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CHAPTER 1
INTRODUCTION

IPROP channel tracking simulations! of fast rise time beams in conduc-
tivity channels typically predict much stronger tracking forces than those
of previously published computational studies.?»3 Moreover, the forces
are predominantly magnetic, whereas the pivotal analytical model in use had
assumed, and the earlier computational studies found, only electrostatic
tracking forces.

Recent investigations®,® suggest that the larger tracking forces in
IPROP are in part due to differences in the chemistry model used and the
beam profiles assumed. For instance, IPROP employs a temperature dependent
momentum transfer cross section which increases by as much as a factor of
three as the channel temperature rises due to the presence of the beam
head.” However, significant qualitative and quantitative discrepancies
between the tracking results of IPROP and the other three-dimensional
propagation codes persist even after chemistry and beam profiles dif-
ferences are taken into account.

These remaining discrepancies seem to be caused by the different
electromagnetic field models used in the codes. IPROP® solves the complete
set of Maxwell's equations in a Galilean-transformed frame moving with the
beam. Alternatively, IPROP can solve the Frozen Field Equations, which are
obtained from Maxwell's equations by assuming the fields in a Galilean-
transformed frame moving with the beam at the speed of 1ight are inde-
pendent of time. For relativistic beams the tracking forces are essen-
tially the same in both cases. RINGBEARER II° and DYNASTY II,!0 on the
other hand, utilize the New Field Equations,}! an approximation to the
Frozen Field Equations which includes only the scalar potential and axial
component of the vector potential with no displacement current. A recent
modification to DYNASTY Il reintroduces the axial displacement current,
which often increases the tracking forces seen in that code, S




To clarify the impact of varicus electromagnetic field approximations
on conductivity-channel tracking, we have developed analytical tracking
models for the Frozen Field Equations, for the New Field Equations, and for
the New Field Equations plus the axial displacement current. As in the
original Electrostatic Tracking Model,* the channel conductivity is assumed
constant in space and time within the channel, which has a sharp edge, and
the beam is contained entirely within the channel. Although somewhat arti-
ficial, these assumptions seem to capture much of the essential tracking
phenomena while making the calculations analytically tractable. Extending
the models to accommodate smoothly varying radial conductivity profiles is
desirable.

The Frozen Field Tracking Model reproduces well the results of IPROP
when the code is run under the same conditions.! In particular, the model
correctly predicts strong magnetic tracking and electric detracking, with
the former dominant, very early in the beam pulse. As a certain quantity
X, to be defined later, goes to zero, the model equations reduce to those
of the Electrostatic Tracking Model. Even for moderate X the total
tracking force from the Frozen Field Tracking Model typically agrees with
the force from the Electrostatic Tracking Model to within a factor of two,
although, of course, there is no agreement at all between the electric and
magnetic components of the forces in the two models. Approximate agreement
between the total forces arises from the near cancellation of the electric
and magnetic forces in Frozen Field Tracking Model. Whether the agreement
persists for more realistic channel conditions is uncertain.

Quite surprisingly, the tracking model based on the New Field
Equations with an axial displacement current gives electric and magnetic
tracking force equations formally identical to those of the Frozen Field
Tracking Model but with X different by about a factor of two. The tracking
model for the New Field Equations without an axial displacement current, on
the other hand, turns out to be the same as the Electrostatic Tracking
Model.
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This report describes in detail the derivation of the Frozen Field
Tracking Model and presents sample predictions. In addition, it outlines
corresponding derivations for the New Field Equations with and without an
axial displacement current., The derivations are straightforward but
lengthy. Source-free dipole fields are determined in the regions inside
and outside the channel, The beam fields then are derived without con-
sideration of the channel bcundary., Matching the three fields at the
channel boundary determines coefficients appearing in the source-free solu-
tions, and the interior source-free solution integrated over the beam cross
section gives the dipole tracking force. Because the derivation involves
only a two-term expansion in azimuthal angle, it is strictly valid only for
small displacements of the beam from the channel axis., However, IPROP
simulations suggest that the models are accurate for larger displacements,
provided, of course, that the beam remains in the channel,

The material is organized as follows. In Chapter 2 the Electrostatic
Tracking Model is rederived using the procedure just outlined in order to
illustrate this procedure in a simple case and to provide a basis for sub-
sequent comparisons with the other models. Chapter 3 contains the main
results of the report. The Frozen Field Equations are collected and cast
as a coupled pair of two-dimensional diffusion equations. For analytical
tractability, the diffusion terms then are dropped, and the equations
solved to obtain the electric, magnetic, and total tracking forces,

Various limits are considered, including the Electrostatic Tracking Model.
This same approach is applied to the New Field Equations in Chapter 4,

As already noted, it leads to the Frozen Field Tracking Model with X
redefined when the axial displacement current is retained and to the Elec-
trostatic Tracking Model when it is not. Neglecting the diffusion terms is
justified in Chapter 5. The diffusion equations are Laplace-transformed in
the axial direction and solved by a procedure similar, but not identical,
to that used in earlier sections. A low frequency expansion then recovers
the transforms of the earlier results and provides an estimate of their
range of validity. The derivations in Chapters 2 and 3 also assume that
the radius of the experimental chamber is large compared to the radius of
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the channel. The effects of a smaller chamber are estimated in Chapter 6.
Conclusions, including a partial physical explanation of the predicted
tracking behavior, are provided in Chapter 7,

The electron charge and mass, and the speed of light are set equal to
unity throughout the report, A factor of 4x is absorbed into the conduc-
tivity o and the beam density.
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CHAPTER 2
ELECTROSTATIC TRACKING MODEL

Lee's Electrostatic Tracking Model" considers a rigid, axisymmetric
electron beam propagating in a sharp edged, axisymmetric, constant conduc-
tivity channel of radius a. The beam is entirely within the channel and
offset slightly from its axis by a distance e, as depicted in Figure 1.
(The drift tube, of radius b, plays no explicit role in this chapter.)

Computations are performed in the beam frame, assumed to move at the
speed of light. The electrostatic potential ¢ is determined from

212¢ = -p + 0. (1)

p and p. are the beam and channel plasma charge densities, the latter ygiven
by"

3 )
3T PtV v ove=0 (2)

g is the channel conductivity. <t represents axial distance measured back

from the head of the beam (i.e., t =t - z), and r and @ have their usual

meanings in cylindrical coordinates. V| is the transverse (i.e., r and )
gradient operator,

Combining Equations 1 and 2 yields

3 2 3

-a—;v‘L¢+V‘L OV-LQ -FJ ‘ (3)
where p has been replaced by J, the beam axial current density, for nota-
tional consistency with subsequent chapters. (The two quantities are equal

for the rigid, ultrarelativistic beam.) Both inside and outside the
channel, where o is constant, Equation 3 can be integrated once in r,

. -"\
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T
V_LZ¢ = - fe‘o(‘l'-‘f‘) %—J dt' (4)
0

The radial derivative of ¢ may be discontinuous at the channel boundary due
to surface charges. From Equation 3,

33 (e)=(3 +a)"’ (1) (5)

EX3 ar
The potential itself is continuous.

i
o(8) = (1) (6)
Equations 4-6 are now solved for the force acting on the beam., The

dipole (e.g., varying as cos®) component of ¢ inside the channel,

o 2arss (7)

consists of two terms. S is the dipole potential of the beam in a uniform
conductivity background without a boundary. Thus, it contributes nothinyg
to the tracking force, OQutside the beam,

T

I -o(t-t') 3 .

S=2- fe 37 1 dt (8)
0

I(t) is the beam current, the integral of J over the beam cross section.

The second term, ar/a, is generated by surface charyes at the channel

boundary, OQutside the channel the dipole potential is simply,

2
o8 .y 2 (9)

Like a, y is an unknown function of 1 to be determined.




Inserting Equations 7 and 9 into the boundary conditions, Equations 5
and 6, provides a differential equation for a.

) g
(23—{"'0)0"55 (10)

Its solution is

T

=
]
m'\’“'\’:

j (e"’(‘"')/z - e"’("")) <2 1dr (11)
i

The corresponding dipole electric fields Er and Ee are give by -acosé and
-asing, respectively. Averaged over the beam cross section and added, they
give the tracking force, -al. This is indeed the result derived by a dif-
ferent route in Reference 4. (Actually, Lee's expression is slightly more
general in that it allows o to vary with t.) The negative sign indicates
that the force is inward. Physically, plasma electrons repelled by the
beam first accumulate preferentially at the channel edge closest to the
beam at the rate ¢ and then redistribute themselves uniformly around the
channel edge at the rate o/2. Tracking persists in this model as lonyg as
al/3t > 0,




CHAPTER 3
o FROZEN FIELD TRACKING MODEL

The Frozen Field Equations are a simplified form of Maxwell's equa-

| tions obtained by performing a Galilean transformation to a frame moving at
the speed of light and then dropping time derivatives.
d a1l 12 g | -
T B L B L e T (12)
@
) 12 13
3782 -7 et v 38 Er (13)
] 9
L 37 (-8 = -3¢ (18)
3 123
37 (E - By =T 358, - of. - J, (15)
e 3 12
7 (Eg* 8= -T5 E (16)
3 3
'a'-?(Ee+Br)’ - 378, - oEg - Jy (17)
®

These equations must be used with care, since their derivation involves the
implicit assumption that sources move at the speed of light. Nonphysical
behavior sometimes arises near infinite conductivity surfaces, and electro-

® magnetic shock waves are possible. Nonetheless, the Frozen Field Equations
have been used successfully in many particle beam propagation calculations.
As noted in the Introduction, IPROP channel tracking simulations show
negligible change (except for beams passing through metal foils) when

® Maxwell's equations are replaced by the Frozen Field Equations.

For 0 # 0, it is convenient to combine Equations 12-17 into a pair of
second order equations for Ez and Bz, analogous to the usual equations
() describing electromagnetic fields in waveguides,




9 9
Frar or a8 raeoTF]Bz'a—rJz (18)

(19)

Transverse beam currents, Jr and Je, have been dropped, consistent with the
assumptions presented in Chapters 1 and 2. Once the longitudinal fields
are determined, the transverse field are obtained from

e "}?(%" e, *%:_G'Bz) .(20)
Ea"%(%?az'%%Ez) (21)
'g_rar':—t%':—rsz'(l*'g?%)%%sz (22)
Lo (o5 b Rtk =

Equations 18 and 19 simplify greatly for constant conductivity. If ¢
is independent of r and @, the equations decouple. If, in addition, o is
independent of t, Equation 18 can be integrated once.

[ - T
2
313 _a 12 . -o{t-t') _3 y
ik R L e o L f e 7 J ot (24)
= - 0
) )
3_ 13 _a _1 3 .
R ol e L (25)




Both are two-dimensional diffusion equations. Note the similarity between
Equation 24 and Equation 4.

Equations 24 and 25 can be solved exactly inside the channel using
Green's functions or Laplace transforms. However, the formal solution
which results involves integrals with complicated kernels and is not
particularly enlightening. Instead, we obtain an approximate solution by
dropping the diffusion terms 03/3t and treating the simplified equations by
the method used in the preceding Chapter. Omitting the diffusion terms in
Equations 24 and 25 is reasonable, if fields change in t on a scale slow
compared to oaz. The range of validity of this approximation is estimated
in Chapter 5, where the Laplace transformation solution is obtained and
then expanded in powers of the transform variable., Comparing the approxi-
mate analytical solution with IPROP computations presented later also
supports dropping the diffusion terms.

With the 03/3t omitted, Equations 24 and 25 become

T
[]
- - )
ViEz=a I eo(rt)W\]dt' (26)
0

v{8, =0 (27)

Their dipole solutions are

Eii) =2 ar - o | (28)
ai” =L 4 (29)

Ez is taken to vary as cos8, in which case Er and Be also vary as cos®, and
Bz, Ee and Br vary as sine., Derivatives of the t-dependent unknown func-
tions a and 8, rather than the functions themselves, are introduced to
simplify notation later in the calculation. S was introduced in Chapter 2




and is expressed by Equation 8 for that portion of the channel outside the
beam,

Equations 18-23 cannot be used outside the channel, because their
derivation involves division by o. Simply multiplying those equations by
g before setting it to zero leaves an incomplete system of equations. In
essence, the Frozen Field Equations are qualitatively different in vacuum
and in resistive plasma.

Rearranging Equations 12-17 to evaluate the fields outside the channel
proceeds as follows. As before, the longitudinal field components are
easily isolated.

e, =vfs, =0 (30)
However, Ez and Bz no longer are independent. From Equations 14 and 15,

9
5+%—B=o (31)

_
ar 30 "z

In consequence, the transverse field components are only partly determined
by Ez and Bz‘

2 2
2 (12 13 (% 1
Ly e idyey) <;—z - '2"‘5>Ez (32)
T r- a6
2 2
) ) ) 123 9 1 23
ﬁ('?ﬁ'ﬁe*'ﬁﬁse)’(?'?;?)“z 33

E (34)

2
13 123 9 129 3
‘FEF"Br*FﬁEr)’<‘7‘FF"F>Bz (35)




From Equations 30 and 31, the dipole longitudinal fields are

2
Ege) = B(Ze) = %‘T Y —:— (36)

if az/b2 « 1., Of the dipole transverse fields, only the combination

Ee - Be is needed to derive the tracking force in the large radius drift

tube limit, It is described by

2 2 .1 3
ar (B = Bg) = -\ * 7)) B+ B) (37)

wlw
-

which is the sum of Equations 32 and 33 evaluated for the azimuthal field
dependences given following Equation 29.

2 2
Ege) - Bge) . 2a2-§:z y an b/r + v ff (38)

Note that the drift tube radius b appears logarithmically in the first term
of Equation 38. That term is not necessarily small and cannot be dropped.
The vacuum fields are derived for arbitrary b/a in Chapter 6.

Three matching conditions at the channel boundary are necessary to
determine the t-dependent quantities a, B and v.

(e) (1)
e, = g, (39)
(e) , R(1)
Bz = Bz (40)
3 13 13 i ) s (4
F(Ege)‘Bge))"Gﬁ?sFr(Ei)*B(z ))--ﬁﬁi) (41)

Equation 41 follows from continuity of Ee - Be’ and from Equations 21 and
23.

i3




The jump conditions Equations 39-41 can, of course, also be treated as
boundary conditions on the interior solutions by eliminating the exterior

solutions.
) - ! (42)
ZganaéiE“)+33-li-rE“)+ﬂ”)+ li—ﬁ“)=0 (43)
2 "2 g3t rar z z AT ar

T

The tracking force is now obtained. Substituting EZ and Bz from
Equations 28, 29, and 36 into Equations 39 and 40 gives 8 = y and

] ) g

oo jﬁ:B"ﬁ-a-ES (44)
y Equations 28, 29, 38, 41 and 44 then yield a differential equation for a,

e

& 5,32 + 22 4+ a-(l_a_+_°.)s (45)

g ;:? T adrt a
ka‘ where
;952 X = 0232 tn b/a (46)

The solution to Equation 45 is

o T
A'.;o - -r! /1 - x
as% J- {e o(z-1')/X [cosh—x—-o(t-t')
a9
o + 1 sinh ; o(t - 1')] - e-o(’(-r );3—3'- I de¢ (47)
oy P
;. The net angle-averaged dipole field acting on the beam is l/Z(Er - Be -
o Eq - B.). This quantity is expressed in terms of E_ by using Equations 14
:?' and 16,
) 3_ .13
¥ at (Er - Bg - Eg- Br) “Fawr "k (48)
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As in Chapter 2, the term proportional to S in Ez does not contribute to

@ tracking. Hence, the Frozen Field Tracking Model force is -al.
For subsequent comparison with IPROP data, the separate electric and
magnetic tracking force components are useful, The transverse fields
o inside the channel are obtained from Equations 20-23.
2
- e a X 3
Er -Ee @ -5 —3 8 (49)
g
)
2
X 3
B =B, = - 8 (50)
r ® -:Z T
'. Inserting a and 8 from Equations 44 and 45 then gives
T /____
- - . -
%(EF_EQ),Z_;I{eO(fT)/X 2 sinhlxxc(t-t')
a5 /1-X
@
-o{t-t'){ 3 '
-e }—a?- I dt (51)
' T
- - ' -
%(-Br-Be):% I eo(Tt)/x [cosh X olt~ ')
29
® - — stan B X o(x - r')]g-.-l de’ (52)
T-X
Multiplied by -1, these are the electric and magnetic forces, respectively.
It is evident from Equations 51 and 52 that the electric force is detrack-
. ing, and the magnetic force tracking, at early times.
It is clear from Equations 10 and 45 that the Frozen Field Model
° tracking force must reduce to the Electrostatic Model trackinyg force as
®
15




X + 0. The magnetic component, Equation 52, vanishes, while the electric
component, Equation 51, approaches the electrostatic force, Equation 11.
This convergence is not uniform, however., Tracking at the very front of

[ |
o the beam is modified by magnetic effects for a distance in t of order X/o
. no matter how small X becomes. Of course, strong modifications over very
short distances have little practical importance.
Although perhaps not immediately obvious, the tracking force expres-
sions are continuous through X = 1, At X = 1, Equation 47 becomes
T
'41‘( - - )
"‘f:. a--z—;- f eo(r‘r) G(t-T')%—IdT' (53)
g *o
i The analytic extension of Equation 47 above X = 1 is obtained by replacing
fﬁﬁ (1 - )()1/2 by (X - 1)1/2 and the hyperbolic functions by the corresponding

e trignometric functions. Thus, the tracking force can oscillate in ampli-
tude for X > 1. Eventually, dropping the diffusion terms from Equations 24
and 25 becomes inaccurate as X is increased.

j@ The variation of the predicted tracking force with X for a 10 kA,

15 cm rise length beam offset 0.25 cm in a 1 ¢m radius, 1 em-l constant
conductivity channel is illustrated in Figure 2. The force is nearly inde-
pendent of X and equal to the Electrostatic Tracking Model force for X < 2,
A stronger but oscillatory force arises at larger X. Note that the 25-50 g
peak tracking forces should not be expected for more realistic beam and
channel profiles.

The similarity between tracking force predictions from the Electro-
static and Frozen Field models suggested in Fiyure 2 does not carry over to
- their electric and magnetic components. Figure 3 depicts the trackinyg
e force components from Equations 51 and 52 for the beam and channel of
X Figure 2 but with o = 0.5 cm'l; X = 1, For a distance into the pulse of
order a few times X/o, the magnetic component clearly dominates. In fact,
the electric component is detracking for a short distance. The early-time
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51 AND 52 AND FROM A COMPARABLE IPROP SIMULATION.
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magnetic tracking appears to be due both to lateral plasma currents and to

® the axial displacement current. Inductive effects cause the electric
tracking reversal at the beam front. The remarkable cancellation between
the components which allows the total tracking force to so nearly equal the
purely electrostatic result from Chapter 2 may not persist for more
realistic channel profiles.

Also plotted in Figure 3 are the tracking forces from a comparable
IPROP simulation. Agreement is very good overall, supporting the validity
of our tracking model. Radial profiles of the various fields in IPROP
agree well with the predictions of Equations 20-23. [IPROP preliminary
tracking resuits are presented in some detail in Reference 1.
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CHAPTER 4
CHANNEL TRACKING WITH THE NEW FIELD EQUATIONS

Deriving the tracking force implied by the New Field Equations}!! is
desirable, because this approximation to the Frozen Field Equations is used
in many propayation codes. The New Field Equations can be written in many

equivalent forms, including®

%;VE(AZ-‘*)’VL' ovi¢ (54)
2 A + 0 (A 2 a2y
2R m ) o (A - e) - VLA, - (55)

The axial displacement current, sometimes used in DYNASTY 11,19 is added to
Equation 55. From time to time during the derivation which follows, we
note the effects of dropping this term. In this way the tracking forces
for the New Field Equations with and without the axial displacement current

are obtain simultaneously.

Inside the channel, where o is constant, Equations 54 and 55 can be
manipulated to provide an equation for Az - ¢ alone.

9 )
Either Az or ¢ can be taken as the second dependent variable. We choose
Az.
12
Vi AZ = (1 +G?‘?) Vi (AZ - 0) (57)

As in the preceding derivations, Equation 56 is simplified by integrating

once in T,
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D)
o
: T
. - _l
|® (o%-Vj_)(AZ-O)=G f e (™7 gy (58)
' 0
f Note that the first term in Equation 58 has a more complicated form in the
'qg absence of the axial displacement current. However, as before, we drop
this diffusion term. In other words, the axial displacement current plays
no direct role inside the channel.
T
@ e
.‘ vj(Az-¢)=-a f et gq (59)
: 0 |
R)
* :
. Equations 59 and 57 have dipole solutions
@
Y T
2, . .
Al o) e ar e f s dt' (60)
o
- (i)_( 13_)((1) (i))
! AZ = {1+ <33 AZ - ¢ + Br (61)
:
% In the vacuum region outside the channel, Equations 54 and 55 reduce
® to
o
; vf (A, -9) =0 (62)
i
T
p W A, = —2-(A ¢) (63)
: Their dipole solutions are
. 2
»
!
K (e) . az 32 ra 65
o AZ Gr—-—zyTlnb/r ( )
3
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L)
L)
¥
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As in Chapters 2 and 3, small terms scaling as (a/b)2 are omitted. The
second term in Equation 65 arises from the axial displacement current.

Four matching conditions at the channel boundary are needed to
evaluate a, 8, Y, and §. Az and ¢ are continuous there. Integrating
Equations 54 and 55 across the boundary gives, in addition,

3_ Lle) (1)

ar Az ar Ay (66)
B ) 3 3 i i 3 (i

L5 () - o) s 5 5 (WD - ) s D) (67)

Combining these with Equations 64 and 65 to eliminate the exterior fields
yields

2 . .
a(zn b/a - 1/2) :—2 (Ai” . ¢(1)) +12 a1 .g (68)
T

(3_11»(,)"“1) (i)) 13 (,,9)_0(1-))_“3r Ao (e)

If desired, Aii) also can be eliminated, leaving a single boundary
condition at r = a,

2 (0 - 40)

<3e

a(zn b/a - 1/2) 2 —-2 ((” (”) %(ﬁ+ a)

MrTY ca ar ( - (1)) =0 (70)

The second-derivative terms in Equations 68 and 70 are omitted'in the case
of no axial displacement current,

Inserting Equations 60 and 61 into Equations 68 and 69, or Equation 60
into Equation 70 yields a differential equation for a identical to Equation
45 for the Frozen Field Tracking Model but with X redefined as




X = 3 ala?(tn b/a - 1/2) (71)
With no axial displacement current, X = 0. The tracking fields are
obtained by taking the gradient of -ar-cosé. When averaged in angle and
summed, they give a tracking force -al, as before. For completeness, we
note that the electric and magnetic components of the tracking force are
given by Equations 51 and 52 with X frc» Equation 71.

In summary, the New Field Equations give rise to a tracking force
equal to that of the Frozen Field Tracking Model (with X reduced by
approximately one-half) or that of the Electrostatic Tracking Model,
depending on whether the axial displacement current is included. This
progression X » 1/2X +» OX is associated with dropping first aBz/at and then
aEZ/ar from the vacuum field equations and probably is due to the reduced
field energy there. The plasma currents both drive and are, in part,
driven by this field energy, which is proportional to tn(b/a).




CHAPTER 5
DIFFUSION CORRECTIONS

Diffusion terms were ignored in previous sections in order to obtain
analytically tractable results. Here, we evaluate the Laplace transforms
of the tracking forces with the diffusion terms retained in order to esti-
mate their importance. The transformed tracking forces can be derived by
paralleling the derivations in Chapters 3 and 4, starting from the trans-
forms of Equations 24 and 25 for the Frozen Field model and Eyuation 58 for
the New Field models. Indeed, we have done so and obtained the results
given below. Here, however, we outline an alternative, more formal

approach,

Throughout this section, all quantities are taken to be Laplace-
transformed with respect to r. The transform variable is s.

In coordinates centered on the channel axis, the net tracking force
consists of a monopole force acting on the beam dipole current and a dipole
force acting on the beam monopole current. The dipole current is given by
-¢ 3J/ar for a rigidly displaced beam. Thus, the total force, averaged
over angle and normalized to the beam current, is

17! I [FO (- c :—ﬂ)+ Fy J] rdr! (72)

The forces can, in turn, be expressed in terms of potentials,

)
Fo‘-a—r'co (73)
_1la

Inserting Equations 73 and 74 into Equation 72 and integrating by parts
gives

-1t J. (;1 + € %F ;0) (%F Jr) r'dr' (75)




The integrand of Equation 75 would, of course, vanish identically were it
o not for the channel edge.

Now let us suppose that the potentials satisfy

® 13 3 2
(FEF'TF"‘ -

with boundary conditions

)‘m = P f— s (76)

-AN| BN

* )
To* Mg ar S O (77)
)
c1+n1%7,:r;180 (78)
®
at the channel wall, r = a. These equations are solved conveniently in
terms of Green's functions,
jj
‘ %Jm(xr') wm(ncr) r>rp' |
o Gm = . (80) }
7 Jm(xr) wm(ncr‘) r<r!
y(xr) = I-(er) Yo(xa) - nOnYl(Ka) (81) |
o ¥ * Kr) - xr — |
0 0 0 Jo(xﬂ noxdl(raf ]
Yl(xa) + nleo(xa) *
v, " Yl(.:r) - Jl(:r) rl(“) T “I‘JO(‘H (82)
. 1
J, and Y are Bessel functions of the first and second kinds.'2 |
The integrations in Equations 75 and 79 are straightforward, if the
o beam profile is square, so that 3J/ar = -J 8(r - ab).
o
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r o Jy(xay)
Sl A R vy ka, volxr) r2a, (83)
J, (xa, )
b
g, = - %.o : S I xe T%?‘?E; wl(xr) r>a, (84)

The tracking force is

2 2
J,(xa) (1 + nyn,x) 1/2 xa
2¢0 1 ( 1'7b > 01 (85)

o+s ,2\1/2 xa, [U;(xa) + n;xdg(xa)Ildg(xa) - nyudi(xa)]
The Bessel function Wronskian formulal? was used in obtaining Equation 85.

It can be shown that ng = 0 for the three tracking models investigated
in this report. Physically, this corresponds to the vanishing of the
axisymmetric portion of EZ outside the channel for ultrarelativistic beams.,
Equation 85 can be simplified notationally by absorbing the shape factor
[Jl(ncab)/(I/Zxab)]2 into I. This quantity is equal to unity at lony trans-
verse wavelengths, and decreases rapidly for 1/2«xa_ > 2.4. With these
changes, Equation 85 becomes

b

(2o L2
g+s 0(J + nlxdo)

(86)

From here on, the Bessel function arguments are understood to be «a.

For the Frozen Field Equations of Chapter 3, -Ez/s can be identified
as the potential g, and -os as rz. See Equations 24 and 48, Since Bz is
proportional to Jm(:a) inside the channel, Equations 42 and 43 can be

combined to yield the boundary condition

(2XS + as Jy/dy ) E, + ca(o + s) F”EF rE =0 (87)

from which n, can be identified. Consequently, the Laplace-transformed

1

tracking force is




2 (XS/J0 + 0% xa/J )

S
I (88)
:2' O*S xs Jl / 1/2xa + o(o + 2‘.‘»)‘10

Similarly, A - ¢ is the potential for the New Field Equations of
Chapter 4. The transverse wavenumber :2 is -os if the axial displacement
current is retained, and -os/(o + s) otherwise. See Equation 58 and the
associated text. The Laplace-transform of Equation 70 provides the
boundary condition. The resulting tracking force is

S (Xs + o)o (89)
a2 TS g l(xs? + 0s)d; / V2ea + oo + $)9g)

Recall that X is set to zero, if the axial displacement current is dropped.

Setting Jo and Jl / 1/2xa to unity in either Equation 88 or 89 yields

_2 s
a2¢:r10-s Xs

Xs + d)o
1 4 (90)
2 + 205 + 02

This is the Laplace transform of Equation 47, the channel tracking force
derived with the diffusion term ignored inside the channel, as can be seen
most readily by examining Equations 8 and 45. Thus, dropping the diffusion
term is valid if ,siI < 4/aa2, or 40'/(02a2 + 1) for the New Field Equations
without the axial displacement current. Sy is a zero of XS2 + 205 + oz.
Numerical analysis of the poles and residues of Equations 88 and 89 indi-
cates that the factor 4 can be increased to 2.42.

In Chapters 3 and 4 and again here, it is seen that the tracking
forces for the Frozen Field Equations and for the New Field Equations with
the axial displacement current are formally identical when the diffusion
term is omitted, differing only in the definitions of X. The complete
force expressions, Equations 88 and 89, are not formally identical, how-
ever, Nonetheless, their lowest poles and corresponding residues are
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e nearly equal numerically, at least for o%a® < 10. The tracking force for

the New Field Equations without the axial displacement current is, of
;*q} course, qualitatively different from that of the other models, unless
‘?'? X €« 1: the lowest poles are a complex conjugate pair in the first two
! cases and a single real value in the third.

Further numerical investigation of the poles and residues yields a
result which is surprising at first sight., The lowest poles, in terms of
Re(si), contribute to tracking, or in the case of complex conjugate pairs
contribute alternately (in t) to tracking and detracking, but tracking

ey first. The lowest pole associated with detracking comes from the smallest
'ﬁgg. zero of the factor Jo in the denominators of Equations 88 and 89 and so has
A a large Re(s,). (It represents beam repulsion from the channel due to the
e monopole return current.) This seems to predict that beams always track
%&' conductivity channels, independent of the magnitude of ca. This apparent
%&3\ discrepancy with simulation results probably is resolved as follows. The
e complex conjugate pair which occurs for X # 0 has a very large imayginary
L part for oa very large. Thus, the tracking force oscillates rapidly in

}§§ sign, so that its average value is small. In addition, the correspondiny
iﬁg residues become very small. When X = 0, on the other hand, the lowest

tracking pole moves very close to the first detracking pole as ca becomes
- large, and their effects approximately cancel. The behavior of higher
'Jﬁi poles then must be considered. We have not done so, because it does not
seem worthwhile,

. Incidentally, the next higher tracking pole in Equations 88 and 89
e takes on the value 3.82/aa2 for oa small and gradually decreases to

Eli 2.42/aa2 as oa becomes very large. It is probably this pole that enters
- into the resistive hose instability.

)
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CHAPTER 6
CONDUCTING-WALL CORRECTIONS

The conducting drift tube surrounding the beam channel enters the
preceding calculations only through the logarithm appearing in X. Other
terms, of order (a/b)z or smaller, are ignored. Now, we repeat the
analysis of Chapter 3 with these terms included to demonstrate that they
are, indeed, unimportant for large drift tubes. The impact of a small
drift tube on channel tracking also is determined.

General solutions to Equations 30 and 31 for Ez and Bz in vacuum
between a and b with Ez(b) = 0 are

9
(e .21, <g ] g) (91)

9T r
se) 2 fa, at (92)
Z at Y r ;f

The transverse fields are derived most easily by taking the sums and
differences of Equations 32 and 33 and of Equations 34 and 35, and then
integrating once each in t and r. Ee(b) = () determines one integration
constant,
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Matching these exterior solutions to the interior solutions, already
given in Equations 28 and 29, is accomplished through continuity of Ez

? (e) (e) 139 3 1 i) i 3 (1)
L(efe) v a{®) s 12 p 2 L () (1)), 2 gl (97)

The counterpart of Equation 97 was not required in Chapter 3 due to a
fortuitous cancellation. Combining all these equations yields after some

2
] ) a
-;—2""2—3?‘*’0(1-—2)]0
T b

algebra

|

Q|

2 2
_1 X3 g a 2¢ a .
-[EF+E<1+¥\)]S+?U<1-F>I (98)
X is again redefined.
X = o?a?[en b/a + 1/4(1 - a*/pt)] (99)

The primary difference between this formula and Equation 45, which was
obtained in the limit of large b/a, is seen to be the additional! source
term, proportional to the beam current, on the right side of Equation 98,
Other terms involving b can, in fact, be eliminated formally by renor-
malizing a, X, o, and t. The corrections involved are, in any event, small
so long as (b/a)2 » 1. Solving Equation 98 yields the additional contribu-
tion to the tracking force,

X o(t - t') oldr' (100)

T

2¢ -o(t=-1"')/X 1 /T -X
e —~—— sinh

bT 0I

where terms of order (a/b)2 have been omitted. For X € 1 this becomes
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2—; f g0l -t )/z-zl-aldr‘ (101)
b™ 5

Both expressions reduce to ZeI/bz, the usual magnetic image force, for
gt. > 2. T, is the current rise length. The corresponding electric image
is shielded by the channel conductivity at late times. Recall that these
results assume oca small in the sense of Chapter 5. The magnetic image

force is reduced by return currents for ca large.

The criterion gt > 2 for the magnetic wall force to reduce to 2eI/b2
is almost always satisfied in practice. On this basis, it can be shown
that the wall force on the beam head is small compared to the tracking
force when (b/a)2 » 10. That the wall force on the beam body be small com-
pared to the tracking force requires that (b/a)2 be much greater than
several times OT.s with the conductivity evaluated in the beam head. IPROP
simulations suggest (b/a)2 » 500 for realistic beam and channel radial pro-
files with a~1lcm, 0 =1 cm'l, and T, " 100 cm. It is desirable that the
second, more restrictive, condition be met so that wall-force centering of

the beam body not be confused with tracking of the beam head.
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CHAPTER 7
CONCLUSIONS

The foregoing calculations provide an improved model of conductivity
channel tracking. The derivation is based on the complete set of Frozen
Field Equations. It is valid for ca < 2.4 and b/a > 10, although b/a » 20
probably is necessary for unambiguous experimental confirmation., The model
also requires the beam to lie entirely within a sharp-edged constant con-
ductivity channel, Note surprisingly, simulations show somewhat weaker
tracking forces for more realistic conditions, Qualitative features of the
model nonetheless persist.

The analytical tracking force expression contains a quantity X which
measures the electromagnetic tracking-field energy outside the channel,
For X < 1 the tracking force is approximately that of the Electrostatic
Tracking Model. For X > 1, on the other hand, the tracking force oscil-
lates in time like an underdamped pendulum, This field enerqgy can be
thought of as inertia of the tracking force. Dropping Bz’ which is done in
the New Field Equations with the displacement current retained, cuts this
inertia in half. Dropping the displacement current as well eliminates the
inertia entirely.

X diverges logarithmically for large drift tube radii. This seemingly
nonphysical result is a consequence of the ultrarelativistic approximation
implicit in the Frozen Field Equations. A Lorentz transformation to the
beam frame shows in a qualitative sense that b should be replaced by LAY in
open air, T is the axial scale length over which the tracking force
varies; it is smaller than Tee Fields tend to fall off spherically rather
than cylindrically at radii greater than YTqe Values of zn(yrola) larger
than about 15 are unlikely in practice,

A distinctive feature of the Frozen Field Tracking Model is the role
of transverse magnetic fields. Radial and azimuthal dipole plasma currents




near the beam head drive Br and Be via Faraday's law provided Bz is not set
to zero. In addition, the dipole axial displacement current generates
transverse magnetic fields irrespective of whether Bz = 0, It is not dif-
ficult to see that VxB always leads to a centering force on the beam at
early times, when the lateral plasma currents are still rising. Moreover,
the force can be quite large. That the transverse electric fields should
be modified inductively so that they largely cancel the magnetic force for
X < 1, leaving a net tracking force not much different from that of the
Electrostatic Tracking Model, is surprising. Whether this cancellation
persists for more realistic channel profiles is unknown.

At least for the idealized conditions considered here, the New Field
Equations describe channel tracking about as well as the complete Frozen
Field Equations, provided the axial displacement current is retained in the
New Field Equations. Omitting the displacement current changes tracking
forces qualitatively. Physically, oscillations occurring for X > 1 and
early time magnetic field effects are lost. Mathematically, the complex
conjugate pair of roots are replace by a single real root in the plasma
dielectric function. (This loss of a mode can be seen more simply by
deriving the dispersion relation for normal modes of the New Field Equa-
tions, with and without the axial displacement current, in a homogeneous
resistive medium.) At a minimum, the axial displacement current should be
kept in any New Field Equation calculation of tracking. It seems prudent,
more generally, to retain the axial displacement current whenever the con-
dition ca » 2 is not well satisfied.
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