
FILE CO(2)
MI usrch Note 87-26

M Knowledge Representation in
0 the PUPS Theory

I-

John R. Anderson
Ross Thompson

Carnegie Mellon University

for

Contracting Officer's Representative
Judith Orasanu

BASIC RESEARCH LABORATORY
Milton R. Katz, Director

DTTCELUCTICf
-1r- ji JUN 2 2 98

E
U. S. Army

Research Institute for the Behavioral and Social Sciences
May 1987

Aporowed for public release; distribution unlimited.

87 6 11-~ n

U. S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the

Deputy Chief of Staff for Personnel

WM. DARRYL HENDERSON

EDGAR. M. JOHNSON COL, IN

Techn"ca] Director Conumandu

Research accomplished under contract
for the Department of the Army

Carnegie-Mellon University

AcOession For

Technical review by NTIS GRA&I
DTIC TAB

Steve Kronhelm Unannoulced 0
justitfication-

Distribut ion/

Availability Code

Avail and/orD i Specia8l

Thus 9eO. as sub nmeed by the contrator. ho been cleared Il, release to Defense Technical Information Centel
(OTOC) to comlyv w'Eth regulatory eeqlairements. It has been given no primary dist ibulion other than to DTIC
ad will be available only through DTIC or other reference services such as the National Technical Information
Se eice (NTIS). The victn. c-Pnit' ns, and/or findings contained in this report are those of the author(ot and
should not be contireuj as an flfecie Cipalment of the Army position. policy. or decision. unless to designated
by Other official documenstion.

T '!

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wom De. S,.

REPORT DOCUMENTATION PAGE EKAD Cs'TRUCFORs
1. NPOTMUROER'T ACCESSION NO 3. ECIPIENT'S CATALOG NUMBER

ARI Research Note 87-26
4. TITLE (Md SINuabale) S. TYPE OF REPORT A PERIOD COVERED

Knowledge Representation in the PUPS Theory Interim Report
June - December 1986
S. PERFORMING ORG. REPORT NUMBER

7. AAI1ORte) S. CONTRACT OR GRANT NUMBER(e)

John R. Anderson and Ross Thompson MDA 903-85-K-0343

S. PERFORMING CRGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Department of Psychology AREA & WORK UNIT NUMMERS

Carnegie-Mellon University 2Q161102B74F
Pittsburgh, PA 15213-3890

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATS

U.S. Army Research Institute for the Behavioral May 1987
and Social Sciences, 5001 Eisenhower Avenue, ,S. gMBER OF PAGES

Alexandria, VA 22333-5600.
14. MONITORING AGENCY NAME 0 ADDRESS(If different boWn Ce*io 0UlNj Office) 1S. SECURITY CLASS. (of this report)

Unclassified
ISa. DEC. ASSI FICATION/ DOWN GRADING

SCH OULIE

1$. DISTRIBUTION STATEMENT (of ile Report)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrat entered In Block 0. Ii tftert m Report)

1. SUPPLEMENTARY NOTES

Judith Orasanu, contracting officer's representative

19. KEY WORDS (Continue an reverse side it necessryAb IenityII~ by block number)

vnowledge Jepresentation) "ProblemiS*'olving, Linguistics,
Procedural Knowledge, Communicatlon eogR44t-on
Declarative Knowledge, PUPS Analogy Syntax4
Cognitive Akills/ ACT Theory, LISP,

2.ASNT'RAC? (Cfums- tew'm f nemay , MW ~IEtt block uonber)
- This research note I concerned with the PUPS theory of cognition. PUPS was
developed from the ACTr theory in response to evidence about the importance of
analogy to cognition. This report follows a general discussion of representation
with a discussion of the analogy mechanism which drives the PUPS representation.
A formal specification of the PUPS representation is next presented, and finally
the connection between this representatipn and earlier propositional representa-
tions of the ACTI theory is discussed.

IM I3 EiTO OFI'V$ISOIO

DO D)43 I ori OFIV 65 ,, BSooETE UNCLASSIFIED

i SECURITY CLASSIFICATION OF THIS PAGE (When, ta Entere o

11 13

This Is a paper with two functions. Its primary function is to present a new theory

of knowledge representation which Is the foundation for the PUPS (Anderson & Thompson. in

press) theory of cognition. The second is to use the development of this theory as a case

for discussing the role of knowledge representation In a cognitive psychology theory. The

organization of this paper will reflect this dual function. It will begin with a discussion of

Issues of knowledge representation. Then we will turn to knowledge representation in the

PUPS theory.

PUPS evolved from ACT* (Anderson, 1983) In response to evidence about the

Importance of analogy to cognition. The knowledge representation Is designed to permit

development of the analogy process and to permit analysis of It. Therefore, the paper wilt

follow the general discussion of representation with a discussion of the analogy mechanism

that has driven the PUPS representation. Then we will present a formal specification of the

PUPS representation. Finally, we will close with a discussion of the connection between this

representation and the earlier propositional representations of the ACT theory (Anderson.

1976: 1983).

The Issue of Knowledge Representation

One of the major developments In cognitive psychology over Its behaviorist

predecessors Is the emphasis it has given to representation of knowledge. The basic Idea

was that not only Is it important that we postulate internal states but It is important how we

represent these Internal states. Thus. for instance, the propositional-imagery debate

(Anderson, 1978; Kosslyn & Pomerantz. 1977: Pylyshyn. 1973) was not a debate over the

Issue of Internal states. It was a debate over the issue of how to represent these internal

states.

Researchers' experience in developing cognitive models had convinced them that

2

hamal representation was absolutely critical. One example concerns the representation of

Issw array. Anderson & Bower (1973) had proposed that we represent a list like 'monkey

tiger giraffe cow donkey" as a series of propositions of the form

1. (monkey left-of tiger)
2. (tiger left-of giraffe)
3. (giraffe left-of cow)
4. (cow left-of donkey)

This led 1o the prediction that it would take subjects longer to make an inference

like "the tiger is left of the donkey" where they had to combine a number of these pairwise

orderings than to verify a sentence like "the tiger is left of the giraffe" where they did not.

No sooner had we put this prediction to ink than Potts (1972) published the first

experiments showing that just the opposite was true -- subjects judgements were faster the

further the terms were away. We were burned by our representational choice. There has

since developed a number of representational proposals to account for this phenomenon.

One (Holyoak & Patterson, 1981) basically assumes that subjects store the absolute position

of the objects on a dimension and then make their judgements by discriminating these

position values with the discrimination easier the further away the items are. Thus. in

simple form, the counter proposal might represent the list:

monkey -------- 0.0
tiger 1.0
giraffe 1.5
cow ---------------- 2.0
donkey -------- 3.0

To judge a pair, the subject would retrieve the positional values and discriminate them.

Discrimination was postulated to be a function of these positional values. The representation

has the Inner Items closer together because evidence indicates these are harder to

discriminate.

Despite clear case histories of this variety, there has not emerged a clear

understanding of what is critical about representential choice. The basic problem Is that

* . 3

r@pies$it nott such as the ones above are not self explanatory in that It Is not

cla what Is imrrant about them. Palmer (1978) has argued that a theory of

rpesentation needs to make clear what aspects of the representation correspond to what

apet of the represented world. Some aspects of the representation may be just "pure

notation" and have no significance. A reasonable question to ask of any representational

notation is what aspects of It are critical and what aspects are "Just notationp. Consider

the representation above for the linear ordering. Clearly, certain features like the length of

the line between the object and the number are just notation. Our representation would not

change If we replaced the lines by hyphens. What about the absolute values of the

numbers? Presumably there are some arbitrary aspects here too. Multiplying each by ten.

with appropriate changes in the rest of the theory should not result in any predictive

changes of the theory. Suppose we chose to represent the words by some number code

for each letter (as they are represented In the computer). So we might represent the

donkey -- 3.0 association as 4-15-14-11-5-25-3.0. This would certainly obfuscate scientific

communication but would not fundamentally change our theory of representation.

However, even when we have pinned down what represents what we really do not

have a psychological theory of representation. This is because a representation is a static

structure and makes no inherent predictions. Just one example of this Is the fact that we

can get the correct predictions out of the original Anderson & Bower representation by

appropriate choice of process. Wickelgren (1974) basically suggested how this might be

done. Suppose that we had an activation process that spread activation from the two

anchor points rapidly throughout the propositions (as McKoon & Ratcllff. 1979 have

suggested). Further suppose that the activation of the propositions directly attached to the

anchor points (1 and 4) was 1.0 and the activation of Ihe inner propositions (2 and 3) was

.5. This would reflect a decay of activation from the source. If time to judge the

4

st mn was a function of the sum of the activation of the propositions that were needed

to be composed to decide, then identical predictions are derived as from the dimensional or

positional representation.

There is an emerging consensus (Anderson. 1978: 1983; Newell, 1981: Pylyshyn.

1974; Rumelhart & Norman, 1984; Simon, 1978; Simon & Larkin, In press) that there are

two ignificant issues in a representational theory. One concerns the correspondence aspect

of a relationship between the representation and the world It represents. The second

concerns the processes that operate on that representation. We will refer to these as the

correspondence aspect and the process aspect of a knowledge representation. Two

representational systems are different with respect to their correspondence aspect if they do

not preserve the same distinctions in the represented world. Thus. If we had a

representation that encoded Identically the order "A-B-C-D-E" and Its mirror image "E-D-C-B-

A" this representation would predict that subjects show left-right confusion -- a prediction

which neither of the previously mentioned representations is committed to. As another

example one could make the positional representation contain more information than the

propositional by appropriate assumptions about encoding processes. If the actual numbers

could be influenced by factors like length of pauses. then it could encode discriminations in

the environment not possible in the propositional representati,)n without some embellishment.

So. a very real psychological decision in choosing a representation is what discriminations it

preserves among external events.

There are two ways that theories have developed the correspondence between the

world and the representation. The more common is a set of assumptions. often informal.

prescribing what the correspondence is. However, it is also possible to specify the encoding

processes that map stimulus inputs into cognitive representations. In this case the

correspondence aspect of a representation becomes a special case of the process aspect of

5

a representation.

While the representation is Important, In practice the importance of representational

choice turns more on assumptions about the Internal processes that operate on the

representation. It is really these processes which give a representation its psychological

significance. If ve choose a set of processes for one representation that are isomorphic to

the set of processes for another representation then the two representations really are just

notational variants no matter how different the marks on the paper look. On the other hand

what might appear to be a trivial superficial difference between representations can be

significant If there Is a significant difference in the processes that respond to that distinction.

So the length of the line in the earlier example (p. xxx) might really matter if it Indicated

strength of association.

If two representations make the same discriminations among referent states and it

they have the isomorphic processes operating upon them, then they represent essentially

notational variants of the same theory. However. the notational choice is not Insignificant.

The major function of notation is communication -- both among scientists and within a

scientist (as he or she read their notes to themselves). A representation should be

fashioned to make salient the features used by processes defined on that representation and

to facilitate analysis of these processes. Choices at this level determine not the predictions

of theories, but the ease with which they can be derived and communicated. This is to say

that while much of a representational theory is just notation, it is not without substantial

consequence.

The evolution from the ACT* representation to the PUPS representation is a case

in point. We began working on analogy within the ACT' representation but found that th,

representation was obfuscating essential features of the analogy process. In reworking the

6

represe we found tht we not only clarified analogy but clarified other new issues

about knowledge acquisition and clarified some of the older issues in ACT*. So we now

are In a position to provide a more cogent analysis of representational issues. new and old.

Analogy in PUPS

PUPS (Anderson & Thompson, in press) is a production system much of the

character of ACT* - it has a declarative memory of factual knowledge which is operated

upon by a production system encoding procedural knowledge. For current purposes its key

new feature Is that It has an analogical mechanism which allows It to derive new declarative

knowledge in analogy to old declarative knowledge. Giw that the PUPS representation has

been principally motivated to facilitate analogy, it Is important to explain the basics of PUPS

analogy before launching into an extensive discussion of representation. However, an attempt

to discuss analogy process first creates a bit of a chicken and an egg problem in that we

will be Informally using the new representation to describe the analogy process. Then with

this analogy process in place, we will turn to a formal development of the complete

knowledge representation.

Analogy in PUPS is very much tied to the view of the person as a problem-sover.

Analogy tends to be invoked in response to various problem-solving situations. Therefore,

the development of analogy will build on examples that are essentially proble.)-solving in

character. The basic idea is that people can solve new problems by analogy to worked-out

examples of solutions to old problems. In domains we have studied such a geometry

theorem-proving (Anderson, 1982) or LISP programming (Anderson. Farrell. & Sauers. 198-1

this seems to be the dominant means that students employ to tackle the solution of novel

problems.

Analogical problem-solving in PUPS assumes that problems are represented as

* S 7

* forms achievng Particular functions under certain preconditions. We can encode this

Information about examples In schema-like Structures where function, form, and precondition

are three slots among others in the schema-like representation. Below Is Illustrated the

representation we might want to Impose on the example LISP code (+ 2 3)

structure I
isa: function-call
function: (compute add 2 3)
form: (list + 2 3)
context: Common LISP
medium: CRT-screen
precondition: context: Common LISP

It is represented as a function call that adds 2 and 3 in the context of Common

LISP and which was executed on a CRT screen. The form information states that the

example is a list structure consisting of the symbols "+ . '2', and '3'. The precondition

Information states that It Is essential that the context be Common LISP for this form to

achieve Its function. It would not succeed in INTERLISP, for instance.

There is a basic semantics underlying the relationship among the form, function.

and precondition slots. This semantics Is that jointly the form and the precondition Imply

the function. We can represent the example above, for instance, by the following production

rule:

IF goal is to achieve the function (compute add 2 3)
and the context is Common LISP

THEN use the form (list + 2 3)

that Is, implicit in the example is a production rule.

Extending an Example

The basic task of analogical problem-solving is to take an example of a problem

solution and extend it to a new situation. This amounts to varlabilizing the production rule

Implicit in the example. For instance, suppose we wanted to add 6 and 3. The production

rule we want is

8

IF the goal is to achieve the function (compute add x y)
and the context is Common LISP

THEN use the form (list + x y)

In general PUPS wants to extract from examples production rules in which all the terms in

the example which fail to match the desired function in the target problem are replaced by

variables which do match.

PUPS could always appropriately variabilize the example to satisfy this criteria but

at the cost of spuriously extending examples. There has to be a reason to suppose that

the example above can be appropriately variabilized without spuriously extending It. Note

that in the example above 2 and 3 appear in both the function and the form. This is

critical to the induction that replaced them by x and y. The inductive principle underlying

this is what we call the no-function-in-identity principle. The basic idea is that it is not an

accident that 2 and 3 appear in both function and form. It is their position in the form

and not their identity which achieves their function. The analogous function would be

achieved by any elements that appeared in the form. Thus. the "no-function-in-indentity"

principle allows us to respond to the appearance of a constant value in both form and

function of the example by replacing it everywhere by the same variable.

The example above is simple in that it can be transformed into a rule just by

variabilizing terms that appear in that structure. However. in most interesting cases of

analogy, the terms that appear in the function do not directly appear in the form Rather it

is necessary to elaborate the form and/or function descriptions to come up with a

representation that can be variablized. For instance, suppose what we wanted to achieve

was to multiply 6 and 3. The above variablized production would have a mismatch between

"add" and "multiply". PUPS can get over this hurdle if it has encoded that

implements "add" and "*" implements "multiply". encoded by the following PUPS

structures:

9

isa: LISPfunction
function: (implements plus)
form: (TEXT +)

isa: LISP-function
function- (implements multiply)
form: (TEXT *)

One can embellish the representation of the plus example by Including this

information about the function of the + symbol:

IF goal is to achieve the function (compute add 2 3)
and the context is LISP

THEN use the form (list = function 2 3)
where =function implements add

Note that the "+- has been replaced by the variable "-function" and "-function"

has been given the functional description of "+". This reflects the second Inductive

principle in PUPS analogy, which we call the principle of functional elaboration. The principle

is that any term which achieves the function of the replaced symbol will do. This

production rule can now be variabilized so that it will extend to the problem of multiplying 6

by 3:

IF the goal is to achieve the function (compute =op =x =y)
and the context is LISP

THEN use the form (list =function =x =y)
where = function implements =op

The constraint "=function implements =op" can be satisfied either by inserting a term

which satisfies this function or setting a subgoal to find such a term.

Note that in extracting this production rule from the example and matching it to

the problem we have in fact calculated the following mapping of the example onto the

problem:

add .- > multiply
+ ... >

2 --- > 6
3 --. > 3

10

Thus, we have performed the analogy defined by this mapping. However, it is useful to

Identify the formal rule underlying this analogy. By doing so we more clearly identify the

Inductive principles. PUPS actually does form and retain these productions as a product of

its analogy. These productions are basically proceduralizatlons In the sense defined In

Anderson (1983). That Is, they eliminate the need to make reference to a declarative

structure in a repeat of a computation. In this case. the data structure eliminated is the

PUPS encoding of the example. Subjects do show a dramatic Improvement in their

problem-solving after using a single example and tend to drop out reference to an example

in the subsequent problem-solving episodes (Pirolli, 1985).

Using Analogy to Infer Function from Form

What we have discussed was finding a form to achieve a desired function. One

can use the same analogy mechanism to infer the function of a novel form. This amounts

to "understanding" the form. The following example. adapted from the dissertation research

of Shrager (1985), shows analogy operating in this fashion. Subjects were presented with a

tank that had the keypad in Figure 1. They determined that the key labelled with the up-

arrow moved the tank forward and they had to figure out what the keys with the down-arrow

and left-arrow did. Below we have PUPS structures that purport to represent their states of

knowledge:

example
isa: button
function: (MOVE forward)
form: (LABELLED up-arrow)

up-arrow
isa: symbol
function: (POINTS forward)
form: (IMAGE thingi)

problemI
isa: button
function: ?
form: (LABELLED down-arrow)

.1w I

* 6 11

down-arrow
lsa: symbol

function: (POINTS backward)
form: (IMAGE thing2)

problem2
isa: button
function: ?
form: (LABELLED left-arrow)

left-arrow
Isa: symbol
function: (POINTS leftward)
form: (IMAGE thing3)

The example Is encoded as an up-arrow with the further information that an up-arrow is a

symbol which conventionally means forward. The functions of the other two buttons are not

represented but we have represented the conventional knowledge that down-arrows symbolize

backward and left-arrows left.

Insert Figure 1 about here

We can represent the knowledge encoded by the example by the following

variabilized production:

IF there is a structure with form (LABELLED -symbol)
and = symbol points in - direction

THEN the structure has the function (MOVE -direction)

This production can be extracted from the example using the "no-function-in-identity"

principle and the principle of 'functional elaboration" and just switching the form to the

condition and the function to the action side of the production. This production enables us

to infer that the function of the problem1 button is to move backwards. Similarly we can

Infer that the function of the problem2 button is to move left As it turns out. only the first

Inference was correct. The left-arrow button did not actually move the tank in the left

direction but rather only turned it in that direction This is an example of where the "no-

function-in-identity" assumption was violated Some buttons moved the tank in the specified

12

direction and some turned. One simply had to learn which did which. The actual identity of

the direction determined the function of the button. This just proves that PUPS analogy has

the danger of any inductive inference. The important observation Is that human subjects in

Shrager's experiment also made this mis-analogy.

Knowledge Representation in PUPS

Analogy as described is a process that operates on declarative knowledge

structures. For its success, it assumes that these knowledge structures are going to

predictably contain Information about form and function. Thus, use of analogy Imposes

some well-formedness constraints on the knowledge representation. Moreover, because It

creates and stores production rules to summarize the analogy, these well-formedness

constraints are propogated to the production rules. Therefore, it should not be surprising

that considerations of analogy have played a key role In the evolution from the ACT*

knowledge representation to the PUPS knowledge representation.

We will now turn to a formal development of the PUPS knowledge representation.

We will essentially achieve this development by presenting a grammar for the syntax of the

knowledge representation. As we do so we will describe the semantics and significant

psychologl'al correlates of these syntactic distinctions. As forecast in the introduction, these

psychological consequences will turn out to be the correspondences between these

structures and the external world and the processes associated with the syntactic

distinctions. In Identifying these consequences we will be in part restating points associated

with the ACT, theory and in part stating new PUPS insights. The representation has

evolved more drastically than just what would be needed to accommodate the new insights

This extra evolution is part of an effort to clarify the significant issues underlVina our

representational theory.

13

In describing the correspondence of these structures to the external world It

becomes Important first to communicate our conception of the external world. This we refer

to as the ontology~ assumed in the PUPS theory. Basically we view the world as comprised

of specific elements such as objects, events, or more abstract entitles such as goals.

These elements are Involved in three types of relationships. First, they can possess a

number of one-argument attributes such as color, size, duration, force, etc. Secondly, there

are a number of predicates which Indicate causal relations between elements. Thus. a goal

might cause an action or one event might cause another. Third, these elements participate

In constituent relationships such that one element Is composed from other elements In some

configuration. Thus, a room might be composed by wails, floor, and ceiling in particular

configuration. A hockey game might be composed of a sequence of three periods. The

knowledge structures we will be defining encode such relations directly or abstractly.

Table 1 presents the rewrite rules of the PUPS knowledge representation. Below

we discuss each of these rules separately. The agenda in each discussion Is to describe

how the PUPS processes respond to the features created in that rule.

Insert Table 1 about here

The Procedural-Declarative Distinction

The procedural declarative distinction is clearly the most fundamental in the PUPS

theory and Its ACT predecessors with productions defining the procedural component.

separate from the long-term declarative component. However, It is another issue what

fundamental psychological claims hang on that distinction. It has been known for some time

now that a theory which had a long-term memory consisting solely of production rules and

just a declarative working memory could do a fair job of mimicking a theory like PUPS

which also has a declarative long-term memory. As a simple example. consider the

14

following ACT' example of reasoning about body parts:

Suppose we have stored in declarative long-term memory:

Aristotle was a human.
Humans have color vision.

We assume that while we know these two facts we never have had cause to

combine them before. However. we do have a production rule that would combine them on

demand. It has the basic form:

PI: IF the goal is to decide if - obj has =component

and - obj Is in a - category
and - category have = component

THEN =obj has =component

Now if "the goal is to decide if Aristotle had color vision" appears In working

memory, activation would spread from "Aristotle" and "color vision" to activate the two

declarative facts and bring them into working memory and then the production above could

be matched and we would add the fact Aristotle has color vision to working memory.

We can get the same effect in a pure production system if we replace the two

declarative facts by the following productions:

P2: IF Aristotle is mentioned in working memory
THEN add to working memory the fact that he is human

P3: IF color vision is mentioned in working memory
THEN add to working memory the fact that humans have color vision.

Effectively, we encode in a production rule both the declarative fact and the

spreading activation process. Fundamentally. there is no difference between a theory with

such retrieval productions and a theory like PUPS. However. the mimicking "all-production"

system really has a procedural-declarative distinction built into it. These declarative-retrieval

productions are distinct from other productions and basically encode the declarative

15

knowledge. They are distinct because they deposit information into working memory In

response to the mere mention of one of the working memory elements. This is what is the

distinguishing feature of declarative knowledge -- that it is available In response to mere

mention of elements in working memory and does not have its availability restricted to a

specific encoded use.

So the basic claim is that whether we have an explicit declarative-procedural

distinction In the represen ition or not there are two types of knowledge which can be

distinguished by how the knowledge is treated. This difference in the treatment of

knowledge results In a number of phenomena that have been associated with the distinction

between declarative and procedural knowledge:

(1) Conscious Report. It is frequently commented that one can report out

declarative knowledge and not procedural. This Is true whether one has an all-production

system or not. In the all-production system the declarative productions deposit a

representation of what they know in working memory. This Is in contrast to most

productions which deposit In working memory a consequence of what they know. Looking at

the consequence of P1, "Aristotle had color vision", we are In no position to report the

knowledge that gave rise to it.

(2) General Availability. Declarative knowledge is distinguished by the fact that

access to It Is not restricted to a particular use of the knowledge. This general access is

a consequence of the fact that the knowledge appears in working memory response to the

mere mention of Aristotle. We do not test for the context in which it appears unlike other

productions.

(3) Working Memory Limitation. Because declarative knowledge must be deposited

In working memory to be used, limitations on maintaining information in declarative memory

will result In limitations In using declarative knowledge. There is no similar limitation on the

procedural knowledge case. This leads to the lesser capacity demands of proceduralized

knowledge (Anderson, 1982).

So, in summary, any system which treats the two types of knowledge differently as

in PUPS, has a procedural declarative distinction -- whether or not it actually uses these

terms and whether or not it uses distinct notational systems for the two types of knowledge.

To facilitate scientific development we use distinct names and distinct notation.

The subsequent discussion will first develop the declarative representation and then

the procedural representation which is defined In terms of the declarative representation.

Declarative Structures

Declarative memory just consists of a set of declarative structures. As we will also

see, declarative structures also turn out to be the principle building blocks In defining the

productions that constitute procedural memory A declarative structure has as its reference

one of the elements that constituted the ontology of the real world that we sketched out

earlier. A declarative structure has an internal structure basically to encode the attribute.

causal, and constituent relationships we believe it bears in the real world. However. from

the outset we want to emphasize our view that declarative structures refer to specific things

in the world. One cannot have. in our view, declarative structures which encode general

categories of things.

It Is a fundamental postulate of our system that declarative knowledge structures

describe specific things and not abstractions Thus on the centuries.old debate between

general and specific knowledge representations we come down in favor of the specific The

reason for this is two-fold. First. we cannot see any principled way for learning abstract

declarative structures. Second. given the abstractions produced by the analogy process ard

17

the abenction encoded Into the production systems, this does not appear to be necessary

to account for any phenomena that we have been able to think of.

As rule (2) from Table 2 Indicates, a PUPS structure consists of an obligatory

label, one or more optional types, an optional form. one or more optional function attributes.

and preconditions. Form and attribute information were part of the declarative knowledge

structures of ACT* where knowledge was chunked into hierarchies of structures where each

structure consisted of elements in a particular form. Figure 2 illustrates a few ACT*

structures drawn from Anderson (1983) and their rendition in the PUPS representation.

Insert Figure 2 about here

The label is purely a notational convenience for communication on paper.

Structures can appear as parts of other structures. Rather than actually embed the

structures we put in the structures label So. for instance, in Figure 2a. the label tall

appears in the form slot of NPI rather than embedding the tall structures itself Thus.

labels are effectively pointers in the computer science sense.

Form information is basically information about how the structure is composed and

attribute information tells us non-compositional properties. The function and precondition

information basically provides an interpretation of the static description contained in these

other two elements. The basic claim is that humans have a natural tendency to attribute a

function to everything they see. A function is basically a description of the forms position

in the causal structure of the universe. PUPS has a set of primitive mechanisms for making

causal inferences which record that certain things cause other things. This is recorded in

the PUPS knowledge structure by attaching functions to the knowledge structures that

encode the form of the things involved in the causation As we discussed, the PUPS

~i

* '18

analogy mechanism reason either from the appearance of forms to what function they might

serve or from the existence of needed functions to the shape of forms that will achieve

them. As In the case of the procedural-declarative distinction, it is not the terms wform-

function" nor the notation that Is critical to this knowledge representation. It Is how they

are used by processes like analogy.

Implicit in almost all theories of human problem soMng has been a form-function

distinction. These theories have been concerned with how problem-soMng operators are

deployed to achieve certain goals. Any adequate representation of an operator requires a

specification of the form of the operator so that It can be successfully executed and the

functions for which It was useful. So, in past research on problem-solving with ACT*, we

had already embeded into the theory a form-function distinction. All that we have done in

PUPS is to make that distinction explicit in the notation.

The precondition information is tied into the need for discrimination learning in

ACT'. Basically, there are certain constraints on forms achieving their functions and the

precondition information is a repository for this information. Frequently. this precondition

information requires reference to critical attributes of the structure. This was the case in

the example earlier where the precondition for the code to work was that the value of the

context attribute be Common LISP.

ACT* also required a means for recording discriminating information. In that theory

this was done in production memory. So the significant change in PUPS is the change of

that discriminating knowledge to a declarative status. This decision is based on data (e g..

Lewis & Anderson. 1985) which indicates that subjects have declarative access to the

knowledge which underlies their discrimination

19

Types

The distinction between types and functions is purely notational. PUPS treats tvoes

as zero-argument functions. The reason we separate it out is we find type information

useful in communicating to our audience the basic function of the object while other

functional descriptions give more specific information. Thus, we postpone any further

discussion until we get to describing the function slots (Rules 9 and 10)

Forms

Every form consists of a template with zero or more arguments (Rule 5 in Table

1). In line with chunking data reviewed in Anderson (1983) and the arguments of Broadbent

(1975), we set a bound of five on the number of argument elements that can be combined

into a single form. Structures consisting of more elements have to be represented

hierarchically with structures embedded as elements within the forms of other structures.

There are two essential properties of this form representation. First, the arguments

to the template are ordered. This means that it is not possible to represent directly

unordered sets. This assertion is really an assertion about the processes that operate on

the contents of the form slots. The assertion is that these processes are position-specific.

For instance. in matching a production condition we can match an object in a certain

position with a form but we cannot match an object in a position independent manner.

Position-specific matching is a serious restriction in that there are many cases

where the knowledge representation would be more powerful if one could represent set

structures that were not position specific. As a simple example. addition is a relationshio

that does not order its arguments and one can reason much more effectively about addition

with unordered arguments. However. the evidence is that children initially order the

arguments of an addition operation and only later learn how to get around the limitations of

.9 p p p . - " A(,u

20

their cognitive representations and treat addition as an unordered process.

The second critical feature of this representation is that there is a bound on how

many elements can be combined In a particular form. Exactly how elements are combined

has important consequences because of PUPS' spreading activation retrieval process which

was Inherited from ACT*. Activation is defined as a property of a structure and spreads

from structure to structure through the elements of their forms. Thus, if element A and

element B are In the same form they will be activated together and spread more activation

from one element to another than if they were separated by being In different substructures.

Cognitive psychology Is rich In empirical research demonstrating the consequences of such

chunking for the availability of knowledge.

One of the things the PUPS theory does not specify, any more than did Its ACT

predecessors, is how knowledge will be chunked. Knowledge structures are created either

by perceptual processes or production firings. The forms created by production firings can

be traced back to perceptual encodings. So the point is that we have no theory of how

perception will chunk experience although there are a great many people working on the

principles of such perception. Certain principles such as the Gestalt principles of similarity

and proximity are well-known and serve as rules of thumb for predicting the chunking of

specific cases. Thus, we can be fairly confident of how the string XXYYY YYXXX will be

chunked Independent of any carefully worked out perceptual theory.

Templates

The ACT* theory of representational types lies in the choice of templates (Rule 6

In Table 2). There are at least three representational types in the PUPS. One is the

ACT* temporal string which is a simple list of elements. The template identity associated

with this type is "sequence". The basic idea here is that one can encode the order of

21

events in an ordinal-type representation which encodes the order of events but not their

exact interval positions.

The second type of template is the figure template which encodes a spatial image.

As described in the ACT* book, a spatial image is an encoding that preserves the spatial

configuration of an array of elements. It is not modality-specific. As such it is not explicitly

associated with the visual modality. It is also not size specific. Rather size Is an attribute

of spatial images. Despite these abstractions, there are potentially an infinite number of

spatial images corresponding to ever so subtle distinctions in the placement of up to five

elements in a three dimensional array. For the arguments in favor of this structure, consult

Anderson (1983?)

We know now no better than in 1983 how to really approach the encoding of

spatial images. My solution has been largely one of punting on the issue by creating a

different token of the figure template to correspond to each exact spatial image and leaving

it up to undefined production system pattern matching apparati to decide when one template

is basically a match to another template. Thus. for instance, it is left undefined just what

images will be considered as exemplifying a match to the letter A.

The third type of template is the action template by which the system can describe

actions such as moving a hand. This is like the motor code that Anderson (1983)

speculated might exist. In general such a code is quite critical to describing problem-

solving actions. However. we have even less of a theory of such a code than of the spatial

code. In PUPS we simply have different action templates to code different actions iqnoring

such issues as how similarity among different actions might be computed.

The one kind of code that is conspicuous by its absence is a propositional code

In Anderson (1983) this was a third representational type. However, as will be discussed at

22

the end of this paper, In PUPS propositional Information exists as functional interpretations

of the form slots.

The form slot of a structure Is supposed to represent a decomposition of

experience into elements unaffected by any learned capacity for interpretation. However,

propositional representations are learned Interpretations par excellence. Most of the

predicates we use In propositional encodings (such as buy. read, drive) are derIved from

experience and are not templates with which our perceptual systems naturally package

experience. The form descriptions in PUPS are supposed to represent raw recordings of

experience. Their functional descriptions represent learned interpretations.

One Interesting consequence of this knowledge representation Is that it produces a

reduced version of the ontological categories described by Keil (1979). In particular.

predicates that refer to the structure of one type of template cannot apply to the others.

For Instance. predicates about spatial structure (on the right side of X) are only appropriate

to those templates: predicates about sequence (the second thing to happen) are only

appropriate for those templates. and predicates about agents (is X's fault) are only

appropriate for agents.

Note that the arguments in a form slot are pointers (labels) to additional Structures.

potentially with form slots themselves. The embedding does not go unbounded because at

some point we will hit a structure which does not have a form description. This does not

mean that it could not have such a description and the potential always exists that PUPS

will embellish it with a form description. In some sense the representation assumes that

things will decompose into smaller things without limit but this decomposition is always

represented in a finite human head in some finite, incomplete form. In PUPS. unlike the

original associative analysis of knowledge (for a review see Anderson & Bower. 1973). there

23

are no primitive atoms.

The essential claim in this theory is that it is always possible to represent elements

In Increasing detail. While this capacity for attaching form descriptions to elements in ever

more detail is a particularly transparent way to achieve this. it is by no means the only one.

Any representation system which allows for ever more refined descriptions of structures is

equivalent to PUPS with respect to this representational assumption.

Attributes

An attribute can be the presence or absence of a value in some dimension (Rules

7 & 8 in Table 1). Again we have by no means a complete listing of the possible

attributes of a structure but they include quantity measures like the duration of a temporal

interval, the size of a spatial structure. or the force of an action. They can also include

features such as color, pitch. location, and time. Basically. in the distinction between form

and attribute we have revived Locke's distinction between primary and secondary qualities.

somethifig that has been with psychology throughout the generations.

The significance of the distinction ties in the PUPS inference mechanisms which

have as a first assumption that the form properties are relevent to the structure's causal

properties and only consider attribute information when discriminations are required to limit

false generalizations based on just form information. Thus. as a novel first assumption we

will believe a tool's shape is more critical to its function than its size, weight, or color

although we are prepared to learn otherwise. Any representational theory which imposes an

ordering on the properties of an object with respect to causal inference is equivalent to the

PUPS theory in this respect.

24

Function

A functional specification (Rules 11 & 12 in Table 2) consists of a relation and

some number of arguments. The arguments. according to the rules above, are just PUPS

declarative structures. The interpretation Is that the structure whose function this is bears

specified relationship to the argument structures.

It is our belief that there is a single primitive relation, cause. and its Inverse.

caused-by. This Is a viewpoint expressed many places over the past 20 years (refs). More

complex relationships can be decomposed into a set of causal relationships. For instance.

this is how we have represented an example of the LISP function CONS:

structurex:
function (insert a (b c))
form (LIST CONS ' a (b c))

There are a number of compositions in this representation but the one of concern here is

the two argument insert relation in the function slot. A decomposed relationship would have

the structure causing the insertion of a into the list (b c):

structurex:
function (cause eventx)
form (LIST CONS ' a ' (b c))

eventx
function (cause (a b c))
form (putin computer a (b c))

where putin In eventx describes an action. Causality is fundamentally a two argument

predicate In which one thing causes a second. We already have one thing in the structure

whose function we are specifying. Thus, there is only room for specifying one more thing

in the function slot. Thus, any system of representation that gives causality the same

central role would be equivalent to PUPS here.

The assumption of cause as the sole basic relation means that it is the only one

for which we have an innate predisposition to insert between elements of experience, The

ability to attribute composed relationships is acquired from use of language as is the ability

25

to recognize composed categories. The basic assumption is that when we have a sentence

like "This LISP code Inserts a into the list (bc)" we identify the phrases (This LISP code, a.

Into the list (bc)), the referents of these phrases, and the relational term (insert). We create

a function which consists of this relation and arguments which are the referents of the

remaining phrases (e.g., insert a (b c))). This functional description gets attached to the

referent of the sentence subject (e.g., (CONS 'a *(bc))).

The following are the structures that would be created when we add the insert

relation as another way of representing the function of structurex:

structurex:
function: (insert a (b c))
z : (cause event x)
form • (LIST CONS ' A ' (B C))

eventx:
function: (cause (a b c))
form : (putin computer a (b c))

By computing form-to-function and function-to-form analogy we would learn the following rule:

P1: IF structureX
function: (insert X Y)

THEN = structureX
form: (LIST CONS ' X ' Y)

P2: IF structureX
function: (cause structureZ)

struct, ireZ
form: (putin computer X Y)

THEN structureX
form: (LIST CONS X Y)

P3: IF structureX
form: (LIST CONS X Y)

THEN structureX
function: (insert X Y)

P4: IF structureX
form: (LIST CONS "X Y)

THEN structureX
function: (cause structureZ)

structureZ
form: (putin computer X Y)

26

Compo*1ng I and 4 we learn the following rule for structural refinement:

PI&P4: IF structureX
function: (insert X Y)

THEN - structureX
function: (cause structureZ)

structureZ
form: (putin computer X Y)

Similarly, composing 2 and 3 we learn the following rule:

P2&P3: IF structureX
function: (cause structureZ)

structureZ
form: (putin computer X Y)

THEN = structureX
function: (insert X Y)

All Insert offers is a more compact way of encoding information. Nonetheless, this can be

an important feature when we are in situations where successful processing requires

minimizing the amount of information to be held active in working memory.

Precondition

The final declarative feature is the potential for various preconditions on a form

achieving a particular function (Rule 11 in Table 1). These are basically notes the system

takes to itself about the limits in the range of applicability of an example. The form of the

note is simply for the system to record that a particular piece of declarative structure is

critical for this form achieving its function. Thus sitting in the precondition slot is just a

piece of declarative structure.

The following is a classic example of how a system should represent to itself how

to arrange for block2 to be on block1:

action
isa: move
function: (achieve stack blocki block2)
form: (move person block1 topblock2)
precondition: (topblock2 attribute clear)

block1
isa: block

27

form: (block topblockl bottomblockl ...)

block2
Isa: block
form: (block topblock2 bottomblock2...)

topblock2
isa: surface
attribute: clear

where topblockx and bottomblockx refer to various sides of blockx.

Essentially, we have represented a person moving block1 to top of block2 to

achieve the state of block1 on block2. However, there is a precondition represented -- that

the part of block2 which is its top must have the attribute of being clear, Storing this

precondition will prevent this action from inappropriately being used as an anological model

in future problem-solving.

Perhaps the most critical feature of this way of representing discriminating

information is that it is declarative and something available for reporting. Thus. this

representation has embedded the claim that we can identify the features that are critical to

a form achieving its function. One of the major criticisms we had of the ACT* theory was

that it did have conscious access to the discriminating features it was acquiring whereas

subjects appeared to have such access (Anderson & Lewis. 1985). Any knowledge

representation that embeds this claim is essentially isomorphic to PUPS on this score.

Negation

Note that attributes, functions. and preconditions can be optionally negated (Rules

7, 9, and 11 in Table 1). A negated attribute encodes that a structure does not have a

particular attribute. Thus, we might note of a dog that it doesn't bark. A negated function

encodes the fact that a form negates a certain function. Contraceptives would h

represented with certain obvious negating functions. A negated precondition encodes the

fact that a certain declarative structure must be absent for a form to achieve its functions.

28

Procedural Structures

Procedural knowledge In PUPS (Rule 13) takes form of the traditional production

rule of a condition and an action. Basically. if the pattern described In the condition exists

In working memory the data structures specified in the action will be added to working

memory.

The production rule embodies a certain piece of knowledge just as does the

declarative fact. The essential difference between the two Is the asymmetry Imposed by the

condition-action structure. Knowledge evoked In one circumstance where the condition

matches need not be available in another. For instance. McKendree and Anderson found

subjects who learned how to evaluate LISP expressions but could not turn that knowledge

around for purposes of generation of LISP expression to achieve desired evaluations.

Declarative knowledge, on the other hand. can be equally evoked in all circumstances. The

advantage gained by the inflexibility of procedural knowledge is efficiency.

Condition

The condition of a production is just a description of a set of declarative structures

(Rule 13 in Table 1). Basically, it is significant that production conditions make no

reference to anything but standard declarative structures. In particular, there cannot be

reference to things like goal structures as there was in ACT*. This In PUPS is the

embodiment of the claim that the control of behavior lies in the structures that the behavior

Is operating on.

It Is also significant that the condition is basically a conjunction of tests for the

presence or absence of declarative structure. There cannot be any more complex Boolean

functions. As one instance, suppose we wanted to recognize that A was B's uncle. The

following is the predicate we might want to write:

29

IF OR [, A: function (brother-of - C)
{ - A: function (husband-of a D)

• D: function (sister-of - C)f]
OR I { C: function (father-of - B)J

, C: function (mother-of - B))
THEN A: function (uncle-of - B)

This production has compressed into it the four possible ways A can be B's uncle.

It is a conjunction of two OR's which is not allowed in PUPS. Rather PUPS would have to

have four separate productions to recognize the four possibilities. The significance of this

representational claim is that the child would have to learn separately the four possible rules

for classifying uncle.1 Thus. this feature of PUPS productions produces the well

documented conjunction bias in human cognition (ref.)

Another important feature of these production rules is the way they treat negation.

The following would be a legal production condition (or component of a condition):

= person
-health:sick

This tests for the existence of a person of whom it is explicitly stored that the person is not

sick, (i.e., the person is healthy). Thus, we can explicitly test for explicitly negated

structures in memory. This is the only kind of explicit negation test that we can have.

What we cannot do is explicitly test whether it is not known that the person is sick. That

is, we cannot explicitly test for implicit negation in the data base (i.e., knowledge negated

because It is absent). The only way to test for implicit negation is by conflict resolution

among two productions. So. if we had the following three productions.

production 1
- person I

health:sick
status:queried

tThis, of course. is only an acctirate claim tinder certain repr.-sentations If we had a predicate like parent- f
we would avoid the need for separate mother and father Productions.

1111111111~ .r!- 1I 11 i l 1 il1111 1 19 111 111" 11111 l l

30

production2
- person2

-health:sick
status:queried

production3
-person3

status:queried

say "don't know*

Then productions 1 and 2 would take precedence over 3 because they are more specific.

Thus, production 3 would only fire If 1 or 2 did not match. Thus, in PUPS we can only

implicitly test for Implicit negation. Consult Anderson (1983, Chapter 3) for evidence for this

way of making absence judgements.

Variables

The one way that the data structures in productions differ from the data structures

in declarative memory are variables (rule 14 in Table 1), the symbols prefixed by --

These are elements Introduced by the no-function-in-identity principle of analogy or the

principle of function elaboration. The no-function-in-identity principle causes a variable to

replace a constant when the same constant would appear on the left and right hand side of

a production. The principle of functional elaboration creates variables when a constant has

its functional structure specified. In either case variables essentially permanently encode in

the production rule the generality assumed by the analogy process.

There are two ways variables can be treated in pattern matching. We can either

allow the same constant to match to more than one variable or not. As In the ACT*

pattern-matcher we allow the same constant to bind to more than one variable. This means

If we learn a rule about subtracting two members of the set:

IF the goal is to subtract =x from =y
and = x + =z equals = y in the addition table

THEN the answer is .z

- MA

31

This rule will apply even when - x and - z happen to bind to the same number. It seems

essential that we treat variables in this way for production like the above rule to work.

Action

As is the case with the condition of a production, the action is just a set of

regular declarative structures with no special embellishments (Rule 15 In Table 1). Perhaps

the way to appreciate the significance of this is to consider the things that might have been

part of a production action (and indeed are in other production languages) but which are

not in PUPS:

Deletion. Many production languages allow one to delete structures from working

memory. This can be a very effective device for the purposes of avoiding clutter In working

memory and controlling flow of the production system. PUPS continues the ACT* tradition

of an add-only memory. Read referenss for the arguments that this is a feature of human

memory.

Goal Manipulation. While ACT* had no facility for deleting regular structure it

could reset pointers in a goal stack (resetting amounts to a deletion followed by an add).

This is not part of PUPS, since it has no goal stack. Basically. ACT' was too inflexible in

its order of processing information. As Van Lehn (ref) has documented for the domain of

subtraction and as seems true in other domains people can show considerable flexibility in

the order in which they execute a well-learned skill.

Direct Actions. Many production systems can take direct actions in the external

world as well as add to working memory This is not possible in the PUPS architecture

Production system actions can deposit requests for action in working memory which can be

acted upon by motor routines. However. the buffering of these action requests in working

memory gives the system a moment to reflect on what it is about to do and to abort these

32

Intentions if that seems wise.

As in the condition side of productions, the one difference between the syntax of

production actions and regular declarative structures is the possibility of variables. Variables

in the actions that occur on the condition are replaced by the constants they bind to in the

condition. When a variable occurs in the action and not in the condition a new token

structure Is created and Introduced as the value of the variable. So, to be concrete

consider the following production:

IF - personI
function: (grandfather-of =person3)

THEN - person I
function: (father-of =person2)
= person2
function: (parent-of =person3)

This is a production that makes the inference that if =person1 is the grandfather of

- person3, then there must be an intervening =person2 who has personi as a father and

- person3 as a child. The point is that =person2 is a variable which only appears in the

action of the production. In such cases a new structure node is created and assigned as

the value of the variable.

One of the dangers in such creations is that the reference of the variable is

already represented in memory and we have created an additional copy. Thus. we may

know ,person3's mother and this may happen to be the =person2 in question. This is an

almost unavoidable circumstance in dealing with such a memory -- that multiple tokens will

be created with the same referents. In research on the topic (Anderson, ref.) it was found

that people have great difficulty in such situations and that they simply cannot merge nodes

with similar referents. Rather they have to be prepared to reason about the identity of

referent when they discover it. Dealing with such circumstances is one of the principle

functions of the identity predicate described earlier.

- !

33

Propositional Network Representations?

The preceding concludes our definitional discussion of the PUPS representation.

There remains one point that is sorely in need of discussion: Where are the propositional

networks that have been such an integral part of the ACT* representational discussions?

Indicative of a fundamental switch In the PUPS theory to a more "peripheralist"

interpretation, there Is not a propositional type for form slots to complement the temporal

string, spatial image, and action category. The form slots are supposed to be encoding of

direct experience and we do not directly experience propositions. Rather propositions are

interpretations of experience.

First let us say a few words to dispose of the minor Issue of networks before

turning to the critical Issue of propositions. The notation we have been using in this paper

has been linear purely for convenience. Were we to get into a discussion of issues such

as spreading activation we would turn to a network notation. As argued In Anderson (1985

and elsewhere) the choice between network and linear representations Is purely a matter of

convenience for the current analysis.

With respect to the more substantial issue. the PUPS representation does not

conflict with the mass of evidence that has been marshalled for the existence of a

propositional representation. This is because propositional information exists in the function

slots that serve as the interpretation of the forms. Thus the issue is how we represent

what was called propositional information and not whether we represent such Information.

The following Is how we would represent that classic sentence "The boy hit the girl"

Sentence
function: (communicate event)
form: (LIST subject hit object)

subject
function: (communicate agent)
from: ILIST the boy)

34

object
function: (communicate patient)
form: (LIST the girl)

event
function: (hit agent patient)
form: (ACTION-hit agent patient hand)

Thus, the sentence is interpreted as describing an event involving the action of agent hitting

patient with his hand. Thus, we relate this surface sentence with a surface action.

However, with the event we also have the hit function derived from the use of hit as a

relational term in the language. Thus, we also have a connection between the sentence

and propositional information in the function slot.

One class of evidence for propositional representations is that under many

circumstances our interpretations of events better than the actual surface events (refs).

Under the current analysis this comes down to the claim that we are more likely to

remember the function slot of an event than its form slot.

Consider the implications of this position for Paivio's dual code theory (1969) which

the propositional theory developed in contrast to. According to dual code theory. one

represents information either verbally or visually. Our current analysis gives us something in

the same peripheralist spirit but the details are different. The differing details include the

added action data type but more importantly the fact that the temporal-string representation

is not tied to the verbal media and the spatial image is not tied to the visual media. In

fact much of the evidence against the dual code theory turned on tieing these

representations to a particular sensory or linguistic medium. In more recent publications

Pahvo (ref) has accepted an interpretation of a dual code theory that does not strongly lie it

to a modality (ref.).

Another major category of evidence against the dual code theory is the fact that

we can remember the meaning of abstract assertions which do not have any obvious

' v¢ . ." ¢e* '- ',',' V,'",' " ' ' ;q 'v ' ,-,'. ',,'. .',.',.'.. ., -,,,'-,",," ,- ,- ,,,, • ., ,-- ,_ ,,,,_-,,-,,-.p1

35

external reference. To take one example from Anderson and Bower (1973), we can

represent the distinction between someone forging a check and someone signing a check

although these two events might be exactly identical in terms of the actions observed. It is

worthwhile to examine this example in detail within PUPS, both to show how it interprets the

abstract subtleties In a predicate like Nforge" and to show the critical role analogy has in

the ACT theory of meaning.

Table 2 shows a PUPS encoding of the sentence "The banker forged his signature

on the paper". Figure 3 provides a partial network representation of this Information.

Insert Table 2 and Figure 3 here

The sentence is encoded as communicating an event which consists of two steps.

The function of the event is to get a signature (called scribble) on a location on a paper.

The firsi step, stepi. is further decomposed into two substeps. stepl1 and step12. Step11

involves the action of the banker grasping the pen and step12 involves moving the pen to

the paper, Jointly they achieve the intermediate state of the pen being at the paper.

Step2 involved the banker moving the hand at a position on the paper (paperspot) in order

to create the signature. As described this contains no more information than would be in

an uninterpreted visual image of a banker writing a signature. In particular it does not

distinguish between a true signature and a forgery. However, when we look at the

description of the signature (scribble) we see the information that separates a forgery from a

true signature. Scribble is not equal to the signature that is possessed by the banker

Rather it is encoded as being the signature that is possessed by some other person nol

identical to the banker. All this information is contained in the functional elaborations of the

two signatures and the two people involved. In general any such abstract information can be

contained in the functional elaboration of terms. This reinforces the point made earlier that

36

p 'poslitional information is not a data type of the same character as an image. Rather it

exists as a functional interpretation of an image.

One might ask of such a knowledge representation exactly how it encodes the

meaning of "forge m? There is no abstract data structure sitting around unpacking the

meaning of forge. Rather there is the concrete word 'forgeo with pointers to Its occurrence

In specific sentences and representations of the situations described by these sentences.

There is also the derived relation forge in the functional description of event, but it is only a

summary for these specific situations. Still this serves as an adequate basis for

understanding new sentences because new sentences can be interpeted by analogy to the

representations created in the interpretation of old sentences.

For example. suppose that the sentence "The lawyer forged his signature on the

check' is encountered. When PUPS was presented with this sentence it proceeded through

the following steps of analogical interpretation:

1. The function of this sentence was also to describe an event which

a. achieves a state

b. such that there is a signature on the paper

I. that is equal to the signature of personi but not person2

d. where person2 is the lawyer

2. The structure of the event is that there are two subevents where

a. the first event achieves the state of having the pen at the paper

b. the second event achieves the goal of the main event.

3. The second event involves the lawyer putting the signature on the cheC

4. The first event involves a sequence of two subevents where

a. the first subevent achieves the goal of the lawyer possessing the pen

37

b. the second subevent achieve the goal of the first event

5. The second subevent involves the lawyer moving the pen to the paper.

6. The first subevent involves the lawyer grasping the paper.

It is not necessary to go through this elaborate analogy process every time the

word Nforge" Is encountered. Instead we could attach to the described event a functional

description with the relation forge. This would provide a more compact way of encoding

experience which could be expanded upon demand into more decomposed forms as in

Figure 3. Thus, our theory of representation has a sort of Worfian character to it. That is

to say, the terms with which we represent experience are often derived from the words in

natural language. However, as this example shows it is not the case that this in any way

changes the distinctions we are capable of encoding. Rather, it only provides a convenient

shorthand for communication otherwise complex information.

Conclusions

In concluding this discussion of PUPS representation it is worth remarking on how

radically different It appears from the earlier ACT representations. However. these

differences are largely superficial. The representational notation has been refashioned to

facilitate discussion of analogy and causal inference, which are two prime learning

mechanisms in PUPS which were not in ACT*. However. this refashioning has been for

ease of exposition and development. There is no part of these learning mechanisms that

could not have been supported in ACT*. Indeed we basically worked out the simulation of

analogy in GRAPES, which is a production system that simulates ACT" before developing

the PUPS representation to help clean up the implementation of analogy.

It is to the credit of the representation that it facilitates the development and

exposition of the PUPS theory. However. this should not obscure the fact that the

38

development from ACT to PUPS has not changed most of the fundamental claims we are

making about how knowledge Is used In cognition.

39

Table 1
Grammar of PUPS

Knowledge Structures

(1) Knowledge -> Procedural
-> Declarative

(2) Declarative -> Label + (Type*) + (Form) + (Function*) + (Attribute*) +

(Precondition *)

(3) Type -- > isa Category

(4) Category -> sequence, event, object, action. scene, symbol,
agent, desire, etc. plus composed categories

(5) Form --- > Template + (label*)

(6) Template > Sequence
.... > Figure
.. > Action

(7) Attribute > (-) Dimension + value

(8) Dimension --.. > length. size, force, color. pitch. time. location. etc.

(9) Function > (.) Relation + (Label +)

(10) Relation ---- > cause, composed forms

(11) Precondition ---. > (.) Declarative

(12) Procedural --.- > IF Condition THEN Action

(13) Condition > Declarative*

(14) Label -.-- > Variable/Procedural

(15) Action -.- > Declarative*

Notes

- parentheses indicate optimal elements
- ' Indicates the possibility of more than one instance
- I indicates the rewrite rule only applies in the following context.

40

Table 2

sent
isa: sentence
function: (describes event)
form: (list subject word object location)

subject
isa: nounphrase
function: (communicate person1)
form: (list word1 word2)

word i
isa: word
form: (text the)

word2
Isa: word
function: (bankerhood)
form: (text banker)

word
isa: word
form: (text forged)

object
isa: nounphrase
function: (communicate scribble)
form: (list word3 word4)

word3
isa: word
form: (text his)

word4
isa: word
function: (signaturehood)
form: (text signature)

location
isa: prepphrase
function: (communicate paper)
form: (list word5 word6 word7)

word5
isa: word
function: (onhood)
form: (text on)

word6
isa: word
form: (text the)

word7
isa: word
function: (paperhood)
form: (text paper)

event
isa: mainevent
function: (achieve state)

(forge person scribble paper)
form: (sequence stepi step2)

41

state
isa: state
function: (result-of event)
form: (at place scribble)

stept
isa: step-sequence
function: (enable step2)

(achieve state1)
form: (sequence stepil step12)

step1i
isa: step
function: (enable step12)

(achieve state 11)
form: (grasp personi hand pen)

state 11
isa: state
function: (result-of step11)
form:: (in pen hand)

pen
isa: pen
function: (enable writing)
form: (text pen)

hiand
Isa: hand
function: (possessed-by person1)
form: (text hand)

step12
isa: step
'function: (achieve step1)
form: (move-to person1 hand paper)

statel
isa: state
function: (result-of step1)
form: (at pen paper)

paper
isa: paper
form: (text paper)

step2
isa: step
function: (achieve event)
form: (move person hand paperspot)

paperspot
isa: position
form: (text paperspot)

scribble
isa: writing
function: (inequality signaturel)

(equality signature2)
form: (text scribble)

signaturel
isa: signature
function: (possessed-by personi)

"IP

42

form: (text signature 1)
slgnature2

Ina: signature
function: (possessed-by person2)
form: (text slgnature2)

.- 43

Figure Captions

Figure 1. Experimental situation used by Shrager (1985).

Figure 2. Examples of knowledge representations In ACT- and their corresponding

representations in PUPS.

Figure 3. A partial representation of the information in Table 2.

44A

605 55

15 45

20 40

25 3 35
C)

ME3 55 60 5
R/O 10

45 # 5

040
**0

35 0 25

d i g I! l i f i I 1) ''i 111:1 I'll 1 11 Il l 1 1 115 1,1 0 1, Z I';' i 111 10 11 111 1,111, I'll, "i I III

44B

Figure 2a

NPI

isa: nounphruse
function: (describe Fred)

form: (sequence thel tall youngl mani)

tall
isa: adjective

form: (sequence T AH)

youngl
isa: adjective

stress: positive

YOUNG S btRe M

-. 44C

Figure 2b
Al

isa: array
function: (test subjects santa-experiment)

form: (face-array trianglel squarel circiel)
size: 100

triangle 1
isa: triangle

size: 2

squarel
isa: square

size: 4

circil
isa: circle

size: 3

(a) ACTUAL STIMULUS (b) ARRAY WITH SUSBIMAGES

0 C Substrure

su"Irw~ut

44D

oodv yet 4P1

kwe bgm k-: hi

PAC

.4 fe

/7oe
$~j, ' 5

45

References

Anderson, J.R. (1976). Language, Memory. and Thought. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Anderson, J.R. (1978). Arguments concerning representations for mental imagery.

Psychological Review, 85, 249-277.

Anderson, J.R. (1982). Acquisition of proof skills in geometry. In J.G. Carbonell.

R. Michalski & T. Mitchell (Eds.), Machine Learning. An Artificial Intelligence Approach.

Palo Alto, CA: Tioga.

Anderson, J.R. (1982). Acquisition of Cognitive Skill. Psychological Review. 89, 369-406.

Anderson, J.R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University

Press.

Anderson, J. R. (1985). Cognitive Psychology and Its Implications. Second Edition. New

York: Freeman.

Anderson. J.R. & Bower G.H. (1973). Human Associative Memory. Washington, DC:

Winston and Sons.

Anderson. J.R. & Thompson, R. (in press). Use of analogy in a production system

architecture. In A. Ortony, et al. (Eds.), Similarity and analogy. ?

Anderson, J.R.. Farrell, R., & Sauers. R. (1984). Learning to program in LISP. Cognitive

Science, 8. 87-129.

Broadbent, D.E. (1975). The magic number after fifteen years. In R.A. Kennedy &

A. Wilkes (Eds.), Studies in Long-term Memory. New York: Wiley.

Kosslyn, S. M., & Pomerantz, J. R. (1977). Imagery. propositions, and the form of internal

representations. Cognitive Psychology. 9. 52-76.

Lewis, M.W. & Anderson, J.R. (1985). Discrimination of operator schemata in problem

solving: Learning from examples. Cognitive Psycholoqy. 17. 26-65

McKoon, G. & Ratcliff. R. (1979). Priming in episodic and semantic memory. Journal of

..............

-46

Verbal Leaming and Verbal Behavior, 18, 463-480.

Newell, A. (1981). The Knowledge Level. Al Magazine, 2, 1-20.

Palvio, A. (1969). Mental imagery in associative learning and memory. Psychological

Review, 76, 241-263.

Palmer, SE. (1978). Fundamental aspects of cognitive representation. In E. Rosch &

B. Lloyd (Eds.), Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Pirolli, P.L. (1985). Problem solving by analogy and skill acquisition in the domain of

programming. Doctoral dissertation, Carnegie Mellon. Ph.D. Dissertation.

Potts, G. R. (1972). Information processing strategies used in the encoding of linear

orderings. Journal of Verbal Learning and Verbal Behavior, 11, 727-740.

Pylyshyn, Z. W. (1973). What the mind's eye tells the mind's brain: A critique of mental

Imagery. Psychological Bulletin, 80. 1-24

Shrager, J.C. (1985). Instructionless learring. Discovery of the mental device of a complex

model. Doctoral dissertation, Carnegie Mellon, Department of Psychology,

Simon, H.A. (1978). On forms of mental representation. In C. Wade Savage (Eds.).

Perception and cognition: Issues in the foundation of psychology. Minneapolis. MN:

University of Minnesota Press.

bI

U-

