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CHAPTER 1

* INTRODUCTION

IPROP channel tracking simulations1 of fast rise time beams in conduc-

* tivity channels typically predict much stronger tracking forces than those

of previously published computational studies.2 ,3 Moreover, the forces

are predominantly magnetic, whereas the pivotal analytical model in use had

assumed, and the earlier computational studies found, only electrostatic

* tracking forces.

Recent investigations 5,6 suggest that the larger tracking forces in

IPROP are in part due to differences in the chemistry model used and the

0 beam profiles assumed. For instance, IPROP employs a temperature dependent

momentum transfer cross section which increases by as much as a factor of

three as the channel temperature rises due to the presence of the beam

head.'7 However, significant qualitative and quantitative discrepancies

1 between the tracking results of IPROP and the other three-dimensional

propagation codes persist even after chemistry and beam profiles dif-

ferences are taken into account.

* These remaining discrepancies seem to be caused by the different

electromagnetic field models used in the codes. IPROP8 solves the complete

set of Maxwell's equations in a Galilean-transformed frame moving with the

beam. Alternatively, IPROP can solve the Frozen Field Equations, which are

* obtained from Maxwell's equations by assuming the fields in a Galilean-

transformed frame moving with the beam at the speed of light are inde-

pendent of time. For relativistic beams the tracking forces are essen-

tially the same in both cases. RINGBEARER 119 and DYNASTY II,10 on the

* other hand, utilize the New Field Equations,11 an approximation to the

Frozen Field Equations which includes only the scalar potential and axial

component of the vector potential with no displacement current. A recent

modification to DYNASTY 11 reintroduces the axial displacement current,

*which often increases the tracking forces seen in that code. s

Si
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To clarify the impact of various electromagnetic field approximations

on conductivity-channel tracking, we have developed analytical tracking

models for the Frozen Field Equations, for the New Field Equations, and for

the New Field Equations plus the axial displacement current. As in the

original Electrostatic Tracking Model, the channel conductivity is assumed

constant in space and time within the channel, which has a sharp edge, and

the beam is contained entirely within the channel. Although somewhat arti-

ficial, these assumptions seem to capture much of the essential tracking

phenomena while making the calculations analytically tractable. Extending

the models to accommodate smoothly varying radial conductivity profiles is

desirable.

The Frozen Field Tracking Model reproduces well the results of IPROP

when the code is run under the same conditions. 1  In particular, the model

correctly predicts strong magnetic tracking and electric detracking, with

the former dominant, very early in the beam pulse. As a certain quantity

X, to be defined later, goes to zero, the model equations reduce to those

of the Electrostatic Tracking Model. Even for moderate X the total

tracking force from the Frozen Field Tracking Model typically agrees with

the force from the Electrostatic Tracking Model to within a factor of two,

although, of course, there is no agreement at all between the electric and

magnetic components of the forces in the two models. Approximate agreement

between the total forces arises from the near cancellation of the electric

and magnetic forces in Frozen Field Tracking Model. Whether the agreement

persists for more realistic channel conditions is uncertain.

Quite surprisingly, the tracking model based on the New Field

Equations with an axial displacement current gives electric and magnetic

tracking force equations formally identical to those of the Frozen Field

Tracking Model but with X different by about a factor of two. The tracking

model for the New Field Equations without an axial displacement current, on

the other hand, turns out to be the same as the Electrostatic Tracking

Model.



This report describes in detail the derivation of the Frozen Field

* Tracking Model and presents sample predictions. In addition, it outlines

corresponding derivations for the New Field Equations with and without an

axial displacement current. The derivations are straightforward but

lengthy. Source-free dipole fields are determined in the regions inside

* and outside the channel. The beam fields then are derived without con-

sideration of the channel boundary. Matching the three fields at the

channel boundary determines coefficients appearing in the source-free solu-

tions, and the interior source-free solution integrated over the beam cross

* section gives the dipole tracking force. Because the derivation involves

only a two-term expansion in azimuthal angle, it is strictly valid only for

small displacements of the beam from the channel axis. However, IPROP

simulations suggest that the models are accurate for larger displacements,

*provided, of course, that the beam remains in the channel.

The material is organized as follows. In Chapter 2 the Electrostatic

Tracking Model is rederived using the procedure just outlined in order to

* illustrate this procedure In a simple case and to provide a basis for sub-

sequent comparisons with the other models. Chapter 3 contains the main

results of the report. The Frozen Field Equations are collected and cast

as a coupled pair of two-dimensional diffusion equations. For analytical

* tractability, the diffusion terms then are dropped, and the equations

solved to obtain the electric, magnetic, and total tracking forces.

Various limits are considered, including the Electrostatic Tracking Model.

This same approach is applied to the New Field Equations in Chapter 4.

* As already noted, it leads to the Frozen Field Tracking Model with X

redefined when the axial displacement current is retained and to the Elec-

trostatic Tracking Model when it is not. Neglecting the diffusion terms is

justified in Chapter 5. The diffusion equations are Laplace-transformed in

* the axial direction and solved by a procedure similar, but not identical,

to that used in earlier sections. A low frequency expansion then recovers

the transforms of the earlier results and provides an estimate of their

range of validity. The derivations in Chapters 2 and 3 also assume that

* the radius of the experimental chamber is large compared to the radius of

|(3



the channel. The effects of a smaller chamber are estimated in Chapter 6.

Conclusions, including a partial physical explanation of the predicted

tracking behavior, are provided in Chapter 7.

The electron charge and mass, and the speed of light are set equal to

unity throughout the report. A factor of 4w is absorbed into the conduc-

tivity o and the beam density.

4
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CHAPTER 2

ELECTROSTATIC TRACKING MODEL

Lee's Electrostatic Tracking Model4 considers a rigid, axisymmetric

electron beam propagating in a sharp edged, axisymmetric, constant conduc-

tivity channel of radius a. The beam is entirely within the channel and

offset slightly from its axis by a distance e, as depicted in Figure 1.

(The drift tube, of radius b, plays no explicit role in this chapter.)

Computations are performed in the beam frame, assumed to move at the

speed of light. The electrostatic potential * is determined from

Vi2 = -+ (1)

p and pc are the beam and channel plasma charge densities, the latter given

by
4

3T Pc + V* • avj* = 0 (2)

a is the channel conductivity. T represents axial distance measured back

from the head of the beam (i.e., T - t - z), and r and 0 have their usual

meanings in cylindrical coordinates. Vi is the transverse (i.e., r and e)
gradient operator.

Combining Equations 1 and 2 yields

_ 2 + J (3)
3 T 1 # +j aTj*

where p has been replaced by J, the beam axial current density, for nota-

tional consistency with subsequent chapters. (The two quantities are equal

for the rigid, ultrarelativistic beam.) Both inside and outside the

channel, where a is constant, Equation 3 can be integrated once in T.

5
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R-899

FIGURE 1. ELECTRON BEAN IN SHARP EDGED CONDUCTIVITY CHANNEL OF RADIUS a AND
DRIFT TUBE RADIUS OF b. THE BEAM CENTROID IS DISPLACED FROM THE
CHANNEL AND DRIFT TUB'[ AXIS BY A SMALL DISTANCE E.
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0

Ta
2 f J dt' (4)

0

The radial derivative of * may be discontinuous at the channel boundary due

to surface charges. From Equation 3,

a (e) + a a* (5)

* The potential itself is continuous.

,(e) = 0(i) (6)

* Equations 4-6 are now solved for the force acting on the beam. The

dipole (e.g., varying as cose) component of * inside the channel,
,(i) = a r + S (7)

consists of two terms. S is the dipole potential of the beam in a uniform

conductivity background without a boundary. Thus, it contributes nothing

to the tracking force. Outside the beam,

S

S 2 f e- T-r I dt' (8)

0

I(T) is the beam current, the integral of J over the beam cross section.

The second term, ar/a, is generated by surface charges at the channel

boundary. Outside the channel the dipole potential is simply,

r (e) Y (9)

Like a, y is an unknown function of T to be determined.

7



Inserting Equations 7 and 9 into the boundary conditions, Equations 5

and 6, provides a differential equation for a.

2 1- + ) C- S (10)

Its solution is

T

2e j (e-O(T-T')/2 e- (T-T')) a I dT' (11)
0

The corresponding dipole electric fields Er and E are give by -acose and

-asine, respectively. Averaged over the beam cross section and added, they

give the tracking force, -4I. This is indeed the result derived by a dif-

ferent route in Reference 4. (Actually, Lee's expression is slightly more

general in that it allows a to vary with T.) The negative sign indicates

that the force is inward. Physically, plasma electrons repelled by the

beam first accumulate preferentially at the channel edge closest to the

beam at the rate a and then redistribute themselves uniformly around the

channel edge at the rate o/2. Tracking persists in this model as long as

a /aT > 0.

8



CHAPTER 3

* FROZEN FIELD TRACKING MODEL

The Frozen Field Equations are a simplified form of Maxwell's equa-

S tions obtained by performing a Galilean transformation to a frame moving at

the speed of light and then dropping time derivatives.

a -Ez .1-rB .12-LB -aE - (12)T rz r r r ae r z " z

a Bz = "1 l'rE ia E (13)r ar 8+Fr a8 r

a (Er Be) = - .- Ez .(14)

a_ (Er Be) - _ z - J (15)r ) r a8 r Jr

m(E 8  Br) - a Ez (16)
a-TC~ + Br) = " aB

a (E + B 
-(

a r)= Bz " 0E " (17)

These equations must be used with care, since their derivation involves the

implicit assumption that sources move at the speed of light. Nonphysical

behavior sometimes arises near infinite conductivity surfaces, and electro-

* magnetic shock waves are possible. Nonetheless, the Frozen Field Equations

have been used successfully in many particle beam propagation calculations.

As noted in the Introduction, IPROP channel tracking simulations show

negligible change (except for beams passing through metal foils) when

Maxwell's equations are replaced by the Frozen Field Equations.

For a * 0, it is convenient to combine Equations 12-17 into a pair of

second order equations for Ez and Bz, analogous to the usual equations

describing electromagnetic fields in waveguides.

9



a L .. + )E . [.1 Lr (I + L rL+ .1 L + L) - ] Ez

_a

+- T r 1 1 ae 1 a 1 ar z  --La z  (18)

a F ar a3 1a1 z z
aBz -1 - r ' + rBeora
T- 1z rraa ar -FTo- z

r a r a 1 Ez (19)

Transverse beam currents, Jr and J., have been dropped, consistent with the

assumptions presented in Chapters 1 and 2. Once the longitudinal fields

are determined, the transverse field are obtained from

Er a- j Ez +--B (20)

Ee  Q -Bz - - EZ) (21)

Sr3  L. L Bz - (1 r .a'L Ez (22)

L-B e  1 +-L .1'L E + L .1- e B (23)

Equations 18 and 19 simplify greatly for constant conductivity. If a

is independent of r and B, the equations decouple. If, in addition, a is
independent of T, Equation 18 can be integrated once.

a2 ] 1 t

r 36 1ETr- - ea(97 a J d*' (24)

- a I a 2

r _L Bz - 0 (25)
TT- -T TF r 38 eZ

10



Both are two-dimensional diffusion equations. Note the similarity between

• Equation 24 and Equation 4.

Equations 24 and 25 can be solved exactly inside the channel using

Green's functions or Laplace transforms. However, the formal solution

* which results involves integrals with complicated kernels and is not

particularly enlightening. Instead, we obtain an approximate solution by

dropping the diffusion terms oa/3T and treating the simplified equations by

the method used in the preceding Chapter. Onitting the diffusion terms in

* Equations 24 and 25 is reasonable, if fields change in T on a scale slow

compared to oa2 . The range of validity of this approximation is estimated

in Chapter 5, where the Laplace transformation solution is obtained and

then expanded in powers of the transform variable. Comparing the approxi-

* mate analytical solution with IPROP computations presented later also

supports dropping the diffusion terms.

With the aa/aT omitted, Equations 24 and 25 become

Ez = a f e0(TT') J dT' (26)
0

Vi Bz = 0 (27)

Their dipole solutions are

0 E i)
" oT r - aS (28)

= or (29)

Ez is taken to vary as cose, in which case Er and Be also vary as cose, and

B z, Ee and Br vary as sine. Derivatives of the r-dependent unknown func-

tions a and B, rather than the functions themselves, are introduced to

simplify notation later in the calculation. S was introduced in Chapter 2

1J



and is expressed by Equation 8 for that portion of the channel outside the

beam.

Equations 18-23 cannot be used outside the channel, because their

derivation involves division by a. Simply multiplying those equations by

o before setting it to zero leaves an incomplete system of equations. In

essence, the Frozen Field Equations are qualitatively different in vacuum

and in resistive plasma.

Rearranging Equations 12-17 to evaluate the fields outside the channel

proceeds as follows. As before, the longitudinal field components are

easily isolated.

vi Ez Vj Bz - 0 (30)

However, Ez and Bz no longer are independent. From Equations 14 and 15,

aE -L Bz U 0 (31)
Tr z r3 ze

In consequence, the transverse field components are only partly determined

by Ez and Bz ,

aT (F rBe + e = 2 2 Ez (32)
T3 r 38

L(..I r E arraO L7B 32 (33)
ar~~ e aeee

a rE = - L r L) Ez  (34)r a e r) 3(a2r a r a z

a r ' rB r ) ( r Er --.-- r L Bz (35)

m12



From Equations 30 and 31, the dipole longitudinal fields are

E (e) B (e) a2  (36)z "z 3 aT I -r (

if a2/b2 C 1. Of the dipole transverse fields, only the combination

• E8 - 8e is needed to derive the tracking force in the large radius drift

tube limit. It is described by

a - (Ee - Be) ( " + )(E + Bz) (37)

which is the sum of Equations 32 and 33 evaluated for the azimuthal field

dependences given following Equation 29.

E(e) - B ~e ) = 2a2 a 2 tn b/r + a 2 (38)
3T r

Note that the drift tube radius b appears logarithmically in the first term

of Equation 38. That term is not necessarily small and cannot be dropped.

The vacuum fields are derived for arbitrary b/a in Chapter 6.

Three matching conditions at the channel boundary are necessary to

determine the r-dependent quantities a, 0 and y.

E (e) - E(')  (39)

z z

B(e) . BM (40)
z z

a (E ) - B1 arr r E + B()EM (41)

T-r Is B8 , ~- -a- r IF z z BZrE (41

Equation 41 follows from continuity of E8 - B., and from Equations 21 and

23.

13



The jump conditions Equations 39-41 can, of course, also be treated as

boundary conditions on the interior solutions by eliminating the exterior

solutions.

E(i) = B( i )  (42)

2a 2 Ln b/a ( + r (E + / + a-r r z (43)
aT2 z aT r -r

The tracking force is now obtained. Substituting Ez and Bz from

Equations 28, 29, and 36 into Equations 39 and 40 gives B0 y and

a 0 - L a S (44)

Equations 28, 29, 38, 41 and 44 then yield a differential equation for a,

a2- + 2 a A 2 + S (45)

where

X 2 a2 tn b/a (46)

The solution to Equation 45 is

2c J - (T-r')/X os 0___
-1 _

+ 1 sinh ' rT - ) - I d (47)

The net angle-averaged dipole field acting on the beam is 1/2(E r - Be -
Ee - B). This quantity is expressed in terms of Ez by using Equations 14
and 16.

(Er" B- E "- r E (48)
aT(Er B e Br)u r ar z

14



As in Chapter 2, the term proportional to S in Ez does not contribute to

* tracking. Hence, the Frozen Field Tracking Model force is -al.

For subsequent comparison with IPROP data, the separate electric and

magnetic tracking force components are useful. The transverse fields

* inside the channel are obtained from Equations 20-23.

Er "Ee  x a2  (49)
r a -0 aT

B = x a2  (50)
Br aB7

Inserting a and B from Equations 44 and 45 then gives

1 2( E e-(r-T')/X( - sinh (r- T')

0 a frix x

_ ea(r'r')} ~(1
7 dT' (51)

* 12: C -~r-')X[ I-7~ r')
•1 (-Br" Be) "2 e"O( 'r x  cosh )- )

0

* 1 sinh - a(r - r')ji - I dr' (52)

Multiplied by -I, these are the electric and magnetic forces, respectively.

It is evident from Equations 51 and 52 that the electric force is detrack-

ing, and the magnetic force tracking, at early times.

It is clear from Equations 10 and 45 that the Frozen Field Model

tracking force must reduce to the Electrostatic Model tracking force as

15



X * 0. The magnetic component, Equation 52, vanishes, while the electric

conponent, Equation 51, approaches the electrostatic force, Equation 11.

This convergence is not uniform, however. Tracking at the very front of

the beam is modified by magnetic effects for a distance in T of order X/a

no matter how small X becomes. Of course, strong modifications over very

short distances have little practical importance.

Although perhaps not immediately obvious, the tracking force expres-

sions are continuous through X - 1. At X 1 1, Equation 47 becomes

T

2e e- (I-T) -0 '°, -' I dT' (53)
a 0

The analytic extension of Equation 47 above X = 1 is obtained by replacing

(1 - X) by (X - 1)/2 and the hyperbolic functions by the corresponding

trignometric functions. Thus, the tracking force can oscillate in ampli-

tude for X > 1. Eventually, dropping the diffusion terms from Equations 24

and 25 becomes inaccurate as X is increased.

The variation of the predicted tracking force with X for a 10 kA,

15 cm rise length beam offset 0.25 cm in a 1 cm radius, 1 cm"1 constant

conductivity channel is illustrated in Figure 2. The force is nearly inde-

pendent of X and equal to the Electrostatic Tracking Model force for X < 2.

A stronger but oscillatory force arises at larger X. Note that the 25-50 g

peak tracking forces should not be expected for more realistic beam and

channel profiles.

The similarity between tracking force predictions from the Electro-

static and Frozen Field models suggested in Figure 2 does not carry over to

their electric and magnetic components. Figure 3 depicts the tracking

force components from Equations 51 and 52 for the beam and channel of

Figure 2 but with a - 0.5 cm 1; X - 1. For a distance into the pulse of

order a few times X/o, the magnetic component clearly dominates. In fact,

the electric component is detracking for a short distance. The early-time

16
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FIGURE 2. THE FROZEN FIELD TRACKING MODEL NORMALIZED FORCE (-iFROM EQ. 47)
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FIGURE 3. THE ELECTRIC AND MAGNETIC COMPONENTS OF THE NORMALIZED TRACKING
FORCE ON A 10 kA, 15 cm RISE LENGTH, 0.5 cm RADIUS BEAM OFFSET
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CHANNEL FOR X - 1. THE FORCES ARE OBTAINED BOTH FROM EQUATIONS
51 AND 52 AND FROM A COMPARABLE IPROP SIMULATION.
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magnetic tracking appears to be due both to lateral plasma currents and to

* the axial displacement current. Inductive effects cause the electric

tracking reversal at the beam front. The remarkable cancellation between

the components which allows the total tracking force to so nearly equal the

purely electrostatic result from Chapter 2 may not persist for more

realistic channel profiles.

Also plotted in Figure 3 are the tracking forces from a comparable

IPROP simulation. Agreement is very good overall, supporting the validity

of our tracking model. Radial profiles of the various fields in IPROP

agree well with the predictions of Equations 20-23. IPROP preliminary

tracking results are presented in some detail in Reference 1.

19



CHAPTER 4

CHANNEL TRACKING WITH THE NEW FIELD EQUATIONS

Deriving the tracking force implied by the New Field Equations I1 is

desirable, because this approximation to the Frozen Field Equations is used

in many propayation codes. The New Field Equations can be written in many

equivalent forms, including
3

a 2
j. VI(Az - 71 - arvj. (54)

a f) - - 2A = J (55)

The axial displacement current, sometimes used in DYNASTY II,10 is added to

Equation 55. From time to time during the derivation which follows, we

note the effects of dropping this term. In this way the tracking forces

for the New Field Equations with and without the axial displacement current

are obtain simultaneously.

Inside the channel, where a is constant, Equations 54 and 55 can be

manipulated to provide an equation for Az - * alone.

a + (A- (1 + - -)vJ (Az + 1z (56)

Either Az or # can be taken as the second dependent variable. We choose

Az

171Az - (1 +f. V1I(Az -(57)

As in the preceding derivations, Equation 56 is simplified by integrating

once in T,
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T

* a L Az - = a ea( T) J dT' (58)
0

Note that the first term in Equation 58 has a more complicated form in the

* absence of the axial displacement current. However, as before, we drop

this diffusion term. In other words, the axial displacement current plays

no direct role inside the channel.

T

V ( Az- = -a f e-( J')J dr' (59)

0

Equations 59 and 57 have dipole solutions
0r

Ai) - (i) = -ar + a S dT' (60)

0

Ai) ( + ) (Ai)- ,(i)) + or (61)

In the vacuum region outside the channel, Equations 54 and 55 reduce

• to

Vj (Az - = 0 (62)

* 2

Az = (Az - (63)

Their dipole solutions are

S2
A(e) (e) Y a (64)

r

* A~e) = 6 a 2 ra2 (5
A () a Y r Ln b/r (65)
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As in Chapters 2 and 3, small terms scaling as (a/b) are omitted. The

second term in Equation 65 arises from the axial displacement current.

Four matching conditions at the channel boundary are needed to

evaluate a, 0, y, and 8. Az and # are continuous there. Integrating

Equations 54 and 55 across the boundary gives, in addition,

L A(e) . a A(i) (66)
r z ar z

a a (A (e) _(e)) (A~i) - (i) a (i) (67)a' ar = T ar - a--r(7

Combining these with Equations 64 and 65 to eliminate the exterior fields

yields

a(In b/a 1/2) A (4) €(') + r A() 0 (68)

37T 3r z aaT a (A(' ). 0)) T(P ) . ( .o A±- P -0 (69)

If desired, A(i) also can be eliminated, leaving a single boundaryz
condition at r - a.

a(In b/a - 1/2) 2 (1A) (1) + a r -

+ T ( - ) 0 (70)

The second-derivative terms in Equations 68 and 70 are omitted in the case

of no axial displacement current.

Inserting Equations 60 and 61 into Equations 68 and 69, or Equation 6U

into Equation 70 yields a differential equation for a identical to Equation

45 for the Frozen Field Tracking Model but with X redefined as
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X ( 2a(tn b/a - 1/2)

With no axial displacement current, X - 0. The tracking fields are

obtained by taking the gradient of -or-cose. When averaged in angle and

summed, they give a tracking force -.1, as before. For completeness, we

note that the electric and magnetic components of the tracking force are

given by Equations 51 and 52 with X frw Equation 71.

In summary, the New Field Equations give rise to a tracking force

equal to that of the Frozen Field Tracking Model (with X reduced by

approximately one-half) or that of the Electrostatic Tracking Model,

depending on whether the axial displacement current is included. This

progression X + 1/2X + OX is associated with dropping first 3Bz /3 and then

3E z/3T from the vacuum field equations and probably is due to the reduced

field energy there. The plasma currents both drive and are, in part,

driven by this field energy, which is proportional to In(b/a).
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CHAPTER 5

DIFFUSION CORRECTIONS

Diffusion terms were ignored in previous sections in order to obtain

analytically tractable results. Here, we evaluate the Laplace transforms

of the tracking forces with the diffusion terms retained in order to esti-

mate their importance. The transformed tracking forces can be derived by

paralleling the derivations in Chapters 3 and 4, starting from the trans-

forms of Equations 24 and 25 for the Frozen Field model and Equation 58 for

the New Field models. Indeed, we have done so and obtained the results

given below. Here, however, we outline an alternative, more formal

approach.

Throughout this section, all quantities are taken to be Laplace-

transformed with respect to T. The transform variable is s.

In coordinates centered on the channel axis, the net tracking force

consists of a monopole force acting on the beam dipole current and a dipole

force acting on the beam monopole current. The dipole current is given by

-e aJ/ar for a rigidly displaced beam. Thus, the total force, averaged

over angle and normalized to the beam current, is

1-' f [F( Ej + F, J ]r dre (72)

The forces can, in turn, be expressed in terms of potentials,

F L a CO (73)
0 arG

F 1 a r r1 (74)

Inserting Equations 73 and 74 into Equation 72 and integrating by parts

gives

4 f (c + c 1 C) (IF Jr) r'dr' (75)
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The integrand of Equation 75 would, of course, vanish identically were it

* not for the channel edge.

Now let us suppose that the potentials satisfy

•(1L r - J(m) - i 2 - m s (76)

with boundary conditions

C a (77)€+ no F -0 0

11 -L r C,-0 (78)C1 + nl -r r 1(8

at the channel wall, r a a. These equations are solved conveniently in

terms of Green's functions,

a - a f Gm(rr') j(m)(r') r'dr' (79)• m = "(a + s)

" m=(80)

GM = J J(r) #m(Kr
°) r < rI

0=Y 0(icr) - J0(gcr) Y 0(Ka) -nicY(Ka) (81)
YJo(Ka) - ",o(,a)

YI(Ka) + n 1 KY0(Kca)

1 . Y1 (i r ) " J1 (cr) Jl(,a + nlcJO(ia) (82)

Jm and Ym are Bessel functions of the first and second kinds. 1 2

The integrations in Equations 75 and 79 are straightforward, if the

* beam profile is square, so that aJ/ar - -J 8(r - ab).
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/ca b ) Io(r) r > ab (83)€0 -77+ s i12 Ka b

___a J(icab)

i a I 1/Sab *(Kr) r > ab (84)

The tracking force is

2ea I ScKab) (1 + no 11 2 Ka)/2

a + s a\/2 Kab! [Jl(ca) + nIJ O(Ka)[Jo(ca) - nOJ 1(Ka)] (85)

The Bessel function Wronskian formula 12 was used in obtaining Equation 85.

It can be shown that n = 0 for the three tracking models investigated

in this report. Physically, this corresponds to the vanishing of the

axisymmetric portion of Ez outside the channel for ultrarelativistic beams.

Equation 85 can be simplified notationally by absorbing the shape factor

EJl(Kab)/(1/2Kab)]2 into I. This quantity is equal to unity at long trans-

verse wavelengths, and decreases rapidly for I/2 cab > 2.4. With these
changes, Equation 85 becomes

2co I 1/2 a (86)
a + a2 Jo(JI + nKJO) 86)

From here on, the Bessel function arguments are understood to be Ka.

For the Frozen Field Equations of Chapter 3, -Ez /s can be identified

as the potential C, and -as as c . See Equations 24 and 48. Since Bz is

proportional to Jm(Ka) inside the channel, Equations 42 and 43 can be

combined to yield the boundary condition

(2s 2 + as JO Ez + aa(a + s) IL-L r Ez = 0 (87)
(2s 0/ r rar z

from which n I can be identified. Consequently, the Laplace-transformed

tracking force is
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*Xs/J + o -Ka/J 1)
-2e os- 1 0. (88)

aT s Xs J / 1/2Ka + a(a+ 2s)J 0

=1

Similarly, Az - # is the potential for the New Field Equations of

* Chapter 4. The transverse wavenumber 2 is -as if the axial displacement

current is retained, and -as/(a + s) otherwise. See Equation 58 and the

associated text. The Laplace-transform of Equation 70 provides the

boundary condition. The resulting tracking force is

2e s [X(Xs + O)(89)

a 2a+ s IJo[(Xs2 + as)Ji 
/ 1/2a + o(a + s)J]

* Recall that X is set to zero, if the axial displacement current is dropped.

Setting J0 and J1 / 1/2Ka to unity in either Equation 88 or 89 yields

2 s- I (Xs + o)a (90)

a2 a + s Xs2 + 2as + a
2

(

This is the Laplace transform of Equation 47, the channel tracking force

derived with the diffusion term ignored inside the channel, as can be seen

* most readily by examining Equations 8 and 45. Thus, dropping the diffusion

term is valid if Isil 4 4/aa2, or 40/( 2 a2 + 1) for the New Field Equations

without the axial displacement current. si is a zero of Xs
2 + 2as + a

Numerical analysis of the poles and residues of Equations 88 and 89 indi-

* cates that the factor 4 can be increased to 2.42.

In Chapters 3 and 4 and again here, it is seen that the tracking

forces for the Frozen Field Equations and for the New Field Equations with

* •the axial displacement current are formally identical when the diffusion

term is omitted, differing only in the definitions of X. The complete

force expressions, Equations 88 and 89, are not formally identical, how-

ever. Nonetheless, their lowest poles and corresponding residues are
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nearly equal numerically, at least for oa 2 < 10. The tracking force for

the New Field Equations without the axial displacement current is, of

course, qualitatively different from that of the other models, unless

X - 1: the lowest poles are a complex conjugate pair in the first two

cases and a single real value in the third.

Further numerical investigation of the poles and residues yields a

result which is surprising at first sight. The lowest poles, in terms of

Re(si), contribute to tracking, or in the case of complex conjugate pairs

contribute alternately (in r) to tracking and detracking, but tracking

first. The lowest pole associated with detracking comes from the smallest

zero of the factor J in the denominators of Equations 88 and 89 and so has

a large Re(si). (It represents beam repulsion from the channel due to the

monopole return current.) This seems to predict that beams always track

conductivity channels, independent of the magnitude of aa. This apparent

discrepancy with simulation results probably is resolved as follows. The

complex conjugate pair which occurs for X * 0 has a very large imaginary

part for aa very large. Thus, the tracking force oscillates rapidly in

sign, so that its average value is small. In addition, the corresponding

residues become very small. When X - 0, on the other hand, the lowest

tracking pole moves very close to the first detracking pole as aa becomes

large, and their effects approximately cancel. The behavior of higher

poles then must be considered. We have not done so, because it does not

seem worthwhile.

Incidentally, the next higher tracking pole in Equations 88 and 89

takes on the value 3.82/aa2 for aa small and gradually decreases to

2.42/aa2 as aa becomes very large. It is probably this pole that enters

into the resistive hose instability.
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CHAPTER 6

* CONDUCTING-WALL CORRECTIONS

The conducting drift tube surrounding the beam channel enters the

0 preceding calculations only through the logarithm appearing in X. Other

terms, of order (a/b)2 or smaller, are ignored. Now, we repeat the

analysis of Chapter 3 with these terms included to demonstrate that they

are, indeed, unimportant for large drift tubes. The impact of a small

0 drift tube on channel tracking also is determined.

General solutions to Equations 30 and 31 for Ez and Bz in vacuum

between a and b with E z(b) = 0 are

E (e) a a a2r (91)

B e) a Y a + a r (92)

z (AT r ba

The transverse fields are derived most easily by taking the sums and

* differences of Equations 32 and 33 and of Equations 34 and 35, and then

integrating once each in T and r. E6 (b) - 0 determines one integration

constant.

- 2 a 11 /r2  ) (a2 a2)

E (e) . ya2 [,n b/r" /4 r 1 + 1 + () a "a (93)

B (e) . y a 2 [-.n b1r 1/4(r 4+) + (-Y + a ) 4 ) (94)

E (e . y a -2 n b/r •1/4 r Z + + 1 (Y" + ) a-  +'a (95)

( 2  2aT _ 14( _Br) a y t -n b/r + 1/4)( + (r- (96)
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Matching these exterior solutions to the interior solutions, already

given in Equations 28 and 29, is accomplished through continuity of Ez

(Eq. 39), Bz (Eq. 40), Ee - B8 (Eq. 41), and Ee + B

a E + B (eE - rE - B(i) +-LE (97)

Te) 1 aT ar 1 z ) a z

The counterpart of Equation 97 was not required in Chapter 3 due to a

fortuitous cancellation. Combining all these equations yields after some

algebra

a--+ 2 L + a a 2

Tat

+ +-a2)]S + b--e a a 2- 1 b--(98)

X is again redefined.

X - 2a2 [Ln b/a + 1/4(1 - a4/b4)J (99)

The primary difference between this formula and Equation 45, which was

obtained in the limit of large b/a, is seen to be the additional source

term, proportional to the beam current, on the right side of Equation 98.

Other terms involving b can, in fact, be eliminated formally by renor-

malizing a, X, a, and T. The corrections Involved are, in any event, small

so long as (b/a)2 v 1. Solving Equation 98 yields the additional contribu-

tion to the tracking force,

2€ e- O(T-s')/X 1 stnh aX O(T- T') aIdT' (100)
0

where terms of order (a/b)2 have been omitted. For X c 1 this becomes
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2c f e(T-T')/2  I (101)

b 2d 
0

Both expressions reduce to 2cI/b 2 , the usual magnetic image force, for

SaTr ;o 2. T r is the current rise length. The corresponding electric image

is shielded by the channel conductivity at late times. Recall that these

results assume aa small in the sense of Chapter 5. The magnetic image

force is reduced by return currents for aa large.

The criterion arr 3 2 for the magnetic wall force to reduce to 2€I/b 2

is almost always satisfied in practice. On this basis, it can be shown

that the wall force on the beam head is small compared to the tracking

force when (b/a) 2 10. That the wall force on the beam body be small com-

pared to the tracking force requires that (b/a)2 be much greater than

several times or, with the conductivity evaluated in the beam head. IPROP

simulations suggest (b/a)2 s 500 for realistic beam and channel radial pro-

files with a - 1 cm, a - 1 cm 1 , and rr - 100 cm. It is desirable that the

second, more restrictive, condition be met so that wall-force centering of

the beam body not be confused with tracking of the beam head.
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CHAPTER 7

CONCLUSIONS

The foregoing calculations provide an improved model of conductivity

channel tracking. The derivation is based on the complete set of Frozen

Field Equations. It is valid for ca < 2.4 and b/a > 10, although b/a 3 20

probably is necessary for unambiguous experimental confirmation. The model

also requires the beam to lie entirely within a sharp-edged constant con-

ductivity channel. Note surprisingly, simulations show somewhat weaker

tracking forces for more realistic conditions. Qualitative features of the

model nonetheless persist.

The analytical tracking force expression contains a quantity X which

measures the electromagnetic tracking-field energy outside the channel.

For X < 1 the tracking force is approximately that of the Electrostatic

Tracking Model. For X > 1, on the other hand, the tracking force oscil-

lates in time like an underdamped pendulum. This field energy can be

thought of as inertia of the tracking force. Dropping Bz , which is done in

the New Field Equations with the displacement current retained, cuts this

inertia in half. Dropping the displacement current as well eliminates the

inertia entirely.

X diverges logarithmically for large drift tube radii. This seemingly

nonphysical result is a consequence of the ultrarelativistic approximation

implicit in the Frozen Field Equations. A Lorentz transformation to the

beam frame shows in a qualitative sense that b should be replaced by YTO in

open air. T0 is the axial scale length over which the tracking force

varies; it is smaller than Tr Fields tend to fall off spherically rather

than cylindrically at radii greater than yTO. Values of Ln(YT0 /a) larger

than about 15 are unlikely in practice.

A distinctive feature of the Frozen Field Tracking Model is the role

of transverse magnetic fields. Radial and azimuthal dipole plasma currents
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near the beam head drive Br and B8 via Faraday's law provided Bz is not set

to zero. In addition, the dipole axial displacement current generates

transverse magnetic fields irrespective of whether Bz = 0. It is not dif-

ficult to see that VxB always leads to a centering force on the beam at

early times, when the lateral plasma currents are still rising. Moreover,

the force can be quite large. That the transverse electric fields should

be modified inductively so that they largely cancel the magnetic force for

X < 1, leaving a net tracking force not much different from that of the

Electrostatic Tracking Model, is surprising. Whether this cancellation

persists for more realistic channel profiles is unknown.

At least for the idealized conditions considered here, the New Field

Equations describe channel tracking about as well as the complete Frozen

Field Equations, provided the axial displacement current is retained in the

New Field Equations. Omitting the displacement current changes tracking

forces qualitatively. Physically, oscillations occurring for X > 1 and

early time magnetic field effects are lost. Mathematically, the complex

conjugate pair of roots are replace by a single real root in the plasma

dielectric function. (This loss of a mode can be seen more simply by

deriving the dispersion relation for normal modes of the New Field Equa-

tions, with and without the axial displacement current, in a homogeneous

resistive medium.) At a minimum, the axial displacement current should be

kept in any New Field Equation calculation of tracking. It seems prudent,

more generally, to retain the axial displacement current whenever the con-

dition aa 3 2 is not well satisfied.

3
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