses a single mechanism,
the Dynamic Translator, that takes advantage of the strengths of translation and interpretation without
the corresponding disadvantages. The Dynamic Translator has available to it both the input string
and the grammar rules (like an interpreter), but also makes use of both a translation and a run time
phase (like a translator). In the Dynamic Translator, the translated code runs in cooperation
with an interpreter to parse a sentence. Although one might thus expect that the speed of the Dynamic
Translator to be intermediate between an interpreter and a translator, the Dynamic Translator is sub-
stantially faster than either. This added efficiency is gained by the use of the Dynamic Rule Prun-
ing mechanism, an inherently interpretive device that dynamically prunes the search space.

The Dynamic Rule Pruning mechanism uses information available at run-time to reduce the
number of options that must be considered for certain grammar rules. This information includes
both the input word stream and the partially constructed parse tree. Reducing the number of
options eliminates extraneous paths from the search space and greatly increases the efficiency of the

’w parsing process.

May 8, 1987 -1-

LU

S N A NN NI DA I S LA LA MANA X A A A ML LA W i o8 503 3 Yo i

A Dynamie Translator for Rule Pruning in Restriction Grammar

3. Restriction Grammar Framework

Restriction Grammar draws its grammatical approach from earlier work of Sager, Grishman and
Friedman in connection with the New York University Linguistic String
Project[Sager1981a, Sager1975a, Grishman1973a]. The grammar is written in terms of context-free
rules, augmented with context-sensitive restrictions stated as constraints on the shape of the partially
constructed parse tree. The parsing mechanism is a standard top-down, left-to-right parser. The parse
tree is constructed incrementally after the successful application of each BNF definition, using a data
structure that supports free tree traversal by the restrictions(Hirschman1982a, Hirschman1985a].

Restriction Grammar differs from other logic grammar frameworks in several respects. One is that
the restrictions are constraints on the well-formedness of the (surface) parse trees produced by the appli-
cation of the BNF definitions. This differs from other logic grammars where contextual information is
made available through parameters to the BNF definitions. Restriction Grammar isolates all context-
sensitivity in the constraints, leaving the BNF definitions uncluttered by extra parameters. The restric-
tions are written using a special set of tree-description primitives, which can be combined into general
purpose syntactically motivated routines, such as "head”, *left/right adjunct”, " main verb”, etc.

Restrictions are written using a layered approach that makes the syntactic constructs independent
of the particular implementation of tree structure. This approach has proved extremely useful in insu-
lating the grammar from changes in the underlying execution mechanism. The lowest layer of operators
consist of primitive tree relation operators (such as parent, child, left and right sibling) and operators to
extract the label of a node and the lexical item associated with a node (also the lexical subclasses associ-
ated with a word). On top of this layer are a set of restriction operators that support various con-
straints on the make-up of trees. The restriction operators also include a few operators to examine the
word input stream for optimisation purposes. This enables a restriction to reject certain options before
the parser makes any attempt to construct them. The next layer of rouiines captures syntactic rela-
tions such as Acad of a construction, the mein verd, or the left/right adjunct of a construction. Finally,
restrictions are built out of the routines and the restriction operators. There are currently about 15 res-
triction operators, 20 routines, 30 restrictions, and 102 BNF definitions in the stable grammar without
conjunction. Conjunction (treated as a meta-rule) adds another 50% to the number of grammar rules.

‘8. Dynamtie Rule Pruning

Over the course of the past year, the coverage of our grammar has been considerably extended.
These extensions include the addition of a wide range of verb complement types, conjunction (e.g., Unit
hes ezcessive wear on inlet impellor assembly and shows high uwsage of oil.), and fragmentary input
(e.g., Belicve the coupling from dicsel to sac lube osl pump to be sheared.). As the sise of the gram-
mar has increased it has been critical to maintain an efficient system to support development and debug-
ging, thus motivating the development of ynamic Rule PrunningFR and the dynamie transiator.

Dynamic rule pruning uses information from the partially parsed sentence and from the word input
stream to focus the search for a correct parse. This capability has been particularly useful in pruning
possible verb complements, but is also being applied to limit pre- and post-verbal sentence adjunct
types, as well as complement types for nouns and sdjectives. The idea of dynamic rule pruning has
been adapted from its implementation in Sager’s Linguistic String Parser(Sageri981a]. Our current
English grammar allows for a rich verb complement structure -- there are presently 34 options in the
verb complement rule. In the lexicon, each verb is subcategorised for the particular type(s) of comple-
ment it can accept: e.g., noun string object (nstgo), direct + prepositional object (npn), predicate
object (objectbe), various reduced sentential complement types (to + verb + object = tovo), sentential
complement (assertion), etc.

As soon as a verb is found during parsing, the list of possible complement options can be drasti-
cally pruned to match the set of options given by the subcategorisation of that particular verb. How-
ever, this requires a dynamic interaction between the input word stream, the syntactic constructs
(namely the verb), and the grammar rules. This capability has been implemented via a special dynamic
prune constraint. The operator prune occurs within the BNF definition and replaces the normal
definition, which has the form shown in Table 1 (only 19 of the 34 verb complément options are shown.

May 3, 1987 ~2-

A Dynamie Translator for Rule Pruning in Restriction Grammar

object ::== (nstgo; %Noun STRing Object (direct object: "eat fish”)
pn; %Preposition + Noun (prep phrase: attend to their advice”)
npn; %Noun string + Prep + Noun (*put it on the table”)
objectbe; %Object of BE (*be late/on time/a fool”)
veno; %VEN (past participle) + Object (*have seen it”)
tovo; %TO + Verb + Object ("seems to do it")
ntovo; %Noun + TO + Verb + Object (*want them to see it”)
eqtovo; %Equi TO + Verb + Object (*want to see it”)
objtovo; %O0bject + TO + Verb + Object ("helped him to fix it")
vo; %%tenseless Verb + Object (*will do it*)
thats; %THAT + Sentence ("hope that they come”)
assertion; %ASSERTION (*hope they hear”)
pnthats; %Preposition + Noun + THAT + Sentence
("proved to her that she was right”)
pnthatsvo; %Prep + Noun + THAT + Subject + Verb + Object
(®suggested to her that she write it up”)
thatsvo; %THAT+ Subject + Verb + Object
("suggested that she write it up”)
nthats; %Noun + THAT + Sentence ("said that they were here)
nullobj; %1 JLL Object (for intransitive verbs: *I left”)
sven; %5ubject + VEN (past participle: ® want it finished”)
dpl), %DP (particle, as in *show off)
{w_preobj_sa}. %{...} indicates & constraini, as in DCG's

. Table 1. Object Options for Verb Complement

The prune rule in the BNF has the form:
object u1a= prune(PruningProeedure,Def).

It takes two arguments: the name of a procedure to control pruning (prume_object in the example
below), and the full set of options for the definition (the right-hand side of the BNF definition):

object ::== prune(prune_object,
((nstgo;pnmpn;objectbe;venostovo;ntovo;
eqtovo;objtovo;vo;thats;assertion;pnthats;
pnthatsvo;thatsvo;nthats;nullobj;sven;dp1),
{w_preobj_sa})).

The interpreter executes a call to prune/2 by calling exee_prune/§, which returns the pruned
definition. The parameters for exee_prune are the pruning procedure name, the original definition, the
pruned definition, the starting point in the parse tree, and the remaining word stream:

exec_prune(PruningProcedure,OriginalDef,PrunedDef,StartingNode,WordStream).

Once exee_prune returns the pruned definition, the main interpreter loop is re-invoked with the new
prened definition. (The code for this is shown with the code for the interpreter as a whole, in Fig. 2 of
the Appendix.)

The rule for objeet 11m= prune(prune_object,Def), shown above, is the the rule for verb
complements. It prunes the object options by locating the verb in the partial parse tree, examining the
verb’s subcategorisation, and using the subcategorisation to filter out inapplicable options from the full
object definition. For example, the verb replace is subcategorised for direct object (nstgo: replace

May 8, 1987 -3-

A Dynamie Translator for Rule Pruning in Restriction Grammar

somasthing), and direct + prepositional object (npms replace something with something). As a result
of dynamic rule-pruning, the parser tries only these two options of objeet, instead of all 19! The
speed-up in parsing is substantial (approximately 8 fold), even for short sentences, and is particularly
striking if the system retrieves all parses for a given input sentence.

Pruning is implemented via one basic routine, interseet_opt which controls the pruning of the
original definition:
interseet_opt(OptionList,OriginalDef,PrunedDef,IncludeExcludeSwitch).

The list of options in argument 1 are included or excluded {dep2nding on the switch setting in argument
4) from the original definition (argument 2), to produce the new definition in argument 3. This mechan-
ism guarantees that pruning produces a subcet of the original definition; it cannot introduce arbitrary
new definitions.

Our main application for pruning has been to verb complemens {objeet) options. We plan to
apply pruning to restrict adjectival and nonn complements as well. We are also currently implementing
pruning constraints on the construction of sentence adjuncts (generally zdverbial phrases and subordi-
nate clauses), particularly in pre- and post-verb positions. I're- and post-verb adverbiul modifiers are
highly constrained in the absence of coramas (e.g., the disk while beiag removed broke seems question-
able, but the disk, shile being removed, broke seems better and Whiic being removed, the disx broke
seemn good). By recognising these pre- and post-verb positiozs and checking for pceserce .+ absence of
a comma, it is possible to prune drastically the s:n‘ence adjunct options. Anothe: irteresting applica-
tion of pruning is dynamic rule-reordering based on context. This may : sov: to b aa extremely valu-
able capability in tunirg grasamars to particular application:.

The &) nacpic rlue-prun'l‘;g facility has leen a motirating facts: Lenind cthe development of the
dynamic t-anslator. The rule-pruning can obviously onl; be done at run-time, sinc. it depends on the
particular words (e.g., verbs) in the input .cztanze. Hovever, the 8-fold speed-up provided by rule prun-
ing is too dramatic to discard in favor of a purely trarslated system. Our solution was to develcp the
dynemic iranslator, to allow a dynamic interaction where it provides greater leverage (2.g., rule pmn-
ing), but .therwise to use the translated/compiled environuent for maximal efficiency. This h»S enabled
us to speed up the system by a factor of 20. ‘

1)
4. The Dynamie Translator -

The Dynamic Translator provides a sing!: -recution mn.ecl.anism that ccmbines she ‘lex.h and
Jynamic nature of a. ‘ntercretes with the eilicienzy of trusslated code. %ihe J,:. T transator
makes it possible to rua transiated code ard interpreted grammar riles interleaved. This done by
‘etermining at translation timc thcse points in the grammar requiring the flexibility of the iaterpreter,
and building into the translated code calls to the interpreter at those points. At present, tic points
in the grammar where the fexibility of the interpreter is required are those places where the dynamic
rule pruning mechanism is used.

As a control mechanism, interpretation has its disadvantages. For instance, in our system,
besides just interpreting the grammar rules, the control mechanism must also build a parse tree that
will allow free tree traversal. Brilding this parse tree is costly, and this makes running our system
slow compared to other styles of logic grammars. Additionally, interpreters support features to aid
in grammar debugging. While these features are very helpful to the grammar writer, they typically
reduce the speed of the interpreter even if the features are not being used.

The approach taken in translation is to forsake all of the debugging features introduced in the
interpreter and to translate the grammar into Prolog code which can be subsequently compiled. The
translated grammar rules are faster than the interpreted grammar rules for several reasons:

° As much of the tree building as possible is done at translation time, thus the translated grammar
rules have to do far less work.

. The costs of the extra debugging functions introduced in the interpreter are eliminated.

o The translation produces a file of Prolog clauses which can be given to the Prolog compiler, to pro-
duce compiled Prolog running several times faster.

May 8, 1987 -4-

RN A T N R T A R N W AT T AL T A T

A Dynamie Translator for Rule Pruning in Restriction Grammar

The dynamic translator is implemented with a conventional translator and interpreter, each
modified to know when calls to the other should be made. The interpreter knows to call a translated
version of a grammar rule when the appropriate translated procedure is resident in Prolog and the user
has set a switch that indicates that the translated mode of execution is desired (this is the default).
There are situations in which a grammar writer may want to execute the grammar strictly inter-
preted, to take advantage of certain grammar debugging aids. At present, when the grammar
rules are being translated, the translator inserts into the object code a call to the interpreter to
execute a particular grammar rule only at those points where the dynamic rule pruning mechanism is
called. This possibility for mutual recursion between the interpreter and the translated grammar rules
results in a more flexible and efficient system.

We have also avoided a problem that might arise from using the dynamic translator, namely
majntaining both interpreted and translated versions of the grammar. If the grammar writer is dynami-
cally editing and testing grammar rules, there is the possibility that the transiated code and some of the
explicit grammar rules will become inconsistent. We solve this problem by providing a grammar rule
editor [Riley1986a] that maintains consistency between the explict grammar rules and their transiated
counterparts. After a grammar rule has been edited, the grammar rule editor will automatically
retranslate and compile the revised rule.

5. Implementation

The parsing mechanisms described here, together with a broad-coverage grammar of English, con-
stitute the syntactic component of the Unisys natural language understanding system. The system is
currently implemented in Quintus Prolog 1.5 on a VAX 11/785 and on a Sun Workstation, in Xerox
Quintus Prolog on Xerox Lisp Machines, in TI Prolog 1.0 on a TI Explorer, and in Symbolics Prolog 6.1
on a Symbolics 3640 Lisp Machine.

We have tested the dynamic translator on a large corpus of sentences (about 100 sentences) from
ﬁ the domain of equipment failure reports for starting air compressors (SACs), and compared those results
with the same sentences parsed by the translated grammar without rule pruning, the interpreter with
rule pruning, and the interpreter without rule pruning. In Figure 2 we have chosen a few representative
sentences from this corpus, and indicate their parse times under the four different execution schemes
(parse times given are the time to compute all of the parses of the sentences).

The resulting parsing statistics shown here are heavily influenced by the time taken executing res-
trictions. This time is constant whether running interpreted or translated code, since restrictions are
Prolog code and can be compiled by the Prolog compiler without any intermediate translation. The
difference between the parse times for an interpreted versus transiated grammar would be much more
dramatic if the time executing restrictions were ignored.

Fror. the large corpus of sentences we have computed normalised parse times across the entire

corpus. These results are given in Figure 3.2 These results indicate that the translation process accounts
for about a 2-3 fold speed up, and that rule pruning accounts for about an 8-9 fold speed up. The
efficiency increase due to rule pruning is highly dependent on the particular grammar that we are using.
A smaller grammar (or one which had fewer object options) would not show as dramatic an increase in
efficiency. On the other hand, the efficiency increase due to translation is more constant across gram-
mars.

*Normalised parse times were computing by hkgg the transiated system with rule pruning as the base case, and comparing
that parse time with the parse times for the other variations. The ratio was computed for each parse of each sentence, then aver-
aged over each sentence. The average for the entire corpus was then computed from these sentence averages. This was done to

-8 eliminate a bias in the average towards sentences that had more parses than others.

May 8, 1987 -5~

A Dynamie Translator for Rule Pruning in Restriction Grammar

REPRESENTITIVE SENTENCES:
1. Nr 4 sac oil pressure dropped below alarm point of 85 psig during monitoring of 1a gth.
2. Start air pressure dropped below 30 psig during monitoring of 1a gth.
3. Oil is discolored and contaminated with metal.
Loss of lube oil pressure during operation.
5. Investigation revealed adequate lube oil saturated with both metallic and non-metallic particles.
6. Request replacement of sac.

Sentence No Pmneélnte_;_p No PmneéTrans W, Pmneélnteg W. PruneéTrans
1. 2170.63 938.0186 333.7 180.4

2. 462.183 193.883 129.2 80.9

3. 77.033 27.668 9.46599 4.31699

4. 214.25 80.3858 54.283 ' 24.417

5. 670.733 230.683 120.817 41.8669

8. 43.4839 18.083 12.566 5.2

-

Table 2: Timings (in cpu seconds) for all parses on sample sentences

Wit& mning Without Pmn'gg
Interpreter 2.35 20.43
Translator 1 8.77

Table 8. Normalised Average Parse Times:
Pruning vs. No Pruning; Interpretation vs. Transiation

6. Research Directions

The overall goal of the Unisys Natural Langnage Processing group is to create a robust, portable
system for processing natural language text. The Unisys system is currently being applied to the pro-
cessing of texts from several domains: a set of internal maintenance reports about trouble-shooting vari-
ous Unisys-supported computer systems and a set of Navy equipment casualty reports (CASREP’s) for
starting air compressors, as well as question-answering for a navy ships database. The natural language
syscem accepts the text, processes the natural language information, and produces a set of database
entries, knowledge base entries, or database queries capturing the information contained in the text.
The database or knowledge base can then be processed for information concerning 'xpected down-time,
associations between symptoms and cause of failure, parts and/or expertise needec to repair, etc. The

@ work on the CASREP domain is being performed jointly with a group at New York University under
Ralph Grishman. The NYU group is developing a Lisp-based system.

May 3, 1987 -0-

: A MO I AL AT T 2o

A Dynamiec Translator for Rule Pruning in Restriction Grammar

The work on maintenance reports is driving the development of a comprehensive grammar, includ-
ing a comprehensive treatment of conjunction using meta-rules{Hirschman1988a] and a syntactic and
semantic treatment of sentence fragments. Elimination of spurious ambiguity is a well-known problem
in parsing sentences. Sentence fragments compound the problem due to their highly degenerate struc-
tures and their analysis relies heavily on semantic constraints to reject semantically ill-formed analyses.
We are now in the process of implementing a mechanism to support domain-specific selectional con-
straints, in order to filter out these semantically ill-formed parses. This mechanism will be tightly cou-
pled to the parser, so that an incoherent parse is rejected as early as possible.

We are also actively involved in developing various support tools. One of these is a more sophisti-
cated debugging environment, based on the notion of restriction relaxation. The idea is that if no
analysis is obtained, we can pinpoint the cause of failure by allowing relaxation of restrictions that fail
in the initial attempt to obtain a parse. A preliminary implementation is complete and is in the process
of being tested.

A second area of research is in the area of interactive tools, including tools to build lexicons, to
identify domain-specific selectional patterns, and to examine and compare syntactic analyses. Our goal
is to build up a development environment rich enough to support the complex and time-consuming
activities required to develop large-scale natural language understanding systems.

7. Acknowledgements

We would like to acknowledge the participation of a number of people involved in this research.
The original implementation of the interpreter and translator were done by Karl Puder, now at Digital
Equipment Corporation. The work of Marica Linebarger on extending the grammar to include frag-
ments has been a motivating factor in the development of an efficient parser. Much of the recent work
on the Pundit development environment has been done by Leslie Riley. We also appreciate helpful com-
ments on this paper from Don McKay, Michael Freeman, Rebecca Schiffman and Deborsh Dahl.

May 8, 1987 -1-

A Dynamic Translator for Rule Pruning in Restriction Grammar

‘ REFERENCES

[Abramson1984a]
Harvey Abramson, Definite Clause Translation Grammars. In Proe. 198{ International
Symposium on Logic Programming, Atlantic City, New Jersey, Feb. 6-9, 1984, pp.
233-241.

[Colmerauer1978a)
A. Colmerauer, Metamorphosis Grammars. In Natural Language Communication with
Compsters, L. Bok (ed.), Springer, 1978, pp. 133-189.

[Dahl1986a]
Deborah A. Dahl, Focusing and Reference Resolution in PUNDIT, Presented at AAAI,
Philadelphia, PA, 1986.

[Dahl1983a]

V. Dahl and M. McCord, Treating Co-ordination in Logic Grammars. American Josrnal
of Computational Linguistics 9, No. 2, 1983, pp. 69-91.

[Dahl1984a]
V. Dahl, More on Gapping Grammars. In Proc. of the International Conference on
Fifth Generation Computer Systems, ICOT, Tokyo, Japan, 1984, pp. 669-677 .

[Grishman1973a)

R. Grishman, N. Sager, C. Rase,.and B. Bookchin, The Linguistic String Parser. AFIPS
Conference Proceedings 48, AFIPS Press , 1973, pp. 427-434.

[Hirschman1982a)
L. Hirschman and K. Puder, Restriction Grammar in Prolog. In Proe. of the First Inter-
national Logic Programming Conference, M. Van Caneghem (ed.), Association pour la
0 Diffusion et le Developpement de Prolog, Marseilles, 1982, pp. 85-90.

[Hirschman1985a)
L. Hirschman and K. Puder, Restriction Grammar: A Prolog Implementation. In Logie
Programming and its Applications, D.H.D. Warren and M., VanCaneghem (ed.), 1985.

(Hirschman1986a]
L. Hirschman, Conjunction in Meta-Restriction Grammar. J. of Logic Programming,
1986.

[Palmer1983a]
M. Palmer, Inference Driven Semantic Analysis. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI-83), Washington, D.C., 1983.

[Palmer1986a)
Martha S. Palmer, Deborah A. Dahl, Rebecca J. [Passonneau] Schiffman, Lynette Hirsch-
man, Marcia Linebarger, and John Dowding, Recovering Implicit Information, Presented
at the 24th Annual Meeting of the Association for Computational Linguistics, Columbia
University, New York, August 1986.

[Pereira1980a]
F. C. N. Pereira and D. H. D. Warren, Definite Clause Grammars for Language Analysis

—~ A Survey of the Formalism and a Comparison with Augmented Transition
Networks. Artificial Intelligence 18, 1980, pp. 231-278.

[Pereira1981a)
F. C. N. Pereira, Extraposition Grammars. American Jowurnal of Computational
Linguistics 7, 1981, pp. 243-258.

[Riley1986a]
L. Riley and J. Dowding, The Prolog Structure Editor, Logic-Based Systems Technical
@ Memo No. 29, Paoli Research Center, System Development Corporation, January, 1986. :

May 8, 1987 ' -8-

A Dynamie Translator for Rule Pruning in Restriction Grammar

[Sager1975a)
N. Sager and R. Grishman, The Restriction Language for Computer Grammars of Natur-
al Language. Commaunications of the ACM 18, 1975, pp. 390-400.

(Sager1981a]
N. Sager, Neaturel Language Information Processing: A Compsuter Grammar of En-
glish and Its Applications. Addison-Wesley, Reading, Mass., 1981.

May 3, 1987 -9

A Dynamie Translator for Rule Pruning in Restriction Grammar

8. Appendix 1. Dynamie Translator Code

Included below is the Prolog code that makes up the Dynamic Translator. Figure 1 contains
the code for the translator, followed by the code for the interpreter in Figure 2, The top level pro-
cedure for the translator is translate_rule/3, which takes a grammar rule and produces a Pro-
log procedure; translate_rule/2 calls the main recursive procedure trans/7, to translate the rule
body; trans/7 contains a case for each type of rule body, namely:

Conjunction
Disjunction
Rule Pruning
Restrictions
Terminals
Empty Strings
Nonterminals

Note that the clause that handles rule prunning results in a call to the procedure prune_exee/9, which
in turn calls the interpreter to execute the pruned grammar rule.

/® transiate_rule(+Rule,-Translation) sibling(Here,Next).
transiste_rule takee s grammar rule and returns itz Prolog transiation. Rempty string
s/ trans(" (InWordsssOutWords),Prev,Prev,_InWords,OutWords):- !,
tranalste_rule{(X::mY},(A-B))-
label(Parent X), %oonterminals
transPred(0C A, Parent,InWords,OutWords), trans(XCA First, Next,_InWords,OutWords):-
daughtes(Parent,FirstChild), label(First X),
trens(Y,B,FirstChild, Pareat,laWords,OutWords),!. sibling(First, Next),
asserts(needs_translating(X)),
/* txane(+Seures,-Ohjost, + PirstChild,-LastChild, + Parend, tranePred(XC,A,First, IoW ords,OutWords).

+iaWords,-OutWords)
/* transPred(+ Noaterminal,-Object, +Here, + [nWords, Oul.Wordl)
mm.ma.myuh.umuu.m Note

that altheugh PiretChild and InWords are marked * +°, they will should
still be uninstantiated when \rane is called (They are “significant® logie
variables). PirstChild s the variable (some unlmewn child of Pareat)
that is the lecstion to put the next child buils. NextChild is the
location to pat the nant child built after this segment of the

grammar rule. I this segment builds ae children, thea FirstChild =
N/m

]

% conjunction
trans{(C.Y),(A,B),FirstChild LastChild, Pareat,IaW ords, OutW ords):-!,
srent,InWerds, TompWords),
"B, XL ast,LastChild, Parent, TempW ards, OutWords).

arent,IaWords,OutW ords),
B, YFiret, YLast,Parent,InWords,OutWords).

_me(l-ﬂd‘:ka mat,anotdl OutWords,0,),
mmm,nwm,o«wm)

Rrestrictions
'.n-(m,((hWM-OmWndl),A),Pm.an.Pm
I1aWords,OutWords):-1,
transResteriction(JC,A, Parent,InW ords).

% terminale
trane(*X,attach_word(J Here, InWords,Out Words),
Here,Next,_InW ords, OutWords):-
label(Here X),

May 3, 1987 -10-

Gr/luPnd constructs & call to s nonterminal.
.
ere,InW ords,Out Words):-
As==..[X,Hore,InWords,OutWords|.

/¢ transRestriction{+RestrictionName,-Object, +Parent, + Words)
transRestriction constructs a call to & restriction

lrml!om'hﬁu(x.&.?mnt.ww) -
==, [RestrictionName|ListOfArgs],
uo-(RutﬂcﬁnNuo),
append(ListOfArgs,[Parent, Words|, NewListOtArg),
A=_ [RestrictionName|NewListOfArgs|.

A Dynamic Translator for Rule Pruning in Restriction Grammar

Figure 1. Proiog Code for the Translator

Similiar to trans/7 in the translator is exee/8 in the interpreter, with clauses that match those
of the translator. The clauses for execPred/8 expand nonterminals. If a translated version of the
grammar rule exists, and the switch translated_grammar_in_use is set, then the translated version
of the rule is called, rather than expanding the nonterminal via the interpreter.

axseute(X, Tree InWords, Out Words):-
axoe(X,Tree, ,~ ,InWords,OutWords,0,[]).

% conjunction
axee({(X,Y),First,Last,Parent,InWords,OutWords,D,Anc):-!,
,Next,Parent,InW ords,IOtmp,D,Anc),
Next,Last,Parent,IOtmp,OutWords D,Anc).

R disjunction '
wxee((0CY),Firot,Last, Parent,InWords,OutW ords,D,Anc):-!,
irst,Last,Parent,InWords, OutWords,D,Anc);
First,Last,Parent,InWords, OutWords,D Anc).

%prune
exsc{prune(Label,Defs) First,Last,Parent InWords,OutWords,D,Anc) - !,
prune_exee(Label,Defs,First,Last Parent,InWords,OutWords,D,Anc).

% restrictions
exse{{X},Prov,Prev,Parent, Wards,Words,D,Anc):-!,
axecRostriction(X Parent, Words).

% terminale
«xoe(*X, Hore, Naxt, _InWords, OutWords,_D,Ane):-1,

sttach_word(X,Here, InWords,Out Words),
ext),
sem_info(Hers,lerminal:).

%Kempty string
otee(” Prev,Prev,_Words,Words,_D,_Ane):- !.

Znonterminals .
axec(X,Pired Next,_InWords,OutWords,D,Ane):-1,
label(First,X)

trot,InWords, OutW. \
W ords,D,Ane)

axecPred(X,Parent,InWords,OutWoeds, ,)~
toggle(transiated _grammar_in_use),
Rule =..pCParent,InWords,OutWords|,
;vunnt.mmuh).

eall(Rule).
xoePred(X,Parent, W ords,Out Words, D, Anc):-

7),)
D1isD+1,
daughter(Parent,FirstChild),
oxee(Y, Mld._,?mnt}andn,OutWods.Dl,[O&:-Y)lAnel).

prune_exec({Label Do Pirst,Last,R,1aWords, Out Words,D Anc) :-
,OutDefy, R InWords)),!,
OutDels,First Last,R,IaWords,OutWords,D,Anc);
1aWords,OutWorde,D,Anc).

T, Words):-
X =..[Name|Args),
T Woeds], NoewArgs),
Am_ (Name|NewArgs],
eall{A).

Figure 2. Prolog Code for the Interpreter

May 8, 1987 -11-

‘ APPENDIX E

Determiners, Entities, and Contexts

This paper by Deborah Dahl was presented at TINLAP-3, Las Cruces, New
Mexico, January, 1987. It describes problems with certain indefinite noun
phrases and argues that a procedure analogous to reference resolution for
clauses is required to handle them.

Unisys Defense Systems Integrating Syatax, Semantics, Discourse

ARG AGAGAGNNAO [] OO ; W i \ \)
. AR A N WA At MU R AR, KB "f.‘,‘,\,‘._u_"“‘u.‘ -'l,~"‘~".n‘l,r.‘,:'|."ha.‘.;“, Q,“l..'t..'i. ‘l .]. N .‘l‘ .~ LS A

Determiners, Entities, and Contexts
Deborah A. Dahl

Paoli Research Center
SDC/A Burroughs Company (now Unisys)

P.O. Box 517
Paoli, PA 19301

1. Introduction

I am concerned with the relationship between the forms of linguistic expressions, noun
phrases in particular, and the discourse entities to which they refer.! That is, when does a noun
phrase introduce a new referent into the discourse? My concern in particular is to specify the role
that the discourse context plays in answering this question. A simple first approach to the rela-
tionship between noun phrases and discourse entities might suggest that definite noun phrases
refer to entities which are assumed to be mutually known to the speaker and hearer, and
indefinite noun phrases refer to entities which are not mutually known, and thus, that discourse
context plays no role at all. This discussion will point out problems with this approach for both
definite and indefinite noun phrases. I will describe examples where definite noun phrases are
used to introduce new referents, and, conversely, where indefinite noun phrases do not introduce
new referents. In the first case, the local focus structure provides a guide to recognising that a
new entity is involved, and in the second case, the recognition that no new entity is introduced is
based on the given/new status of propositions in the discourse.

I will begin by describing certain definite descriptions that introduce new entities. I will then
describe some examples where indefinite descriptions do not introduce new entities. In each case, I
will discuss some related processing issues.

I will restrict the current discussion to deal with cases where the mutual knowledge is based
on the discourse context, rather than on knowledge that the speaker and hearer bring to an
interaction. In the cases of indefinites, I will also resirict my discussion to sentential contexts
where an indefinite could introduce a new entity; in other words, to specific contexts, as dis-
tinguished from non-specific contexts as discussed in [Prince1981).

2. Implicit Assocliates

The case of definite noun phrases that are intended to introduce new discourse entities has
been relatively well-researched, in particular by[Hawkins1978, Hawkins1984] Hawkins points out
that entities that have a slot/frame relationship with previously introduced entities often have a
definite determiner. For example, in

(1) There were loud noises coming from a starting air compressor. The drive shaft was sheared.

it is possible to refer to the drive shaft with a definite noun phrase because of its relationship with
the previously mentioned starting air compressor, even though the drive shaft has not been men-
tioned. This same relationship is described by [Prince1981] as inferrable, and is also discussed in
[Heim1982]. Because we understand the drive shaft mentioned in (1) to be not just any drive
shaft but the drive shaft that is part of the air compressor mentioned in the previous sentence, a
full understanding of this noun phrase must capture this relationship. The new noun phrase is
implicitly associated with the local focus as described in [Dahl1986), and[Sidner1879]. In (2d),

1 The research described in this paper was supported in part by DARPA under contract N000014-85-C-0012, admin-
istered by the Office of Naval Research, aad by a post-doctoral fellowship in Cognitive Science from the Sloan Founda-
tioa. 1 have received helpful comments on this paper from John Dowding, Lynetts Hirschman, Marcia Linebarger, Martha
Palmer, Rebecca Schiffmaa, aad Boaais Webber.

May 3, 1987 ol

for example, the referent for the paper seems to be the paper associated with the new package
even though there is a previously mentioned entity which matches the noun phrase; that is, the
paper in (2b).
(2) a. A package arrived yesterday.

b. The wrapping psper was beautiful.

¢. While I was admiring it, another package arrived.

d. I removed the paper.

After the focus change to my package, the associates of the new package seem to be pre-
ferred as referents over previously mentioned items, even if the old items had been in focus at one

time. This is consistent with Sidner’s algorithm.?

3. Specific Attributives

The second main point to be dealt with in this paper is that of indefinite noun phrases in specific
contexts, which nevertheless fail to introduce new discourse entities. Most of those who have dis-
cussed indefinites seem to have assumed that an indefinite reference in a specific context invari-
ably introduces a new discourse entity. This includes the discussions in [H.Clark1977] and
[Heim1982]. However, there is a class of indefinites, which I have called specific attributives
[Dahl1984], which I claim do not have this function.

Consider the example,

(3) a.Dr. Smith told me that exercise helps.
b. Since I heard it from & doetor, I’'m inclined to believe it.

An entity, Dr. Smith, is introduced in (3a), and an indefinite noun phrase, & doctor, is used in
(3b). It is clear that this noun phrase is not intended to introduce a second doctor into the discus-
sion. This is an example of & speeific atiributive. I use the term specific in the sense that a

6 specific reference means that the speaker has a particular individual in mind when s/he uses the
indefinite description. It is clear in (3), for example, that the speaker did not hear that exercise
helps from some unspecified doc¢tor, but from Dr. Smith.

The term attridstive, as used by [Donnellan1971], can also be applied to these indefinites,
although it was originally suggested only for definites, because the specific identity of Dr. Smith is
not relevant to the predication, only Dr. Smith’s attribute of being a doctor. (See[Dahl1984.] for
detailed arguments about the applicability of this term.)

There are two important issues that must be dealt with in a treatment of specific attribu-
tives. First, there is the issue of recognising that the noun phrase in fact is not being used to
introduce 3 new entity. Second, it is necessary to recognise the speaker’s purpose in using an
indefinite noun phrase, when a definite noun phrase would have been possible. Both of these issues
have implications for langnage generation as well as understanding. For example, in the first case
a language generator will have to decide when it is possible to use a specific attributive, and in
the second case, it will have to decide whether a specific attributive would be useful in accom-
plishing its communicative goals.

I have previously suggested Dabll®8¢ (ha¢ 5 gpecific attributive can be recognised by its
occurrence in a proposition that is given as in (3), is related to a given proposition by simple
entailment as in (4), or is related to a given proposition by a plausible inference, as in (5).

(4) Mary and Bill both volunteered to walk the dog. Since at least one persos is willing to walk
the dog, we don’t have a problem.

1A discussion by (Heim1982] suggests that introduction of a new antity with a definite noun phrase is a violation of

» felicity condition, and is therefore to be bandled by a repair or accomodation mechanism. Since accommodation mechan-

isms are typically triggered by the failure of normal processing, Heim’s approach suggests that a failure of normal process-

ing would have to occur before a system could recognise that a new referent was being introduced. If nermal precessing

means searching through the discourse context for a referent matching the new description, then the example in (2) pro-

@ vides evidence against this position, since the correct processing cannot have been invoked by the failure to find a match-
ing referent in the previous discourse.

May 2, 1987 -2-

0
!

Ole DRDOOO0 D OB OO0 OO0) O 0 TN
Fo e R e T e B e L e T e T A S L SO Yy,

L

LR '5'."!"‘,7!;"

(5) A:I'm afraid I miscalculated Jones’s insulin dosage.
B: What happened?
A: He died.
B: So, & patient has finally died due to your carelessness. (inference 'Jones is a patient’)

Thus, in order to determine when an indefinite introduces a new entity, it is necessary to
know whether the proposition in which it occurs is given or mew. For this, we need a representa-
tion of the events and situations described in the discourse, which can then be examined in order
to determine when a proposition is given or new. Such a representation, of course, will be needed
in any case for pronouns or full noun phrases that refer to events and situations. For example, in
the PUNDIT text processing system, (described in [Palmer1986]), a representation is built for
each event or situation mentioned. A noun phrase like the failure in (8) or it in (7) can then be
recognised as a reference to something previously mentioned.

(8) The starting air compressor failed when the oil pressure dropped below 60 psig. The faslure
occurred during the engine start.

(7) The starting air compressor failed when the oil pressure dropped below 80 psig. It occurred
during the engine start.

The difference in processing between (6) and (7) on the one hand and specific attributives on the
other is that for the specific attributives we are saying that something analogous to reference reso-
lution should be performed on clauses, as well as on noun phrases. That is, we want to ask
whether this event has been mentioned before, or can be inferred from something that has been
mentioned. If so, we can match corresponding participants so that it is possible to recognize that

no new entity is being introduced.’

The second issue raised by specific attributives is the speaker’s purpose in selecting an
indefinite when a definite would have been possible. This seems to be related to the use of
indefinites in general to serve to deemphasise the particular individual referred to while emphasis-
ing its general class. In (3), for example, it is not the fact that this doctor told me that exercise
would help that is relevant, but rather that the person has the property of being a doctor. Notice
the contrast between (3) and (8).

(8) a.Dr. Smith told me that exercise helps.
b. Since I did hear it from the doctor I'm inclined to believe it.

(8) suggests that there is something special about Dr. Smith in particular that makes this advice
reliable, while (3) does not.

To sum up, | have discussed two categories of noun phrases which demonstrate the effects of
discourse context on determining whether a new entity is introduced. Implicit associate definites
introduce new entities which are related to the local focus. Specific attributives refer to previously
introduced entities in given propositions. Minimally, specific attributes have to be recognised, in
order to prevent the creation of an extra discourse entity, and this requires a representation of
given propositions. In addition, a complete understanding of specific attributes requires a recogni-
tion of the speaker’s reason for choosing an indefinite when a definite would have been possible.

References

[Dahl19s4..........]
Deborah A. Dahl, The Rise of Shared Knowledge. Penn Review of Linguisiics 8, 1984,
pPpP. 1-14.

This raises the issue of what discourse goals would be served by repeating something that is already given. There
ate probably a number of reasons to do this. Investigating them would be an interesting topic for future research.

May 3, 1987 -3-

. 1 5 - . ; - L\ S XV,
T AT AT M N R A N A O ot S TR SN N, UL AUIOR M e O i T, DM 1 M 0\

4
X

SRS

fo'é
el
%}

oy -

v, g e

(]
.

[Dahl1984
' Deborah A. Dahl, Recognising Specific Attributives, presented at the 59th Annual
Meeting of the Linguistic Society of America, Baltimore, 1984.
[Dahl1986)
Deborah A. Dahl, Focusing and Reference Resolution in PUNDIT, Presented at AAAI
Philadelphia, PA, 1986.
[Donnellan1971]

Keith Donnellan, Reference and Definite Descriptions. In Semantics, D.D. Steinberg
and L.A. Jakobovits (ed.), Cambridge University Press, Cambridge, 1971.

[H.Clark1977)
Herbert H.Clark and Eve H.Clark, . In Psychology and Language, Harcourt, Brace,
Jovanovich, New York, 1977.

{(Hawkins1978]
John A. Hawkins, Definitencss and Indefiniteness. Humanities Press, Atlantic High-
lands, New Jersey, 1978.

[Hawkins1984]
John A. Hawkins, A Note on Referent Identifiability and Co-Presence. Journal of
Pragmatics, 1984.

[Heim1982] .
Irene R. Heim, The Semantics of Definite and Indefinite Noun Phrases. Unpublished
Ph.D. dissertation, University of Massachusetts, Amherst, MA, September 1982.

(Palmer1986] .
Martha S. Palmer, Deborah A. Dahl, Rebecca J. [Passonneau] Schiffman, Lynette
Hirschman, Marcia Linebarger, and John Dowding, Recovering Implicit Information,

a Presented at the 24th Annual Meeting of the Association for Computational Linguistics,

Columbia University, New York, August 19886.

[Prince1981]
Ellen F. Prince, Toward a Taxonomy of Given-New Information. In Radical Pragmat-
ics, Peter Cole (ed.), Academic Press, New York, 1981.

[Sidner1979)
Candace Lee Sidner, Towards a Computational Theory of Definite Anaphora
Comprehension in English Discourse, MIT-AI TR-537, Cambridge, MA, 1979.

May 2, 1987 -d-

PO A T T TR T TS TN P e RO AT T AT T P PLIR LIS TSy |

APPENDIX F

Verb Taxonomy

This appendix by Martha Palmer gives the complete verb taxonomy for the
verbs in the CASREP corpus. It then lists each verb’s decomposition(s) along
with the associated mapping rules and semantic class restriction rules for the
semantic roles in the decompositions.

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

VERB TAXONOMY

ASPECTUAL

aspectual: run_oxi,start, begin,occur,continue,remain;

COMPLEX:

relational: be,has(symptom),received(usage);
perceptual:(requires propositional agent) dictated,indicates,show,
revealed,noted, find;
propositional:
(degree of certainty): believe,suspect,guarantee;
(requires animate agent): conducting,discovered, ezperienced,
report,receivedS(report,alarm);
causal: activate,cause, result,due;
(partial causality): impact,contribute
not_causal: undetermined
status: required,request,recesve,report;

BASIC:

contact: disconnected;

damaged: sheared,corroded,cracked,erroded,broken,worn,damage,seized;

include: change,repair, install, reinstalled,,replace;

location: comes_from,retained,received®(part),location;

removed: cannibdalized,replace,remove;

primitive: engage,disengage,open,use,pack,manufactured;

symptom: surging,clogging,saturated,contaminated,discoloured,overheating,

wiped(bearing);

investigative: inspect, testing,monitoring,investigation,
trovbleshooting;

maintenance: cleaning, flushing, washing(water);

operating: start(motor),jacks_over,rotate,turn,operate,functional;

inoperative: snoperative,fatled,degradation,restricts,loss(part),
aborted(engine_start);

change_measure: adjust,maintain;

lowered: decrease,drop,loss(scalar);

raised: increase;

The verbs that appear in bold-face in the verb hierarchy tree are listed below in the order in
which they appear in the taxonomy. Each verb is followed by its decomposition and the syntac-
tic mapping rules and semantic class restrictions for the semantic roles in the decomposition. If
the decomposition can be further decomposed, that is included as well, with the mapping rules.
For example, the last verb is reveal,

VERB: decrease

followed by its decomposition,
DECOMPOSITION:

decrease

<-
becomeP(loweredP(patient(p)))

and the associated rules for filling in the semantic roles. The patient role can be filled by the
subject or the object of the sentence, and the semantic class restriction is that it should be a
scalar such as pressure or temperature.

MAPPING AND SEMANTIC CLASS RULES:
syntax: patient <- obj
syntax: patient <- subj

semantics: patient(p) <-
find_type(p,scalar,context)

In addition, decrease can be decomposed further. The becomeP, a time operator is removed,
and then loweredP is decomposed into two belowP predicates.

DECOMPOSITION:
becomeP(loweredP(patient(p)))
<-
loweredP(patient(p))
loweredP(patient(p))

<-
belowP(goal(f),ref_pt(r)) & belowP(goal(g),source(s2))

The new semantic roles introduced by the belowP predicates have their own mapping rules and
semantic class restriction rules.

MAPPING AND SEMANTIC CLASS RULES:
syntax: goal <- pp

semantics: goal(g) <-
check_numeric(g,amount,context)

‘ syntax: ref_pt <- pp
semantics: ref_pt(r) <-
check_numeric(r,amount,context)
syntax: goal <- pp

semantics: goal(g) <-
check_numeric(g,amount,context)

syntax: source <- pp

semantics: source(s2) <-
check_numeric{s2,amount,context)

B OTCOOAM NI . N2 2o

VERB: be

DECOMPOSITION:
be
<-
be_propertyP(mod(some " predicate”expression))
MAPPING AND SEMANTIC CLASS RULES:
syntax: mod <- adj
semantics: mod(some"predicating”expression) <-
true

VERB: believe

DECOMPOSITION:
belisve
<- .
belisveP(experiencer(e1),theme(t))
MAPPING AND SEMANTIC CLASS RULES:
syntax: experiencer <- subj
semantics: experiencer(el) <-
find_type(el,animatecontext)
syntax: theme <- subj
syntax: theme <- obj

semantics: theme(t) <-
find_type(t,prop,context)

2

|
% ‘ VERB: reveal
i DECOMPOSITION:

reveal

<~

cawseP(instigator(il),becomeP (knowP(experiencer(el),theme(t))))
MAPPING AND SEMANTIC CLASS RULES:

syntax: instigator <- pp

syntax: instigator <- subj

semantics: instigator(il) <-
find_event_type(il,investigative,context)

semantics: instigator(il) <-
find_type(il,mechanical_device,context)
syatax: experieacer <- pp

o syatax: experiencer <- subj
semantics: experiencer(el) <-
find_type(el,animate,context)
syntax: theme <- subj
syatax: theme <- obj

semantics: theme(t) <-
true

- L

VERB: seise

DECOMPOSITION:
seise
<-
becomeP(seisedP(patient(p)))
MAPPING AND SEMANTIC CLASS RULES:
syntax: patient <- subj
syntax: patient <- obj

semantics: patient(p) <- _
find_subpart_type(p,spin_element,context)

VERB: erode

DECOMPOSITION:
erode
<. | .
erodedP(patient(p))
MAPPING AND SEMANTIC CLASS RULES:
syntax: patient <- subj
syntax: patient <- obj

semantics: patient(p) <-
find_type(p,mechanical_device,context);find_type(p,component,context)

-7

. VERB: replace

DECOMPOSITION:
replace
<-
causeP(agent(a1),becomeP(exchangedP(object1(ol),0bject2(02))))
MAPPING AND SEMANTIC CLASS RULES:
syntax: agent <- pp
syntax: agent <- subj
semantics: agent(al) <-
find_type(al,animate,context)
syntax: objectl <- obj
semantics: objectl(ol) <-
find_type(ol,mechanical_device,context)
e syntax: object2 <- pp
semantics: object2(02) <-
find_type(o2,mechanical_device,context) &
is_part_of(X,02,context)
DECOMPOSITION:
causeP(agent(al),becomeP(exchangedP(object1(ol),0bject2(02))))
<. .

becomeP(exchangedP(object1(o1),0bject2(02)))

becomeP(exchangedP(object1(ol),0bject2(02)))
<-
exchangedP(object1(o1),0bject2(02))
exchangedP(object1(ol),0bject2(02))
<-
miseingP (theme(t),source(s2)) & includedP(theme(t),goal(g))
Q MAPPING AND SEMANTIC CLASS RULES:

syntax: theme <- subj

-8-

syntax: theme <- obj
semaatics: theme(ol) <-
true

syntax: source <- pp

semantics: source(s2) <-
is_part_of(s2,01,context)

syntax: theme <- subj
syntax: theme <- obj
semantics: theme(o2) <-
true

syntax: goal <- pp

semantics: goal(s2) <-
is_part_of(s2,02,context)

VERB: start

DECOMPOSITION:
start
) <-
causeP(agent(al),becomeP(operateP(actor(a2))))
MAPPING AND SEMANTIC CLASS RULES:
syntax: agent <- pp
syntax: agent <- subj
semantics: agent(al) <-
find_type(al,animate,context)
syntax: actor <- subj
syntax: actor <- obj
semantics: actor(s2) <-
find_type(s2,mechanical_device,context)
VERB: rotate

DECOMPOSITION:
rotate
<-
rotateP(actor(a2))
MAPPING AND SEMANTIC CLASS RULES:

syntax: actor <- subj

syntax: sctor <- obj

semantics: actor(a2) <-
find_type(a2spin_slement,context)

‘ VERB: operate

DECOMPOSITION:
. operate
<-
causeP(agent(al),becomeP(operateP(actor(a2))))
MAPPING AND SEMANTIC CLASS RULES:
syntax: agent <- pp
syntax: agent <- subj
semantics: agent(al) <-
find_type(sl,animate,context)
syntax: actor <- subj
syntax: actor <- obj
semantics: actor(a2) <-
0 find_type(a2,mechanical_device,context)
VERB: fail

DECOMPOSITION:
fail
<-
becomeP (inoperativeP(patient(p)))
MAPPING AND SEMANTIC CLASS RULES:
syntax: patient <- subj
syatax: patient <- obj

semaatics: patieat(p) <-
fad_type(p,mechanical_device,context)

VERB: inspect

DECOMPOSITION:
inspect
<-
inspectP(actor(a2),theme(t))
MAPPING AND SEMANTIC CLASS RULES:
syntax: actor <- subj
syntax: actor <- obj
semantics: actor(a2) <-
find_type(a2,animate,context)
syntax: theme <- subj

syntax: theme <- obj

semantics: theme(t) <-
true

|

‘ VERB: decrease

DECOMPOSITION:
decrease
<-
becomeP(loweredP(patient(p)))
MAPPING AND SEMANTIC CLASS RULES:
syntax: patient <- subj
syntax: patient <- obj

semantics: patient(p) <-
find_type(p,scalar,context)

DECOMPOSITION:

bocomP(lo:erch(pttient(P»)
6 lowmdP'(pltiOﬂ‘(P»

loweredP(patient(p))

belowP(goal{hreL_p¥(e) & belowP(goal(g)sourcs(s2)
MAPPING AND SEMANTIC CLASS RULES:

syntax: goal <- pp

semantics: goal(g) <-
check_numeric(g,amount,context)

syntax: ref_pt <- pp
semantics: ref_pt(r) <-
check_numeric(r,amount,context)

syntax: goal <- pp

semantics: gosl(g) <-
” check_numeric(g,amount,context)

syatax: source <- pp

‘ semantics: source(s3) <-
check_numeric(s2,amount,context)

‘ APPENDIX G

Conjunction in Meta-Restriction Grammar

This paper, by Lynette Hirschman, appeared in the Journal of Logic
Programming, Vol. 4 (299-328). It describes the handling of conjunction in
Restriction Grammar, based on the use of meta-rules. The paper describes how
a number of complex conjunction problems are handled, including the scoping
problems for conjoined nouns, the “comma” conjunction problem, and paired
conjunctions such as both...and.

Unilsys Defense Systems Integrating Syntax, Semantles, Discourse

. J. LOGIC PROGRAMMING 1986:4:299-328 299

CONJUNCTION IN |
META-RESTRICTION GRAMMAR

LYNETTE HIRSCHMAN

> This paper describes Meta-Restriction Grammar for parsing coordinate
conjunction in English. Meta-Restriction Grammar consists of Restriction
Grammar, a logic grammar implementation of Sager’s String Grammar.
plus a metagrammatical component that automatically rewrites *base™
grammar rules into more complex rules to handle coordinate conjunction.
The approach resembles Sedogbo’s approach of “empty clements™ or
“holes.” This avoids the combinatorial explosion due to backtracking in the
e treatment of Woods, Sager, and Dahl and McCord. Restriction Grammar is
well suited to metagrammar extensions, because the absence of parameters
in grammar rules facilitates the statement of metarules. The metagrammati-
cal component generates grammar rules specifying allowable conjoinings at
limited types of nodes, 1o reduce redundancy. Meta-Restriction Grammar
represents both the surface structure and a regularized structure (via
pointers to elided elements) for efficient computation of selectional restric-
tions. This approach is sufficiently powerful 10 handle a number of complex
phenomena, such as comjunction with comma (as distinguished from the
appositive construction), paired comjunctions such as bork ... and.
either ...or, and scoping of left noun modifiers under conjunction. One of
the great attractions of the metagrammar approach is that the grammar can
be translated and compiled, resulting in an efficient treatment of conjunc-
tion (parse times of 1 10 3 seconds per parse). This coatrasts with the
interrupt-driven approsch, where an interpreter generates rules for conjoin-
ing structures on demand. making it impossible 10 compile the complete
grammar. 4

MMMLmMWMCmm PO Box $17
Paoli,
MIMIQS scospted 28 Jamuary 1906

@ THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishiag Co.. Iac.. 1986
52 Veaderbilt Ave.. New York, NY 10017 0743-1086 .86 303 S0

'Syuon Development Corporation is now Unisys Corporation

. 300 LYNETTE HIRSCHMAN

1. INTRODUCTION

Conjunction has long been a major problem for natural-language processing sys-
tems. Conjunction introduces scoping problems of adjuncts relative to the conjoined
clements, problems with null (elided) elements, and generally a potential combina-
tonal explosion of parses. Because of these difficulties, there have been few atiempts
to treat the problem in its full generality.

Among the earliest (and most linguistically complete) efforts was the conjunction
mechanism of the Linguistic String Parser (LSP) {10, 9). Another early treatment
was the SYSCON) approach of Woods [14]. In both of these systems. the goal was a
general treatment of conjunction that did not require an enormous proliferation or
duplication of rules in the grammar. This was done by a general interrupt mecha-
nism activated by recognition of conjunction words, such as and. bur, or the
conjunction comma, as in apples. oranges and bananas. Once such a word was
recognized. normal parsing was suspended; a portion of the definition under
coastruction was dynamically copied to accommodate the conjoined structure. at
which point normal parsing was resumed. The resulting structure (parse tree)
reflected the scoping of the conjunction with respect to other elements in the
sentence, in particular. left and right adjuncts.

The advantage of these treatments was that one general *“metarule™ was sufficient
to generate definitions for all conjoined structures. Also, in the LSP sysiem. the
bandling of comjunction was made largely transparent to the grammar writer by
invoking a special set of routines that automatically detected conjoined elements

o and then iterated restrictions over all conjoined elements.

The interrupi-driveg approach has difficuity in controlling redundancy. as well as
in controlling backtracking. Due to the generality of the conjunction mechanism.
many redundant parses can be generated unless types of conjoining are severely
restricted. The LSP solution to controlling redundancy has been to restrict conjoin-
ing to several types of nodes and to insert various restrictions to remove other
redundancies. The top-down, backtracking strategy also results in inefficient pars-
ing. especially when parsing multiple conjunctions and conjunctions within prepos:-
tional phrases.

More recently, there have been several treatments of conjunction within the
framework of logic programming (2. 13]). Both of these works are based to some
degree on the earlier approaches of Sager, Raze. and Woods. The work of Sedogbo
requires the grammar writer to modify each relevant grammar rule in two ways:
first, a predicate CONJ is added to generate a conjunction option for each rule
where conjunction can occur; second, each element that may be omitted under
conjunction has an empty option. hole. added to it. The Dahi-McCord approach
uses an interrupt-driven interpreter, triggered by recognition of conjunction words.
0 generate appropriate conjunction options. £

The present paper describes a metalogic grammar influenced by the metagram-
matical approach of Generalized Phrase Structure Grammar (GPSG) [4]. Meta-
Restriction Grammar provides an explicit metagrammatical component that auto-
matically generates BNF definitions to parse conjunction. It is based on the
Restriction Grammar framework [6. 7). which, in turn, is a logic implementation of
Sager's String Grammar [5, 12]. Meta-Restriction Grammar uses a compacl

. metagrammatical component to rewrite certain “base” rules of the grammar into
| w more complex rules for handling conjunction. Because Restriction Grammar does
|
|
|
|

DT T AT AN MR R N 8 Ay 2

CONJUNCTION IN META-RESTRICTION GRAMMAR 301

not allow parameters within BNF definitions, it is extremely well suited t0 a
metagrammar approach. In this respect, it extends the treatment of conjunction
proposed by Sedogbo [13]: it builds conjunctions only at certain types of nodes. and
it uses “null elements” (“holes™) to avoid the combinatorially explosive backtrack-
ing approach of Woods, Sager, and Dahl and McCord.

An important feature of Meta-Restriction Grammar is its ability to represent
both the surface structure and a regularized structure. It does this by using
unification to set a pointer from a gap to the filler of the gap; this preserves the
scoping relationships, but also provides fast access to the filler, so that syntactic and
selectional restrictions can be computed easily. Another important advantage of the
metagrammar approach is that the grammar can be translated and compiled [3)].
This contrasts with the interrupt-driven approach, where an interpreter generates
rules for conjoining structures on demand, making it impossible to compile the
complete grammar.

The remaining sections of the paper will describe the implementation of Meta-
Restriction Grammar and its solution to the problem of coordinate conjunction.
Section 2 presents a briel overview of the Restriction Grammar implementation.
followed by an introduction to the String Grammar formalism. Section 3 outlines a
wide range of conjunction problems and how they are treated in Meta-Restriction
Grammar, including paired conjunction such as both...and, comma conjunction.
elision of elements under conjunction, and distribution of left and right modifiers.
This is followed by a brief section on implementation and a conclusion. Four
appendices show various facets of the Meta-Restriction Grammar system: Appendix

" A contains a listing of the BNF definitions for a medium-coverage grammar of
English; Appendix B contains a description of some of the basic data structures.
restriction operators, and routines underlying Restriction Grammar; Appendix C
contains the metagrammar for generating conjunctions, including all of the conjunc-
tion restrictions; finally Appendix D shows some sample sentences with conjunction
which were parsed with the grammar in Appendices A-C.

3. RESTRICTION GRAMMAR

Restriction Grammar is a grammar-writing framework in PROLOG. It is derived
from Sager's String Grammar (S5, 12, which uses context-free BNF definitions,
sugmented by restrictions or constrainte on the shape of the parse tree. Aside from
amy theoretical considerations about logic grammars, Restriction Grammar is useful
simply becsuse a very ive English grammar exists in this framework [{12].
As s member of the class of logic grammars, Restriction Grammar has several
characseristics that distinguish it from definite-clause grammars (DCGs) (8]. First,
the parss tree is automatically constructed by the interpreter, to reflect the context-
fres defmitions successfully applied during sentence analysis. This contrasts with
DCGn. where the grammar writer is responsible for specifying a parse tree by use of
paramssers. (Other logic grammar formalisms, such as Modifier Structure Grammar
also provide astomatic generation of analysis trees.) As in DCGs, the non-
-free poruoa of the grammar is provided by restrictions or constraints.
. the restncuoas w Restriction Grammar obtain the contextual information
the partially built parse tree or by inspecting the input word stream,
frem addbtional parameters (o the BNF definitions. as in DCGs.

H

i

+ % 2 v -)

4 g

, et e . . N
b M A ’ f)‘a“!'."-l"-l" £

LYNETTE MIRSCHMAN

There are several important advantages 10 climinsting enplicit parameters from
the BNF definitions. One advantags is the increased compaciness and readabibkty of
the BNF definitions and their associsted restrictions. since the BNF defimstions do
a0t become clutiered with numerous parameters (sse Appendiz A for the BNF
portion of a running grammer covering a moderate subest of Eaglish). Although
restrictions, when used in the BNF definitions. have no explicst parameters. all
restrictions do. in fact, have paramesters in Restriction Gramsmer. namely ther
starting point in the tree and the cusrent word list: but the interpreser hedes these
from the gramear writer during the formulation of the BNF defimtsons. The second
advantage of hiding parameters is that it simplifies the metagramemar enormousiy
The metagrammar which generates the new rule for compumcuion 15 extremely

. compact, consisting of two rules: one for strings. and the other for head-plus-modifier

structures (see Appeadix B).

One drawback of Restriction Gramsnar is that 1t requires extra meciuners for its
execution, whereas DCGs require only a minimal interpreter supporied derectls in
the PROLOG implementation. However, this extra machanery assd not lead 10 2
loss of performance. We have recently completed the implementation of a flexsble
transiator for Restriction Grammar 3] The transiator converts easch grammar rule
into 8 PROLOG clause very similar 10 a DCG clause: the head coamsts of a
parameterized BNF definition. while the body comsists of comjuncuon aad or
transiated code is then compiled by the PROLOG compiler. Our fieabie traasiator
provides additional eficiency by supporting dynamic rule preming based on the
input word stream. This is done vis mutual recursion betwesa the transisted code
(where no dynamic interaction is required) and imsarpresed code (for dysamc rule
pruning). The flexible translator coupled with dynamuc rule prumag produces a sx
fold speedup over the interpreted version; parse times for most sentences are 1 the
range of 1-3 seconds, including sentences with comguaction (ses Appendix D)

A Limitation on Restriction Grammer is that the parse tree reflects oaly the
keeps a pair of parameters for the comstruction of a separaie semastc represen-
tation during parsing. Restriction Grammar itself makes 80 constraat oa the type
of representation coastrucied by the semantic component. Our present semanix
representation (not discussed here) is assembied by a special set of resinctions.
bowever, we are in the process of implementing 3 composiuonal semanucs based on
lambda coaversion.

It is actually an advantage 10 decoupie the semanuc representation from the
syntactic representation of the input. First. the syntacuc structure 13 avaslable for
those phenomena that are influenced by surface structure (¢.g.. amalyms of focus. or
the interaction of conjunction and wh- construcuions). Second. separstion of semantsc
representation from syntactic analysiz provides a3 more modular sysiem and facib-
tates experimentation with aliernative styles of semantic representation (¢.g. precs-
cate-logic expressions, or lambda notation).

The Restriction Language

An exscution mechsaism coatrols the applicanon of BNF defimtions and associated
restrictions. Restrictions are applied at the pownt at whuch they sppear 1n a BNF

vl ".l. .""- ’ "". .l‘ .'- f “ ' :

o, A

L T === gt
. CBNNUNCTION 1IN META-ASSTRICTION ORAMMAR 303

dufinition, thet is, sfter the sede 10 the loft has besn construcied. and before the
aods o the sight hes besn cvented. Each restriction imposss some constraint on the
passs 908 ¢f en the insoming werd stream. For restrictions which examine the parse
uumw-umuwwdu-mrmum No

child end mmmediots rigit sibling of the current sods i the tree. and Werd 13 the
mwmuw.u—ummmuum,mm
poocidas the ability to find daughter and (right) sibling sodes s » tres.

The Paib dote strustuse consists of the functior up or Ik, with two arguments.

o samely the nede renshed by going cns seds up or left. and the remasnder of the

poth as the sovsnd argument:

ub(TresTorm, up(Pesent PesentPah)).

k(T Tamm, sf(LABD LABRPb)).

The four primitive wes relations ase shown Figure 1. These reistions sseume
that the first argument (the curvent lssstion) » instantisted. dunng execution. the
sssond argument is instantiated 10 the new locasuon (child /nght ub, parent left
tib). The daugleer (dowm) or rghr %b (right) node of the current sode 1s gven by
the appropnase feid of the current node’s TresTerm. the NewPush (rom a dsughter
(or right ub) » returned as wp(TreeTerm, Path) (or lef(TroeTorm. Path)) The

dowa(liah(Troe Tarm.Poth). ki New Tres Tarm.up(Troe Torm Path 1)) -
TrTom = u(_ NewTresTorm._._). ssover(New TresTerm)

! righetlini(Tres Torm. Path), igh(New Tree Tarm el Troe Tarm Path))) -
TresTerm = u_._NewTresTorm.). nesvas(New TreeTerm)

wp(lial(_ up(NewTrosTorm.NewPath)). bak(New Tree Term NewPath)) -
asaves(Neo Tre Term). '

wpliak(_JefNewTreeTorm NewPash)). Parent) -
ssaven(New Troe Torm), up(habiNew Tree Term NewPath). Pagent)

lefvliak(_Jofu(New Tree Term NewPath)). knb(New Troe Term NewPath)) -
' ssavaxNewTresTerm)

AR N AN NN !)_mnﬁ. ¥ ?}Yﬂ&?}\;"‘;‘t}\l‘-; YR L ’ Jaradate L s Y

. 204 LYNETTE HIRSCHMAN

parent (wp) or left sib (left) node is found from the Path of the current node: in the
case of parent, it may be necessary to move through all siblings until the parent is
reached.

These relations have a procedural flavor, inherited from the implementation of
Restriction Llnun'e in the Linguistic String Project system {11}. They have been
implemented in their present form in order to permit easy reuse of LSP restrictions
by preserving the functionality of Restriction Language. The higher levels of
Restriction Language are more syntactic in motivation and correspondingly less
procedural. As our system diverges from the LSP system, we plan to replace these
Jow-level procedural operators with their nonprocedural counterparts (e.g.
child /parent, sibling).

In addition 10 the tree-examination primitives, there are the label(Node, Name)
relation between a node and its name (given by the label field in the tree term). and
the werd(Nede, Weord) relation between a node and the word(s) it subsumes (given
by the word field of the tree term). Layered on top of the basic tree relations are the
restriction operators (11}. Some of these operators are described in Figure 2. Routines
are built up from the elementary restriction operators and other routines: a few are
described in Figure 3. The clementary restriction operators and the routines provide
a modular framework and allow the grammar writer to capture important linguistic
peneralizations within the string grammar framework.

o MIGURE 2. Primitive restriction operators.

lovkahond: scams the word siream for & particular word;
ompty: Mlndtwwuuuuply.
ascond: ascends to

¥
{
3=
i
it

E
E
|

descond
wordl . mum'mwdmthem:t;un:
nextl: examioes the i)

PIGURE 3. Systactic routines.

core(Stars, Head):

finds the lingmsuc Head of the comstruction

dominsted by the node Sier.
lefi_adyuncu S1en, LafiAdywnct) /nght qms:an R:ghud,mu

flnds the left/right adyunct of tbe comstruction 10 which Start occurs
hoad(Siart . Head)

m that Ssarr 1s withun an adjunct.

the Head which the adjunct modifies

gw1_verdy Siant Verd):

starts from the assertion and locates the main verb under asseruon
gu1_oby(Ssert Olyect).

. sarts from the assertios and locates the object of the main verd

G R S R L N R I T TN S

CONIJUNCTION IN META-RESTRICTION GRAMMAR 308

String Grammar Concepts

String Grammar distinguishes two classes of structures: exocentric (“headless”)
constructions, and endocentric constructions (constructions with a head or center).
The distinction between endocentric and exocentric constructions is taken from
Harris's early work on string analysis [5], but has its root in classical structural
linguistics, e.g. in Bloomfield (1).

The constituents of an endocentric construction form a phrase of the same
category as the head of the construction; for example, the old disks is a noun
phrase, whose head is the noun disks. The constituents of an exocentric construction
form a phrase of a different category than the categories of its constituents. An
assertion, for example, consists of a noun phrase plus a verb phrase, but is not of
the same category as cither. Similarly., a prepositional phrase is made up of
a preposition and a noun phrase; it is considered to be neither a noun phrase
nor a preposition but rather a distinct entity whose distribution differs from nouns
and prepositions.

In string analysis, exocentric constructions are called strings (it is this notion of
string that gives its name to the Linguistic String Project). A string consists of rwo or
more obligatory elements plus optional string adjunct (sa) elements. For example,
an assertion can be defined as having obligatory elements-subject + verb + object,
with interspersed sa’s; a prepositional phrase (pn) is also a string, with obligatory
preposition p plus noun string object (nsigo):

assertion :: = sa subject sa,verb,sa,object sa.
paz=*p.astgo. (* indicates a terminal symbol)

In Restriction Grammar, the endocentric constructions are called /xr construc-
tions, derived from LSP terminology for left-adjunct + x (bead) + right-adjunct. An
Ixr comstruction consists of a (possibly empty) left adjunct, a head, and a (possibly
empty) right adjunct. This is used to define noun phrases, adjective phrases. and
various forms of verd plus associated modifiers (tensed verb v in the /ror construc-
tion, present participle ving in the lvingr, past participle ven in lvenr, and infinitive
v in lor). These endocentric constructions are shown in Figure 4.

Restriction Grammar, following the LSP implementation. provides a mechanism
for grouping nodes together into syntactically motivated fypes. Some of the major
types are shown in Figure 5. These are atomic (lerminal) elements. strings. /xr
constructions, adjuncts (adjser), and left /right adjuncts (ladjset /rad)set).

Using the type definitions and the related notions of [xr and string siructures. we
can define a number of additional routines which capture basic linguistic relation-
ships. For exampie. the routine core finds the head of an Lxr construction; ger_verd
finds the main verb under an assertion; and ger_obj finds the complement of the
main verb under an assertion. These last two operations are nontrivial because the

FIGURE 4. Ixr constructions.

lor:: = lo,avar.m. (where nvar becomes a noun or promoun;
lar:: =l %adj. ra. (® indicates a 1ermunal symbol)
Itvr m v, %tv v,

lvingr:: = lv, *ving, rv.

Ivenr:: @ lv,*ven,rv.
r: = v, %, v

+ a——

e oy

306 LYNETTE HIRSCHMAN

type(stom{d,n.int.null.t adj.ven,peo,tv.nullob;.v, vn..qmnn.mﬂwh.wp
type(string.{assertion,pa.opa.nrep, thats, 1ovo, veno,vingo,veapass)).
type(adjset] n.h.lvm.m.rv.hnb

type(ixs flnr Jivr,lvr Jvings Jvenr jar]). -
FIGURE S. Selected type lists.

grammar handles ail verbs, including auxiliaries, uniformly in terms of strict
subcategorization for possible complement types. Thus a verb such as have has as
its complement types the past-participle construction (vemo = past participle +
abjm).uwenutbedinct-objact(mgo)mﬁon.ﬁnihﬂy.thevabbchu
the progressive construction (vingo = present participle + object) as 8 complement
type, and also passive (venpass = past participle + passive object), as well as obyectbe.
which cootains predicate adjectives, pred’ te pominals and predicate adverbials.
The subcategorization is applied to allor .y appropriate objects for each verbd.
The result is a very uniform handling ot .erb complements, but also a “nested”
complement structure, where an object node may well contain a participial form of a
verb (the main verb of the sentence) and its complement. Appendix A shows the
BNF definitions for such objects containing participial forms of the verb.

The distinction between endocentric and exocentric coastructions is central to
String Grammar and is reflected in the specifics of the grammar described here.
However, our general approsch to comjunction is largely independent of String
Grammar theory: if a particular theorv categorizes certain comstituents differently
(e.g., prepositional phrases as endocentric, with the preposition sesn as a type of
case marker), this could be accommodated with minor changes in BNF deflnitions
and specific constraints; it would not affect the general conjunction mechanism.

3. TREATMENT OF CONJUNCTION

The goal of our treatment of coordinate comjunction is to provide a compact.
efficient, linguistically motivated treatment of conjunction. Ideally. this treatment
should be transparent (0 the grammar writer, so that treatment of conjunction can
be separated from a statement of general language rules.

The overall approsch of Meta-Restriction Grammar resembies closely that taken
by Sedogbo [13]. In Sedogbo’s treatment. a conjoined structure is accommodated by
duplicating the entire preconjunction structure following the conjunction. To account
for the elision or reduction that may take place under conjunction. certain elements
are designated as null clements (“holes™ in Sedogbo’s terminology). Thus eliminates
the problem, for example, of separately generating three distinct rules to account for
reduced subject, reduced verb, or reduced object. in the cases shown in Figure 6.
(Parses for these sentences are shown in Appendix D.)

Meta-Restriction Grammar uses a variant on this spproach. Rather than copying
the conjoined strucrture, the metagrammar copies the defimiion. Thus means that all
options and restrictions of the oniginal definition are available for the conjunct. A
“gap” created by reduction under conjunction appears as a special null element.
mulic, in the parse. Each gap keeps a record of the corresponding explicit element by

CONFUNCTION IN META-RBSTRICTION GRAMMAR wm

The feid enginser replaced the board and adjusted the disk drive.
missing suljoct in socand clause

mw*—:‘umauwumuum.
missing eljoct in first clawse

FIGURE 6. String cosjunction examples.

setting a pointer 10 this element;’' the pointer is kept in the word fieid of the tree
term associated with the gap. This makes the implicit “ fillers” of the gaps available
for subsequent ssmentic and symtactic restrictions. but distinguishes these implicit
clements from clements explicitly present in the input word stream.

Pressrvatioa of scoping information is critical to a correct treatment of comjunc-
tion. For example, ia the sentence Everyone takes the bus or dnives a cer. \he subject
of sekes the bus and drives a car is everyome, for purposss of agresment. selection.
otc. However. it is important that there be only one copy of everyone, with logical
soope over the conjoined amsertions: for all persons X, X sakes the bus or X dnves a
car. The responsibility of the syatactic component is 10 preserve this scope informa-
tion while appiving all syniactic constraints. The syntax uses the pointer from filler
0. gap. topather with a special restnction, 0 genersie (vis backtracking) all
syatactically consisient permutations of thess scoping relations; it is left (o semantics
10 determins which is the corvect socopiag of adjuacts.

Proper integration of restrictions and conjusction is important. The LSP system
employed aa clegant resaecution mechamiom [9) 0 hendie the mieracuon of
restrictions with conjuaction. A special routine detected the existence of comyuacts
and placed them on & reszecuion steck. when oae conguact had besn examined. the
Munﬂwyﬂhmtmdhmmw The

nmummwu-mmmd.mumwxﬂ
informstion. all restnctions wvolving the head of s comstruction work equalis well
on explicit or implicit informetion. Thus illustrates the modulanty of the approach
and the advantags of using general routinss (such as cere) 10 800888 IIOrMation \n
PPIOprisie structures.

As disousssd ia the previous section. Restniction Orammer disuaguushes two
classes of SIucCtures SROCERINC CONSIIUCHIONS OF sivwngs. and GRdOCERLNC CONSIN-
toms or ixr comstructions. Since these rasse somewhat different problems. we will
discuss themn separsiely

Conyoimng of Sirngs

A sinag coamsts of two or more obhigatory elements and optional sinng sdjun.t
(20) claments. Conpuacuon witlun s sinag i3 haadied by 3 metarule (shown in
Figure 7) thet allows the opuoasl addition of s comyunct at the end of the sinng

. 8 LYNETTE HIRSCHMAN

geasvate_conj_ste(STRING) :-
M(TRING . — Rule).

a00ort{(STRING :: = (sither), Rule. [or], sa. STRING)),
000r{(STRING :: = Rule, ((cony_wd. sa. STRING,
(W) (weomgd), ('M))

FIGURE 7. Metarule 1o generate CORjUBCHON i Sirings.

followed by a new string and some additional constraints specific to conjunction:
assertien = jelther],s0.subjoct,o0,verb,sa,0bject.sa.jor] sa.0esertion.
amertien == saaubjectsa.verbon.ohject.sa,
((ﬁ_M(W}. {weonjd), (wmuilcObf)): 1

Aatatlh ane,

mmmuﬂ‘s&wnmﬁ;\m1uwhdbynmkmammnu
stes the varisble STRING for esch definition of type siring: gemerste_comj str !
mmmmamwmuawmmmmm
different cases of comjunction. The metarule also adds the comjunction-specific
restrictions (weenj3). (weenjd). and (wamllcObj). which are explained in Figure 9.

In addition to replacing nonconjunction rules with rules containing conjunction.
there is an additional set of deflaitions required for handling conjunction. These are

e showsn in Figure §; the restrictions in these definitions are explained in Figure 9.

These include a defiaition for the conjunction itself (conj wd). which can be either a
conjuaction or & commas followed by a conjunction. The term spword (special
word™) ueed as the conjunction word class is terminology inherited from the LSP's
original interrupt-driven mechanism, which recognized “special words™ to trigger
the intervupt. The spwords include and. or, buwt. as well as, etic. The remaining
definitions in Figure § provide: for elision of elements under string conjunction via
the nulic option. These definitions also contain restrictions to control elision.

Thers are several issuss paculiar 10 the conjunction of string structures. One is
that the required slements of a (noncosjoined) string are nonempty. However, under
conjunction, ene of these required elements (subyect, verd, object) may be reduced.
as illustrated by the sentences of Figure 6. This general approach applies equally to
conjeaction uader the complex objects. accounting for sentences such as:

The foid enginver hepes 10 inssall the drive and 10 replace the board .

The field enginver plans 10 ins1all but not 10 adjust the head .
The suporviser has inssaliod and the field engineer will adyust the disk .

MGURE & Addivensl BNT definitions 10 haadle comyunction.

: = {daulloudy), sulic, | waulisub
| -,.me,)

:‘ = (dnuiioby), sullc

oony_wd '-("L'M

. oomy_wd : = (doony2). *spword

a] -
Mm L I T T TV |

. CONJUNCTION IN META-RRSTRICTION GRAMMAR 309

nlmvo«lumdlmscoqmoﬂyu

there is a *real™” conjunction abead. skipping over the

sext word (to avoid taking comma as coajunction in “, £ad™),
checks that if conj_wd is comma, then there is 3 noncomma
coq‘mahud
:lvubuuﬂc.thenbothmb)ectumnuﬂc.mdobpcusnolemptv.
-duunlhmacon’mcm

Mwndcmuab,muunderacon)mm

Mnnlkmmb)ectdmamgmon
also sets pointer to subject tree from previous conjunct.

Mwmmvubknnduaconjmﬁon

HH

%

! allows verd to be nullc if in a conjunction:
also sets pointer 10 verb tree from previous comjunct
dnulloby:
checks to make sure that the next word is a comjunction
if object is sullc,
then locates the main verb & checks that it is compatible with the object:
sets pointer to explicit object tree in following comjunct

o MIGURE 9. String conjunction restrictions.

:

Restrictions are generally divided into two classes: disqualify restrictions (whose
names begin with a d); and well-formedness restrictions (whose names begin with a
w). Disqualify restrictions apply before a node is built. to determine whether the
appropriate environment exists for applying a particular rule. Weil-formedness
restrictions apply after a node and all its children have been completed. These
restrictions check consistency, for example, between a verb and its object. or subject
verb agreement. In the case of conjunctions, they have another important function.
namely setting the pointer of the nullc (gap) node to the corresponding exphcn
(filler) information. The set of restrictions for string conjunction is shown in

Figure 9.

Conjoining Ixr Structures

Conjunction of ixr nodes presents a different set of problems. The Ixr nodes are

- characterized by having one essential element (the head) and left and right adjuncts
which may be empty or filled. The principal problem in handling conjoined Ixr
elements is to indicate the proper distribution of the adjuncts over the conjoined
elements. The phrases in Figure 10 illustrate this problem.

Because adjuncts may be empty in the normal course of parsing. we chose not to
generate special mulic elements for them, but simply to let them take on null values
when reduced under conjunction. Thus aullc is an option reserved for essential
elements in a string. Adjuncts take on the value null, which can be updated later 10

. include a pointer to the elided information, if it turns out that they are reduced

o VA S R L R P A P O T

310

LYNETTE HIRSCHMAN

the last replacement and adjustment
-whnwbunwmdlhelataéwmm

distribution of adjuncts over both conjuncts

she has had the measles and mumps
= she has had the measles and she has had mumps
no distribution of article over second conjunct

they quickly replaced and adjusted the controller.
= they quickly replaced the controller and

they quickly adjusted the comtroller
distribution of adverb over both conjoined verbs

due to a bad circuit board or wire in the disk drive
= due 10 a bad circuit board or due to a bad wire ? in the drive
ambiguous: in the drive may distribute over one or both conjuncts.

FIGURE 10. Examples of conjoined /xr structures.

under conjunction. This avoids having to decide prematurely whether an element is
empty because it is really empty, or empty because it has been reduced under
conjunction.

The examples of Figure 10 illustrate that conjunction over /xr constructions can
often be ambiguous from a strictly syntactic point of view. The constructions can
only be disambiguated by the use of semantic information. Therefore the job of the
syntactic component is to generate all possible readings, so that the semantic
component can select the correct one. Ideally, of course, the syntactic and semantic
components are interleaved, so that the choice can be made as soon as possible, 10
avoid a combinatorial explosion of parses. However, the current treatment of Ixr
conjunctions avoids some of the combinatorial explosion of the LSP or SYSCONS
treatments. The LSP and syscon) treatments produced distinct surface structures
corresponding to each distinct distribution of adjuncts. This led to inefficiencies due
to large amounts of backtracking when parsing conjunctions. The Meta-Restriction
Grammar approach is to confine the problem of adjunct distribution 10 several final
restrictions within the Ixr node. Figure 11 illustrates the metagrammar rules used to
generate [xr comnstructions. Note in particular that the rules governing adjunct
distribution, weonj_Ix and weonj_rx (described in Figure 12), are applied only when
the final conjunct has been reached: at this point, they are applied once. to the
entire conjoined structure. Thus if it turns out later that it is incorrect, backtracking
occurs oaly into one of these restrictions, a0t into the Ix» structure itself.

As indicated by the metagrammar rules, there are three restrictions invoived n
parsing the Ixr constructions; one of them. weony3, allows comma as a conjunction
word only if there is also a “real” conjunction word connecung the final conjunct

FIGURE 11. Metagrammar rules for /xr cosstructions

ysmerase_oomy_lxr(LXR) .-
rewacy(LXR : = Rule)).

sssary((LXR :: -MLluk
L*L&LXR.(-M; Ix).{ woomy_rx).
assery{LXR ::

((comy_wdaa LXR (woomyd).
('cq). (woomy .’

-
MM\LA'*'QA‘;\‘Q»\A\A R S |

CQN!UNCI'ION IN META-RESTRICTION GRAMMAR 311

weonj_Ix
computes distributed elements of Ix under conjunction;
This procedure should compute only distinct readings, via backtracking:
initial reading is distributed reading: backs up into local reading.
Algorithm climbs to top of conjoined LXR pile,
and computes distribution pairwise, traversing down the chain.
weonj_rx
computes the distribution of the right adjunct under conjunction:
it starts from the lowest (last) pair of conjuncts.
assigns the lnghcr of the two either a distributed reading,
or a local
then finds the pext n;hl-ad;unct above the current pair,
and calls itself recursively.

FIGURE 12. Restrictions for parsing /xr constructions.

This rule is general to both the Ix7 and string constructions and has been discussed
above. The other two have to do specifically with the distribution of left and right
adjuncis.

Both wconj_Ix and wconj rx operate from the final element in a series of
conjoined elements. Both operate recursively, computing distribution of adjuncts
pairwise, before progressing to the next higher /x/rx. However, they traverse the
tree in opposite directions. Since the first (higher) Ix is explicit and the second may
be implicit, the algorithm for Ix climbs to the top of the Ixr nest, and then traverses
the structure recursively downwards. For the rx, it is reversed: the lower rx is
explicit, and the preceding one may be omitted. 'ﬂmefore, traversal is done from
the bottom up.

Both constructions draw on the same routines: if the explicit element is empty.
then there is no difference between a distributed reading ana a local reading. since
there is nothing to distribute, as in cars and dogs. In this case. nothing happens and
the restriction moves on to the next pair. If the explicit element is no¢r empty. then it
looks at the other adjunct. If it is filled, then again, there is no distribution of
adjuncts possible, as in the controller and the head. If, however, the other adjunct is
empty, as in the controller and head, then there is a possibility of distributing the
adjunct; this is done by setting a pointer from the word field of the reduced adjunct
slot 10 the explicitly filled adjunct, as described for string conjoinings. The distrib-
uted reading is the first reading generated. On failure, there is a backtrack point.
allowing a local/ reading 10 be generated; this local reading is explicitly marked by
inserting a flag /ocal into the word field of the empty adjunct. The local reading.
bowever, may not always be allowed, for example. if the lower conjoined noun must
share the determiner of the first noun.

The above description applies (0 the general case of left and right adjuncts. but
mot 10 a very important exception. namely the left noun adjunct or /n. Ths 1s
becauss the /v is itselfl & string. consisting of a series of slots for vanous 1vpes of
modifiers:

£ @ (pes, QPEL, 2pSs. Apes.

These slots are for posiuons for arucles (/pos). numencal quanufiers (¢pos).
adgectives (apos). and compound noun modifiers (npos). as 1n rthe dozen crisp
doughmut holes. Dutribution of adjuncts within the /n must preserve proper bracket-

AR AR AN QRS (A qr g0 o0y o]

12

'LYNETTE HIRSCHMAN

ing. That is, in the phrase the dozen crisp doughnut holes and six oatmeal cookies. the
adjective crisp cannot be construed o0 modify cookies, because there is a quantifier
six “blocking™ this reading. Without the second quantifier, crisp could modify

. oatmeal cookies: the dozen crisp doughnut holes and oatmeal cookies. To capture this

“proper bracketing” effect, the code for distribution of In elements is substantially
more complex, as is described below: The general restriction weonj_Ix determines
whether it is dealing with a left noun modifier, in which case it invokes the
specialized code in Figure 13; otherwise, it uses the general algorithm described
above. Figures 14 and 15 trace the assignment of adjuncts for the phrase the last

FIGURE 13. Algorithm for computing distribution of left noun modifiers.

conj_lIn:

computes distributed clements of /n under conjunction. based

on the following observation:
if an element of /n (e.g.. apos) is “local”, then to preserve
proper scoping, cveryvhn;tomn;hlmusxbelocal

Algorithm 10 compute whether parts of lower /n are in scope of upper /a:
given an upper conjoined /» and a lower in.

mark everything to its right as “local™;
2. locate last element of upper /n and of lower /n:
3. if lower element oei lheﬁlleduorloal

and mark it and all elements 10 its left as distributed
or mark it as local and
o0 left in lower & upper lns and repeat step 3
until can’t go left (have assigned scope 10 all elements)
This procedure should compute caly distnct readings. via backtracking

FIGURE 4. Initial assignmeent of distributed adjumcts.

Trace showing diseribunion of edjuncts wm lar for phrase.
the last seplasement and adjustmant of the disk
Reading: she lass repiacemen: of the disk and the last adpaiment of the dish
*® doing weony Ix m LN
> > merked npes locel
apes s nevnull
> > marked apes distrobuned
(will merk oll claments 10 1ts left & “copeed™)
(NOTE. “copesd™ means setting a powser (rom gap to Aller)
> > Tree from wpper LN aher merkiag clemests

I
Ppos
te = the

apos
oy = = lant

over

8 = = rgplecement
= = copesd ps
cony_wd

wpword = = wad
lor

»

8
0
2

P
nstgo
nsyg
Inr
s

tpos
t= = the

avar
n= = disk

FIGURE 14. (Cootinued)

FIGURE 18. Assigament of adjuncts on backtracking into /nr.
Trace showing backtracking into local reading of apos in Inr for phrase:
the last repiacement and adjustiment of the disk.
. Reading: the lasi replacement of the disk and the adjustment of the disk

> > merked apos local

> > marked gpos local
pos is non-mall

> > marked tpos distributed

G > > Tree from upper LN after marking elements

WIAIA L (AW ey & o AL N R AW O

314

LYNETTE HIRSCHMAN

replacement and adjustment of the disk. Figure 14 shows the initial distributed
assignment; Figure 15 shows the parser backtracking into the In and assigning a
local reading to the adjective slot.

The distinction between conjunction at the string level and conjunction at the /xr
level allows the grammar to avoid the generation of spurious ambiguities. For
example, Sedogbo comments that his grammar, unless constrained by restrictions.
generates two readings for the sentence John and Peter sieep, one with conjunction
at the noun-noun level, and one with conjunction at the level of conjoined subjects:

subject (inr and Inr) verb nullobj.

subject (nullc verd + nullobj) and subject verb nullobj.
We avoid this in Meta-Restriction Grammar by limiting string-level conjuncuon to
a single “hole,” which may be the object in the upper conjunct or the subject or

verb in the lower conjunct. Thus we get a single parse for this, with no addiuonal
restrictions.

Coverage

The grammar described here covers a wide range of conjuncuon phenomena as
listed below.

e Paired conjuncts such as botk...and and either ...or are handled b the
appropriate alternative in the metarules.
e Comma conjunction, such as] ate apples, oranges. and pears. s handied b+
' the same mechanism as other conjunction types. except that the comma s
allowed as a conjunct only if it occurs in a sequence of comjuncuons ending
with a “real” conjunction, such as and.
o Distribution of left and nght modifiers over conjowed hesd-pilus-madine
(Ixr) constructions is accounted for in full generahity
o Conjunction of [xr constructions 1s accounted for by a ungle meta-rute ¢ g
black and white
can and should
heart and kidney s
installed and adjusied
are all instances of comjotning of /x7 construction.

o Comjuncuion st the stnng level including prepouting ph-swr oo
and complex objects. 1s handled D+ 5 ungle merarue ¢4 - o~ .
land. and they aie well and siep: woii and Mo the -« acwe

* Spunous ambaguities a7T¢ svosded M L oMalTmfing ey -
onlv a nagle hole per sinng

At the present ume Marcis Lineharper - m N* N o
exiending (e Srammar (o OV MLetNT TAuse MR e - =
COMUACUON Mth he relsive .iquer o Jues < -
strmghtiorward he gramme’ wrest! Semte & =

16 We wnll dewnhe i scwd ~ vy - v -

AD-R181 562 !NTEBRRTING SYNTAX SEHRNTICS AND DlSCOURSE DBRPH
NATURAL LANGURGE UNDERST.. (U)> UNIS CORP PIWLI PR
PAOLI RESEﬁRCH CENTER D DFIHL ET ﬁL 14 MR 7

UNCLASSIFIED NO0014-85-C-0012 F/G 577

- NP e A ST - NPT ikl SOVERA W { T

: R RN

e)
Wt u', e et

FFERFEREE
EEEE

E

ingl [
o BN

s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

- 2y -

>, 1 - \d '
e a‘\ t‘, "‘l..'t.. e '- NI A .‘6 o
N) Q0N r * O c K
Sttty l v R ey WX
H 4'.‘A"‘-“¢‘l‘ ‘5. (1 l.‘.. ‘ .
LACLAA R A NN) - \ . U
4 U RO «'405‘. ;l lg 03 h
) . i \J ‘
et 0L ‘ OO X
~ R e P '. ¥,

% {
(Al \ %
", ‘l

' t
c ';' ‘u' 'l

:‘

CONJUNCTION IN META-RESTRICTION GRAMMAR s

1. Conjoined assertions with reduced object in relative clause:
The disk which he inswalled and she repaired has failed.
2. Conjoined assertions with reduced subject in relative clause:
MMMWWPMM
regularly has been removed.
3 Coqoundlwmnlmveclmu
The disk which he repaired and installed has failed.
4. Comjoined vemo in relative clause:
The disk she has repaired but not installed is old.
5. Conjoined wh_guestion with reduced subject:
What has been installed but has not been repaired?
6. Conjoined wh_guestion with reduced subject:
Who has installed or will soom install the disk?

7. Conjoined yesnoq with reduced object:
Hahemmlladordmhemad:ommll:haduk"

g ———y

FIGURE 16. Coverage of conjunction interacting with relative clauses and questions.

e A ter nl"'q.‘m

There are two limitations to the current coverage of conjunction: first, we have .
not yet investigated distribution of sentence adjuncts at the string level; and second. '
conjunction of subparts of certain complex objects is not yet handled (e.g.. the car
drove through and completely demolished the window). Implementations for both of
these have been sketched out and do not appear to impose any major problems. :

4. IMPLEMENTATION

The current system is implemented in Quintus PROLOG running on a VAX 11 /785
under Berkeley 4.2 Unix. The system also runs ih PROLOG on a Symbolics 3640.
The parsing times shown in Appendix D are for the translated, compiled grammar
plus metagrammar listed in Appendices A and C, running in Quintus PROLOG on
a moderately loaded VAX 11 /785. This grammar includes some 60 BNF definitions
and some 30 restrictions.

S. CONCLUSION

The previous sections have described a broad-coverage treatment of coordinate
conjunction within a metagrammatical framework. The emphasis has been on
parsing strategies to generate all possible readings. Clearly, the parsing strategy
must be coupled with semantic strategies to choose the correct reading. in case of
ambiguities. However, the parsing strategy has been carefully designed to eliminate
spurious redundancies, as well as to handle some difficult constructions rarely
mentioned in the literature (comma as a conjunction, scoping of left noun modifiers.
parsing of appositives, treatment of paired conjunctions such as both... and.
either ... or). The metagrammar treatment offers an unusually compact and efficient
method of capturing a wide range of conjunction phenomena.

KON AR o A A e D OO AN A AN O DU i T 0 € o N

‘ : 316 LYNETTE HIRSCHMAN

APPENDIX A. LISTING OF BNF DEFINITIONS AND TYPES
/* root node */
rootnode(sentence).

/° baf definitions */
sentence :: = center, (W H il |
center:: = assertion.
tense :: = (Iv,*w,rv);null.
assertion :: = sa,subject,{wsell}.sa,verb,(wagree} sa.object.sa.
sa:: = *d;*int;pn;null.
pull::= .)
pn :: = *p,nstgo,commaopt.
commaopt :: = (",'};nuil.
subject :: = nstg;({dquestd) nullwh);[there].
opullwh:: = .
nstg :: = (Inr,{ wcount});nrep.
Inr:: = In,(win).nvar,(noun_agree}.rn.
nvar:: = ‘.n;‘pro;({dnl}.nulln.{wnl -
pulln::= .
In :: = tpos,qpos.apos,npos.{np_agree).
:: = *;whin;null.
whin :: = ((whose];{which};{what]:howqastg).
o _ howqastg :: = [how},(Imuch];[many])(({of],*t):nulD).
. qpos :: = *q;nuil.
apos :: = *adj;*ven;null.
npos :: = nnn;null.
ann: = {dn1},(*n;(*n,nnn)).
| m :: = pn;vingo;venpass;null;appos.
| ‘appos:: =[.'hastgf,)
; nrep :: = [what],subject,sa.verb,{wwhl},sa.
verb :: = ltvr;lvr.
Itvr:: = v, *tvrv.
lvingr :: = lv.*ving.rv.
Ivenr:: = lv,*ven,rv.
fvr: = v, *v,rv,
Iv:: = *d;null,
rv:: = pn;*d;null.
object:: = (dverbobj}.(nstgo;pn;npn;((dsel6}.objectbe);veno:nullobj;tovo).
{wverbobj}.
nstgo :: = nstg;({dwhl),nullwh).
npn .. = nstgo,pn.
objectbe :: = asig;nstg;pn;vingo;venpass;({ dwh2),nuliwh).
astg:: = lar.
lar:: = Ja,*adj,ra.
la:: = *d;null,
ra:: = pn;null.
vingo :: = {dsel5) lvingr,sa,object,sa.
@ venpass :: = {dsel4},Ivens,(wpassobj1}.sa,passobj.sa.
veno:: = {desld} Ivenr,sa,object.sa.

CONJUNCTION IN META-RESTRICTION GRAMMAR n?

thats :: - (-t'h;thﬁm.
tovo :: = [to],}vr,sa,0bject,sa.
passobj :: = (nulloby;pn),(wpassobj2}.

[J m [] /
épe(lwm.[d'n.im.null.udj.ven.pro.tv,nullobj.v.ving.q.nulln.nullc.nullwh.w]).
type(string [assertion,pn,npn.nrep,thats,tovo,veno.vingo.venpass)).
type(stgseg.jassertion,tovo,vingo)).
type(adjse[sa.ln lv,m.rv lara)).
type(ladjset[In.lv.la]).
type(radjset,[mn.rv.ra)).
type(ixr,finr,ltvr vz Ivingr.lvent,lar)).
type(verbal [lvingr Jvenr lvr ltvr, verb]).
type(conj_word,{conj_wd,‘and", ‘or’]).

APPENDIX B. ELEMENTARY DATA STRUCTURES, OPERATORS,

AND ROUTINES
% DATA STRUCTURES

tt(Label, Child, RightSib, Word).
link(TreeTerm, up(TreeTerm, Path)).
link(TreeTerm,left(TreeTerm, Path)).

SMOVEMENT OPERATORS :
down(link(TreeTerm,Path) link(NewTreeTerm,up(TreeTerm, Path))):-
TreeTerm = tt(_NewTreeTerm, ,_).nonvar(NewTreeTerm).

right(link(TreeTerm, Path) link(NewTreeTerm,left(TreeTerm,Path))):-
TreeTerm = tt(_, ,NewTreeTerm,).nonvar(NewTreeTerm).

up(link(_,up(NewTreeTerm NewPath))link(NewTreeTerm,NewPath)):-
ponvar(NewTreeTerm),!.

up(link(_,Jeft(NewTreeTerm NewPath)),Parent):-
nonvar(NewTreeTerm),up(link(NewTreeTerm,NewPath),Parent).

lefi(link(_,Jeft(NewTreeTerm,NewPath)) link(NewTreeTerm New Path)):-
nonvar(NewTreeTerm).

% RESTRICTION OPERATORS

lookahead: scans the word stream for a particular word;

empty: checks a node to test if it is empty;

ascend: ascends to the node (type) given in argument 1,
passing through nodes (or node types) listed in argument 2.
not passing through nodes (or node types) listed in argument 3,
starting at the node in argument 4,
terminating at the node in argument 5

318 LYNETTE HIRSCHMAN

descend: does a breadth-first descent through the parse tree,
with the same five arguments as ascend;

wordl: examines the current word in the word stream;
nextl: cxamat.he next word in the word stream.
% ELEMENTARY ROUTINES

element{NodeNames, Start, End):
searches for a node of type NodeNames
(a list of node names or the name of a rype of node)
among the children of Start, storing the node in End:
i NodeNames, Start, End) /r(NodeNames,Siart, End):
searches for a node of type NodeNames to the left/right of Start;
last_elemens(Start, End). .
searches for last child under Start and stores it in End;
last(Start, End):
searches for last sibling (or coelement) under Start, storing it in End.

% SYNTACTIC ROUTINES
core(Start, Head):
finds the linguistic Head of the construction
dominated by the node Starr.
left_adjunct(Start, LefiAdjunct)/right_adjunct(Start, RightAdjunct):
finds the left /right adjunct of the construction in which Siarr occurs.
head(Start, Head):
given that Start is within an adjunct,
finds the Head which the adjunct modifies.
get_verb(Start,Verb). ‘
starts from the assertion and locates the main verb under assertion.
get_obj(Start,Object):
starts from the assertion and locates the object of the main verb.

% CONJUNCTION ROUTINES
checkNotEmpty(Node):
checks that a node contains neither an actual word.
nor a copy of a word implicit under conjunction;
copyNullc(EmptyNode, FilledNode)
1. if FilledNode has an entry in its word field that is a tree term
(it has already been restored under conjunction—see 2),
then it is stored in the word field of EmptyNode:
2. If the word field of FilledNode is a word (the normal case).
then the tree term associated with FilledNode is copied into
the word field of EmptyNode.

APPENDIX C. METAGRAMMAR FOR CONJUNCTION
% META-RULES FOR GENERATING CONJUNCTION STRINGS

:1-0p(1200,xfx, :: =),
-op(950.xfx,:).
:-op(500,fx,*).

CONJUNCTION IN META-RESTRICTION GRAMMAR 319

gen_conj :-of_type(ixr,LXR), generate_conj_lxr(LXR),fail.
gen_conj :-of_type(string, STRING), generate_conj_str(STRING).fail.
gen_conj.

generate_conj_Ixr(LXR) :-
retract{(LXR :: = Rule)),
assert((LXR :: = [both],Rule{and),sa,LXR,{wconj_Lx}.{wconj_rx})).
asseri((LXR :: = Rule,
((conj_wd,sa,LXR,{wconj3});
{weonj_Ix},{weonj_rx}))).!.
generate_conj_str(STRING):-
retract((STRING :: = Rule)),
assert((STRING :: = [either],Rule,for),sa.STRING)),
283ert((STRING :: = Rule,((conj_wd.sa,STRING,
{weonj3).{weonj4}, {wnullcObj));
null))),!.

of_type(Type.Member) :-
type(Type,List),' isin(Member List).

% CONJUNCTION DEFINITIONS

° . subject :: = {dnullsubj},nulic,(wnulisubj}.
verd :: = {dnullverb}.nullc,{wnullverb}.
object :: = {dnullobj},nullc.

nullc:: = . :

conj_wd:: =[], *spword.

conj_wd:: = {dconj2}, *spword.

% CONJUNCTION RESTRICTIONS

/* dnullsubj
checks if in scope of conjunction by looking for conjunction
to the left of the parent (assertion) node

L]

/

dnulisub)(S, W) :-up(S,Assert).((conj_word.Assert, CW),

/* dnullobj
checks if in scope of conjunction by checking that next word
is conjunction word (has attribute “spword™)

®
/
dnullobj(_S, W) :-
word(W, X:[_Root,spword:_Y)).
/* dnullverb
checks that verb is within conjunction scope by ascending to nearest
assertion and checking that it is preceded by a conjunction

0 dnullverb(S, W):-
ascend(assertion,_,adjset,S.Assert)J(conj_word,Assert, CW).

30 LYNETTE HIRSCHMAN

/°* waullsubj

allows subject to be null if in a conjunction;
also Alls in word field with subject tree.

*

/

waullsubi(S,) :-

% test that immediate node is conj. word
up(S.Assert),(conj_word,Assert,Conj).

% locate value of subject.
Ksubject,Con;j.Subj), down(Subj,SubjValue),

% locate nullc and set pointer from nullc to subject into word field
down(S,Nullsubj).copyNullc(Nullsub;j,SubjValue).

/* waullverb
allows verd to be null if in a conjunction;
also sets pointer in word field to verb tree.

waullver(S,_):-

% test that immediate node is conj_word
up(S,Assert) l(conj_word,Assert,Conj).

% check that subject is not nullsubj
((clemeny(subject. Assert.Subj). !, not(element(nulic,Subj, Nullc))):true).

% locate core of verb, to set pointer from nullverd
get_verb(Conj,V).down(V,VValue),

‘ % locate nullc and set pointer to verb

down(SNullverb),copyNulic(Nullverb,VVaiue).

/* waullcObj
if object is nullc, then locate the main verb:
make sure that it is compatible with the object;
set pointer to explicit object in word field of nulic object.

wnullcObj(S,_W) :-

% if object is nullc
element([object.passobj].S.0bj).down(Obj. Nullc).

. test(nullc,Nulic,Nulic),!,

% then locate the verb
get_verb(s, V),

% find the conjoined explicit object
last_coelement(Obj),LowS).
get_obj(LowS,LowOb;j),down(LowOb;.0bj Type).

% make sure that the explicit object goes with the verb
check VerbObj(Obj Type.V),

% set pointer 0 it from the word fieid of the nullc object
copyNullc(Nullc,Ob; Type).

waullcObj(_,).

/* deonj2
if present word is comma, allows conjunction only if, skipping
next word (1o avoid taking comma as conjunction in *, and™).

0 there is a “real” conjunction ahead.

*/
deonj2(_SJ[',’:_X|MoreWords)) :-!,

nexti{ MoreWords,Next),

lookahead(spword [andstg.orsig) Next, Out).
dconj2(_S,_W).

/°® weonj3
checks that if conjstg is comma. then there is a real conjunction ahead.

[]

weonj}(S, W) .-
(element(conj_word.S,C),last_element(C.CWD).not(word(CWD.".")).!).
(element(lxr,S,LXR).!.wconj3(LXR.W));
(clement(string.S.String).wconj3(String. W)).

/* weonj4
if verb is nullc, then both subject is not nullc, and object not empty
and it is within a conjunction

*/
weonj4(S,) :-
Kconj_word.S._C).!,
element(verb,S.V).((clement(nullc.V._Nullc).!.clement(subject.S.Subj).
not(empty(Subj)), element(object.S.0bj). not(empty(Obj))):true).
weonjd(.). :
/* weonj_Ix
computes distributed elements of /x under conjunction:
this procedure should compute only distinct readings. via backtracking:
initial reading is distributed reading: backs up into local reading.
Algorithm climbs to top of conjoined LXR pile.
and computes distribution pairwise. traversing down the chain.
L]
weonj_Ix(LXR.):-
topLX(LXR.TopLX).
last_coelement(TopLX.NextLXR).
((test(lxr NextLXR.NextLXR).!.
nlprint("# found next Ixr’),
element(ladjset,NextLXR.LowLX).conj_Ix(TopLX.LowLX)).
true).
topLX(LXR.TopLX):- :
Kladjset, LXR,UpLX),! .up(UpLX.NewLXR).topLX(NewLXR.TopLX).
topLX(LXR,TopLX) :-
element(ladjset. LXR.TopLX).
conj_Ix(UpLX,LowLX):-
test(In,UpLX,UpLX).!.
conj_In(UpLX,LowLX).
conj_lx(UpLX.LowLX):-
((checkNullValue(UpLX).!).distrib_adj(UpLX.LowLX)).
((next_pair(LowLX,NewLowLX).!.conj_Ix(LowLX NewLowLX)):true).

-y

‘v.:;;

SEEN
L3 SRR

-
| nai

LYNETTE HIRSCHMAN

conj_In
computes distributed elements of In under conjunction, based
on the following observation:
if an element of In (e.g.. apos) is “local”, then to preserve
proper scoping. everything to its right must be local.
Algorithm to compute whether parts of lower In are in scope of upper In:
given an upper conjoined In and a lower In,
1. move through lower In and if an element is filled.
mark everything to its right as “local”;
2. locate last clement of upper In and of lower In:
3. if lower element neither filled nor local.
then if upper element is filled,
then cither set pointer to it in lower element
and mark it and all elements to its left as distributed
or mark it as local and
go left in lower & upper Ins and repeat step 3
until can't go left (have assigned scope to all
elements).
This procedure should compute only distinct readings. via backtracking.

RNRRAANRARAARRARRARARARN

conj_In(UpLN,LN):-
down(LN,LNelement),mark_In(LNelement),
% get last elements of upper and lower ins
last_element(UpLN,ULast),
last_element(LN.Last),
mark_distrib(Last,ULast),
do_next_conj(LN).
do_next_conj(LN):-
pext_pair(LN,LowLN),!,conj_In(LN,LowLN).
do_next_conj(_LN).
next_pair(LN,LowLN):-!,
r(ixr,LN,LowLXR),
element(ladjset, LowLXR,LowLN).
/* if copy filled, then don’t do anything */
/° otherwise get next elements of Main and Copy and repeat, */
/* or succeed if can't go left */
mark _distrib(Copy,Main) :-
noy(empty(Copy)).!,
((lef(Copy.NewCopy).! left(Main.NewMain).
mark_distrib(NewCopy,NewMain));
true.)
% if Copy is empty and unmarked. try to get from upper /n...
mark_distrib(Copy.Main) :-
not filled(Copy).down(Copy,LV).
not(checkNullValue(Main)),
down(Main,UV),
copyNulle(LV,UV),
mark left_distr(Copy,Main).

CONJUNCTION IN META-RESTRICTION GRAMMAR 323

% else mark local.
mark_distrib(Copy.Main) :-
mark _local(Copy),
((lefu(Copy,NextCopy),!.left(Main,NextMain),
mark_distrib(NextCopy,NextMain));
true).
mark_left_distr(Copy,Main) :-
left(Copy.Next).!.down(Next.LV).left(Main,UNext),down(UNext, UV).
copyNullc(LV.UV),
mark_left_distr(Next,UNext).
mark_left_distr(_Copy._Main).

not_filled(E):-
empty(E), not(checkWdField(E local)).
mark In(E) :-
not(empty(E)),!,mark _right(E).
mark_In(E):-
right(E,Next),!,mark_In(Next).
mark_In(_E).

mark_right(E):-
right(E Next),'.mark_local(Next),mark_right(Next).
mark_right(_E).

mark_local(E) :- down(E,Value), getWdField(Value.local).!.
. mark_local(). % if there is already a word. no need to mark local

copyNullc(Node,Tree) :-
makeNullc(Node, Tree).

/* weonj_rx
computes the distribution of the right adjunct under conjunction;
it starts from the lowest (last) pair of conjuncts,
assigns the higher of the two either a local reading. or a
distributed reading; then finds the next right-adjunct above
the current pair, and calls itself recursively.

L

/

weonj_rx(LXR,):-

% get upper and lower RX)
Kradjset, LXR,UpRX),!, element(radjset, LXR ,RX),

% either value is null, or choose distrib or local reading (distrib_adj)

% in cither case, go to next LXR and reexecute
((checkNullValue(RX),!); distrib_adj(RX.UpRX)).
up(UpRX,UpLXR), weonj_rx(UpLXR.).

weonj_rx(_LXR,).

% 1. succeed in case Copy is not empty
% 2. mark distributed—will fail if Copy is not empty

LYNETTE HIRSCHMAN

% 3. otherwise, mark local—this will fail if Copy not empty
distrib_adj(_Main,Copy):-
not{checkNullValue(Copy)),'.
distrib_adj(Main,Copy) :-
mark_distrib_adj(Main,Copy).
distrib_adj(_Main,Copy) :-
mark _local(Copy),'.
mark_distrib_adj(Main,Copy) :-
down(Copy.Null),
down(Main,Value),copyNullc(Null,Value).

APPENDIX D. COVERAGE OF SENTENCES WITH CONJUNCTION

Parse times are for the translated. compiled grammar in Quintus PROLOG on a
VAX 11 /785 running first (second) parse and to termination.

Sentence: The field engineer replaced the board and adjusted the disk drive.
Lexicon lookup completed
(The resulting diagram is shown in Figure 17.)

remaining words: [}
runtime: 2.266 sec.
more? y

no More parses
runtime: 4.91599 sec.

Sentence: The last replacement and adjustment of the drive took an hour.

Parse 1
Left adjunct fully distributed; right adjunct distributed:
Paraphrase: The last replacement of the drive and the last adjustment of the drive
took an hour.
Runtime: 1.9 sec. o

(The resulting diagram is shown in Figure 18.)

Parse 2
Right adjunct is local, left adjunct is fully distributed:
Paraphrase: The last adjusiment of the drive and the
last replacement took an hour.
Cumulative runtime: 3.314 sec.

Parse 3 _
Right adjunct distributed. the distributed. but apos = last local:
Paraphrase: The last replacement of the drive and the
adjustment of the drive took an hour.
Cumulative runtime: 5.666 sec.

® g

asscrtion
verb
|
hve
|
tv
|
adjusted

subject
(
copied subject

sentence

cony — wd
I
spword
|
and

asscrtion

nstg

« subject

FIGURE 17

P X
LSO O N, KT TN W

center
|

___—— asserlion

In
tpos qpos
| |

nsig
Inr

subject

i}

S am
!
copied the copied null copied last tagged local sdjustment p

CONJUNCTION IN META-RESTRICTION GRAMMAR 327

Parse 4
Rigat aajunct local, the distriouted, but apos = last local:
Paraphrase: The adjusiment of the drive and the last
replacement took an hour.
Cumulative runtime: 6.64 sec.

The remaining two parses are not shown; they place the prepositional phrase of the
drive at the sentence level (with /ass distributed or local).

Sentences Hanaled by the Conjunction Mechanism

(1) Conjunction in assertion with reduced verb (2.0/4.4 sec):
The field engineer installed a board and the supervisor a drive.

(2) Conjunction in assertion with reduced object (2.3/4.8 sec):
The field engineer has insialled and the supervisor has adjusted the drive.

(3) Comma conjunction in the noun phrase (1.6/6.9 sec):
The field engineer installed a disk, the board and a controller.

(4) Comma conjunction or appositive in noun phrase (2 parses: 2.1/6.5/10.8 sec):
The field engineer replaced the disk, an old model, and a board.

(5) Both/and conjunction in the noun phrase (1.5/3.4 sec):
P e Both the field engineer and the supervisor adjusted the drives.

(6) Either/or conjunction in assertion (2.0/4.2 sec):
Either the board was replaced or they have adjusted the head.

(7) Comma conjunction in assertion with reduced subject (2.7,/6.3 sec):
| The field engineer replaced the board. adjusted the controller, and installed a new

drive. '

(8) Both/and conjunction in noun phrase, and conjunction in assertion (2.3/4.5
sec):
Both the disk and the head were replaced and a new motor was installed.

(9) Conjunction of participles in prenominal adjective position (1.5/4.2 sec):
The repaired and adjusied drive is working.

(10) Conjoined prepositional phrase (1.9/6.9 sec):

The boards of the controller and of the cpu were replaced.

(11) Conjoined noun pnrase under preposition (2 parses: 1.5/3.6/7.6 sec):
The boards of the controller and the cpu were installed.

(12) Conjoined adjeciive in predicate position (0.9/2.0 sec):
" The drive is old and worn.

(13) Conjoined quantifier (1.3/3.0 sec):
The field engineer repaired two or three disks.

(14) Conjoined complex object (2.0/4.3 sec):
E She anempied 10 adjust the disk and to replace the motor.

LYNETTE HIRSCHMAN

(15) Conjoined participle or tensed verb (2 parses: 1.9/3.9/5.5 sec):
The field engineer has repaired and adjusted the drive. |

mmnmmlmmwmmmmmmm
Doaald McKay, Marths Palmer. Naomi Sager. and Rebeccs Shiffman. as well as Michael McCord and
severa) anoaymous reviewers. Much of the original implementation of Restriction Grammar was done by
Karl Puder, mnwuwcw.mmmmwwm
subsequent maistenance of the sysiem. incloding much of the recent work oo the dynamic transiator. as
well as Dumerous enbascements 10 the system implementation and interfaces. Mascia Linebarger is
primarily respoasible for the trestment of relative clanses and questions. and their integration with the
coaguaction mechanises. Margares Heineman is respomsible [or the trees in Appendix D.

1. Bloomfield, .zcgup Holt, Rinehart and Winston, New York, 1933.

2. Dahl, V. and ord, M., Treating Co-ordination in Logic Grammars, Amer. J.
Compws. ngu.ma 9(2):69~ 91 (1983).

3. Dowding, John and Hirschman, Lynette, Flexible Efficient Parsing in Restriction Gram-
mar, SDC Technical Report, March 1986

4. Gazdar, G., Usbounded Dependencies and Co-ordinate Structure. Lingwstic Inquiry 12:
s
6.

.mz.smnulqums"cm The Hague, 1962.

X Puder, K.. Restriction Grammar in Prolog. in: M. Van Caneghem
(ed.).hwa‘npo!lhﬂmlmwm Conference, Association
pour la Diffusion et ie Déveioppement de Prolog, Marseilles, 1962, pp. 85-90

7. Hirschman, L. and Puder, K., Restriction Grammar: A Pfolo'lmplemwuuon.m
D. H. D. Warren and M. Van Caneghem (eds.), Logic Programmung and 1is Applications.

Aanalysis i
Networks, Artificiel Intelligence 13:231-278 (1980).

9. Raze, C., A Computational Treatment of Coordinate Conjunction. Amer. J. Compur.
Linguistics, microfiche 52, 1976.

10. Sager, N., Syntactic Analysis of Natural Language. in: Advances in Computers. Academic.
New York, 1967, pp- 153-188.

11. Seger, N. and Grishman, R., The Restriction Language for Computer Grammars of

12. Sager, N., Narwal Language Information Processing: A Compuier Grammar of English and
lis Applications, Addison-Wesley, Reading, Mass., '1981.

C.. A Meta Grammar for Handling Coordination in Logic Grammars. in:
Proceedings of the Conference on Natwral Language Undersianding and Logic Program-
ming, Rennes, France, Sept. 1984, pp. 137-150.

14. Woods, W. A., An Experimental Parsing System for Transition Network Grammars. in:
R. Rustin (ed.), Natwra/ Language Processing, Algorithmics Press. New York 1973, pp.
145-149.

13.

_E

® APPENDIX H

A Prolog Structure Editor

This paper, by Leslie Riley and John Dowding, appeared as Paoli Research
Center Technical Report No. 29, January, 1986. It describes a structure editor
designed to facilitate the editing of specialized constructs, such as grammar
rules and lexical entries.

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

Prolog Structure Editor

Leslie Riley
John Dowding

LBS Technical Memo 29
January 1986

The Prolog Structure Editor is a general structure editor written in Prolog.
It is intended to make it easy to edit Prolog terms by allowing the user to
edit a ter:n by traversing its internal structure. As used in the
Natural Language group, the Prolog Structure Editor allows you to edit
grammar rules, word definitions in the lexicon, and arbitrary Prolog clauses.
You may invoke the editor on one of these three types of structures by using
one of the following top-level procedures: ’

edit_rule(Key)
edit_word(Word)
edit_clause(Funector)

The edit_rule procedure takes as its argument the name of a non-terminal.
It then allows you to edit all of the grammar rules that define that non-
terminal. In order to maintain consistency between the grammar rules and
their translated versions, when you have completed editing the set of rules the
editor will ask if you want to re-translate them.

The edit_word procedure takes as its argument a word from the lexicon.
It then allows you to edit the definitions of that word and all of its morphologi-
cal variants.

The edst_clause procedure takes as its argument the name of some Pro-
log procedure. The editor finds all clauses with that head and returns them as
a set of clauses to be edited. While this option is only of limited use in Quintus
Prolog (because the procedure being edited must be declared dynamic), in Sym-
bolics Prolog it will allow you to edit any Prolog procedure.

Once you have called one of the three procedures that invoke the editor,
you will enter the top level. This level is distinguished from lower levels in
that you are not actually editing a Prolog term, but editing a set of terms. At
this level you can perform operations on the set of clauses in the procedure

like retracting an old clause, or asserting a new clause. !

! These changes to the database are not actually recorded until the editing session is finished.

The editor will report at every level what kind of structure you are editing.
The kinds of structures that the editor knows about are:

A Set of clauses (top level only)

A List of terms

A Conjunction of terms (actually any infix right-associative operator)
A Complez Term (A functor followed by some number of arguments)
An Aiom

It will then display the functor of the term (if appropriate) and the members of
the term. Following are some examples:

Editing a Set of Rules
Rulel: objectbe::=(astg;nstg;pn),{sem_rep(append)}
Rule2: objectbe::=(vingo;venpass),{sem_rep(copy)};{dwh2},nullwh

Editing a term

Functor: ::=

Argument 1: objectbe

Argument 2: (vingo;venpass),{sem_rep(copy)};{dwh2},nullwh

Editing conjoined terms
Functor: , :

Term 1: {dwh2}

Term 2: nullwh

There are two types of commands that you can give to the structure edi-
tor: Movement commands and Editing commands. At every level in the edi-
tor, you are stationed at some Prolog term (except at the top level, when you
are stationed at a set of terms). There are then two kinds of movement com-
mands: downward movement and upward movement. A downward move-
ment command is simply an integer that specifies which of the arguments of the
current term you wish to move down to, from 1 to N (You can sometimes move
to the Oth item, if the term has a functor then it is considered the Oth argu-
ment). At any term, only one direction is up, so the command 'u’ will move you
up one level in the structure. For convenience, the command 't’ (for 'top’) will
move you to the top level.

DDA RN AMNT ¥ ANMYIOH ' - (] P ~p . .
A S ALY AR ORI AW AR . AU OQONIN LA K K UK AN 0t .,.... L

I.-[S (Y |.~.l .l'., ". U‘Q!\..

An editing command is one which actually modifies the structure of the
term that you are stationed at. The editing commands that are currently sup-
ported are:

delete
Specified by 'd<integer>'. This command deletes the named term.

insert-after
Specified by 'i<integer>'. This command inserts a new term after the
mentioned term. 'i0’ will make the new term the first argument. You will
be prompted for the term that is to be inserted. As this new term is a Pro-
log term, you will have to end your input with a period.

replace
Specified by 'r<integer>'. This command replaces the specified term in

the place of the mentioned term. You can sometimes replace the Oth item,
if you want to change the functor of some complex term.

These commands are also available:

downward-movement

Specified by <integer>. Moves down to the Nth term of the current term.
move-up

Specified by 'u’. Moves up to the term that contains the current term.

_go-to-top

Specified by 't'. Moves to the top level.

abort

Specified by 'a’. Ends the editing session and ‘does not save any of the
changes made!

print
Specified by 'p’. This command prints the structure of the current term.
This command should only be used at the end of a command line.

help
Specified by '?". This command prints out a listing of the available com-
mands. It should only be used at the end of a command line.

If you command the editor to insert a whole rule, word, or clause, it will
print out an entry from the set you are editing (to serve as a “template” of the
type of entry you want to create) and ask you to edit that entry to form the
new entry that you want to insert. (As a warning, do not insert a structure and
then delete it. Instead, wait until the end of the editing session, and answer
"no” to the query, "do you want to add ...?") If you try to replace a rule or
clause, the editor moves to that rule or clause and asks you to replace each
part individually (this is supposed to save you keystrokes).

‘ To end the editing session, you must be at the top-most structure (a set of
rules, a set of words, a set of clauses). At that level, type 'u’ (or 't’), and the
editor will ask you if you want to save the changes that you have made.

@ A SAMPLE EDITING SESSION:

! 1 edit_rule(objectbe).

Editing a Set of Rules
Rulel: objectberm(astgnstg;pn),{sem_rep(append)}
Rule2: objectbe::=(vingo;venpass),{sem_rep(copy)};{dwh2},nullwh
Command: 2
/? edit the second rule

Editing a term
Functor: ::=
Argument 1: objectbe
Argument 2: (vingo;venpass),{sem_rep(copy)};{dwh2},nullwh
Command: 2
/® move to the second argument

Editing conjoined terms
Functor: ;
Term 1: (vingo;venpass),{sem_rep(copy)}
Term 2: {dwh2},nullwh
Command: 3 r2 :
o /? replace the second argement of the second term

Replace the term: nullwh
.with what Prolog term: stuff.

Editing conjoined terms
Funetor: ,
Term 1: {dwh2}
Term 2: stuff
Command: t
/? go to the top level

Editing a Set of Rules
Rulel: objectbe::=(astg;nstg;pn),{sem_rep(append)}
Rule2: objectbe::=(vingo;venpass),{sem_rep(copy)};{dwh2},stuff
Command: t
/? go to the top again, i.c., finish editing this rule
- ('t’ and 'w’ have the same effect at this level)

Do you want to replace: objectbe::=(vingo;venpass),{sem_rep(copy)};{dwh2},null
wh

with: objectbe::=(vingo;venpass),{sem_rep(copy)};{dwh2} stuff

Enter 'y’ or 'n: n

If you have changed any grammar rules, you will have to either:
1. Retranslate this rule.
‘ 2. Switch the grammar to run interpreted only.
3. Do nothing (and risk inconsistency!).

E{&MCMMMMQNYA

Please enter 1, 2, or 3: 8.

yeos

| 7- edit_word(replace).

Editing a set of words with the same root
Word 1: :(replace,root:replace,[v:{12],tv:[12,plural},12:[objlist:[nstgo,pn:{p
val:fwith]],npn:[pval:[with]]]]])
Word 2: :(replaces,root:replace,[tv:[12,singular]])
Word 3: :(replaced,root:replace,[tv:[12,past],ven:[14],14:(12,pobjlist:[nullob
jspu:[pval:fwith]]ll))
Word 4: :(replacing,root:replace,[ving:[12]])
Command: 8
/? edit the third word

Editing a term

Functor: :

Argument 1: replaced

Argument 2: root:replace

Argument 3: [tv:[12,past],ven:(14],14:[12,pobjlist:[nullobj,pn:[pval:[with]]]]

Command: 8
/* move to the third argument (a list)

Editing a list
Element 1: tv:{12,past]
Element 2: ven:{14]
Element 3: 14:[12,pobjlist:[nullobj,pn:[pval:[with]]]]
Command: i1
/? insert an element into the list after the first
element of the list

What Prolog term should be inserted: stuff.

Editing a list
Element 1: tv:[12,past]
Element 2: stuff
Element 3: ven:(14]
Element 4: 14:{12,pobjlist:[nullobj,pn:[pval:[with]]]]
Command: u
/* go up one level

Editing a term

Functor: :

Argument 1: replaced

Argument 2: root:replace

Argument 3: [tv:[12,past]stuff,ven:(14],14:(12,pobjlist:[nullobj,pn:[pval:{wi
th]JJ]

Command: t

Editing a set of words with the same root

Word 1: :(replace,root:replace,(v:[12],tv:(12,plural],12:[objlist:[nstgo,pn:[p
val:fwith]],npn:{pval:fwith]]]})

Word 2: :(replaces,root:replace,[tv:[12,singular]])

Word 3: :(replaced,root:replace,[tv:[12,past],stuff,ven:{14],14:(12,pobjlist:{
nullobj,pn:{pval:fwith]]]]])

Word 4: :(replacing,root:replace,(ving:[12]])

Command: u

Do you want to replace: :(replaced,root:replace,tv:[12,past],ven:(14],14:(12,
pobjlist:[nullobj,pn:[pval:[with]]]]]).

with: :(replaced,root:replace,[tv:[12,past]stuff,ven:[14],14:(12,pobjlist:[nu
llobj,pn:{pval:{with]]]]]).

. Enter’y’or'n: n

yes

! ?- edit_word(control).

Editing a set of words with the same root
Word 1: :(control,root:control,[n:[11 singular],v:[12],tv:(12,plural],11:[nonh
uman,h-change,h-norm),12:[objlist:[1],notnsubj:(2},ymanner,h-change,h-normj,1:
[nstgo,nsvingo,vingofn|,2:[ntime1]])
Word 2: :(controlled,root:control,[tv:[12,past],ven:{14],14:[objlist:(1],notns
ubj:[2],ymanner,pobjlist:(3),h-change,h-norm},3:(nullobj]])
Word 3: :(controlling,root:control,[ving:(12}])
Word 4: :(controls,root:control,[n:[11,plural],tv:[12,singular]])
Command: 14

/? insert a word after the fourth word

Here is a word of the type that you want to create.
Edit it to make the new word.
Editing a term
Functor: :
Argument 1: control
Argument 2: root:control
Argument 3: [n:(11,singular},v:{12],tv:{12,plural],11:(nonhuman,h-change,h-nor
m),12:[objlist:[1],notnsubj:(2],ymanner,h-change,h-norm],1:[nstgo,nsvingo,ving
ofn),2:[ntimel])
Command: r1

/*? replace the first argument, in this case,

the word to be defined

Replace the term: control
with what Prolog term: controller.

Editing a term

Fanctor: :

Argument 1: controller
Argument 2: root:control

| ©

Argument 3: [n:[11,singular],v:{12},tv:[12,plural},11:[nonhuman,h-change,h-nor
m},12:{objlist:(1],notnsubj:(2],yrmanner,h-change,h-norm},1:[nstgo,nsvingo,ving
ofn],2:[ntime1]]
Command: r8
/* replace the third argument, in this case, the
definition list

Replace the term: [n:[11singular],v:[12],tv:(12,plural],11:[nonhuman,h-change
;h-norm},12:[objlist:{1]),notnsubj:{2],ymanner,h-change,h-norm},1:[nstgo,nsving
o,vingofn},2:[ntimel})

with what Prolog term: [n:[11,singular],11:{humanl]].

Editing a term -

Functor: :

Argument 1: controller

Argument 2: root:control

Argument 3: [ns[11,singular],11:[human]]
Command: ¢t

Editing a set of words with the same root

Word 1: :(control,root:control,[n:[11 singular),v:[12],tv:[12,plural],11:[nonh
uman,h-change,h-norm],12:[objlist:[1},notnsubj:(2],ymanner,h-change,h-norm],1:
[nstgo,nsvingo,vingofn],2:[ntime1]])

Word 2: :(controlled,root:control,[tv:{12,past],ven:[14],14:[objlist:(1],notns
ubj:[2],vymanner,pobjlist:(3],h-change,h-norm],3:(nullobj]])

Word 3: :(controlling,root:control,{ving:{12]])

Word 4: :(controls,root:control,[n:[11,plural],tv:[12singular]])

Word §: :(controller,root:control,[ni[11,singular],11:[human}])

Command: ¢

Do you want to add the word: :(controller,root:control,[n:[11,singular],11:fhu
man])).
Enter'y’or 'n: y

Yes

. APPENDIX I

Designing Lexical Entries for a Limited Domain

Technical Memo No. 42, by Rebecca J. Passonneau, documents the general
methods used in designing the verb decompositions and mapping rules for new
domains.

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

DESIGNING LEXICAL ENTRIES FOR A LIMITED DOMAIN
April, 1986

Rebecca J. Passonneau
SDC--A Burroughs Company
Paoli, PA
Technical Memo No. 42

1. Introduction

This report outlines procedures for building domain specific lexical entries for the PUNDIT
natural language system at SDC. The lexical entries are designed for utilisation in inference-
driven semantic analysis (Palmer, 1984). The procedures for constructing the lexical entries
take advantage of recent works in linguistic semantics (cf. References Cited, esp. Dowty,
1979; Foley and Van Valin, 1984; Levin, 1985; Levin and Rappaport, 1985; Rappaport and
Levin, 1985; and Talmy, 1978a, 1978b, 1985) without being constrained by any particular
linguistic theory. Of particular utility is a section in Foley and Van Valin (1984) entitled "The
Semantic Structure of the Clause” in which they draw on the work of Gruber (1965), Jackendoff
(1976) and Dowty (1979). Their aim is to provide a set of general tools for the semantic
analysis of the verb system of any language. The generality of their approach makes it
appropriate not only for different languages but also for domain-specific sub-languages.

This is the first report in a series of two on designing lexical entries. It gives an overview
of the general methods for constructing lexical entries regardless of the domain. A subsequent
report will focus on specific semantic issues pertaining to the current domain application of
PUNDIT. This domain consists of Navy casualty reports (casreps) describing failures in ship-
board starting air compressors (sacs).

- -

2. General

The lexical entries consist of predicate logic clauses which represent word meaning and
thematic structure in a single decomposition. Currently, two classes of words are given lexical
entries: 1) those that serve as predicates (excluding predicate nominals’) i.e., verbs, adjectives
and prepositions, and 2) deverbal nouns and other nouns which take arguments.? Predicating
expressions can be classified on the basis of similarities of meaning and thematic structure, and
the similarities can then be captured by assigning similar predicate structures to classes of

_ expressions. The predicate structures comprising the lexical entries for the casreps contain three
types of abstract elements: basic semantic predicates (primitives), thematic roles, and aspectual
operators.

The three elements of a lexical decomposition are all represented as predicate-argument
terms embedded in a semantic tree structure, but they have distinct functions. The thematic
role predicates, e.g., agent and patient, are the leaves of the semantic tree whose arguments
are constituents of surface structure (e.g., subject, direct object). Thus each role type has an
associated set of possible mappings to surface structure (e.g., an agent can be realised as a sub-
Joect or as the object of a by phrase). Thematic roles are in turn the arguments of superordinate

INominals occur in a varisty of predicational uses, e.g., squational sentences (o.g., Scoit is Ihe ssihor of Waverly)
and sentences expressing type relations {a.g., 4 persimmon is ¢ (lype of) frus). One way to represent such sentences
would be to fll ia a variable of a pre-defined predicate provided ia the knowledge domain: eg.,
author(Scott,Waverly), aad lsa(persimmon,fruit).

$Chomeky (1970) gives a short list of nouns with various complements, msay but not all of which would fall into
the category of mouns with thematic structure. Levi (1978) relates the complements of such nouns to ‘semantically
based case relations’ (p. 27). Nouns in the current domaia which take arguments include those classififed as 'percepte’,
o.g., solor as in color of ok also, those classified as ‘scalare’, o.g., presssre as in lude ool presesre of 85 pe

T A Tt] o O T Vo e T o e R

2 Lexical Entries

0 semantic predicates, the semantic primitives in terms of which the lexical content of a predicate
is represented. The aspectual operators represent the temporal structure of a predicating
expression and are necessarily superordinate to one or more semantic primitives.

Decomposition Structure of BREAK:

a) Semantic roles appear in italics
b) Semantic predicates are capitalised
c) Aspectual operator appears in boldface

CAUSE(agent(_),become(BROKEN(patient(_))))

While lexical entries are necessarily domain specific, there are general principles which can guide
the determination of all three components.

Lexical content, thematic ‘'structure and inherent aspect can be distinguished conceptually,
but have complex (lattice-like) interdependencies. Regardless of which type of semantic com-
ponent motivates the preliminary classification of expressions in a domain, the sub-classes will
cut across categories. For example, agents are associated with two distinct aspectual classes,
activity and event predications. Thus, arriving at a semantic classification of a set of predicat-
ing expressions is a cyclic rather than linear task.

3. Basic Semantic Predicates

Given an existing knowledge base, the domain specific semantic primitives could be
selected to accord with relations specified in the knowledge base. In the absence of an a priori
ﬁ set of semantic relations, semantic classes can be chosen by grouping .predicating expressions on
the basis of general meaning classes, e.g., verbs indicating change of location (move), manner of
motion (slide), change of physical state (melt), cognition (suspect), and so on. The actual decom-
positions within a class of expressions would depend on how accurately the meaning of the
expressions must be represented. Thus selecting the semantic primitives for a domain depends
largely on the application.

4. Aspect

Talmy provides a concise definition of aspect as 'the pattern of distribution of action
through time’ and observes that a particular aspectual content is generally part of the inherent
meaning of a verb, though this inherent meaning can be modified by grammatical elements with
aspectual meaning. Representing aspect in lexical entries makes it possible to appropriately
interpret tense, grammatical aspect (i.e., progressive) and temporal phrases. The number of
aspectual distinctions proposed in analyses of lexical aspect varies, depending on the language
being investigated and the predilections of the investigator, but the minimal set consists of the
distinction between stative and non-stative predications, and for the latter, between activities
and events (change-of-state or change-of-location predications). Stative predications denote
states of affairs which persist throughout some period of time during which there is no change or
activity, i.e., the truth of the predication can be determined by sampling the state of affairs at
a single point in time. Activity predications also denote states of affairs which persist for some
period of time but differ from statives in that some activity or process is ensuing such that there
is change from moment to moment. Event predications denote a transition to a new state of
affairs, e.g., into a new physical state (The ice melted) or to a new location (The ship arrived in

% port).

- , - - -~ LI, L S I T FLPL I LS T IS YN) P T TS) U ™ ™ o W,
' ’l'u l'..! &."l'..l'u h?, l.,‘l.“‘“ '-‘l'..l.» A .c .I" t..l..i‘.’ .v ¢, “c‘lL u\ A LY '. W, " mm&mw o [n X1 X NaN]

8 Lexical Entries

4.1. Diagnostics and defining criteria

A variety of semantic criteria and sentence frames have been proposed to distinguish
between aspectual classes (cf. Dowty, 1979). Since only three aspectual classes are implemented

in PUNDIT, identifying two of them-statives and events—is sufficient. Activity predications are
then predications which are neither states nor events.

Statives
a) cannot be referenced with do it (not applicable with passive voice)

Event: The oil sometimes ignites;
it does it when the oil pressure is too high.

State: * The oil is sometimes dark in color;
it does it when the oil pressure is too high.

b) cannot occur in pseudo-clefts: what X did was Y

Event: What the oil did was ignite.
State: * What the oil did was be dark.

¢) nominalisation of whole VP cannot be subject of occur, take place

Event: The oil's igniting occurs too frequently.
State: ® The oil’s being dark takes place twice a day.

Events
a) the past participle of change of state (event) predicates can be used
adjectivally; e.g., the surface sentence "NP is V-ed"is more likely

to be interpreted as a stative predication than as an event expressed
in the passive voice

NP is [activity verb]-ed tends to be interpreted as
a recurrent event: The engine s [usually] operated

NP is [event verb]-ed tends to.be interpreted as
a current state: The engine is [now] corroded

b) a sentence in the past tense entails that the patient or theme is
in a new state or new location

New location: The ship arrived in port at 1900 hours.
Entails: The ship is in port as of 1800 hours

c) past progressive predication does not entail the simple past

Activity predication:
The engineer was operating the machinery.
Entails:

The machinery operated.

Event predication:
The crew was installing ¢ new engine

4 Lexical Entries

Does not entail:
TAe crew installed a new engine.

4.2. Representation

Following Dowty (1979) and Foley and Van Valin (1984), the aspectual meaning of predi-
cating expressions is represented in part in their decompositional structure. Event decomposi-
tions contain a become predicate. The resulting state or location of an event verb is embedded
directly beneath the become predicate, e.g., fail is represented as become(failed(.)).
Currently, distinguishing states from activities is not done via an aspectual operator. In the
current domain, stative predications (excluding those treated as “transparent” predicates, e.g.,
cognition verbs) are those whose main verb is be or have (e.g., be inoperative; have wear). All
other non-event verbs are activities. For domains with a more heterogeneous class of stative
predications, an aspectual operator (e.g., Dowty’s do) could be added to activity decompositions
to distinguish them from statives in future implementations.

More fine grained treatments of lexical aspect distinguish between types of activities and
types of events. For example, Talmy (1985) classifies activities into full-cycle (strike), multiplex
(breathe), and steady-state (sleep). His distinction between full-cycle and steady-state
corresponds roughly to the more familiar terminological distinction between punctual and non-
punctual verbs. A full-cycle predication can be transformed into a multiplex when a duration is
associated with the activity. The duration adverbial forces an interpretation of repeated
instances throughout the duration (e.g., someone struck the gongmone strike-gong event; versus
someone struck the gong for three Aowrsmrepeated strike-gong events). Because such distinc-
tions can affect the interpretation of adverbial expressions, future domain applications might
benefit from a fine-grained typology of activities. In the current application, activities are not
subcategorised.

Causation is generally treated in discussions of aspect because causal predications are
necessarily temporally complex: an activity of one participant causes a resulting state or
activity in another participant. In other words, the logical structure of a causative verb can be
represented as cause(predicatel(agent(_)),predicate2(role(_)). Predicatel generally, if not
always, falls into the aspectual class of activities, whereas predicate2 may be either an activity
or a simple event. The crucial component of the first term in a cause predicate is the agent
semantic role. For notational simplicity, agent(_) can be substituted for predicatel(agent(_))
without obscuring the distinction between the two aspectually distinct types of causatives. The
general decompositional structure for causatives resulting in an activity is thus:
eause(agent(_),Pred(actor(_))) (.8 someone operated the sac <-
cause(agent(_),operate(actor(sac)))). Causatives resulting in a new state or location are
represented as: cause(agent(_),become(Pred(patient(_)))) or
cause(agent(_),become(Pred(theme(_),location(_)))) (e.g., the drive sha’t sheared the driven
gear <- cause(actor(drive shaft),become(sheared(patient(driven gear)))) where become is
embedded in the decomposition). Aspectual operators also have relevance to thematic structure
as will be shown in the following section.

5. Thematie structure

There is no a priori set of thematic roles with fixed criteria for assigning the arguments of
a predication to one or another role type. However, there are gross regularities in the lexicon
pertaining to 1) the number of arguments a verb takes in various uses (eg.,
transitive/intransitive uses of the same morphological form), 2) the syntactic relations between
the verb and its arguments, 3) and the interpretation of how an argument participates in the

5 Lexical Entries

state, activity or event expressed in the predication. All three factors contribute to the analysis
of thematic structure. The following discussion outlines a procedure for assigning thematic
structure.

The distinction between statize and event predications and the discussion of causation
provide a starting point for determining thematic structure in the following ways. First, all
event predications, by definition, contain stative predications within them, i.e., all event predi-
cations are either of the form become(stative), if intransitive (e.g., the sac failed), or
cause(X,become(stative)) if transitive (e.g., the operator disengaged the sac). The aspectual
operator become doesn’t change the thematic structure of a predicate. In contrast, the cause
predicate is both an indication of causative meaning and of the presence of an agent thematic
role. There is thus a regular relationship between the thematic structure and valency of a sta-
tive predication (NP1 be X), a simple-event whose result is the stative predication (NP1
become X), and the related causative-event (NP2 cause NP1 become X). For any stative,
there may or may not be a corresponding intransitive predication: cf. the cup s broken/the cup
broke versus the drive shaft is lubricated/ *the drive shaft lubricated. Further, the event and sta-
tive predications may or may not make use of morphologically related forms. A first pass at
determining the set of thematic roles associated with the predications used in a particular
domain can be accomplished by examining triplets of stative/simple-event/causative-event
predicates on the one hand, and pairs of simple activity/causative-activity predicates on the
other.

5.1. Predications with Patlent/'l‘heme Arguments

A large number of event predications fall into one of two classes: state-change or
location-change. The argument said to undergo a change of state is conventionally a patient
while one said to undergo a change of location is conventionally a theme. The state-change
state predicates typically have only the patient role while location-change predicates typically
involve at least one loeation role (e.g.. source and/or goal). Further, both patients and
themes tend to be subjects of simple event predication and direct objects of causative events.
Corresponding to these two types of event predications are two types of stative predications
specifying the current state or current location of an entity. The two types of stative predica-
tions, which tend to be of the form NP is Adj or NP is locative-PP, have the same semantic roles
as their corresponding event predications. The following chart schematically represents the
three aspectual types—stative, simple-event and causative-event-of the two semantic classes--
location and physical state:

6 Lexical Entries

Stative predication:
Physical state: "the shaft is dry”
<- dry(patient(shaft))
Location: "metal particles are in the oil"
<- in(theme(particles),location(oil))
Simple event:
Physical state: "the pump seised"
<- become(seised(patient(pump)))
Loecation: "the ship arrived at the port”
<- become(at(theme(ship),location(port)))
Causative event:
Physical state: "the operator disengaged the sac”
<- cause(agent(operator), become(disengaged(patient(sac))))
Location: "the operator disconnected the shaft from the hub”
<- cause(agent{operator),
become(disconnected(theme(shaft),location(hub))))

Fig 1. Six abstract semantic types

Other roles in addition to agent, patient, theme and loeation are sometimes associated with
stative and event predications. For example, a causative event verb may have an instrument
role, depending in part on whether an inanimate entity can be the subject of the causative tran-
sitive, as in the hammer broke the cup. As mentioned above, change of location verbs may have
souree or goal roles. Whether to incorporate an instrument role, or to substitute source or
goal for location, depends in part on what arguments can appear in surface structure and on
the set of semantic primitives appropriate for the domain. For example, the location argument
of disconnect is more precisely a source as evidenced by the possibility of a from prepositional
phrase alongside the impossibility of a to phrase:

the operator disconnected the shaft from/*to the hubd
Other change of location verbs may take both goal and souree, or only goal:

the ship went from the Aarbor to the open sea
the operator attached the shaft to/ *from the hud

Both sources and goals are types of locations. Their contribution to lexical meaning
can be captured by the choice of thematic roles or by the choice of semantic primitives. Thus
the loeatilon argument of disconneet could be represented as a source:
diseonneet(theme,sourece). Alternatively, the meaning captured by the source role, vis. that
the theme is no longer at some source location, could be represented by embedding a location
role in the negation of an at predicate:

disconnect <- become(not(at(theme(_),location(_)))).

Similarly, the logical structure of the ship went from the harbor to the open sea could be
represented in a relatively flat, or inferentially shallow structure, as in:

move(theme(ship),source(harbor),goal(sea)).

Alternatively, the lexical decomposition process could be carried a step further to incorporate
the logical inferences represented below (cf. Foley and Van Valin, pp. 51f):

at(theme(ship),location(sea)),
not(at(theme(ship),location(harbor))).

This is & very simple illustration of how the set of thematic roles for a domain interacts with
the set of primitive semantic predicates, which in turn depends on the desired output structures.
The choice between implementing only a location role for a domain, or all three location,
source and goal roles, also affects the set of surface structure mappings for locative arguments.

7 Lexical Entries

8.2. Actor predications

An activity predication minimally requires an argument which is the entity performing an
act or engaged in some process, here called the actor. Thus actors are generally animate enti-
ties, or inanimate entities which have a source of energy or motive force. Examples of activity
predications taking only an actor argument are:

_ the woman sneesed <- sneese(actor(woman))
the wind blew <- blow(actor(wind))
the wheel turned <- turn(actor(wheel))

Some activity predications of this form also have transitive/causative uses and in effect have
two actor roles, a causing actor and an experiencing actor. The former is designated an
agent, as in:

someone turned the wheel <- eause(agent(someone),turn(actor(wheel))).

The verb turn illustrates a relationship between a univalent activity predicate and its
corresponding bivalent causative. Not all bivalent activity predicates are causatives in this
sense. There are some transitive activity verbs whose direct object argument is not an actor,
but rather, a passive participant, e.g., a theme as in:

someone kicked the wall <- kick(actor(someone),theme(wall)).
In sum, most activity predicates can be classified as one of the three following types:

Activity predication:
Univalent: Pred(actor(_))
Bivalent causative: Cause(agent(_),Pred(actor(_)))
Bivalent non-causative: Pred(actor(_),theme(_))
or: Pred(actor(_),location(_)).

Fig. 2. Four abstract semantic types

6. Summary of simple predicate types

The following chart, which amalgamates Figs. 1 and 2 above, schematises classes of predi-
cates by valency, general thematic type and aspectual class.

Stative predication:

state Pred(patient(_))

location Pred(theme(_),location(_))
Simple-event predication:

change of state become(Pred(patient(_)))

change of location become(Pred(theme(_),location(_)))
Causative-event predication:

Physical state: cause(agent(_),become(Pred(patient(_))))

Location: cause(agent(become(Pred(theme(_),location(_)))))
Activity predication:

univalent Pred(actor(_))

bivalent,

non-causative Pred(actor(_),theme(_))
or Pred(actor(_),location(_))
causative cause(agent(_),Pred(actor(_)))

Fig. 3. Ten abstract semantic types

Patients and themes are both associated with stative and simple event predications: patients
are associated with predicates characterising the physical state of some entity (or state-change)

8 Lexical Entries

g while Themes, together with locations, are associated with predicates describing the location
of some entity (or location-changs). Patlents and themes are also alike in having similar sur-
face structure realisations; both are subjects of stative or intransitive predications or direct
objects of transitive-causatives. The presence of a become operator in a decomposition changes
the aspect of a predicate from stative to simple-event without changing the valency. Actors are
associated with activity predicates, which may be inherently intransitive or transitive. For
transitive activity predications, the second argument is likely to be a location or a theme. The
agent role invariably indicates a causative predication, of which there are two aspectual types:
causative-events and causative-activities. In a causative-event, the agent causes some entity to
enter a new state or location; in a causative-activity, the agent causes some entity to engage in
a new activity. Often a causative predication and the corresponding simple-event or activity

are expressed by the same morphological form (cf. turn).

As shown above, the thematic roles built into a decomposition reflect in part the aspectual
properties and valency of a surface predicate as well as the distinction between state-change
and location-change meaning. It has been briefly observed that in addition, each thematic role
has certain prototypical surface realisations. These are reviewed in greater detail in the next
section.

7. Mappings from thematle structure to surface structure

The most salient arguments of a predicating expression are those appearing as clausal sub-
jects and direct objects. Predicating expressions can also occur in noun phrases, e.g., adjectives
and prepositional phrases. The following chart summarises the typical surface realisations in
both noun phrases and basic clauses of the thematic roles reviewed above, except for location.
As the earlier discussion of the verb .disconnect suggests, some change of location verbs are

ﬁ inherently directional (disconnect from/*to; compare put on versus take off). Others are not, and
thus take a wide variety of locative complements (e.g., move fo/from/by; pass in/out/by).
Motion verbs (in English, cf. Talmy) tend to incorporate manner and cause as well as simple
motion (e.g., stand, bounce, hang, twist, pull and so on). For these and other-reasons, the surface
realisations of location arguments are more idiosyncratic than the other arguments reviewed
above. Discussion of location arguments will be postponed.

9 Lexical Entries

. CHART OF THEMATIC ROLE TO SURFACE STRUCTURE MAPPINGS

AGENT IS REALIZED AS:
1) Possessive determiner of gerund/nominalisation:
'the engineer’s replacement of the sac’
‘the engineer’s replacing the sac’

2) Subject of finite or non-finite clause:
'the engineer replaced/replacing the sac’

3) PP obj of 'by’ in a passive:
‘the sac was replaced by the engineer’

PATIENT IS REALIZED AS:
1) Noun modifiying a nominalisation:
'sac disengagement’
‘impeller blade tip erosion’

2) PP obj of ’of’, where head is gerund, nominalisation or related noun:
'disengaging of sac’
'disengagement of sac’
‘erosion of impellor blade tip’

3) Possessive determiner of gerund/nominalisation:
"sac’s disengagement”

g 4) Head of NP where left modifier is adj or pple
requiring patient role:

"broken tooth’
burnt odor’

5) Subject of copula/passive S:
'gear teeth are broken’
‘oil is discolored’

6) Direct object of transitive: 'the operator broke the sac’

7) Subject of intransitive, if it exists: : ’the gear tooth broke’

THEME IS REALIZED AS:
1) PP obj of ’of’ for nominalisation/gerund:
'disconnection of coupling’
‘color of oil’

2) Head of NP whose left modifier is a pred requiring a theme:
'packed drive shaft’
'disconnected shaft’

3) Subject of copula/passive S:
'drive shaft was packed’
w 'shaft was disconnected’

4) Dobj of causative tr.:

10 Lexical Entries

‘someone packed the drive shaft’
‘someone disconnected the diesel hub’

ACTOR IS REALIZED AS:
1) PP obj of ’of® for gerund or nominalisation:
'sounding of alarm’
‘rotation of drive shaft ’

2) Possessive determiner of gerund /nominalisation:
'the alarm’s sounding’

3) Noun modifilying a nominalisation:
’engine operation’

4) Subject of intransitive:
'the alarm sounded’
’the drive shaft rotated’

8) Subject of passive S:
'drive shaft was rotating’
’engine was operated’

6) Dobj of causative:
’someons sounded the alarm’

BASV TA ARMEIG S ADAF

T T Sy S SN

' References Cited
Dowty, David R. 1979. Word Meaning and Montague Grammar: The Semantics of
Verbs and Times in Generative Semantics and in Montague’s PTQ. Dordrecht:
D. Reidel.

(: 11 Lexical Entries
|
|

Foley, William and Van Valin, R. 1984. Functional Syntax and Universal
Grammar. Cambridge: Cambridge University Press.

Levin, Beth, ed. 1985. Lexical semantics in review. Lexicon Project
Working Papers no. 1. Center for Cognitive Science. Cambridge, MA:
MIT.

Levin, Beth and Malka Rappaport. 1985. The formation of adjectival passives.
Lexicon Project Working Papers no. 2. ms.

Rappaport, Malka and Beth Levin. 1985. A case study in lexical analysis: the
locative alternation. ms.

Talmy, Leonard. 1985. Lexicalisation patterns: semantic structure in lexical
forms. In Language Typology and Syntactic Description, vol. 3: Grammatical
Categories and the Lexicon, pp. 57-151. Edited by Timothy Shopen.
Cambridge: Cambridge University Presa.

Talmy, Leonard. 1978a. Figure and ground in complex sentences. In Universals
of Human Language, vol. 4, pp. 627-49. Edited by Charles Ferguson and Edith
Q Moravesik. Stanford: Stanford University Press.

Talmy, Leonard. 1978b. Relations between subordination and coordination.
In Universals of Human Language, vol. 4, pp. 489-513. Edited by Charles
Ferguson and Edith Moravesik. Stanford: Stanford University Press.

X "& ORI

AR

¢ | APPENDIX J

A Computational Model of the Semantics of Tense and Aspect

Technical Memo No. 43, by Rebecca J. Passonneau, gives an overview of
PUNDIT’s temporal component. It describes the goals of the analysis, the algo-
rithm it uses, and how the output is represented. A revised version of this
paper has been submitted to the ACL to be included in a special issue on events
and time.

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

. A COMPUTATIONAL MODEL OF THE SEMANTICS OF TENSE AND ASPECT!
Rebecca J. Passonneau
December 17, 1986
SDC/A Burroughs Company
Technical Memo No. 43

1. Introduction

This paper describes the temporal analysis component of the Pundit text-processing sys-
tem.? Pundit’s temporal component is designed to extract temporal information about real-
world situations from short message texts. This involves three complementary analyses. First,
Pundit identifies references to states-of-affairs with real time reference. Secondly, it determines
the temporal structure of the predicated situation, or the manner in which it evolves through
time. Lastly, Pundit analyses the temporal ordering of the real-time states-of-affairs with
respect to the time of text production or to the times of other states-of-affairs. These three
kinds of information are derived from the lexical head of a predication (verbal, adjectival or
nominal), the surface verbal categories of tense, progressive and perfect, and finally, temporal
connectives such as before, after and when. Each of these components of temporal meaning is
assigned an informal context-dependent compositional semantics. A fundamental premise of the
approach to temporal semantics taken here is that the several sentence elements contributing
temporal information can and should be analyzed in tandem in order to determine the times for
which predications are asserted to hold. This is accomplished by means of a model of the
semantics of time which incorporates both aspect and tense logic.

The short texts processed by the current version of Pundit are CASREPS (CASualty
REPorts), messages which describe equipment failures aboard navy ships. The CASREPS
6 domain has turned out to be an appropriate one for implementing a temporal component to
analyse the time information given explicitly in each sentence of a text. Much of the important
temporal information in the CASREPS can be extracted through semantic analysis of the indivi-
dua] sentences. CSREPS are diagnostic reports consisting of simple declarative sentences
presenting a cumulative analysis of the current status of a particular piece of equipment.
Within one sentence, several different states-of-affairs may be mentioned, linked together by
explicit temporal connectives such as before and after. Because the texts under investigation
contain only one sentence type and have a simple rhetorical structure, a lot of temporal infor-
mation can be extracted even though the pragmatic dimensions of speech act type and inter-
sentential temporal relations are ignored. Pundit’s temporal component analyses the interac-
tions among the several types of temporal information contained within the declarative sen-
tence. This is accomplished through a general rule-driven computation of the various input
values of tense, progressive and perfect along with a well-motivated aspectual decomposition of
lexical items.

2. Temporal Information

One premise of the present work is that accurate computation of the temporal semantics
of the verb and its categories will provide the necessary foundation for interpreting a wide
range of temporal adverbials. However, the task of modelling the semantic contribution of the
verb and its categories is a complex one. One source of complexity is that temporal information
is distributed in a variety of lexical and grammatical elements. Further, the distinct lexical and
grammatical elements are not univocal. As the extensive linguistic literature on tense and

i

’ 1This work was supported by DARPA under contract N00014-85-C-0012, administered by the Office of Naval
;

t

Research.

@ %Pundit is aa acronym for Prolog Understanding of Integrated Text. It is 3 modular system, implemented in
Quintus Prolog, with distinct syntactic, semaatic and pragmatic components. For descriptions of these components, cf.
Dowdiag, Hirschmaa, Palmer, Dahl.

GlRANATN

N A X DT A S Y S T e T e e

A N A T R I A AN N O N T N U N WY Y Ty F U W IR T T R T 3T Y™ TP WLy
“q

2 Tense and Aspect

0 aspect demonstrates, the precise temporal contribution of any one surface category of the verb
is contingent upon the co-occurring categories and upon the inherent meaning of the verb (cf.
Mourelatos, Dowty, Vliach). Hence, even a preliminary solution to the computational problems
of interpreting temporal information in natural language requires a broadly based analysis of
the relevant semantic interdepencies. This paper proposes a solution to the computational task
of extracting temporal information from simple declarative sentences based on separating tem-
poral analysis into three tasks, each of which requires access to a selected portion of the tem-
poral input.

Section § 2 of the paper explains in detail the computational goal addressed here. This
goal is pursued in two phases. Phase 1 is to interpret the temporal information contributed by
a predication (e.g., the verb and its grammatical categories). Phase 2 is to interpret temporal
adverbials. The predication itself contains three distinct kinds of temporal information which
are analysed separately. The first step of phase 1 is to determine whether the predication refers
to a specific situation that takes place in actual time (cf. § 2.1); the second is to analyse how a
specific situation evolves through time (cf. § 2.2); finally, the third is to ind where a situation is
ordered with respect to other known times (cf. § 2.3). Deriving these three pieces of information
makes it possible to represent times and situations in a manner which could facilitate the
interpretation of several kinds of temporal adverbials. Section § 2.4 illustrates a few types of
temporal adverbials, including adverbial clauses and phrases introduced by temporal connec-
tives (e.g., when, before, after). At present, connectives are the only class of temporal adverbials
which Pundit processes.

The third section (§ 3) describes the input to the temporal component which is required for
computing the temporal information derived from the verb and its grammatical categories on
the one hand, and from temporal adverbials on the other. Then section § 4 demonstrates algo-

e rithmically how the temporal output is computed on the basis of the input it receives. One of
these outputs, the reference time of a predication, pertains to the interpretation of relational
temporal adverbials, i.e., adverbials which relate the time of a situation to another time (e.g.
The ship was refuelled yesterday). Temporal connectives, for example, relate the time of a syn-
tactically superordinate predication to a subordinate predication. The latter may consist of a
clause (e.g., after the sac had failed) or a nominalisation (e.g., after the failure of the sac). Sec-
tion § 5 illustrates how the reference time participates in the temporal interpretation of tem-
poral adverbial clauses introduced by connectives such as before, after and when. For the sake
of brevity, the treatment of temporal adverbs with noun phrase complements is not described in
this paper.

2.1. The Predication

As mentioned above, three kinds of temporal information are associated with the predica-
tion. For tensed clause predications,® the verb and its tense and aspect markings contribute
information regarding the temporal specificity of the predication, its temporal structure and its
temporal ordering relations. The following three subsections describe these three kinds of infor-
mation in turn.

2.1.1. Specific temporal reference

Pundit’s temporal component is designed to represent temporal information about specific
situations. Specific situations are those which are asserted to have already occurred, or to be
occurring at the time when a text is produced. This excludes, e.g., situations mentioned in

'&:ﬁ ¥arious types of tenseless predications are processed by Pundit's temporal component, including nominalisations
. and certain clausal modifiers of noun phrases (e.g., Pressure decvoaning below 80 paig cavred (he pump to fail.). How-
ever, this paper focuses on the simpler case of tensed clauses.

] Tense and Aspect.

modal, intensional, negated or frequentative contexts.® The first task performed by the teniporal
analyser is thus to determine whether a predication denotes an actual state-of-affairs. Sentence
1), for example, reports that a particular pump participated in a particular event at a specific
time.

1) The lube oil pump seised.

Sentences 2) and 3), on the other hand, report types of recurrent events.

2) The lube oil pump seised whenever the engine jacked over.

3) The lube oil pump seises.

In example 2), it is the adverb whenever which indicates that the main clause refers to a
recurrent type of event rather than to a specific event sitnated at a particular time. In example
3), it is the inherent aspect of the verb seize in combination with the present tense which pro-
vides that information. Aspect is the inherent semantic content of a lexical item pertaining to
the temporal structure of the situation it refers to, and thus plays a major role in computing

temporal information. Before looking for temporal adverbials, Pundit’s temporal component
inspects the verb for its inherent lexical aspect and its grammatical tense and aspect markings

" in order to exclude sentences like 3). This check to determine whether a particular predication

denotes a specific situation is carried out by Module 1 of the Predication Algorithm as described
in section § 4.1.

2.1.3. Temporal structure of specific situations

If a sentence is presumed to denote an actual state-of-affairs on the basis of a quick check
of the verb and its surface marking, then the temporal structure of the denoted situation is
computed. Accurate representation of the temporal structure of a situation is a prerequisite for
interpreting the relative temporal location of a situation and for interpreting temporal adverbi-
als. Situations are classified on the basis of their temporal structure into three types: states,
processes and transition events. Each situation type has a distinct temporal structure
comprised from a set of basic temporal components and features. The basic components of tem-
poral structure are intervals while the features associated with them are stativity versus
activity, and boundedness.

Very briefly, a state is a situation which holds over some stative interval of time. State
predications evoke inherently unbounded stative intervals, although a temporal bound could be
provided by an appropriate temporal adverbial (e.g., The pressure was normal until the pump
seised). In general, temporal adverbials can modify an existing component of temporal structure
or add components of temporal structure. A process is a situation which holds over an active
interval of time. Active intervals can be unbounded or unspecified for boundedness, depending
on the grammatical aspect of the predication. A transition event is a complex situation consist-
ing of a process leading up to a new state or process. Its temporal structure is thus an active
interval followed by—and bounded by--a new active or stative interval. As will be pointed out
in this section, the boundary between the two intervals, referred to here as a transition bound,
is a feature associated with the temporal structure of transition events, rather than a real com-
ponent of time. This section briefly reviews how the three types of situation and their temporal
structures are represented. Later, in sections §§ 3.3 and 4.2, we will see how the type ot situa-
tion associated with a predication is determined from the inherent lexical aspect of the verb and
its grammatical aspect.

“The latter are not curreatly haadied in the Pundit system. Predications embedded in any one of these contexts
do aot directly denote specific situstioas but rather denote Lypes of situations which, e.g., might occur, have not oc-
curred, or tead to occur. Treatment of these contexts awaits tbe development of a representation which distinguishes
between specific situations which hold for some real time and types of situations which hold for some potential time.

a4 i Aol £ TN RN Tw " WMV IS TV AT N T wRw

4 Tense and Aspect

@ 2.1.2.1. Situation Types and Time Arguments

A state is a situation holding for some interval of time in which there is no change from
moment to moment. The interval associated with a state is referred to as a stative interval.
Sentence 4) is an example of a typical stative predication. Note that the lexical head of the
verb phrase is the adjective [ow.

4) The pressure is low.
Situation type: state
Temporal uunit: stative interval

When a stative predication is recognized as such, the time component associates a stative inter-
val with the predication to indicate that the predication holds over a homogeneous interval of
time.

A process also has duration. The interval associated with a process, referred to as an
active interval, contrasts with a stative interval in that there is change from moment to
moment, but without an abiding change of state. Sentence 5) illustrates a typical predication
denoting a process.

5) The gear is turning.
Situation type: procesas
Temporal unit: active interval

The distinction between stative and active intervals, or between states and processes, will prove
useful in interpreting manner adverbials indicating rate of change, e.g., slowly and rapidly. Since
stative predications denote the absence of change over time, they cannot be modified by rate

adverbials.

_ The third type of unit, the transition bound, is associated with events which denote a
g transition to a new state-of-affairs, as in 6) and 7). A transition bound must, by definition, be a
transition between an initial active interval and an ensuing active or stative interval associated
with a new state-of-affairs. Examples 8) and 7) illustrate two types of transition events, one

resulting in a new state, and one resulting in a new process.

6) The lube oil pump has seised.
Situation type: transition event
Temporal units: active interval + transition bound + stative interval

7) The engine started.
Situation type: transition event
Temporal units: w.ztive interval + transition bound + active interval

A transition bound is a convenient abstraction for representing how transition events
are perceived and talked about. Since a transition event is one which results in a new state-
of-affairs, there is in theory a point in time before which the new situation does not exist, and
subsequent to which the new situation does exist. A transition bound, however, is a theoretical
construct not intended to correspond to an empirically determined time. The components of
temporal structure proposed here are intended to provide a basis for deriving what is said about
the relative ordering of situations and their durations, rather than to correspond to physical
reality.

2.1.2.2. Representing states-of-affairs

A specific state-of-affairs is represented in Pundit as a predicate structure identifying the
type of situation. Each state, process or event representation has three arguments: a unique
identifier of the state-of-affairs, the semantic decomposition, and the time argument. The sen-

@ tence in 5) is repeated here along with its state-of-affairs representation.
haY

5) The gear is turning.
Situation type: process

" "t - L e en . R
B N A ARG S Y MG NI YA o e it e IR PN A N N NN,
Kl N N "o o ¥ o A P [

6 Tense and Aspect

Temporal unit: active interval
State-of-affairs: process([turnl], turnPactor([gearl])), period([turnl]))

Label: process(

Unique identifier: [turni],

Semantic decomposition: turnPactor([gearl])),
Time Argument: period([turni]))

The same pointer is used to identify both the event and its time argument because it is the
actual time for which a situation holds which uniquely identifies it as a specific situation. The
situation mentioned in sentence 5) is represented as a process whose name is [turnl]. The
[turn1] process occurs for a specific time, i.e., for the duration of period({turnl]). The semantic

decomposition represents the process predicate along with its participant(s).®

. The three types of situations are distinguished both on the basis of the state-of-affairs
predicate, or label, and the time argument. States receive a state label and processes receive a
process label. Both are assigned period time arguments, but a period in the context of a state
representation corresponds to a’ stative interval while a period in the context of a process
representation corresponds to an active interval. Transition events have a more complex tem-
poral structure which requires multiple states-of-affairs representations.

There are three components of the temporal structure of a transition event: an initial pro-
cess interval leading up to a transition, the moment of transition, and the interval associated
with the new, resulting state-of-affairs. That there are these three distinct temporal com-
ponents of transition events can be illustrated by the following sentences in which different
types of time adverbials pertain to the three temporally distinct parts of the predicated event.

8) It took 5 minutes for the pump to seise.
9) The pump seised precisely at 14:04:01.
10) The pump was seised for 2 hours.

The temporal measure phrase 5 minutes in 8) above applies to the interval of time during which
the pump was in the process of seizing. The clock time in 9) corresonds to the moment when
the pump is said to have made s transition to the new state of being seised. Finally, the meas-
ure phrase in 10) corresponds to the interval associated with the new state. In theory, then, one
could represent the full temporal structure of a transition event as three contiguous states of
affairs: an initial process (e.g., seizing) leading up to a transitional event (e.g., becoming seized)
followed by a new state of aflairs (e.g., seized) (cf. Dowty, 1986, p. 43). In practice, Pundit
explicitly represents only the latter two components of transition event predications: the
moment (transition bound) associated with an event of becoming, and 2 period associated with
a resulting situation. The event of becoming is represented as an event predicate with a
moment time argument. The new situations resulting from transition events receive a period
time argument and either a process or state label, depending on the temporal structure of the
resulting situation. This representation has been found to be adequate for the current applica-
tion.

¥Note that semaatic predicates like turnP are distinguished from English words by the final P.

O] 30 g V7 0% 4
v.v"a".o“.-'in".o".'.'.."'.0.'.t.l.u“\

] Tense and Aspect

. Type of State-of-affairs Time
Predication _Label Argument Example
State state period The pressure is low
Process process period The gear is turning
Transition event event moment The pump has seised.
result state pump s seizsed
Or process period

Representing the full temporal structure of transition event predications would eventually
make it possible to interpret all the types of temporal adverbials found in examples 8) through
10) above. In general, the temporal structure of situations not only constrains the interpretation
of temporal adverbials, but also of tense and the perfect, as will be shown in the next section.
The function of tense and the perfect is to locate something in time, or to provide ordering
information. The next section will show that tense and the perfect pertain to a specific abstract
component of temporal structure referred to as the event time.

2.1.2.3. Relational Component of Temporal Structure (Event Time)

Pundit’s temporal component employs a Reichenbachian analysis of tense but provides a
more complete and more accurate representation of situations. It shares with Reichenbach’s
framework the notion that a situation can be located in time in terms of three abstract times:
the time of the situation (event time), the time of speech/text production (speech time), and
the time with respect to which relational adverbials are interpreted (reference time).

Pundit’s system diverges from Reichenbach’s in the relation of the event time to the tem-

poral structure of a situation. Reichenbach did not distinguish between the two. For example,

a Reichenbach characterised a past event as one which preceded the speech time in its entirety.
For Pundit, the event time is only a single component of the full temporal structure of a situa-

tion. Consequently, after determining the type of a situation along with its time arguments,

Pundit identifies 8 component of the temporal structure which can serve as the event time.

The choice of the event time depends on a property of intervals referred to here as boundedness.

The temporal structures associated with stative, process and transition event predications
all have different inherent values of boundedness, depending on the inherent aspect of the predi-
cate, its grammatical aspect (i.e., the presence or absence of the progressive suffix -ing), and the
interaction between the two. The boundedness of the different situation types can be illus-
trated by comparing how tense is interpreted in each case.

Predications denoting states and process have duration, as evidenced by the interpretation
of durational adverbial phrases of the form for X, where X is a time measure (e.g., 10 minutes)
(ef. Vendler).

11) The pressure was low for 10 minutes.
state situation

12) The gear was turning for 10 minutes.

process situation
The past tense in examples 11) and 12) above locates part of the respective situations in the
past. However, both the state mentioned in 11) and the process mentioned in 12) are
unbounded, meaning that the tense does not necessarily locate the whole interval associated
with the situation. Examples 13) and 14) illustrate that there is no contradiction in asserting
that a past state or process extends up to the present.

13) The pressure was low and is still low. +
@ 14) The gear was turning and is still turning.

ANCTANC KR % (L

7 Tense and Aspect

‘ Similarly, a present tense state or process assertion may be followed without contradiction by
an assertion that the situation extends back into the past (cf. 15 and 16).

15) The pressure is low and has been low for three hours.
16) The gear is turning and has been turning for 5 minutes.

In the context of predications referring to states or processes, tense cannot be interpreted as
pertaining to the location of the full temporal extent of the situation. The sentence in 17), for
example, asserts that there is at least one moment within the stative interval coiniciding with -
the present for which lowP(patient([pressurel])) is true.

17) The pressure is low.

Since the assertion would be true both in case that the pressure was low only at an instant coin-
cident with the present or over an interval containing such an instant, the interval is said to be
inherently unbounded. The moment of time within an unbounded interval to which tense
applies is referred to as the event time. The representation of the event time assigned to situa-
tions holding over unbounded intervals is discussed in section § 4.2.2.

Predications denoting states always have the same temporal structure: unbounded stative
intervals. A predication denotes a state if the predicate is inherently stative, regardless of the
presence or absence of the progressive. Inability to occur with the progressive suffix is often
cited as a test for stative verbs (cf. Vendler), but Dowty (1979) notes a set of examples of loca-
tive predications in the progressive which denote locative states (e.g., The socks are lying under
the bed). Such statives occur in Pundit’s current application domain (cf. example 48 in § 4.2.1).
Predicates denoting cognitive states or behavioral states have often been classified as statives
but occur in the progressive with reference to a cognitive or behavioral process (cf. I am thinking
good thoughts; My daughter is being very naughty). Although such verbs do not appear in the

8 current domain, they would be treated differently from verbs which are unequivocally stative.

The progressive in combination with verbs whose inherent aspect is eventive, i.e., in the
process 6r transition event class, always denotes a process and the associated active interval is
unbounded. However, non-progressive process verbs denote processes over an active interval
which is unspecified for boundedness. It is characterised as unspecified because the event time,
the time located by the non-perfect tenses, may be within the interval or may be at the incep-
tion or the close of the interval. A compirison of simple past process predications with past
progressive process predications in the context of two types of temporal adverbials exemplifies
the relative indeterminacy of the former. The at phrase in 18) and 19) specifies a clock time. In
the context of the progressive process verb in 18), that clock time is interpreted as falling within
the active interval of turning but in 19), where the verb is not progressive, 12:04 can be inter-
preted as falling at the inception of the process or as roughly locating the entire process.

18) The gear was turning at 12:04.
19) The gear turned at 12:04.

The durational adverbial phrase appearing in 20) and 21) not only specifies a duration, but also
implies an endpoint (cf. Vendler). Since progressive process predications are unbounded, 20)
cannot be interpreted as denoting a specific situation with an actual time; rather, it seems to
refer to an activity that was supposed to take place 5 minutes from some previously specified
time. In contrast, 21) does denote a specific situation and the endpoint of the five minute dura-
tion is interpreted as coincident with the end of the turn process. Example 22) is a reasonable
paraphrase of 21).

20) The gear was turning in 5 minutes.

21) The gear turned in 5 minutes.
@ 22) It took 5 minutes for the gear to turn.

RSG50 SNSRI B S A, N Al A A VST W Ve G N A I, A G e e

8 Tense and Aspect

Noa-progressive forma of process verbs exhibit a wide variation in the interpretation of what
part of the temporal structure is located by tense. The influencing factors seem to be pragmatic
in nature, rather than semantic. The solution taken here is to characterise the event time of
such predications as having an unspecified relation to the active interval associated with the
denoted process.

Non-progressive transition event verbs denote transition event situations, i.e., temporally
complex situations in which there is a transition to a new state-of-affairs. The simple past
places the moment of transition in the past. Trausitional moments are dimensionless, hence a
simple past transitional event predication followed by an assertion of its continuation into the
present is contradictory, as illustrated in 23).

23) The lights went off and they’re still going off.

The second clause in 23) cannot refer to the same event mentioned in the first clause; rather,
the sentence is interpreted as referring to more than one event. In sum, the event time of a
transition event situation is equated with the moment of transition.

2.1.3. Reference time

The final component of time associated with a predication is the time with respect to
which relational adverbials like now, yesterday and so on are interpreted. In the absence of the
perfect, the reference time is identical with the event time, as in 24) and 25).

24) The pressure is normal now.
25) The pressure was low yesterday.

In the perfect tenses, the reference time and event time are distinct. The event time of both the
present and past perfect predications in 26) and 27) is past, i.e., the moment of failure is in the
past.

26) The pump has now failed.
27) The pump had failed when the gear began to turn.

With the present perfect, it is the reference time which is in the present, as shown in 26) by the
admissibility of the adverb now, which also refers to the present. As 27) illustrates, with the
past perfect the event time, or moment of failure, precedes the reference time, i.e., the time
specified by the when clause.

2.3. Adverbial Modification

Temporal adverbials occur in many of the sample sentences cited above. While the pri-
mary function of the examples is to show how adverbial modification can provide evidence for
properties of the temporal structure and temporal ordering associated with various types of
predications, they also illustrate different types of temporal adverbials. It is assumed that tem-
poral adverbials can be analysed in terms of the same temporal components and ordering rela-
tions that apply to the analysis of situations. However, computation of the modification rela-
tions between temporal adverbials and predications is too complex to provide a full discussion
here. Instead, three types of modification will be briefly mentioned. It has already been pointed
out that there is a class of adverbs modifying the manner in which situations evolve through
time, o.g., rate adverbials like slowly and repidly. Temporal adverbs can also specify durations,
¢.g., for X, where X is a temporal measure phrase. Or, they can specify relations between times.
Relational adverbs like now and yesterday relate the reference time of a predication to an impli-
cit time, which in the case of now is the present. Relational adverbs like before and after relate
the time of the predication they modify to an explicitly mentioned time, i.e., the event time
associated with their syntactic complements, as in 28) and 29).

28) The pump failed after the decrease in pressure.

9 Tense and Aspect

' ' 29) The engine seised before the alarm sounded.

Finally, it should be pointed out that many adverbials combine relational and durational ele-
ments. The durational adverbial in X where X is a temporal measure phrase not only specifies a
duration, but relates the endpoint of this duration to some other time, e.g., the time at which
the utterance is produced, as in 30).

30) The lights will go off in 10 minutes (i.e., from now).

Temporal connectives like before and after can combine with temporal measure phrases to yield
complex adverbials specifying both a duration and a relation, as in 31).

31) The engine seised five minutes before the alarm sounded.

One of the goals addressed here is to provide temporal inodels of situations in such a way as to
represent the intervals and relational elements of time which can be modified by temporal
adverbials. As a first step towards this goal, the interpretation of simple temporal connectives
has been implemented in Pundit’s time component. The algorithm for interpreting sentences
with temporal connectives is presented in section § 5.

3. Input to the Temporal Component

Pundit’s time component performs its analysis after each sentence has been parsed and the
semantic analysis of each predicational structure in the sentence has been completed. In other
words, time analysis is performed not only on clauses, but also on nominalisations (failure of sac)
and certain noun modifiers. For ease of presentation, we will focus here only on the temporal
analysis of tensed clauses.

The input to the time component for each tensed clause includes not only the surface verb
and its tense and aspect markings, but also the decomposition structure produced by analysing
6 the verb and its arguments. In effect, the time component receives a list of the following form:

[Tense, Perfect, Progressive},Verb,Decomposition,{Context}] :

Before explaining how this input participates in the algorithmic interpretation of a sentence’s
temporal semantics, each element of the list will be described in turn.

3.1. Verbal Categories

As indicated in boldface, the first element in the input list to the time component is itself
a list of the verb’s surface categories.

([[Tense, Perfect, Progressive],Verb,Decomposition,{Context}]

This list contains three pieces of binary information. The tense parameter is either past or
present.® If the progressive suffix (-ing) or perfect auxiliary (have) is present in the original sen-
tence, there is a corresponding element in the list of verbal categories. Absence of the progres-
sive or perfect markers is indicated by omission from the list. The presence versus the absence of
the progressive contributes information about the temporal structure of a predication. The
presence versus the absence of the perfect indicates whether the reference time must be dis-
tinguished from the event time. The way in which these pieces of information are used will be
described after reviewing the remainder of the input.

3.2. Three Orders of Verbs
The second element in the input list to the time component is the surface verb.
[[Tense, Perfect, Progressive],Verb,Decomposition,{ Context}!

¢ Sentence fragments such as erosson of blade iy evident are processed as tenseless variants of full sentences. The
time component uses special rules to assign a default tense interpretation to different types of fragments. These de-
fauit rules are not described here.

SO Ot O A OO

&

10 Tense and Aspect

For the sake of completeness, the computational function of including the surface verb will be

briefly described. However, this information pertains to the treatment of more complex cases of
the model. Since the focus of this paper is on explicating the basic model, the following descrip-
tion is intended only to indicate that the model has been extended to cover verbs whose seman-
tic structure contains temporal information of a different order than the inherent temporal
structure of a situation. After a brief description of three orders of temporal verbs, the discus-
sion will return to explication of the input required for implementing the basic model.

Many verbs can be classified on the basis of what type of real-world situation they denote
(cf. Vendler, Dowty). In section § 2.3 above, three types of situations were introduced. However,
there is another set of pertinent distinctions of an entirely different order from the classification
of situations into states, processes and events. For example, the semantic content of some
verbs is almost entirely temporal in nature. Such verbs do not directly denote possible situa-
tions in the world, but rather contribute temporal information about a situation or situations
mentioned as arguments to the verb. In 32), the subject of the sentence, the failure, denotes an
event, but the verb occur does not denote a new situation. It provides tense and aspect infor-
mation for the interpretation of the nominalisation faslure.

32) The failure occurred during the decrease in pressure.

In other words, the temporal information contained in 32) is very sumlar to that contained in
33):

33) Something failed during the decrease in pressure.

A pragmatic difference between the two sentences is that in 32) it’s not necessary to mention
what failed whereas in 33), fasl must have a subject, which in this case is an indefinite pronoun.
Other verbs in this class are follow, precede, continue, happen and 30 on. Because these verbs
contribute primanly temporal information, they are given the descriptive label of upectual
verbs.

It is easy to see that the analysis of aspectual verbs must be implemented somewhat
differently from verbs like fas! which directly denote situations. In a sentence like 33), the
relevant temporal information is contained in the verb and its tense and aspect marking alone.
In contrast, the temporal information in 32) pertaining to the fail event is distributed not only
in the verb and its tense and aspect markers, but also in its subject. Temporal analysis of sen-
tences like 33) must be performed not only at the main clause level, but also at the level of
embedded propositions. In essence, analysis of aspectual verbs is of a different order. Verbs like
fail are classified as first-order verbs while the so-called aspectual verbs are classified as
second-order verbs.

Pundit’s temporal component also handles a third class of verbs, classified as third-order.
A third-order verb denotes a real-world situation, but its arguments are other situations. Con-
sequently, the verb may contribute temporal information about the arguments as well as about
the situation it denotes. The verb result illustrates this type. Sentence 34) asserts the existence
of a result state-of-affairs; the result relationship holds between an instigating situation men-
tioned in the noun phrase [oss of asr pressure, and a resulting situation mentioned in the noun
phrase failure.

34) Loss of air pressure resulted in failure.

Additionally, the meaning of result includes the temporal information that the instigating situa-
tion (the loss) precedes the resulting situation (the failure). A full temporal analysis of sentences
like 34) requires two steps. The first is to analyse the temporal structure of the situation
denoted by the verb. The second is to draw the correct temporal inferences about the verb’s
propositional arguments. Such verbs combine some of the properties of both first and second-
order verbs and thus constitute a third order of analysis. Classifying a verb as a third-order
verb drives the search for temporal inferences associated with its arguments.

- M YT RN Y

AR ¥ Y . .
RIS ’4’,21' L »-"'l‘ W A ’.i lﬂ .ﬂ W R 4N '. }“\.“Q‘ .l!'... () .'4.‘ “.‘ .’\.."‘ 4 ‘|.‘.| \j‘.\. My W 8 ‘.l ‘ W W W W _.“. N

.. W aw
‘VN I'|

11 Tense and Aspect

‘ In sum, there are three orders of verbs:
First order verbs: o.g., 'ail’, ’operate’, 'install’
verbs which denote situations and whose arguments are not propositional
Second order verba: e.g., ‘occur’, 'follow’, ‘continue’
verbs which provide temporal information abost their propositional arguments
Third order verbe: e.g., ‘result’
verbs which denote sstuations but which also provide temporal information about thesir propontwul
arguments

This information is provided by a lookup procedure where first-order is a default value. That
is, all second and third-order verbs must be explicitly classified as such in the temporal com-
ponent. Although the Pundit system recognises the distinction between first, second and third
order verbs and processes the relevant temporal information in each case, the remainder of the
paper will deal only with the temporal analysis of first-order verbs.

3.3. Decompositional Structure and Lexical Aspect

The fourth element in the input list is the decomposition structure produced by the seman-
tic analysis of the verb and its arguments (cf. Palmer, Palmer et al.).

{[Tense, Perfect, Progressive], Verb, Decomposition, {Context}]

The lexical decompositions employed by Pundit represent the predicate/argument structure of
verbs (or other predicating words, e.g., adjectives). In addition, following the example of Dowty
(1979), the decompositions represent a verb’s inherent temporal properties, or lexical aspect,
which is one of the components used in computing the temporal structure of a predication. The
literature on the aspectual classes provides a variety of diagnostics for determining the inherent

e’ aspect of verbs (cf. Vendler, Dowty). In Pundit’s lexical entries, there are three values of lexical
aspect corresponding to the three types of situations described in section § 2.1.2, vis., stative,
process and transition event. This section describes how the temporal component determines
the value of the lexical aspect from the decomposition.

Example 35) illustrates a typical decomposition of a stative predication.

35) The pressure is low.
Decomposition: lowP(patient([pressurel]))

The semantic analyser generates this output by finding the predicate lowP associated with the
predication be low, and then predicating it over the entity ([pressurel]) referred to by the sub-
ject noun phrase, the pressure. The time component recognises this structure as a stative predi-
cation through a process of elimination. That is, this decomposition contains no information
associated with processes or transition events; stative is the default value.

Example 36) illustrates the decomposition for a simple process verb. Like the stative lexi-
cal decomposition, it consists of a basic predicate, turnP, with a single thematic role, actor.

36) The gear is turning.
Decomposition: turnP(actor([gearl]))

Pundit recognizes process verbs by the presence of the actor role in the decomposition struc-
ture; i.e., the actor role designates the active participant of process verbs.

The decompositions of transition event verbs are distinguished by the presence of a spe-
cial predicate structure containing the aspectual operator becomeP. For example, a transi-
tion event verb such as fail is represented as in 37) below:

37) The engine failed.
& Decomposition: becomeP (inoperativeP(patient([enginel]))

As described in the preceding section, a transition event predication is by definition one in
which a process engaged in by some actor or agent leads to a new state or process. With

P A \MﬁmaﬁvkvAmMﬂu\xh\A

12 Tense and Aspect

inchoative verbs (e.g., feil, as in 37), the actor of the initial process is also the patient or
theme of the resulting state-of-affairs. That is, the new state (inoperstive(patient([enginel)))) is
asserted to come about without the intervention of some other actor. If the intervention of
another actor is involved, the verb falls into the class of causatives and the actor of the initial
process is conventionally called an agent (cf. 38)):

88) The ship’s force operated the engine.
Decomposition: causeP(agent([ship’s forcel]),
becomeP (operatingP(actor([engine]))))

Other decompositional analyses (cf. Dowty; Foley & Van Valin) conventionally represent the ini-
tial process of transition event verbs by associating an activity predicate (e.g., do) with the
actor or agent of the initial process (e.g. causeP(doP(agent(.)),
becomeP (InoperativeP(patient(_))))). The decompositions in 37) and 38) can be considered
abbreviated versions of these predicate/argument structures.

The decompositions of transition event verbs illustrated in examples 37) and 38) provide
a crucial piece of information used during the temporal analysis. Given a reference to a specific
transition event which has already taken place, the temporal component deduces the existence
of the new state-of-affairs that has come into being as a result of the event. It carries out this
deduction by looking at the predicate embedded beneath the becomeP operator. This will be
described in more detail later.

The important aspectual features of the decompositions can be summarised as follows. If
the decomposition of a first-order verb contains an actor role, the verb is in the process aspec-
tual class; if the decomposition contains a becomeP operator, the verb is in the transition
event class; else, the verb is inherently stative.

8.4. Discourse Context

The final element in the input to the temporal component is a data structure representing
the current discourse context.

([Tense, Perfect, Progressive], Verb, Decomposition, {Context}]

The first element of this data structure is a list of unanalysed syntactic constituents. Recall
that at this stage of processing, Pundit has produced a full syntactic analysis of a surface sen-
tence (or sentence fragment; cf. fn. 8 above), and a semantic decomposition of some predication
within the sentence. After the semantic analysis of a clause, the constituent list contains all
those syntactic constituents which do not serve as arguments of the verb, e.g., adverbial
modifiers of the verb phrase and sentence adjuncts. After the analysis of the main clause of sen-
tence 39) for example, the constituent list would contain two unanalysed constituents, the

prepositional phrase introduced by during, and the subordinate clause introduced by when.’
39) The sac failed during engine start, when oil pressure dropped below 60 psig.

This list of constituents is processed after the temporal content of a predication is analysed in
the search for temporal adverbials which modify the predication (cf. § 5 below).

The data structure representing the current discourse context contains another piece of
temporal information: the tense of the main clause. This information is necessary for the
analysis of states-of-affairs mentioned in nominalisations and embedded tenseless clauses.

3.5. Summary of Input

The canonical case for temporal analysis consists of first-order verbs, i.e., verbs which
denote real-world situations and which do not take propositional arguments. In this case, the

786¢, a word encountered frequently in the CASREPS, is an acronym for siariing asr compressor.

A .-

R S S T TR

SR T G T I T T T R I N R T T T s T T Sy

13 Tense and Aspect

input to the temporal component consists of a list of the surface tense and aspect marking, the
verb, the decomposition and the discourse context containing the list of unanalysed constituents.

[[Tense, Perfect, Progressive], Verb, Decomposition, {Context}]

Before performing the computation of the temporal information distributed in these elements,
the temporal component determines first that the verb is first-order by performing a lexical
lookup. Then it determines the aspectual class of the verb by looking at the decomposition
structure. A data structure is created which carries the four pieces of information about the
verb’s inherent aspect, its tense (past or present) and whether it occurred in the perfect or the
progressive.

Temporal Data Structure: [Tense, Perfect, Progressive, Aspect]

The decomposition and the temporal data structure include all the necessary elements for
extracting the types of temporal information described in section § 2.

Aspectual information pertains to the temporal structure of a situation. It is distributed
in two components of the temporal data structure: the lexical aspect of the predication (Aspect)
and its grammatical aspect (Progressive), indicated by the presence or absence of the progres-
sive suffix -ing. Relational temporal information includes the temporal location of a state-of-
affairs with respect to the speech time and with respect to the temporal vantage point taken by
the speaker. This vantage point is the reference time for interpreting relational adverbials,
like now and yesterday, and temporal connectives, like when and after. Relational information is
distributed in the Tense and Perfect components of the temporal data structure. The aspectual
information ([Progressive, Aspect]) is passed to Module 2 as described in section § 4.2. The rela-
tional information ([Tense, Perfect]). is passed to Module 3 as described in section § 4.3.

4. Computing the Information in the Predieation

Punditis temporal component analyses the temporal semantics of a verb and its surface
categories in three phases designed to answer the following questions:

1) Does the predication denote a specific state-of-affairs with actual time reference?

2) If so, what is the temporal structure of the state-of-affairs, i.e., how does it evolve through
time and how does it get situated in time?

3) Also, what is the temporal ordering of the state-of-affairs with respect to other times and
what is the temporal vantage point from which the state-of-affairs is described?

Each question is answered by a different module which has selective access to the appropriate
temporal input. The first module, corresponding to question 1), requires the full temporal data
structure containing the inherent aspect of the verb, its tense, and whether it occurred in the
perfect and the progressive (Tense, Perfect, Progressive, Aspect). The information in the tem-
poral data structure can be distinguished into aspectual and relational information. The second
module, which computes the temporal structure, requires the aspectual information contained in
the Aspect and Progressive parameters of the temporal data structure. The third module
requires the relational information contained in the Tense and Perfect parameters.

The following sections describe each module in turn, indicating both the input information
to which it has access and the output which it produces. Figure 1 schematically represents the
modular design of the portion of the temporal analyser devoted to the analysis of the predica-
tion. The chart illustrates that the modules are sequential, and that the output of one module
may provide input for another. Notice also that the output of this first step provides input for
the analysis of temporal adverbials, as described in section § 5.

4.1. Module 1: Filter Out Non-specific Situations

The present implementation of the temporal component of Pundit is designed to identify
references to specific situations. Screening out predications which denote types of situations is

14 Tense and Aspect

ALGORITHM FOR COMPUTATION OF TEMPORAL lNFOR.MATION IN A SENTENCE

sm 1.

COMPUTATION OF TEMPORAL INFORMATION CONTAINED IN THE VERB AND ITS
GRAMMATICAL CATEGORIES

INPUT:

a) Temporal Data Structure: [Tense, Perfect, Progressive, Aspect)

b) Decomposition

OUTPUT:

a) Full temporal structure of a situation with specific temporal reference
b) Temporal ordering relations

MODULE 1: Filter input to screen out predications lacking specific temporal reference

INPUT: Temporal Data Structure, i.e., [Tense, Perfect, Progressive, Aspect]

MODULE 2: Compute the full temporal structure associated with a predication
e INPUT: Aspectual Temporal Data, i.e., [Progressive, Aspect|

OUTPUT: State-of-Affairs Label; Time Arguments; Event Time

MODULE 3: Compute the temporal ordering relations associated with a predication
INPUT: Relational Temporal Data: [Tense, Perfect]

OUTPUT: Reference Time; Relations among Event Time, Reference Time and Speech Time

END STEP 1

STEP 2: COMPUTATION OF TEMPORAL INFORMATION CONTAINED IN TEMPORAL
ADVERBIALS

INPUT: Temporal Structure, Event Time, Reference Time

Figure 1: Overview of temporal algorithm

the first task performed by the time component so that further temporal analysis will be per-
formed only for predications which are presumed to denote specific situations. A predication
@ denotes a specific situation when two criteris are satisfied. First, at least one of the verb’s
arguments must be interpreted as specific (cf. Mourelatos, Dowty, Vlach). Second, the situation
must be asserted to hold in the real world for some specific time. Regarding the first criterion,

15 Tense and Aspect

for example, the simple past of fly denotes a specific situation in 40) below, but not in 41),
because the subject of the verb in 41) is generic.

40) John flew TWA to Boston.
41) Tourists flew TWA to Boston.

However, this paper does not address the interaction of the nature of a verb’s arguments with
the specificity of references to situations. Regarding the second criterion, predications in modal
contexts (including the future; cf. 42) are excluded because their truth evaluation does not
involve specific real-world times, but instead involves hypothetical or potential times.

42) The oil pressure should/may/will decrease.
Frequency adverbials like always may also force a temporally non-specific reading, as in 43).
43) John always flew his own plane to Boston.

The first module of the time component currently does not identify modal contexts, frequency
adverbials, or generic arguments. However, it does identify predications denoting types of situa-
tions on the basis of their surface tense and aspect markings, as indicated in the temporal data
structure.

If we consider only the four elements in the temporal data structure (Tense, Perfect, Pro-
gressive, and Aspect) then most predications can be assumed to denote specific situations.
There are two exceptions. Both process verbs and transition event verbs when used in the
simple present tense (i.e., non-progressive and non-perfect) generally denote types of situations,®
as exemplified in 44) and 45).

44) Number 2 sac operates at reduced capacity.
operate is a process verb

458) Oil pressure decreases below alarm.point whenever sac is engaged.
decrease is a transition event verb

All four elements in the temporal data structure must be inspected to identify the two cases
exemplified in 44) and 45). The sentences which can be identified as potentially denoting types
of situations on the basis of the information in the temporal data structure are those which are
in the present tense and which are neither perfect or progressive, and where the lexical head of
the predication is not inherently stative. The following conditional statement expresses these
dependencies.

IF Tense=present and Perfect=no and Progressive=no and Aspectsstative
THEN the predicate probably denotes a type of situation;

—+ stop processing temporal information
ELSE assume the predicate denotes a specific situation;

—+ continue processing temporal information

In the current implementation of Pundit, predications which meet the first condition do not
receive further temporal analysis. Thus the screening divides predications into two classes:
those which can be assumed to denote specific situations barring disconfirming information else-
where in the sentence (e.g., arguments of the verb, modality, frequency adverbials), and those
which can be assumed to denote types of situations barring disconfirming pragmatic features of
the discourse context. The time component could be developed to provide broader and more
accurate coverage by adding modules to check for both types of disconfirming information.

* They may denote specific situations if they caz be interpreted as performatives (cf. Austin), as in this sentence,
I warn yos not to crose me, or, if they can be interpreted as a report of a presently unfolding situation, as in a sports-
cast. These types of discourse, which do not come up in Pundit’s domain, could be fully processed only by representing
pragmatic features such as the speaker/addresses relationship. Module 1 could be effectively used to identify a set of
sentences for which these pragmatic features would be relevant.

- "Mﬂfﬁﬁﬁﬁm&.&ﬁ&&{&mw&m:&

4.3. Module 3: Compute Temporal Structure

A predication passes through Module 1 of Pundit’s temporal component for further tem-
poral processing if it is presumed to denote a specific situation. Module 2 computes the first
type of specific temporal information: the temporal structure evoked by a predication. Part of
the temporal structure, that which Talmy described as the paitern of distribution of action
through time (Talmy, p. 77), is represented in the situation labels and the time arguments.
Another part of the temporal structure is the event time, i.e., the component of the full tem-
poral structure which is located in time by tense and the perfect.

Temporal structure is computed at this point because it constrains the interpretation of
the other two elements in the temporal data structure (Tense, Perfect). The situation labels,
time arguments and event time associated with a predication can be computed entirely on the
basis of the values of the two aspectual ‘elements in the temporal data structure, the verb’s
inherent aspect and its grammatical aspect (Aspect, Progressive). However, in order to derive
the correct representations of the situations resulting from transition events, Module 2 also
needs the semantic decomposition. From this input information, i.e., the verb’s inherent aspect,
it's grammatical aspect, and—in the case of transition events-the decomposition, Module 2
determines the temporal structure. Section § 4.2.1 describes the computation of the situation
labels and time arguments. Section § 4.2.2 explains the computation of the event time.

4.2.1. Situation Labels and Time Arguments

Pundit distinguishes between three types of situatic .s: states, processes and transition
events. It determines the type of situation evoked by a predication on the basis of one or more
values of the aspectual parameters. If the lexical aspect of the predicate is stative
(Aspect=stative), then the Progressive parameter is irrelevant; such a predication always
denotes a state. Similarly, if the lexical aspect of the predicate is process (Aspecta=process),
then the denoted situation is always a process. In the case of a process predication, however,
the Progressive parameter affects the computation of the event time (cf. § 4.2.2). Finally, if the
lexical aspect of the predicate is in the transition event class, then the type of situation depends
on the progressive paramater. Progressive transition event verbs denote process situations;
non-progressive transition event verbs denote transition event situations.

A predicate that is inherently stative is assumed to denote a state, regardless of whether
the progressive suffix is present or not. In this case, the decomposition is not relevant. In other
words, two types of input lead to state representations: stative predicates in the non-progressive
aspect and stative predications in the progressive aspect. A state is represented with a state
label and a period time argument. The following conditional statement summarises the
relevant input and output:

IF Aspect=stative
THEN — Label=state and Time Argument=period

In the discussion of the semantics of progressive aspect with lexical statives (section § 2.1.2.3),
the class of progressive statives denmoting location was mentioned. An example of this
phenomenon occurs in the current domain in the sentence fragment appearing in 46).

468) Material clogging strainer.

RELEVANT INPUT

a) Aspect=stative

OUTPUT

a) Label=state

b) Time Argument=period (i.e., stative interval)

The preceding sentence fragment is parsed with clog as the main verb in the progressive, with
an elided be verb (i.e., as a tenseless version of material is clogging strainer). Clog is classified in

T R N I I AT LR R R R T
I N NI N M A NP N AT

17 Tense and Aspect

this domain as a stative verb, and in this context, the progressive suffix has no temporal seman-
tic value.

If a predicate belongs to the process aspectual class (e.g., operate), then it denotes a pro-
cess regardless of the value of the Progressive parameter. In this case, Pundit assigns a process

label and a period time argument.

IF Aspectmprocess

THEN — Label=process and Time Argument=period

Examples 47a) and 47b) illustrate the two types of predications with process verbs that denote
process situations.

47a) The diesel operated.

47b) The diesel was operating.

RELEVANT INPUT

a) Aspect=process

OUTPUT

a) Label=process

b) Time Argument=period (i.e, active interval)

As described abqve (in § 2), a process is a type of event that happens over a period of time (an
active interval). There is a third case where a predication denotes a process: where the verb
falls in the transition event class (e.g., fail) and occurs in the progressive, as illustrated in 48).
In other words, in this case, both aspectual parameters are relevant input.

48) The pump is failing.

RELEVANT INPUT

a) Aspect=transition event

b) Progressive=yes

OUTPUT

a) Label=process

b) Time Argument=period (i.e., active interval)

Here Pundit would also assign a process label and a period argument. Recall that a period
argument within a state representation represents a stative interval while a period argument
within & process representation represents an active interval. In sum, there are three surface

forms which denote process situations: the non-progressive form of a process verb, the progres- - -
sive of a process verb, and the progressive of a transition event verb.

The last type of situation, the transition event, is denoted by a predicate which is
inherently in the transition event class and does not occur in the progressive. As pointed out in
the preceding paragraph, both aspectual parameters are relevant when the inherent aspect is a
transition event. A transition event verb which is not in the progressive denotes a transition
event situation. In this case, the decomposition input is also relevant for deriving the full tem-
poral structure. As iliustrated in 49), tranrition event situations are assigned two state-of-
affairs representations: an event situation with a moment time argument, represented with the
input decomposition, and a resulting state or process situation with a period time argument, for
which a new decomposition is derived by removing the becomeP aspectual operator.

49) The pump failed.
RELEVANT INPUT

a) Aspect=transition event

e e s |

18 Tense and Aspect

. b) Progressive=no
¢) Decomposition=mbecomeP(inoperativeP(patient([pump1))))
OouUTPUT
a) Labelmevent
b) Time Argument=moment
¢) Result Decomposition=inoperative(patient([pump1]))
d) Result Label=state
e) Result Time Argument=period (i.e., stative interval)
The role of the decomposition in representing transition events is explained more fully in the fol-
lowing paragraphs.

The moment argument of a transition event is a transition bound, meaning that it is
necessarily the onset of a new state-of-affairs. When Module 2 creates an event with a moment
argument, it also creates a related representation for the new state-of-affairs. It is necessary to
find an appropriate situation label, time argument, and semantic decomposition for the new

state-of-affairs. It is also necessary to create a predicate specifying the temporal relationship
between the transitional event moment and the following period associated with the new state.

All transition event verbs contain a state or process predicate embedded beneath the
aspectual operator becomeP. The full decomposition represents the type of situation associ-
ated with the moment of transition. The portion embedded beneath becomeP is the situation
type associated with the new situation. For example, the decomposition passed to the time
component for sentence 49)--The pump failed~would be:

G becomeP (inoperative(patient([pumpl]))).
This decomposition appears in the representation of the transitional event, as follows:

event([falll], becomeP(inoperative(patient([pumpl]))), moment([faill]))

The argument to becomeP is extracted to be used as the decomposition in the new state-of-
affairs representation:

inoperative(patient([pumpl]))

The set of semantic roles contained in the extracted decomposition is then inspected to deter-
mine if the actur role is a member. Since in this case, it is not, the new situation is assumed to
be a state and represented as shown below:

state([fail2], inoperative(patient([pumpl])), period([fail2]))

If actor had been one of the roles in the embedded predicate structure, the new situation would
have been assumed to be a process. In this mauner, the decomposition guides the selection of
the label for the state-of-affairs inferred to result from the transition event.

The final piece of information to be represented here is the temporal relation between the
moment associated with the transition event (e.g., moment([faill])) and the period associated
with the resulting situation (e.g., period([fail2])). The moment associated with a transition
event serves as a lower bound to the period. Following Allen (1983), this is called a start rela-
tionship. Thus, every moment starts some period. In the case of example 49), the moment of

% failure starts a verioa in which the pump is in an inoperative state.

O o o e T o o D A R

19 Tense and Aspect

0 start(moment([fail1]), period({fail2]))
The two pieces of information associated with a transition event, namely the representation of
the new situation and the start predicate, are both part of the final output of the temporal
component.

4.2.2. Event time

The ordering relations specified by tense and the presence or absence of the perfect involve
an abstract component of the temporal structure called the event time, following Reichenbach.
The present treatment differs from Reichenbach’s in two ways. First, his framework does not
incorporate a treatment of inherent lexical aspect and its interaction with the surface categories
of the verb. Secondly, his ¢vent time was either a period or a moment, and represented the
entire event. By retaining the notion of event time but redefining it to be a component of the
full temporal structure of a situation, it is possible to provide a simple semantics for tense and
perfect while at the same time providing a more complete representation of the full temporal
structure evoked by a predication.

Selecting some component of temporal structure to serve as the event time simplifies the
computation of the ordering relations given by the perfect and non-perfect tenses. To under-
stand the motivation in detail requires an examination of the semantics of tense and the per-
fect, which is postponed to section § 4.3. Briefly, one type of semantic information provided by
the perfect and non-perfect tenses concerns the relative ordering among three semantically dis-
tinct times which Reichenbach referred to as the event time, the speech time and the reference
time. An appropriate characterisation of event time makes it possible to give a simple formula-
tion of the ordering relations specified by tense and the presence or absence of the perfect.

The three elements of temporal structure mentioned so far are stative intervals (cf. 48),
ﬁ repeated below), active intervals (cf. 47), and transition bounds (cf. 49).

48) Material clogging strainer.
state([clogl],
clog(theme([materiall]), location([strainers2])),
period([clogl]))
47) The diesel operated/was operating.
process([operatel],
operate(actor([diesel])),
period([operatel]))
49) The pump failed.
event([faill],
become(inoperative(patient([pumpl}))),
moment([faill])

state([fail2],
inoperative(patient([pump1])),
period([fail2]))

starts(moment([faill]), period([fail2])

The relationship of event time to the temporal structure depends on a single property of the

structure referred to as its boundedness (cf. § 2.1.2.3). Stative intervals are always unbounded;

active intervals may be unbounded or unspecified for boundedness; the transition bound of an

event constitutes a bound between some active interval (not represented here) and a following
% active or stative interval.

If an interval is unbounded, the event time is some morent included within the interval.
It is represented as a binary predicate of the following form:

SR AR M AN I oL >y Q x . 8 . . w .
et W LT NI B TG S e e e P T S R T A A

20 Tense and Aspect

includes(period(_), moment(_))

A stative verb always gives rise to a period time argument which is, by definition, unbounded.
Therefore, for a stative predication such as 48), the event time is always some arbitrary
moment included within its period time argument.

48) Material clogging strainer.
includes(period([clogl]), moment([M1]))
Event Time=moment([M1])

In this case, the relevant input information contained in the list of aspectual parameters
(Aspect, Progressive) is that the inherent aspect of the verb is stative.

IF Aspect=stative
THEN - Label=state and Time Argument=period
AND -+ includes(period, event time)

The time component generates a unique name to point to the arbitrary moment which will serve
as the event time (e.g., moment([M1]), and represents its relationship to the period associated
with the predication as shown above. That is, there is a type of state identified by the predi-
cate clog which holds over some unbounded interval of time identified as period([clogl]). This
period includes a moment arbitrarily identified as moment([M1]) which serves as the event
time for the situation denoted by the predication in 486).

Period time arguments are not only associated with stative predications, but also with
progressive or non-progressive process verbs (the pump operated/is operating), and with progres-
sive transition event verbs (the pump is failing). The progressive always implies unboundedness,
and in this respect resembles inherently stative predicates. Thus, the relationship of the event
time to the time argument is the same for stative verbs (progressive or non-progressive), for pro-
gressive process verbs, and for progressive transition event verbs. The includes relation is gen-
erated for the event time of a progressive transition event verb, as in 48) repeated below.

47b) The pump is failing.
includes(period([faill]), moment([M1]))
Event Time=moment([M1])

In other words, two types of predications evoke unbounded active intervals, progressive process
verbs, and progressve transition event verbs. This can be expressed in a single conditional state-
ment as follows:

IF Aspectyistative and Progressivemyes
THEN -+ Label=process and Time Argument=period
AND —+ includes(period, svent time)

This condition indicates that the progressive has the semantic value of specifying an unbounded
active interval except in the context of an inherently stative predicate.

If the process verb is not progressive, then the period associated with the predication is
unspecified for boundedness. This gives rise to a different relationship between the event time
and the period time argument. An interval which is unspecified for boundedness is one where
the event time has an indeterminate relationship to the period time argument; i.e., it may start,
end, or be included within the interval. This unspecified relationship is represented by means of
the predicate has, as shown below.

47a) The diesel operated.
has(period([operatel]), moment([M1]))
Event Time=mmoment([M1])

The third conditional statement for computing temporal structure from the aspectual parame-
ters is thus:

21 Tense and Aspect

IF Aspectmprocess and Progressive=no
THEN — Label=process and Time Argument=period
AND -+ has(period, event time)

The event time of & transitional event is always identified with the transition bound. For
sentences like 49) where the verb is a transition event verb and the surface aspect is non-
progressive, a moment time argument will have been created. This time argument serves as the
event time of the transition event.

49) The pump failed.
Event Time=moment([faill])

The last conditional statement pertaining to the computation of temporal structure and the
event time is as follows:

IF Aspect=transition event and Progressive=no
THEN — Label=event and Time Argument=moment
AND —+ Event Time=moment

The next section summarises the four conditional statements reveiwed above.

4.2.3. Summary of Module 2

Four sets of conditions, as illustrated in table 1 below, summarises the relationship
between the two aspectual parameters and the temporal structure of a predication. As shown
in the table, there are four types of temporal structure: states holding over an unbounded sta-
tive interval, processes holding over an unbounded active interval, processes holding over an
unspecified active interval, and transition bounds implying a preceding active interval and fol-
lowing active or stative interval.

46) Material clogging strainers. Time Argument: period([C1])
48) Pump is failing. Time Argument: period([F1])

47b) The diesel operated. Time Argument: period([02])

49) The pump failed. Time Argument: period([F2])

TABLE 1 .
SUMMARY OF MODULE 2: COMPUTATION OF TEMPORAL STRUCTURE
EG. Input Output
No. Aspect Prog Time Type Event
Arg Time
40 stative | - period([C1]) unbounded M1 such that
stative interval | includes(period([C1]),M1)
47b | not stative | yes period([F1]) unbounded M1 such that
active interval | includes(period([F1]),M1)
47a | process no period([02]) unspecified M1 such that
active interval | has(period([02]),M1)
49 event no moment([F2]) | transition moment([F2])
bound

22 Tense and Aspect

4.3. Module 8: Compute Ordering Reiations

Reichenbach proposed that tense be interpreted in terms of three semantically distinct
times associated with a predication: the speech time, the event time and the reference time.
The speech time is the time at which the predication is produced (i.e., spoken or written). The
event ‘time, as used here, is a component of the situation referred to by a predication. The
reference time is the time with respect to which one interprets relational temporal adverbials,
e.g., yesterday, now, when, before and so on.

The four verb forms that Module 4 interprets are the simple present, the simple past, the
present perfect and the past perfect. These are represented by means of two parameters in the
temporal data structure: Tense (past or present) and Perfect (yes or no). The four permutations
of these values of Tense and Perfect have different meanings, depending on the temporal strue-
ture of the predication. Given that there are four types of temporal structure which combine
with these four tense forms, there are potentially 18 distinct semantic outputs. Instead of pro-
viding a separate formulation for each of the temporal relations among event time, reference
time and speech time, event time has been chosen in such a way that its relation to the tem-
poral structure of the predication captures most of the semantic differences pertaining to aspec-
tual structure. This makes it possible to provide a more concise formulation of the semantics of
tense and perfect.

4.3.1. Non-perfect tenses

In interpreting the perfect and non-perfect tenses, the only inputs needed are the previ-
ously computed event time and the relational parameters of the temporal data structure, Tense
and Perfect. In the case of the non-perfect tenses, where Perfect=no, Tense pertains to the rela-
tion of the event time to the speech time. Speech time is assumed a priori to be identical with
the time at which the report was generated. The negative value of the Perfect parameter also

" indicates that the reference time and the event time are identical. Because of the manner in

which event time has been characterised, the ordering relations among the speech time, the
reference time and the event time can be computed on the basis of two conditional statements,
one for each non-perfect tense.

Very simply, the (non-perfect) present tense indicates that the event time and the speech
time coincide. This is represented in the following conditional statment, showing the coincides
relationship as a binary predicate.

IF Tensempresent and Perfect=no,
THEN — reference time = event time
AND — coincide(event time, speech time)

The non-perfect past tense indicates that the event time precedes the speech time, that is:

IF Tense=past and Perfect=no,
THEN — reference time = event time
AND — precedes(cvent time, speech time)

The event time can only precede or coincide with the speech time since we are not dealing with
potential or hypothetical times.

A brief review of the non-perfect tenses in the context of the different types of temporal
structure will demonstrate the utility of the characterisation of event time offered here. Let us
look at the present tense in the context of three types of temporal structure: unbounded inter-
vals, unspecified intervals, and transition bounds. If the temporal structure associated with a
predication is an unbounded interval, the present (non-perfect) tense locates some time within
the interval coincident with the speech time. Examples 50)-53) illustrate the four types of predi-
cations with associated unbounded intervals.

50) The pressure is low.
non-progressive, stative

“

23 Tense and Aspect

. 51) Mstal particles are clogging the strainer.
progressive, stative
52) The pump is operating
progressive, process
53) The pump is failing.
progressive, transition event
In all four sentences, the type of situation denoted by the predicate is asserted to hold for some
interval of unknown duration which includes the speech time. Predications involving process or
transition event verbs in the simple (non-perfect, non-progressive) present tense have already
; been eliminated by Module 1.
i Considering now the simple (non-perfect) past, if the temporal structure is an unbounded
| interval, then the event time is some moment within the interval and the non-perfect past tense
locates it prior to the speech time, as illustrated in 54).

.54) The pump was failing

Time Argument: period([fail1])
Temporal structure: unbounded :
Event time: M1 such that includes(period([faill], M1

Temporal ordering: precedes(M1,speech time)

The situation is asserted to hold at some point M1 preceding the speech time, and over some
interval which includes M1. The temporal structure associated with 55) is an unspecified inter-
val.

55) The pump operated.
0 Time Argument: ~ period([operatel])
Temporal structure: unspecified -
Event time: M1 such that has(period([operate1]M1)
Temporal ordering: precedes(M1,speech time)

Here the situation is asserted to hold over some interval period([operate1]) which has an
unspecified ccmponent M1 preceding the speech time. M1 may be the onset of the period of
operation, termination of this period, or some time included within the period.

The last case involves the non-perfect past in the context of a predication denoting a tran-
sition event. The event time is the transition bound, i.e., the theoretical point at which a tran-
sition to a new state-of-affairs (a becoming) is said to occur.

56) The pump failed.
Time Arguments: moment([faill])
period([fail2]) such that starts(moment([faill]),period([fail2]))

Temporal structure: transition bound

Event time: moment([fail1])

Temporal ordering: precedes(M1,speech time)

Sentence 58) is represented by Pundit to assert the following temporal information: there was a
moment of transition at which the pump failed (moment([faill])); this started a period in which
the pump was inoperative (start(moment([faill), period([fsil2])); the moment of transition
(moment([fail1])) preceded the speech time.

The examples presented above illustrate how the semantics of non-perfect present and

) past tense sentences can vary, depending on the temporal structure associated with the aspec-
\ @ tusl elements of the sentence. However, the interdependency among tense and aspect can be
accounted for by separating the computation of the ordering relations specified by tense from

the computation of the temporal structure of a predication. The rules for interpreting tense are

24 Tense and Aspect

0 formulated in terms of the speech time and the event time. By first selecting an appropriate
| event time, and then computing the semantics of the simple tenses, a single rule for each non-
perfect tense suffices to capture the semantic differences among the different present and past

tense sentences illustrated above.

4.3.3. Parfect Tenses

In contrast with the non-perfect tenses, for the perfect tenses the reference time is distinct
from the event time. Each of the perfect tenses specifies two ordering relations: the relation of
the event time to the speech time, and of the reference time to the speech time. The possible
orderings associated with the past and present perfects are highly constrained. First, the event
time always precedes both the speech time and the reference time, regardless of the tense.

\ Secondly, the reference time always follows the event time, but it may precede or coincide with
! the speech time. In the present perfect, it coincides with the speech time. In the past perfect, it
precedes the speech time.

The ordering information provided by the perfect tenses can be formulated as a set of con-
ditional statements. The first condition pertains to both perfect tenses; as shown below, if the
! predication is perfect, then the event time precedes the reference time.

IF Perfect=yes then precedes(event time, reference time)

The event time has already been instantiated in Module 3, but the reference time remains to be
computed. The relation of the reference time to the speech time depends on the tense as fol-
lows; if the tense is present, the reference time is the speech time; if the tense is past, the refer-
ence time precedes the speech time,

IF Perfect=yes and Tensempresent
G THEN — precedes(event time, reference time)
AND —+ reference timemspeech time

IF Perfect=yes and Tense=past
THEN —» precedes(event time, reference time)
AND —+ precedes(reference time,apeech time)

Once the reference time is instantiated, it can be passed to the module which interprets tem-
poral connectives like when, before and after. In the case of the present perfect, the reference
! time is instantiated as the speech time. In the case of the past perfect, where the reference time
‘ is distinct from both the event time and the speech time, the time component generates a
| unique name to point to the arbitrary moment which will serve as the reference time of the
\ predication. Since the function of the reference time is particularly obvious in the context of

sentences with temporal adverbials, examples illustrating the computation of the reference time
in perfect and non-perfect sentences is postponed to the discussion of temporal connectives.

5. Computing the Information in Temporal Connectives

§.1. Overview of Algorithm

The temporal adverbials encountered in the current domain handled by Pundit consist
predominantly of phrases introduced by temporal connectives. The majority of these are
instances of when, before and after. This section will focus on the temporal analysis of sentences
containing when clauses. The general problem in analysing temporal connectives is to associate
some time evoked by the matrix clause with some time evoked by the complement phrase. In
general, connectives are represented as associating the reference time of the matrix clause with
the reference time of the complement. The procedure involved in analysing a sentence the tem-

@ poral relations specified by a when adverb (or other temporal connective) has the six steps illus-
trated in 57) below.

A AR L A W) NI REDS A IS o 5

25 Tense and Aspect

57) The sac failed when the pump seised.

Step 1: Analyse semantics of the main clause The sac failed
Step 2: Find reference time of main clause (RT1) moment([faill])
Step 3: Recognise temporal connective when

Step 4: Analyse semantics of subordinate clause the pump seized

Step 5: Find reference time of subord. clause (RT2) moment([seisel])
Step 6: Look up semaatic structure of connective coincide(RT1, RT2)

Result: coincide(moment([faill]), moment([seise1]))

First, the temporal semantics of the main clause is anai sed. One of the outputs of this
analysis is the reference time of the main clause, which in this case would be represented as
moment([faill]). Then the time component finds the adverbial phrase when the pump seized in
the constituent list which it recognises as consisting of a temporal connective (when) and a com-
plement. The complement clause is sent to the semantic analyser and is returned to the time
component for temporal analysis. The fourth step, the temporal analysis of the subordinate
clause, yields the information that the reference time of the subordinate clause is
moment([seisel]). Finally, the time component looks up the predicate structure representing the
semantics of the temponl connective. When is represented as a binary predica.te—coineide—
whose first argument is the reference time of the main clause and whose second argument is the
reference time of the complement clause.

The procedure illustrated above is recursive. For each predica.tion which is analysed, the
time component examines each remaining element in the constituent list. If the constituent list
is empty, temporal analysis has been completed. If the next constituent is a temporal adverbial
which can be analysed by the time component, it does so. If the next constituent cannot be
analysed by the time component, it prints out a message indicating as such and looks for
another consituent. This process continues until every constituent has been examined.

6. REFERENCES

Allen, James F. 1983. Maintaining knowledge about temporal intervals. Communications of the
ACM 26:11: 832-843.

Austin, J. L. 1977. How to Do Things with Words.

Dahl, Deborah A. 1986. Focusing and Reference Relolntxon in PUNDIT. Paper presented at
AAAL Philadelphia, PA.

Dowding, John and Lynette Hirschman. 1986. Dynamic Translation for Rule Pruning in Restric-
tion Grammar. Paper presented at AAAL Philadelphia, PA.

Dowty, David R. 1986. The effects of aspectual class on the temporal structure of discourse:
semantics or pragmatics. Linguistics and Philosophy 9: 37-61.

Dowty, David R. 1982. Tense, time adverbials and compositional semantic theory. Linguistics
and Philosophy 5: 23-5/.

Dowty, David R. 1879. Word Msaning zud Montague Grammar: The Semantics of Verbs and
Times in Generative Semaniics and iz Montague’s PTQ. Dordrecht: D. Reidel.

Foley, William and Van Valin, R. 1984. Functional Syntax and Universal Grammar. Cam-
bridge: Cambridge University Press.

Hirschman, Lynette. 1986. Conjunction in Meta-Restriction Grammar. To appear in Journal of
Logic Programming.

Mourelatos, Alexander P. D. 1981, Events, processes, and states. In Syntax and Semantics, vol
14: Tense and Aspect, pp. 191-212. Edited by P. J. Tedeschi and A. Zaenen. New York:
Academic Press.

1]
..“!,“n...n‘”u.

n‘?‘-“.'

 { Tense and Aspect

Palmer, Martha S.; Dahl, Deborah A.; Passonneau, Rebecca J.; Hirschman, Lynette; Linebarger,
Marcia; Dowding, John. 1986. Recovering Implicit Information. Paper presented at 14th Annual
Meeting of the Association for Computational Linguistics, Columbia University, New York.
August 1986,

Reichenbach, Hans. 1947. Elements of Symbolic Logic. New York: The Free Press.

Talmy, Leonard. 1985. Lexicalisation patterns: semantic structure in lexical forms. In
Language Typology and Syntactic Description, vol. 3: Grammatical Categories and the Lexicon,
Pp. 57-151. Edited by Timothy Shopen. Cambridge: Cambridge University Press.

Vendler, Zeno. 19687. Verbs and times. Linguistics in Philosophy. New York: Cornell University
Press.

Vlach, Frank. 1981. The semantics of the progressive. In Syntax and Semantics, vol 14: Tense
and Aspect, pp. 271-292. Edited by P. J. Tedeschi and A. Zaenen. New York: Academic Press.

._—__a_p>_w_ g N

Fee - ow G W

5.0 5 B s "

. APPENDIX K

Nominalizations in PUNDIT

This paper by Deborah Dahl, Martha Palmer, and Rebecca Passonneau will
be presented at the 25th Annual Meeting of the Association for Computational
Linguistics in Palo Alto, July 1987.

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

Nominalisations
Nominalizations in PUNDIT

Deborah A. Dahl, Martha S. Palmer, Rebecca J. Passonneau
Research and Development Division
SDC — A Burroughs Company
P.O Box 517
Paoli, PA 19301 USA

To be presented at the 25th ACL, July 6-9, 1987, Stanford, CA

1. Introduction

In this paper we will discuss the analysis of nominalizations in the PUNDIT
text processing system.!
Syntactically, nominalizations are noun phrases, as in examples (1)-(7).

(1) An snspection of lube oil filter revealed metal particles.

(2) Loss of lube oil pressure occurred during operation.

(3) SAC received high usage.

(4) Investigation revealed adequate lube oil.

(5) Request replacement of SAC.

(8) Erosion of impellor blade tip is evident.

(7) Unit has low output air pressure, resulting in slow gas turbine starts.

Semantically, however, nominalizations resemble clauses, with a
predicate/argument structure like that of the related verb. Our treatment
attempts to capture these resemblances in such a way that very little
_machinery is needed to analyze nominalisations other than that already in
place for other noun phrases and clauses.

There are two types of differences between the treatment of nominaliza-
tions and that of clauses. There are those based on Ilinguistic differences,
related to (1) the mapping between syntactic arguments and semantic roles,
which is different in nominalizations and clauses, and (2) tense, which nominali-
sations lack. There are also differences in control; in particular, control of the
filling of semantic roles and control of reference resolution. All of these issues
will be discussed in detail below.

Nominalizations are often addressed in treatments of noun noun com-
pounds, because some nominalisations, as in (7) above, are noun noun com-
pounds, and because some noun noun compounds are nominalizations. However,
we have found it more useful to provide a general treatment of nominalizations,
whether they are noun noun compounds or not. While we do not claim to have

! The research described in this paper was supported in part by DARPA under contract N000014-85-C-0012, ad-

May 4, 1987 -1-

@

T v oy AL . " - o X
I ERANES ..' ‘,‘ ‘.=;A‘,'¢‘?H .‘h‘."o...‘n.,_‘a "»‘.h ..c‘,'.. s h‘J‘ > 0‘;‘.‘- Wy Xl 20 ...u g AN 54 AR T P P s

Nominalisations

provided an answer to the general problem of noun noun compounds, we do
claim to have isolated one easily recognizable class which is amenable to the
very general treatment which is described in this paper.

3. PUNDIT

The semantic processing to be described in this paper is part of the SDC
PUNDIT 2 system for processing natural language messages. The PUNDIT sys-
tem is a highly modular system, written in Prolog, consisting of distinct syntac-
tic, semantic and discourse components, each drawing on one or more sets of
data, including a lexicon, a broad-coverage grammar of English
[Hirschman1985, Hirschman1986), semantic verb decompositions, rules mapping
between syntactic and semantic constituents, a domain model, and general
information about time[Passonneau1986].

The next sections describe the algorithms for the semantic processing of
clauses and nominalizations in detail, pointing out similarities and differences.

The semantic domain from which these examples are taken is that of
reports of failures of the air compressors used in starting Navy ships, or sac’s.

3. Clause analysis
In order to produce a semantic representation of a clause, its verb is first

. decomposed into a semantic predicate representation appropriate for the

domain.” The arguments of the predicates constitute the SEMANTIC ROLES of
the verb, which are similar to cases[Palmer1985]. For example, fasl decomposes

into become inoperative, with patient as its only semantic role.? In this
domain the semantic roles include: agent, instigator, experiencer, instru-
ment, theme, location, actor, patient, source, reference_pt and
goal. Semantic roles can be filled either by a syntactic constituent or by refer-
ence resolution from default or contextual information. We have categorized
the semantic roles into three classes, based on how they are filled [Palmer1986].
Semantic roles such as theme, actor and patient are syntactically OBLIGA-
TORY, and must be filled by surface constituents. Semantic roles are categor-
ized as semantically ESSENTIAL when they must be filled even if there is no syn-

tactic constituent available.* In this case they are filled pragmatically, making
use of reference resolution, as explained below. The default categorization is

 NON-ESSENTIAL, which does not require that the role be filled. The algorithm in

Figure 1 produces a semantic representation using this information. Each step
in the algorithm will be illustrated at least once in the next section using the

ministered by the Office of Naval Research. APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.
2 PUNDIT UNDderstands and Integrates Text

$There are domain specific criteria for selecting a range of semantic roles. The criteria which we have used are
described in[Abramson1984].

4 We are in the process of defining criteria for categorising a role as ¥ssBNTIAL. It is clearly very domain depen-
deat, aad relies heavily oa what can be assumed from the context.

May 4, 1987 -2-

I WA TATRINY "n'f\' 'r ' ..,1._.\}: Tl o

Nominalisations

following (typical) CASREPS text.
Sec fasled.
Pump sheared.
Investigetion revealed metal contaminatson in filter.

3.1. A Simple Example DECOMPOSE VERB - The first example uses the
fasl decomposition for Sac Jailed: fail <-
becomeP (inoperativeP(patient(P))). It indicates that the entity filling
the OBLIGATORY patient role has or will become inoperative.

FOR patient ROLE -

PROPOSE SYNTACTIC CONSTITUENT FILLER - The following mapping
rule indicates that the syntactic subject is a likely filler for any patient role,
including this one, as indicated by the variable to the right of the slash indicat-
ing no specific constraints.

patient(P) <- subject(P) / X

DECOMPOSE VERB;
FOR EACH SEMANTIC ROLE
CASE 1: IF THERE ARE SYNTACTIC CONSTITUENTS -
PROPOSE SYNTACTIC CONSTITUENT FILLER
& CALL REFERENCE RESOLUTION
& TEST SELECTIONAL RESTRICTIONS

CASE 2: IF ROLE IS OBLIGATORY AND SYNTACTICALLY UNFILLED -
FAIL

CASE 3: [F ROLE IS ESSENTIAL AND UNFILLED -
CALL REFERENCE RESOLUTION TO HYPOTHESIZE A FILLER
& TEST SELECTIONAL RESTRICTIONS

CASE 4: IF ROLE IS NON-ESSENTIAL AND UNFILLED -
LEAVE UNFILLED

CALL TEMPORAL ANALYSIS ON DECOMPOSITION

Figure 1. Clause Analysis Algorithm

May 4, 1987 8-

T A NN A A DA s o]

Nominalisations

The mapping rules make use of intuitions about syntactic cues for indicating
semantic roles first embodied in the notion of case
[Fillmore1968, Palmer1981]. The mapping rules can take advantage of general
syntactic cues like "SUBJECT goes to PATIENT" while still indicating particu-
lar context sensitivities. This is accomplished by making the application of the
mapping rules "situation-specific” through the use of PREDICATE ENVIRONMENTS
which are indicated on the right-hand side of the rule, after the "/". The predi-
cate environment can consist of specific predicates in which the role is an argu-
ment, the other arguments to that predicate, and constraints on the fillers of
those arguments. The subjeet <- patient rule is quite general and can be
applied to every patient semantic role in this domain. A variable to the right
of the slash will match any predicate environment, and so will always be true.
A mapping rule that only applied to the patient role of fail could be made
application specific by indicating the predicate environment,
[inoperativeP(patient(P))). Then the rule would only apply when the
patient being filled had the same predicate environment.

CALL REFERENCE RESOLUTION - Clearly, sac is the subject of sac fasled,
and is the likely filler of the patient role. At this point the semantic inter-
preter asks noun phrase analysis to provide a unique referent for the noun
phrase subject. Since no sacs have been mentioned previously, a new name is
created: sacl.

TEST SELECTION RESTRICTIONS - In addition to the mapping rules that
are used to associate syntactic constituents with semantic roles, there are selec-
tion restrictions associated with each semantic role. The selection restrictions
for fail test whether or not the filler of the patient role is a mechanical device.
A sac is a mechanical device so the subject of the sentence sac failed maps
straightforwardly onto the patient role,
e.g.,becomeP(inoperativeP(patient(sacl))).

Since there are no other roles to be filled the algorithm terminates success-
fully at this point and the remaining steps are not applied. The next example
illustrates further steps in the algorithm.

3.2. Unfilled Obligatory Roles

The next utterance in the example, Pump sheared, illustrates the effect of
an unfilled obligatory role.

DECOMPOSE VERB -
shear <- causeP(instigator(I),becomeP(shearedP(patient(P))))

Shear is an example of a verb that can be used either transitively or intransi-
tively. In both cases the patient role is filled by a mechanical device that
becomes sheared. If the verb is used transitively, the instigator of the

May 4, 1987 -4~

{ w

Nominalizsations

shearing, also a mechanical device, is mentioned explicitly, as in, The rotating
drive shaft sheared the pump. If the verb is used intransitively, as in the
current example, the instigator is not made explicit.

FOR instigator ROLE - Working from left to right in the verb decomposition,

the first role to be filled is the instigator role. The subject of the sentence,

pump, is a likely filler for this role, as indicated by the following mapping rule.
instigator(I) <- subject(I) /X

Reference resolution returns pumpl as the referent of the noun phrase. Since
pump is a mechanical device, the selection restriction test passes.

FOR patient ROLE - There are no syntactic constituents left, so a syntactic
constituent cannot be proposed and tested.

UNFILLED OBLIGATORY ROLES - The patient role, a member of the se’, of
obligatory roles, is still unfilled. This causes failure, and the binding of pumpl
to the instigator role is undone. The algorithm starts over again, trying to
fill the instigator role.

FOR instigator ROLE- There are no other mapping rules for instigator,
and it is non-essential, so Case 4 applies and it is left unfilled.®

FOR patient ROLE - The following mapping rules apply to patient, where
the first one suggests the subject, in this case, the pump, as a filler.
patient(P) <- subject(P)
patient(P) <- object(P)
Reference resolution returns pumpl again, which passes the selection restric-
tion of being a mechanical device. The final representation is:

causeP(instigator(I),becomeP(shearedP(patient(pump1l)))).

3.3. Nominalisations as Role Fillers

The third sentence of our example, Investigation revealed metal contami-
nation sn filter, illustrates the filling of an semantic roles by nominalizations.

DECOMPOSE VERB - The decomposition of the verb reveal indicates that a
NON-ESSENTIAL instigating event causes an OBLIGATORY theme to be
revealed to an NON-ESSENTIAL experiencer.

reveal <-
causeP(instigator(I),
becomeP(known_toP(theme(T),experiencer(E))))

Ia other domains, the Instigater might be an BISENTIAL role and would get 8lled by pragmatics.

May 4, 1987 -5-

Nominalisations

The subject, investigation, and the object, contamination, both nominaliza-
tions, are likely fillers for the instigator and the theme role, respectively.
Section 4 describes the algorithm for nominalization analysis in detail, using
investigation and metal contamination in filler as examples. Investiga-
tionl and contaminationl are returned as the referents of the two nominal-
isations, allowing the following representation for reveal to be produced.

causeP(instigator(investigationl),
becomeP(known_toP(theme(contaminationl),experiencer(E))))

3.4. Temporal Analysis of Tensed Clauses

After the semantic decomposition of the verb and its arguments has been
completed, the resulting predicate structure is passed to the temporal analysis
component along with the tense and an indication of whether the verb was in
the perfect or progressive. Certain kinds of temporal adverbials are also
analyzed. The temporal component determines what time the predication is
asserted to hold for by analyzing the inherent temporal meaning, or aspect of
the verb, in the context of its surface tense and aspect markings. Temporal
analysis results in three kinds of output: an assignment of a real time to the
predication, if appropriate; a representation of the temporal type of the situa-
tion denoted by the predication as either a state, a process or an event; and
finally, a set of predicates about the ordering of the time of the situation with
respect to other times explicitly or implicitly mentioned in the same
sentence[Passonneau1986]. The input and output to the temporal component
can be illustrated with the simple example sentence, saec failed. The input
would consist of the predicate structure resulting from semantic analysis along
with the information that the sentence was in the simple past:

Decomposition: become(inoperative(patient([sacl])))
Verb form: Past

The output would be a representation of a transitional event, corresponding to
the moment of becoming snoperative, and a resulting state in which the sac is
inoperative.

event([faill], become(inoperative(patient([sacl]))), moment([faill]))
state([fail2], inoperative(patient([sacl])), period([fail2]))

As shown above, situations are represented as predicates indicating the type of
situation whose arguments are the pointer to the situation, the semantic decom-
position, and the time argument. The temporal output also represents the
information that the [faill] event precedes the time at which the report was
filed, and that the [fail2] state starts immediately after the momentn of the
[faill] event.

May 4, 1987 -6-

o C A GG OO0 G OO0OGMIN0 ¥ SO GSOIOOO OO YOG
R O R SO NN N M N CCMA UM MNP MR e M AN MR N KX P ORIM M M N M PR Mot Mo IO e s T Ty M

Nominalisations

4. Nomina.nsatlonl

Nominalisations are processed very similarly to clauses, but with a few cru-
cial differences, both in linguistic information accessed and in the control of the
algorithm. With respect to the linguistic information, the decomposition of a
nominalisation is the same as its corresponding clause, but the mapping rules
differ since syntactically a nominalizsation is a noun phrase. For example, where
a likely filler for the patient of fesl, is the syntactic subject, a likely filler for
the patient of failure is an of pp. In addition, no noun phrase modifiers are
. syntactically obligatory. This suggests the hypothesis that syntactically obliga-
tory roles for clause decompositions automatically become pragmatically essen-
tial roles for nominalisation decompositions. This hypothesis seems to hold in
the current domain; however, it will have to be tested on other domains.
Secondly, because nominalizations may themselves be anaphoric, there are two
separate role-filling stages in the algorithm instead of just one. The first pass is
for filling roles which are explicitly given syntactically; essential roles are left
unfilled. If a nominalisation is being used anaphorically some of its roles may
have been specified or otherwise filled when the event was first described. The
anaphoric reference to the event, the nominalization, would automatically
inherit all of these role fillers, as a by-product of reference resolution. After the
first pass, the interpreter looks for a referent, which, if found, will unify with
the nominalisation representation, sharing variable bindings. This is a method
of filling unfilled roles pragmatically that is not currently available to clauge .

analysis ®. However, it is important to fill roles with any explicit syntactic
arguments of the nominalisation before attempting to resolve its reference, since
there may be more than one event in the context which nominalisation could be
specifying. For example, failure of pump and failure of sec can only be dis-
tinguished by the filler of the patient role. After reference resolution a second
role-filling pass is made, where still unfilled roles may be filled pragmatically
with default values in the same way that unfilled verb roles can be filled.

As with clauses, the temporal analysis of nominalisations takes place after
the semantic analysis of the nominalisation and its arguments. Also as with
clauses, one of the inputs to the temporal analysis of nominalisations is the
semantic decomposition. This input is used is in determining the inherent
aspectual properties of the denoted situation, i.e., whether the nominalisation
inherently denotes a state, a process or an event situation. The critical
difference between the two cases is that a nominalisation does not occur with
tense. Since this is one of the necessary inputs for the temporal analysis of
situations, the tense used in analysing the temporal semantics of a nominalisa-
tion must come from elsewhere in the sentence. The general principle followed
in the temporal analysis of nominalisations is to look for relevant temporal

¢ Clanses caa describe previously meatiosed eveatls, as discussed in [Dahi1987]). In order to hasdle cases like
these, something analogous Lo reference resolution for clauses may be required. However a treatment of this has 2ot
yot beea implemented in PUNDIT.

Nominalisations

information in the superordinate constituents in which the nominalization is
embedded. In its current implementation, the temporal component can only
handle a restricted set of contexts.

One of the functions of the temporal component is to identify predications
which denote situations with actual temporal reference, i.e., situations which
are said to have occurred or to be occurring at the time of the report. Whether
or not a nominalisation is presumed to denote an actual situation depends on
the context in which it occurs. Currently, Pundit processes nominalizations in
two types of contexts. ’

The first type of context where Pundit assumes a nominalization to denote
an actual situation is where a nominalization occurs as the prepositional object
of a temporal connective (e.g., defore, during, after) and the matrix clause
denotes an actual situation. For example, in the sentence sac lube oil pressure
decreased below 60 psig afiter engagement, the temporal component processes
the main clause as referring to an actual event which happened in the past and
which resulted in a new situation. After processing the temporal information
associated with the main clause, the temporal component finds the temporal
adverbial phrase efier engagement. Because lafter is a temporal connective
(i.e., it relates the times of two situations), and because the main clause has
actual temporal reference, the nominalisation engagement is assumed to have
actual temporal reference. For this set of cases, the nominalization is processed
using the meaning of the prepositional adverb and the tense of the main clause.

The second type of context in which a nominalisation undergoes temporal
analysis is where it occurs as the argument to a verb whose arguments can be
inferred to denote actual situations. The verb may provide only temporal infor-
mation used in the analysis of the nominalization, in which case the verb is
classifed as an aspectual one. For example, in the sentence faslure occurred
during engine start, the matrix verb oceur is an aspectual verb whose argu-
ment must be a reference to a process or an event (but not a state). The tense
and aspect of the matrix verb are used in analysing the temporal semantics of
its argument. Hence, the clause faslure occurred would be processed very simi-
larly to a clause containing the simple past tense of the related verb, i.e., some-
thing failed.

Another type of verb whose nominalization arguments are presumed to
denote actual situations is a verb which itself denotes an actual situation that
is semantically distinct from its arguments. For example, the sentence snvesti-
gation revealed metal contamination in osl filter mentions three situations:
the situation denoted by the matrix verb reveal, and the two situations denoted
by its nominalisation arguments, smvestigation and contamsnation. In this
respect, reveel differs from oceur; in contexts where the verb occur refers to an
actual occurrence, the argument to occur (e.g., failure) constitutes the
occurrence rather than denoting a semantically distinct situation.

May 4, 1987 -8-

ATt |

Nominalisations

If the situation denoted by revesl has actual temporal reference, then its
arguments are presumed to as well. Thus, if reveal were to occur in a modal
context, e.g., ¢ full investigation might reveal the cause of contemination,
then neither the reveal state, nor its propositional arguments—the investiga-
tion process and the conteminetion state—would be assigned real temporal
reference. However, in the sample sentence given here, all three situations
would be processed as having actual temporal reference. The algorithm for
clause analysis specifies that the referents for the nominalizations must be
found during the semantic analysis of reveal. The temporal analysis of the nom-
inalizsation snvestigation, e.g.,, is part of the process of finding the referent.
That is, the temporal analysis of the nominalizations invesiigatson and con-
taminatsion precedes the temporal analysis of the verb reveal Very briefly, the
input to the temporal component for the analysis of the nominalization consists
of the semantic decomposition and the tense of the matrix verb. This will be
illustrated in more detail in the next section.

4.1. Nominalisation Mapping Rules

We will use the two nominalizations from the previous example, snvestiga-

tion revealed metal contamination in filter, to illustrate the nominalization
analysis algorithm. We will describe the contamsnation example first, since all
of its roles are filled by syntactic constituents. The dotted line divides the algo-
rithm in Figure 2. into the parts that are the (above the line), and the parts
that differ (below the line.)

DECOMPSE VERB - Contamsnate decomposes into a NON-ESSENTIAL instru-
ment that contaminates an OBLIGATORY loeation. contaminate <-
contaminatedP(instrument(I),location(L))

FOR intrument role - In the example, metal is a noun modifier of contams-
nation, and metall is selected as the filler of the instrument role.

FOR theme ROLE - The mapping rules for a theme that could apply are:
theme(T) <- of_pp(T)
theme(T) <- in_pp(T)

The role is filled with filter, the referent of sn filter.

At this point the temporal component is called for the nominalization metal
contamination in osl filter with two inputs. The first is the decomposition
structure resulting from the semantic analysis:

May 4, 1987 -9-

Nominalisations

DECOMPOSE NOMINALIZATION
FOR EACH SEMANTIC ROLE:

IF THERE ARE SYNTACTIC CONSTITUENTS -
PROPOSE SYNTACTIC CONSTITUENT FILLER
& CALL REFERENCE RESOLUTION
& TEST SELECTIONAL RESTRICTIONS

CALL TEMPORAL ANALYSIS ON DECOMPOSITION
CALL REFERENCE RESOLUTION FOR NOMINALIZATION NOUN PHRASE
FOR EACH SEMANTIC ROLE:
IF ESSENTIAL ROLE AND UNFILLED
CALL REFERENCE RESOLUTION TO HYPOTHESIZE A FILLER
& TEST SELECTIONAL RESTRICTIONS
ELSE LEAVE UNFILLED

Figure 2. Nominalisation Analysis Algorithm

eontamin;tedP(ipltrumen;([metall]),location([Rlterl]))

The second is the tense of the matrix verb, which in this case is in the simple
past. Inspection of the decomposition indicates that this predicate falls in the
class of statives. States are situations which persist over a period of time
without change. The representation of the contamination situation is thus a
state predicate with a period time argument included along with the unique
identifier (which will be eventually be instantiated by reference resolution as
[contaminatel), see the next paragraph) and the decomposition:

state([S],
contaminatedP(instrument([metall)),location([fiiterl])),
period([8]))
In this context, the past tense provides the information that at least onc

moment within the period of contamination (period([S])) precedes the time at
which the report was filed.

CALL REFERENCE RESOLUTION FOR NOMINALIZATION - There are no
previously mentioned conteminatiion events, so a new referent, contamina-
tionl is created. There are no unfllied roles, so the analysis is completed. The
final representation is the same as above.

May 4, 1987 -10-

Nominalizations

The analysis of the other nominalization, snvestigation, illustrates how
essential roles are filled. The decomposition of investsgation has two semantic
roles, a NON-ESSENTIAL agent doing the investigation and an OBLIGATORY

theme being investigated.”
investigate <- investigateP(agent(A),theme(T))

There are no syntactic constituents, so the mapping stage is skipped, and refer-
ence resolution is called for the nominalization. There are no previously men-
tioned investigative events in this example®, so a new referent, investigationl
is created. At this point, a second pass is made to attempt to fill any unfilled
roles. ‘

FOR agent ROLE - Case 4 applies, and it is left unfilled.

FOR theme ROLE - The selection restriction on the theme of an snvestiga-
tson is that it must be a damaged component or a damage causing event.
All of the events and entities mentioned so far, the sac and the pump, the
faslure of the sac and the shearing of the pump satisfy this criteria. In this
case, the item in focus, the shearing of the pump, would be selected
[Dahl1986].

The final representation is:

investigateP(agent(A),theme(shearl))

8. Other Compounds

In addition to nominalisations, PUNDIT deals with three other types of
noun-noun compounds. One is the category of nouns with arguments. These
include pressure and tempereture, for example. They are decomposed and
have semantic roles like nominalisations; however, their treatment is different
from that of nominalisations in that they do not undergo time analysis, since
they do not describe temporal situations. As'an example, the definition of pres-
sure,

pressureP(theme(T),location(L)),

specifies theme and location as roles. In the CASREPS domain, the location
must be a mechanical device, and the theme must be a fluid, such as oil or air.
The analysis of a noun phrase like sac oil pressure would fill in the location
role with the sac and the theme role with the oil, resulting in the final represen-
tation, pressureP(theme(oill),location(sacl)). The syntactic mapping
rules for the roles permit the theme to be filled in by either a noun modifier,

7 In other domains, the theme cas be sssentisl, as in "Let's investigate.”

If the example had been, 4 new engincer investigeled the pamp. The investigalion oceurred just before
the complets breckdown., 2 previously meationed eveat wouid have been found, aad the agens aad theme roles
would have inherited the fillers engineerl and pampl from the refersace to the previous eveat.

May 4, 1987 -11-

" oo R o o O P AT
SRV VARV AR AT SR NS

W IE RN
"-‘J.!L.A\ n‘;';'\:‘

Nominalizations

such as e¢l in this case, or the object of an of prepositional phrase, as in pres-
sure of eoil. Similarly, the mapping rules for the location allow it to be filled in
by either a noun modifier or by the object of an sn prepositional phrase.
Because of this flexibility, the noun phrases, sac oil pressure, oil pressure in
sec, and pressure of oil in sac, all receive the same analysis.

The second class of compounds, is that of nouns which do not have seman-
tic roles. For these, a set of domain-specific semantic relationships between
head nouns and noun modifiers has been developed. These include: area of
objeet, for example, blade tip, material-form, such as metal particles; and
material-object, such as metal cylinder. These relationships are assigned by
examining the semantic properties of the nouns. The corresponding preposi-
tional phrases, as in tip of blade, particles of metal, and cylinder of metal,
have a similar analysis.

Finally, many noun-noun compounds are handled as idioms, in cases where
there is no reason to analyse the semantics of their internal structure. Idioms in
the CASREPS domain include ships force, gear shaft, and connecting pin.
Our decision to treat these as idioms does not imply that we consider them
unanalyzable, or noncompositional, but rather that, in this domain, there is no
need to analyze them any further.

6. Previous Computational Treatments

Previous computational treatments of nominalisations differ in two ways
from the current approach. In the first place, they have often treated nominali-
zations as one type of noun-noun compound. This viewpoint is adopted by
[Finin1980, Leonard1984, Brachman 1978 Certainly many nominalisations con-
tain nominal premodifiers and hence, syntactically, are noun-noun compounds;
however, this approach obscures the generalisation that prepositional phrase
modifiers in non-compound noun phrases often have the same semantic roles
with respect to the head noun as noun modifiers. Repasr of engine, for exam-
ple, should receive the same semantic analysis as engsne repasr. In PUNDIT,
once a noun phrase is recognised as a nominalisation, the treatment of noun
pre-modifiers is very similar to the treatment of prepositional phrase post-
modifiers. In essence, PUNDIT's analysis is aimed at a uniform treatment of the
semantic similarity among expressions like repasr of engine, engine repasr,
and (someone) repaired engine rather than the syntactic similarity of engine
repasr, asr pressure, and metal perticles. Of the analyses mentioned above,
Brachman's analysis seems to be most similar to ours in that it provides an
explicit link from the nominalisation to the related verb to relate the roles of
the noun to those of the verb. The second way in which our approach differs
from previous approaches is that PUNDIT's analysis is driven by taking the
semantic roles of the nominalization and try to fill them in any way it can.
Other approaches, have tended to start by fitting the explicitly mentioned argu-
ments into the role slots. This means that PUNDIT knows when a role is not

May 4, 1987 -13-

Nominalisations

. explicitly present, and consequently can call on the other mechanisms which we
have described above to fill it in.

7 . Limitations

The current system has two main limitations. First, there is no
attempt to build internal structure within a compound. Each nominal modifier
is assumed to modify the head noun unless it is part of an idiom. For this
reason, noun phrases like smpellor blade tip erosion cannot be handled by
our system in its current state because smpellor blade tip forms a semantic
unit and should be analyzed as a a single argument of erosion. The second
problem is related to the first. The system does not now keep track of the rela-
tive order of nominal modifiers. In this domain, this does not present serious
problems, since there are no examples where a different order of modifiers
would result in a different analysis. Generally, only one order is acceptable, as
in sac oisl contamsination, *oil sac contamination.

8. Future Directions

There are a number of open research issues which are not addressed in this
; version of the system. So far, all nominalisations have been treated referen-
e tially, i.e.,” as specifying a particular event. Many nominalisations, however,
refer to other types of situations, including non-specific, generic, modal, itera-
tive, and opaque contexts. For example, in Unit has low ouipui pressure,
resulting in slow ges turbine sterts, no particular gas turbine start is referred
to; rather, the noun phrase describes a typical behavior of the gas turbine.
Another example can be seen in Regquest replacement of sac, where no
specific event of replacement is referred to. This is a general problem for
descriptions of events, of course, and applies to clauses as well, such as unable
to stert ges turbine, and Pump will not turn when engine jacks over. These
contexts raise many interesting issues for reference resolution and temporal
analysis. Although we have not dealt with these problems, we believe that our
approach to nominalisations will allow whatever treatments we develop for
clauses of these kinds to be naturally extended to nominalizations.

9. Conclusion

In this paper we have described a treatment of nominalisations in which
the goal is to maximize the similarities between the processing of nominaliza-
tions and that of the clauses to which they are related. The semantic similari-
ties between nominalisations and clauses are captured by making the semantic
roles, semantic decompositions, and selectional restrictions on the roles the same

@ for nominalizations and their related verbs. As a result, the same semantic
representation is constructed for both structures. This similarity in representa-
tion in turn allows reference resolution to find referents for nominalizations

May 4, 1987 -18-

RGO T 0 YA Sl W S Y L{Q‘z)k&lj

Nominalisations

. which refer to events previously described in clauses. In addition, it allows the
time component to integrate temporal relationships among events and situa-
tions described in clauses with those referred to by nominalizations.

On the other hand, where differences between nominalizations and clauses
have a clear linguistic motivation, our treatment provides for differences in pro-
cessing. PUNDIT recognises that the semantic roles of nominalised verbs are
expressed syntactically as modifiers of nouns rather than arguments of clauses
by having a different set of syntactic mapping rules. It is also true in nominali-
sations that there are no syntactically obligatory arguments, so the analysis of
a nominalisation does not fail when there is an unfilled obligatory role, as is the
case with clauses. Finally, the temporal analysis component is able to take into
account the fact that nominalisations are untensed.

While there are many cases not yet covered by our system, in general, we
believe this to be an approach to processing nominalisations which is both
powerful and extensible, and which will provide a natural basis for further
development.

May 4, 1987 -14-

¢

-

h §
RS M A

AN - e . e PE ISR o . PR oy me -ar
st “‘.‘ ‘w" 2V ‘.‘ 'n“'s‘-.‘Q'uJA‘\ii..“4’...31.. t‘, .'. xS ..~..‘.. A .. A y . X4l () q’ () J, o

Nominalisations

REFERENCES

[Abramson1984]
Harvey Abramson, Proc. of the First Annual National Conference on
Artificial Intelligence. In Proc. 1984 International Symposium on
Logic Programming, The Armed Forces Communications and Elec-
tronics Association, RADC Griffiss Air Force Base, Rome, NY, May 6-
7, 1981, pp. 233-241.

[Dahl1986]
Deborah A. Dahl, Focusing and Reference Resolution inr PUNDIT,
Presented at AAAI, Philadelphia, PA, 19886.

[Dahl1987)
Deborah A. Dahl, Determiners, Entities, and Contexts, Presented at
Tinlap-3, Las Cruces, New Mexico, January 7-9, 1987.

[Fillmore1968]
C. J. Fillmore, The Case for Case. In Universals sn Lingusstic Theory,
E. Bach and R. T. Harms (ed.), Holt, Rinehart, and Winston, New
York, 1968.

[Finin1980] .
Tim Finin, The Semantic Interpretation of Compound Nominals, PhD
Thesis, University of Illinois at Urbana-Champaign, 1980.

[Hirschman1985]
L. Hirschman and K. Puder, Restriction Grammar: A Prolog
Implementation. In Logic Programming and its Applications, D.H.D.
Warren and M. VanCaneghem (ed.), 1985.

[Hirschman1986]
L. Hirschman, Conjunction in Meta-Restriction Grammar. J. of Logic
Programming 4, 1986, pp. 299-328.

[Leonard1984]
Rosemary Leonard, The Interpretation of English Noun Sequences
on the Computer. North Holland, Amsterdam, 1984.

[Palmer1981]
Martha S. Palmer, A Case for Rule Driven Semantic Processing. Proec.
of the 19th ACL Conference, June, 1981.

[Palmer1985]
Martha S. Palmer, Driving Semantics for a Limited Domain, Ph.D.
thesis, University of Edinburgh, 1985.

May 4, 1987 -16-

Nomlinalisations

o [Palmer1986]
Martha S. Palmer, Deborah A. Dahl, Rebecca J. [Passonneau]
Schiffman, Lynette Hirschman, Marcia Linebarger, and John Dowding,
Recovering Implicit Information, Presented at the 24th Annual Meet-
ing of the Association for Computational Linguistics, Columbia Univer-
sity, New York, August 19886.
[Passonneau1986]

Rebecca J. Passonneau, A Computational Model of the Semantics of
Tense and Aspect, LBS Technical Memo No. 43, Logic-Based Systems
Group, Unisys, Paoli, PA, November, 1986.

May 4, 1987 -18-

DEANAD A DA S LA M I LA T Lot S O O N A L e O S A R W e e M AT S WA SR A s S

. APPENDIX L

Situations and Intervals

This paper, by Rebecca J. Passonneau, will be delivered at the July 1987
meeting of the ACL. It explains the temporal structures of the three situation
types-- states, processes and events—and shows how they are computed.

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

ANV NS

Situations and Intervals!

Rebecca J. Passonneau
May 2, 1987

Knowledge Systems®
Defense Systems, UNISYS
P.O. Box 517
Paoli, PA 19301
USA

Summary

The PUNDIT system processes descriptions of situations and the intervals over which they
hold using an algorithm that integrates tense logic and aspect. It analyzes the main verb and its
tense, taxis and grammatical aspect to generate representations of three types of situations:
states, processes and events. Each type has a distinct temporal structure, represented in terms of
intervals having two features: stativity vs. activity, and boundedness.

Topic Area: Temporal Semantics

1This work was supported by DARPA under contract N00014-85-C-0012, administered by the Office of Naval Research. AP-
PROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

fPormerly Paoli Research Center, SDC—~A Burroughs Company.

AT R N LA

N |

1 Situations and Intervals

1. Introduction

This paper describes a semantics of situations and the intervals over which they hold that
is neither situation semantics (Barwise and Perry, 1983) nor interval semantics (Dowty, 1979,
1982, 1986; Taylor, 1977). It is unfortunately difficult to avoid the overlap in terminology
because what will be described here shares with situation semantics the starting point that predi-
cations refer to situations. It shares with interval semantics the assumption that the times
involved in references to situations are intervals. The concerns addressed here, however, arise
from the computationél task of processing descriptions of situations in natural language

text in order to represent what predicates are asserted to hold over what entities and when.

The PUNDIT text-processing system® processes references to situations using an algorithm
that integrates tense logic {(Reichenbach, 1947) with aspect, or what Talmy (1985) calls the "pat-
tern of distribution of action through time." The algorithm (Passonneau, 1986) first

analyzes the temporal semantics of the main verb of a sentence (i.e., its lexical aspect) and

its concommitant categories of tense, taxis* and grammatical aspect.® This analysis provides a
foundation for the subsequent interpretation of temporal adverbials by explicitly representing
the components of time which can be modified. This paper describes how PUNDIT represents
the temporal structure of three types of situations, namely states, processes and events,
how these situations are located in time, and what the computational advantages of these

representations are for interpreting temporal adverbials.

Three specific goals for processing references to situations were identified. The first

was to distinguish references to actual time, i.e., to specific situations that are said to have

JPUNDIT is an acronym for Prolog UNderstanding of Integrated Text. It is a modular system, implemented in Quintus Pro-
log, with distinct syntactic, semantic and pragmatic components (cf. Dahl, 1986; Palmer ot al., 1988).

4 Tasis (Jakobson, 1967) refers to the semantic effect of the presence or absence of the perfect auxiliary.

SAspect is both part of the inherent meaning of a verb (lexical aspect) and also signalled by the presence or absence of the pro-
gressive suffix -ing (grammatical aspect).

A T A R A L A A YL i S G L AL AR s QL SR

Situations and Intervals

‘ occurred or to be occurring, as in 1),°

1) Oil pressure has been slowly decreasing.
from references to types of situations which have not occurred, might occur, or tend to occur,
1 as in 2).

2) The lube oil pump seizes.

This distinction helps determine, among other things, what proposition tense applies to. In 2),
the preseht tense does not pertain to a specific event of the pump seizing, but rather to the
tendency for this type of situation to recur. Currently, PUNDIT only processes references

to specific situations associated with actual time.

The second processing goal was to closely link the times at which situations hold with

the lexical decompositions of the predicates used in referring to situations. This allows PUN-

ﬁ DIT to represent precisely what kinds of situations entities particip;.te in and when. The basic
components of time are intervals while the two features associated with them are stativity

versus activity, and boundedness. The former feature pertains to the internal structure of an
interval while boundedness pertains to the way in which the temporal structure associated with a

situation is located in time by tense and taxis (cf. § 3.2 below).

The final goal was to represent the times for which situations hold in a sufficiently rich
manner to process temporal adverbials modifying different temporal components. For example,

both 3) and 4) contain an at phrase locating a situation with respect to a clock time.

3) Pressure was low at 08:00.
4) The pump seized at 08:00.

But, the relation of the clock time to the two situations differs. In 3), 08:00 occurs within an

@ interval over which the state of pressure being low holds. In 4), it coincides with a transition

'PUNDIT's current application is to process short messages texts called CASREPS (CASualty REPorts) which describe
Navy equipment failures. As the examples illustrate, the texts often contain sentence fragments.

I N T N A R N W R R T AT A AT TR TR P Tl Ty

AN AN 4

3 Situations and Intervals

. from a process of the pump becoming seized to a state of the pump being seized.

2. Problems In Computing Appropriate Representations

The critical problems in the semantic analysis of references to situations and their
associated times are: 1) language encodes several different kinds of temporal information, 2)
this information is distributed in many distinct linguistic elements, and finally, 3) the seman-
tic contribution of many of these elements is context-dependent and cannot be computed

without looking at co-occurring elements.

These problems have been addressed as follows. A decision was made to focus on the kinds

of temporal information pertaining to the goals outlined in the previous section and to tem-
porarily ignore other kinds of temporal information.” Computation of this information was then
divided into relatively independent tasks, with appropriate information passed between tasks to

accommodate context-sensitivities. First, the linguistic input which is both syntactically obliga-

tory and semantically critical is computed, i.e., the verb and its categories. This happens in two
stages with the aspectual information (lexical and grammatical aspect) computed first and the
relational information (tense and taxis) computed second. Since adverbial modification is
optional, temporal adverbs are processed not only separately from but also subsequent to

the interpretation of the verb and its categories.
3. Solution: Intervals and their Features

8.1. Temporal Structure

The input used to compute the temporal structure of a situation consists of the lexical

aspect of the verb and its grammatical aspect. Situations are represented as predicates identify-

@ ing the type of situation as a state, process or event; they take three arguments: a unique

"B.g. rate (gives by adverbe like repidly), "patteras of frequency or habituation” (cf. Mourelatos, 1981), and so on.

RN B S RN GNOOAGOED 3O I L 3 A L A L S A Ly

’ A 4 _ Situations and Intervals

. identifier of the situation, the semantic decomposition, and the time argument. Example 6) shows
s simple stative sentence, the type of temporal structure it evokes, its semantic decomposition,
and a representation of the situation it denotes. The same pointer ([lowl]) identifies both the
situation and its time argument because it is the a;:tual time for which a situation holds which

» uniquely identifies it as a specific situation.

6) Sentence: The pressure is low.
Temporal structure: unbounded stative interval
Decomposition: lowP(patient([pressurel}))
Situation: state([lowl], lowP(patient([pressurel])), period([lowl1]))

As shown, stative predications hold over unbounded stative intervals. Stative intervals are

represented as a period time argument to a state representation.

Interval semantics captures the distinct temporal properties of situations by specifying a sin-

6 gle truth conditional relation between a predication and a unique interval. In contrast, PUNDIT
associates two types of features with the intervals over which the predications hold. The feature

of stativity is defined here just as stative predications are defined in interval semantics: A sen-

tence Y is stative iff it follows from the truth of Y at an interval I that i) is true at all subintervals of
I (Dowty, 1986, p. 42). But stative predications are also defined in terms of the feature of bound-

edness, which pertains to how stative intervals participate in temporal ordering relations, as

will be shown below (§§ 3.2,3.3).

A process is a situation which holds over an active interval of time. Active intervals are
represented as a period time argument to a process representation. Again, the criterion fo;
defining the internal structure of an active interval is borrowed from interval semantics: A sen-
tence ¥ is an activity iff it follows from the truth of i) at an interval I that) is true at all subinter-
vals of I down to a certain limit in size (Dowty, 1988, p. 42). But in addition, it is proposed that

active intervals can be unbounded or unspecified for boundedness, depending on the grammati-

cal aspect of the predication; both progressive and non-progressive process predications have the

——._——-—1

6 Situations and Intervals
‘ same situational representation (cf. 7a, b).
7) Sentence: a) The pump is operating. b) The pump operated.
Grammatical Aspect: progressive non-progressive
Temporal structure: unbounded active interval unspecified active interval
Decomposition: operateP(actor([pumpl]))
Situation: process([operatel], operateP(actor([pumpl])), period([operatel}))

But the different values of boundedness lead to different relations between event time and tem-

poral structure, as will be shown below.

Transition event verbs denote a transition to a new situation. Following Dowty (1979), their
decompositions contain the aspectual operator becomeP. The aspectual operator’s argument is
the predic‘ate denoting the situation which results from a transition event. PUNDIT's representa-
tions of transition events differ from other proposals® by linking distinct time arguments to dis-
tinct components of the semantic decomi)osition. A transition event consists of a p.ocess (of

ﬁ becoming) leading up to a new state or process. Its temporal structure is thus an active °

interval followed by—and bounded by—a new active or stative interval (cf. 8).

8) Sentence: The engine seized.
Temporal structure: active interval + transition bound + stative interval
Decomposition: becomeP(seizedP(patient([enginel])))
Situations: event([seizel], becomeP(seizedP(patient([enginel]))), moment([seizel]))
state([seize2], seizedP(patient([enginel])), period([seize2]))
Temporal relation: starts(moment([seizel]), period(|seize2]))

Currently, PUNDIT does not explicitly represent the initial process.” The transition is represented
as an event with a moment time argument (e.g., moment([seizel])), and the resulting state is
represented with a period time argument (e.g., period([seize2])) which starts at the moment of
transition. A transition bound (e.g., moment([seizel]) is an abstract feature rather than a real
component of time. It is represented because it participates in temporal ordering relations and

% can be directly modified by temporal adverbials. It can be thought of as the same kind of

“There are some similarities between my frensition downd and the notion of sucleus proposed by Steedman and Moens; Steed-
maa, persoaal commusnication.

L] Situations and Intervals

. boundary between intervals implied by Allen’s meets relation (Allen, 1983; 1984, esp. p. 128).

3.2. Event Time

PUNDIT employs a Reichenbachian analysis of tense which temporally locates situations in
terms of three abstract times: the time of the situation (event time), the time of speech/text pro-
duction (speech time), and the time with respect to which relational adverbials are interpreted
(referenc- time). Reichenbach (1947) did not distinguish between the temporal structure of a
situation and its event time. For PUNDIT, the event time is an abstract component of tem-
poral structure in terms of which ordering relations are specified. It is determined on the basis of

boundedness, and is always represented as a dimensionless moment.

The three values of boundedness outlined above correspond to three possible relations of
event time to a time argument. Examples 9) through 11) illustrate these relations. If an inter-
” val is unbounded (as in 6 and 7a above), its event time is represented as an arbitrary moment

included within the interval:

9) The pressure is low.
Event time: M1 such that includes(period([low1]),moment([M1]))

: For an interval unspecified for boundedness (as in 7b above) the event time has a non-committal

relation to the interval, i.e., it may be an endpoint of or included within the interval:

10) The pump operated.
‘ Event time: M1 such that has(period([operatel]),moment([M1]))

The moment time argument of a transition event is its event time:

11) The pump seized.
Event time: moment([seizel])

Defining these three different relations of event time to temporal structure simplifies the computa-

m tion of the ordering relations given by the perfect and non-perfect tenses.

*This is simply & matter of convenience given the needs of the present application domain.

7 . Situations and Intervals

. 8.8. Temporal Ordering Relations

The event time and the verb’s tense and taxis comprise the input used in computing tem-
poral ordering relations. The different relations of event time to the temporal structures of situa-
tions captures several important facts about the interaction of tense and aspect. For example,
only unbounded intervals allow present tense, thus present is computed for examples like 6) and 7)

above, but not for examples like 2).

Also, a predication denoting a past unbounded situation can be followed by a predication

asserting the continuation (or cessation) of the same situation:
12) The pump was operating at 08:00 but is no longer operating.

This is provided for by representing the event time for 12) as a moment included within an inter-

val of indeterminate duration. A similar assertion following a past transition event predication is

g contradictory:1?

13) ?The pump sheared the drive shaft and is still shearing it.

The event time for the first conjunct in 13) is a transition bound necessarily culminating in a new
situation (i.e., a state of being sheared). Since the transition itself is dimensionless, the second
conjunct cannot refer to its persistence. A predication evoking an unspecified interval in a similar

context can be interpreted analogously to either 12) or 13):
14) The pump operated at 08:00 and is still operating.

The non-committal relation of event time to temporal structure for such cases makes both
interpretations possible. Assigning a more specific interpretation is probably pragmatic rather
than semantic in nature. As we will see next, the utility of distinguishing between unbounded and

unspecified process predications is especially apparent in contexts containing temporal adverbials.

10The contradiction arises because one naturally interprets ofill as indicating persistence of the same event. One could inter-
pret such a sentence without contradiction as indicating the iteration of the same type of event.

h AL WY WA A" a Nh T A ™ " T A T a ey M0 o ¢ ¥V, ¥ -, e,
" E TN VAW e M P A NN, SRR O,

(AR O N
[
A g n‘ ‘. “ A .' 'y

T r . x
S ",A\’,‘O'»\L".l.hl DO .."‘,‘ "I'.. "o b 09,0

8 Situations and Intervals

8.4. Coneclusion: Adverbial Modification

The representations described above were inspired by remarks found in the literature on
tense and aspect (cf. esp. Bull, Dowty, Mourelatos, Vendler) to the effect that "the time schemata"
(Vendler, p. 98) associated with different situations are crucial to the way we perceive and talk
about them. One of the crucial types of evidence used in deriving the representations was the
interpretation of temporal adverbials in different contexts. Consequently, one of the advantages to
the representations is that they make it possible to tailor the interpretation of a temporal adverb

to the temporal structure of the modified situation.

For example, specifying a different relation for the event time of an active interval, depend-

ing on grammatical aspect, yields different temporal relations between the situations described in

sentences like 14)-16).1!

14) The pump failed when the engine was rotating.
transition of faslure during period of rotation

15) The pump failed when the engine rotated.
transition of faslure during OR at one endpoint of period of rotation

16) The engine rotated when the pump failed.
Same as 15)

Sentences like 16) are often, but not always, interpreted with the process (e.g., rotation) beginning
at or after the transition event moment (e.g., faslure). PUNDIT’s representations of the temporal
semantics of predications are explicit enough yet sufficiently non-committal to provide suitable

input to a pragmatic reasoner that could decide these cases.

Acknowledgements

I would like to thank several people for their comments, encouragement and patience: Martha
Palmer, Lynette Hirschman, Bonnie Webber and Debbie Dahl.

! The differeat relations are showa informally in the examples; the formal representations PUNDIT generates will be givea in

9 Situations and Intervals

References Cited

Allen, James F. 1984. Towards a general theory of action and time. Artificial Intelligence 23.2:

123-154.

Allen, James. F. 1983. Maintaining knowledge about temporal intervals. Communications of the
ACM 26.11:832-843.

Barwise, Jon and John Perry. 1983. Situations and Attitudes. Cambridge, Massachusetts: The
MIT Press.

Bull, William E. 1971. [1963]. Time, Tense and the Verb. University of California Publi-
cations in Linguistics 19. Berkeley: University of California Press.

Dahl, Deborah A. 1986. Focusing and Reference Resolution in PUNDIT Presented at AAAI, Phi-
ladelphia, PA.

Dowty, David R. 1986. The effects of aspectual class on the temporal structure of discourse:
semantics or pragmatics? Linguistics and Philosophy 9: 37-61.

Dowty, David R. 1982. Tense, time adverbials and compositional semantic theory. Linguistics and
Philosophy 5: 23-55.

Dowty, David R. 1979. Word Meaning and Montague Grammar: The Semantics of Verbs and
Times in Generative Semantics and in Montague’s PTQ. Dordrecht: D. Reidel.

Jakobson, Roman. 1971 [1957]. Shifters, verbal categories and the Russian verb. In his Selected
Writings, Vol. 2, pp. 130-147. The Hague: Mouton.

Mourelatos, Alexander P. D. 1981. Events, processes, and states. In Syntax and Semantics, vol 14:
Tense and Aspect, pp. 191-212. Edited by P. J. Tedeschi and A. Zaenen. New York:
Acsdemic Press.

Palmer, Martha; Dahl, Deborah A.; Schiffman, Rebecca J. [Passonneau]; Hirschman, Lynette; Line-
barger, Marcia; Dowding, John. 1986. Recovering Implicit Information. 24th Annual
Meeting of the Association for Computational Linguistics. Columbia University, New
York.

Reichenbach, Hans. 1947. Elements of Symbolic Logic. New York: The Free Press.

Passonneau, Rebecca. 1986. A Computational Model of the Semantics of Tense and Aspect.
Logic-Based Systems Technical Memo No. 43. Paoli Research Center. System
Development Corporation. December, 1986.

Talmy, Leonard. 1985. Lexicalisation patterns: semantic structure in lexical forms. In Language
Typology and Syntactic Description, vol. 3: Grammatical Categories and the Lexicon,
pp- 57-151. Edited by Timothy Shopen. Cambridge: Cambridge University Press.

Taylor, Barry. 1977. Tense and continuity. Linguistics and Philosophy 1.

Vendler, Zeno. 1967. Verbs and times. Linguistics in Philosophy. New York: Cornell University
Press.

Vlach, Frank. 1981. The Semantics of the progressive. In Syntax and Semantics, vol 14:
Tense and Aspect, pp. 271-292, Edited by P. J. Tedeschi and A. Zaenen. New York:
Academic Press.

NN ! 'g! ',.l..\l,l..l ..;‘. PR LR N N K " M "' . 'y F w \ g ‘. .‘.. -' X ‘ ! ’ * N 'iﬂ;’-mﬂ

¢ APPENDIX M

The Interpretation of Tense in Discourse

This paper by Bonnie Webber will be presented at the 25th Annual Meeting of
the Association for Computational Linguistics, Palo Alto, July, 1987.

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

T “Q?W o ?MQM\ ssr Mgg 2'3’% Aanwal
L«\S\;\S\'\G&.

THE INTERPRETATION OF TENSE IN DISCOURSE

Bonnie Lynn Webber
Deparntment of Computer & Information Science
University of Pennsyivania
Philadeiphia PA 19104-8389

Abstract

This paper gives an account of the role tense plays in
the listener's reconstruction of the events and situations a
speaker has chosen to describe. Several new ideas are
presented: (a) that tense is better viewed by analogy with
definite NPs than with pronouns; (b) that a narrative has a
temporal focus that grounds the context-dependency of
tense; and (c) that focus management heuristics can be
used fo track the movement of temporal focus.!

1. Introduction

My basic premisa is that in processing a narrative text,
a listener is building up a representation of the speaker's
view of the events and situations being described and of
their relationship to one another. This representation,
which | will call an event/situation structure or e/s
structure, reflects the listener's best effort at interpreting
the speakers ordering of those events and situations in
time and space. The listener's prablem can therefore be
viewed as that of establishing where in the evolving o/s

.structure to aitach the event or situation described in the

next clause. My claim is that the discourse interpretation of
tense contributes to the solution of this problem.

This work on the discourse interpretation of tense is
being carmried out in the context of a larger enterprise
whose goal is an account of explicit anaphoric reference to
events and situations, as in Example 1.

Example 1

it's aiways been presumed that when the glaciers
receded, the area got very hot. The Folsum men
couldn’t adapt, and they died out. That's what's
supposed to have happened. /t's the textbook dogma.
8ut it's wrong. They were human and smart. They
adapted their weapons and culture, and they survived.

Example 1 shows that one may refer anaphoricaily to
structured entities built up through muitiple clauses. Thus
an account of how clauses arrange themseives into
structures is necessary to an account of event reference.2

'This work was parially supported by ARO grant DAA29-84-9-0027,
NSF grant MCS-8219118-CER, and DARPA grant NOOO14-88-K-0018 ©
the University of Pernsyivania, and by DARPA grant NO0014-85-C-0012 1
UNISYS.

0ther parts of the emuerprise include a general mechenism for
individusting composite entiies made up of ones separasly inroduced
(20, 21) and a repressntation for events that allow lor anaphoric reference
10 both particular events and sitsations and 10 abstracions thereof (18],

In this paper, | will relate the problem of building up an
o/s structure to what has been described as the
anaphoric property of tense [7, 11, 6, 1, 12] and of relative
temporal adverbials (18]. Anaphora are expressions
whose specification is context-dependent. Tense and
relative temporal adverbials, | interpret as specifying
positions in an evolving e/s structure. My view of their
anaphoric nature is that the particular positions they can
specify depend on the curmrent context. And the current
context only makes a few positions accessible. (This | will
claim to be in contrast with the ability of temporal
subordinate clauses and noun phrases (NPs) to direct the
listener to any position in the evolving structure.)

The paper is organized as follows: In Section 2, |
discuss tense as an anaphoric daevice. Previous work in
this area has discussed how tense is anaphoric, claiming
as wall that it is like a pronoun. While agreeing as to the
source of the anaphoric character of tense, | do not think
the analogy with pronouns has been productive. In
contrast, | discuss what | believe to be a more productive
analogy between tense and definite noun phrasas.

Prdvious work has focussed on the interpretation of
tensed clauses in simple linear narratives (i.e., narratives
in which the order of underlying events directly
corresponds to their order of presentation). Here the
most perplexing question involves when the next clause in
a sequence is interpreted as an event or sequence
coincident with the previous one and when, as following
the previous one [4, 8, 12]. In Section 3, | show that if one
moves beyond simple linear narratives, there are more
options. In terms of the framework proposed here, there
may be more than one position in the evolving e/s
structure which can provide a context for the
interpretation of tense. Hance there may be more than one
position in e/s structure which tense can specily and
which the new event or situation can attach to.

To model the possible contexts, | introduce a
discourse-level focussing mechanism - temporal focus or
TF - similar to that proposed for interpreting pronouns and
definite NPs {17]. 1 give examples to show that change of
TF is intimately bound up with narrative structure. To keep
track of and predict its movement, | propose a set of focus
heuristics: one Focus Maintenance Heurlstic, predicting
regular movement forward, two Embedded Discourse
Heuristics for stacking the focus and embarking on an
embedded narrative, and one Focus Resumption

JAnother person currenty addressing the interpretation of tense and
aspect in more compiex naratives is Nakhimovsky (9, 10]. Though we are
addressing somewhst different issues, his approach seems very
compatbie with this one.

®

Heuristic for retuming and resuming the current narrative.
The need for each of thees is shown by example.

In Section 4, | show that relative temporal adverbials
display the same anaphoric property as simple tense.

That the interpretation of tense should be entwined
with discourse structure in this way should not come as a
surprise, as a similar thing has been found true of other
discourse anaphora [5).

2. Tense as Anaphor
Tense does not seem prima facie anaphoric: an
isolated sentence like "John went to bed” or "I met a man
who looked like a basset hound” appears to make sense
without previously establishing when it happened. On the
other hand, if some time or event is established by the
context, tense will invariably be interpreted with respect to
it, as in:
Example 2
After he finished his chores, John went to bed.
John partied until 3am. He came home and went
to bed.
In each case, John's going to bed is linked to an axplictly
mentioned time or event. This linkage is the anaphoric
propaerty of tense that previous authors have described.

Hinrichs (6] and Bauerie[1], following McCawley
(7] and Partee [11], showed that it is not tense per se that
is interpreted anaphorically, but that part of tense called by
Reictienbach [14] refersnce time.* According to
Reichenbach, the intemretation of tense requires three
notions: speech time (ST), event time (ET), and
referance time (RT). RT is the time from which the
event/situation described in the sentencs is viewed. It may
be the same as ST, as in
present perfect: ET<RT=ST
John has ciimbed Aconcagua and Mt. McKinley.
simple present: ET=RT~ST
John is in the lounge.
the same as ET, as in
simple past: ET=RT<ST
John climbed Aconcagua.
simple future: ST<ET«RT
John will climb Aconcagua.
in between ET and ST, as in

past perfect: ET<RT<ST
John had climbed Aconcagua.

or following both ET and ST (looking back to them), as in

“rviche’ work is discussed as well in {12].

future perfect: ST<ET<RT
John will have climbed Mt. McKinlay.

That it is RT that it is interpreted anaphorically, and not
either ET or tense as a whole can be seen by considering
Exampile 3.

Example 3

John went to the hospital.
He had twisted his ankle on a patch of ice.

t is not the ET of John's twisting his ankie that is
interpreted anaphorically with respect to his going to the
hospital. Rathaer, it is the RT of tha second clause: its ET is
intarpreted as prior to that because the clause is in the
past perfect tense (see above).

Having said that it is the RT of tense whose
interpretation is anaphoric, the next question to ask is what
kind of anaphoric behavior it evinces. In previous work,
tense is claimed to behave like a pronoun. Partee
{12] makes the strongest casa, claiming that pronouns
and tense display the same range of antecedant-anaphor
linkages:

Deictic Antecedents

pro: She left me! (said by a man crying on the stoop)®
tense: | left the oven on! (said by a man to his wife
in the car)

indefinite Antecedents

pro: | bought a banana. | took it homae with me.
tense: | bought a banana. | took it home with me.
<l took it home after | bought it.>

Bound Variables

pro: Every man thinks he is a genius.
tense: Whenever Mary phoned, Sam was asleep.
<Mary phoned at time t, Sam was asleep at &>

Donkey Sentences

pro: Every man who owns a donkey beats it.

tense: Whenever Mary phoned on a Friday, Sam was
asleep.
<Mary phoned at time t on a Friday, Sam was
asleop ot t on that Friday>

Because of this similarity, Partee and others have claimed
that tense is like a pronoun. Their account of how time is
then seen to advance in simple linear narratives is
designed, in par, to get around the problem that while
pronouns co-specify with their antecedents, the RT of
clause N cannot just co-specify the same time as the
previous clause [8, 12, 4].

There is another option though: one can draw an
analogy between tense and definite NPs, which are also
anaphoric. Suppont for this analogy is that, like a definite

¥ believe that the deictic use of pronauns is infelicitous. In this exampie,
the speaker is disraught and meking no anempt 1o be cooperative. kt
happens. But that dosen't mean that pranouns have deicic amecedents. |
indude the exampie here bacause it is part of Partee’s argument.

NP, tanse can cause the listener to create something new.
With a definite NP, that something new is a new discourse
entity (19). With tense, | will say for now that ¢ is a new
time at which the event or situation is interpreted as
occuring.® ¥ one looks at texts other than simple linear
narmatives,. this ability becomes clear, as the following

d
i

| was at Mary's house yesterday.

Wae talked about her brother.

He spent S weeks in Alaska with two friends.
Together, they made a successful assault on Denali.
Mary was very proud of him.

The event of Mary's brother spending five weeks in Alaska
is not interpreted as occurring either coincident with or
after the event of my conversation with Mary. Rather, the
events corresponding to the embedded narrative in the
third and fourth clause are interpreted at a different spatio-
temporal location than the conversation. That it is before
the conversation is a matter of worid knowledge. In the e/s
structure for the whole narrative, the tense of the third
clause would set up a new position for the events of the
embedded narrative, ordered prior to the current pasition,
to site these events.)

The claimed analogy of tense with pronouns is based
on the similarity in antecedent-anaphor linkages they
dispiay. But notice that definite NPs can display the same
linkages in two different ways: (1) the definite NP can co-
specify with its antecedent, as in the a. examples below,
and (2) the definite NP can specily a new entity that is
'strongly’ associated with the antecedent and is unique by
virtue of that association, as in the b. examples below’
Deictic Antecedents

The car won't start! (said by a man crying on the stoop)
Indefinite Antecedents
a. | picked up a banana. Up close, | noticed the banana

was 00 green to eat.
b. | picked up a banana. The skin was all brown.

Bound Varisbles
a. Next 10 each car, the owner of the car was sleeping

soundly.
b. In sach car, the engine was idling quietly.
Donkey Sentences
a. Everyone who wants a car must fix the car himself.
b. Everyone who owns a Ford tunes the engine himsaeif.
Thus the range of antecedent-anaphor behavior that
Partes calis attention 10 argues equally for an analogy

between tense and pronouns as for an anaigoy between
tense and definite NPs.

SAher | say more about o/s strusture construction, | will be able 10 ciaim
hat anee c cause he listener 10 creats a New posiion in ofs structure
ot which 1 a: ach the event or sitiuaion described in its associased clsuse.

"Clark & Marshall {2] e among those who have described the
NS0SSsry “common owiedge” that must be assumabie by speaker and
Eetaner abowut the association for the specification 1 be succeeshul.

W, l.l.l'o ‘.H

However, there are two more features of behavior to
consider: On the one hand, as noted earlier, definite NPs
have a capability that pronouns lack®. That is, they can
introduce a new entity into the discourse that is ‘strongly’
associated with the antecedent and is unique by virtue of
that association, as in the b. examples above. Example 4
shows that tense has a similar ability. Thus, a stronger
analogy can be drawn between tense and definite NPs.

On the other hand, definitea NPs have the capability to
move the listener away from the current focus to a
particular entity introduced earlier or a particular entity
associated with it. This ability tense lacks. While tense
can set up a new node in @/s structure that is strongly
associated with its 'antecedent’, it does not convey
sufficient information to position that node precisely - for
example, precisely relative to some other event or
situation the listener has been told about. Thus its
resemblance to definite NPs is only partial, although it is
stronger than its resemblance to pronouns. To locate a
node precisely in e/s structure requires the full temporal
correlate of a definite NP - that is, a temporal subordinate
clause or a definite NP itself, as in Example 5.

Example §

The bus reached the Stadium, terminai for the suburban
bus sarvices. Here De Witt had 1o change to a streetcar.
The wind had abated but the rain kept failing, almost
vertically now. He was travelling to a two o'clock
appointment at Amsterdam police headquarters in the
center of town, and he was sure to be late.

When De Witt got to the police president’s office, he
telephoned his house.

[adapted from Hans Koning, De Witt’s War]

Notice that without the “when" clause, the simple past
tense of *he telephoned his house" would be anaphorically
interpreted with respect to the “reaching the Stadium®
event, as happening sometime after that. A new node
wouid be created in e/s structure ordered somatime after
the “reaching the Stadium® event. On the other hand, with
the “when" clause, that new node can be ordered more
precisely after the “reaching the Stadium® event.
association with its “antecedent” (the “travelling to the
appointment® event), t can be ordered after the
achievement of that event,

There is ancther advantage to be gained by pushing
further the anaiogy between tense and definite NPs that
relates to the problem tackied in [6, 4, 12] of how to
reconcile the anaphoric nature of tense with the fact that
the evant or situation described in the next clause varies
as to whether it is taken 10 be coincident with, during,
before or after the event or situation described in the
previous clause. This | will discuss in the next section,
after introducing the notion of temporal focus.

Sexcept for “pronouns of laziness® which can evoke and specily new
entites twough the use of previous descriptions

LI 000 K TG OV O m‘C&ﬁféﬁiﬁ'ﬁfﬁ-ﬁCﬁ{m‘ﬁMﬁrﬂﬁm

3. Temporal Focus

In this section, | give a more specific account of how
the discourse interpretation of tense relates to e/s
structure construction,

At any point N in the discourse, there is one node of
o/s structure that provides a context for the interpretation
of the RT of the next clause. | will call it the temporal
focus or TF. There are three possibilities: (1) the RT of
the next clause will be interpreted anaphorically against
the current TF, (2) the TF will shift to a different node of
e/s structure - either one already in the structure or one
created in recognition of an embedded narrative - and the
RT interpreted with respect to that node, or (3) the TF will
return to the node previously labelled TF, after completing
an embedded narrative, as in (2), and the RT interpretad
there. These three behaviors are described by four focus
management heuristics described in this section: a Focus
Maintenance Heuristle, two Embedded Discourse
Heuristics and a Focus Resumption Heuristic.?

In {21], | presented a control structure in which these
heuristics were applied serially. The next heuristic would
only be applied when the prediction of the previous one
was rejected on grounds of "semantic or pragmatic
inconsistency”. 1 now believe this is an unworkable
hypothesis. Maintaining it requires (1) identifying grounds
for such rejection and (2) arguing that one can reject
proposals, independent of knowing the alternatives.

| now don't believe that either can be done. it is rarely
the case that one cannot come up with a story linking two
events and/or situations. Thus it would be impossibie to
reject a hypothuis on grounds of inconsistency. All one
can say is that one of such stories might be more platsible
than the others by requmng in some sense not explored
here, fewer inferences.'0

Thus | would now describe these heuristics as running
in parallel, with the most plausible prediction being the one
that ends up updating both e/s structure and the TF. For
clarity in presentation though, | will introduce each
heuristic separately, at the point that the next example
calls for it.

3.1. interpreting RT against TF

Belore presenting the temporal focus management
heuristics, | want to say a bit more about what it can mean
to interpret the RT of the next clause against the current
TF. This discussion points out the additionai advantage to

*Rohrer {15] suggests that there mey exist a set of possible temporal
relerents, possibly ordered by sallency, among which the tense in a
senence may And its relerence me, but dossnt elaborate how. That is
the anly thing | have seen that comes cioss (o the current propasal.

"Crain and Stsedmen (3] make a similar argument about prepositional
pivase (PP) attachment. For example, it is not impossible for a cat to own a
1iescope - 0.g., by inharitance from its former owner. Thus “a cat with a
wisscope” is not an inconsistent descripion. However, it must compete
with other plausible imerpretations like “seeing with a telescope” in °! saw a
cat with & wiescope”.

s A L L A N A AL L N LN S 3

be gained by pushing the analogy between tense and
definite NPs.

As | noted abovae, a definite NP can specify an entity
'strongly’ associated with its antecedent. One might thus
consider what is 'strongly’ associated with art event. One
answaer to this question appears in two saparate papaers in
this volumae [8, 13], each ascribing a tripartite structure to
the way we view and talk about events. This structure
consists of a preparatory phase, a culmination, and a
consequence phase, to use the terminology of [8]. (Such a
structure is proposed, in part, to give a uniform account of
how the interpretation of temparal adverbials interacts with
the interpretation of tense and aspect.)

Nodes in e/s structure correspond to events and
situations, as the speaker conceives them. If one
associates such a structure with the node labelled the
current TF, then one can say that 'strongly’ associated
with it are events and situations that could make up its
preparatory phase, culmination or consequence phase.
Like a definite NP, the RT of tense may either co-specify
the current TF or set up a new node in e/s structure
'strongly’ associated with the TF. In the latter case, its
corresponding event or situation will be interprated as
being part of one of these three phases, depending on the
speaker and listener's assumed shared knowledge.
Since, arguably, the most common way of perceiving the
world is as an ordered sequence of events, this will
increase the plausibility of interpreting the next event or
situation as (1) still associated with the current TF and (2)
part of the consequence phase of that event (i.e., after it).
On the other hand, this "strang association’ treatment no
longer limits anaphoric interpretation to °“co-specify” or
“right after” as in {4, 6, 12). The event described can be
anaphorically associated with the the whole event
structure (Example 8a), the consequence phasse (Example
6b - “right after™), or the preparatory phase (Exampie 6¢ -
“before").

Example 6

a. John waked across lowa. He thought about Mary,
who had run off with a computational linguist.

b. John waked across lowa. He crossed the state line
at Council Biuffs and headed west through Nebraska.

¢ John waked across lowa. He started in Sioux City
and headed east to Fort Dodge.

Deciding which of these three options hoids in a given
case demands an appeal to world knowiedge (e.g. which
actions can be performed simuitaneously by a single
agent). This is yet another area demanding further study
and is not treated in this paper."’

""Mark Steedman shares responsibiity for s dea. which s aiso
mentoned in his paper with Marc Moens in this voiume (8].

- s m -

3.2. Focus Maintenance and Focus Movement

The following pair of examples illustrate the simplest
movement of temporal focus in a discourse and its link
with e/s structure construction.

Example 7a

1. John went over to Mary’s houss.

2. On the way, he had stopped by the flower shop for
some rosas.

3. Unfortunately the roses failed to cheer her up.

Example 7b

1. John went over to Mary’s house.

2. On the way, he had stopped by the flower shop for

some roses.

3. He picked out S red ones, 3 white ones and one

pale pink.

Since the first two clauses' are the same in these
exampies, | will explain them together.

With no previous temporal focus (TF) established
prior to clause 1, the listener creates a new node of o/s
structure, ordered prior to now, to serve as TF. TF sites
the anaphoric interpretation of RT,, which, because clause
1 is in the simple past, also sites ET,. This is shown
roughly in Figure 3-1.

s,

EX, sv
* >
XF

Figure 3-1: E/S structure after processing clause 1

The first heuristic 10 be introduced is a Focus
Meintenance Heuristic (FMH).
ARer inarpreting clause N, the new TF is the most
recont TF - ie., the node againet which RT, was
inerpreted.
The most recent TF is cotemporal with RT,. This new TF
now provides a site for interpreting RT,. Since clause 2 is
past perfect, ET, is interpreted as being prior 1o RT,. E/s
SWUChIre is now roughly as shown in Figure 3-2.

€T,
RY
£%5 Rad’ X s7T
- —— .
TF

Figure 3-2: E/S structure after processing clause 2

Applying the PMH again, RT, is the new TF going into
clause 3. Examples 7a and 7b here diverge in what
subsequently happens 10 the TF.

In 7a, RT, can be anaphorically interpreted as
immediately following the TF. Since RT, in turn directly

sites ET, (clause 3 being simple past), the Mailing event”
is interpreted as immadiately following the “going over to
Mary's house™ event. This is shown roughly in Figure 3-3.
(TF is shown already moved forward by the FMH, ready
for the interpretation of the next clause, if any.)

R
Q"g_ a\ 213 g‘

. —y .
<t

Figure 3-3: E/S structure after processing clause 7a-3

To get the most plausible interpratation of 7b - i.e.,
where the “rose picking” event is interpreted anaphorically
with respect to the “flower shop” event - requires a second
heuristic, which | will call an Embedded Discourse
Heuristic. This will be EDH-1, since | will introduce
another Embedded Discourss Heuristic a bit later.

If ET,, is differant from RT,=TF, treat utterance N as

the beginning of an embedded narrative, reassign ET,,

© TF (stacking the previous value of TF, for possible

resumption iater) and try 1 interpret AT, . against this

new TF.
By this heuristic winning the plausibility stakes against the
FMH, TF is reassigned to ET, (stacking the previous TF,
which is sited at RT,=RT,=ET,), and RT, is anaphorically
interpreted as following this new TF. As before, ET, is
sited directly at RT, (since simple past), so the “picking
out the roses™ event it viewed as immediately following
the "stopping at the florist® event. This is shown roughly in
Figure 34,

Ry
ety &P < st

.;,? —
XF

Figure 3-4: E/S structure after processing clause 7b-3
Now consider the following extansion to axampio 7b.

Example 7¢

1. John went over to Mary’'s house.

2. On the way, he had stopped by the flower shop for
SOme roses.

3. He pickad out 5 red ones, 3 whita ones and
one pale pink.

4. Unfortunately they failed to cheer her up.

First notice that clauses 2-3 form an embedded narrative
that interrupts the main narrative of John's visit to Mary's.
The main sequence of events that begins with clause 1
resumaes at clause 4. Now consider the anaphoric
interpretation of tense. Clauses 1-3 are interpreted as in
Example 7b (cf. Figure 3-4). The problem comes in the
interpretation of Clause 7¢-4.

D-A1681 $562 !NTEBRﬂTIIO SVNTRX SEMANTICS m DISCOURSE DARPR
NATURAL LANGUAGE UNDERST.. (U) UNISYS CORP PMLI PR
PAOLI RESEARCH CENTER D DAHL ET AL. 14 MAY @7
NO9O14-85-C-9012

L g8 B2s
S & &
_— ™ L
U L 20 ‘
,m Il &,
= 1.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Y 0‘.;:‘, :',‘l ,‘n‘ n\. XNN RN ‘.;n‘.
ﬁﬁv\ ‘u'rﬂw S
3 X}

hh"' Y
dhehy ‘«.‘

"\

To get the most plausbie interpretation requires a third
heuristic which | will call a Focus Resumption Heuristic
(FRH).

At the vamsition back fom an embedded nasratve,
he TE prior 10 he embedding (stacked by an

Bmbedded Discourse Heuristic) can be resumed.

Using this heuristic, the stacked TF (sited at
RT,=AT,«ET, - the “going t© Mary's house® event)
becomes the new TF, and RT, is interpreted as directly
following . Since clause 7c-4 is simpie past, the “ailing”
evert is again correctly interpreted as immaediately
following the.“going over to Mary’s house® event, This is
shown roughly in Figure 3-5.

R%

€
€ty E£T% £ “ s

— —
<

Figure 3-5: E/S structure after processing clause 7c+4 .

| have airsady noted that, like a definite NP, tense can
cause the listener to create a new node in ¢/s structure o
site its RT. What | want to consider here is the
circumstances under which a reader is likely to create a
new node of e/s structure to interpret AT, ., rather than
using an existing node (i.e., the current TF, one associated
with the previous event (if not the TF) or a previous,
stacked TF).

One circumstance | mentioned earlier was at the
beginning of a discourse: a reader will take an
introductory sentence like Snoopy’s famous first line

It was a dark and stormy night.

and start building up a new e/s structure with one node
cofresponding to ST and ancther node siting RT and ET.
Generalizing this situation to the beginning of embedded
narratives as well, | propose a second Embedded
Discourse Heuristic (EDH-2):
If clause N+1 is interpreted as beginning an
embedded narrative, create a new node of e/'s
structure and assign it 19 be TF. Stack the previous
value of TF, for possible resumption later.

EDH-2 differs from EDH-1 in being keyed by the new
clause itself: there is no existing event node of e/s
structure, different from the current TF, which the
embedded narrative is taken to further describe.

EDH-2 explains what is happening in interpreting the
third clause of Exampile 4. Even though all the clauses of
Example 4 are simple past, with ET=RT, the third clause is
most plausibly interpreted as describing an event which
has occured prior to the “telling about her brother” event.
EDH-2 provides the means of interprating the tense in an
embedded narrative whose events may occur either
before or even after the cumrent TF.

Exampie 4
1. | was at Mary’s house yesterday.
2. We taked about her brother.
3. He spent 5 weeks in Alaska with two friends.
4. Together, they made a successful assault on Denali.
S. Mary was very proud of him.

Notice that the focus stacking specified in EDH-2 enables
the correct interpretation of clause 4-5, which is most
plausily imerpreted via the FRH as following the “telling
sbout her brother” event.

EDH-2 is aiso relevant for the interpretation of NPs
headed by de-verbal nouns (such as “trip®, “instaliation”,
otc.). While such a NP may describe an event or situation,
there may not be enough information in the NP itself or in
its clause to locate the event or situation in /s structure
{ct. “my trip to Alaska” versus “my recent/upcoming trip to
Alaska”). On the ott.or hand, EDH-2 provides a way of
allowing that information to come from the subsequent
discourse. That is, if the following clause or NP can be
interpreted as describing a particular event/situation, the
original NP and the subsequent NP or clause can be taken
as co-specilying the same thing. Roughly, that is how |
propose treating cases such as the following variation of
Example 4:

Example 8
1. | was taking with Mary yesterday.
2. She toid me about her trip to Alaska.

3. She spent five weeks there with two frienda,
and the three of them climbed Denall.

The NP “her trip to Alagka" does not of itself cause an
addition o e/s .'2 Rather, application of EDH-2
to the interpretation of ciause 5-3 resulls in the creation of
a new node of o/s structure against which its RT is sited.
Other reasoning results in clause 3 and "her trip to Alaska®
being taken as co-specifying the same event. This is what
binds them together and associates "her trip to Alaska”
with a node of e/s structure.

Finally, notice that there will be an ambiguity when
more than heuristic makes a plausible prediction, as in the
following example:

Example 9

1. 1 told Frank about my meeting with Ira.
2. We talked about ordering a butterfly,

it is plausible to take the second utterance as the
baeginning of an embedded narrative, whereby EDH-2
results in the %aking about® event being interpreted
against a new node of e/s structure, situated prior to the
“telling Frank” event. (In this case, “we" is lra and me.) Rt is
also pisusible to take the second utterance as continuing
the current narrative, whereby FMH results in the “taking
about® event being interpreted with respect to the "telling
Frank® event. (In contrast here, “we" is Frank and me.)

‘2t does, of course, result in the creetion of a discourse entlty (191, The
relationship | see between the listaner's e/s structure and hisher
discourse modet is discussed in {21},

John became the captain of Penn’s squash team.
He was previously captain of the Haverford team.

John left for London on Sunday.
Tuesday he went to Cambridge.

mentioned “becoming captain® event: it was before that

after that event. The third case is the reverse.

What | want to show is that, as before, the same four
heuristics predict the sites in e/a structure that may
provide a context for a relative temporal adverbial.
Consider the following.

Example 10a
1. John went overdo Mary’s house.
2. On the way, he had stopped by the flower shop for
sSome roses.

3. After five minutes of awkwardness, he gave her
the flowers

Example 10b
1. John went over to Mary's house.
2. On the way, he had stopped by the flower shop for
some roses.
3. After 20 minutes of waiting, holdtwiththobouquot
and fairly ran to Mary’s,

IwiluuADVbMorbmumupmmonoimo'aﬂor'
adverbial. in these cases, what is sited by TF is the
_bgg%ggdmoiﬂlwd.wrmin\um sites the RT of the
mam clause is the end of the interval.

The processing of tho.ﬂnt two clauses is just the same
as in examples 7a and b. From here, the two examples
diverge.

In 108-3, the beginning of ADV is most plausibty
interpreted with respect to the TF. The end of ADV in turn
provides an ansphoric interpretation point for RT,. Since
ET, is interpreted as coincident with RT, (clause 3 being
sh\pbp.ﬂ).tho'rmogiving'womlsumcmm.da
immaediately following John's getting to Mary’s house. This
is shown roughly in figure 4-1,

<
e &~ T o<
-

1

Figure 4-1: E/S structure after processing clause 10a-3

in 10b-3, the interpretation due to FMH is less
piausible than that due to EDH-1. EDH-1 re-assigns TF to
ET,, where the beginning of ADV is then sited. The end of
ADV in tum provides an anaphoric interpretation point for
RT,. Since ET, is sited at RT,, the “leaving with the
bouquet” event is sited at the end of the twenty minutes of
waiting. This is shown roughly in Figure 4-2,

[
§ta £ ex, st

——F— .

POV

Figure 4-2: E/S structure after processing clause 10b-3

An interesting question 10 consider is whether a
speaker would ever shilt the TF as modelled by the FRH
or the EDH-2, while simuitanecusly using a relative
temporal adverbial whose wouild have to be
linked to the new TF, as in example 11 (movement via
FRH) and sxample 12 (movement via EDH-2).

Example 11

1. John went over to Mary's house.

2. On the way, he had stopped by the flower shop for
some roses

3. He picked out 5 red ones, 3 white ones and one

pale pink.
4. After S minutes of awkwardness, he gave her the
flowers,

Example 12

1. | was at Mary’'s house yesterday.

2. We talked about her brother.

3. After 6 months of planning, he went to Alaska with
two friends.

4. Together, they made a successtul assault on Denali.

5. Mary was very proud of him.

| find both examples a bit awkward, but nevertheless
understandable. Accounting for TF movement in each of
them is straightforward. However, whether to attribute the
awkwardness of these examples to exceeding pooplos

processing capabilities or to & problem with the theory is
grist for further study.

Acknowledgments

| would ke to extend my thanks to Debby Dahl,
Martha Paimer and Becky Passonneau at UNISYS for
their enthusiastic suppoit and trenchant criticism. | have
siso gsained tremendously from discussions with James
Allen, Barbara Grosz, Erhard Hinrichs, Aravind Joshi,
Hans Kamp, Ethel Schuster, Candy Sidner, and Mark

|

References

1. Bauerie, R.. Temporale Deixis, temporale Frage.
Gunter Narr Veriag, Tubigen, 1979.

2. Clark, H. & Marshall, C. Definite Reference and Mutual
Knowiedge. in Elements of Discourse Understanding,
A.K Joshi, B.L. Webber & |.A. Sag, Ed., Cambridge
University Press, Cambridge England, 1981, pp. 10-83.

3. Crain, S. & Steedman, M. On not being Led up the
Garden Psth: the use of context by the psychological
syntax processor. in Natural Language Parsing, D. Dowty,
L Karttunen & A. Zwicky, Ed., Cambridge Univ. Press,
Cambridge England, 1985, pp. 320-358,

4. Dowty, D. "The Effects of Aspectual Class on the
Temporal Structure of Discourse: Semantics or
Pragmatics®. Linguistics and Philosophy 9, 1 (February
19886), 37-82.

S. Grosz, B. & Sidner, C., "Attention, intention and the
Structure of Discourse®. Computational Linguistics 12, 3
(July-September 1988), 175-204.

6. Hinrichs, E. "Temporal Anaphora in Discourses of
English”. Linguistics and Philosophy 9, 1 (February 1986),
63-82.

7. McCawley, J. Tense and Time Reference in English.
In Studies in Linguistic Semantics, C. Filimore & D.T.

Langendoen, Ed., Hot, Rinehart and Winston, Inc., New
York, 1971, pp. 97-114,

i vy N2 . 4 g ”~ - —. -
RUANRRESY LU SR ,l.",'-'\’v‘,.'n.,.‘cf;'u,o't‘.q-,;'v A AN A WL AN O el W O O A £y)

8. Moens, M. & Steedman, M. Temporal Ontology in

Natural Language. Proc. of the 25th Annual Mesting,
Assoc. for Computational Linguistics, Stanford Univ., Palo
Ao CA, July, 1987. This volume..

9. Nakhimovsky, A. Temporal Reasoning in Natural
Understand

10. Nakhimovsky, A. Tense, Aspect and the Temporal
Structure of the Narrative. Submitted to Computational
Linguistics, special issue on computational approaches to
tense and aspect.

11. Partes, B. "Some Structural Analogies between
Tenses and Pronouns in English®. Joumnal of Phiosophy
70(1973), 601-809.

12. Pantee, B. *“Nominal and Temporal Anaphora®.
Linguistics and Philosophy 7, 3 (August 1984), 243-286.

13. Passonneau, R. Situations and Intervals. Proc. of the
25th Annual Meeting, Assoc. for Computational
Linguistics, Stanford Univ., Palo At CA, July, 1987. This
volume..

14. Reichenbach, H.. The Elements of Symboiic Logic.
The Free Press, New York, 1966. Paperback edition.

18, Rohrer, C. Indirect Discourse and "Consecutio
Temporum'. In Temporal Structure in Sentence and
Discourse, V. Lo Cascio & C. Vet, Ed., Foris Publications,
Dordrecht, 19885, pp. 79-98.

16. Schuster, E. Towards a Computational Mode! of
Anaphora in Discourse: Reference to Events and Actions.
CIS-MS-88-34, Dept. of Comp. & Info Science, Univ of .
Pennsyivania, June, 1988. Doctoral thesis proposal..

17. Sidner, C. Focusing in the Comprehension of Definite
Anaphora. In Computational Models of Discourse,

M. Brady & R. Berwick, Ed., MIT Press, Cambridge MA,
1982, pp. 267-330.

18. Smith, C. Semantic and Syntactic Constraints on
Temporal interpretation. in Syntax and Semantics,
Volume 14: Tense & Aspect, P. Tedesci & A. Zaenen, Ed.,
Academic Press, 1981, pp. 213-237.

19. Waebber, B.LL. So What Can We Talk about Now? In
Computational Models of Discourse, M. Brady &

R. Berwick, Ed., MIT Press, Cambridge MA, 1982, pp.
33137,

20. Waebber, B.L. Event Reference. Theoretical Issues in
Natural Language Processing (TINLAP-3), Assoc. for
Computational Linguistics, Las Cruses NM, January, 1987,
pp. 137-142.

21. Webber, B.L. Two Steps Closer to Event Reference.
CiS-86-74, Dept. of Comp. & Info Science, Univ. of
Pennsylvania, February, 1987.

4
l‘o 'a"' .'.‘.l '\

¢ : APPENDIX N

Report on an Interaction between the Syhtutie and Semantic Components

This report by Marcia Linebarger describes the design of an interaction
between syntax and semantics to allow input from the semantic component to
the parser to guide the parser to a semantically acceptable parse.

Unilsys Defense Systems Integrating Syntax, Semantics, Discourse

Report on an Interaction between the Syntactic and Semantic Components
. Marcia Linebarger

This report describes an attempt to develop a more flexible control strategy
in syntactic and semantic processing of text, by a mechanism which forces seman-
tics to evaluate the partial products of syntactic analysis.

Currently, Pundit’s control mechanism flows from the syntactic module to
the semantic module; the parser operates without any reference to the semantic
properties of the structures it builds. The cost of this sequential operation is that
the parser frequently engages in pointless structure building, which could have
been prevented by allowing the semantic module to analyze the output of the
parser at some point earlier than the end of the clause.

Below we describe a restriction which calls the semantic analyser dur-
ing the syntactic parse and uses semantic information to limit the search space of
the parser. Our initial efforts have been directed toward a restriction
(sv_checkpoint) which is called at the point at which the subject and main verb
have both been parsed, but before the object has been analysed. This is a partic-
ularly felicitous moment for such interaction because (1) the parser is able to pro-
vide semantics with considerable information, i.e., the identity of the verb and
one of its arguments; and (2) the parser is confronted at this point with a great
variety of syntactic options, so if it is possible to abort incorrect analyses at this

o point we may prevent needless structure building.

This report describes the design of sv_checkpoint. The motivation for
developing this mechanism has been primarily to test the ability of the semantic
component to process partially built syntactic structures, and to point up those.
areas in which the communication between the two modules needs further
development. Following successful implementation of this restriction, additional
interactions between syntax and semantics will be explored, with particular con-
cern for the processing of noun phrases.

Sv_checkpoint is housed in the BNF object rule, and applies during the
dynamic editing of the object rule in accordance with the subcategorization

features of the verb (see (9], included as Appendix D.)! It passes the parsed sub-
ject and verb to the semantic analyszer. The semantic analyzer attempts to
assign the subject a thematic role in accordance with the verb decomposition and
syntax-semantics mapping rules. The information sent back to the parser is used
either to alter the parser’s expectations about upcoming structure or to abort the
current analysis.

1Aaether possidility is to call the restriction immediately following the construction of the ve or lvr node, is.,
spon completion of the verd itself: this would prevent construction of intervening seatence adjuncts prior to the call to se-
maatics, since the assertion rule permits sentence adjuncts between verb and object.

N GATR L L EE L (LAANN R RRER

.......... D bW

1.1. Predistion of upeoming strusture

One important set of temporary ambiguities which the restriction will
sometimes be able to resolve in mid-parse involves TRANSITIVITY ALTERNATION
verbs which are subcategorised as both intransitive (i.e., as taking nullobj, in the
string grammar formalism) and transitive (i.e.,, as taking nstgo). There are
many such verbs; consider melt and decrease. (an asterisk indicates that the sen-
tence is semantically or pragmatically anomalous, either generally or in the
CASREP domain; all sentences below are syntactically well-formed.)

(1)(a) The flame melted the ice cube. (nstgo)
(b) The ice cube melted. (nullobj)
(¢) *The flame melted. (nullobj)
(d) *The ice cube melted something. (nstgo)

(2)(a) The arsonists torched the building. (nullobj)
(b) The building torched easily.
(¢) *The arsonist torched easily.
(d) *The building torched something.

It is clear that in these sentences the choice between the intransitive and
the transitive uses of the verb can be made at any point after the subject and
main verb have been analysed. In the (a) sentences above, we know that the
verb cannot be intransitive (given the anomaly of the (c) sentences), and in the
(b) sentences we know at this point that the verb cannot be transitive (note the
anomaly of the (d) sentences).

Sv_checkpoint allows us to utilise this information in mid-parse by
analysing the subject and verb as if they constituted a complete clause. If the
clause analyser is able to assign a thematic role to the subject, and if no obliga-
tory roles remain unfilled, then the parser is directed to reorder the object list so
that nullobj is the first object option tried. That is, the parser is instructed to
PREFER the intransitive analysis. If, on the other hand, the clause analyser is
able to assign a thematic role to the subject but obligatory roles remain unfilled,
then the parser is directed to delete nullobj from the list of object options; it is
prevented from considering the intransitive analysis. The effect of
sv_checkpoint in these two cases is to alter the BNF object rule itself before
the parser begins to apply it.

Note that the distinction made here between PREDICTING UPCOMING STRUC-
TURE and FAILING THE CURRFNT ANALYSIS is minimal for the cases considered
above. It may be that we will collapse the two cases by limiting sv_checkpoint
to either accepting or rejecting a given analysis. However, the distinction we are
making between prediction and failure has some motivation.

Consider first the cases in which the nullobj option is reordered to the head
of the object list. These could also be handled by having sv_checkpoint trigger
failure out of the nstgo object option rather than by reordering nullobj so that

it is the first option considered. However, the reordering mechaniam is of interest
to us as an experiment in the expression of WEIGHTED PREFERENCES for (rather
than outright elimination of) particular parses.

And the cases in which nullobj is deleted from the object list could equally
be handled by constructing and then failing nullobj; since nullobj has no inter-
nal structure, it clearly is not expensive to build and therefore could just as well
be built and then dismantled as excised from the object list. Our interest in the
predictive approach arises out of the possibility that in other cases the subject-
verb combination may allow us to reject a more elaborated object option even
before it is built, rather than building and then rejecting this option.

A hypothetical such case is a sentence beginning the tornado clasmed....
This sentence may be completed by an nstgo, as in The tornado clasmed three
lives; but it may not be completed by a clause, as in The tornado clasmed that
three lives were lost. This is because the two object options to correspond to
utterly distinct senses of the verb. Rather than allowing the parser to attempt to
build a clausal object, it may be that sv_checkpoint could be strengthened in
the future so that when it is presented with the tornado clasmed... it removes
assertion and thats (both clausal object options) from the list of object options.
This would require that the semantic component examine the possible thematic
roles available to the object; and, on the basis of both general and verb-specific
mapping rules, send back to the parser a list of BNF object options that may
provide semantics with an acceptable argument. For example, let us say that
claim is associated with two argument structures:

(3) claim(agent,proposition) - "He claims that this is true.”

(4) claim(actor, patient) - "The disease claimed three victims.”

In both cases, mapping rules will assign the first role to the syntactic sub-
ject. Ignoring, for the moment, the different roles assigned to the subject in the
two argument structures, note that (3) will have semantic class restrictions
imposed upon its subject, i.e., that the subject be animate; on the other hand, (4)
will not impose such semantic restrictions upon its subject. Thus semantics can
eliminate the FIRST argument structure above because tornado will fail the
semantic class restriction. Since a syntactic clause (such as that three lives were
lost) can never express a patient argument, the semantic analyzer could, at this
point, eliminate from the BNF options to be considered by the parser all those
options which cannot express a patient argument. This will result in the removal
of thats (the clause object option) from the object list. Thus the parser will be
prevented from even attempting to build a clause; and will be spared, for exam-
ple, the construction of a huge garden path in cases such as (5) which are initially
ambiguous between a noun phrase (with member as its head) and assertion (with
that well-known member as its subject) analysis. And it will be prevented from
generating any parse at all for the syntactically correct but semantically

. (5) The tornado claimed among its victims that well-known member
of parliament who was decorated several times during the war.
(Acceptabie nstgo)

(6) The tornado claimed that well-known members of parliament
who were decorated several times during the war had in fact
been spying for the enemy.

(Anomalous thats)

Thus the distinction between prediction of upcoming structure and disman-
tling of a completed structure is maintained despite the fact that in a number of
cases the former approach holds no advantage over the latter. The usefulness of
the distinction remains an empirical issue.

We consider now a range of cases in which sv_checkpoint rejects a com-
pleted analysis on the basis of a call to semantics.

1.3. Aborting the current analysis

Another set of ambiguities which are sometimes resolvable during the parse
involves the identification of the main verb. Main verbs are sometimes indistin-
guishable from passive participles or nouns. Consider first the main verb/passive

0 participle ambiguity, which holds of dropped, failed, and increased in the follow-
ing example. '

(7) Oil pressure dropped to 72 psi then increased to 90 psi and then
failed while starting gas turbine. (Testb 13.1.1)

The entirety of (7) up to the period is analyzable syntactically as a single noun
phrase (the oil pressure which was dropped to 72 psig, was sncreased to 90 pss,
and then was fasled while starting the gas turbine...), since all three verbs are syn-
tactically transitive and have indistinguishable forms for tv (the inflected main
verb) and ven (the past participle). This ambiguity gives rise to considerable
pointless structure-building unless constrained semantically. If the ven analysis is
considered first, then the parser misanalyzes sentences like (7) as noun phrases
until the final punctuation mark is encountered. If the tv analysis is considered
first, then other sentences will be misanalyzed until the real tv is encountered.

And in some cases, this may not occur until a great deal of structure has been
built:

|

[(8) Overheating expected to result in engine failure and subsequent
| malfunctions of number 4 sac has not occurred.
}

If ezpected is analyzed as the main verb with subject overheating, then a huge
‘@ garden path is created: until the parser encounters has, it has no indication that

|

AR RS 4SRN

. the material up to this point represents a large noun phrase (the overheating
which was ezpected to result in engine failure and subsequent faslure of number 4
sac); rather, it has incorrectly posited a single word subject followed by an
infinitival complement containing a transitive verb with compound object (The
overheating harbored the expectation that it would result in engine faslure and sub-
sequent faslure of number 4 sac). All of this structure-building will have been in

vain.

Sv_checkpoint will help to constrain this ambiguity; it allows us to try the
tensed verb analysis first, and reject it immediately if it is patently anomalous.
Thus the BNF grammar orders the null option of rn (the right adjunct of the
noun phrase) before the venpass (passive participle phrase) option; this means
that dropped in (7) and ezpected in (8) will be analyzed first as tensed verbs.
This eliminates the massive garden path in (7), but leads the parser to misanalyze
(8) in the way described above. Sv_checkpoint, however, will reject this
analysis because there is no thematic role available for an inanimate subject of
ezpect. Thus this analysis is aborted early on, and the parser backtracks into the
subject, trying the venpass option in rn, the noun phrase right adjunct position.

In some cases, both the ven and the tv analyses yield a syntactically viable
parse, with the result that semantics be sent a parse corresponding to a
semantically/pragmatically anomalous interpretation. To consider an example
from the CASREPs, the parser first misanalyzes (9) below as an assertion with

6 tensed verb believed.

(9) High lube oil temperature due to design of first flight oil
cooler believed contributor to unit failure.
(Testb 26.1.5)

The only parse of (9) as an assertion must analyze believed as a main verb, in
which the temperature is asserted to believe some proposition. However, the
correct parse is as a fragment in which believed... is a venpass predicated of
temperature (paraphraseable as the high lube oil temperature was believed to be a
contributor to the unst faslure). Sv_checkpoint will prevent the generation of
this incorrect parse. Since the restriction is called at the point at which tempera- -
ture has been analyzed as the subject of believe, it will elicit a rejection from
semantics (temperature cannot harbor beliefs) and the assertion parse is aborted
immediately.

And, in fact, sv_checkpoint should be able to abort misanalyses in a
wide range of structures where a lexical item may or may not be correctly
analysed as the main verb. By sending the ambiguous item to semantics as a
main verb along with its putative subject, the parser may often get early warning
of an incorrect analysis.

For example, many verbs (e.g., request) are also analyzable as nouns. This
w ambiguity results in garden paths and also in syntactically correct but semanti-
cally inappropriate parses. Consider (10) and (11) below.

RN P 7 M A % e B NN T O b s L S A A

(10) He had the unit repair request forms cancelled by the head
office. (sven)

(11) He had the secretary request some forms. (svo)

The semantically correct analysis of (10) below analyzes request as a noun in an
sven structure (sven is a small clause consisting of subject plus passive participle
phrase), paraphraseable as He had the the forms which exzpressed a request for
engsne repairs cancelled by the head office. However, the parser will also produce
an anaysis in which request is the main verb of an svo clause (svo is a clause
with untensed verb). The anomalous interpretation of (10) is analogous to the
use of request in (11); on this reading (10) may be paraphrased He forced the unit
repair to make a request for forms which were cancelled by the head office.

Sv_checkpoint will allow semantics to reject the misanalysis of request as a
v (untensed verb) in (10) immediately, since repairs do not make requests. And in
a corpus with many elaborate compound nouns, such ambiguities are legion; even
when they do not result in incorrect parses, they may create massive garden
paths.

Thus sv_checkpoint guides the parser in several ways. It allows for the
dynamic reordering and pruning of the BNF object rule in accordance with the
thematic possibilities of the subject, and it allows us to abort a wide range of
syntactic misanalyses resulting from the ambiguity of English verb forms.

One obvious limitation of this restriction is that it is only as effective as
the semantic information which it exploits. Thus for PUNDIT to benefit
significantly from the implementation of sv_checkpoint, the semantic con-
straints on fillers of thematic roles available to the subject will have to be
developed in greater detail.

1.1. Relationship to the selection mechanism

As noted above, our purpose in developing this mechanism has been to
develop greater flexibility in PUNDIT’s control strategy, and to develop the inter-
face between the syntactic and semantic components. Ultimately, however, it
remains an empirical issue which method of interaction will prove the most
efficient: (a) no interaction between the syntactic and semantic components prior
to the completion of the parse; (b) interaction by means of selectional patterns of
the sort described in section 8 and Appendix O; or (c), interaction by means of a
mechanism like sv_checkpoint which transfers control to semantics during the
parse. Our early experiments have suggested that (b) is more efficient than (c) as
well as than (a); thus it may be more efficient to replace sv_checkpoint with
selectional patterns. This will require an Intermediate Syntactic Representation
that can represent information in partially constructed constituents (i.e., subject
plus verb, or left adjunct plus head). An important research goal is therefore the
development of closer links between selectional and semantic information, so that

selectional patterns may be exploited for the development of the semantic data
base, and semantic information may be used to generate selectional patterns and
to extend LEXICAL selectional patterns in accordance with verb decompositions
and syntax mapping rules.

‘ APPENDIX O

Improved Parsing Though Interactive Acquisition of Selectional Patterns

The report on "Improved Parsing”, by Francois-Michel Lang and Lynette
Hirschman, will be issued as a Paoli Research Center Technical Report. It
describes a mechanism for collecting valid sublanguage co-occurrence patterns,
and their use in pruning the search focus during parsing. Through the use of
selectional patterns, the average number of parses dropped from 4.7
parses/sentence to 1.5 parses/sentence.

l Unisys Defense Systems Integrating Syntax, Semantics, Discourse

e N e L LT Ll oty o oy £ &l Ll P W CATE W AP SR,

Improved Parsing Through
Interactive Acquisition of Selectional Patterns!

Frangois-Michel Lang and Lynette Hirschman

Paoli Research Center
Unisys Defense Systems
P. O. Box 517, Paoli, PA 19301

(215) 648-7490

(1) 3 ABSTRACT

This paper presents a module of the PUNDIT natural-language system designed to facilitate
porting the system to new domains, and to improve the accuracy and efficiency of the parser.
The module operates interactively by querying the user about word patterns appearing in cer-
tain syntactic combinations (e.g., subject-verb-object) found in partially constructed parses.
When presented with a word pattern, the user has two choices: (1) if the pattern is semantically
consistent with the domain, the user accepts it, signalling a correct parse; (2) if it is semanti-
cally anomalous, the user rejects it, signalling an incorrect parse, and failing that parse. These
word ‘patterns collected by the program are stored in a pattern database which can be automat-
ically consulted by the parser. Using this module in interactive parsing has reduced the number
of parses found for the sentences in one of our corpuses from an average of 4.7 to 1.5, and
decreased the time spent parsing by approximately one-third.

of Naval Research, aad ia part by Natioaal Science Foundation contract DCR-85-02205, as well as by Independent

@ 1This work bas been supported in part by DARPA under contract N00014-85-C-0012, administered by the Office
R&D fundiag from System Development Corporation, now part of Unisys Defense Systems.

MU S A T o N e i T At B LA L AL AT LR T My o W o2

‘ 1. INTRODUCTION

A frequent problem encountered in parsing with large, broad-coverage grammars is that such
grammars often produce a great number of parses. Our Prolog implementation of restriction
grammar [Hirschman1982, Hirschman1985], which includes about 100 grammar rules and 75 res-
trictions, produces over 15 parses for five of the sentences in one of our corpuses. A majority of
these parses, however, are incorrect because they violate some domain-specific semantic con-
straint. For example, two of the parses for the sentence High lude osl temperature belicved
contributor to unit failure could be paraphrased as

(1) The high lube oil temperature believed the contributor to the unit failure.
(2) The high lube oil temperature was believed to be a contributor to the unit failure.

but our knowledge of the domain (and common sense) tells us that the first parse is wrong, since
temperatures cannot hold beliefs.

It is only because of this semantic information that we know that parse (2) is correct, and that
parse (1) is not, since we cannot rule out parse (1) on syntactic grounds alone. In fact, our
grammar generates the incorrect parse before the correct one, since it produces assertion parses
before fragment parses. If a grammar has access to domain knowledge of this kind, however,
many incorrect parses such as (1) will never be generated.

How then can we collect semantic information about a domain? One approach would involve
@ analysing the corpus of data by hand, or perhaps even simply relying on one’s intuitive
" knowledge of the domain in order to gather information about what relations can hold among
domain entities. Several obvious drawbacks to these approaches are that they are time-
consuming, error-prone, and incomplete. A more robust approach would be to develop some
(semi-) automated tools designed to collect such information by interacting with a user familiar
enough with the domain to distinguish good parses from bad ones.

We see now that our reasoning appears circular: Valid selectional information can only be
obtained from analyses of correctly parsed structures, but our goal is to restrict the parser to
these correct analyses precisely by using valid selectional information. In the example above, we
need selectional information to rule out the bad parse; but it is only by knowing which parse is
bad that we can obtain this information.

One way to avoid this circularity is bootstrapping into a state of increasingly complete domain
knowledge. We have implemented such a bootstrapping process by incrementally collecting and
storing selectional data gathered through interaction with the user [Hirschman1986]. Data col-
lected from the user can then be used to help guide the parser to correct analyses and to
decrease the search space traversed during future parsing. As the the system’s semantic
knowledge becomes increasingly rich, we can expect it to demonstrate some measure of learning,
since it will produce fewer incorrect analyses and present fewer queries to the user about the
validity of syntactic patterns.

3. A SUBLANGUAGE FOR EQUIPMENT FAILURE DIAGNOSIS

The sentence cited above, High Iube oil tempersiure believed contridutor to unit failure, is,
A of course, a sentence (-fragment) of the English language. More importantly, however, it is a
sentence from a specific sublenguege of English. A sublanguage is a highly specialised and

AN AR P AN A AT T N N AT TS Py TRV

often idicsyncratic form of a natural language used by specialists in a given field for communi-
cation strictly within that field. Examples of sublanguages which have been studied previously
are the language of weather reports [Chevalier1978], aircraft maintenance manuals
[Lehrberger1983], medical reports [Hirschman1983}, and equipment-failure reports [Marsh1984].

According to Zellig Harris, who was one of the first linguists to study the use of language in res-

tricted domains [Harris1968], a sublanguage shares the syntax of the general language,! but is
distinguished from the general language by constraints on what words can co-occur in certain
syntactic patterns, such as a subject-verb-object structure. A well-formed sentence of a sub-
language must therefore not only meet the syntactic criteria of the general language (and what-
ever syntactic restrictions the sublanguage imposes), but also satisfy any co-occurrence restric-
tions specific to that sublanguage. In a medical sublanguage, for example, the sentence The X-
ray revealed & tumor would be well-formed, but not the sentence The tumor revealed an X-
ray.

Our domain deals with mechanical failures of a component of a ship’s engine called a starting
air compressor (SAC). The sentences in our corpuses are from a sublanguage dealing with
diagnosis of equipment failures, and consist of casualty reports (CASREPs) detailing the causes
and results of SAC failures.

3. METHODOLOGY

The essential feature of our parser which facilitates the collecting of syntactic patterns is the
INTERMEDIATE SYNTACTIC REPRESENTATION (ISR) produced by the syntax processor. The ISR is
the result of regularising the surface syntactic structure into a canonical form of operators and
arguments. " Since the ISR regularises syntactic patterns into a canonical form, there are only a
fairly limited number of patterns which can appear in an ISR. We have therefore been able to
write a program to analyse the ISR and examine the syntactic patterns as they are generated.

A brief note about the implementation: Since the ISR is represented as a Prolog list, the pro-
gram which analyses it was written as a definite-clause grammar and has the flavor of a small
parser. As a sample ISR, we present the regularised representation of the obvious parse for the
sentence The field engincer repaired the broken sac (pretty-printed for clarity) :

(past,repair,
(tpos(the),
{(nvar([field-engineer,singular,_1)1]1,
(tpos(the),
(nvar((sac,singular,_J)1],
adj((break])]]

At the top level, the ISR consists of the main verb (preceded by its tense operators), followed by
its subject and object. The ISR of a noun phrase contains first the determiner, tpos(the),
then the head noun, nvar(({field-engineer,singular,_]) (the label NVAR stands for
“noun or variant”), and finally any nominal modifiers, such as adj((break]). Note that part
of the regularisation performed by the ISR is morphological, since the actual lexical items
appearing in the ISR are represented by their root forms. Hence droken in the input sentence is
regularised to breek in the ISR, and repaired in the input sentence appears in the ISR simply
as repeir.

1The allowsble syntactic constructions of a sublanguage may actually be a superset of thoes of the general
laaguage, for example, when the sublanguage allows a telegraphic style.

0 The selectional pattern checker is invoked by two restrictions which are called after the BNF
grammar has assembled a complete NP (and constructed the ISR for that NP), and after it has
assembled a complete sentence (and constructed its ISR). The program operates by presenting
to the user a syntactic pattern (either a head-modifier pattern or a predicate-argument pattern)
found in the ISR, and querying him/her about the acceptability of that pattern. For each of
the eleven types of patterns which the program currently generates, the following chart shows
that pattern’s components, an example of that pattern, and a sentence which would generate
the pattern (all these sentences are naturally occurring, in that they are taken from our corpus
of CASREPs, in certain cases in a somewhat simplified form):

PATTERN COMPONENTS EXAMPLE

(1) svo subject, main verb, object inspection reveal particle
INSPECTION of lube oil filter REVEALED metal PARTICLES.

(2) SBeO subject, main be-verb, object erosion be evident
EROSION of impellor blade tip IS EVIDENT.

(3) ADJ adjective, head* normal pressure
| Troubleshooting revealed NORMAL sac lube oil PRESSURE.
| (4) ADV head, adverb decrease rapid
| Sac air pressure DECREASED RAPIDLY to 5.74 psi.
(5) CONJ conjunct,, conjunction, <:onjnAn<:t2 pressure and temperature
@ Troubleshooting revealed normal PRESSURE AND TEMPERATURE.
(6) NOUN noun modifier, head valve part
VALVE PARTS excessively corroded.
(7) PREP head, prep, object . disengage after alarm
DISENGAGED immediately AFTER ALARM.
(8) PREDN noun, predicate nominal capability necessity
alarm CAPABILITY is a NECESSITY.
(9) QPOS quantifier, head noun 85 psig
oil pressure dropped below 85 PSIG.
(10) QN quantifier, noun, head noun 0.25 inch chip

1/4 INCH CHIPS are visible on leading edge.

(11) NQ noun, quantifier, head noun number 4 sac
NUMBER 4 SAC oil pressure dropped below alarm point.

*We use “head” throughout the chart to denote the head of the construction in which
the modifier (in this case, an adjective) appears. The head can simply be thought of as
that word which the modifier modifies.

. Recall that part of the regularisation performed by the ISR is morphological, since each word in
% » pattern is represented by its root. Hence in example (4) above (the adverb pattern), we find
rapid and not repidly.

‘ When presented with a pattern, the user can respond to the query in one of two ways,? depend-
ing on the semantic compatibility of the predicate and arguments (e.g., in the case of an sVO
pattern) or of the head and modifiers (e.g., for an ADJ pattern) contained in the pattern. If the
pattern presented describes a relationship that can be said to hold among domain entities (i.e.,
if the pattern occurs in the sublanguage), the user accepts the pattern, thereby classifying it as -
good. The analysis of the ISR (and the parsing of the English sentence) is then allowed to con-
tinue. If, however, the pattern describes a relationship among domain entities that is not con-
sistent with the user’s domain knowledge or with his/her pragmatic knowledge (i.e., if the pat-
tern cannot or does not occur in the sublanguage) the user rejects it, classifying it as bad, and
signalling an incorrect parse. This response causes the restriction which called the program to
fail, and as a result, the parse under comstruction is immediately failed, and the parser back-
tracks.?

As the user classifies patterns into “good patterns” and “bad patterns”, they are stored in a
pattern database. This database is consulted before any query to the user is made, so that once
a pattern has been classified as good or bad, the user is not asked to classify it again. If a pat-
tern previously classified as bad by the user (and therefore in the DB) is encountered in the
course of analysing the ISR, the program consults the database, recognises that the pattern is
bad, and automatically fails the parse being assembled. Similarly, if a pattern previously
recorded as good is encountered, the program will recognise that the pattern is good simply by
consulting the database (and not querying the user), and allow the parsing to proceed. The
algorithm is described in Figure 1 below.

4. SOME (SIMPLIFIED) EXAMPLES

®© |

4.1. sv 0 P.tt.rn-

Let us now consider in more detail the sentence mentioned above, High lude oil temperature
believed contridutor to unit failure. In the ISR of the correct parse for this sentence in which
the verb believe is a passive, the atom SOMEBODY/THING is used as the placeholder for the sub-
ject, and the atom CLAUSE represents the small clause oil [be] contributor, which is the object.
In an incorrect and somewhat amusing reading (in which the verb believe is active), tempera-
ture is the subject, and coniridutor the direct object.

Possible paraphrases for the two parses of the sentence given above (the first incorrect, the
second correct) are:

(1) The high lube oil temperature believed the contributor to the unit failure.
(2) The high lube oil temperature was believed to be a contributor to the unit failure.

$There are actually more than two options, as we explaiz below.

$This explanation is actually s bit oversimplified, because failing a NOUN pattern generated by a compound

sominal consisting of at least three nouns does not necessarily cause the entire parse under construction to fail, but

only indicates that the pairing in that specific pattern is infelicitous. Essentially, every noun appearing in this kind of

structure will form patterns in which it will be successively paired with every other noun appearing to its right until

either a pattern is generated which the user accepts, or no more patterns can be generated for that noun, in which case

the entire parse will then fail. For example, the compound nominal see drise shaft would generate the NOUN pat-

@ tern sae drive, which the user would fail, but the entire parse would not fail since the pattern sae shaf? would also be
generated, and this pattera would be accepted.

4

SOy LN A M&I&BBMBMMJAM&(&K&&M@J

gensrele patbtern
from IR

leock up pattera

in patieran DB

Figure 1: Selectional Pattern Algorithm

After the parser has generated the first parse for the sentence (and constructed the ISR
corresponding to that parse), the ISR is passed to the selectional pattern checker, which queries
the wser about the VO pattern temperature belisve contridutor.’ The query to the user con-
sists of the type of pattern (e.g., 5VO), and the words forming the instance in question of the

%3 this simplified explanstion, we preseas oaly the svo patterns. Is actual parsing of this seatence, however, ad-
ditienal patterns would be geserated from the NP level. We aleo make the simplifying sssumption that the pattera
database csntaing 20 patterns relevant to this seatence.

pattern (o.g., temperature belisve coniributor). In our mmpic, the message to the user reads

SV0 : temperature believe comtributor

In presenting this pattern to the user, the program is asking whether the noun temperature can
be the subject of the verb belisve with coniridutor as the direct object.

The user caa then respond by typing either yes or ne, depending on whether or not the pattern
is a good one. In our example, the user would fail the pattern (by typing mo), since in our
domain model (and in the larger world) one cannot speak of temperatures believing things.
Parse (1) would then fail. The parser then tries to generate another parse for the sentence, and
preseats the pattern

SVO : SOMEBODY/THING believe CLAUSE

asking whether it is reasonable to speak of some unspecified subject believing a proposition
expressed by a clause. The user would accept this pattern, since in the domain (and, again, in
the real world as well) propositions expressed by clauses can be objects of belief. Since the pat-
tern was judged good, the parse would then proceed.

Multiple syntactic analyses of this sort, which can only be disambiguated by using semantic

information, abound in our corpus because of the telegraphic and fragmentary nature of the
equipment-failure reports. The ambiguity has two principal causes:

(1) As we have seen, a sentence whose correct parse is a fragment reading can often be parsed
as a full assertion as well.

(2) Determiners are often omitted from our sentences, thus making it dificult to establish NP
boundaries.

Since such syntactially degenerate sentences will generally contain fewer syntactic markers than
full, non-telegraphic English sentences, they are marked by correspondingly greater ambiguity.

An especially convoluted example is found in the sentence Bsperienced loss of ol pressure
and self-disengagement immediately following cluteh engege commeand. In the correct
reading, the subject is slided, the main verb is eszperienced, and the direct object is the con-
junction loss end self-disengagment (in this parse, immedistely following clutch engage
command functions as a sentence adjunct, with eluteh engage command as 2 compound nomi-
nal). However, in another reading generated by our grammar, the subject is the conjunction
esperienced loss of oil pressure AND self-disengagement immediately following eluteh, the
main verb is engegs, and commend is the direct object. This reading fails selection because
command is not an acceptable object of the verb emngage, which requires a machine part as an
object.

4.3. PP Patterns

For an example of the use of prepositional-phrase patterns, consider the sentence Loud nosses
were coming from the drive shaft during coest down, which is syntactically ambiguous, since
the prepositional phrase dering coest down could modify either the noun drive shaft or the

) . . e : v > »
BT) AR P P L PUN RN N TN P B Bt S NS PR Sl S Yt o Pt Pl o

X o."n.

t

s

verb eome. (In the correct reading, the prepositional phrase modifies the verb.) In parsing this
seatence, the wer would be presented first with the PP pattern

PP : drive shaft during coast down

which would be rejected, since it is not correct to give mechanical parts temporal attributes.
The incorrect reading would thus be blocked. The pattern checker would then query the wser
about the pattera

PP : come during coast down

which would be accepted, since events can take temporal modifiers. The correct reading of the
sentence would therefore be allowed.

PP patterns are also essential for obtaining the correct analysis of the sentence Loss of second
instelled sae, for which there are two possible parses. In the correct analysis, the sentence is
parsed is a noun string fragment; however, another reading is available in which the sentence is
analysed as an assertion, with less of second as the subject, installed as main verb, and sec as
direct object. A paraphrase of this parse might be The loss of a second installed the sac.
But this analysis is semantically completely anomalous for several reasons, most notably
because it makes no sense to speak of the loss of a second installing a sac (or installing anything
else). As with the previous example, the incorrect reading is produced first, since the parser
tries assertion parses before fragment parses. In gemerating the assertion parse, the parser
encounters the PP pattern less of second, and queries the user as follows:

PP : loss of second

This pattern asks if a secoad can be lost in this domain, or if a domain expert would ever refer
to the loss of a second. Although this pattera certainly appears plausible (and in fact, in the
larger world one certainly can speak of losing precious seconds), the only entities in the SAC
domain that can be lost are machine parts (ss in the correct analysis of this sentence), and
scalar quantities such as temperature and pressure (as in Less of lube oil pressure during sac
Jailure). Our domain does not deal with time-critical events, since repairing starting air
compressors does not require split-second timing, so a reference to losing a second would never
appear in an equipment-failure report. By contrast, if we were dealing with a medical sub-
language, and our reports described procedures followed in an operating room or in administer-
ing emergency care, the time factor would be crucial, and losing a second could well be men-
tioned in a report.

The correct response to the program’s query in this case is therefore to reject this pattern, caus-
ing the assertion parse to fail. Note also that if we did not reject this PP pattern for the rea-
sons explained, the program would then present the user with the V0 pattern loss install sae:

8V0 : loss install sac
This sVO pattern would certainly be rejected, since, as we mentioned, it is nonsensical to speak

of a loss installing a sac, and so the assertion parse would fail because of the SVO pattern even if
it did not because of the PP pattern.

Multiply ambiguous sentences do, of course, generate more than just the {few patterns associated
with the examples given above. Consider by contrast the sentence Ceannot engage sac for
estended period of time due to decresse in lube oil temperature, in which the multiple pos-
sible attachments of the four prepositional phrases generate no fewer than twenty-two readings,

L s
b, b
0

of which oaly one is strictly correct.

8. LOCAL JUDGEMENTS

We said above that there were actually more than two possible responses that the user could
make to the system’s queries. We have provided the user with two other choices, called locally
good and lesally bad, which differ from the good and bad patterns discussed above only in that
their effect is restricted to the sentence currently being parsed.

These options serve two principal functions:

(1) Allowing the user to postpone making a global decision about the goodness or badness of a
pattern (that is, not adding patterns to the (global) pattern database), while at the same
time guiding the parser to a correct parse of the sentence

(2) Dealing with a troublesome phenomenon which we call “phrasal attributes” [Hirsch-
man1986) in which the semantic class of a complex structure (e.g., a full NP) is different
from that of its syntactic head (see below). Consequently, the full phrase and its
(unmodified) head will show different distribution.

“Locally good” patterns are used to deal with phrasal attributes. An example of this
phenomenon taken from a medical domain is the noun phrase stiff neck: The semantic class of
the head noun of this NP, neek, is something like BODY-PART, but the semantic class of the
full NP otiff neeh is not BODY-PART, but rather SYMPTOM or AILMENT. This discrepancy
between the semantic classes of the full NP and of its head noun presents a difficuity in making
a decision about the acceptability of patterns generated. For example, in parsing the sentence
Patient has stiff neck, the system would present to the user the SVO pattern

SV0 : patient have neck
Note that this is indeed the correct syntactic parse (in fact, probably the only one), but we do
not want to assert for posterity that the VO pattern petient have neck is semantically accept-
able in a medical sublanguage.

This is perhaps a subtle point, but not everything that is true in a sublanguage can be said in

that sublanguage. The sentence Patient has otiff neck is a case in point: Although it is cer- -

tainly true that the patient has a neck, nobody would ever (bother to) say so because the propo-
sition is completely uninformative. Indeed, it is one of the characteristics of a sublanguage that
certain (true) information is presupposed, and never explicitly stated.

In short, the parse is good, but the pattern patient Aave neck is bad. We do not want to say
the pattern is good, but saying it is bad will fail the parse, and that is not a desirable result
either. Hence the appropriate response to the query about this pattern would be to tag it aa
“locally good”, which is a sort of compromise implemented in order to allow the parse to
succeed, but without entering the pattern in question into the (global) pattern database.

Our method of dealing with this phenomenon is admittedly not satisfactory. However, pending
a fuller semantic treatment of NPs which allows such distinctions to be made, it at least per-
mits the correct parse to be obtained without creating obviously bad patterns.

For an example of the phrasal-attribute phenomenon from the SAC domain, consider the

.
A e"*ﬁ \' D.A l,b'.i‘.t; "ﬁ'

LR (1

‘ seatence Start eir pressure dropped below 30 paig, which generates the sVO pattern drop

 below peig. The problematic NP here is 30 peig: the semantic class of the head noun peaig is

UNIT-OF-MEASUREMENT, yet we would not say that the full NP 30 pasig is a UNIT-OF-

MEASUREMENT; 30 psig is instead an entity of the class LEVEL or perhaps THRESHOLD.

The problem is that in evaluating the pattern drop below paig, we would realise that pressure

can drop below a certain level or below a certain threshold, but it cannot drop below a unit of
measurement. The solution is to tag this pattern as locally good.

The “locally bad” category serves to indicate that a certain pattern is being generated by an
incorrect parse for the particular sentence, but that the pattern is not necessarily inconsistent
with the domain’s semantics. In fact, a pattern originally marked as “locally bad” could later
be classified as good if it appears in the correct parse of another sentence. For example, the
sentence from our SAC domain Loss of oil pressure would generate the prepositional phrase
pattern

PP : loss of oil

Now although this pattern is not generated by the correct parse for this sentence (the correct
parse would have instead loss of presssre), we probably do not want to go so far as to say
that the pattern loss of osl cannot or would not occur in our domain. By responding that the
pattern loss of oil is locally bad, we immediately fail the parse, but do not add the pattern to
the global database of bad patterns. Again, we would not classify this pattern as good until we
had evidence of its actual occurrence in the sublanguage (or unless a native speaker of the sub-
language asserted its validity.)

6 6. EXPERIMENTAL RESULTS .

The experimental results we present here are based on a sample of 31 CASREP sentences from
our TESTA corpus, each of which was parsed with and without the selectional mechanism. We
compare results obtained without using the selectional module to results obtained with the
parser set to query the user about selectional patterns (starting from an empty pattern data-
base). The chart below summarises the results for the 31 CASREP sentences. A more detailed
chart, showing the results for each sentence, is included as an appendix.

In gathering these statistics, we used a parsing procedure slightly different from our usual one in
that backtracking into lexical lookup was allowed just in case no parse was found for a given
set of definitions. This approach prevented generating multiple spurious parses for sentences
containing idioms. Without this adjustment, for example, a sentence containing the word
sequence lube oil would receive one parse in which lube oil was analysed as an idiom (i.e., the
lexical item lwbe oil), and another in which [ube oil was analysed as a compound nominal
made up of the distinct lexical items [ube and osl.

One of the statistics presented here is the SEARCH FOCUS, which is a measure of the efficiency of
the parser in either reaching the correct parse of a sentence, or in parsing to completion. It is
equal to the ratio of the number of nodes attached to the parse tree (and possibly detached
upon backtracking)® in the course of parsing, and the number of nodes in the completed, correct
parse tree. Thus a search focus of 1.0 in reaching the correct parse would indicate that for
every (branching) grammar rule tried, the first option was the correct one, or, in other words,
that the parser had never backtracked.

SAsother way to interpret this Agure is that it represents the number of grammar rules tried.

N NAIS DN A IS Ao 2 FoFa s 088 MAL SZ AL A M)

B

AN RANIONG
P A R R

Statistical Summary of TESTA Sentences

a correct parse 29 31
of sentences receiving
a correct FIRST parse 17 30

of sentences receiving

| mors than one parse 22 8
— —— |
4
2

average # of parses found*
per sentence

v ect parse number

1.45
1.10

s
n

—
average search focus

to reach correct parse | 24.48 19.60
average search focus

in x!@! to comgletiog 51.74 38.87

average time taken
to reach correct parse 56.18 35.92

average time taken

Lip.parsing to completion | 126,04 8163

*That is, which parse, on the average, was the correct one.
SEARCH FOCUS RATIO TO CORRECT PARSE = 0.80)
(i.e., ratio of search focus in reaching correct parse with selection to search focus in reaching
correct parse without selection)
SEARCH FOCUS RATIO TO COMPLETION = 0.75
TIMING RATIO TO CORRECT PARSE = 0.64
TIMING RATIO TO COMPLETION = 0.85
NEW CORRECT PARSES FOUND USING SELECTION = 2

NEW CORRECT FIRST PARSES FOUND USING SELECTION = 13

7. FUTURE PLANS

There are several areas in which we have specific plans to extend the system.

7.1. Semantlie Class Patterns

The mechanism as currently implemented deals only with lexical patterns (i.e., patterns involv-
ing specific lexical items appearing in the lexicon). However, we are currently investigating
methods to generalise the program by using information taken from the domain sse hierarchy
to construct semantic class patterns from the lexical patterns. For example, our domain model

10

ALY 000 a0 . A0 OO oM Y ; ¥ N
Cs '\”’J‘,"‘."'.l“‘,"'!"'-0"10“..“.9"‘I.“l‘.."‘_b'..l .cl\o\.c".o".o L) '.0",0".!’\0 L '.!".Oa.l\.l ,0‘\' (X .O.'.l. ."‘."y'"ﬂ K p) WX -"‘vl.'-!.‘

includes the information that oil is a type of filuid. If the user accepts the noun/noun pattern
oil sample, he/she would then be asked if one can speak of fluid samples for all luids known in
the domain. If there is some fluid f such that one cannot speak of an f sample, the system
would then ask the user to identify for which of those f such that isa(f,fluid) is true one can
speak of an f sample. (E.g., can one speak of an air semple?! What about a weter semple?)
As before, the user’s responses will be stored for reference in evaluating patterns generated by
other sentences. The obvious advantage of storing semantic patterns instead of just lexical ones
is the broader coverage of the former: The lexical pattern oil sample will be of use in guiding
the parser to correct parses only of sentences containing those very words. However, if that
pattern can be generalised to flxid sample, we then have information which can be applied to
sentences containing weter sample, air sample, and so on.

7.2. The User Interface

In the current implementation, the questions which the program asks the user are phrased in
terms of grammatical categories, and are thus tailored to users who know what is meant by
such terms as SVO and noun-noun compounds. As a result, only linguists can be reasonably
expected to make sense of the questions and provide meaningful answers. Our intended users,
however, are not linguists, but rather domain experts who will know what can and cannot be
said in the sublanguage, but who cannot be expected to reason in terms of grammatical
categories. It is a difficult problem to know just how to phrase questions designed to elicit the
desired information, especially in the case of the troublesome ‘“phrasal attribute” patterns.

The knowledge that the user must draw upon in order to answer the system’s questions is usu-
ally a combination of basic commonsense knowledge (e.g., temperatures cannot hold beliefs) and
domain-specific information. In certain cases, however, the user can be called upon to make fine
linguistic distinctions. For example, in the sentence Sac disengaged immediately after alarm,
does the adverb immediately modify the verb diseangaged, or the prepositional phrase afier
elarm! Most users, and even trained linguists familiar with the domain, find it difficult to pro-
vide definitive answers to such questions, because there is often no definitively correct answer.
In this case, the adverbial attachment would seem to be genuinely ambiguous. It would be help-
ful to recognise patterns which a user cannot be reasonably expected to pass judgement on, and
not present such patterns to the user, perhaps allowing them to succeed by default.

7.3. Meassuring the System’s Learning

As more sentences are parsed and more patterns are classified, we can expect the system to
grow “smarter” in the sense that it will ask the user increasingly fewer questions. Eventually,
the system should reach a state of reasonably complete domain knowledge, at which time very
few unknown patterns would be encountered, and the user would rarely be queried. We do not
know how many sentences the pattern checker would have to parse before attaining this pla-
teau, but an estimate would be 500 to 1000 to obtain classes of semantic patterns [Grish-
manl984]. We plan to measure the decrease in the frequency of queries to the user as a func-
tion of the number of sentences parsed in order to evaluate the system’s learning.

7.4. Dealing with Phrasal Attributes

We do not at present have a satisfactory mechanism for detecting or correctly handling the
phrasal-attribute phenomenon discussed earlier. There does not appear to be any straightfor-
ward way to discover such phrasal-attribute constructions by means of distributional analysis,

11

since one of the distinguishing features of these constructions is precisely that they do not occur
in the expected distributional patterns. A possible course to follow would be to compare the dis-
tribution of certain nouns (e.g., neck or psig) when they appear without modifiers with their
distribution when they appear in head-modifier structures. Once such constructions are
detected, and the system knows, for example, that a stiff neck is not a BODY-PART but a
SYMPTOM, a sophisticated semantic component could compute the semantic class of the entire
phrase and attach that information to the head noun. In the case of Start asir pressure
dropped below 30 psig, the resulting semantic class pattern (disregarding the semantic class of

pressure) would then be pressure drop below level, as desired, and not presssre drop below
snil-of-measurement.

LMY, o SN RN SRR P
e A N e e e

0 APPENDIX
Results of Parsing TESTA Sentences with and without Selection
(no backtracking into lexical lookup)
CAS- PARSES NODES FOCUS TIME
REP
||OK | TOTAL ||TREE | OK | TOTAL || OK | TOTAL || OK | TOTAL
1.1.1 1 2 43 172 672 4.0 15.8 2.7 12.8
1 | 1 43 172 854 4.0 15.2 3.5 12.5
1.1.3 0 1 - - 229 — - . 4.7
1l 1 57 502 | 1255 8.8 22.0 8.0 22.8
4.1.1 1 1 129 3689 4863 28.4 37.7 37.9 74.1
1 |1 129 3689 4883 28.4 37.7 43.2 84.7
413 2 2 83 438 629 4.7 6.8 12.8 18.2
1 1 93 438 629 || 4.7 6.8 10.8 17.5
5.1.2 2 4 43 305 854 7.1 19.9 7.7 20.8
2 2 || 43 305 854 7.1 19.9 8.3 16.5
5.13 4 10 63 3709 5001 58.9 794 113.7 150.9
1 4 63 3620 4917 || 575 78.0 || 80.1 145.3
; 6.1.2 1 1 73 304 798 4.2 10.9 5.2 14.6
ﬁ 11! 1 1 73 304 780 42 | 107 5.9 16.8
6.1.3 5 26 84 1758 13264 20.9 157.9 81.8 3886.1
1| 1 84 1175 | 4394 14.0 523 || 328 | 1220 |
9.1.1 3 4 87 1119 1300 12.9 149 28.4 32.8
1l 1 87 938 115 || 108 128 || 182 28.9
9.1.2 1 1 99 633 1222 6.4 12.3 7.8 18.5
1l 1 99 833 | 1222 8.4 12.3 8.9 21.3
9.1.3 1 1 36 144 175 4.0 4.9 2.1 3.7
. 1| 1 ! 38 144 175 40 | 49 || 28 4.5
: 9.14 4 4 99 3372 3532 34.1 35.7 79.2 84.5
11 1 99 3253 | 3413 || 329 34.5 83.9 94.6
9.18 1 1 54 . 340 377 6.3 70 3.9 6.6
| 1l 1 54 | 340 377 6.3 7.0 5.8 8.9
21.1.1A 11 12 133 25974 35485 195.3 266.8 564.7 738.9
L: 1 133 ;4323 =22847 107.7 171.8 [| 304.3 495.2
21.1.1B 4 4 105 3070 89830 29.2 86.0 60.3 128.5
1L 1 1 105 | 2687 8093 25.8 580 510 | 1415 |
22.1.1 3 4 87 1774 2639 28.5 39.4 36.4 52.4
1 2 67 | 1499 2346 || 224 35.0 313 | 627
22.1.2 1 4 111 5244 8748 47.2 78.8 46.5 119.3
- 2 111 4195 7699 37.8 89.4 534 132.0
13

R

QK _ TOTAL [OK
27.1 5.0 31.5
24.9 5.4 25.6
17.8 55 33.8
148 || 68 30.7
39.7 10.9 65.8
278 || 130 59.0
24.8 21.2 34.9
225 || 139 32.0
2323 (| 345. | 11606
1356 || 1340 | 419.2
e ————————— —_—
27.3 7.8 25.8
273 || 90 27.3
58.9 18.0 59.2
524 || 192 54.5
35.4 18.2 86.9
350 [l 170 765
10.3 13.6 29.3
102 |l 135 7;8.73
- - 2.
166.2 || 980 235.0
c 1018 82.9 1770
781 || 519 128.5
17.4 17.0 36.8
154 || 166 35.3
10.8 4.3 123
102 || 47 12.0
43.0 12.9 36.2
43,0 13.3 33.9

. The the above chart presents the results of parsing the 31 CASREP sentences in our
TESTA corpus which have well-formed ISRs containing no unresolved lambda terms.
Each sentence was parsed with and without the selectional pattern checker. The statistics
in the first line were obtained while parsing without the selectional mechanism, and those
in the second, while parsing with the selectionsl mechanism.

. Columns headed by “OK?” relate to the correct parse (or the search focus in reaching the
correct parse); columns headed by “TOTAL” relate to the total number of parses (or the
search focus in parsing to completion). The meanings of the column headings are as fol-
lows:

@ . PARSES OK = the number of the correct parse (if a correct parse was found)

14

VSR PT TN I, BY, W8 3% 0 0y WP P P L IR PN P IS e T |

‘ e PARSES TOTAL = the total number of parses found
e NODES TREE = the number of nodes in the parse tree of the correct parse

) NODES OK = the number of nodes attached to the parse tree (and possibly detached on
backtracking) in reaching the correct parse®

° NODES TOTAL = the number of nodes attached (or grammar rules tried) in parsing to
completion

° FOCUS OK = NODES OK/NODES TREE, the search focus in reaching the correct parse.

) FOCUS TOTAL = NODES TOTAL/NODES TREE the search focus in parsing to comple-
tion

e TIME OK = time taken (in seconds) in reaching the correct parse
e TIME TOTAL = time taken (in seconds) in parsing to completion

PROBLEMS and POSSIBLE IMPROVEMENTS:

In sentences testa 1.1.3 and testa 31.1.1A, substantially more nodes are attached in parsing to

a . completion with selection than without selection, contrary to our expectations that the selection
mechanism will decresss the amount of search. The reason for this increase is that the correct
parse for these two sentences is a fragment, but an assertion parse is found in parsing without
selection. Consequently, in parsing without selection, fragment parses are never tried (because
of the XOR mechanism). However, in parsing with selection, since all assertion parses are
failed, the parser tries both assertion and fragment parses, and thus traverses a far greater
search space in parsing the sentences with selection than without selection.

In parsing many of the sentences which receive exactly one parse without selection (e.g., testa
4.1.1, testa 9.1.2, testa 9.1.3, testa 9.1.6, testa 25.1.2) the same number of nodes are attached
(the same number of rules were tried) both with and without selection because of the efficient
design of the BNF grammar. Consequently, in these sentences, the ovcrhead of the selectional
component increases the time spent parsing.

Four sentences (testa 6.1.2, testa 23.1.2, testa 31.1.2, and testa 31.1.3) received one parse both
with and without selection, but traversed a smaller space in either reaching that parse or pars-
ing to completion.

In certain sentences, even though selection rules out some parses, the same number of nodes are
attached both with and without selection (e.g., testa 4.1.3, testa 5.1.2, testa 31.1.4). This unex- -
pected behavior (it is unexpected because if some parses are ruled out, surely then fewer nodes \
should be attached) is caused by the very late ruling out of certain bad parses. Specifically, if a !
parse is not ruled out until & bad SVO pattern is encountered, the entire parse tree will have \
been built by then, and there will have been no reduction in the search space. It would be help-
ful to find a way to call selection at other times than after building an entire LNR and an

n ‘As we explained aboves, this igure can also be interpreted as the number of grammar rules tried in reaching the
correct parse.

15

A Vn e e e S vy e _ , . . } Cn-)
R R AN ML AR SRR A U n U U TR AN, A e O "" Xy ” e, O f 1 O AT ,.,‘ Oy,

entire center.

In the remaining 17 sentences, the selection mechanism had the expected and desired effect of
reducing both the number of parses found and the search space.

Summary of search focus for these 31 sentences:

(1)

(2)

)
)

()

Sentences for which selection increases search in finding the correct parse (because selec-
tion fails all assertion parses and then tries fragment parses): testa 1.1.3, testa 31.1.1A
(total = 2).

Sentences for which selection has no effect on the number of parses or on the search focus
(because of efficiency of the grammar and late generation of SVO patterns): testa 4.1.1,
testa 9.1.2, testa 9.1.3, testa 9.1.8, testa 25.1.2 (total = §).

Sentences for which selection has no effect on the number of parses, but does reduce the
search focus: testa 6.1.2, testa 23.1.2, testa 31.1.2, testa 31.1.3 (total = 4).

Sentences for which selection decreases the number of parses, but has no effect on the
search focus (because of the late generation of SVO patterns): testa 4.1.3, testa 5.1.2, testa
31.1.4 (total = 3)

Sentences for which selection has the desired effect of reducing the number of parses AND
the search focus: testa 1.1.1, testa 5.1.3, testa 6.1.3, testa 9.1.1, testa 9.1.4, testa 21.1.1A,
testa 21.1.1B, testa 22.1.1, testa 22.1.2, testa 22.1.3, testa 24.1.1, testa 24.1.2, testa 25.1.1,
testa 25.1.3, testa 28.1.1, testa 28.1.2, testa 31.1.1B (total = 17).

‘ REFERENCES

[Chevalier1978]
M. Chevalier, TAUM-METEO: description du cntcm Groupe de recherche en
traduction automatique, Hillsdale, NJ, 1978.

[Grishman1984]
R. Grishman, L. Hirschman, and N.T. Nhan, Discovery Procedures for Sublanguage
Selectional Patterns: Initial Experiments, Paper presented at the Workshop on
Transportable Natural Language Interfaces, Durham, NC, October 1984,

(Harris1968]
Zellig Harris, Mathematical Structures of Language. Interscience Publishers, John
Wiley and Sons, New York, 1968.

[Hirschman1982]
L. Hirschman and K. Puder, Restriction Grammar in Prolog. In Proc. of the First
International Logic Programming Conference, M. Van Caneghem (ed.), Association
pour la Diffusion et le Developpement de Prolog, Marseilles, 1982, pp. 85-90.

[Hirschman1983]
L. Hirschman and Naomi Sager, Automatic Information Formatting of a Medical
Sublanguage. In Sublanguage: Siudies of Language in Restricted Semantic
Domains, R. Kittredge and J. Lehrberger (ed.), Series of Foundations of Communica-
tions, Walter de Gruyter, Berlin 1983.

[Hirschman1985]
L. Hirschman and K. Puder, Restriction Grammar: A Prolog Implementation. In Lo'-
e ic Programming end its Applications, D.HD. Warren and M. VanCaneghem (ed.),
19885.

[Hirschman1988]
"L. Hirschman, Discovering Sublanguage Structures. In Sublanguage: Description
snd Processing, R. Kittredge and R. Grishman (ed.), Lawrence Erlbaum Assoc.,
Hillsdale, NJ, 1988. ‘

[Lehrberger1983]
J. Lehrberger, Automatic Translation and the Concept of Sublanguage. In Sub-
language: Studics of Language in Restricied Semantic Domains, R. Kittredge and
J. Lehrberger (ed.), Series of Foundations of Communications, Walter de Gruyter,
Berlin, 1983.

Marsh1984]
E. Marsh, H. Hamburger, and R. Grishman, A Prodnctlon Rule System for Message
Summarisation. In Proec. 1984 National Conf. on Artifieial Intelligence, Oakland
University, Rochester, Michigan, 1984.

' APPENDIX P

Grammatical Coverage of the CASREPs

This report by Marcia Linebarger describes the grammar, with particular
emphasis on extensions for the CASREPs. It includes detailed information
about parsing problems observed in the CASREP corpus.

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

Grammatical coverage of the CASREPS:
Summary of current status
April, 1988

Marcia Linebarger

1, Coverage of CASREPs

TOTAL OF SENTENCES: 154
Total parsed correctly: 131 (85%)
On 1st, 2nd, or 3rd parse: 109
On 1st parse: 92
On 2nd or 3rd parse: 17
On 4th or subsequent parse: 22
Total not parsed at all, or parsed incorrectly: 23
Due to ill-formed input: 9
Due to lexical scanner problems: 7
Due to inadequacies of grammar coverage: 4
Due to xor (correct reading available but not generated): 3

The figures below represent coverage of the same corpus with the lexical scanner difficulties
revolved and the ill-formed input (misspellings, mispunctuations, run-on sentences) corrected.
Since two of these sentences would need to be re-phrased in order to be corrected, they are simply
omitted from the sentence total in the following breakdown:

TOTAL OF SENTENCES (less two): 152
Total parsed correctly: 145 (95%)
On 1st, 2nd, or 3rd parse: 120
On 1st parse: 101
On 2nd or 3rd parse: 19
On 4th or subsequent parse: 25
Total not parsed at all, or parsed incorrectly: 7
Due to inadequacies of grammar coverage: 4
Due to xor (correct reading available but not generated): 3

2. Extensions to Grammar

The extensions to the grammar required to parse this corpus include the addition of rules for
fragments, objects, sentence adjuncts, and wA-constructions such as relative clauses.

2.1. Fragments

Approximately half of the sentences in the CASREPs are not full sentences. Nevertheless,
these fragments follow quite regular patterns, and fall into one or another of four basic types: ivo
(tensed sentence missing subject, as in A4.1.2, Belisve the coupling from diesel to sac lube otl pump
to be sheared); serocopuls (missing verb be, as in A8.0.0, Part ordered); natg_fragment (isolated
noun phrase, as in B34.1.1, Loss of oil pump pressure); or predicate (isolated complement of verb
be, a8 in B12.1.2, Believed due to worn bushings, or A.1.1.2, Unable to consistently start nr 1b gas
terbine).

The syntax and the semantics of these elements are quite regular, and thus fragment cover-
age does not add signficantly to the complexity of the grammar. A total of six BNF rules (out of
106 total) and 3 restrictions (out of 55 total) were added to the grammar to cover fragments; in
addition, 2 BNF rules and 1 restriction were altered to accomodate fragments.

32.3. Objesct options

. The grammar has also been extended to cover a wider range of object types, including a
variety of embedded infinitivals, embedded clauses, and nom-clausal predications such as
subjest+olject of be (as in B28.1.5, High lo temp due to design of first flight od cooler belicved

contridutor to unit fedlure).

2.3. Sentence adjuncts

A rich variety of sentence adjuncts occur in the CASREPS, including a range of clausal and
sub-clausal strings introduced by subordinating comjunctions (as in B20.1.1, whAile engaged) and
present participles (as in Bl1.1.1, ceusing e¢rretic operation). In addition, the restriction com-
ponent was developed to preveat spurious ambiguities arising out of the enrichment of sentence
adjunct possibilities.

3.4. Wh-expressions

Although relative clauses and other wh-expressions are rare in the CASREPs (cf. B36.1.3, 65
psi which is low lube oil alarm set point),the grammar has also been expanded to cover these con-
structions and to enforce the complex restrictions on their occurence.

3. Problems
The major remaining difficulties include the following:

8.1.1. Lexleal scanner problems
Word-internal occurences of periods,slashes, etc. are currently rejected by the lexical

¢ -

3.1.3. Xor problems

The ’committed or’ which controls disjunctive application of the assertion, question, frag-
ment, and compound options is generally successful in capturing the intended parse. However,
there are several sentences in the CASREP corpus in which a spurious assertion parse preempts a
correct fragment parse, e.g., B26.1.5, High lo temp believed contributor to unit failure, where
believe is taken as the main verb with subject temp and contributor as the object (they believed
it), rather than as a fragment of the type serocopuls, where believed is taken as a past participle
(temp [was/ believed [to be] a contributor...).

3.1.3. Remalning grammar problems

Full and accurate coverage of the CASREPs requires further work on the grammar, includ-
ing the following: finer-grained treatment of the noun phrase; restrictions on adverbs to prevent,
e.g., the analysis of very as a sentence adverb; modification of the BNF rules to accomodate mul-
tiple sentence adjuncts; modification of conjunction rules.

NGOG LG 0 B 1 N |

CASREPS.TESTA
Summary of Parses
April, 1988

Sentences not preceded by casreps number are modifications of the original tezt. The rank of the
correct perse is given in " Correct parss #" column., Note that these data reflect the grammar prior
to the removel of sor from the fragment rule; therefore the figures for fragments do not include frag-

ment parses ssubsequent to the correct one.

No, P Text No.Parses imes Correct parse
1.1.1 | Starting air regulating valve failed. 5 1,3,6,8,10 4
(13)
1.1.2 | Unable to consistently start nr 1b 1 2 (9) 1
gas turbine.
1.1.3 | Valve parts excessively corroded. 1 _1(2) (N/G xor) 1
4.0.0 | Tech assist requested. 1 2 (3) 1
4.1.1 | While diesel was operating with sac 1 10 (18) 1
disengaged, the sac lo alarm sound-
ed.
4.1.2 | Believe the coupling from diesel to 12 4,13,20,27,30,33, 4
sac lube oil pump to be sheared. 37,43,49,52,586,
63,87 (69)
4.1.3 |Pump will not turn when engine 2 2,4 (6) 1
jacks over.
5.0.0 | Tech assist requested. | 2(3) 1
5.1.1 | Unable to maintain l.o. pressure to 0 N/G scan
sac.
Unable to maintain lo pressure to 2 2,3 (8) 1
sac.
5.1.2 | Disengaged immediately after alarm. 2 1,2 (2) 1
5.1.3 | Metal particles in oil sample and 4 8,9,11,11 4
strainer. (15)
6.0.0 | Part ordered. 1 2(2) 1
6.1.1 | Unable to maintain lube oil pressure 4 2,5,9,11 (36) 3
to starting air compressor.
6.1.2 | Inspection of lo filter revealed metal 1 1(4) 1
particles. i
6.1.3 | Retained oil sample and filter ele- 6 6,7,8,8,10,11 5
_ment for future analysis. (13)
9.0.0a | Part fail. 1 2 (2) 1
9.0.0b | Part ordered. 1 1(2) 1
9.1.1 | Sac received high usage during two 4 3,4,8,8 (7) 4
becce periods.
9.1.2 | Ces received a report that lo pres- 2 3,5(7) 1
sure was dropping.
L3 L Alarm sounded. -) " —

9.14 |Loud noises were coming from the 4 9,10,12,13 4
drive shaft during coast down. (17)

9.1.5 |{Drive shaft was found to rotate free- 2 2,5 (7) 2

ly at the ssdg end.

9.1.8 |Splines were extensively worn. 1 1(1) 1
21.0.0 | Assist required. 1 1(2) 1
21.1.1A | Nr 4 sac oil pressure dropped below] 11,18,23,39,43,48 2

alarm point of 65 psig during moni- (85)
toring of 1A gth.
21.1.1B | Start air pressure dropped below 30 5 7,9,15,18,21 2
) psig during monitoring of 1A gth. (42)
21.1.2 |Oil is discolored and contaminated 3 1,3,3 (5) 3
with metal.
22.0.0 | Tech assist requested. 1 1(2) 1
22.1.1 |Loss of lube oil pressure during 7,8,9 (12) 1
operation.
22.1.2 |Investigation revealed adequate lube 0 N/G scan
oil saturated with both metallic and
non-metallic particles.
Investigation revealed adequate lube 10 23,24,%25,%25,*27, 1
.| oil saturated with both metallic and 29,30,*31,*32,*33,
non-metallic particles. 38,39,40,42,43,44,
45 (54)
22.1.3 | Request replacement of sac. 1 2 (4) 1
23.0.0 | Assistance required. 2 (2) 1
23.1.1 |The low lube oil pressure alarm and N/G input
compressor fail to engage the alarm
activated durir~ routine start of
start air compressor.
The low lube oil pressure alarm and 27 4,8,12,25,29..... 1
compressor fail to engage alarm ac- (215)
tivated during routine start of start
air compressor.
23.1.2 |Metallic material was discovered in 1 3(11) 1
lo sump and filter assembly.
24.0.0 | Require replacement. 1 1(1) 1
24.1.1 |[Loss of lube oil pressure when start 4 4,5,23,26 N/G gram
air compressor engaged for operation (29)
is due to wiped bearing.

24.1.2 | Material clogging strainers. 2 3,4 (4) 1
25.0.0 | Tech assist required. 1 1(2) 1
25.1.1 | During routine start of main gas 0 N/G scan
propulsion turbine, sac air pressure
decreased rapidly to 5.74 psi result-
ing in an aborted engine start.
During routine start of main gas 21 67,69,71...109 14
propulsion turbine, sac air pressure (227)
decreased rapidly to 5.74 psi result-
ing in an aborted engine start.
25.1.2 | Exact cause of failure unknown. 1 2 (4) 1
25.1.3 | Suspect faulty high speed rotating 1 2 1
assembly.
28.0.0 | Return to company. 3 2,2,3 (3) 1
28.1.1 | Unit has excessive wear on inlet im- 2 5,12 (24) 1
pellor assembly and shows high
usage of oil.
28.1.2 | Blades are bent and 1/4 inch deep 2 2,3 (5) 1
chips are visible on leading edge.
30.0.0 | Tech assist requested. 1 1 (2) 1
31.1.1A | Loss of second sac of two installed 2 2,4 (10) N/G xor
sac’s.
31.1.1B | Unit has low output air pressure, 4 16,17,22,24 2
resulting in slow gas turbine starts. (46)
31.1.2 | Troubleshooting revealed normal sac 3 4,4,5 (6) 1
lube oil pressure and temperature.
31.1.3 | Erosion of impellor blade tip is evi- 1 1(3) 1
dent. .
31.14 | Compressor wheel inducer leading 2 4,4 (6) 1
EM

CASREPS.TESTA
Annotations to parse summary

[1.1.1]
Note that only an adjectival reading is available for the prenominal analysis

of "regulating”.

[1.1.3]
Xor problem . Due to the optional intransitivity of ” corrode”, xor eliminates
the correct zerocopula reading. However, this reading is close enough to qual-
ify as correct.

[4.1.1]
Note that restriction {d_nulllnsr} removes rare gerund reading;
{w_ving_Inr} thwarts an obscure analysis of ving as nvar.

[4.1.2] :
The object is analyzable as nstgo, ntovo, or sobjbe. The latter possibility
adds eight parses, but the object option sobjbe cannot be eliminated given,
e.g., Testb 26.1.5 ("High LO temp .. believed contributor to unit failure”).

(4.1.3] ' :

"Over” is parsed first as an adverb preceding null object of "jacks”. The
most correct reading seems to be the second one, in which it is parsed as a
particle; however, the sa reading is close enough to be counted as correct. If
expressions such as "over” are reclassified as particles but not adverbs, in
order to circumvent this, then they will have to be subcategorized for indivi-
dually in the lexicon, which would lead to many false rejections of accept-
able sentences.

[5.1.1]
Pn "to sac” is attached to rn in first parse (marked as correct here); but the
second parse (with sa attachment of pn) seems more accurate.

(5.1.2]
In first parse, counted as correct, "immediately” is sa; perhaps the second, in
which it is a left modifier of "after”, is still more accurate.

[5.1.3]
I assume (without conviction) that npos "0il” should not be distributed over
"strainer”.

I

' :m'mmm&mmm;m;c:afmw&-ﬁm:aﬁj

[6.1.1]
‘ Although the third parse is listed as the correct one, the first parse is
perhaps adequate: "to SAC” is attached to rn rather than sa.

[6.1.3]
The first parse differs from the correct one only in that it attaches "for
future analysis” to rn rather than sa.

[9.0.0]
"Fail” is treated here as abbreviation for "failure”. Or.should these headers
be treated as frozen expressions?

[9.1.1)
It is assumed here that the correct parse attaches "during NP” to sa and
analyzes "two becce periods” as qpos + npos + nvar.

[9.1.2)
?"That” is analyzable as determiner or complementizer.

[9.1.4]
ﬁ ?"Coast down” is treated as idiom.

I assume that the most accurate parse (the fourth, counted as the correct
one), attaches "from the drive shaft” to object, and "during coast down” to
sa. However, the first parse might be sufficiently close, given the state of the
system; it attaches the two pns to sa and rn, respectively.

[9.1.5]
Ambiguity: analysis of infinitive as sa (tovo) or passobj (correct).

[21.1.1A,B]

In the second parse, counted as correct, "below”-phrase is sa rather than
object (fifth parse).

[21.1.2]
The third parse is counted as corréct, but the second parse, in which "with
metal” is in sa, seems adequate. h

[22.1.1] 4
The contextually correct nstg frag parse is generated last; However, the
zerocopula parse seems adequate, and is counted correct.

@

TN ST ST R N S D S S e R g .r.-,.-ii
N R G G N N A S A L R (RIS L R O R A

[22.1.2]
' Conjunction . There are some analyses of "metallic” as avar preceding aulln
} that seem incorrect. This should be explored.
| Object type . The nstgo object analysis seems somewhat more accurate than
sven analysis here; within the venpass, the most accurate parse is perhaps
the one in which "with ... particles” is attached as passobj rather than as
sa. But the first parse, with sa attachment of this phrase, seems adequate.

Scanner problem . The problem remains that words containing ”-" and such
characters fail lookup because they are not atoms.

Conjunction . In order to parse the conjoined apos, larl has been defined as
an Ixr node. This may present a problem, since larl lacks a right adjunct.

Six other readings generated for this sentence contain conjoined Inr with
nulln head of first Inr. Perhaps nulln should be disallowed in conjuncts
unless it occurs in both: "There were five *(cats) and two dogs in the park”;
”old and young were present”, but *’old men and young were present” is
quaint at best.

[23.1.1]
Input error . It is assumed that "the” preceding "alarm” is an error.

Re corrected version: The first six parses analyse "fail to engage” as an

G idiom (noun). In the remaining parses, fail” is analyzed, legitimately, as
the main verb (seven parses of conjoined subject x three parses of post-verb
material).

[23.1.2)
Conjunction problem . Although the correct parse is generated, there is a
missing parse, with conjoined npos "sump and filter”. But since it seems
unadvisable to allow full Inr in nnn, it's not clear how to modify the con-
junction rules to allow for this reading.

[24.1.1]
Multiple rn : In the contextually correct reading, "loss” is modified by ”of
lube oil pressure” and the "when”-clause. However, multiple rn's are not per-
mitted, except in the case of pn’s. A semantically close reading in which the
"when”-clause is an sa is also prevented, by {wmed_sa}, which rules out
such sa’s between subject and verb unless set off by commas (accounting for
the ill-formedness of *"Louise when I called was tired”). The closest avail-
! able reading actually generated is the second one, in which the when-clause
! is in the rn of "pressure”.
|

Embedded fragment: "When sac engaged” seems most accurately parsed as
an sven following "when”. But in standard English, "when” cannot introduce
@ an sven ("*I left when the car repaired”). Thus it may be that this corpus
requires further modifications of the bnf rules beyond simply allowing matrix

L et STy 2

fragments. However, the optional intransitivity of ”"engaged” allows the
material following "when” to be parsed as an assertion rather than an sven.

[24.1.2)
Perhaps an nstg_frag reading would be more accurate, but the first parse
(serocopula with objectbe—>vingo) seems close enough to be counted as
correct. The second parse (zerocopula with objectbe—>nstg) seems more
questionable; perhaps {w_nonnull_In} should be strengthened to require
material in qpos or tpos rather than simply In. (This decision depends on
judgments about acceptability of, e.g., "Sen.Jones complete idiot”).

[25.1.1]
Scanner problem . The decimal point cannot currently be entered.

The long time to first parse may reflect the fact that the sentence is an
extensive garden path, since the main verb "decreased” may initially be
mis-analyzed as a participle in rn.

The parses generated prior to the correct fourteenth parse analyze the nvar
of the subject as either "resulting” or nulln rather than " psi”.

[28.0.0) '
Third parse is questionable: objbe in zerocopula (analogous to "house in an
uproar”, or "trip to Texas, not Arizona”).

{28.1.1]
First parse (counted as correct) attaches "on...assembly” to rn; sa attach-
ment, as in second parse, might be considered the more accurate parse.

[31.1.1A]
Lexical entry procedure should be modified to generate ”'s” plurals routinely
for abbreviations.

Xor problem . The contextually incorrect assertion parse preempts the
nstg_frag parse that is intended here.

[31.1.1B]
Here the attachment of the pn in object or sa seems important, as "result
in” has an idiomatic meaning. Thus the first parse, with sa attachment, is
not counted as correct.

[31.1.4]
"Leading edge” is entered in the lexicon as an idiom, as a rrsult of its
occurence here in nvar position. ("Leading” could only be parsed as avar, an

impossibility here given that it follows a series of npos elaments.) Occurence

. in compounds seems a potential test for fixed phrases; compare this sentence
with the less acceptable "*peach poisonous pits are dangerous” (ve. "peach
pits are dangerous™).

CASREPS.TESTB
Summary of Parses
April, 1986

|

: Sentences not preceded by @ casreps number are modifications of the original tezt. The rank of the

\ correct parse is given in * Correct parse #” column. Note that these data reflect the grammar prior

} to the removal of zor from the fragment rule; therefore the figurea for fragments do not include frag-
ment parses subsequent to the correct one.

No. Text No.Parses Times Correct parse
2.0.0 [Replacement requested. 1 1(2) 1
2.1.1 |Loss of lube oil pressure during 8 13,19,19,22,25, | N/G input(+scan)
operation nr. 2 ssdg. 26,30 (34)

2.1.2 |Metal particles found in lube oil 1 12 1
filter,

3.1.1 | Gas turbine starting air compressor 2 1
inoperative.

3.1.2 |Power pack failed. 1 1(1) 1

7.0.0 {Assistance requested. 1 1(2) 1

7.1.1 |Sac had local monitoring capacity for 1 10 (50) 1
lube oil pressure only, due to the re-
cent failure of the sac lube oil pres-
sure transducer,

7.1.2 |Prior to engagement it was reported 2 2,3 (8) 1

9 . that sac lo pressure dropped to sero.

7.1.3 | No metallic particles in oil filters. 2 *4,5 (6) 2

7.1.4 |Borescope investigation revealed a 4 5,7,8,10 (11) 1
broken tooth on the hub ring gear.

7.1.5 | It is likely the lo pump has sheared. 1 2 (4) 1

7.1.8 | The lo pressure and alarm capability 4 1,2,3,4 (6) N/G input
is a necessity for operation.

7.1.7 |Drive shaft for sac was manufactured 1 1(3) 1
locally.

7.1.8 [S/F reinstalled old sac utilising new 0 N/G scan
drive shaft. '
Fe reinstalled old sac utilising new 3 3,5,8 (7) 3
drive shaft.

7.1.9 |On testing of sac lube oil pressure 3 2,6,9 (18) 3
could not be adjusted above 35 psig.

|7.1.10 | Replacement sac will be required. 1 1 (2) 1

R o

QULUONG K20 A0 AC S O A WA M %I-b-j

Text

Correct parse i

7.1.11 | The original drive shaft, when in- ? 14860 ... 3
stalled, was packed utilising 60
| grams of grease, when removed, on
failure of sac, the drive shaft was dry
and showed signs of extensive heat
stress.
The original drive shaft, when in- 3 3,%4,*5 (7) 1
stalled, was packed utilising 60 '
ams of grease.
‘ When removed, on failure of sac, the 2 11,15 (25) 1
drive shaft was dry and showed signs
of extensive heat stress.
8.0.0 | Tech assist requested. 1 2 (2) 1
8.1.1 |Loes of one of two starting air ? 12, ... 1
compressors.
8.1.2 |Low speed coupling from diesel to sac 6 *2,*9,14,21,26, 4
lube oil pump failed. 33 (386)
10.0.0 | Tech assist requested. 1 2(2) 1
10.1.1 |HBV failed, causing spline assy to 4 3,4,7,8 1
fail causing damage to the sac.
11.0.0 | Tech assist required. 1 2(2) 1
11.1.1 | Compressor will not remain fully en- 55 8,9,10,11....115 4
gaged causing erratic operation, surg- (126)
a ing, and » hasard to personnel and
equipment.
12.0.0 | Tech review required. 1 2 (2) 1
12.1.1 |Sac lo pressure decreases below alarm 0 N/G scan
point approx. seven minutes after en-
ement.
Sac lo-pressure decreases below alarm 4 3,7,13,13 2
point approx seven minutes after en- (17)
gagement,
12.1.2 |Believed due to worn bushings. 4 2,2,4,5 (68) 2
13.0.0 |Must be removed. , 1 1(1) 1
13.1.1 | Loss of sac oil pressure dropped to 0 N/G gram(+input)
72 psi then increased to 90 psi and
then failed while starting gas turbine.
Loss of sac. 1 2 (3) 1
o Oil pressure dropped to 72 psi then 21 38 .. 17 N/G
increased to 90 psi and then failed (187)
while starting gas turbine.
14.0.0 |Req tech assist. 1 1(1) 1

14.1.1 |Loss of one of three start air 2 12,13
b

L

BRSO AU
. STt

No. Text No.Parses Times Comc;ggs&'
Oil pressure has dropped to 72 psi |27 8 .. 175 1
then increased to 90 psi and then (179)
failed while starting gas turbine.
14.1.2 |Starting air compressor engaged for |[? 21,25,28,32,44,...(434) 5
approx two minutes when lube oil
pressure dropped below 65 psi alarm
setting.
14.1.3 |Compressor could not be disengaged |12 3,6,13,15,38,40,47, 1
from either remote or local control 49,71,73,80,82
location, for approx three minutes (132)
following low lube oil pressure alarm.
14.1.4 {Lube oil is very dark in appearance |4 *2,*4,7,9 3
and has burnt odor. (11)
15.0.0 | Tech assist requested. 1(2) 1
15.1.1 {Reliability of third of three sac’s |? 36 (58) 1
suspect - if unit fails unable to start
main propulsion gas turbines.
15.1.2 | Color of 23699 oil indicates overheat- |1 17 (20) 1
ing of sac, oil pressure normal.
16.1.1 |During normal start cycle of 1A gas ([over 30 [182 to 1st N/G gram
turbine, approx 90 sec after clutch parse
engagement, low lube oil and fail to
engage alarm were received on the
ace.
16.1.2 |All conditions were normal initially. 1 2(2) 1
16.1.3 |Sac was removed and metal chunks |0 N/G gram
found in oil pan.
Sac was removed and metal chunks |1 2 (5) 1
were found in oil pan.
16.1.4 {Lube oil pump was removed and was |2 3,4 (68) 1
found to be seised.
16.1.5 {Driven gear was sheared on pump (1 1(3) 1
shaft.
17.0.0 | Tech evaluation req. 1 2 (2) 1
17.1.1 |Loss of one of three sac’s - routine 47,56... 1
visual inspection during normal en-
gine operation revealed gear housing
cracked.

- v

Y 0P O g TN
' "l!J.I'A“’I. ' ‘i".-\,‘ (AL KU N ’ " [

' ‘.' l'.'c..‘.l l'ﬁo...l!'..“' l- l Ff

»,
(R M)

TR A
ta XN R \{ :". ()}

No.
17.1.2

Text
Engine secured, detailed inspection
revealed large crack in gear housing
on aft end and broken marmon
clamp flange on surge valve outlet.

No.Parses
22!

Times
2072, ...

Engine secured.

1(1)

Detailed inspection revealed large
crack in gear housing on aft end and
broken marmon clamp flange on
surge valve outlet.

Over 22

215,2186,...

18.0.0

Item canabilised.

Item cannibalised.

4 (5)

18.1.1

Cannibalised sac for use on USS
Duncan.

14,17,22,24

19.0.0

Part ordered.

1(2)

19.1.1

Reduced capability of nr 4 sac res-
tricts ships operation.

Reduced capability of nr 4 sac res-
tricts ship’s operation.

4(9)

19.1.2

Extended use of nr 4 sac has resulted
in periodic low lube oil pressure
alarm.

7,16,21 (28)

18.1.3

Lube oil change, filter change, and
adjustment of pressure regulator
have had no impact on lube oil pres-
'm.

4?

19.1.4

Three minutes is the maximum time
nr 4 sac can be operated in a non-
alarm condition.

N/G scan

Three minutes is the maximum time
nr 4 sac can be operated in an alarm
condition.

4,8 (14)

20.0.0

Tech assist req.

2 (2)

20.1.1

During gth motor start, air pressure

dropped below 30 psi and oil pressure

decreased slowly to 70 psi, while en-
ed.

Many

102 to 1st
parse

4th+

I=b

During gth motor start, oil pressure
decreased slowly to 70 psi, while en-

11 (25)

——

AP p—— . R R R
AR AN AU OUCE IO i Wi 2 S i (XN AODOOOOO T O T 0 B

N %y

AW
(A M RaZA

Wt Vi

20.1.2 [Metal pnticlu found in oil umplc 2 10,12 (17) 1
26.0.0 | Technical assistance requested. 1 2(2) 1
26.1.1 |Reduced capacity of one of three 4+ 13,14,24 ... 3
sac’s.
26.1.2 [Cannot engage sac for extended 30+ 4.. 4th+
period of time due to increased lo
temp and sharp decrease in lo pres-
sure,
26.1.3 |[Metal contamination in lo filter. 2 *4,8 (8) 2
26.1.4 |Internal part failure. 1 2 (2) 1
26.1.5 {High lo temp due to design of first 4 4,6,44,46 N/G xor
flight oil cooler believed contributor (80)
to unit failure, '
27.0.0 |Part ordered. 1 2 (2) 1
27.1.1 |Experienced loss of sac lube oil pres- 0 N/G xor(+scan)
sure and self-disengagement immedi-
ately following clutch engage com-
mand.
Experienced loss of sac lube oil pres- 4 26,28,32,33 N/G (xor)
sure and self disengagement immedi- (48) ;
ately following clutch engage com-
mand.
27.1.2 |Sac apparently seised during clutch 0 N/G input
engagement causing input drive shaft
to remain stationary while drive
adapted hub on ssdg continued to ro-
tate.
Sac apparently seized during clutch 8 4,6,18,20,50,51,]
engagement causing input drive shaft 59,60 (133)
to remain stationary while drive
adapter hub on ssdg continued to ro-
tate.
27.1.3 |Drive shaft sheared all internal gear 3 3,5,7 (9) 1
teeth from drive adapter hub.
29.0.0 | Technical assist requested. 1 2 (2) 1
29.1.1 |Fet open and inspect, revealed bear 0 N/G input
ing material on bottom of strainer.
Fct open and inspect revealed bear- |2 4,6 (12) 1
ing material on bottom of strainer.
29.1.2 {After flushing unit, engaged pressure 16 168,171,180,181,184, 8
dropped to 62 psig within 45 seconds 188,192,194,284,286,
of engaging sac. 298,301,304,309
(311)
29.1.3 |Disengaged pressure satisfactory. 1 2 (3)
30.0.0 | Technical assistance requested. 1 2 (2)

No.

Text

Times

umtod.

No.Parses Correct parse
30.1.1 |Loss of one of two sac’s. 2 10,11 (14) 1
30.1.2 |Unit has low output air pressure, |4 18,20,26,28 2
resulting in slow gas turbine starts. (52)
30.1.3 (T/S revealed normal sac lube oil |0 N/G scan
pressure/temperature.
Troubleshooting revealed normal oil (1 2(3) 1
pressure, :
30.1.4 | Impellor blade tip erosion evident. 1 3 (5) 1
30.1.5 |Sac beyond shipyard repair. 1 5 (5) 1
30.1.8 |Cause of erosion of impellor blades, |1 3(8) 1
undetermined.
30.1.7 |Second generation sac received on- |5 5,7,10,12,14 2
board for installation. (15)
32.1.1 [Loss of 80 percent of start air capa- |1 13... 1
bility.
32.1.2 |[Nr 2 sac can be operated at reduced |1 2 (3) 1
capacity.
32.1.3 | This situation present potential over |? N/G input
temp hasard to Im2500 during start
up evolutions and further degrada-
tion of mobility.
This situation presents potential over |over 90 |[2... 12?
temp hasard to Im2500 during start
up evolutions and further degrada-
tion of mobility.
32.1.4 [Difficulty began with audible pulss- |8 12,15,19,23,25,28,30,32 6!
tions in compressor outlet air pres- (34)
sure under steady state conditions.
32.1.5 |Cause of casualty unknown. 1 2 (3) 1
33.0.0 |Request shipyard replace. 1 192) 1
33.1.1 |Oil pressure has been slowly decreas- |1 1(3) 1
ing.
33.1.2 |[Failure occurred during ‘engine start |4 3,4,8,9 (12) 4
when oil pressure dropped below 60
peig-
33.1.3 [[nvestigation revealed excessive fine |2 3,4(5) 1
metal particles in oil.
34.0.0 | Assistance requested. 1 1(2)
34.1.1 |Loss of oil pump pressure. ? 8 ..
34.1.2 {Suspect sheared conmnecting pin in |2 10,11 (17)
pump drive assembly.
34.1.3 [Loss of pressure was sudden and |1 1(2) 1

DAY b, 0 h'".‘\,| DRl AN ', Nt o .. s‘

NGY Va8 ety e 'n“‘u AR

0 No. Text No.Parses Times Correct parse ﬁ

34.1.4 |Investigation by todd revealed sac |4 11,13,15,17 4
spline input drive shaft disconnected (25)
from diesel hub. '
34.1.5 |Hub assembly and spline shaft errod- {0 N/G input
ed beyond use.
34.1.5 |Hub assembly and spline shaft eroded |2 4,*8 (10) 1
. beyond use.
34.1.6 |Todd LA to replace worn hub assem- |7 15,18,19,26,27,31, 5
bly and spline shaft. 31 (34)
35.0.0 [Parts ordered. 1 1(2) 1
35.1.1 [Experienced total loss of sac lo pres- |8 55,60,67,71,84,89,94,98
sure and self disengagement while (1085)
conducting gte water wash.
35.1.2 |Investigation revealed stripped lo |2 7,8 (13) 1
ump drive gear and hub ring gear.
36.0.0 [Toch assist. 1 1(1) 1
36.1.1 {A number of slow gas turbine starts |2 4,5 (9)
has been noted recently using 13 sac.
36.1.2 |A trend of increasing lube oil tem- |[? 212, ... 4
perature and decreasing lube oil pres- -

sure dictated cleaning the lube oil
cooler and replacing the lube oil filter
as corrective maintenance.

G A trend of increasing lube oil tem- |over 30 [26... ?
perature and decreasing lube oil pres-

sure dictated ... replacing the lube oil
filter as corrective maintenance.

A trend of increasing lube oil tem- |8 10,*12,*13,15,48, 4
perature ... dictated cleaning the lube .|48,50,51
oil cooler .. as corrective mainte- (90)
nance.
36.1.3 |After the maintenance was accom- (19 114,125,131,140... 4

plished, operational tests revealed

low lube oil pressure (85 psi which is

low lube oil alarm set point) before

the required three minute sac en-
d time limit had run out.

36.1.4 | The lube oil filter was opened up re- |4 2,5,8,12 (18) 4
vealing minute metallic particles.

36.1.5 {Indications are that a new lube oil |1 3(4) 1
pump is required. .

36.1.6 |Guarantee deficiency. 1 1 (1) 1

a0 bty T B T O AC TR P S I T W VOSSP R

i

CASREPS.TESTB
Annotations to parse summary

(2.1.1]
Seanner problem. Period in abbreviation prevents parsing.

Structure of NP . In the closest parse obtained (the second), "operation nr.
2 ssdg” is parsed inaccurately with "operation” in npos modifying the
namestg. However, introduction of implicit "of” seems ill-advised as a means
of coping with this non-standard input.

[2.1.2]

Adverb problem . Restriction {d_d_or_p} prevents analysis of "in” as
adverb.

[7.1.1]
"Only” is parsed somewhat questionably as an adjective in rn. "Monitoring”
can only be parsed prenominally as adjective, not nvar.

[7.1.3]
One might argue that the second (nstg_frag) parse (with sa attachment of
the prepositional phrase) is more accurate than the first parse (m which it is
attached to rn), but the first is counted as correct.

[7.1.4]
Again, one might argue that the second parse (with the prepositional phrase
in sa) is more accurate than the first parse (in which it is attached to rn),
but the first is counted as correct.

Note that the ambiguity of "broken” as *ven or *adj doubles the parse
count.

[7.1.8]

Number agreement. The grammatlcal error in this sentence is not the cause
of its unparsability. (Note that {wagree} has had to be relaxed at least for
"be”, given grammatical sentences such as "ten minutes is the limit”. In
fact, not only "be” allows plural subjects with singular verb; cf. "ten
minutes of listening to his chatter really taxes me to the limit”. It seems to
be a function of the semantics of the subject rather than the verb.) Thus the
error in this sentence does not present it from being parsed.

The sentence as it stands seems incoherent. If it is taken as ”[the (correct)
lo pressure| and [alarm capability]”, i.e., with an implicit modifier ”correct”,
then the correct parse is the first one. And clearly it is unlikely that the
correct reading is the one paraphraseable as "the capacity for lo pressure and
alarm”. Another poesibility, suggested by NYU, is that "and” is a

typographical error.

[7.1.7]
*Sitrep 002:” is not treated as part of the sentence proper.

[7.1.8]
Seanner problem. " /™ cannot be input.

(7.1.8]
"Utilizing” could be legitimately analyzed as noun modifier in apos or rn, or
(correctly here) as sentence adjunct.

[7.1.9]
I assume that on the correct parse "lube oil pressure” is the subject. The

second and third parses divide up the string of nouns differently between sa
and subject.

[7.1.11]
In fact, this parses as a compound; correct parse is 3rd. Time: 1,460 sec!
Punctuation error is assumed for 7.1.11. Thus the comma preceding ”"when”

has been changed to a period, as indicated, and 7.1.11 has been broken into
two clauses to test its parsability in the absence of this error.

Second clause : The second parse for this clause is the correct but contextu-
ally incorrect analysis of the object as nn rather than nstgo.

(8.1.2]
Adverb problem. "Low” is mis-analysed as adverbial sa in first two parses.

(11.1.1]
The first three parses are correct but distribute In incorrectly ("surging”
should be local, I assume).
The massive number of parses appears to be a function of conjunction;
whether there are, in fact, 55 distinct and grammatical analyses remains to
be determined. In the absence of the conjoined material (that is, with the
first comma and everything to its right deleted), there are only three parses.

[12.1.1]
Scanner problem. ™.” cannot be input.

The second two parses take "point” as the (arguably intransitive) main verb.

[13.1.1]
Punctuation error. This sentence is ungrammatical as punctuated. It has

been reanalyzed into two clauses. However, it may still be unacceptable:
. "failed” would seem more likely to take the sac, rather than the oil pressure,
as its subject.

Second clause :. Conjunciion problems . For some reason, three assertions
are not parseable in conjunction rules generated from this grammar. This
forces 13.1.1b to be parsed as three ltvr’s, but the absence of rv prevents the
attachment of their pn’s ("to 72psi”, etc). Thus only the readings in which
"increased” and “decreased” are past participles in rn remain. With the
addition of "has” (see table), the correct parse is, in fact, the first parse gen-
erated.

Also, "then” (but not "and”) as the conjunction allows for an incorrect read-
ing in which a ”copied nullobj” is created in the first conjunct.

[14.1.2]
Perhaps the sixth (rather than the fifth) parse is the most accurate, since it
attaches "below” as object rather than sa. In general, sa attachment of
subcategorized-for pn’s is not regarded as an error, unless the verb + pn
form a virtual idiom.

The variety of parses arises from the different attachment possibilities of
"for two minutes”, the "when”-clause, "below 85 psi”; the two analyses of
"85 psi alarm setting”; and the analysis of subject as gerund or lar.

0 Also, the fact that the entire sentence can be initially unsanalyzed as an Inr
contributes to the long parsing times.

(14.1.3]

Two ambiguities in the absence of conjunction (nominal or adjectival
analysis of "low”, "following” as *p or *ving) combine with a three-way con-
junction ambiguity ("remote or local” analyzed as a conjoined adjadj or a
conjoined Inr, the first one headed by nulln). With the latter, there is the
ambiguity between distributed or local scope for tpos,qpos. The correct
parse is assumed to be the first, in which "low” is adjectival,”following” is a
preposition, and "remote or local” is a conjoined phrase in adjadj.

[14.1.4]
In the parse listed as correct, "in appearance” is a sentence adjunct. How-
ever, the fourth parse, in which it is a right adjunct of the adjective "dark”,
is probably still more accurate.

Adverd problem . Clearly a finer-grained analysis of adverbs is necessary. In
the first two parses, "very” is analyzed incorrectly as an adverb. The adverb
features developed by Sager will clearly prove useful here, but there are
difficulties in applying them. There is no one feature which is associated with
all and only those adverbs which are acceptable in sa position. For example,
& not all adverbs which may occur in sa position are marked with the feature

"dsa”: neither "yet” (as in "She has not eaten lunch YET”) and "there” (as

‘ in "He was happy THERE”) is dsa. There is a group of features one or
another of which characterizes any adverb which may appear in sa; this
group includes dsa, dlv, drv, drw. However, any adverb input by the SDC
lexical entry procedure has an empty feature list, so a restriction limiting
adverbs in sa to those bearing one of these features would require consider-
able lexical work. Finally, an attempt to exclude sa analyses of adverbs like
"very” by forbidding adverbs with certain features (such as dla — left
adjunct of adjective) will prove too strong, since, e.g., "always” is marked
with the feature dla as well as drv/drw/dlv.

[15.1.2]
I assume that ”oil pressure normal” is not to be taken as part of a conjoined
object of "indicate”, as the color of oil would not be an indicator of oil pres-
sure. Thus the analysis of this sentence as a compound is assumed to be
correct.

First clause : Shapes needs to be developed so as to recognize part numbers
for this domain. Currently, 23699 is parsed only as qpos.

[16.1.1]
This sentence presents a number of difficulties.
6 Grammatical error . " Alarm were received” should perbaps be "alarms were
received”,

Moultiple sa’s . The correct analysis of this sentence would seem to involve
two initial sa’s, something currently disallowed by the grammar. Thus
"approx 90 sec after clutch engagement” is incorrectly parsed as an appos
attached to "turbines”.

Treatment of apposatives : This points up the inadequacy of the current
appos rule, which substitutes for rn and is therefore not associable with a
head noun which itself contains an rn.

Conjunction. The rules do not currently allow for conjoined In, so that
”(low lube oil) and (fail to engage) alarms” cannot be correctly parsed. (And
the contextually appropriate parse of "disk and sac alarms are required” can-
not be generated.)

There are an extraordinarily large number of parses in which the conjunction
is associated with the introductory pn in sa, the subject being ”alarms”.

Structure of NP . Also, the bnf rules do not currently allow for modification
in npos, as in "low lube oil alarm”.

This sentence clearly requires further work, because of the indequacy of the
parses obtained and the very long parsing times.

T-—_———__—-—__—-wm

>

[16.1.3]

, Conjunection. This sentence does not parse without addition of "were” to
second conjunct. Conjunction rules do not seem to handle (verb) gapping,
even without the "sloppy identity” that holds here between the overt and
implicit instances of "be”. ("Sac was repaired and disk replaced” is also
rejected.) We could allow "and” to join conjuncts, but this seems dubious:
cf. "sac was repaired - replacement of blade” vs *"sac was repaired and
replacement of blade”.

[17.1.1]
This is parsed as a compound, with nstg_frag the first element. The second
parse is the more accurate one: "one” is in qpos modifying nulln. (In the first
parse, "one” is the head nvar.) As with other fragments, only parses with the
first fragment option to succeed are listed in table.

Note that zerocopula reading of first conjunct is ruled out by assorted
heuristics ({d_of}, {w_nonnull_In}).

[19.1.1)
Punctuation. Apostrophe must be added.

[19.1.3]
Appos . The first three readings construe the second conjunct as an apposa-
G tive on the first; appos and null options in rn should probably be re-ordered.

Conjunction . Are the twelve conjunction readings distinct possibilities? The
contextually correct reading comes late because earlier readings copy the
popn attached to the final conjunct (®of pressure regulator”) into earlier con-
juncts, while the correct reading would seem to be the local one.

(19.1.4)
Scanner problem. Word-internal dash not currently recognizable.

Wagree . Sentences such as this require that wagree be relaxed to allow
plural subjects with ”is”. (Cf. "Peanut butter and pickles is a horrible com-
bination”).

[20.1.1]
Conjunction . Parsing times seem extraordinarily long for this sentence,
even given its numerous unexpected conjunction ambiguities (the initial pn
may be taken as containing three conjoined NPs; the first four readings, for
example, take "start” as the first of three conjoined NPs; the next five or
more take "pressure” as subject).

Upon removal of the first conjunct ("air pressure dropped below 30 psi”), a
@ single (correct) parse is generated in 11 sec (25 to NMP), as indicated in
table.

[26.1.2]
The conjunction and pn attachment possibilities in this sentence are legion,
and have not all been examined; in addition, there is an ambiguity between
npn (contextually inappropriate) and nstgo object analyses. (The npn object
option has pval "in”, as in "We engaged them in conversation”.)

[26.1.5]
Xor problem . Because there is an assertion reading (with ”contributor” the
nstgo object of active "believed”), the correct zerocopula parse (in which
" contributor” is the remanants of active sobjbe) is not generated. However,
selection can easily rule out this reading.

[27.1.1]
Xor problem. Because there is an assertion parse (with "engage” as main
verb), the contextually correct tvo parse is not generated.

Re the long time to first parse: note that the analysis of "experienced” as
prenominal *ven creates a severe garden path.

[29.1.1]
Input. Punctuation error.

?Open and inspect” entered as idiom in lexicon.

[29.1.2]
The extraordinarily long parsing time for this sentence needs to be investi-
gated. (Note that it does present a considerable garden path to the parser,
since the entire string "engaged sac” could be analyzed as an NP.)

The various analyses depend upon analysis of the two [ving nvar| sequences
as Inr or gerund (in both cases) and on pn attachment. The selection of the
eighth parse as the correct one needs to be verified (accidental logout
prevented closer inspection).

[30.1.1]

Structure of NP . "One” can be parsed as nvar (in first parse) or q. I mark
the first parse as correct, though presumably the second is the truly correct
one. Will this create dufficulties for semantics?

Note that zerocopula analysis is prevented by requirement that predicate
nominal have nonnull In (compare ”"party a disaster” with ”party disaster”).

[30.1.3]
Scanner sichlem. Word-internal slashes not accepted.

[30.1.4)
Note that the requirement that In be nonnull, {w_nonnull_In}, eliminates
other serocopula analyses.

[30.1.5]
{w_nonnull_In} eliminates other zerocopula readings.

[30.1.8]
Comma is now allowed post-subject in zerocopula, which may add consider-
ably to the number of parses for zerocopulas and compounds.

[32.1.3]
Grammatical error . "Present” should have been ”"presents”. I assume
(without conviction) that "over temp” ‘is equivalent to "overheating”; thus it
is entered in the lexicon as an idiom.

The nn subcategorization for "present” has been removed from the lexicon,
as it sounds ungrammatical to me and contributes an additional 20 parses to
this sentence. However, addition of npn subcategorization adds parses.

The variety of parses arises from the various pn attachment possibilities, the

ambiguity of "start up” as an idiom or noun followed by preposition; and, of
course, the scope possibilities associated with conjunction.

[32.1.4]
The meaning of this sentence is unclear: are the pulsations really pulsations
in air pressure ? The sentence as punctuated would seem to have no other
analysis.
The correct analysis is assumed (without conviction) to be that in which
"with” is in pn object of "begin” and "under” is in sa.

[33.0.0] |
"Replace” would have to be entered as a noun to parse this header, but see
34.1.8 for consequences of this.

[33.1.1]
The gerund and ving/nvar readings are prevented by {d_nullLnsr} and

{w_ving_lnr}. -

(33.1.2]
Although the fourth parse is listed as the correct one ("when” in sa, "below”
in object), the first parse might be adequate ("when” in rn, "below” in sa).

[34.1.4]
' Although the fourth parse (sven object, "from” in pn object) is listed as the
correct one, the first is perhaps adequate: nstgo object, from” in sa.

(34.1.6]
What is "LA” here? Part of "TODD”? An abbreviated predicate of some
sort? A locative phrase? It is treated here as simply *n.
The first four analyses can be eliminated if "replace” is not categorized as a

noun (necessary for 33.0.0, which is perhaps a frozen phrase anyway; perhaps
an elliptical tv).

[36.1‘1]
Wagree should perhaps be modified to allow for plural verbs following
phrases like "a number of NP”. (In this case, however, the verb is singular.)
Shapes (#): 13 sac” is parsed incorrectly as [qpos + nvar|; a more complete
treatment of equipment names in this corpus is in order.

{d_lv} should be modified to rule out second parse in which "recently” is in
lv of "using”.

[36.1.2)
Note very long time (219 sec) to first parse. Correct parse is fourth.
& ' .{d_init_sa} disallows the reading(s) in which conjoined Inr's are flanked by
vingo sa's.
"As” is (incorrectly) treated as a conjunction in certain parses because it is
listed in the lexicon as a spword.)

[36.1.3)
Adverb problem . Again, "low” is parsed as an adverb in sa in the first read-
ing.
The very long parsing times need to be examined. (Note that times are shor-
tened by adding "sac engaged time limit” as an idiom — first parse in 71 sec,
100 sec to correct parse — rather than parsing sac (oddly but not really
inadequately) as an [lcda + ven].)

Also, there appear to be some duplicate parses.

[36.1.4]
The various well-formed but contextually incorrect parses generated include
analysis of "up” as preposition (rather than particle), and of "revealing ...”
as a gerund. (cf. "For years they talked about revealing the secret of their
great wealth”)

RS RO R

[”clo.l
. What does this mean? Xor will only allow the tvo reading.

o O

Ly i O

