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ABSTRACT

This paper is concerned with the theoretical description of long, finite-amplitude

waves in the stably-stratified lower atmosphere. The time evolution of these waves is

governed to first order by the Benjamin-Davis-Ono (BDO) equation when frictional

processes are negligible or by the BDO-Burgers equation when turbulent dissipation is

significant. Numerical solutions of both of these model equations are presented for a

wide variety of initial conditions ranging from long waves of finite volume to internal

deep-fluid bore waves of infinite spatial extent. It is shown that initially smooth long

wave disturbances evolve rapidly under ideal homogeneous waveguide conditions into

solitary waves of exceptionally large amplitude. The BDO-Burgers equation is found to

have highly stable time-independent deep-fluid internal bore wave solutions which may

be either oscillatory or monotonic depending upon the degree of frictional dissipation.

A number of specific models for the time evolution of long nonlinear atmospheric

waves are proposed and discussed in detail. Explic;t formulae are given for the wave

propogation parameters, surface perturbation pressure, and wind components for three

simple, but realistic, boundary layer inversion waveguides. A study has also been

made of the influence on nonlinear wave propagation of either spatial or temporal

variations in the degree of turbulent dissipation. It is shown that a sudden increase

or decrease in the frictional damping coefficient, such as might be encountered at a

land-sea boundary, can induce a significant variation in the speed of propagation and a

substantial change in the morphology of finite-amplitude boundary layer wave

disturbances. Finally, it is shown that wave induced turbulence plays an important

role in the evolution of long nonlinear atmospheric waves. Accesion For
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1Introductionl

It has long been recognized that internal gravity waves are an important dynamical

feature in the lower atmosphere. The significance of these ubiquitous waves arises

from their ability to transfer energy and momentum and from the role they play in

the generation of turbulence and in the initiation and organization of deep convection.

In the last few years it has become increasingly clear that long gravity waves which

propagate on inversions in the lower troposphere are often highly nonlinear in nature.

A good illustration of the importance of nonlinearity in the description of long

atmospheric wave disturbances is given by observations of solitary waves on nocturnal

inversions over Northern Australia (Christie et al., 1978, 1979) and over Central

Oklahoma (Doviak and Ge, 1984). Waves of this type often have amplitudes which

are comparable to the effective depth of the inversion waveguide; they are an

essentially nonlinear phenomenon and the successful description of their properties can

only be given within the framework of nonlinear dispersive wave theory. Although

linear long wave theory often provides a fairly good estimate of phase speed, an

analysis based on the linearized equations completely fails to describe the morphology

and evolution of finite-amplitude long internal wave disturbances. This paper will be

concerned with a general theoretical description of nonlinear wave propagation in the

stably-stratified lower atmosphere.

A particularly interesting and exceptionally well-documented example of nonlinear

wave activity in the lower atmosphere is given by the 'morning glory' phenomenon of

north-eastern Australia. The morning glory is a strong wind squall or series of wind

squalls, often accompanied by one or more spectacular solitary wave roll cloud

formations, occurring commonly near dawn with remarkable regularity during the

spring months over the* southern Gulf of Carpentaria region and the adjacent Cape

York Peninsula. A number of observational studies carried out in recent years

(Christie et al., 1981; Clarke et al., 1981; Christie and Muirhead, 1981, 1983 a,b; Smith
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et al., 1982; Clarke, 1983b; Smith and Morton, 1984; Smith and Page, 1985; Smith et

al. 1986) have shown that the morning glory is, in essence, a long nonlinear internal

boundary-layer wave disturbance which evolves asymptotically in time into a family of

large amplitude solitary waves. It is now widely recognised that similar

large-amplitude propagating wave phenomena occur commonly, but usually without

cloud, over much of the Australian region (Christie et al., 1978, 1979, Christie and

Muirhead, 1983a, 1985; Drake 1984, 1985; Mulroney, 1984; Smith, 1986; Clarke, 1986;

Physick, 1987) and elsewhere (Shreffler and Binkowski, 1981; Goncharov and Matveyev,

1982; Hasse and Smith, 1984; Doviak and Ge, 1984; additional references may be

found in Christie and Muirhead, 1983b).

In the present paper we will be concerned with a general description of the

evolution of morning glory waves and other closely-related nonlinear wave phenomena

which are confined to the lower few kilometers of the atmosphere. Christie et al.

(1978, 1979) proposed, on the basis of the atmospheric scales involved, that the

evolution of boundary-layer disturbances of this type is governed, to first order, by

the deep-fluid Benjamin-Davis-Ono (BDO) equation (Benjamin, 1967). Up until now,

detailed theoretical modelling of atmospheric waves of this type has been limited

largely to a study of the stationary solitary wave components. Solitary wave solutions

of the BDO equation for a simple two-fluid boundary layer model were used by

Christie et al. (1978) to interpret observations of nonlinear waves over the arid interior

of northern Australia. A similar solitary wave analysis has been used by Goncharov

and Matveyev (1982) to estimate the depth and intensity of boundary layer temperature

inversions from nonlinear wave observations. Solitary wave solutions corresponding to

a realistic analytical model for potential temperature and shear profiles in the ambient

environment have been derived by Clarke et al. (1981) ond compared with morning

glory observations. Recently, Noonan and Smith (1985) have reported the results of a

very detailed study of morning glory solitary waves based on a numerical treatment of

the waveguide eigenvalue problem. In both of these latter investigations the



calculated morning glory wave speeds were found to compare favourably with observed

propagation speeds. Clarke et al. found, however, that the predicted effective

wavelengths of the solitary wave components were significantly smaller than those

indicated by the observations, while in the investigation reported by Noonan and Smith,

the predicted wavelengths were substantially larger than those observed.

It is assumed in all of these relatively simple model calculations that the

time-independent Benjamin-Davis-Ono equation provides a valid description of these

disturbances. Strictly speaking, the steady-state BDO equation is applicable only to

completely non-interacting deep-fluid solitary waves of modest amplitude which

propagate in an inviscid horizontally homogeneous waveguide embedded in a neutrally

stable fluid of infinite extent. Since atmospheric solitary waves seldom, if ever, occur

as effectively isolated phenomena independent of other solitary wave components,

calculations of wave parameters based on the time-independent solutions of the BDO

equation may be unreliable. Furthermore, the evolution of long nonlinear wave

disturbances in the lower atmosphere is always subject to dissipative processes and may

also be influenced by variations in waveguide structure. Thus, a more realistic

description of these disturbances should be based on the time-dependent solution and

should include the effects of spatial and temporal inhomogeneities in the waveguide

structure, turbulent dissipation, and perhaps, damping due to the radiation of waves

into the upper atmosphere. Since in many cases of interest the waveguide may be

viewed as essentially uniform, the present paper will be primarily concerned with a

theoretical study of the time-evolution of nonlinear wave disturbances under ideal

homogeneous inviscid waveguide conditions and under conditions where turbulent

dissipation plays a significant role in the evolution proceis.

A preliminary step in the study of the evolution of nonlinear boundary layer

waves has been described by Christie and Muirhead (1981) who numerically solved the

Benjamin-Davis-Ono equation for a variety of finite-volume initial long wave

disturbances. Egger (1983, 1984) has also considered the development of morning
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glory nonlinear waves in a simple two-fluid model based on the internal bore-wave

solution of the classical shallow-fluid Korteweg-de Vries (KdV)-Burgers equation. It is

clear, however, from the discussion in Benjamin (1967), that the Korteweg-de Vries

equation does not provide a proper description of nonlinear waves in a surface-based

waveguide beneath an unbounded fluid. This investigation will therefore focus on a

study of the evolution of long nonlinear wave disturbances as given within the

framework of a generalized deep-fluid Benjamin-Davis-Ono equation with turbulent

dissipation.

A brief review of the observed properties of long nonlinear atmospheric wave

disturbances as illustrated by the morning glory of the Gulf of Carpentaria is given in

Section 2. This is followed in Section 3 by a discussion of the application of

nonlinear dispersive wave theory to a description of finite-amplitude wave motions in

the stably-stratified lower atmosphere. The Benjamin-Davis-Ono-Burgers equation is

introduced at this point as a model equation for the dynamics of these nonlinear wave

disturbances. Explicit expressions are given for both the surface perturbation pressure

and wind components and these are applied in the next section to three simple, but

realistic, inversion waveguide models to illustrate the principal features of long

nonlinear waves in the atmospheric boundary layer. The main results of the present

paper are presented in Section 5. Numerical solutions of the BDO equation are given

in Section 5(a) for a wide variety of initial conditions ranging from smooth internal

deep-fluid bore waves of infinite extent to long waves of finite volume. One of the

most important results to emerge from this investigation is the discovery that relatively

benign long wave disturbances in the atmospheric boundary layer can evolve rapidly

under ideal uniform waveguide conditions into solitary waves of exceptionally large

amplitude. This result has obvious implications for the subject of hazardous aviation

wind shear (Christie and' Muirhead, 1983, a,b; 1985) and raises a number of interesting

questions regarding the role of these disturbances in the initiation and organization of

deep convection. The results of a numerical investigation of both the stationary and
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time-dependent solutions of the BDO-Burgers equation are given in Section 5(b).

Solutions corresponding to deep-fluid time- independent internal bore waves and to

decaying spatially localized long wave disturbances are presented in detail and a

number of specific models for nonlinear atmospheric waves are proposed, based on

these results. Section 6 is devoted to a study of nonlinear wave propagation under

conditions where variations in the degree of turbulent friction occur either at a

boundary, or as a result of the onset of shear instability in the leading solitary wave

components.

2. Properties of Nonlinear Wave Disturbances

The morning glory of the Gulf and Carpentaria provides a particularly good

illustration of the properties of long nonlinear wave disturbances in the lower

atmosphere. The morning glory appears to originate (Clarke, 1983b; Clarke, 1984;

Crook and Miller, 1985; Noonan and Smith, 1986) during the early evening over the

central highlands of the Cape York Peninsula in the transformation of a sea-breeze

surge from the Coral Sea into an internal long wave disturbance. This disturbance

continues to propagate during the following morning towards the south-east over the

southern Gulf of Carpentaria on a nocturnal/maritime inversion layer and then inland

over the arid interior of northern Australia. The initially smooth long wave

disturbance develops undulations along the leading edge which evolve rapidly into

discrete solitary waves with amplitudes comparable to the effective depth of the

surface-based inversion. Under suitable conditions, the leading solitary wave

components produce roll cloud formations which may extend from a base at a few

hundred meters to a height of more than two kilometers. These solitary wave roll

cloud formations, which typically have a width of about 4 kilometers, seldom produce

precipitation; large amplitude disturbances of this type do, however, initiate deep
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convection and thunderstorms are frequently observed to develop over the Gulf of

Carpentaria in the wake of these disturbances.

The salient features of morning glory wave disturbances may be seen in the

selection of surface micropressure records shown in Figures I to 3. These records

have been chosen to illustrate the principal features of the most commonly observed

forms of these disturbances. In many cases, the disturbance appears to have a

well-defined horizontal length in the direction of propagation. On occasion, however,

these disturbances extend over considerable distances and the form of the disturbance

is reminiscent, to some extent, of a classical bore wave on the surface of shallow

water. It should be emphasised, however, that an analogy with the classical bore wave

phenomenon should not be taken too literally. A careful investigation of the surface

pressure signature of morning glory disturbances has shown that the pressure

perturbation due to these disturbances is not usually maintained at a constant level over

prolonged periods of time which implies that the inversion height does not remain

elevated for long periods of time behind the leading edge of these disturbances. The

observed decay in surface wind speed behind the leading solitary wave components in

these disturbances is also consistent with this interpretation.

On average, most morning glory disturbances have 3 or 4 well-developed solitary

wave components. In some cases, these disturbances appear to occur in the form of

an essentially asymptotic amplitude-ordered family of solitary waves (see Figure 1)

while other morning glory disturbances are observed with only one well-defined solitary

wave component along the leading edge (see Figures 2b and 3d) ahead of the main

disturbance. In contrast, on occasion, particularly extensive disturbances are observed

with 8 or more clearly defined solitary wave components (see Figure 2d). In

well-developed disturbances the horizontal separation between the leading solitary wave

components is typically between 3 and 10 kilometers and the amplitude of the leading

solitary wave is usually within the range from 300 to 1000 meters. Morning glories

which originate over the Cape York Peninsula propagate towards the south-west with
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speeds between 6 and 18 m/s. Similar nonlinear wave disturbances which originate to

the south and south-east are also observed on occasion along the southern margin of

the Gulf of Carpentaria (Christie et al., 1981; Smith et al., 1982; Smith et al., 1986).

The extensive aerological observations reported by Clarke et al. (1981), Smith et

al. (1982), Clark (1983b), and Smith and Morton (1984) have provided an abundance of

data on the environmental waveguide conditions over the southern Gulf of Carpentaria

region. Morning glory waves propagate on a stably-stratified boundary-layer inversion

underlying an almost neutral elevated layer which extends for several kilometers above

the inversion height. The depth of the surface-based inversion is typically between

500 and 1200 meters and the average Brunt-Vaisala period in this waveguide layer is

usually in the range from 4 to 6 minutes. The environmental wind component normal

to the wavefront is usually towards the disturbance in the inversion layer and along

the direction of propagation at higher levels. The ambient normal winds tend to be

light at lower levels and are always less than the observed propagation speed of the

wave front at higher levels. Smith and Morton (1984) have emphasised that critical

levels in the environmental wind structure are apparently absent in the case of morning

glory wave disturbances.

3. Evolution Eauations for Long Nonlinear Internal Waves in the Atmosphere

The theoretical description of long finite-amplitude internal waves in stratified

fluids has received a great deal of attention in recent years. For waves of modest

amplitude in shallow homogeneous fluids, the appropriate equation (see, for instance,

Benney (1966) and Benjamin (1966)) which describes the time evolution of the vertical

displacement at any point in the fluid,

n(x,z,t) - A(x,t)V,(z), (3.1)

is the familiar Korteweg-de Vries equation,
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,M + cA + ceA- + 3 = 0. (3.2)
7 73

Here co is thc! linear long wave phase speed and the coefficients of the nonlinear and

dispersive terms, ct and 3 respectively, along with the vertical modal function, (z), are

determined by the environmental waveguide density profile po(z) and shear distribution

uo(z). As suggested by Christie et al. (1978), the KdV equation may provide a

reasonable first-order model for larger scale atmospheric wave disturbances with

horizontal wave lengths comparable to the depth of the troposphere. Here, however,

we are concerned primarily with the description of nonlinear wave disturbances which

are confined to surface-based inversion waveguides with effective vertical scales of the

order of one kilometer. These waves therefore belong to the class of nonlinear wave

disturbances in deep fluids first considered by Benjamin (1967) and Davis and Acrivos

(1967) and later by Ono (1975). In this case the appropriate scale is determined by

the effective depth, h, of the embedded waveguide rather than by the overall effective

fluid depth, H. The governing evolution equation for waves of this type is the

Benjamin-Davis-Ono equation,

+ C +a 6 o(A)=0, (3.3)0 7xc-' + cY T +  C) 2'f

where the linear dispersive term is now given by the Hilbert transform,

! ': A' dx'.9(A(x)) = Ax

A more general evolution equation for nonlinear waves in a finite-depth fluid, which

reduces to the KdV equation in the shallow-fluid limit and to the BDO equation in

the infinitely-deep-fluid limit has been given by Joseph (1977) and Kubota et al.

(1978).

The Korteweg-de Vries and Benjamin-Davis-Ono evolution equations have been

studied extensively and the basic properties of their solutions, especially in the case of



the KdV equation, are now fairly well understood. These equations are known to be

completely integrable with infinitely many conservation laws (Miura et al., 1968 (KdV);

Nakamura, 1979 (BDO)) and this implies that the solitary wave solutions should exhibit

the soliton property; i.e., despite nonlinear interaction, individual solitary waves should

emerge unscathed from collision. This is true for the solitary wave solutions of both

equations. Indeed, the concept of the soliton originated in a numerical study of the

solutions of the Korteweg-de Vries equation (Zabusky and Kruskal, 1965). The

N-soliton solution to the KdV equation has been given by Hirota (1971) and the

corresponding solution for the BDO equation has been found by Matsuno (1979) and

Chen et al. (1979).

The general behaviour of the time-dependent solutions of these basic model

equations are similar in many respects. For example, solutions of both equations

derived from arbitrary initial data evolve asymptotically into a finite number of

amplitude-ordered solitons. Dispersive effects are, however, stronger in deep fluids and

the corresponding solutions of these equations differ significantly. In contrast to the

KdV equation which describes solitary waves with the familiar exponentially decaying

sech 2 profile, the BDO solitons are algebraic. Furthermore, as a property in common

with most soliton-generating equations, the KdV equation describes solitary waves

which suffer a phase shift on collision. In this regard, the BDO solitons are

somewhat exceptional in that they emerge from interaction along their pre-collision

trajectories (Case, 1978; Matsuno, 1979). In addition, as emphasised by Koop and

Butler (1981), the wavelength-amplitude scaling of BDO solitary waves differs

fundamentally from that described by the KdV theory. For waves in unbounded fluids

the appropriate wavelength-amplitude relationship is given by

X
F)~ -1O(

while the corresponding scaling requirement for classical shallow-fluid solitary waves is

determined by
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2_ 0(,)-()= o(1i) ,

where a is the amplitude and X is a measure of the effective horizontal extent of

the wave. Finally it should be noted that the amplitude of solitary waves generated in

the decay of arbitrary disturbances in infinitely deep fluids may be substantially larger

than the amplitude of KdV solitons created under similar initial conditions in shallow

fluids. This important aspect will be examined further in the numerical experiments

described below.

Comprehensive treatments of the theory of long internal waves in continuously

stratified shear flows have recently been presented by Maslowe and Redekopp (1979,

1980), Tung et al. (1981) and Grimshaw (1981a). Maslowe and Redekopp consider

finite-amplitude wave motions in a homogeneous sheared Boussinesq fluid for both

bounded and unbounded fluid domains, including the case where upward radiation into

a weakly stratified ambient environment is possible. They also examine the possibility

of singular modes which may exist in critical layers where the phase speed is equal to

the mean flow speed. The theoretical treatment presented by Tung et al. is also

concerned with wave propagation in stratified shear flows both with and without

critical levels. Their theory is developed for waves in a thin pycnocline embedded in

a finite-depth fluid and represents an extension of the theory of Kubota et al. (1978)

to parallel shear flows. We shall not consider further the possibility of singular critical

layer modes in the interpretation of nonlinear boundary layer atmospheric waves since

critical levels have not as yet been identified in the environmental wind structure

(Smith and Morton, 1985).

Grimshaw (1981a) has presented a very thorough treatment of long nonlinear

internal waves in both shallow and deep fluids, including the influence of slow

temporal and spatial variations in the waveguide structure along with the effects of

both radiation and frictional damping.

The general theory has also been extended by Grimshaw (1980) to compressible
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fluids, including both dry and moist atmospheres. In this treatment, for fluids of

infinite extent, the vertical modal function, p(z), satisfies the eigenvalue problem:

-(p (C o u)2 O) + po N 2 = C) 0- 0 , (3.4a)
Z 0 0 -0 Z ] Z

cS c

=0 on z = 0, (3.4b)

-- -+0 as z - oo, (3.4c)

where c s is the velocity of sound, N is the Brunt-Vaisafla frequency defined by

N 2=gd(lnov)/dz where 0v is the virtual potential temperature, and the compressibility

parameter, o,, is given by v=-ygh/cs 2 where -y is the ratio of the specific heats and h

is the characteristic vertical scale of the inversion waveguide. It will be assumed that

the eigenfunctions, p(z), have been normalized to a maximum absolute value of one.

This Sturm-Liouville problem generally admits an infinite number of vertical modal

functions, each corresponding to a distinct infinitesimal long-wave phase speed, c o .

The lowest mode solution will usually be the only solution of interest since higher

modes propagate much slower and are not generally observed in the atmosphere.

It is worth noting that the non-Boussinesq vertical modal equation (3.4a) can be

rewritten as a long wavelength form of the Taylor-Goldstein equation for a

compressible fluid through the transformation -=(uo-co),p

thus,

0 )9z + 0 - 'a 2 7 2 07z (u°c)° (u-c°) (u-c) c

(3.5)

In the Boussinesq approximation, the effect of density variations on the inertial terms

may be neglected and for an incompressible fluid equation (3.5) becomes the familiar

form of the Taylor-Goldstein equation for zero wavenumber:
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.2+ 2() = 0 (3.6)
z2

where

a
2

Uo

2 N2  a
11(z) = (UoCo)2 (UoCo)

is the Scorer parameter (Scorer, 1949). Clarke (1983b) and Noonan and Smith (1985)

have examined the relative importance of the stratification and wind profile curvature

terms in the Scorer parameter for pre-morning glory environments. The wind

curvature term tends to dominate above 200 meters and Clarke suggests, on the basis

of an average over eight individual events, that both contributions might be viewed

together as an "effective stratification", linearly decreasing with height. A very

thorough discussion of the relative importance of the wind curvature term in the

Scorer parameter under conditions where strongly trapped nonlinear wave propagation is

possible has recently been given by Crook (1986).

Following Grimshaw (1980), for a homogeneous compressible fluid, the coefficients

at and 6 in the BDO equation are given by

oo [2 ap 3 7 N2 3l
1 0 3po(co'Uo) 2( '-)3 7P. No-'- dz, (3.7a)

T= f c - Cz2
01 C 2 ,

I= T ipo(Co- Uo) 2  -2  
(3. 7b)

where

I = 2 f P (C -U )(-')2 +  o (3.7c)

0 C So}d

In most cases, as noted by Grimshaw (1980), the effects due to compressibility are

small and the lower aimosphere may be taken to be incompressible provided the

appropriate Brunt-Viisll frequency for a dry or moist atmosphere is used in the

equations.
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The evolution of the streamline pattern within a stably stratified atmospheric

inversion waveguide may be calculated from the vertical displacement given by (3.1).

Above this region the amplitude of the disturbance in the neutrally stratified fluid

decays algebraically and the vertical displacement may be obtained, as described by

Benjamin (1967), using Fourier transforms:

00

,n(x,z,t) = f J '(A)exp[-ikx-1kl(z-h)]dk, (3.8a)

where

,'(A) = f A(x,t)exp(ikx)dx (3.8b)

Long nonlinear waves in the atmospheric boundary layer are often detected using

an array of microbarometers. By applying Bernoulli's equation to the surface

streamline it is easily shown that the surface perturbation pressure associated with the

passage of a nonlinear wave disturbance is given by

AP(x,t) f APhs(X,t) + APhd(X,t), (3.9a)

where

AP (x,t) = gA(x,t)[fhp(z)( -) dz-p, (3.9b)
hs 0 C) (39b

with

p(z) = po(z), z ( h,

p(z) = P2 , z > h,

and

1 20 _ C)
APhd(Xt) - - Po(O)(Uo(O) - c) 1 l+A(xt)a(O) 2 (3.9c)

In most cases of interest, the hydrostatic term, APhs, is significantly larger than the

hydrodynamic term, APhd, and the inclusion of this term in the expression for the

surface perturbation pressure appears to account for the discrepancy found by Noonan

and Smith (1985) in their study of morning glory solitary waves. A vertical
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acceleration term could also be included in (3.9a). The results of a simple calculation

show however that vertical accelerations associated with nonlinear wave motions in a

boundary layer waveguide contribute only a negligible correction to the surface

perturbation pressure.

The horizontal and vertical wind components in the stratified inversion layer are

given, respectively, by

u°(z)+cA(x' t"

ui (xzt) = (3. lOa)u (x~z, I + A(x,t)a0'(z)"

and

i (c - Uo (Z))A(xt) '(z)w(x,z,t) () (3.10z)I + A(x,t)y(z) (3.lOb)

In the outer neutrally stratified region above the inversion waveguide the wind

components may be determined by evaluating

u0 (x,z,t) = U (Z) + cl1
S(3.1 a)

w (x,z,t) = - (C - uo(z))I Z  (3.b)

where

I1 =-f iklexp[-ikx -iki(z-h)] F(A)dk, (3.11c)

and

12 - - f ikexp(-ikx -Ikl(z-h)] g (A)dk. (3.11d)

The Benjamin-Davis-Ono equation has time-independent solutions, A-f(x-ct), in

the form of algebraic solitary waves:
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A(x,t) 2  (3.12a)
(x-ct)

2 + X2

C-c- 1 - (3.12b)

For stationary waves of this type, expressions for the vertical displacement+ and wind

components in the upper neutrally stratified region may be determined explicitly from

(3.8) and (3.11) as

n(X'z't) (XaX(X +z -h) (3.13)

(x -ct)2 + (X +z -h)2

u0(xzt)= K' [uo(z)+caXf(x ct)2- (X +z -h)2 1 (3.14a)
(x ct)

2 + (X +z -h)
2 12

and

w0 (x,z,1) -' [4a(c -u(z))(x +z -h) (x -ct) (I ((x -ct)z + (X +z -h)2z J (314b)

where

K I + ax (x -ct) 2  (X +z -h)
21

t(x -ct)l + (X +z h)'JJ

The Benjamin-Davis-Ono equation also has periodic long wave stationary solutions

(Benjamin, 1967) in the form of an infinite train of supercritical constant amplitude

waves which represent the deep-fluid counterpart to the well known elliptic cosine or

'cnoidal' wave solutions of the classical Korteweg-de Vries equation. It should be

emphasised that long nonlinear guided wave disturbances in the lower atmosphere

seldom, if ever, occur in the form of a long sequence of periodic constant amplitude

waves. This is as expected since 'cnoidal' waves cannot be generated in the evolution

Footnote+ The expression for the outer solitary wave solution given in (3.13) agrees

with the dimensionless expression in Davis and Acrivos (1967) and, after correction for

a misprint, with equation (3.83) in Benjamin (1967).
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of any realistic physical disturbance of limited spatial extent. These stationary periodic

wave solutions will therefore not be considered further as a possible model for

nonlinear boundary layer waves. In contrast, the solitary wave components play a

fundamentally important role in the description of the evolution of long wave

disturbances of this type.

Up to this point this discussion has been primarily concerned with the description

of waves of modest amplitude in a homogeneous waveguide embedded in a neutrally

stratified fluid of infinite extent. It can be anticipated that this relatively simple

model will provide a first-order description of nonlinear boundary layer waves as they

propagate under ideal conditions over level terrain for distances of the order of

perhaps a few hundred kilometers. A horizontally homogeneous waveguide model may

however represent an over-simplification of lower atmospheric structure. It must also

be expected that frictional damping will play an important role in the evolution of

these disturbances. In addition, a perturbation term which accounts for energy loss

through radiation into the upper atmosphere may also be required under some

conditions. All of these factors have been included in the thorough analysis presented

by Grimshaw (1981a; 1982) who shows that the appropriate evolution equation for

nonlinear waves in a viscid, inhomogeneous, sheared waveguide subject to radiation

damping is given by a generalization of the BDO equation:

MA aA aA m A
(.lSa)

+ + cr(X't)Am- + 6(x,t)() - p(x,t)'Y

where

S1 - exp(iTx) V (A)dr , (3.15b)

N. is the Brunt-Viisil1 frequency in the weakly stratified fluid above the waveguide

and m (A) is a pseudo-differential operator which describes frictional dissipation:
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Y - f T (-ik)m exp(ikx) F (A)dk, (3.15c)

0 < mc 3; mil.

In this equation, the coefficients a, 6 and jt are slowly varying functions which reflect

the temporal and spatial variations in the waveguide structure. Even when a and 6

are constant and frictional dissipative processes are negligible, energy is continually

radiated away due to the excitation and outward propagation of internal waves in the

ambient upper fluid. This equation therefore does not possess steady finite-volume

travelling wave solutions. The detailed theory of the evolution of a solitary wave in

an inhomogeneous waveguide subject to both radiation and frictional damping has been

given by Grimshaw (1981a,b,c; 1982). The influence of radiation damping on the

solitary wave solution has also been treated analytically in the adiabatic approximation

by Maslowe and Redekopp (1981) and numerically by Pereira and Redekopp (1980). It

should be noted that the available observational evidence (Clarke et al., 1981; Clark,

1983b; Smith and Morton, 1984; see also the discussion in Crook, 1986), while by no

means definitive, suggests that radiation damping may not be a significant factor in the

evolution of most nonlinear boundary layer wave disturbances. The influence of

energy radiation into the upper atmosphere on the evolution of long nonlinear wave

disturbances will not be considered further in this paper. In contrast, frictional

damping is likely to be important under most boundary layer conditions. We shall

therefore focus our attention in this initial study on a detailed investigation of

finite-amplitude long wave propagation in a horizontally homogenous inversion

waveguide under both ideal conditions where dissipative processes may be neglected

and under conditions where turbulent frictional damping has a significant influence on

the evolution pattern. As will be seen, the results of this investigation provide a

fairly satisfactory description of the principle features of long wave disturbances in the

lower atmosphere.
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The linear operator 1m in equation (3.15) provides a general description of both

laminar boundary layer friction (m - J) and turbulent bottom friction (m = 2) where

the shear stress is specified by a Chezy law. We shall consider only the influence of

a turbulent boundary layer as laminar frictional dissipation in unlikely to be of any

significance to the study of long waves in the atmosphere. In this case, a Burgers

diffusion term results and we shall refer to the resulting perturbed evolution equation,

___ 2A
A + A + c A A + a 2 X (A ) - A = 0

= 7-+ A + ax X7 , (3.16)

as the Benjamin-Davis-Ono-Burgers equation. Since a general analytical solution to

(3.16) has -not been found, the time evolution of arbitrary long wave disturbances as

governed by (3.16) will be determined numerically.

Equation 3.15 may be regarded as a fairly realistic model equation for the

description of nonlinear atmospheric waves of modest amplitude under uniform

waveguide conditions. The observed properties of morning glory waves suggest that

they are essentially a one-dimensional disturbance. Under some conditions, however,

such as when transverse variations in waveguide structure occur, the description of

these disturbances may require an extension of the BDO theory to two spatial

dimensions (see, e.g., Ablowitz and Segur, 1980; Redekopp, 1980). Furthermore, a

theoretical treatment which includes the effects of the Earth's rotation (Grimshaw,

1985) may be required in some instances, especially at higher latitudes when nonlinear

wave disturbances are subject to the influence of a topographic boundary.

4. Inversion Waveguide Models

Before proceeding to the results of a numerical study of the evolution equations it

is worth considering solutions to the vertical modal eigenvalue problem (3.4)

corresponding to three surface-based inversion waveguide models as an illustration of
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the principal features of finite amplitude wave motions in the lower atmosphere.

General solutions to (3.4) for arbitrary shear and stratification are not known and for

many cases of interest this system must be treated numerically (Noonan and Smith,

1985). Under some conditions, however, the inversion waveguide can be approximated

by a simple model and useful analytical solutions corresponding to realistic density and

shear profiles can be found. Since our interest here is focussed primarily on the time

evolution problem we shall consider only the following simple analytical models for

deep-fluid nonlinear wave propagation in an incompressible, horizontally homogeneous

boundary layer inversion with shear.

Model a. Two fluids of constant density with linear wind profile

This is perhaps the simplest possible boundary layer waveguide model with shear.

In this case we shall suppose that the upper and lower fluids have constant densities

P 2 and p, respectively. The ambient wind component along the direction of wave

propagation is assumed to be constant (uo(z)-u . ) in the upper layer and linear

(Uo(Z)=U1+U2 Z) in the lower layer. The unperturbed interface lies at a height h. It

is easily seen that the general solution to the linear eigenvalue equation (3.4) within

the inversion layer,

[(o- u0(z))2 .0

which satisfies the dynamic boundary condition,

9(h),, g(p (h) - p(h)) (4.1)p(h) (Co f Uo(h pea 1

at the interface z - h (continuity of pressure, cf. Benjamin, 1966) is given by
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= g(P1  P2) dz (4.2)
PI (CO Uo(z))+B

where co and B are determined by the lower boundary conditon, P(O) = 0, and the

normalization condition, (p(h) = 1. Thus, when uo(z) is linear, the solution in the

lower layer is given by

'(z) = (c u, u'h) z (43)

with co = u, + uh' (4.4)

T -f [ I~ P ,

The coefficients a and 6 in the evolution equation (3.3) can be evaluated directly from

(3.7) as

a = 3(c, -U,)2 - 3(c0 -u,)uh + u~h 2  (45)
h(2(co -u 1 ) - u 2 h)

and 6 = hp,(c. - u_)2 (4.6)=pl(2(co -ul) - U2 h)"

For this particularly simple flow model the horizontal and vertical wind components in

the inversion layer (3.10) are given by

h(u1+uz)(c.-u1-uz)
2 + cA(x,t)(c0 -u -uh)(co-u,)

h(co-U1 -u 2z)' + A(x,t)(Co.U,-u 2h)(co-U )

w 1 (x~aAt) t)
wiX,~t -(u,+u 2Z- c)(Co-U -u~h ) (Co-U -2Z)z TXa-'  (4.8

h(co-u ,-u2z)
2 + A(x,t)(co-u,-u 2h)(co-u1 ) ' (4.8)

and the surface perturbation pressure as determined by formula (3.9) is

AP(x,t) - (PI - p2 )gA(xt)

+ jp,(Uj -C)2I (CO - uIt )
2h. (4.9)

(h(Co.U) + (CoUu-U2h)A(x,t))
2 (
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This waveguide model must be regarded as an over-simplification of the properties

of the atmospheric boundary layer. It does, however, provide a reasonable first-order

approximation for the description of nonlinear atmospheric waves in a surface-based

inversion with shear and can be used to illustrate the basic features of these

disturbances.

Model b. Constant N, linear wind profile in lower layer; density jump at interface.

We shall now turn our attention to a more realistic waveguide model in which a

layer of depth h, with constant Brunt-Vaisala frequency, N,, and linear wind profile,

uo(z) - u, + u 2z, lies beneath a neutrally stable layer (N = 0) with constant wind

component, u.0. We shall suppose as well that a density discontinuity,

Ap = p1 (h) - p2(h), exists across the interface z = h. The solution to the eigenvalue

problem for this model in the absence of shear with ALp = 0 has been described by

Benjamin (1967) for both Boussinesq and non-Boussinesq fluids and also by Grimshaw

(1981) as an illustration of the properties of second-order deep-fluid solitary waves.

Solutions for this flow configuration when shear is present but with Ap = 0 have also

been found by Maslowe and Redekopp (1979, 1980) and Clarke et al. (1981). We

extend these results here to include the influence of a potential temperature

discontinuity at the interface between the lower shear layer and the upper neutrally

stratified layer. In addition, explicit expressions are obtained for the coefficients in

the evolution equation, the wind components in the inversion layer and the surface

perturbation pressure.

We first consider a direct extension of the non-Boussinesq results of Benjamin

(1967) to a flow model with N - N1 in the lower layer, constant wind components,

u, and u0,, in the lower and upper layers respectively, and with a density jump, Lp =

pI(h) - P 2 at the interface z - h. In this case, since p 1(z) - psexp(-N 2z/g), the

. iI I Il 1 1
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linear eigenvalue equation below the interface is given by

c2,p N 2 )p N 2

7P g L z X + (CoU 1 ) 2  0 (4.10)

The normalized solution of (4.10) which satisfies both the kinematic boundary

condition, (O)=O, and the dynamic boundary condition (4.1) is given by

N. 2 (z-h)

p(z) = e 2g sin qz (4.11
sinqh

where

q 2 N )2o
- u  - (4 . 12 )

and the eigenvalues, co, are determined by the solution of

q N 2  K
tan~q) +  = (Co-U)(4. 13)

where

K W g(p,(h)-p2 (h) gAO
P1 (h) 0

with a the potential temperature and AO the potential temperature discontinuity at the

top of the stratified inversion layer. Since N1 
2h/g <<1, the solution in the Boussinesq

approximation for a flow configuration with constant wind components is given by

sin N l'
,p(z) = _°'u.JL (4.14)

sin[ N, l
tCo-U J

with the eigenvalue condition

C'Nh tan" (c . )Ni + n, n-O,±l,±2 ...I tn- t(415
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where n is the mode number.

We now present the solution of the eigenvalue problem for the more general flow

model with a linear wind profile in the stratified lower layer and a capping inversion

at z=h. The solution for this configuration is most readily achieved by treating the

problem in the Boussinesq approximation and solving the resulting Taylor-Goldstein

equation (3.6). In this case the eigenvalue problem for O = (uo(z)-co) O is given by

_ j u22
a2 + o JU .2 Z~ (4.16a)

with

P(0) = 0 ,(4.16b)

p(h) = uo(h)-co = u,+u2h-co, (4.16c)

and

-p P K( (h) = u,(h) + (4.16d)

where J = N 1 
2/u2

2 is the Richardson number for the inversion layer. The normalized

solution for (p which satisfies the surface boundary condition is

I Co'UI -u 2hl -sin [.ln I cII
P(z) -- Uj (4.17)

ico'Ui- u2 z 1sin'ln 1  Co-U, I1

where o, = (J- D . It will be assumed that or is real and thus the ambient stratified

shear flow is linearly stable. Substitution of the solution for P(z) into (4.16d) yields

the eigenvalue condition

uh
u h u(4.18)

with
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K a-Ir 2a- n-0,±],±2,..
~t~fl[ -U 2(co-u1 -u2h)J

The coefficients appearing in the BDO equation can now be evaluated from the

formulae given in (3.7). After a lengthy, but straight- forward computation, we find

2Ju,sin ZjIc,_U1 ,3/2j S + 1CO-U,-U,h1 3 /2? (4.19)

and

6 = c,_U,I(U.,~, )2Sin 2  (4.20)
(J-i)U2 jIC0 -U~j(l-R) - c0 -u,-u 2hj7

where

R 2K2 sjfl 2

J-*)U2 
2 (C0 -U1 -_U2h)1(2a~cotF_ -1

S - K sin 1_I f (2+J)K 2 .sZ:n2 E+2U 2 (C0 -u-u h) 2 0 2

S=u2 (co-U, -U 2hfg o"U 2 2(C0 -U,-U 2h)2aocot -1 0a7 1

and

Explicit expressions for the wind components in the shear layer as described by

this fairly realistic waveguide model can also be obtained. The substitution of (4.17)

into (3.10) gives

ui(,Z~) -(u1+u,z)Ir-zi 3/2Sint +cA(x,t)sgn(z-r)lr-hliJsinX(z) (4.21)
u'(xZl/zSt) + A(x,t)sgn(z-r)Ir-hif~sinX(z)

and

(u, +u2z -c) ~~) sin al r-hliir z
W'(x,z~t) - X , Y II_ (4.22)

ir-zl2/2Sint + A(x,t)sgn(z-r)lr-hli~JsinX(z)
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where r = (co - U1 )/u2

and X(z) - olIn r- 7~Z + tan-1(2o).

Since N~h/g <<I, we shall approximate the density distribution in the inversion

layer by p(z) = ps(1 - N2z/g). Equation (3.9) can then be evaluated to give the

surface perturbation pressure,

AP(xt) A(xt)[P s + F-] I

!jr -hif sinX(O)l _ z

+ JpS(U, -C) 2 I1 - 13/lm sinZ ] (4.23)
1 O(r */2sinc -A(x,t)sgn(r)Jsinx(O)lr-hli)2]

with F =
2ar(l - 2ycot )

K
and G= N1 (u1 + u2h - c0)

If we now take the limit of the above results as u 2 - 0 we obtain the evolution

equation coefficients, the waveguide wind components and surface perturbation pressure

for a flow model with a capping inversion above a bottom layer with constant

Brunt-Viisill' frequency and constant ambiant winds. Thus, o and co are defined for

this simplified model by (4.14) and (4.15) respectively and expressions (4.19) to (4.23)

reduce, when u2 - 0, to

I ~ ~~2N,13 3- sin2~, N h '.,j J
1 2N, h  + sin2.h , (4.24)

(co -u) [ 1

M
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2(u. Co)2_sin2 [  N,hlN, N- - co [ " Ul (4.25)

2Nh + sin 2Nhl
(O- U7 [CO -u11

U~sn Nh +cA(x,t )N N. N,z

'(zt) usin[5w--ir I + .I ,
Sc - (C 0 -U 1 ) -C, I (4.26)sin(Zt)Nth l+ A(x,t)Nos N~z

tco -u_1 (co -u6:t 0[c -u 1
1

(u, -c) aA(x't) sin[ iN1t
wi ((xuzt) =) 1x 0 "Zu (4.27)

sin N ._Ih + A(xt)Nos N Z
xo +j Ic 0 -u 1 ) tCo -U1

1

and

AP(xt) = NpIA(x+)(c° )+ fpS(u,"C) 2  I CO'x,t)N12aP x ) =sin c N'hu, sin I N - (-t ]+
[O- [ I Co-UJ (Cxo'U )]

(4.28)

Finally, if we also let Ap-40 in the eigenvalue condition (4.15) we find the solution

for the simplest form of this waveguide model corresponding to a flow configuration

with constant Brunt-V iskla frequency in the surface-based inversion layer and

constant winds. In this case

) (l)n+1sin[ 2 Iz] n-1,2,3. .. , (4.30)

= Ui ±(4.31)

and the coefficients in the BDO equation are

2(c-u ) (4.32)

and - 4h (cn -u)2(

a[n-I)vr (co -u,)

The substitution of (4.30) into the formulae for the inversion waveguide wind

compoonts (3.10) and surface perturbation pressure (3.9) leads immediately to
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(-l)n+iu 1 + cA(x,t)(2n-l)w Cos (2n-l)xzui (x,z,t) - 7F 2hIF (4.34)2

(.1)n+ i  + A(x,t)(2n- 1 )r [ (2n- l)Tz2h cos 2h

(u, -c)sin (2n - J)wzl A(x,t)
wi (x,z,t) = I 2hnI aix (4.35)(_ )n+ .A(x,t) (2n- 1)i -f (2n-T Z11z

(-.)f+i + 2h cos

and

AP(x,t) = (-+)n+i 2hA(x,t)p(N43 2 4h 2 )
(2n-l) N 2 Ps(UC)2{1 - II (.l)n +A(x,t)(2n.l)r]2

(4.36)

Model c. Sech 2 profile for N 2 with constant fluid velocities

As a final illustration of boundary-layer inversion waveguide models for which a

solution in closed form can be obtained we consider a model in which the

Brunt-Vtisglk frequency in the lower layer is given by N 2=N 0 
2sech 2(z/h) and a very

simple shear structure is adopted with constant velocity components, u 2 and u. , in

the upper neutrally stable (N=0) and lower density-stratified fluids respectively. It

should be noted that in this case the boundary between the lower stably stratified layer

and the upper homogeneous layer is not precisely defined. It is clear, however, that

the properties of the solution will be practically independent of the exact position of

the boundary provided N2 at the boundary is <<No 2. We shall assume that the wind

component, u,, in the lower layer extends from the surface to a height where N2

effectively vanishes and further contributions to the integrals for o, and 6 (3.7a,b) are

negligible It should be emphasized that in this case h is the effective denth of the

lower fluid and it is this effective depth which determines the scale by which

displacement amplitudes and wavelengths are measured. Again, the Boussinesq

approximation will be used in the treatment of this model. This model is a direct

extension of Benjamin's theory (Benjamin, 1967) for antisymmetric wave modes in a
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pycnocline embedded in a unbounded fluid. As discussed by Benjamin, the space

above the plane of symmetry, z-0, is dynamically similar, in the Boussinesq

approximation, to the space below and a model for first mode waves in a boundary

layer waveguide can be obtained by simply introducing a rigid surface at z=0. This

model has also been considered by Grimshaw (1981) when u 0-0 as an illustration of

the properties of second-order deep fluid solitary waves. It follows readily that the

solution for the lowest mode when the two fluids have constant velocity components is

given by

o(z) = tanh(z/h), (4.37)

6
a = 6-(c-U ), (4.38)

3h (C-U) 2

= 3h (C-U0) , and (4.39)

N h
C - U . (4.40)

The expressions for the horizontal and vertical wind components in the lower

stratified layer may be determined directly from (3.10) as

ui (xzt) - ulh + cA(x,t)sech2(z/h) (4.41)
h + A(x,t)sech2 (z/h)

and

h(u,-c)tanh(z/h) Ax,t)
w (x,z,t) - h + A(x,t)sech2(z/h) (4.42)

In this example, the upper limit of integration in (3.9b) may be taken as o and

for N h/g<<l the hydrostatic component of the surface perturbation pressure is given

to a good approximation by
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APhs(x,t) = A(x,t)p s [7 1- .No2htanh(z)sech2(z)dz - f N 2h

= fhpsA(x,t)No 2  (4.43)

Thus, the total surface perturbation pressure corresponding to the first mode in this

model is given by

AP(x,t) = fhpsA(X,t)No2 + Jps(UI-C)2 1 (h+A(x,t))2 (4.44)

The inversion waveguide models discussed in this section have been chosen to

illustrate the properties of nonlinear atmospheric waves because they correspond to

reasonably realistic boundary layer flow conditions and because they admit analytical

solutions in closed form. As an illustration of the principal features of long nonlinear

waves, we present in Figures 4 and 5 the relative streamline patterns, surface

perturbation pressures, and wind fields for both a solitary wave and an essentially

asymptotic amplitude-ordered family of solitary waves propagating as disturbances in

the lowest mode (n-1) in typical surface-based inversion waveguides as described by

the simplest form of Model b with Apfuo=O and constant Brunt-V isalk frequency in

the inversion layer.
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5. Numerical Solutions

In this section we shall consider a number of models for the evolution of

nonlinear atmospheric waves which are based on either the inviscid

Benjamin-Davis-Ono equation (3.3) or on the Benjamin-Davis-Ono-Burgers equation

(3.16) with turbulent frictional damping. In this initial study we shall suppose that the

environmental waveguide is horizontally homogeneous; i.e., the ambient density, po,

and wind component, uo , along the direction of propagation are both functions of

height only and thus the coefficients a and 6 in the evolution equation are constant.

We shall, however, in some of the numerical experiments (see Section 6) examine the

effect of a temporally and spatially varying frictional term .

It will be convenient to study the solutions of the BDO-Burgers equation in a

coordinate system which moves with the linear phase speed co , The evolution equation

may then be rewritten in terms of non-dimensional variables as

aU aU f 2U1 C2U
+- + , (5. la)

where

X = f(x-cot), (5. lb)

T - , (5.lc)
h

2

U(X,T) - T-A(x,t), (5.1d)

and e is related to the eddy diffusivity coefficient, p, by -A/.

The accuracy of the numerical solutions described below has been checked by

comparing the theoretical and numerical values of the lower order conserved

polynominal invariants. The first three conservation laws of the Benjamin-Davis-Ono

equation (5.1a with e-O) are as follows (Ono, 1975):
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00
f - tdX, (5.2a)

Q2 f U2dX, (5.2b)
OD

00 - 3 (5.2c)

The quantities Q, and Q2 are also integral invariants of the KdV equation. The

BDO-Burgers equation exhibits only one time-invariant quantity, Q . In all cases

where these laws apply, these integral invariants were found to vary by less than 0.1%

over the duration of the numerical experiment.

5(a) Solutions of the Benjamin-Davis-Ono equation.

We shall first consider the time-evolution of nonlinear wave disturbances in a

horizontally homogeneous inviscid boundary-layer waveguide as described by the

unperturbed constant-coefficient Benjamin-Davis-Ono equation. As noted above, BDO

solitary waves retain their identity following collision. Interacting BDO solitons have

been studied in a series of numerical experiments by Meiss and Pereira (1978) who

also showed that both solitary and dispersive waves are created in the evolution of an

arbitrary initial disturbance with sech 2 profile. A very detailed analysis of the

interaction of BDO solitons has been given by Matsuno (1980). An illustration of the

interaction of solitary waves governed by the BDO equaticn is presented in Figure 6.

The nature of the interaction is governed by the ratio of initial amplitudes, U, and

U 2, of the two interacting solitons. In the example shown in Figure 6 (U 1 /U 2-2.8)

the solitons exchange identities at the instant of collision without passing through each

other. For higher amplitude ratios (U 1 /U 2)3+2Mi), the disturbance at the center of

interaction is single crested and the solitons pass through each other.
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The solitary wave solutions of the BDO equation are also stable under nonlinear

interaction with large amplitude dispersive wave components. This is shown by the

results of the numerical experiment presented in Figure 7 where a solitary wave is

observed to emerge unscathed following a complex interaction with subcritical

dispersive waves created in the decay of a long wave of depression.

The behaviour of the general time-dependent solutions of the BDO equation is

similar in many respects to that of the coresponding solutions of the classical KdV

equation. An excellent description, based on both a theoretical and experimental

investigation, of the time-evolution of long nonlinear shallow-water waves governed by

the KdV equation may be found in Segur (1973) and Hammack and Segur (1974).

The general properties of the time-dependent solutions of the BDO equation which are

most relevant to the interpretation of atmospheric wave phenomena may be seen in the

numerical solutions presented in Figure 8 for the evolution of an arbitrary initial

disturbance in the form of a long wave of elevation. The salient features of the

general solutions to the BDO equation may be summarized as follows:

(1) Arbitrary initial disturbances of finite volume evolve asymptotically into a

finite number of permanent solitary waves followed by a dispersive oscillatory wave

train.

(2) Most of the energy in initial waves of elevation is focussed into the solitary

wave components. As a rule, disturbances of this type produce only very minor

dispersive wave components. In the illustration shown in Figure 8, the dispersive

waves are associated primarily with the decay of the steep trailing edge of the initial

wave. Initial waves which decrease more slowly in amplitude behind the leading edge

(see, e.g., Figure 11) produce only small amplitude dispersive wave trains.

(3) The speed of the solitary wave components exceeds the linear phase speed,

COO by an amount proportional to the wave amplitude. The asymptotic solution

therefore consists only of a family of amplitude-ordered solitary waves.
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(4) Initial disturbances governed by the Benjamin- Davis -Ono equation can evolve

into solitary waves of exceptionally large amplitude. For example, in the case of the

evolution of the long wave disturbance shown in Figure 8, the ratio of the amplitude

of the leading soliton, Us, at T = 100 to the amplitude of the initial disturbance, UOP

is 2.58. This can be compared with the general solution of the KdV equation where

the maximum amplitude of a solitary wave cannot exceed twice the amplitude of the

initial disturbance (Peregrine, 1972; Segur, 1973). We have carried out a number of

numerical experiments (see, e.g., Figure 9a) which indicate that the limiting value of

the ratio Us/U 0 for the BDO equation is, to within the accuracy of our calculations,

3.14±0O.05; i.e., it appears that the amplitude of deep-fluid solitary waves can be up

to a factor of ir larger than the amplitude of the initial disturbance. These

calculations therefore show that exceptionally large amplitude solitary wave disturbances

may be generated in the evolution of relatively benign initial disturbances. This

important feature in the evolution of deep-fluid nonlinear waves does not seem to have

been previously recognised. This result has an important bearing on our

understanding of hazardous wind shear disturbances (Christie and Muirhead, 198 3a, b;

1985) and is clearly of interest to the subject of nonlinear wave-induced deep

convection.

(5) Initial waves of depression, i.e., disturbances which are everywhere negative,

decay only into dispersive wave components (see Figure 7). Subcritical waves of this

type can have large amplitudes for significant periods of time and may, on occasion,

play a significant role in the dynamics of the lower atmosphere.

We shall now consider two simple models based on the BDO equation which may,

under ideal uniform boundary layer conditions, provide a first-order description of the

evolution of nonlinear waves in the lower troposphere. For the first model, we shall

suppose that the initial long wave disturbance takes the form of a smooth propagating

internal bore marking the transition between two uniform flow states in direct analogy

to the classical bore (Rayleigh, 1914) on the surface of shallow water. This model
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is suggested by the observation that morning glory waves originate during the evening

of the preceeding day over the Cape York Peninsula in the transformation of a

deeply- penetrating tropical sea-breeze front. This model may provide a reasonable

description of the development of long nonlinear waves under ideal conditions when

the generating disturbance is sustained over long periods of time.

Peregrine (1966) showed from a numerical treatment of the Boussinesq equation,

the bi-directional equivalent of the KdV equation, that initially smooth bores on the

surface of shallow water evolve into undular disturbances. Numerical solutions of the

KdV equation for classical shallow-fluid bore waves have also been *presented by

Vliegenthart (1971) who showed that undulations develop rapidly along the edge of the

bore and these in turn evolve into an ever-increasing sequence of discrete solitary

waves.

To our knowledge, the evolution of internal deep-fluid bore waves has not been

studied previously. The results of a numerical integration of the BDO equation for

waves of this type is presented in Figure 9a. For comparison (see Figure 9b), we

have also calculated the corresponding bore-wave solutions to the shallow-fluid KdV

equation for the same initial conditions. As can be seen from these diagrams,

deep-fluid internal bore waves evolve in essentially the same manner as their

shallow-fluid counterparts: initially smooth bores develop undulations which evolve into

discrete solitary waves. The number of solitary waves created evidently increases

without limit as the bore evolves in time. There are, however, significant differences

in the evolution patterns described by deep-fluid internal bores and classical

shallow-fluid bores. The most important difference lies in the exceptionally large

amplitudes of the solitary waves created along the edge of deep-fluid internal bores.

As noted above, the amplitudes of solitary waves generated in the evolution of

shallow-fluid KdV bores do not exceed twice the amplitude of the parent bore. In

contrast, the leading soliton produced in the evolution of a deep-fluid bore eventually

attains an amplitude which is apparently a factor of ir larger than the amplitude, A.
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of the undisturbed bore. These disturbances also differ in morphology. Consider for

example a comparison of the detailed evolution patterns as shown in Figure 10 at a

time T - 100, where the leading solitons in each disturbance have attained, essentially,

their maximum amplitude. This comparison indicates that the transition region in

deep-fluid bores tends to be more localized with fewer well-developed solitons.

Vliegenthart (1971) noted that the amplitude of the leading solitons in KdV bore waves

varies linearly. This linear variation in amplitude is clearly evident in Figure 10 for

the first 12 solitary waves in the shallow-fluid disturbance but applies only

approximately to the first 3 or 4 solitons in the deep fluid disturbance. In deep-fluid

bore waves the energy in the transition zone tends to be concentrated in a few very

large amplitude solitary waves. These remarks can be expressed in a more quantitative

form by defining an effective transition length, D, by the region along the edge of

the bore where the amplitude of the oscillations is at least 10% of that of the leading

soliton. For the disturbance shown in Figure 10, the deep-fluid bore has an effective

transition zone comprising 7 solitary waves distributed over a region of length 97, in

dimensionless units, which may be compared with 14 developing solitons and an

effective transition length of 137 in the case of the KdV shallow-fluid bore. In both

cases, the distance between individual solitary waves in the transition zone decreases

monotonically away from the leading edge. The spacing between the leading solitons

and the average wavelength over the transition zone will be useful parameters for the

interpretation of experimental data. The scale of both of these parameters is

substantially larger for deep-fluid internal bore waves. In the present example, the

leading solitons in the BDO bore at T - 100 are separated by a non-dimensional

distance of 21.9 and the average wavelength over the effective transition zone is

estimated to be 14.0. In the case of the KdV bore the leading soliton separation and

average wavelength are 13.2 and 9.7, respectively.

The asymptotic propagation speed, cb, of bore waves in inviscid fluids is simply

given by the speed of the lead~ag soliton. Thus, for BDO bore waves,
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C C + xA ,(5.3)

and for KdV bores,

2
C b = o + PA . (5.4)

It should be emphasized that the infinitely long internal deep-fluid bore wave

considered here represents a highly idealized model for nonlinear atmospheric waves.

This model can be expected to provide an accurate description of disturbances which

occur only under exceptional atmospheric conditions. Some morning glory wave

disturbances certainly do e~semble extensive bore waves of this type. However, as

emphasized in Section 2, most morning glory disturbances appear to be of finite length.

In most cases, the surface winds and pressure recorded behind the main disturbance

indicate that the inversion height does not remain elevated but decreases slowly back to

the ambient level. On the basis of these observations, we propose that a more suitable

model for initial nonlinear wave disturbances is that of a long wave of elevation of

effective finite length, L, whose amplitude decreases slowly but continuously behind a

maximum amplitude located near the leading edge of the disturbance. This knodel is

consistent with a long, but finite, unsteady wave disturbance created in the

transformation during the early evening of a "cut-off" sea-breeze surge as indicated in

field observations described by Clarke (1965, 1983a) and Simpson et al. (1977) and in

detailed numerical simulations of sea-breeze Surges recently reported by Clarke (1984).

A typical example of the evolution of a wave of this type as described by the BDO

equation is shown in Figure 11. In this case, the initial disturbance evolves almost

entirely into a finite number of amplitude-ordered solitary waves. The dispersive wave

components have very small amplitudes and play an almost insignificant role in the

description of these disturbances. As the wave evolves, the overall length of the

disturbance increases continuously as discrete solitary waves form and slowly separate

from one another along the leading edge. An exact expression for the number, Nss of

solitons created in the evolution of finite length deep-fluid waves of this type is not
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known. However, an approximate estimate of Ns can be found from the square root

of the appropriate Ursell number for the initial disturbance. Thus, Ns- U0LT0 where

U0 and L. are the nondimensional amplitude and length of the initial long wave

disturbance. For the disturbance illustrated in Figure 11, NS-I0. As the volume of

the inital disturbance increases. Ns increases without bound and the amplitude of the

leading soliton approaches the limiting amplitude for BDO disturbances, rU0 .

The inviscid BDO description of the evolution of long finite length nonlinear wave

disturbances outlined above provides a reasonable description of many of the features

of long nonlinear atmospheric wave disturbances, especially during the earlier stages of

evolution involving the formation and growth of solitary waves. This relatively simple

model is however subject to serious criticism since it fails to describe the decay and

disintegration of these disturbances. Furtherfore, in some cases (see Figures 2b and

3d) only one large amplitude solitary wave is observed to develop along the leading

edge of the disturbance contrary to the predictions of this relatively simple model. As

we shall see, turbulent dissipation plays an important role in the evolution of these

disturbances and must be included in a more realistic theoretical treatment of the

properties of these guided nonlinear waves.

5(b) Solui'tas of the Benjamin-Davis-Ono-Burgers equation.

The description of the evolution of deep-fluid long wave disturbances is modified

substantially when a term for turbulent dissipation is included in the governing

equation. We shall first consider the effect of turbulent friction on the properties of

simple deep-fluid internal bore waves as described by the BDO-Burgers evolution

equation (5.1). Internal bores in either deep or shallow inviscid fluids (Figure 9)

evolve continuously in time as an ever-increasing number of solitary waves are created

in the transition zone along the leading edge. When turbulent dissipation is included

in the treatment of the classical shallow fluid bore wave, initial bore wave disturbances
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of arbitrary form are found to evolve rapidly to a stable time-independent solution

which may be smooth or undular depending upon the degree of frictional dissipation

(Canosa and Gazdag, 1977). This classical stationary bore or 'shock' wave solution to

the steady-state KdV-Burgers equation has been studied in the phase plane as a model

for weak shock waves in plasmas by Grad and Hu (1967), and also by Johnson (1970,

1972) as a model for undular bores on a shallow viscous fluid. Johnson numerically

integrated the steady-state KdV-Burgers equation, and also derived asymptotic solutions,

corresponding to either weak or strong damping, for the stationary bore-wave transition

between uniform upstream and downstream flow states. Detailed accounts of the

time-independent solution of the KdV-Burgers equation have also been given by

Jeffrey and Kakutani (1972), Witham (1974), Karpman (1975), and, as a proposed

model for the morning glory, by Egger (1983, 1984). Following Johnson (1970), the

properties of the stationary bore wave solution of the KdV-Burgers equation,

aoU CU ) 3U aU 0a(5.5)

are determined by the value of the parameter

m - 2eJM-U , (5.6)

where U., is the dimensionless amplitude of the undisturbed bore at X -* -o. When

m < 4, dispersion dominates and the resulting stationary bore wave is undular. If m

> 4, the influence of turbulent dissipation exceeds that of dispersion and the bore

profile is monotonic. In the limit where dispersive effects are negligible, the

stationary bore solution is given by the Taylor shock profile (Taylor, 1910),

I(X) 1-tanh Go (5.7)

The corresponding stationary bore solutions for the BDO-Burgers equation have not

been studied previously. As will be seen, these steady solutions are exceptionally

stable, even under strongly nonlinear perturbation, provided the upstream and
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downstream boundary conditions are constant. These stationary deep-fluid bore waves

may provide a reasonable model for long nonlinear atmospheric wave disturbances

which occur under conditions where turbulent dissipation is significant and where the

increased inversion depth far upstream from the edge of the bore is sustained for

substantial periods of time.

It can be anticipated that the stationary internal deep-fluid bore waves described

by the BDO-Burgers equation are similar in many respects to the corresponding

well-known solutions of the shallow-fluid KdV-Burgers equation. The steady

solutions to the BDO-Burgers equation have been determined by numericany integrating

(5.1) for an initial positive step function of amplitude U. subject to the boundary

conditions: U(-co) = Uo, U(+oo) f 0. Some typical results of these calculations are

presented in Figures 12(a) and 12(b) for both weak (f - 0.1) and strong (e = 2.0)

turbulent dissipation coefficients. It can be seen from these diagrams that the

initially time-dependent bore-wave solution rapidly converges to the steady-state

solution. As in the case of KdV-Burgers equation, when the damping coefficient is

small, the stationary internal bore wave solution is dominated by dispersive effects and

the solution (Figure 9a) takes the form of an oscillatory bore. If, on the other hand,

turbulent dissipation dominates over dispersion, the stationary solution is monotonic and

approaches the Taylor shock profile (5.7) in the limit where dispersive effects are

negligible. We have also evaluated the corresponding steady-state solutions to the

KdV-Burgers equation. It is worth noting that the effects of dispersion are much

stronger in the case of the BDO-Burgers equation. This is reflected in the observation

that the transition from an oscillatory bore to a monotonic shock occurs at a much

larger value of the dissipation coefficient. The oscillations along the edge of

weakly-damped deep-fluid stationary bores are also larger in amplitude, but fewer in

number, than those in the corresponding KdV-Burgers solution for the same degree of

turbulent dissipation. The effective length of the transition zone in both deep-fluid

and classical stationary bore waves are approximately the same, but the wavelength for
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undular disturbances, which is now fairly uniform over the transition region, is

substantially larger in the case of deep-fluid internal bores. For example, the

wavelength of the oscillations along the edge of the stationary deep-fluid bore wave

illustrated in Figure 12(a) is approximately 35% longer than the wavelength of the

equivalent shallow-fluid KdV-Burgers disturbance.

It can be shown directly by applying the upstream boundary condition to the

steady-state equations that stationary bore waves in either deep or shallow fluids

propagate at a supercritical constant speed given by

c = co + j a A0, (5.8)

The propagation speed therefore depends only on the bore amplitude and waveguide

structure and is independent of the degree of turbulent dissipation. Stationary bore

waves therefore propagate slower than the asymptotic frictionless bore waves described

by either the KdV or BDO equations (see 5.3 and 5.4).

The stationary internal bore-wave solutions of the BDO-Burgers equation appears

to be exceptionally stable to large-amplitude waveform perturbations. This is illustrated

by the numerical experiment presented in Figure 13 for the evolution of an initial

bore transition in the form of an irregular wave of elevation followed by a temporary

increase in amplitude to a value which exceeds the fixed amplitude determined by the

upstream boundary condition. As can be seen from the diagram, this fairly complex

initial bore wave transition converges rapidly to the stationary internal deep-fluid bore

specified by the constant upstream and downstream boundary conditions. Evidently,

both the asymptotic waveform and speed of the BDO-Burgers (and also the

KdV-Burgers solution; see, Canosa and Gazdag, 1977) bore-wave solution between

uniform flow states are independent of the nature of the initial bore transition. It

can therefore be concluded that initial internal bores of arbitrary shape which connect

two steady deep-fluid flow regimes will evolve rapidly into the stationary oscillatory or

monotonic bore-wave solutions of the time-independent BDO-Burgers equation.

On occasion, very extensive nonlinear wave disturbances (see Figure 2), with 8 or
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more partially resolved solitary waves, are observed over northern Australia. Relatively

smooth, quasi-stationary disturbances in the form of monotonic bore waves are also

seen on occasion. Both of these types of nonlinear wave disturbances have many

features in common with the class of internal deep-fluid bore waves described by the

steady-state BDO-Burgers equation. It has been emphasized, however, that nonlinear

wave disturbances often appear to have limited spatial extent. In this case a

description of the properties of these commonly occurring disburbances in terms of a

stationary internal bore wave model is no longer possible. We therefore propose that

amore suitable model for nonlinear wave disturbances of this type which are subject

to turbulent dissipation is that described by the time-evolution of an initially smooth,

long, but finite-length wave of elevation, as governed by the deep fluid BDO-Burgers

equation.

The propagation characteristics of finite-length initial wave disturbances differ

substantially from those of infinitely long internal bore wave disturbances when

turbulent frictional dissipation is significant. Solitary waves may also form along the

leading edge of these finite-volume disturbances and the degree to which they develop

depends again on the relative influence of turbulent dissipation and dispersion. The

principal features in the evolution of finite-length disturbances, as governed by the

BDQ-Burgers equation, may be seen in the numerical experiments presented in Figure

14 for the same initial disturbance as that in Figure 11. In contrast with the steady

solution for an idealized infinitely long internal bore wave, the solution for the vertical

displacement in this case is always time-dependent. For modest dissipation, solitary

waves develop rapidly along the leading edge of the disturbance and increase in

amplitude to a maximum which is less than that described by the corresponding

stationary bore wave solution for the same degree of turbulent dissipation. From this

point on, the undular wave profile has almost constant form but the amplitude of the

disturbance decays continuously as energy is dissipated by turbulent boundary friction.

When dissipation dominates over dispersion, the formation of solitary waves is
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suppressed and the initial disturbance slowly increases in length as it decays in

amplitude. It is worth noting that smaller amplitude solitary waves and the oscillatory

dispersive wave components which arise in the evolution of finite-length waves of

elevation in the absence of frictional dissipation (see e.g., Figures 8 and 11) are

strongly attenuated by a relatively small degree of turbulent damping. The leading

wave components in finite volume disturbances of this type propagate, at least during

the earlier stages of evolution, at supercritical speeds which are comparable to, though

slightly smaller than, the speed of stationary internal bore waves of the same initial

amplitude. Since long waves of this type in viscous fluids produce negligible

dispersive wave components, the overall length of the disturbance during its early

development is determined by the approximate expression

L(t) = L(O) + JaAot. (5.9)

6. Nonlinear Wave Propanation in an Inhomoeneous Waveguide

The BDO-Burgers equation with constant coefficients appears to provide a

reasonably satisfactory description of many of the essential features in the evolution of

long nonlinear wave disturbances in the lower atmosphere. Conditions can occur

however in the real atmosphere where the assumption of a uniformly constant eddy

diffusivity coefficient is no longer justified. We shall therefore examine in this section

the influence on nonlinear wave propagation of spatial and temporal variations in the

degree of turbulent frictional dissipation. Two specific problems which have a direct

bearing on the interpretation of experimental observations will be addressed. In the

first part of this section we present the results of a numerical study of nonlinear wave

propagation under conditions where the degree of turbulent dissipation varies along the

propagation path. This is followed in Section 6(b) by a brief discussion of shear

instability in the leading solitary wave components and the subsequent influence of the

resulting increase in turbulence on the development of the residual long wave
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disturbance.

6(a) Horizontal variations in waveguide structure

The calculations presented in Section 5(b) show that the morphology of long

nonlinear wave disturbances depends sensitively on the degree of turbulent boundary

friction. It can therefore be anticipated that the evolution of finite -amplitude waves

in the lower atmosphere will be strongly influenced by horizontal variations in the

Chezy friction coefficient. In order to study this effect we have carried out a number

of numerical experiments in which a propagating long wave disturbance is subjected to

a variation in turbulent boundary friction such as might be encountered for example

when a nonlinear wave disturbance propagates over a land-sea boundary. In the first

example (see Fig. 15) a long smooth finite length nonlinear wave is allowed to evolve

initially under frictionless waveguide conditions into an amplitude-ordered family of

solitary waves as described by the BDO equation. At T - 120 this well-resolved

solitary wave group is subjected to the onset of strong turbulent boundary friction.

As can be seen from the diagram, the well-developed solitary wave structure is rapidly

eroded away under the influence of turbulent frictional damping and the resulting long

wave disturbance continues to slowly increase in length as it decays away in amplitude.

It is worth noting that an increase in the degree of turbulent friction also results in a

significant and rapid decrease in the speed of propagation. The results of this

calculation therefore indicate that the sharp bend in morning glory wave cloud lines at

the point where the cloud lines intersect the sea-land boundary as described by Smith

and Page (1985) can be attributed, at least in part, to a decrease in the speed of

propagation over land resulting from increased turbulent boundary friction.

A second illustration of the influence of a sudden variation in the degree of

turbulent frictional damping is presented in the evolution pattern shown in Figure 16.

In this case a smooth finite-length disturbance evolves initially under the influence of
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strong frictional dissipation as described by the BDO-Burgers equation. The

disturbance slowly decreases in amplitude until T - 120, at which point the eddy

diffusivity coefficient is reduced to zero and the subsequent evolution of the

disturbance is described by the inviscid BDO equation. The evolution of the long

nonlinear wave distubance proceeds in this case as expected. Prior to the sudden

decrease in boundary friction the disturbance evolves only slowly as described in

Section 5(b) and when frictional damping is removed the disturbance rapidly increases

in speed as solitary waves develop along the leading edge.

The two examples presented here of nonlinear wave propagation in an

inhomogeneous waveguide serve to illustrate the principal effects which result from

horizontal variations in the degree of turbulent frictional dissipation. We have also

carried out a number of numerical experiments in which the eddy diffusivity

coeffiecient varies continuously over the course of the experiment. These results will

not be described in detail as they are similar in most respects to those described

above.

6(b) Solitary-wave-induced turbulence

Up to this point, all of the calculations have been based on the assumption that

the Chezy turbulent friction coefficient is independent of the nature of the nonlinear

wave motions. This may prove to be a reasonable approximation when the Richardson

number throughout the environmental shear flow is large and when the amplitude of

the waves is small. It must, however, be expected that the Chezy coefficient will

depend on both the amplitude and period of the wave motion and that wave-induced

variations in the frictional dissipation rate may have a significant influence on the

evolution of these disturbances. A nonlinear wave-induced variation in the Chezy

coefficient is clearly indicated by observations of morning glory wave phenomena and

other closely-related nonlinear wave disturbances. For example, the leading solitary
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wave roll cloud formation in visible morning glory disturbances is often observed

(Christie et al., 1983b; Smith and Morton, 1984) to be extremely smooth along the

leading edge and highly turbulent along the trailing edge. This wave-induced

turbulence is apparently the result of the onset of Kelvin-Helmholtz instability near the

crest of the wave. Subsequent solitary wave roll clouds are almost invariably

observed to be highly turbulent which indicates that the wave-generated turbulence

decays slowly relative to the characteristic time-scale of these disturbances. An

excellent aerial photograph of a morning glory disturbance which illustrates the highly

turbulent nature of the cloud lines in the wake of the leading solitary roll cloud

formation is given in Figure 2 of Smith and Morton (1984). Solitary wave induced

turbulence has been observed in laboratory experiments (J. Simpson, private

communication quoted in Smith and Morton, 1984; see also, Maxworthy, 1980) and

has been directly observed in the atmosphere by Doviak and Ge (1984) using the

KTVY tower instrumented by the National Severe Storms Laboratory at Norman,

Oklahoma. Further evidence for wave-induced turbulence is provided by the

observation of an increase in surface temperature due to mixing which almost

invariably occurs in the wake of the leading solitary wave in well-developed morning

glory disturbances. It must be expected that wave-induced turbulence associated with

the leading solitary wave components will have a substantial influence on the

development of the residual wave disturbance.

As a first step in the study of this complex process, we present the results of a

numerical experiment (Figure 17) in which the effect of wave-induced turbulence is

accounted for by an increase in the Chezy friction coeffinient in the wake of the

leading solitary wave. In this simple first approximation we assume that the

wave-induced frictional component appears initially when the leading solitary wave

amplitude, A0, reaches a critical amplitude, Ac, corresponding to a critical local

Richardson number, and that once this critical amplitude is reached the degree of

wave-induced frictional damping in the wake of the leading solitary wave is
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proportional to A0- Ac' Thus, in this very simple model, the leading solitary wave is

subject to a constant damping coefficient e = e. characteristic of the ambient

environment and the residual disturbance develops under the influence of a

time-dependent coefficient,

f(t) - ( + ( 1 (A 0 (t)Ac) .(6.1)

The results of this calculation as illustrated in Figure 17 show that the turbulence field

produced in the wake of the leading solitary wave can limit or inhibit completely the

development of further solitary waves in the residual disturbance. This model

therefore provides an explanation for observations of nonlinear wave phenomena

(Figures 2b and 3d) in which only one large Amplitude solitary wave developes along

the leading edge of the parent disturbance. It should be emphasized, however, that

this model over-simplifies considerably the dynamics of wave-induced turbulent

dissipation. This simple model is presented here to illustrate the principal features in

the evolution of long nonlinear wave disturbances which arise when shear instabilities

occur in the leading solitary wave component. Other more realistic models for this

complex process are currently under investigation and the results will be reported

elsewhere.

7. Concluding Remarks

This paper has been concerned with the theoretical description of the evolution of

long nonlinear wave disturbances in the atmospheric boundary layer. A number of

realistic models for these disturbances have been developed within the framework of

either the deep-fluid Benjamin- Davis-Ono evolution equation for ideal homogeneous

waveguide conditions where frictional processes are negligible, or the BDO-Burgers

evolution equation for conditions where turbulent dissipation plays a significant role.

The evolution of a wide variety of initial disturbances, including infinitely long

internal bore waves and long waves of finite volume has been studied in considerable
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detail. These models clearly explain the essential features in the observed evolution of

morning glory waves and other similar nonlinear atmospheric wave phenomena. It

should be emphasized, however, that the theory is limited to a description of waves of

modest amplitude and the present results will be quantitatively unreliable for very large

amplitude waves with regions of recirculating fluid (Tung et al. 1982). The waveguide

models chosen to illustrate this theory are also over-simplified in many respects. A

more complete description of the evolution of these disturbances should include a

detailed analysis of the influence of spatial and temporal variations in the waveguide

density and shear structure.
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Figure Captions

Figure 1. Surface micropressure records corresponding to amplitude - ordered

morning glory solitary wave disturbances at the Edward River Mission on

the eastern side of the Gulf of Carpentaria. Onset times, source azimuths

and propagation speeds are as follows: (a) 2152 EST (Eastern Standard

Time), Sept. 15, 1983, 280, 5.9 m/s; (b) 2120 EST, Sept. 18, 1983, 310,

6.3 m/s; (c) 2117 EST, Sept. 24, 1983, 350, 7.2 m/s.

Figure 2. Typical surface micropressure signatures of extensive morning glory

disturbances recorded at various locations around the south-eastern margin of

the Gulf of Carpentaria. Onset times, source azimuths and propagation

speeds are as follows: (a) 0323 EST Oct. 3, 1983, 770, 10.2 m/s; (b) 0650

EST, Oct. 3, 1983, 79", 10.6 m/s; (c) 0649 EST, Oct. 9, 1983, 510, 17.1

m/s; (d) 0539 EST, Oct. 15, 1983, 330, 8.8 m/s. The event shown in (b)

represents a later stage in the development of the event illustrated in (a).

Events (b) and (c) were accompanied by solitary wave roll cloud formations.

The flattened crest in the micropressure profile of the leading solitary wave

in events (b) and (c) is a manifestation of closed circulation in the relative

streamline pattern.

Figure 3. Examples of typical micropressure records corresponding to relatively

short-lived morning glory nonlinear wave disturbances. Onset times,

source azimuths and propagation speeds are respectively: (a) 0140 EST, Sept.

26, 1983, 92, 11.3 m/s; (b) 0020 EST, Sept. 28, 1983, 940, 10.0 m/s; (c)

0028 EST, Oct. 23, 1983, 96", 11.7 m/s; (d) 0741 EST, Oct 27, 1983, 340,

14.7 m/s. All of these events occurred as clear-air disturbances with the

exception of event (d) which was accompanied by a single spectacular

solitary wave roll cloud formation in the Burketown area.
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Figure 4. Inner and outer relative streamline patterns, surface perturbation pressure and

wind components corresponding to a solitary wave of amplitude a = 350 m

propagating in a surface based inversion waveguide described by model b

with n=l, u1=u 2=0, Ap=O, h=500 m, and constant Brunt-Vaisalla period

TN=4.1 min. Values of the non-dimensional stream function are shown at

left in the streamline diagram. APT is the total perturbation pressure at the

surface.

Figure 5. Relative streamline pattern, surface perturbation pressure and wind

components for an amplitude-ordered family of solitary waves propagating in

an inversion waveguide described by model b with n-1, u 1=u 2=0, AP=0,

hf500 m, and TN=4. 8 min. The hydrodynamic contribution to the total

surface perturbation pressure (solid curve) is shown by the dashed curve.

Figure 6. Interaction of solitary waves governed by the Benjamin- Davis-Ono equation.

The last trace has been reproduced separately for clarity. The co-ordinate

system in this illustration and in all subsequent illustrations moves at the

critical or linear phase speed. In this frame of reference, solitary waves

propagate to the right and subcritical dispersive wave components propagate

to the left. Units are nondimensional.

Figure 7. Numerical integration of the Benjamin-Davis-Ono equation illustrating the

stability of a solitary wave under strongly nonlinear interaction with large

amplitude subcritical dispersive waves created in the evolution of an initially

smooth long wave of depression.

Figure 8. Numerical solution of the BDO equation illustrating the evolution of a long

square wave of elevation into a finite number of amplitude-ordered solitons

followed by a subcritical dispersive wave train.
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Figure 9. (a) Numerical integration of the BDO equation for an initially smooth

deep-fluid internal bore wave.

(b) Corresponding solution of the shallow-fluid KdV equation for the

same initial bore wave condition used in the calculations shown in (a).

Figure 10. Detailed comparison of (a) the structure of a deep-fluid internal bore

wave with (b) the structure of a shallow-fluid bore wave corresponding to

the same solutions as those shown in Figure 9 at T=100.

Figure 11. Solution of the BDO equation for an initial model disturbance for

atmospheric waves in the form of a long, but finite-length, wave of

elevation. The inversion height behind the leading edge of the disturbance

at T=0 decreases slowly, but continuously, to the ambient inversion level.

Figure 12. Numerical integration of the BDO-Burgers equation for an initally

smooth deep-fluid internal bore with (a) weak turbulent dissipation, f = 0.1

and (b) strong turbulent dissipation, e = 2.0. Stationary internal bore wave

solutions are well established by T - 80 in both cases.

Figure 13. Illustration of the stability of the BDO-Burgers stationary internal bore

wave solution to large amplitude perturbations. This calculation shows that

arbitrary transition wave forms connecting different uniform flow states

converge rapidly to the unique time-independent bore wave solution specified

by the uniform boundary conditions and the degree of turbulent dissipation.

In this example e = 0.1. The stationary wave solution is established by T

- 140.

Figure 14. Numerical integration of the BDO-Burgers equation for an initial

model disturbance for finite-length atmospheric waves with (a) e - -0.05

and (b) e - -0.5.
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Figure 15. Illustration of the influence of an increase in the degree of turbulent

boundary friction on the evolution of a long initially smooth finite-length

wave of elevation. For T < 120, - 0; for T > 120, the disturbance is

subject to strong dissipation with c - -0.5.

Figure 16. Numerical integration of the BDO-Burgers equation illustrating the effect of

a decrease in turbulent dissipation on the evolution of an initially smooth

finite-length long wave of elevation. In this example c = -0.5 for t < 120.

For T > 120, e 0.

Figure 17. Model calculation illustrating the influence of wave-induced turbulent

dissipation on the evolution of long wave disturbances in the lower

atmosphere. In this example the turbulent dissipation coefficient in the

BDO-Burgers equation is given by the spatially and temporally varying

coefficient specified by (6.1) with co = 0.05, e1 = 0.5 and a critical

amplitude, Ac, for the onset of wave-induced turbulence which is 20%

larger than the maximum amplitude of the initial disturbance.



1mb

I4- hour-

Figure 1



-62-

T b
2 mb

1-4-1 hour-Hop

Figure 2



-63-

2mb

I~-1 hour-Ho-

Figure 3



-64-

CD

C0

(N

z .~ Li
o) 

0

(.fl fl U)CDCC

a 0 0) =

C Co
Co 0
0 0

0 C0
00

100
0 0D

0 C0

0 C0
o~ C 0 -

0 0 0 0 C) CD0LI

0~ U) 0

L* 0 C- 0

r0-)

k--J



-65-

(0

C

.0

C
r~j

ILL

o 0l 0 w
0 0 00

C? 0

(0 (0

CD N. ..-D %] \ 0 = C

CD .0

CD CD L

C2 CD*

CD CD

CDCD I) D If I -C CD
0 N 0 N 0 -D C -) C r

0 CD CD CD CD-C
0 Lr) CD U) CD Lr-



-66-

500

500.

400-

300-

200-

0 50 100 150 200 250

x

Piquro 6



-67-

I iLK

100

600

'400 ____

200

- ---- ,----- ------------ ----

0 100 200 300 4010 31

ri(ur, 7



-68-

100

100

80

60

140

2

0 50 100 150 200 250

x



120

100

80

LIO

20

2 -

0 50 100 150 200 250x

Figure 9 (a)



-70-

140

120

100

80

60

140

20

0 50 100 150 200 250

x

Figure 9 (b)



(a)-71-

D

0 100__ __ _200___ _300___ _400__

x

Figure 10



2002

200

160

120.

80,

2

U 1

0 100 200 300 4100 500

x

Iiqfilre I1I



120

100

80

60

20

2-

0J

0 50 100 150 200 250

x

Figure 12(a)



-74-

1140

120

100

80

60

ID

0

0 50 100 150 200 250

x

Figure 12(b)



180

120

100

80

60

LAO

2-

U
0

0 50 100 150 200 250

x

Figure 13



2076

200

160

120.

80.

2

0 100 200 300 '400 500

x

I..i(jurc 1 4 (,0



2007

200

160 __ _

120 _

801__ 
_

0-

0 100 200 300 400 500x

F'ijure 14 (b)



-78-

280

2410

200

T 160

120

2-

U1I

0 100 200 300 400 500

x

Figure 15



-79-

280

240

200

T 160

120

2

0 I

0 100 200 300 L400 500

x

Figure 16



2000

200

160.

120.

80.

2

0-
0 100 200 300 '400 500



V


