

OBJECT MA4NAGEMENT IN POSTGRES USING PROCEDURES

by

Michael Stonebraker

Accesion For

NTIS CRAWI
DTIC TAB0
Unannounced

Memorandum No. UCB/ERL M86/59 JsfiAteo......

28 July 1986 Bist ibution I 6 "

Availability Codes

Dit Avail and Ior

Dist Special

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

S OBJECT MANAGEMENT IN POSTGRES USING PROCEDURES

MA . Stmbraker

DOpeatmr t .1 Elei-, Emgimernuu
dad Computer Sece
Uniwrity of CAlOeris

Berkdel, CA 471

Abistract
This paper presents the object management facilities being designed into a next-

generation data manager, POSTGRES. This system is unique in that it does not invent
a new data model for support of objects but chooses instead to extend the relational
model with a powerful abstract data typing capability and procedures as full-ledged
data base object. The reasons to remain with the relational model are indicated in this
paper along with the POSTGRES relational extensions. __,._, ___

1. INTRODUCTION
This paper presents the mechanisms in POSTGRES [STON86a] to support object

management. This system does not invent a new data model for manipulation of com-
plex objects, but rather extends the relational model with a powerful abstract data typ-
ing system and support for procedures as a fundamental data type. With these con-
structs, most application specific data models can be easily simulated. A companion
paper illustrates this fact by showing how a shared, multiple-inheritance, object hierar-
chy can be implemented on POSTGRES [ROWESS]. Hence, POSTGRES appears to
easily support a wide variety of application specific needs without compromising the sim-
plicity of the relational model for conventional business data processing applications.

In Section 2 we briefly review a collection of data modeling proposals intended for
support of non-traditional applications. We also argue that there is no small common
collection of ideas on which to base the data model of a general purpose next-generation
data base system. Consequently, the thrust of next-generation systems should be to
efficiently simulate a variety of application specific data models.

In Section 3 and 4 we discuss the specific approach taken in POSTGRES which
utiises an abstract data typing capability and procedures as full-fledged data base
objects. Section 5 closes with a summary of the capabilities of our approach.

This research was sponsored by the U.S. Air Force Ofice of Scientific Research Grat 83-
0021 and by the Naval Electronics Systems Commaad Contract N0003984-C40.

2. TE CASE, FOR THE RELATIONAL MODEL
This section briefy discusses three. reasons to retain the relational model - the

backbone of. a nxt-generation, systess.

2.1. The Semantlc Poverty Argument
It is often argued (e.g. [ZANIS3J) that the relationa model is semantically impover-

ished, and should be replaced by a data model with additional semantic constructs.
Over the last ten years there has been considerable research toward identifying such a
model, and in this section we brielfy list some of the constructs proposed.

Without attempting to be very rigorous at classification or exhaustive in coverage
of proposals, the following list is easily assmbled from the literature.

ENRICHED COLLECTION OF OBJECTS

entities, attributes and relationships [CHEN7OI
classes IHAMM81I
roles [BACH77J
objects with no fied type or composition [COPES4]
set valued attributes (repeating groups) (ZANI83J
unnormalized relations (LUMS5J
class variables (aggregation) [SMIT771
category *attributes and summary tables [0ZS086J
molecular objects [BATO851

TYPES OF RELATIONSHIPS

'is-a' hierarchies (SM1T77, GOLD831
part-of' ierarchies [KATZ85J

convoys [CODD79, HAMMS1J
associations [WONG8Oj
referential integrity (inclusion dependencies) [DATE81I
grouping connections [HAMM8lJ
equivalence relationships (KATZ88J

OTHER CONSTRUCTS

ordered relations [STON83SJ
long fields (LOR 1831
hierarchical objects ILOR1S31
multiple kinds of nulls [KENT831
multiple kinds of time [SNODB61
versions [WOODS3I
parameterized versions [BATO8SJ
snapshots [AD 1B801
synonyms [LOHMS3J
table names as a data value [LOHM83J
automatic sampling [ROWE83J

2

d at WA trasithe clone ULLMUJwidme unislu nho PORT84]
som ili MI~seISPOOS4I

[nuql idemelaw jCODD79, POWE, J
demn PISTNSa!

Tn caiusim are evin:

1) There is a large collection of constructe, each relevant to ome or more application
$Pc& envwoament.

2) The union of those constructs is impossibly complicated to understand and probably
infeasible to implement with bite resources.

Hence, it appears inappropriate to look for a single universal data model which will sup-
port all non-traditional applications. In short, what the CAD community wate
difrent from what the semantic modeling community wants which is dilorent from
what the expert data bas community wants, etc. Consquently, such - should build
application specific data models containing the constructs needed in their environment.

The thrust of a next-generation data base system should be to provide a support
system that will efficiently simulate these constructs. The next soction discuses the
POSTGRES capabilities which will be seen to be considerably more powerful than other
proposals with the sme gened intent.

Since the relational model has found such widespread acceptance, it should be the
task of the proponents of some other data model to demonsrate that their choice pro-
vides the same depe of simplicity and simulatioa power as provided within the rea-
tional context by POSTGRES.

2.2. The Simpliclty Argument
Ther are many drawbacks to using a complex tool rather than a simple one in a

data base environment. First, the user manua is longer and harder to write, and train-
ing customers to use the tool is more costly. Second, a more complex tool has inherently
higher technical support costs than one which is simpler. Additionally, there is often
more than one construct that can be used to model a particular real world situation.
Hence, advice is needed on which one to use and the performance implication of the
choice. A logical and physical design tool is thereby harder to construct.

All other data models are more complex than the relational model. Clearly, con-
structs should be included in a data model only if the power provided overwhelms the
cost of the added complexity in a variety of application environments. In my opinion,
this power/complexity came has not been persuasively made by the advocates of most of
the specic constructs in the previous section.

Stated dierently, this author considers simplicity a good idea. The remarks of
(CODD70 on the subject seem as valid now s they did when written Ifteen years ago.

2J. Compatibilty
ft is conceded by most that the relational model provides a good fit to the needs of

the business data processing community. Such data will clearly gravitate from older
technology data managers into relational data bases over the next decade.

3

Iisals obviou that users will demand the ability to correlat data in multiple
data bases managed by multiple softw are packages. For example, consider a CAD data
bae contabdim the deign of a particular printed circuit board. This PC board contains
packages which are bought from outside suppliers. Heome, it is certainly appropriat, to
ask the total cost of package. contained in the PC board. This query requires the abil
ity to correlate data in the CAD dat base with data om suppliers and parts. This latter
data bans is business data processing data and will presumably be is a relational systemn.
As a result, one will mood to correlate a relational data base with whatever data base
system masiages the CAD data.

This problem was addressed by Multibese. Moreover, it is obvious that problems
Of hergmiybecome increasingly severe the further ome strays from the relational
model. Hence, compatibility imame are -n additiomal reaso to retain the relational
model unles am overwhelming cas can be made to displace it.

7. THE PSTGRES ADT SY8TM
POSTGRES supports object management within the relational model with two

facilities, am abstract data type (ADT) facility and procedlure. as a data type. The ADT
system has been described in (STON83b, STONS6b], amd in briefly reviewed in this sec-
tiom. POSTORES support for procedures is considered im detail im the next sectiom.

POSTORES allows a user to implememt a mew data type which cam them be used as
the type of any column in any relatiom im the data base. Moreover, operators specific to
the mew data type cam be included in the query language by writing a procedure to
evaluate the operator. This capability is useful for all kinds of objects normally found in
engineering applicatioms (e.g. boxes, limes, polygons, points, limeo-poup., complex
mum bers, vectors, bitmaps, etc). Far example, the proposal at [STON83b] discusses, the
imclusion of box as a data type along with a collection of operators (eg. intersectiom,
aeaoof, to-the-left-of, etc.) appropriate to the mew type. The facility is also useful in
business data processing applications. For example, mamy commercial system implement
date and time as a data type (e.g. INGR ES, FOCUS, NOMAD) alomg with operators on
this type (e.g. subtractiom). Unfortunately, the normal definition of subtractiom for dates
is mot appropriate for some segments of the financial community which utilise a 300 day
year and 12 equal length momths. Only am ADT system allows a user community to
implement a diflerent definition at subtraction.

In summary the collectiom of data types and operators provided by most current
data base systems are appropriate to the meeds, of business data processimg applications.
Ome mood only allow am extensible type system to support the moods of others.

This ADT proposal is extended in [STONS6b] with constructs that allow a heuristic
query processor to optimize query language expreesioms containing mew operators and
mew data types. Prelimimary discussiom of support for now acess methods was also
included. In the interest of brevity, these proposals are mot summarised as they are not
relevant to the following discussion.

An ADT facility mesets the moods of a variety of object mamagement applications.
However, it fails in three important situatioms:

objects with miany levels of subobjects
objects with unpredictable compositiom
objects with shared subobjects

Consider a mechanical CAD applicatiom which store. a particular building is a data

4

base. An object in such a data base might be an office desk. However, the desk is in
turn constructed of subobjects (e.g. drawers), which are in turn constructed of subob-
ject (e.g. handles). This 'part-of' hierarchy is prevalent in many engineering applica-
tions. A user often wishes to 'open up" an object and access specific subobjects. For
example, he might want to find the handle on the lower left-hand drawer. The ADT
proposal noted above would force a user to write an operator for each such access he
wanted to perform. A very large number of operators would result that would be
exceedingly hard to use. In summary, a user wants the query language to assist with
'opening up" complex objects and searching for qualifying subobject.; he does not want
an operator for each particular search.

The second problem concerns upredictable composition of objects. This issue is
noted in [COPE84], and can be easily illustrated with the desk data. Suppose the data
base contains objects that are on top of the desks in the example building. In particu-
lar, some desks have flowers, some have simple phones, some have switchboard phones,
etc. In this case, a subobject of a desk may be one or more objects from a huge set of
possible desk accessories. It is unreasonable to require a user to write an operator to
extract any object from such an unpredictable collection.

The third problem concerns shared subobjects. Consider a beating duct in the
building that is accessible from several rooms in the building. One would want to store
the duct once, and then have it be a shared subobject in higher level objects (rooms).
The ADT proposal noted above has no ability to share subobjects in this fashion.

To support objects with any of these requirements, POSTGRES supports pro-
cedures as full-fledged data base objects. In the next section we indicate the specific pro-
cedural support that we are constructing.

4. POSTGRES PROCEDURES
POSTGRES supports the notion of a registered procedure which can be used in

query language commands as well as two different procedural data types, namely:
POSTQUEL procedure
parameterised POSTQUEL procedure

These are discussed in turn below.

4.1. RqSIbratom of Proc.dume
A procedure in a general purpose programming language can be uegte'ed to

POSTGRES by indicating the following information
the name of the procedure
the iuplementor of the procedure
the data types of its parameters
the data type of its result
the programming language it is written in
the source language representation of the code for the procedure
a type-checking lag
a precomputation flag

Registration of a procedure is a POSTQUEL utility command which fills the above
information into two system relations, one for the procedure information and one for the
parameters. After registration, the procedure is compiled asynchronously by

5

POSTGRES and can be used in the POSTQUEL query language anywhere that a fuac-
tion is currently allowed in QUEL.

For example the code for 'is-overpald' could be registered ataking a Ae"t ad an
integer a arguments and returning a bookan. With this defditmm the following qwy
can be exprmed for the standard EMP relation:

retrieve (EMP.ail) where EMP.age > 36
and .overpaid (EMP.alary, EMPage)

A second example would be 'a 'prores procedure which aecept a lt and an itg
and returns an integer between I and 10. The emplyees whom pir in gate then
4 who are over 35 would be expressed as follows:

retrieve (EMP.all) where EMP.age >36
and progress (EMP-alary, EMP.age) > 4

This mechanism is a straighforward extension of har-wired. functions currently sup.
ported in QUEL (e.g. sin, cos, log, sqrt, etc.).

Registered procedures have the types of their arguments installed in a system rela-
tion. Consequently, type checking is done on the arguments to any registered procedure.
If a type mismatch is discovered, then argument conversion takes place. This conversion
is guaranteed to succeed, because part of registering a data type to POSTGRES is speci-
fying two operators which will convert ascii to the new type and then back. Hence, if T
is the type of argument expected and Y is the type of the actual argument, then
POSTGRES need only apply the Y-to-ascii function followed by the ascii-to-T function.

In order to avoid a double conversion, we may experiment with a special class of
functions called eonverion functions, which convert between data types. If there
exists such a registered function which has Y as the type of its argument and produces
T as the type of its result, then that function can be used in place of the two functions
noted above.

Note that the implementor of a registered procedure can turn type checking off by
specifying the type checking ag as *no checking'. This setting is appropriate in two
situations. First, commands may come from an application program which can
(somehow) guarantee that the arguments are the correct type. In this situation, run-
time type checking of the parameters by POSTGRES generates needless overhead, and
should be turned off. The second situation would be a user defined procedure which
expected a variety of argument types and contained code to do its own type checking
and coercion. In this case POSTGRES type checking should also be disabled.

The other lag that can be set by the implementor of a procedure declares it to be
precomputable. In this case, POSTGRES is allowed to evaluate the procedure before
receiving a request from a user. This precomputation is a central optimisation for
POSTGRES and is tseful in a variety of circumstances as will be presently seen. In the
present context, procedures with no arguments are sometimes precomputable. For
example, consider the following functions:

time()
groupO
commando
machine-type()

factoral.10(

These functions return the current user, current time, the group of the current user (if
defined), the command he is currently running, the type of machine on which he is run-
ning, ad the factorial of 10 respectively. Notice that the last two functions can be
precomputed and the result of the procedure cached, while the others will generate the
incorrect result if precomiputed.

In the system relation containing registered procedures there is one additional flag
besides those settable by the implementor. This Ag declares a procedure to be s"fo. In
this case, POSTGRES will call the compiled version of this procedure by linking the
code into the POSTGRES address space and performing a local procedure call. This call
is unprotected, and an errant or malicious procedure can bring down POSTGRES (by
zeroing the disk or doing a wild branch into POSTGRES code). However, no perfor-
mance penalty need be paid to call such procedures. On the other hand, unsafe pro-
cedures are called by spawning another procem, loading the procedure into the created
process and performing a remote procedure call. This protected version will incur con-
siderably more overhead.

All registered procedures are initially unsafe and can be debugged without fear of
crashing POSTGRES. The POSTGRES super-user (the person with the POSTGRES
password) can update the safety flag to make a procedure trusted. Presumably, he does
this only after inspecting the code or talking with the implementor of the procedure.

4.2. Procedural Data Types

4.2.1. POSTQUEL Fields
A column of a relation may be declared to be of type POSTQUEL procedure, e.g.:

create EMP (name - 10,
age - i4,
hobbies - POSTQUEL)

Each ADT has an associated external to internal conversion routine, and the one for
POSTQUEL procedures will accept a quoted string containing the POSTQUEL code.
With a registered procedure, file, which accepts the name of a file and returns the con-
tents, we can express the following append command:

append to EMP (name - "Mike",
age - 10,
hobbies - file(" /sr/myfile"))

The code in "/usr/mylle" is a collection of retrieve commands which access appropriate
relations in the data base to get hobby tuples for Mike. An example collection of com-
mands might be:

retrieve (win&surf.all) where windsurf.name - "Mike"
retrieve (softball.all) where softball.name - "Mike"

POSTQUEL procedures are automatically (and asynchronously) compiled and the
answer is optionally precomputed and cached if the procedure is a retrieval. The cache
is invalidated, if necessary, using the mechanisms in [STON88a]. Moreover, the "nested
dot" notation can be used to address into the objects which are represented by POST-
QUEL procedures as suggested in [STON841. The following POSTQUEL command finds
the batting average of Mike on the softball team.

retrieve (EMP.hobbies.batt-avg)

7

~ ~ P~ * ~. %

where EMP.name - "Mike'

Notice that any procedural object can access tuples which in turn contain procedures, so
an object hierarchy can be constructed. Objects can be shared by being referenced in
multiple procedural kids. Next, the contents of a POSTQUEL field can be any query,
so unpredictable composition of objects is readily supported. Finally, the nested dot
notation allows the query language to be used to search inside of complex objects. Con-
sequently, all objections to the the ADT paradigm can be overcome with POSTQUEL
procedures.

Moreover, one can easily perform operations that are difficult with explicit data
hierarchies, such as the ones in [HAMM81, SHIPS1]. For example, the following POST-
QUEL query will find all hobby data for Mike:

execute (EMP.hobbies) where EMP.name - "Mike"

To use a semantic data model, one can declare employees to be an object type and then
declare a large collection of subtypes (e.g. softball-emp, windsur-emp, etc). In order to
find all the hobby information for Mike, one would have to iterate over all possible sub.
types at great expense to answer the above query. Hence, POSTQUEL procedures can
effectively simulate object hierarchies and also perform certain operations that are
difficult with other approaches.

The remaining subsection suggests a variation of procedural types that is useful in
a variety of circumstances.

4.2.2. Parametilsed POSTQUEL Fields
In many instances one requires a column of a relation to be of type POSTQUEL

procedure. However, all values for the column use the same procedure, differing only by
the parameters used as arguments in the call. For example, suppose a second DEPT
relation is added to the data base and a field "dept' is added to the EMP relation. The
value of "dept" for each EMP tuple is the query:

retrieve (DEPT.all) where DEPT.dname - $1
The "$1" is simply a parameter to the query which changes from employee to employee
and indicates his department. It is certainly possible to store the same query as the value
for "dept' for each tuple in the EMP relation. However, space will be economized and
integrity of the column will be enhanced if the procedure is "factored out' of the column
and stored elsewhere.

More exactly, if the above procedure is registered using the mechanism of the previ-
ous subsection, then the EMP relation can be specified by:

create EMP (name - ciO,
age - i4,
aept - POSTQUEL[namei)

"Name" is simply the registered name of the above POSTQUEL procedure. With EMP
so defined, a new employee can be added to the data base by:

append to EMP (name - "Mike",
age - 10,
dept - 'shoe')

The value specified by the user for the "dept" field is the parameter to the procedure.
POSTGRES converts "shoe' to the correct type and stores the parameter in the actual

8

field. Of course, registered procedures must be extended modestly to allow POSTQUEL
commands with run-time parameters to support the above capability.

There are several advantages to parameterized POSTQUEL fields, as noted in
[STON8Sb]. First, the user can specify queries with a nested dot notation rather than
using a join. For example the query

retrieve (EMP.dept.fBoor) where EMP.name - "Mike"
finds the floor on which Mike works. Moreover, one obtains a particular kind of referen-
tial integrity by using a procedure because all employees who belong to a non-existent
department have a query which returns nothing and thereby automatically have a null
department. Lastly, the query optimizer can coalesce the user command with the
definition of the procedure to "flatten out" the user command and then optimize the
resulting composite query. Hence, one is not restricted to processing nested-dot com-
mands in a particular order. The flattening algorithm is discussed in [STONaSb].

Parameterized POSTQUEL fields and registered procedures bear some resemblance
to Smalltalk methods. In Smaltalk, there are a collection of methods (procedures)
defined for an object which are stored external to the object instances. In parameterized
POSTQUEL, there is exactly one method associated with an object which is separately
stored. A registered procedure is similar to a Smalltalk method; however, our registered
procedures are "global" to the data base rather than bound to a specific object and
inherited by other objects as in Smalltalk.

In the remainder of this section we indicate one further generalization of parameter-
ized POSTQUEL procedures. Consider the case of procedures that cannot be expressed
solely in POSTQUEL. This may reslt from the necessity to perform computations that
are not expressible easily in POSTQUEL or to format output data in some peculiar way.
A good example is the "progress" of employees noted earlier. This computation might
be quite involved and perhaps require accessing other relations in the data base. In
order to support precomputing of the value for "progress", one one would like to define
a field in EMP that was associated with a procedure written in a general purpose pro-
gramming language.

The solution is to register a procedure in the data base for "progress" and then
specify a second POSTQUEL procedure:

retrieve (result - progress(EMP.salary, EMP.age))
where EMP.name -= $I

Then, the user can create the EMP relation as:
create EMP (name - el0, age - i4, progress - POSTQUEL[name)

"Name" corresponds to the above registered POSTQUEL procedure. Hence, one can
insert a new employee by:

append to EMP (name - "Mike", age - 10, progress - "Mike")
Clearly, it is undesirable to require the constant "Mike" to be specified twice in the
append command. The following generalization of registered POSTQUEL procedures
allows a more compact notation.

Suppose the parameters to a POSTQUEL command can be denoted "Si" to indi-
cate the i-th parameter found in the POSTQUEL field itself or "Satring" to indicate that
the parameter is to come from the column in the same tuple with the name "string".
Hence, the above POSTQUEL retrieve command should be specified as:

0

".. - , V% , " -

retrieve (result - progrsa(EMPsalary, EMP.age))
where EMPuname - $name

With this specification, Mike can be added to EMP as follows:

append to EMP (name - 'Mike', age - 10)

The user can now And the progress of Mike in two different ways. First, he can use
the registered procedure * propess' as follows:

retieve (value - proprese(EMP-salary, EMP-age))
where EMP.name - 'Mike'

This will execute the registered procedure at the time that Mike's tuple is accessed. On
the other hand, one can also access the field in EMP corresponding to "progress", i.e.:

retrieve (value - EMP.progressresult)
where EMP.name - "Mike'

This second form has one important advantage, namely the procedure for Mike may
have been precomputed since all POSTQUEL fields are candidates for precomputation.
If the registered procedure 'progress' was flagged as precomputable, then the above
POSTQUEL command may have cached answers for a variety of employees. Hence, if
the progress of Mike is in the cache, the result is returned directly and no run-time com-
putation need be performed. This is an important optimization if "progress" is a long
computation.

The following example suggests another situation in which precomputation of
POSTQUEL procedures containing registered procedures in a general purpose program-
ming language is a crucial optimization. Consider a forms management application
whereby an individual form is composed of various trim features and fields, each with a
collection of attributes. It is desirable that forms be stored in the data base so they can
be easily shared by multiple applications. However, it is also important that forms be
compiled into an efficient main-memory representation appropriate to the run-time forms
management code. Currently, users of INGRES [RTI86] must explicitly compile a form
after they are through constructing it. If the form is changed, they must explicitly
recompile it anew.

With POSTGRES, one can register a procedure "compile" which accepts as its sin-
gle argument, the identifier of a form. Then one can register the following POSTQUEL
command:

retrieve (result - compile(FORMS.identifier)
where FORMS.identifier - Sid

Lastly, one need only declare a FORMS relation as follows:

create FORMS (id - i4, compiled - POSTQUEL[namel)

The compiled version of a form will be created asynchronously by caching the value of
the POSTQUEL command. Since the definition of forms changes slowly, the cache will
be only infrequently invalidated. Moreover, the user is spared from the difficulty of
remembering to compile form definitions. In all cases he simply executes the following
retrieve:

retrieve (computation - FORMS.compiled.result)
where FORMS.id - xxx

10

A -- ' "

We close this section by discussing the reasons for not extending the POSTQUEL
procedural data types of this section to ones written in a general purpose programming
language. First, if a column of a relation was of data type "arbitrary procedure", then
there would be no way of knowing the data type of each argument expected by the pro-
cedure or the data type of the result. Hence, it is necessary to register all procedures in
a general purpose programming language to obtain this information. For POSTQUEL
procedures, registration is not necessary because POSTGRES can ascertain the data
types of all arguments and the composition of all the result relations.

There are two difficulties with extending parameterised procedures to allow any
registered procedure instead of only those written in POSTQUEL. First, the "multiple
dot" notation allows fields to be selected from the output of a procedure by name, and
the registration step does not contain a mechanism to name fields in procedural output.
Second, the $string notation discussed above cannot easily be extended to registered pro-
cedures. Both difficulties do not arise in POSTQUEL procedures.

S. DISCUSSION
This section briefly reviews the power available in the procedural fields described in

the previous section.
First, note that a variety of data hierarchies can be effectively modeled. One

approach is discussed in a companion paper which uses a single relation to store the
form of the type hierarchy and a second relation to store the operators that can be
applied to any given object in the hierarchy [ROWE881. However several others
approaches can also be utilized. For example, one can use one or more procedural fields
in the relation that corresponds to any given object to assemble the objects which are
"inherited" by any given object. This inheritance can be of arbitrary composition, and
is not limited to "is-a" hierarchies.

Registered operators must have unique names, so it is not possible to have several
operators of the same name and then inherit the one which is "closest" to a given object
in some object hierarchy. We considered allowing operators to be multiply defined; how-
ever, that would have given us all the messy problems that come with multiple inheri-
tance (i.e. determining which operator to actually use in a specific instance).

Lastly, notice that procedures can be used for many different purposes (e.g. storage
of user commands, triggers, rules, data base procedures, the code for operators, etc.).
Hence, we feel that utilizing a single powerful construct is a better approach than
extending the data model with more anemic capabilities.

%1

IADIBOI Adiba, M.E. ad Lindsay, B.G., "Database Snapshots," IBM San
Jose Res. Tech. Rep. RJ-2772, March 1980.

(BACH771 Bacha., C. and Days, M., 'The Role Concept in Database
Mod*l,' Proc. 1977 VLDB Conference, Tokyo, Japan October
1977.

[BATOSSJ Batory, D. and Kim, W., 'Modeling Concepts for VLSI CAD
Objects," ACM.TODS, Sept. 1965.

(CHEN7SJ Chen, P., 'The Entity-Relatiouhip Model - Toward a Unified
View of Data, ACM-TODS, June 1976.

[CODD7OJ Codd, E., "A Relational Model of Data for Large Shared Data
Bases," CACM, June 1970.

(CODD79j Codd, E., 'Extending Database Relations to Captue More Mean-
ing,' ACM-TODS, Dec 1979.

[COPE841 Copeland, G. and D. Maier, "Making Smaltalk a Database Sys-
tem," Proc. 1964 ACM-SIGMOD Conference on Management of
Data, Boston, Mass. June 1064.

[DATES11 Date, C., 'Referetial Integrity,' Proc. Seventh International
VLDB Conference, Cannes, France, Sept. 1961.

[GOLDS3I Goldberg, A and Robson, D., 'Snailtalk-W. The Language and
Its Implementation,' Addison-Wesley, Reading Mass., 1963.

[HAMS1J Hammer, M. mmd McLeod, D., 'Database Description with SDM:
A Semantic Database Model,' ACM-TODS, Sept 1961.

[KATZ8SJ Katz, R.H., Information Management for Engminerig Design,
Springer-Verlag, 1985.

[KATZSOJ Katz, R. et. al., 'Version Modeling Concepts for Computer-Aided
Design Databases,' Proc. 1I66 ACM-SIGMOD International
Conference on Management of Data, Washington, D.C., May
1986.

[KENT83J Kent, W., (private communication)
(KORT84J Korth, H. et. al., 'System/U: A Database System Based on the

Universal Relation Asuption,'I ACM-TODS, Sep, 1984.
[LOHMS31 Lohman, G. et. al., 'Remotely Secue Geophysical Databases:

Experience and Implications for Generalized DBMS,' Proc. 1963
ACM-SIGMOD International Conference on Management of Data,
Sa Joae, Ca., May 1963.

[LOR183J Laris, R., and Ploufe, W., "Complex Objects and Their Use in
Design Transactions," Proc. Eng. Design Applications of ACM-
IEEE Data Bus Week, San Jose, Ca, May 1963.

[LUM85J Lum, V., et. al., "Design of am Integrated DBMS to Support
Advanced Applications," Proc. Int. Conf. on Foundations of Data
Org., Kyoto Univ., Japan, May 1965.

12

[OZSO85] Ousoyoglu, G. et. al., "A Language and a Physical Organization
Technique for Summary Tables," Proc. 1985 ACM-SIGMOD
International Conference on Management of Data, Austin, Tx.,
June 1965.

JPOWES3 Powell, M., 'Database Support for Programming Environments,"
Proc. Eng. Design Applications of ACM-IEEE Data Base Week,
San Jose, Ca., May 1963.

[RTISSI Relational Technolog, Inc., 'INGRES Reference Manual, Version
4.0' Alameda, Ca., November 1985.

[ROWE83j Rowe, N., 'Top-Down Statistical Estimation on a Database,"
Proc. 1983 ACM-SIGMOD INternational Conference on Manage-
ment of Data, San Jose, Ca., May 1983.

[ROWE8S] Rowe, L., 'A Shared Object Hierarchy," submitted to this confer-
em

[SHIP81j Shipman, D., 'The Functional Model and the Data Language
DAPLEX,' ACM-TODS, March 1981.

[SMIT771 Smith, J. and Smith D., 'Database Abstractions: Aggregation and
Generalisation,* ACM-TODS, July 1977.

[SNOD85] Snodpass, R and Abu, I., 'A Taxonomy of Time in Databases,"
proc 1965 ACM-SIGMOD INternational Conference on manage-
ment of Data, Austin, Tx., June 1985.

[SPON841 Spooner, D., 'Databe Support for Interactive Computer Graph-
ics,' Proc. 1984 ACM-SIGMOD International Conference on
Management of data, Boston, Mass., June 1984.

[STON83a] Stonebraker, M., "Document Processing in a Relational Database
System," ACM TOOLS, April 1983.

[STON83b] Stonebraker, M., et. al., "Application of Abstract Data Types and
Abstract Indexes to CAD Data," Proc. Engineering Applications
Stream of 1983 Data Base Week, San Jose, Ca., May 1983.

[STON84] Stonebraker, M. et. al., "QUEL as a Data Type," Proc. 1984
ACM-SIGMOD Conference on Management of Data, Boston,
Mass., June 1984.

[STON85a] Stonebraker, M., "Triggers and Inference in Data Base Systems,"
Proc. Islamoors Conference on Expert Data Bases, Islamoora,
Fla., Feb 1985, to appear as a Springer-Verlag book.

[STON85b] Stonebraker, M. et. al., "Extending a Relational Data Base Sys-
tem with Procedures," (submitted for publication).

[STONSO& Stonebraker, M. and Rowe, L., "The Design of POSTGRES,"
Proc. 196 ACM-SIGMOD Conference on Management of Data,
Washington, D.C., May 1988.

[STON86b] Stonebraker, M., "Inclusion of New Types in Relational Data
Base Systems," Proc. Second International Conference on Data
Base Engineering, Los Angeles, Ca., Feb. 1988.

13

V. *

(ULLMSI Uflan, J., 'Implementation of Logical Quary Languages for
Databaee,' ACM-TODS, Sep. IMP.

(WONG"O Wong L awl Kat, ft., 'Logica Deign and Schema Conersion
for Relational and DBTG Databaes.' Proc. 1960 E-R Conference.

[WOODSSJ Woodill, J. and Stonebraker, M., "An Implementation of
Hypote"a Relations," Proc. 9th VLDB Conference, Florence,
Italy, Dec. 1963.

[ZANW8S Zamiolo, C., "The Databas Lan~ug GEM," Proc. 1963 ACM-
SIGMOD Confarence on Management of Data, San Jose, Ca., May
19m.

14

Liz'.

