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Overview

We make the distinction between implicit concurrency and explicit concurrency. Implicit

concurrency is that which is neither ruled out by nor required by the specification'. This

paper is divided into two parts. The first part, chapters 1-7, describe the synthesis of par-

allel structure from first order logic specifications. We describe the explication of implicit

concurrency. In the second part, we describe KTL, a wide-spectrum language which can

be used to describe specifications with explicit concurrency, and show that it has a wide

enough spectrum to be used as a synthesis tool on specifications with explicit concurrency.

In the first part, we briefly describe some of our previous work in making certain types

of regular parallel structures, and describe some specialized languages that are well suited

for describing such structures. We then describe an extension to this work that can enable

the synthesis of specialized fat-trees, which is a type of parallel structure that is more

expensive than either regular lattices of computing elements or ordinary balanced binary

trees of elements, but which can handle an interesting class of problems of size n in O(log n)

time, rather than the O(nc) for some strictly positive c time that would be required for

either a lattice or an ordinary tree.

In the second part we explain why none of the existing types of specification systems is

adequate to our needs, we give a formal definition of KTL, and we explain why it is a

good description language for specifications with implicit concurrency.

t Sorme specifications rule out substantial concurrency because there is no way to make a parallel structure

that satisfies the specification asymptotically faster than the best sequential solution. This is a deep property
of the specification, as opposed to the property of whether there is explicit concurrency. As an analogy, the
predicate "there is a win for white" is a deep property of a chess situation; the property "the white king is
on A3" is a shallow property.
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Chapter 1

Abstract

In ow previous work wo developed techniques to synthesize lattice and tree parallel struc-
m -. /

tures from first order logic specifications. VWhave now developed new techniques that

synthesize new structures.

First the new techniques enable the synthesis of trees in which the width of the intercon-

nections and the power of the nodes increases as the distance from the leaves increases.

This type of tree has been-(L~red rn i ,l 'given the name fat-tree. Theprimary -

04 o [z.ei j 15-t fat-trees are universal in that the performance of any network at

all can be equaled by a fat-tree, to a constant and some factors logarithmic in the size of

the structure to be simulated. The constant is immense, making fat-trees at present not a

general method for simulating other strictures.

The idea of such a varying-width tree can, however, be used in specific casz.spa synthesis

target. -We describe techniques for using extensions of Our previous work-,-i-g851i to build

specialized fat-trees to satisfy certain first order logic specifications. These fat-trees are

efficient, unlike the general ones of [Lei85], Because they are specialized.

The second extension is a proof that an appropriately defined parallel structure can be

modified to produce a structure capable of pipelining, or processing different parts of

several problem instances simultaneously in a manner similar to an assembly line. The

proof is a constructive one; a synthesis method based on the proof is feasible.
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Chapter 2

Introduction

This and the seven chapters that follow are the first part of this paper, in which we de-

scribe techniques for the synthesis of parallel structure from specifications which have only

implicit concurrency. We extend our previous work in two ways: we show that a third type

of parallel structure is synthesizable using feasable techniques, and we demonstrate that

a structure that pipelines, or simultaneously processes different parts of several different

instances of one problem in an assembly-line manner, is simply derivable from a structure

with explicit concurrency that does not pipeline.

2.1 Extension of Previous Work to Highly Interconnected Struc-
tures

There are three important classes of regular topologies described in the literature: tessel-

lations; trees; and highly interconnected structures. In previous work we have described

synthesis techniques to create both regular latticework structures and simple binary trees

from first order logic specifications. The binary trees we were able to synthesize could

have vectors as both the input and the output, provided that the computation resulting

in a value at each node N depended only on other elements of the vector in a manner that

could be summarized as a function of a fixed set of functions, from vectors to scalars, of

substrings contiguous with N.

We are extending our previous work in two important ways. Our previous work was unable

3
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to synthesize highly interconnected structures such as butterfly networks and hypercubes.

These structures are useful for a subclass of problems which take vectors into vectors, in

which each output value depends on a small but fixed subset of the input values. A well

known example of such a problem is Discrete Fourier Transform. Other problems for which

this technique is useful arise from graph theory' e.g., connectedness problems.

A new set of techniques allows the synthesis of some of these highly interconnected struc-

tures. These techniques are based on the use of closures as a device to schedule commu-

nication, resulting from divide and conquer, between halves of a tree that are connected

by a given node. An addition to this technique is that vectors that grow with the size of

the subtrees can be communicated among internal nodes of the tree. The fact that these

vectors are allowed to grow asymptotically allows information to be collected from two of

the nodes connected to a given intermediate node and sent to the third. Nodes that are

higher in a computation will be more powerful, both in computation and I/O capabilities,

then those lower in the tree. These more complex nodes can be designed by recursive

application of transformational techniques.

2.2 Use of Pipelines as a Synthesis Tool

Another extension of previous Kestrel work in concurrency synthesis results from a theorem

concerning the ability of any parallel structure to pipeline.

Suppose all of the following:

1. There is a parallel structure that performs a computation that solves any instance

of some problem 2.

1In some graph-theoretic problems, different communication takes place depending on whether a partic-
ular pair of nodes is or is not connected. This restricted variability in the data dependency can be handled
by considering the computation to depend on all of the inputs that could be required, where this set is fixed.

2Note that the problem size would be fixed, since the structure is.

4



2. The number of messages sent from any processor to any other processor is not affected

by the problem instance.

3. T. is the maximum, for all wires leaving node n, of the number of transmissions on

that wire.

4. C,, is the maximum computation time of node n for any problem instance.

Then the pipelining theorem shows that successive problem instances can be solved by a

certain derived structure that is derived from the original structure and has the same

topology, provided that the separation between successive problem instances exceeds

maxwE.truure K 1 T, + K 2C,, where K 1 and K 2 are constants.

Applications of the pipelining theorem include synthesis of components for a larger struc-

ture, as well as direct application where the first-order logic specification really calls for a

series of independent problems to be solved.

We will have therefore shown synthesis methods for all compactly describable topologies

except for certain ones, such as the binary hypercube, that are appropriate for problems

in which no predictions can be made about the pattern of communication. Structures for

such problems could be "synthesized" by fixing on one standard topology for problems of a

given size, since no information is available to make a choice among several such structures.

The organization of the rest of this paper is as follows: Chapter 3 gives a language to

describe crystalline parallel processing structures, and Chapter 4 gives a similar structure

for trees. Chapter 5 describes the synthesis of fat-tree structures, focusing on the synthesis

of a parallel structure for the Discrete Fourier Transform. Chapter 6 shows that certain

parallel structures can be transformed into pipelining structures, and Chapter 7 gives ref-

erences for the first six sections. Chapter 8, which has its own references and introduction,

describes KTL, a language for describing specifications in which the concurrency is part

of the specification rather than the result of an optimization transfomation.

5
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Chapter 3

Crystalline Structure Descriptions

We now give a language to describe crystalline structures. In crystalline concurrency,

processors are connected together in such a manner that the processors can be assigned

Cartesian coordinates and the pattern of connections of one processor with its neighbors

looks similar to those of other processors. More precisely, there is some n such that

each processor can be assigned an index in Zn, and each processor is connected to those

neighbors whose coordinates differ from its own by one of a set of constant offset vectors

(when such a processor exists). The description of a topology can include parameters in

such a way that a family of similar topologies, differing only in size, can be described by

instantiating those parameters to different constants.

This definition has several consequences: from any processor within a fixed crystalline

structure, the number of other processors reachable by paths of length m from any node

is O(mc) for some constant c (usually a small positive integer); the bisection width' is also

polynomial in the size of the crystal; and the diameter' is also polynomial in the size of

the structure.

'The bisection width of a graph is the minimum, over all divisions of the graph's nodes into two groups
of approximately equal size, of the number of edges between the two halves.

2The diameter of a graph is the maximum, over all pairs of nodes, of the distance between the nodes. The
distance between two nodes is the minimum, over all paths from one node to the other, of the path length.

6



3.1 Assumed Crystal Description Language

We define a notion of families of processors. A family of processors has a name and a

dimension; it is defined as a mapping taking Cartesian products from elements of index sets

(usually integers) to processors. Defining a family of processors involves the specification

of quantification of indices.

Interconnections, responsibilities (assertions that a given processor is responsible for com-

puting a certain value) and per-processor procedure declarations must also be provided to

define a parallel structure.

The prototyping language we are using for this project is lexically scoped. Because of this

and the fact that interconnections between two families of processors can be mutual, the

arrays of processors must be declared in a scope that strictly encloses the declarations of

interconnections and responsibilities. (In previous designs, processor names were effectively

of global scope.)

An advantage of having lexical scoping is the possibility of having a hierarchy of proces.-ors 1,'

within processors, so the computation specified for one processor can be performed by

multiple processors contained within.

3.2 The Topology Language

The first element of the syntax is the declaration of a processor family:

(let (P: (mapping (pair int, int) -+ processor))
1,

This declares that there exists a two-dimensional family of processors with a family name

of P. Because it says nothing about the range of values that the indices can take, and the

7



idea of bounding sets of values occurs frequently, we provide a construct for bounding sets

of values as follows:

((decl) (i, j) [suchthat i E [1 ... n] A j E [1...i]] = . .

Here (decl) can be any of five operators; which one is selected determines what is being

declared by the bounding construct. The variables of the declaration (here i and j) have

as their scope the entire declaration. The =:' is best thought of a compile-time logical

implication.

The first possibility for (decl) describes the shape of a family of processors:

(shape (i, j) [suchthat i E [1 ...n] A j E 1 ... ill = [Pij 4])

or more generally

(shape ((shapevar)s) [suchthat (shapebound)] = [(processor expression)J])

where (shapevar)s is the bound variables list of the construct, (shapebound) is a pred-

icate that is true exactly when the quantified variables of (shapevar)s take values

that make (processor expression) defined. (processor expression) should have some of

the variables of (shapevar)s free. The notation (processor expression) 1 can be read

"(processor expression) exists" (loosely borrowed from the notations of recursive function

theory).

The next construct, the responsibilities construct, describes the set of values that a given

processor is responsible for. Example:

(responsibilities ((shapevar)s) [suchthat (shapebound)]
= [(processor expression) has (value designation)])

The concept here is that for all acceptable vectors of values of (shapebound) the proces-

sor named by (processor expression) is responsible for computing the values described by

8
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(value designation). It is also the source of ("has") these values. A (value designation)

will usually be a reference to one element of a vector or an array. The (value designation)

and (processor expression) must be such that different instantiations of the (shapevar)s

will not yield the same value designation for different processors.

A third construct describes communication among processors, together with the reason for

that communication. Example:

(communication-network (with ((shapevar)s) [(shapebound)] ((linkage)s)))

where ((shapevar)s) and (shapebound) are as before, and (linkage)s are communications,

described as follows:

((proc exprl) type (proc expr2) [- (proc expr3)] ((motivation)s))

Here the type is one of hears, talks-to or links, declaring respectively: the exis-

tence of a "wire" to the processor described by (proc exprl) from the one described

by (proc expr2); a wire from (proc exprl) to (proc expr2); and a relayed wire from

(proc expr2) to (proc expr3) via (proc exprl). Note that each of the talks-to and hears

information can be inferred from the other, and that the links information can be derived

from either of these.

The (motivation)s are descriptions of sets of values that are expected to flow over the link

being declared. Here is the "generic motivation":

(m-type ((shapevar)s) [(shapebound)] ((referee)s))

where (shapevar)s and (shapebound)s are as before, and (referee)s are (value designation)s

of values that are to be carried by the declared wire.

9 



II3.2.0.1 The Processor Description 
Language

It is also necessary to describe the work done by each processor.

Under the assumptions we are using, there is no need to explicitly specify acts of com-

munication. If there are two processors P, and P2 that are related by a communication

clause, one of whose motivations is value v, then the value identified by v is communi-

cated from P1 to P 2 as soon as P comes to know it. The need to communicate will not

change the asymptotic complexity of the processors unless each processor is connected to

a nonconstant number of other processors, a situation we expect to avoid.

10 A
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Chapter 4

The Tree Description Language

Families of processors can be tree shaped as well as crystalline. Because of decidability

problems that would otherwise arise (see [Kin85]), we provide no provision to describe

the balance of the tree. For our purposes a tree must be balanced'. In order to allow

the formation of the fat-trees of [Lei85], some limited information must be available to

describe the positions of internal tree nodes.

Because a processor tree is so stereotyped, the type constructor

(let (T: processor - tree)

)

suffices to describe those attributes of T that are not either described implicitly in com-

munications constructs to be described below, or an option of the implementation.

The declaration of the family T actually causes there to come to be three families: T.root,

T.internal, and T.leaves. Tinternal is indexed by subsequences of the sequence of leaves,

although it is not true that T.internal, exists for all subsequences g of leaf indices. Each

intermediate node knows its own index and those of its children.

lAn unbalanced tree can be described by specifying a connection between the root of some subtrees and
chosen leaves of the supertree. Because the description is fixed, only one tree shape can be used of a given
size.

11



In the succeeding subsections we will describe the constructs for specifying the communi-

cation within the tree and the information available to the outside world through the root.

It is also possible to arrange for communication among corresponding elements of distinct

trees by providing communications clauses specifying use of a value, in intermediate nodes

of one tree, that are had by intermediate nodes of another.

4.1 Shape Restrictions

The first element of the syntax is the declaration of a processor family:

(let (T: processor-tree)

)

This declares that there exists a tree of processors with family names of T.left, etc. It says

nothing about the number of leaves or the nature of the leaves' index set.

The shape of the leaf set is determined thus:

(shape (i) [as i E [1 ... n] A P(i)] =* [T.leafi 4])

o: more generally

(tree-shape ((shapevar)s) [as (shapebound)] =* [(processor expression) #)]

where here (shapebound)s must be of a form acceptable to a "sequence former" (the basic

criterion is that it generates an ordered stream of values rather than an unordered set

of values). (shapevar)s is the bound variables list of the construct, (shapebound) is a

predicate that is true exactly when the (quantified) variables of (shapevar)s take values

that make (processor expression) defined. Processors of (processor expression) must be

indexed references to T.leaf, where T is of type processor - tree. (processor expression)

should have some of the variables of (shapevar)s free.

12
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The next construct, the tree-responsibilities construct, describes the set of values that

a given processor is responsible for. One example of such, in this case for leaves, follows:

(tree-responsibilities ((shapevar)s) [suchthat (shapebound)] =;
[(leaf processor expression) has (value designation)])

Here we say that for each instantiation of the variables of (shapevar) that satisfy

(shapebound) the processor named by (processor expression) is responsible for com-

puting, and is the source of, (has) the values described by (value designation). A

(value designation) will usually be a reference to one element of a vector or an array. It must

never be true that for two instantiations of (shapevar)s for which the (value designation)s

are equal but the (processor expression)s are not.

Note that an ordering is defined on the leaves by the order of the stream generated by the

suchthat clause.

The leaves of a tree are a crystalline structure, and are defined similarly to any other

crystalline structure. The root is also a processor whose communication can be described

by crystalline structure communication constructs with a null vector of indices.

The differences arise when intermediate nodes are involved.

For the intermediate node T.internal-, it is assumed that t" = (concat j", k), where 7 and

are the subscripts of the children. No other information can be supplied for the way

the sequence i" is split between J and k, as this is an option reserved for the system. The

intermediate node T.internal is described as hearing T.internal, and T.internal. If

T.internal; has V, it may use V; and Vg as well.

13



Chapter 5

Fat-Trees as a Synthesis Target

Two most important properties of a parallel structure are its cost and its performance.

These are, in turn, related to the minimum area required to wire a parallel structure

containing a given number of processors; the bisection width, and the diameter.

The bisection width is very closely related to the minimum area required to implement a

structure; the normal proof technique used to establish area/time tradeoff theorems is to

show a lower bound on the bisection width of a topology that can solve the given problem

in a given amount of time, and the normal proof technique used to establish lower bounds

on the area of an implementation of a topology is to describe its bisection width. This has

been a normal technique in this field for some time; see, for example, [BrK79].

Architectures occupying prominent places in the literature and along this continuum from

high performance and high cost to low performance and low cost include tree structures

and crystalline structures which have been the subjects of our previous work, and highly

interconnected structures such as the cubically connected cycles, the binary hypercube,

the perfect shuffle, and the butterfly.

5.1 Motivation for High Interconnection

In the ideal multiprocessor system, every processor would have access to all information

in the system in unit time. This would involve every processor being able to directly

14



communicate with every other processor. The expense of such a system would be so

extreme, except for a very small number of processors; we have not, and will not, consider

this possibility in this Report.

At the next level of desirability is for every processor to have access to information in an

amount of time logarithmic in the size of the structure. In order for this to be possible, each

processor must be the root of a tree that differs only by a constant from being balanced.

These trees can overlap, which they must do to avoid a quadratic number of elements

for the entire structure. This overlap causes some problems in handling communications

patterns that cannot be predicted in advance, but the details of these problems need not

concern us here, except to say that ways, including use of random routing, have been

developed to deal with the problem. See, for example, [ReV82].

5.2 Restricted Highly Interconnected Structures

The synthesis of a highly interconnected structure only becomes interesting if there is some

information available as to what communication patterns hold. If this is not the case, than

there is nothing in the communications pattern to distinguish two networks of a given

size, so any two structures with the same number of nodes would have the same optimal

topology.

In interesting structures, however, there are restrictions on the communications patterns.

A trivial example of this would be that if one processor were the source (resp. target) of

all of the communications, then a tree could be used.

A less trivial example can be offered. Consider the Discrete Fourier Transform (DFT).

In what follows we will use the convention that U is a vector- or array-valued object, and

that ui is the notation for element extraction. If the vector is thought of as a mapping, u,

could have been written (U i).

15



The assertion that If" is the DFT of a vector V can be specified as

3 Vi[x-lj = vi A Vj [xj,i = G(j, xj-,i, xj_jj®v)] A w, = xim ,i]

where X is an array, i and j are indices into vectors and arrays, and G(j, y, z) = y + w2'z

and w is the primary root of w2" - 1. 0 is the "exclusive or" operator. There are several

ways of thinking about this specification and assigning processors to values, each of which

produces a different, plausible, and interesting parallel structure.

If we assign a processor for each element of 9 and provide every wire implicit in the data

communication we get the standard butterfly network for DFT, in which (for 2n points)

there are n + 1 banks of 2n processors each, indexed by two numbers ranging from 0 to n

and from 0 to 2n - 1, such that processor Pj-I,i sends information to processor Pj,j and to

If we assign a processor for sets in {{xj,, -1 <j n - 1} : 0 < i < 2" - 1}, and make

the interconnections implicit in the data flow, we get the binary hypercube of order n.

A third choice is to use closures and divide-and-conquer, but to relax the requirement that

an argument to a closure be a scalar. This leads naturally to fat-trees [Lei85], in which a

structure is a binary tree but higher nodes in the tree are more complex.

In this case, the intermediate nodes of this tree receive a closure and a value from the next

lower level.

The general pattern is that the leaves provide a closure and a value. The closure accepts one

value and performs one step of the DFT, and the value is sent upwards in the tree to be used

as an argument for similar closures. The leaf executes the following two assignments (recall

that assignment to a variable that another processor uses provides for communication):

16



0 -i,- G(j, z-,,, z)]
Vij *-- x-i

where A[body] is a notation for a closure generating form. A closure generating form is

one that evaluates to a closure, and this example form would create a closure that accepts

as its arguments the variables of AX, and in which the current values of the variables of Y

are embedded. Application of the closure will involve evaluating body in an environment

where .A has been bound to the arguments and the variables of i are bound as they were

when the closure generating form was evaluated.

An intermediate node of the tree must be able to either switch information from corre-

sponding nodes in one of its subtrees to the other, or to send information from each subtree

to its parent. Working through a synthesis by closure (as in [Kin85), but not maintaining

a restriction that vector concatenation not be used to create the values that are passed up

the tree, we find that the program in an intermediate node at level k (the bottom level is

level 0) is

(Program 1)
C.upi 1 +- ifj= k

then A c.leftl" ,c.right,,.,'.leftZ .right [C.left(ff.right) IC.right(f.left)]
c left, ,,c right, ,2 left,2.right - .

else A . i'gt " e" ." [C.left(Z left)IIC.right(Z.right)]

I.up 4- concatenate(Z.left, Z.right)

In this structure the vectors from the descendants are collected and sent to the parent,
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and also at the appropriate level of the tree (which varies from cycle to cycle) the vectors

are interchanged for the downward call'.

The structure for this looks like

(let (DFTP: processor-tree)
(tree-shape (i) [as 0 < i < 2n - 1 * DFTP.leaf, 4)
(tree-responsibilities (ij) [suchthat 0 < i < 2n - 1 A -1 < ni ']

=: DFTP.leaf, has xjp)
(tree-responsibilities (j) [suchthat - 1 < j n)

=* DFTP.internal has C,, z,)
(communications () [suchthat true]

=:; DFTP.internal uses C,, zj)
(in DFTP.internalevel k, _~~-

(Program 1))

5.3 Additional Synthesis Steps

Firstly, other techniques from our armory must be used to synthesize the internal structure

of a node. In this example, the procedural part of the closures has internal structure, which

can result in the synthesis of tree nodes with corresponding internal structure.

Consider Program 1 again. The computations inside the internal nodes are, themselves,

operations on vectors, and can therefore be handled by the methods of [-ing851 to yield

multiprocessor internal nodes and multichannel connections within the tree, as follows:

(let (DFTPI: processors,
DFTPL: processors,
DFTPR: processors,

'Notice that the argument pased to the closures at or above the critical level are irrelevant, since at the
critical level the "other" vector is used instead of the argument.
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DFTPUT: processors)
(shape (in) [as 0 < m < 2k+'] =; DFTPIm .)
(shape ()[='DFTPL 4J)
(shape 01*DFTPR JJ.) % interface processors
(shape () fo- DFTPU J$)
(responsibilities (in) [suchthat 0: <m < 2 k] =o. DFTPr .has Cm., z,)

(communications (in)

[suchthat 0 < m < 2 kj DFTPr.. hears DFTPL (uses zAeft,)
A DFTPrm + 2 k hears DFTPR (uses z.right,,)
A DFTPrm hears DFTPrm + 2 k (uses z.right,,)
A DFTPr,. + 2 k hears DFTPrm (uses zAeft,)
A DFTPU hears DFTPr. (uses z.upm)
A DFTPU hears DFTPr + 2k (uses z.upm,,+ 2k))

(in DFTPL):
for 0 < i < n do

zr = [Zm: 0 < m < 2 k - 1];
C,,..- Acli=Cli,Cri=Crp,zls=z4.tzr=i

[if27= k then (Cl,(zri)IICri(zl,)) else (C1(zl,)IICri(zr1 ))
% 4, etc. is an abbreviation for zAeft, etc.

end

Here what happened is that a crystalline synthesis was performed within the internal nodes

of the tree.

Second, and more important, the requirement that the auxiliary values computed and

passed through the tree be scalars is removed. This requires the ability to have as a

parameter the level of a node in the tree, because the size of the extended objects in

general depends on the level in the tree (and therefore the number of leaf nodes in the

subtree).
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5.4 Applications

The Discrete Fourier Transform is one example of a genre of mappings from vectors to

vectors, in which each element of the output depends on each element of the input, but in

a regular enough manner that a cumulative partial information vector can be computed

and used. Other examples can be drawn from the literature of divide-and-conquer. (e.g.,

graph theory problems)

Naive divide-and-conquer can only be used to synthesize a tree structure when the output

is a scalar ["census functions"]. In previous work at Kestrel [King84] the application of

closures to synthesize trees for divide-and-conquer has been shown to be able to overcome

the problem of excessive communication through the root in cases in which the input and

output vectors are the same size, and the output vector is pointwise dependent on the

input vector and information summarizable in scalars from the contiguous subtrees. The

fat-tree synthesis will enable most computations in which the communication pattern does

not depend on the data to be synthesized into a specialized fat-tree, making an expensive

but fast network.

I
20 e



Chapter 6

Fundamental Pipeline Theorem

In this Chapter we will consider functions from vectors to vectors.

Definition 6.0.1 A parallel structure /PS] is a collection of computing elements; internal

wires between pairs of elements, input wires from sources of data to elements, and output

wires from elements to destinations of data; and programs loaded into the elements. A PS

solves a family of problems P if, with proper initialization of the elements and delivery of

the problem's input values to the input wires, the solution comes to be delivered to the PS's

output wires. The size of PS is the number of elements it contains.

In complexity theory, a Turing Machine computation is termed "oblivious" if the motion

of the head of the Turing Machine does not depend on the problem instance. By analogy,

we will define:

Definition 6.0.2 A computation takes place in an oblivious manner if the multiset of

origins and of destinations of the signals received by every element does not depend on the

problem instance.

In what follows we will assume that the duration of a transmission does not depend on

its contents. We are therefore considering the length of the datum to be irrelevant. This

tends to not be exactly true for simple descriptions of problems, but can be made true by
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restricting the domain of applicability of the structure. As an example, there is no parallel

structure that solves the problem "add two integers" in an oblivious manner because for

any fixed transmission duration and technology it is possible to provide inputs that will

make the transmission take longer than the alloted time. The more specific problem, "add

two numbers, both of whose magnitudes are < 23"", can be so solved.

This tendency for transmission lengths to grow as problem sizes increase is a serious matter

in asymptotic behavior analysis, because larger versions of families of related problems tend

to have intermediate values that take longer to transmit. We do not think this to be a

serious problem here, however, for two reasons: increasing the number of problems in a

pipelining system at any given time, or the total number of problems fed through such a

system, does not tend to increase transmission times for intermediate values, and (as the

integer addition example shows) the limitations imposed by a constant-transmission-size

requirement tend to translate into argument size limits. If we were proving results about

the behavior of families of problems and corresponding families of parallel structures, this

would be more of a problem because some such families have intermediate structure sizes

that grow asymptotically with the size of the problem.

In this model an element contains two parts:

* a processing part that contains a state, and a program that maps a pair of

- vectors of input values (some of which are null because they correspond to wires

that delivered no signal), and

- internal processing states including an end state

into a pair of processing states and sets of pairs of messages and output lines

* a queueing/output unit

22
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with the message/output line pairs being sent to the queueing/output unit to be sent on

the output wires in the order received. We assume that all computations are done in a

timing-independent manner, so that if an element "expects" to see two signals on each of

two lines, arrival of the signals in either order, or simultaneously, will have the same effect.

Since we assume oblivious computations, we assign unique names to the transmissions that

take place within PS as it solves an instance of the problem.

We assume in our model that the reception is no slower than the transmission - ie., there

is never any inhibition of transmission; as the time required to receive a signal is assumed

to be subsumed in the transmission time.

Definition 6.0.3 The pipelining structure for a PS /P(PS) is the structure that results

from PS by replacing each communication path whose messages are of type T by one whose

type is integer x T, the state S in each element is replaced by a mapping M from integers

to states, and each program F is replaced by a program that does the following thing for

each index seen on an input line.

For each i such that (i, x) occurs in the input vector, a new vector is formed by replacing

instances of (i, x) with merely x, and instances of (j, x) : j 9 i with A, where A is the void

value. The new program computes (M(i), 6) +- F(M(i), 17) (except that if M(i) is not

defined the starting state is ued instead and if F produces the end state than M(i) is left

undefined) and sends [(if x = A then A else (i, z)) : x E (].

The queueing/output units in the elements of P(PS) will always resolve conflicts by sending

an (i, x) pair with the lowest possible i. (This can happen because F can "decide" to send

several transmissions, from several input vectors and internal states from the mapping, on

a single output wire.)

Intiutively, there are several sets of data coursing through the PS, and it is necessary to keep

the various data and internal states straight to ensure that computations are performed
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on corresponding input values and internal states. The program in an element is replaced

by a second program that acts as follows:

We will now show that P(PS) can solve multiple problem instances, provided that they

are sufficiently separated in time.

First we get some preliminaries out of the way:

Basic Observation 6.0.1 If PS solves a problem instance PI, then P(PS) will also solve

such a problem instance, provided we pair each piece of the input with a (unique) integer

i and anticipate output values being delivered with that same integer. A problem instance

that has been so modified is called P(PI,i).

This observation follows simply from the fact that for every value v received by an element

of PS the corresponding element of P(PS) will receive (i, v), the corresponding state tran-

sition will take place in M(i), and therefore if the element of PS would have transmitted

w at some time, the element of P(PS) will transmit (i, w).

Definition 6.0.4 The content of a pipelining structure is the size of the domain of that

mapping within elements of the structure for which that domain is largest. Recall from the

definition of a pipelining structure that i is removed from M(i) when the latter comes to

be an ending state.

Definition 6.0.5 The separation of a stream of problem instances is the amount of time

between the start of transmission of successive instances. It is assumed that there is no

overlap, i.e., that a problem instance will be delivered in its entirety before a successor is

begun.

Definition 6.0.6 The duty of an element [D(E)] is the number of transmissions it issues

on any single line during one problem instance. In our model, this is proportional to
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the amount of time the element is in use; we make this proportionality constant 1 by

appropriate choice of units. The duty of a PS is maxEEPS[D(E)].

First we established a lower bound to the separation of a stream of problem instances:

Basic Observation 6.0.2 For no PS with duty D is it possible to solve n problem in-

stances in fewer than nD time units.

Let the dwell be W, and the separation be S. After T time units, g problem instances

have been started, and all but M of them have exited the system. For this to be true, theS

element whose duty is D must have delivered D(T-W) messages to the successor with whichS

its duty is D. Since S < D, 3T[D I > T). After T time, the element whose duty is D

is required to have handled r... problem instances, and therefore to have made DT-W

transmissions on one of its lines; this is imposible, as DT > T. |

Definition 6.0.7 A valid itinerary of a PS is a map:I : integer -- (multiset element)

such that if a problem instance is delivered at time 0 then exactly those elements in I(i)

contain sufficient information to transmit messages at time i, assuming that all elements

mentioned earlier in the itinerary did in fact transmit at that time. In what follows we

will merely call this an itinerary. In cases where there will be no confusion, we will draw

a valid itinerary as a sequence.

Definition 6.0.8 The dwell of a pipelined structure is the maximum, over an indefinite

stream of problem instances, of the time interval between the entry of the first part of the

instance into the structure and the exit of the last part.

Basic Observation 6.0.3 Ei[#I(i)] < size(PS) • duty(PS), immediately from the defini-

tions.

Definition 6.0.9 Fi[#I(i + 1)] is the activity of the PS.

25

IM~~~~~*'~'% II~ NI1111511 *W111



Basic Observation 6.0.4 I(i) # 0 =o 0 < i < activity(PS), becaus e 1(i) = 0 => I(i+1) =

0, since in our model every transmission is stimulated by a reception.

We now show the main result of this Chapter. The idea of this proof is that, given a valid

itinerary for the unpipelined structure, we can construct a valid itinerary for the pipelined

version of that structure that has certain desirable properties when fed a continuous stream

of problem instances.

The properties are:

" the separation of a stream of problem instances need not exceed D, where D is the

duty of the nonpipelined structure;

" the time from start to finish of one problem instance is no greater than the product

of the activity and D;

" no internal element queue need accomodate more than D values;

* there will be no more than activity problem instances in the pipelined structure at

one time.

The basic idea of the proof is to construct, from the valid itinerary for the non-

pipelined structure, a different itinerary such that any number of copies of the sec-

ond itinerary can be superimposed on each other without interfering with each other.

I construct this by taking the first itinerary (i 0,i 1 ,i 2,...) and adding spaces to create

(io, A, A,. .., il, A, A,..., i2, A, A,......), in which the separation of the non-null portions

of the itinerary is the duty.

If an arbitrary number of these is then superimposed with the non-null portions overlap-

ping, we have, during certain cycles, one instance each of io, il, etc. Since by definition
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the duty of no element is greater than the duty of the structure, it will be possible for each

element to bleed its queue during the quiet spaces.

Theorem 6.0.1 Consider an indefinite stream of instances PPI = P(PI1 , 1), PPI2 =

P(PI2, 2) .... Suppose that the separation of problem instances equals or exceeds one more

than the duty of P(PS). Then there will be no point at which internal queues in the element

grow without limit, and the content of the PS is bounded.

Proof: We call the activity of the structure A and the duty D. Create I' as I'((D + 1)i) =

I(i), jmodD+ 1 -0 =* I'(j) = 0.

Let F = maxi[i <(D + 1)A A i mod(D + 1) = 0]. Using W to denote multiset "union", we

consider the mapping M(j) = I±JiE {j+D+,j+2(D+),..,F} I'(i). Now if we define M(j, k) =

Ij:_i < k M(j), then M(j, j + D + 1) includes at most D instances of any single element. The

reason for this is that the range of I included each element at most D + 1 times, and the

operations used to compute M(i) merely fold the range of I so M(i, i + D) will produce

the same multiset.

The folding of the itinerary corresponds to the propagation of multiple problem instances

through P(PS). It will necessarily possible for an element to transmit, in the D cycles

following cycle i, those values made necessary by receptions during cycle i or previously.

Each value transmitted during one of these D cycles will be received when or before it is

scheduled to be received, which is at cycle i + D + 1.

Inserting problem instance i at the start of cycle (D + 1)i, we find that problem instance i

will depart the system (all elements will have M(i) undefined) before cycle i + (D + 1)A.

I

There are two ways this theorem could fail to be "tight": the separation of D + 1 could

be unnecessarily generous, it might be provably possible to have a content smaller than A,

and it might be provably possible for the dwell to be less than DA.
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The possibility that the separation is less than D has been dealt with above.

We suspect, however, that a dwell time comparable to A is possible. The general idea is that

once each internal element queue has as many as A elements, at least one transmission

from each problem instance in the system will take place each cycle. One difficulty in

proving this is the possibility that the size of the elements' queues oscillates wildly.

28
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Chapter 8

A Specification Basis for Computing-System Synthesis

Contents
8.1 Overview
8.2 Specification Uses and Requirements
8.3 A Knowledge Transformation Language
8.4 Problem and Algorithm Specification
8.5 Architecture and System Specification
8.6 Conclusions and Research Directions

8.1 Overview

This chapter describes preliminary work on a unified basis for specifying
problems, algorithms, parallel computing architectures and systems. Work
described in previous chapters introduces and develops sublanguages for
specifying these entities on an ad hoc basis. For example, in addition to the
predicate language for specifying problems there are the topology language
for specifying parallel architectures and the processor description language,
an imperative language for specifying algorithms to be implemented or
executed by processors.

Ultimately it will be useful (if not essential) to describe and relate all of the
specifications mentioned above in a single language. The rationale for this
unification is simply that problem specifications and related constraints go
into the parallel computing system synthesizer, parallel computing system
specifications come out, and validity of the transformational synthesis
methodology depends on the inputs and outputs being related by a
sequence of correctness-preserving specification-transformations. While
there is a good argument for separate languages in widely differing realms
(e.g., system specifications versus realizations in a specific VLSI device
technology), we argue that the specification realms considered above are
sufficiently interdependent (and intermixed during various stages of
synthesis) to require unification in a single language wherein correctness of
transformations has a precise semantic definition.

Definitions.To see how the unification may be accomplished, it is
necessary to review briefly what we mean by the terms. A problem
specification describes some input-out relation or environment-interaction to
be realized, and optionally describes constraints on realizations (such as
solution on a specified architecture within specified real-time constraints).
An algorithm specification describes an effective computation based on
given primitives. An architecture is an abstract object-type, whose instances
are computing systems. By a parallel computing system we mean a
programmed digital system with multiple processing elements that operate
simultaneously. As usual, a program consists of algorithm and input data
(perhaps encoded for execution by an architecture).
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A transformational approach to synthesis of parallel computing systems
from restricted problem specifications is developed in [King 85] and
extended in previous chapters. This work has focussed on a restricted but
important class of problems and solutions (single-assignment algorithms),
though it appears to be generalizable. A goal of the work reported below
has been to enlarge the domain of problems and architectures that can be
described, and to provide an effective semantic foundation for synthesis of
parallel computing systems by correctness-preserving transformations.

8.1.1 Problem Statement

Soon we will have a VLSI technology that can provide adequate computing
power for most of the critical real-time problem-solving tasks that confront
us. But harnessing this power poses new challenges for computing system
architects and software engineers. There is a growing consensus that we
will be unable to develop either the architectures or the con.,roling software
in a timely, reliable and economical manner without major innovations in the
technology of system design, development and maintenance.

One problem is that, while a few experts can show what is possible by
honing algorithms to solve key problems brilliantly on selected parallel
architectures[HG 86], it is unlikely that large quantities of reliable software
can be developed in this labor-intensive way to efficiently utilize radically
new computer architectures such as those now being prototyped.

A related problem is that no "general purpose" parallel architecture can
adequately address all problems. Problem-specific architectures can
dominate general-purpose sequential or parallel architectures by processing
independent problem-components simultaneously and structuring
communication paths to minimize data-access or communication delays.
However, realization of this potential advantage is notoriously difficult. The
cost of developing and testing an architecture is often far greater than the
cost of developing and testing software to run on an existing parallel
processor.

Problem-specific architecture design can be viewed with software design as
part of a more general problem, synthesis of parallel computing systems
from problem specifications. Both hardware and software can be derived
concurrently to meet performance requirements within technology and cost
constraints, or software can be derived to configure and control a specified
parallel architecture.

It is argued elsewhere [Green et al] that automated transformational
development of software from very high-level specifications must play a
central role in the paradigm change that is needed to solve the software

?7
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bottleneck. The argument applies equally well to parallel computing system
development.

A knowledge-based transformational refinement paradigm will have several
benefits. Algorithm and architecture design expertise, currently acquired
and practiced with difficulty by an insufficient number of human experts,
will be increasingly codified, leveraged and reused by knowledge-based
development tools and systems. Human intuitions will continue to suggest
major system design decisions (e.g., specification-refinement rule
applications), but automated inference, analysis and simulation tools will
provide useful and timely performance predictions to evaluate and guide
these intuitions.

8.1.2 Results

The summary and illustration of KTL demonstrate existence and utility of a
unified basis for specification of problems, algorithms and architectures. It
was not apparent that a relatively simple basis could specify both concurrent
algorithms and parallel architectures at an appropriate level of abstraction for
use by knowledge-based synthesis tools (which now exist in prototype
form or can be developed with known technology).

Computer architectures (including real-time performance parameters) can be
fruitfully viewed as parameterized abstract data types with parallel
computing systems as instances; these systems may use a rich variety of
processing and communication constructs that can be specified naturally in
KTL. Preliminary investigations (involving tree, array and connection-
machine architectures) indicate that KTL specifications can describe both the
architectures and the algorithms to control them. Indeed, they can describe
(nonterminating) reactive systems that use real-time, concurrency and
communication constructs to reason symbolically and interact with their
environments.

A precise and understandable semantics is essential for synthesis of reactive
parallel computing systems that satisfy their specifications: concurrency,
nondeterminism, communicaton and real-time constraints lead to complex
specifications that are difficult to analyze and transform to executable form.
Knowledge-based synthesizers for such specifications must ultimately be
validated semantically on a rule-by-rule basis.

Soundness of inference and transformation rules is well defined in terms of
KTL's formal semantics, but effective proof rules are needed to verify
applicability conditions of transformations. Proof rules will require further
development for practical applications, but the basic theoretical issues and
solutions are now well understood. This preliminary work is expected to

. . • U



34

result in a more detailed formal KTL definition and synthesizer-prototyping
plan during 1987.

While much work remains to be done on an appropriate transformational
synthesis methodology for Kin, it has been shown that the methodology of
[King 85] and related work can be expressed and gen -ralized in this
framework. This expression needs to be developed in detail, however.

8.1.3 Organization of this Chapter

Section 8.2 considers what kinds of knowledge must be codified to guide
the synthesis of parallel computing systems from very high-level
specifications. We distinguish domain knowledge, algorithm-design
knowledge, and architecture knowledge, though in fact these realms
overlap and require a single wide-spectrum, broad-scope language. We
explain what we mean by "spectrum" and "scope" in this context,
concluding that no established language or formalism has the required
spectrum and scope.

Section 8.3 provides an overview of the KTL specification basis that is
being developed at Kestrel Institute. We begin with a general semantic
framework for reactive systems, explaining the language primitives on this
basis. We explain how such a basis can be "simpler" than a general-purpose
manual-programming language such as ADA®.

Section 8.4 illustrates the specification of problems and algorithms in KTL,
using parallel prefix-reduction and all-pairs shortest-path problems as
examples. We indicate how a transformational synthesis methodology based
on KTL could be adapted for either concurrent algorithm/architecture
synthesis or algorithm-synthesis for given parallel architectures.

Section 8.5 considers the problem of specifying parallel architectures and
computing systems in KTL. An architecture is viewed as an abstract data
type, instances of which may contain variables called "stores". Operators of
the type constitute the "native language" of the architecture. Real-time
constraints on operations express performance properties of architectures.
We indicate how tree, array, and connection-machine architectures can be
specified in KTL. Aparallel computing system is an architecture-instance
with stores initialized by instructions and data.

Section 8.6 suggests directions for further work, ranging from a system
designer's interface with KTL to its interfaces with established specification
languages and tools that use them.

Related work is summarized in each section.
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8.2. Specification Concepts and Requirements

8.2.1 Spectrum and Scope of Specification Languages

The "spectrum" of a specification language has come to mean the range of
abstraction levels that it supports (requirements to code). Ile "scope" refers
to the breadth of domain concepts and constructs that it can naturally
express; for example, does it have numeric data types , real-time (clock) and
delay primitives, concurrent processing or communication constructs.

The highest abstraction levels (natural-language requirement statements and
their more precise formalizations) specifywhat is to be done without
specifying how. 1 The what may include system or component behavior
expressed by mathematical functions or relations; for real-time or "reactive"
system specifications it may include performance constraints and
communication protocols describing interaction with environmental agents
over time.

Lower levels of abstraction specify how the specified system or component
behavior is to be realized, ultimately at the level of effective operations on
data structures. Several well defined abstraction levels and supporting
programming styles or formalisms can be identified.

Logic programming lies (in principle) at the interface between "very high"
and "high" specification levels: appropriately constrained first-order
predicate logic specifications for programs can be "executed" by an
inference engine. In practice (e.g., Prolog[]) the severe specification-
restrictions (and extra-logical inference-control constructs such as cut)
necessary to achieve acceptable performance result in low-level
specifications. Performance requirements thus tend to restrict both spectrum
and scope of logic programming.

The promise of logic programming can be (and is being) realized by
enhancements of both spectrum and scope coupled with a refinement of the
logic-program execution model. We shall see that KTL can be viewed as a
realization of this promise; first we consider the needed enhancements and
refinement.

Functionalprogramming, like logic programming, specifies algorithms by
referentially transparent definitions--in this case, of functions instead of
relations. This paradigm is subsumed by logic programming if equality is
interpreted as a primitive relation constant and predicates over terms
containing function symbols are admitted. By using a many-sorted logic and

IWe call such specifications very high-level to distinguish them from executable

specifications written in "high-level" languages such as ADA®.
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admitting user-defired data types we obtain a useful executable specification
basis typified by Eqlog[J.

Concurrent Logic-Programming. Eqlog provides no basis for specifying
algorithmic control structures or required properties of their real-time
behavior. Additional control structure (guard predicates) can be imposed on
the interpretation of definite Horn clauses to eliminate much of the
backtracking (and attendant "low level" control constructs) that have
detracted from Prolog as a practical specification/ implementation basis.
Concurrency is represented by conjunctive goal predicates The resulting
formalism (typified by Concurrent Prolog[]) has a useful scope as well
as spectrum: it can express concurrent systems of actor-like objects
communicating via streams of messages.Various type systems with
inheritance have been proposed to support object-oriented programming[]
in this context.

Even when the expressive capabilities of Eqlog and Concurrent Prolog
are merged and supported by the powerful logic-program optimization
strategies that have been explored[], the resulting formalism is too narrow in
both spectrum and scope for the synthesis domain of interest. The spectrum
needs extension to "imperative" control structures for efficient execution on
existing and future parallel architectures, and the scope needs extension to
common real-time and communication constructs.

Temporal-Logics. In recent years it has been realized that "imperative"
constructs can be viewed as temporal-logic operators inasmuch as they
specify sets of permissable "execution sequences" of system states. Thus
sequential composition is an operator on specificatons just as are next,
sometime and always. The Tempura language/interpretor
[Moszkowski 861 and KTL are both based on this realization, though
their underlying assumptions, primitives, and possibly their ranges of
applicability 2 differ significantly. Thus imperative or procedural languages
such as LISP and ADA®) can be subsumed in a temporal-logic
specification formalism.

Efficient Execution. Direct interpretation of (extended) logic programs will
continue to require powerful inference engines, and processors necessary
for adequate real-time performance will in many instances be too costly and
complex for critical applications ( e.g., in embedded systems). "Smart"
compilers or synthesizers that transform logic specifications into efficient

21 am indebted to --(oral communication) for useful observations concerning possible
translations between Tempura and KTL specifications. Evident differences include
Tempura's synchronous "clocked" execution versus KTL's asynchronous concurrency
with real-time clock and synchronizing communication primitives. Development of both
formalisms in in progress; future in-depth comparisons should prove useful.

A
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programs for existing processors are a step in the right direction. We are
investigating their design for KTL and precursers at Kestrel Institute.

8.2.2 Domain Knowledge

There are many important application domains, each characterized by
specialized vocabularies, notations, definitions, postulates, algorithms and
specialized processing devices. Surely we cannot provide a simple coherent
basis on which they can all be developed efficiently by declarative and
definitional extensions? Perhaps not, but we can hope to identify and
support a broad scope of applications with a relatively small basis of
orthogonal primitives and combining operators. The choice of basis reflects
ones ontology of computations and observable events in digital systems.
What, for example, is a process or task (if not a tree of possible future event
streams to be interleaved with others), and what does it mean for one task to
have higher priority than another? And what exactly is an event ?

Important Domain Constructs. Basic domains include numeric and
symbolic computation. Real-time applications require durations and times
(as provided by real-time clocks) of varying precisions. Digital and software
environments provide interfaces that export and import various kinds of
entities. Here is a clue: we need't characterize the application domains; 3 we
need only characterize the interfaces of objects (including their real-time
behaviors) that exist or are to be synthesized for the domains of interest.

Interface Entities. We consider the possible exports of an abstract object.
(We will model imports as actual parameters supplied to KTL functions
calledobject-constructors .) We view an abstract object x as the tuple of its
exports; its type is thus a product-type.

Consider a component x.s. Is x.s a constant or is it a variable?
(Alternatively: is x mutable or immutable, and more specifically does x.s
vary over time?) If x.s is a "variable", then is it an "out", "in" or "in-out"
variable (updated by x or exported operations on x, by users of x.s directly,
or both, respectively)?4

3 That is the role of requirements languages and domain knowledge packs to be defined on
the specification basis that we provide.
4Some (e.g., Parnas) prefer "simpler" interfaces, classifying exports exclusively into V-
functions (value-returning functions that have no side-effects) and O-functions (state-
changing procedures that return no values). However, we get the effect of an updatable
variable x.s by having x.s be a V-function (of zero or more arguments) and exporting a
separate O-function x.assign s. Given that mutual exclusion is supported at a high level by
the specification formalism (as in KTL), it seems pointless to complicate the formalism with
usage restrictions that can be easily circumvented.

NM
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Next we consider the value-type of x.s. (Secondarily, what types are there,
and are types "first-class objects" represented by computable values?) There
are individual types,(polymorphic) functional types (for V-functions) and
procedural types (for 0-functions), as well as product and sum types.
Types may be construed as subsets of a semantic domain of computable
values[MPS]; some of them have internal representations as predicates or
retraction maps over the domain, and these may be used as dynamic type-
checking or type-coercion functions when appropriate.

Communication Constructs. A particularly relevant kind of interface entity
is the communication variable. When such a variable is updated, one or
more processes awaiting some condition depending on that variable are
selected for possible scheduling. It may even be required that some such
process be waiting and eligible before the updating process is allowed to
continue: this constraint provides a natural model for ADA-rendezvous.
This behavior is determined by synchronization, persistence and distribution
properties of the communication variables. Rendezvous is just one of
several communication modes to be supported by a specification basis of
adequate scope.

8.2.3 Algorithm Design and Architecture Knowledge

Parallel processing has many forms. To design algorithms for a specific
architecture it is necessary to specify precisely how computations are to
proceed in space (in different processing elements) and time (within what
constraints). At a slightly higher level of abstraction it is necessary to
specify events to occur in parallel, concurrently (interleaved) or
sequentially. Then these events can be allocated to processors, much as
virtual registers are allocated to physical registers to optimize resource
utilization in compilation of high-level programs.

Automated synthesis of efficient algorithms requires reasonably accurate
estimates of performance for different alternative implementations--often
before the alternative has been fully refined to a form that is executable on
the target computing system. This implies, among other things, that
elementary operations must be specified by duration constraints that may
depend on data parameters and even (as in switching networks) system
load.

Critical applications require specialized parallel processing architectures
such as systolic processor arrays or trees that may be sized and shaped to fit
specific problem classes. They motivate synthesis wherein both the
architecture and the software that controls its computations are derived
concurrently from very high-level specifications, VLSI architecture
constraints and performance estimations. These have been the focus of
work under this contract.
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Other applications may use one of several standardized or "general purpose"
parallel architectures such as the Ultracomputer s , Butterfly6 or Connection
Machine.7 They motivate synthesis guided by efficiency estimates based on
a fixed target architecture known to the synthesizer, this will be the focus of
a separate research effort.

In both variable and fixed architecture synthesis there is a need to construct
and utilize processor-architecture models. Here again the specifications
should specify "what" needs to be computed without specifying "how"--
perhaps even when sequential implementations are available--because the
best parallel solutions can differ markedly from "parallelizations" of
sequential solutions that are familiar to the designer.

8.3. A Knowledge Transformation Language

8.3.1 Introduction
8.3.2 Reactive-Systems : a Semantic Framework
8.3.3 Terms, Commands and Procedures
8.3.4 Communication Variables
8.3.5 Object-Types and Instances
3.3.6 Higher-Level Specifications and Consrcts

8.3.1 Introduction

KTL is an acronym for Knowledge Transformation Language. Assertions
in KTL transform knowledge (and beliefs) into action; in other words
assertions are interpreted as commands or constraints on state-transition
sequences. This semantics is the familiar semantics of temporal predicate
logic; it unifies the imperative and the declarative programming styles in
much the same way as Pratt's dynamic logic and Moszkowski's temporal
logic formalisms.

The following is a brief summary; it is not a user's guide or reference
manual.8 We have found it helpful to begin with an overview of the formal
semantics of KTL specifications; specific primitives and definable constructs
are best explained in that context.

5Variants of Schwartz' Ultracomputer are being developed at NYU and IBM (the RP3).
This architecture features a few thousand substantial processor-memory elements with
global memory segments connected by a non-blocking multi-stage (Omega) switching
network.
6The BBN Butterfly architecture consists of up to 256 32-bit processors connected by a
blocking multi-stage switching network.
7The Thinking Machines Connection Machine architecture consists of up to 64K 1 x 4K bit
processor-memory elements connected by a hypercube switching network.
8The reader may prefer to read subsequent sections and refer back to this -me as necessary.

4.J
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This version of KTL reflects suggestions and critical review by several
colleagues at Kestrel Institute; Richard KingWolf Polak and Richard Jullig
suggested significant refinements in the treatment of guarded commands,
atomic actions and real-tm constructs.

8.3.2 Reactive-Systems : a Semantic Framework

As detailed in [Pnueli 85] there are two distinct views (and classes) of
computing systems and programs. The first view regards them as functions
or input-output relations over states. One may be concerned with the time
and storage space required to transform the input to the output, but the
details of how this is done are irrelevant to the specification. There is no
specified interaction with an environment (other than the input parameters
and state), and non-termination (or even its possibility, in nondeterministic
systems) is regarded as failure of (total) correctness.

The other view focusses on systems and programs that typically do not
terminate and are required instead to maintain a specified (real-time)
interaction with an environment. Such systems and programs are said to be
reactive -an adjective that subsumes distibuted, concurrent, and real-time
as these features are often essential to satisfaction of reactive-system
requirements or specifications.

Reactive-system behaviors cannot be specified by input-output relations; in
general they must be characterized by mappings from inputs(initial states) to
sets of (possibly infimite) sequences of states and state-transition events, the
possible computations starting from the input. The sets are one way of
representing nondeterministic behavior (or nondeterminate requirements) of
reactive systems; branching trees of states (vertices) and transitions (edges)
are another (sometimes preferable) way.

We begin with an overview of the objects and relations that constitute an
abstract reactive system. We outline an effective operational semantics and a
compositional denotational semantics. The two semantics serve distinct
functions but are related, essentially as detailed in [Plotkin 82] for a
simpler concurrency language. Both must represent and distinguish
phenomena known as divergence and deadlock..

8.3.2.1 Operational Semantics

Configurations of a system are represented syntactically by pairs <, c >
where a defines a system state and c is a command. A state is a mapping
from objects called symbols to computable values. A command is a
specification for a set of possible computations, which can be viewed as
f'iite or infinite state-transition sequences.
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Atomic transitions of a system are defined by a (generally nondeterministic)
relation -- on configurations and results. Final transitions have the form
<c -- p where c is an "atomic" command and the result p is a state or
computed value (if c is a value-return command). The transition relation -+
and its reflexive transitive closure -- * are defined by structural induction on
the structure of KTL commands (below).

The "one-step transition" function determined by a command is given by

Trans[c](o) = {p I <a, c> -+ p) U {<a',c'> I <a, c> -+ <d',c'>}.

Let S- be the set of finite and infinite sequences of states and results (which
appear as final elements only). The set of possible behaviors of c on an
initial state a is given by

E[c](a) = Ial,...,ak,...] I <a, c> = <al,cl> -* ...-- <ak,ck> --...}

where each sequence is either infinite or ends in a result < an,cn> -- p
E[c] represents the behavior of c independently of its syntax and is thus a
good candidate for the "operational semantics" of c.

Divergence. A command may diverge while computing the next state or
result. This possibility is represented by transitions <a, c> -+.1 where _L
represents "undefined". The product-type of configurations is strict in the
sense that <±c> = _. Thus L is a result (albeit undesirable), and we say
that < a,c > diverges if < ac > -- * I or E[c](o) contains an infinite
sequence; the latter is of course permissable if c is intended to operate
indefinitely.

It may be that c is intended to converge but instead generates an infinite
computation sequence (without diverging at any atomic transition). To
distinguish this possibility from cases where c always converges we define
the "result" semantics of a command c by

Res[c] = {<a, p > I <a, c> -4* p 1

u (<a, ± > I E[c](a ) contains an infinite sequence)

where a ranges over states and p ranges over results. Note that Res makes
no distinction between divergence (waiting forever) at a single atomic action
and divergence (infinitely many convergent actions) of an entire

computation; both are equally bad for those who await a defined result.

Deadlock. There is one problem with this semantics that cannot arise in
Plotkin's simpler concurrency language: we may arrive at a deadlocked
configuration <o',c.> from which no further -+-transitions are possible.
For example, c' could be a guarded command (below) that awaits an event
which never occurs(the guard predicate is false of a). We address this

71
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problem by defining a "deadlock" state Sand a transition < o,c.> -4 6 for
each deadlocked configuration. Thus 8is a result (albeit undesirable), and
we say that < o,c> is deadlocked iff < o",c'> - 6; similarly, <c, c>
deadlocks iff <a, c> --+* 8.

Even if a reactive system is not required to terminate (or is required not to
terminate), it is normally required to exclude the possibility of deadlock. Of
course a concurrent composition cl // c2 (below) may avoid deadlock even
though cl and c2 always deadlock: cl and c2 may engage in synchronous
communications. Note that nondeterministic commands introduce the
possibility that <0, c> may (alternatively) converge, diverge, or deadlock.

8.3.2.2 Denotational Semantics

A denotational semantics for a language is an interpretation [I of its
operators and expressions into an appropriate mathematical structure or
domain. The interpretation must be compositonal so that, e.g., ' cl/# c2 I
= 1 ([cl I, [ c2 1) where// is the function denotated by //.9 The critical
adequacy conditions of a denotational semantics are known as soundness
and full abstraction.

It is clear that a denotational semantics should be sound relative to the
operational semantics, in the sense that [c] = [c2 Iimplies E[C[cIJJ =
E(Cfc2] for every context C(J wherein cl or c2 can occur. 10

The converse is equally desirable: a denotational semantics should befully
abstract in the sense that, if E[Cfci)J = EJC[c2JJ for every context C[_J
wherein cl or c2 can occur, then [ cl I I c2 .Note that the operational
semantics E will not be fully abstract for KTL: we may have E[c] = E[c2]
even though cl offers a communication (and alternative computation) not
offered by c2; so long as there is no concurrent process to accept the
communicaton, this alternative will not be realized in any state. A context
[c/_] where c accepts this communication may nevertheless distinguish cl
from c2 in the sense that Etc // c1* Elc &ic21.

A denotational semantics for commands should satisfy additional
requirements. The requirement of compositionality suggests that [ I should
model the one-step transition function Trans. This can be accomplished by
interpreting commands into a domain R of resumptions that satisfy an
isomorphism

9The operational semantics need not be compositional in this sense: E provides a "meaning"
for commands such as [cl 1 c2] without assigning a meaning to i.
10A context C[j is an expression schema with a single "slot" _; Cie] is the expression
obtained by replacing - with e.
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R_- [State -iP[Al + [ State x R]]]

where State = [Symbol -4 A171 ( a domain of maps from Symbol to a

domain Al of values) and F[A1 + [ State xRu] is a domain of possible
one-step transition results (returned values and <state, resumption> pairs).
The intuition is that this isomorphism interprets a resumption as a map from
states to sets of possible outcomes. We have extended the work of
[Plotkin 82] to solve this equation so that R and State are both retracts
(subdomains) of a "universal value domain" A1, an extensional model of
the untyped X-calculus with constants representing KTL primitives. 11

Consequently it is easy to interpret procedures Ax.c (where c is a
command) as functions in the retract JAI? -# R] of All.

The domain Al = < A1, C, " > has an approximation ordering _ and a
semilattice ordering !9 that represents "degrees of nondeterminism".
Intuitively, e I represents the set of all possible results of evaluating e,
which may be a nondeterministic construct in a language such as KTL.

Correctness-Preserving Refinements. The 9-relation is essential for
defining correctness of specification refinements: a refinement of s to s' is
said to be correct provided that I s' 1 [ "s I; that is, the possible
behaviors of s' are included among those of s. An implementation is not
required to preserve all of the nondeterminism admitted by a specification
(this would be preservation of meaning instead of correctness), but its
alternative behaviors must all be admitted by the specification.

To summarize, an adequate denotational semantics for specifications
characterizes the relation of behavioral equivalence in all contexts, also
known as observational congruence [], by means of a compositional
meaning function, and it characterizes correctness of specification
refinements in terms of a semilattice-inclusion relation on set-like values that
represent nondeterministic functions and results of nondeterministic
operations.

8.3.3 Terms, Commands and Procedures

8.3.3.1 Commands as Relations

KTL views each command has an event predicate; assertion of this predicate
is synonymous with execution of the command. Thus the imperative
"dothis" is read as an event description, "this happens"; x:=e is a relation
that holds in a state-transition event "x gets value of e". q.enq(e) is a

11Work in progress.
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relation that holds between q and e when the enq command is interpreted
or executed: in the next state, e is at the back of the queue q. In this way an
imperative language can be viewed as a temporal predicate-logic
specification language. KTL also has higher-level specification constructs
[Section 8.3.61; placing all in the same logical space of event descriptions
is a key step in their definition and use. 12

8.3.3.2 Syntax

There is a syntax of terms and a syntax of commands. For terms it is
necessary to know, e.g., that v.p is the p-component of a tuple v having
named product type, and that sentences are closed Boolean-valued terms.
Here we just summarize the syntax of primitive commands. 13

acmd ::= [ skip ]14 1 assignment I assertion I return
assignment ::= var:=term I 4vars*:=term
assertion::= sentence 15

gcmd::= acmd I icmd I dcmd
icmd::= sentence ? cmd [;; cmd] [ sentence ? dcmd 16

dcmd::= sentence! cmd [;; cmd]
ascmd::= gcmd I gcmd I ascmd I [ascmd]
qcmd::= ascmd 3 vars. qcmd V vars. qcmd
scmd qcmd I qcmd; scmd I [scmd]
ccmd ::= scmd I scmd I I ccmd I [ccmd]
cmd .-= ccmd I gvar. cmd I procedure (arguments)

12This view of imperative constructs provides a more familiar basis of
temporal logic specification constructs than that developed in
[Mostowski 85]; it is also significantly different, as Mostowski's
approach is incapable of expressing or admitting the nondeterminism that
follows necessarily from asynchronous concurrency. This view will be
developed in a separate note.

13We reserve brackets for grouping commands and terms, using o ... * for tuples and
sequences, {... I for sets and mappings. Boldface indicates terminal symbols.
14skip may be omitted: (non-bold-face) brackets indicate optional constructs.
15return is almost needed as an explicit operator to return a value from a command to
distinguish between asserting x=0 and returning the current truth value of [x = 0]. But in
fact there is no actual ambiguity since we distinguish between commands and value-
returning forms that must end with a value of specified type to be returned. [x=O ? re /
xoO?falseJ makes it apparent that a Boolean is being returned. An assertion fx=OJ awaits
a concurrent action leading to a state wherein x-O and then continues.
16Note the distinction between p?q! a;,b and p?[q! a;;b] : the latter is an icmd
(interrogative-[guarded] command) with action [q! a;;b] that must follow verification of the
guard p indivisibly; p?q! a;,b is an "interrogative-declarative" guarded command with
action a and sequel b ; its guard must verify p and then (indivisibly) assert q.

,
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Other commands are defined on this basis; e.g., let decls where
constraints in scope declares some local symbols and maintains some
contraints among them in scope; it is defined by a qcmd

3 dvars. [defns A always (constraints) ! ;; scope]

where dvars are the locally defined symbols and defns is the initialization
of the independent ones. Likewise the rule body V4.pre --> 3..post
abbreviates

V x.[pre ?;; sometime 3y.post].

The usual iteration constructs (for iterator do cmd, while sentence do
cmd ) are defined similarly. A procedure is just a X-abstraction XI.c where
c is a command.

8.3.3.3 Informal Semantics

atomic commands, skip is the identity command; it is a conventional
synonym for true in KTL (as asserting true is a no-op). Assignment
updates the specified variable(s) with the current value of the expression.
An assertion updates the current situation to satisfy the asserted sentence;
synthesis may be required to make the assertion executable. A return
terminates the responsible task and returns the specified value.

guards: otherwise, delay(duration [after time ]), boolean expressions
that may involve priority, now (the current time), and communication
relations (P m) where P is a communication-predicate variable.

dcmd. A declarative-guarded command assertion ! action ;; cmd waits until
the assertion can be consistently asserted ; then action (a command ) is
performed indivisibly in this extended state, and subsequently cmd is
performed (allowing intervening actions).

icmd. An interrogative-guarded command guel ? action ;; cmd waits until
the query is true in the current state and then indivisibly performs the
action, continuing subsequently with cmd.

The query-assert form quer ?assertion ! action ;; cmd awaits a state in
which both the query is true and the assertion can be made without
contradicting current invariants, then indivisibly (asserts the assertion and
then performs the action ), continuing subsequently with cmd.

The existentially-quantified command 3 bvars . ascmd awaits a state in
which there can be found bindings of the bvars (of specified types) that
enable one of its guards to be satisfied, then indivisibly performs the atomic
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prefix of the selected ascmd alternative, then completes the alternative(still
with these bindings).

There are restrictions on the kinds of variables and guard contexts in which
existential quantification is effective. In particular, if the guard involves
communication relations then the sender (declarative-guarded command)
and receiver (interrogative-guarded command) must have communication
predicates whose unification is a ground (closed) atomic formula. This
unification determines the bindings of existentially quantified variables for
both sender and receiver(s).

The "enumerate for all" construct V w.G?A;;C concurrently finds all w
such that G holds and does A;;C for each; its extension to alternative-
selections is straightforward. There should be only a finite set of values for
which the alternative selected results in a non-skip action, and the different
values should result in non-interfering computations.

The alternative-selection [gcmdl I ... I gcmdn ] awaits a state wherein one
of its alternative guards can be satisfied; one such alternative is then selected
and executed. An otherwise (interrogative) guard is true iff none of the
other alternative guards is true; a (delay duration [ after time ])
predicate is true forever after time + duration ; e.g., (delay duration ) is
true duration after now, where now (the default time ) is the time when the
predicate is first evaluated in the alternative-selection process.

If one of the guards is true, or can be made true by a consistent declarative-
guard assertion, then the alternative-selection may proceed without
suspending the task that executes it.

The concurrent composition [ cmd1 II ... II cmdn ] suspends the task that
executes it and creates n new concurrent tasks. The suspended task resumes
when (if ever) each of the n new tasks has completed. A declarative-guard
prefix of each cmdi may specify a constraint on priority for the extent of
the new task specified by cmdi ; the new task will be executed with a
priority that satisfies the asserted constraint.

Recursion. The form pid form can be used to form recursive commands,
subprograms, or data types.

8.3.4 Communication Variables

Communications as Relations. KTL embodies a theory of
communications as events that update knowledge states. Two tasks may
communicate by updating and querying a shared resource such as a queue
or buffer (with appropriate mutual exclusion), or by updating and querying
a shared knowledge state, specifically, by asserting, querying and retracting
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relations. The shared predicate variables involved in these interactions have
attributes that determine communication protocols among the processes that
use them (below).

Predicate variables serve as "communication ports" between the processes
that update and query them: one process asserts (P in) (sending ), another
finds M such that (P LU) is asserted (receiving); in doing so the receiver may
retract (P ml. Thus the processes actually communicate via P, a special
kind of shared variable that can only be updated by assertion and retraction
of message communications.

Applications require a variety of communication protocols, and so a variety
is found in various real-time and concurrency languages. An examination
of these motivates a theory based on three almost orthogonal attributes of
communications or, more precisely, communication-predicate variables.
These attributes are monitoring, synchronization, persistence, and
distribution..

Summary of Attributes

Monitoring. A Boolean or predicate variable may be monitored or
unmonitored:

Monitored- -concurrent task scheduling operations when a
monitored Boolean or predicate-variable relation is asserted,
according to the communication attributes described below.

Unmonitored-- an ordinary logical relation, whose assertion does
not affect scheduling except insofar as it may make true certain
guards of suspended tasks (suspended at a guarded command or
alternative-selection) .There is no guarantee that such a task will be
activated just because its guard happens to become true for a while;
the scheduler need not notice every such event.

The following attributes govern the treatment of monitored variables:

Synchronization. A communication may be synchronous or
asynchronous.

Synchronous-- sender blocks(waits) until receiver(s) receive it;
there must be at least one receiver. Sender(asserter) and
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receiver(s)(queryers) combine to form a single (atomic) action; (P m
) is retracted as a part of this action.

Asynchronous--sender does not block: assertion does not require

any receiver(s).

Persistence. A communication may be persistent or transient

Persistent -- relation holds after it is asserted, unless explicitly
retracted by a task.

Transient -- relation is retracted automatidily in the next state
following the communication event. In effect, the relation is true of
the atomic transition between two states.

Distribution. A communication may be mailed or broadcast.

Mail--point to point: one receiver, which then retracts the rclation(to
prevent others from receiving the same message).

Broadcast--all receivers that await a compatible message receive it.

Not all combinations of these attributes make sense, inasmuch as
synchronous implies transient (to prevent querying the same relation by
subsequently waiting tasks, which would violate synchrony):

unmonitored monitored

synchronous asynchronous
(=>transient)

mail broadcast transient persistent

B

mail broadcast mail broadcast

Attributes Of Predicate Variables

The reader will be familiar with at least some of the possible combinatoins

of these attributes:

A. ordinary Boolean and predicate variables.

B.rendezvous, as used in Ada or CSP (but ours admits the

' ,., *w N A



49

symmetric decoupling of Gelernter's).

C.an all-waiting-receivers rendezvous, at least one receiver
required.

D. a communication that is detected (by one task) iff some task is
awaiting it, and is otherwise lost.

E.pulsed-event in French real-time language LTR3, though
restricted there to Boolean variables (pure signal, no message).
An all-waiting-receivers rendezvous, no receivers required.
Differs from B only in that it cannot block the sender.

F.mail that persists until some task (and only one) receives it.

G.event in LTR3; broadcast to every task that awaits it. Remains
true until explicitly retracted (by asserting next(--e) ).

Remarks

1. Retraction of the communication relation, where specified above, is an
update of the Boolean or predicate variable that automatically accompanies
detection and reception of the message by the receiver(s). This retraction is a
part of the semantics of communication variables that have attributes (mail,
transience) which imply retraction.; i.e., it is implied by the language-
defined communication operations.

2.Declaration of an attribute for a communication variable amounts to
declararing a restricted subtype[cf. Appendix]; we may introduce
corresponding modes, e.g., SM (r -> boolean) (Synchronous Mail) for
rendezvous-predicate variables of value-type (T -> boolean).

3. Rendezvous in CSP and Ada differ in that different classes of
communication relations are asserted and queried: in CSP the receiver must
name the sender; this amounts in KTL to requiring that a unique sender-
identifier be an explicitly specified argument of the communication relation
queried by the receiver. In Ada only one intended receiver can be named. In
KTL neither, one, or both can be required; the programmer chooses. The
"sender" asserts a relation (P mn) and the "receiver" queries a relation 3 &.
(P C)? ... where , is an appropriate expression built up from bound
variables of Ix and other defined symbols and literals. The communication
occurs only if (P e) matches (P in), and then ... is interpreted or executed
with the bindings for m determined by this matching.

4. Synchronous communications among tasks with priority follow Ada's
"maximal priority" rule for the actions (read: entry bodies) that indivisibly

-i'
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follow the communication guards: the highest priority of a participating task
determines the priority of the rendezvous. I

Related Work. Perhaps closest to the present proposal in viewpoint and
functionality is the communication facility embodied in David Gelernter's
Linda language and system. 17 Gelernter's language supports
communication based, in effect, on atomic assertions, queries and
retractions of communication relations (labeled tuples) in a global distributed
message space. Matches between senders and receivers are based on
unification of corresponding fields in message patterns: a match occurs
when sender and receiver together have consistently specified all fields.
This corresponds closely to the asynchronous, persistent broadcast
communication mode described below. Gelernter shows that other
communication protocols can be developed on this basis. But Gelernter's is
only one of several primitive communication modes supported in KTL.

3.5. Object Types and Instances

Kinds of Objects. We consider three increasingly rich kinds of types
definable by the same basic mechanism in KTL:

" algebraic data types whose instances are best construed as values
assigned to variables.

" mutable-object types whose instances are variables updatable by
procedures defined by the type.

* active-object types whose instances contain processes that execute
concurrently on their behalf.

An abstract object x is viewed in KTL as a tuple of values (typically
functions and procedures) that may depend on the internal state of x. Thus x
has product type prod(o1 :'T1,...,o: n) and x.oi :' i is its ith component.
Component projections ol,...,on are the exported or visible operators of x's
type.

Active-object types constitute a powerful modelling tool. They can be
modelled in Ada by tasks and generic packages whose instances contain
tasks. They should not be introduced lightly: an active object can mutate
spontaneously and can communicate with tasks that await or assert events
involving communicaton variable that the object exports.

Given an appropriate type and type-inclusion theory, and primitives for
extending types and their instances with new visible operators, we can

I lGelernter, David, Generative Communication in Linda, ACM
TOPLAS 7(1) (Jan 85), 80-112.
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develop in this way a disciplined object-oriented programming style
comparable in expressiveness to SmaIltalk and the ZL Flavors system,
but more safely and at a higher level of abstraction.

Example

Elsewhere we make use of the type constructor port. An object p = port(' )
can be initialized by p.store(e) where e: t ; only then can we apply
p.fetch(y) where y: var(@). This "empties" the port until another store-
operation is performed. A "reset" operator empties the port without
assigning the stored value.

port = X:type.
let v: var(' ) = new(undefined), - v to be initialized by first

store-op
store:SM(c ->Bool), --Synchronous Mail, or
fetch:SM(var(? )->Bool) --rendezvous
reset: SM(Bool) -variables;

in 4cstore::,fetch::, reset::, g L.[[3 y:? .store(y)?v:=y];
[3 z:var( ).fetch(z)?z:= ,I v ;; L
I rset ?;;L]

Thus each instance of port(t ) behaves like a singly-buffered port of type 'c.
The expression states'port(z )' denotes the set of all states of instances of
port(c ); a declaration

let p: states'port( )' = port(r ) in scope

binds p to a new instance p of port( ) in scope, where commands
p.store(e) and p.fetch(y) may occur; the states'port(r)' part is optional
by type inference. Note that the final (process) component of a port is
"hidden": its projection operator (selector) is not specified.

8.3.6 Higher-Level Specifications and Constraints

A quantified temporal logic has been developed for specification of KTL
program units. During synthesis of a program, the guards of commands and
commands themselves can be temporal logic predicates, which constrain the
possible computation trees generated by the action and resumption. The
next-time operator designates the state following the action. Guards of
commands within complex actions may also contain next-time operators;
these are interpreted at the next-lower architectural level, which is not visible
outside the action. This logic is well suited for hierarchical software
development; it includes the unified linear-branching time logic CTL* of
Clark and Emerson and can specify constraints on a computation's history
as well as its possible futures. We are investigating possible uses of this
logic and its sublogics in synthesis and verification of concurrent real-time

1 111 1 2 11 11 11' 11 11 114 111 111 1.
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programs and computing systems. A summary is given below. The logic is
based on the operational semantics for KTL programs.

A sequential interleaving of concurrent tasks is said to be (weakly) fair if
the interleaved computation is infinite and every task that is almost always
ready is allowed to make progress infinitely often. In the presence of
guarded commands and priorities, we say that a task is ready provided that
its next statement's guard, if any, is true, and its priority is highest among
all such tasks. A task is almost always ready if, after some finite prefix of
the computation, it is ready forever afterwards.

Note that we do not count access to shared resources among possible
reasons for a task not being ready; as noted above our language is based on
primitive and defined atomic actions, not on access to shared resources. 18

The definition of "ready" is based on snapshots of the computation's
configurations between actions, when all lower-level access to visible
resources has been released.

Temporal modalities are defined in terms of situations(occurrences
within commands of configuragions) that are accessible from the current
situation by a language-defined transition relation Alt. This relation defines
a tree: if Alt[p, o] and Alt[p', ol then p = p'; Thus the finite linear history
of each situation is accessible via a map Prev: Sit->Sit.

Definition. A frame is a system [Sit, Alt, ...] where Alt is a binary
relation over Sit; Alt defines the transition relation of K TL
commands[8.3.2].

We are concerned with specification guards G?A;;C or G!A;;C where G is a
temporal logic sentence using the operators defined below. G is interpreted
in the frame of a computation tree at a situation (the origin) where the
specification-guarded command is encountered. G is interpreted over the
computation subtree of situations reachable by executing A;;C (and any
interleaved concurrent processes). If G is valid over this computation

181n any event the patterns of access necessary to implement our actions cannot possibly
introduce deadlocks. Of course locks can be implemented and tested by guarded actions,
and their misuse can introduce deadlocks, but these are explicit software-defined guards
that do not affect the above definition of weak fairness.

.. x .,,te, = A
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subtree then G?A;;C = true?A;;C. Validity is sometimes expressed by,
e.g., [true?A;;C] sat G.

Declarative temporal-logic constraints G!A;;C will be used used by the
synthesizer to transform [true ? A;;C] into an implementation [true? A';;C]
such that [true? A';;CJ sat [G ? A;;C].

Modalities for Computation-Tree logic with History (CTH):

State Modalities: the following operators construct state formulas,
which are true or false of a situation, called the origin of the formula.

V_path V_pathlB' holds iff B holds over every possible path
(starting from the origin of the assertion)

3_path 3_pathB' holds iff B holds over some possible path
(starting from the origin of the assertion)

Path Modalities: the following operators construct path formulas, which
are true or false of complete computation paths rooted at the original
situation where the formula is asserted or queried. Each path is a non-null
finite or infinite sequence of situations. Each situation in a path can be traced
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back through its predecessors and possibly beyond to a unique initial
situation by means of the Alt-converse relation.

init[ially] init'B' ** B holds in the initial situation

orig[inally] orig'B' * B holds at the origin of the assertion or
query

next next'B' : B holds in the next situation (implies
existence of a next situation)

prev[iously] prev'B' -t* B holds in the previous situation (implies
existence of a previous situation)

fin[ally] fin'B' t B holds in the final situation, for a
finite path; or B follows from the assertions made
and never retracted, for an infinite path.

unless ['B' unless 'C'] t
[C v [B A (next'true' =o next'['B' unless 'C]')]]

until ['B' until 'C'] * ['B' unless 'C'] A 3_fut'C'

since ['B' since 'A'] =
[B A A]v [--B A 3past'A' A prev'['B' since 'A]'
-B has held ever since A was last true.

['A'; 'B'] holds in a path <a,...> iff there exists
i such that A holds in <l.. .ai> and B holds in
<0i...>. ; is also known as chop. [Pnuelli, Logic
in CS 86]

V_fut[ure] Vfut'B' € B A [next'true' =* next'V_fut'B'']

3_fut[urej 3_fut'B' € B v next3_fut'B''

V_past Vpast'B' € B A [prev'true' = prev'V_past'B'']

3_past 3_past'B' t* B v prev'3_past'B''

V_time V_timeSB' t V.past'B' A Vfut'B' .'

3_time 3_past'B' v 3_fut'B'.

These provide a more expressive temporal logic basis than the simple linear-
time operators; they extend the computation-tree logic of[EmHa] to
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support specifications that refer to computational history of situations.
Commonly used modalities are defined on this basis below.

Deflnition(State and Path Formulas summarized)

State formula:

Every atomic formula is a state formula.

Ifp and q are state formulas then so arepAq and -p (etc.)

If p is a path formula then Vpath'p' and 3.path'p' are state
formulas.

Path formula:

Every state formula is a path formula.

init'p', orig'p', prev'p',next'p', finp', 'p' until 'q', 'p' unless 'q',
['p' since 'q j, ['p' then 'q'], Vfut'p', 3_futp',

V_past'p', 3past'p' V_timep', 3_time'q' are path formulas.

Convention. A path formula p is interpreted in a situation o by prefixing it
with Vpath.

Real-time temporal operators are easily defimed from the above, the
real-time clock function now, and the real-time predicate delay where

(delay dur after tim) is true forever after tim + dur,
(delay dur) is true forever after now + dur.

Most common are operators that specify some condition will hold from
now to now + dur, or some condition will hold within this interval:

V fut within(d,B) 4:* V fut ' B v (delay d after orig'now')'
3_fut within(d,B) * 3_ffut' B A -,(delay d after orig'now')'

These are path formulas. The formula

Vjpath' 3fut within(d,B) '

is valid in a situation p iff, for every path of situations descending from this
in the computation tree rooted at p and representing the complete execution
of p's command, there exists a situation p' wherein I
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(p' J= B) and (now(p') - now(p) <0 9

Sometime and always. More convenient state formulas are defined by

[d]B 4* V_path 'Vfut-within(d,B)'
<d>B t* V_path 3_fut-within(d,B)'.

These are the duration-bounded versions of sometime and always:

always'B' e* Vpath 'Vfut'B''
sometime'B' * Vpath 13Ju'B' '

8.4. Problem and Algorith Specification

8.4.1 Problem Specifications

The following problem statements illustrate what we mean by very high-
level specifications (the input-output behavior level) as opposed to merely
high-level (the algorithm level of today's high-level languages). We develop
their solutions subsequently; here we argue that these solutions can be
realized in a variety of increasingly general architectures ranging from
problem-specific VLSI systems to programmable parallel architectures. All
are instances of the parallel computing-system synthesis technology
described below: constraints on the target architecture can be embedded in
the problem statement.

All-prefli summation . Given an input vector X of elements with a
commutative associative operator +, the problem is to compute an output
vector Y such that size(Y) = size(X) and Y(k) = Z [X(i) : 1< i < k]. It is not
difficult to synthesize an ordinary linear-time algorithm for this commonly
occurring subproblem using available automated synthesis methods; the
specification [I [X(i) : I_ i <, k]: 1 _e k ., size(X)] (with only minor
notational change for summation) compiles quickly to reasonable
CommonLISP code in the Kappa synthesis system being developed at
Kestrel.

But linear is often too slow. In a typical application the input vectors arrive
in parallel and the prefix-sum vectors are accessed in parallel; anything more
than constant time to compute the prefix-sum vector is therefore a
computation bottleneck. Since the last prefix-sum element is the input-vector
sum, it is clear that an Olg size(X)) time solution is best-possible. Here the
strategy of adapting a recognized subproblem-solution to solve the main
problem wins. A divide-and-conquer design strategy leads to log-time

19(p' J= B) iff B holds in the rooted Kripke structure defined by p'; if B contains no
modalities then this is equivalent to B holding in the state defined by p'.

...
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solutions with binary processor-tree architecture. The internal- and leaf-
node algorithms can be realized as software or compiled to VLSI. I

All-pairs shortest-path. A directed graph or digraph is a pair (V,E)
where e: V ->V is a partial function (e e E). A path from v to v' is a
sequence , such that en.l* ... * e0(v) v'. A cost function for
(V, E) is a map c: E x V -> R- such that e(v) e V implies 0 < c(e,v) <
and e(v)t (undefined) implies c(e,v)= -. We extend c to r,: E* x V by

c([e0,...en- 1],v) = k-0 n-1. ..... e0(v)).

The distance d(v,v') is then given by

d(v,v') = min{g,(rv): , e Path(v,v')}

Given a finite digraph (V, E) and cost function c the problem is to compute
d so that d(v,v) can be determined in constant time (v,v' e V).

Dynamic programming and store-versus-recompute strategies lead to a
linear-time solution with a mesh-connected processor array containing IV12

elements. Again there is a choice of realizations for the constituent array-
element algorithms. I

In both of these examples, sophisticated analysis is needed to verify that
data arrives when and where required. In other words, automatic
verification that simple problem transformations preserve correctness or
meet performance constraints is at or beyond the state of the art . Interactive
analysis and inference support may be more appropriate than full
automation.

8.4.2 Algorithm Derivations

While parallel solutions for the prefix and shortest-path problems are
known, their automated synthesis from behavior specifications and
constraints is a very difficult problem that we are just beginning to
understand. Richard King has developed a theory of synthesis based on
units of computation called closures, and has applied it manually to the
derivation of solutions for such problems[King 85].

These derivations are guided by declarations and transformations of
processor-data structures that eventually model the synthesized architecture.
However, rather than rely on a few ad hoc architectural structures, it would
be useful to see them as instances of a general architectural modelling
capability. An architecture should be viewed as an abstract-object type, and
a parallel-computing system as a problem-specific instance of this
architecture. Instance parameters may be simple problem-size specifications
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(for fixed-program architectures), or they may include element-algorithms
(for programmable architectures).

Approach.From the all-prefix summation problem we derive an
architecture Tree such that a declaration P: Tree(lo,hi) yields a binary tree-
structured concurrent program with leaf-vertices numbered lo,lo+ 1,...,hi,
each with an input and an output port. The abstract-object typeTree may be
parameterized by element type and operator as well as low and high leaf-
indices. P may be compiled to CommonLISP for rapid prototyping in the
Kappa environment, or (given suitable extensions) compiled to a VLSI
specification in a silicon-compiler input language.

From the all-pairs shortest-path problem we derive an architecture Mesh
such that Mesh(n) is an n x n mesh-connected architecture. A declaration P:
Mesh(n) yields a concurrent process array whose (ij) element can be
initialized to the minimal cost cij of an edge from vi to vj by a message
c(ijcij). I

These are realistic self-clocked solutions. They can be saved in a library of
architectural types for instantiation where needed in VLSI systems. Instead
of generating a fixed problem-specific VLSI cell for each processor element
the architectures may be further parameterized with a program for each
processor, leaving only the architecture's shape and connectivity invariant.

This programmable-architecture approach yields classes of machines with
regular interconnection and communication paths between elements. Each
processor-memory element has reasonably general program-execution
capabilities tailored to its interconnections with neighboring elements. Each
machine can then handle a family of parallel algorithms for problems that fit
its capacity and architecture. The prefix-summation algorithm is obtained
from a programmable Tree architecture by supplying a generic program for
each interior vertex, and a procedure Leaf such that Leaf(k) controls the k-
indexed leaf. The all-pairs shortest path algorithm is obtained by supplying
to the abstract Mesh(n) architecture a procedure M such that M(ij) has the
appropriate ij-element behavior. Architectures such as DADO and
programmable systolic arrays are typical of this approach.

We want a device to compute the function

X X:seq(real).[Z [X(i) : 1_- i . k]: 1 I k < size(X)].

The synthesis system prototype can already compile essentially this
specification to LISP within a couple of seconds, though without further
guidance and optimization the solution found is an O(size(X)2) sequential
one.
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So we need to be more specific. We want Kappa to synthesize a parallel
computing architectureTree such that a declaration P: Tree(lo,hi) yields a
binary tree with nodes leaf(Pk) for k e lo.. .hi, each with an input and an
output port. P responds to a start signal by prompting its leaves to accept
the next input and invalidating any previous data that may be in its output
ports. Once filled the output ports are valid until the next external start
signal; we want to specify that the outputs are valid within

Olg (hi - lo))

time units of this signal. The name Tree is leading but irrelevant here: we
are only specifying its interface; Kappa is supposed to find the architecture.

Given P as above, we suppose P has ports Leaf(Pk).in and Leaf(Pk).out
of type real for all k e lo..hi; for each such port p, I p is either a real
number or is undefined at any point in time; an attempt to fetch I p when p
is undefined causes the request to wait until p is defined.

Now we can refine the specification by

V k: lo..hi. 3 v:real.[i Leaf(Pk).in = v] A Start(P) =>
sometime-within(c -lg(hi -1o),

V k: lo..hi. [I Leaf(Pk).out =1[1 Leaf(Pj).in:

where c is a positive real constant independent of lo, hi. The call-predicate
Start(P) = [P.up.reset; P.start; P.start; P.start] for P is explained below; it
could be simplified by using a root node type different from other internal
node types.

This is the constraint that Tree must satisfy for all lo<hi. In [King 851 a
method for applying divide-and-conquer transformations to specifications
such as Ts is developed; it provides a systematic basis for solving recursive
definition schemas such as the one given for Tree below.

8.5. Architecture and System Specification

Section 5.1 describes the result of transforming the parallel prefix algorithm
into a parallel computing system. Section 5.2 summarizes some
correspondences between KTL constructs and hardware constructs. Tables
of such correspondences can be used to terminate refinements in synthesis
of a hardware device from specifications.

8.5.1 Parallel Prefix System

8.5.1.1 Tree and Interior Node Types
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Let mid(lo,hi) = lo + (hi -1o)/2 (integer-division).

Tree(lo, hi) = [lo = hi ? Leaf(lo)

1 1o < hi ? DC(Tree(lo,mid(lohi)), Tree(mid(lo,hi)+l,hi)) ]

DC is a parameterized interior-node type constuctor,

DC = X L: instance(Tree(*,*)), R: instance(Tree(*,*)).
Let u: var(real) = new(0),

v: var(real) = new(0),
up: port(real) = new,
start: SM(Bool) -synchronous mail signal

in
<(up::, start::, Left:: L, Right::R,
II S.[start?;;L.start;R.start; --receive, propagate external start

L.up.fetch(u); R.up.fetch(v); --subtree sums
up.store(, u + I v); --propagate sum to parent

start ? ;; L.start; R.start;
--propagate increment-cycle start

R.up.store(I u);
--increment R subtree by $ L.up

gi C.[ up.fetch(v)!;; L.up.store(I v); R.up.store(, v);
C

--propagate increments from parent
I start?;;L.start; R.start; S] -until done; set out-

--ports
-and return to initial state

--exports

Note that start is used three times: once to initiate the computation from
filled in-ports of leaves, once to initiate a cycle of receiving and propagating
increments from the parent node, and once to terminate this cycle and
ultimately set the out-ports.

Consequently the proper calling sequence for P is

reset(P.up); P.start; P.start; P.start.

This sequence can be simplified by using a root node that is slightly
different from the other interior nodes; for the root node P.up is superfluous
and there is no parent to propagate increments downward.

A Boolean port could be used instead of the mail signal start; the mail signal
is somewhat simpler to use, in part because it is automatically retracted on
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receipt. A transformation rule can be added to automatically replace a
synchronous mail signal used only for communication between two tasks
with a Boolean port

8.5.1.2 Leaf Nodes

Given P: Tree(lo, hi) we can define leaf(P): lo..hi -> instance(Leaf(*)) by

leaf(P, k) = if lo = hi then P
else if k e lo..mid(lo,hi) then leaf(P.leftk)
else leaf(P.right, k).

This is the leaf-selection function for a given tree; in a real computing

system it may be realized so that information can be fed to leaves in parallel.

The parameterized type constructor Leaf is defined by

Leaf = X k: Natural.
Let v: var(real)=new(O),

up: port(real) = new,
start: SM(Bool),
in: port(real) = new,
out: port(real) = new

in
[g, S.[ start ?;; reset(out); in.fetch(v); up.store, v); --

fetch,propagate in-port
start ?;; gt C.[ up.add(v)!;; C --add increments

I start?;;out.store(I v); S] --until completed;
output.

II(up::,start: :,in::,out :*]

Note that start is used three times: once to reset the out port and read the
next input, once to initiate a cycle of zero or more increments from the
parent, and once to set the out port and await another external start.. The
parent node ensures that these signals arrive at the appropriate times.

8.5.1.3 Correctness

The argument that P: Tree(lo, hi) satisfies the specification of Section 5.1
proceeds by induction on size(P) = hi - lo. It relies on the fact that the sum
of each subtree is propogated to its parent (in log-time) before the prefix
vector is fully computed in the leaves. The base case is evident from the
definition of Leaf(k).

:-,,i ,F. I rl',.j~y(O ,~y l ,". r .'r- * < 'q
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Richard King observed that, while the solution above executes in the
specified time bound, a minor variation (equally expressible) derived by his
closure-transformation method has an additional advantage that it can be
pipelined (yielding m prefix summations of size n in time m + [c x (lg n)]);
the above device cannot because its last leaf remains busy adjusting its sum
for lg n steps.

8.5.2 Hardware Corollaries of KTL Constructs

Procedures. The view that a procedure-invocation is an assertable event is
commonplace at the hardware level: invocation corresponds to placing
arguments in input ports and then asserting a "start" signal to the hardware
module that does the computation; a "done" signal indicates availability of
results at the output ports.

Actions. In order for a computation unit to be atomic, it must have
exclusive access to resources (registers, memories, busses) that it writes,
and shared or exclusive access to resources that it reads; it must not release
access to a resource until it has finished all uses of it. These constraints rule
out internal communication with external processes during the action.
Mutual exclusion (resource locking) is ultimately based on bistable
hardware devices; see [Lamport 86] for a careful analysis of mutual
exclusion and arbitration at both software and hardware levels.

Communication through a one-slot buffer or port is a typical case. Two
Boolean semaphores, one for exclusive access(while reading or writing),
another to record the state (full or empty), suffice to control access to a port.

CAM Hardware. That simple guarded commands sometimes have
hardware realizations has already been noted. Something else that should be
noted is the fact that existentially guarded commands provide a natural
interface to content-addressable memories. Consider a persistent ternary
predicate variable Prop. Given that (Prop o a v) is asserted, zXp. o a
A::C finds z, 3 x.(Prop x a v)?A::C finds o, and 3 x.z.(Pro x a
z)2&: finds <o,v>.

If Prop is a persistent mail predicate variable then repeated activations of one
of the queries above will receive and retract all relations that satisfy it.
Alternatively, given that 3 w.G?A;;C means A;;C happens for some w such
that G, we can introduce an "enumerate for all" construct

V w.G?A;;C

that concurrently finds all w such that G holds and does A;;C for each. Then
we could scan through each solutiion for the above queries regardless of
whether Prop has the mail or the broadcast property. Some of these
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operations have fairly direct CAM hardware realizations; it might be
appropriate to specify them at the KTL level in modelling such devices.

Pulses and Latches. Consider the pulsed-event and event subtypes (E and
G above). A pulsed-event will activate every interrogative-guarded
command that is (momentarily) made true by its assertion. Synchronous
parallel computation steps can be driven by such communications. An event
acts as a latch, remaining true once set until some task resets (retracts) it.
External pulse-like events are converted to event variables by a hardware
latch known as a Schmidt-trigger.

Alternative-selection. Case constructs are ubiquitous in hardware. Often the
guards can be evaluated in parallel; the first-guard satisfied selects its
corresponding command and suppresses evaluation of the others. A
bounded-arity alternative-select command might therefore be executed
efficiently by n closely coupled communicating processors, each receiving
one of the alternatives. The same processor structure could be used for
closely coupled concurrent tasks (below). The suggestion is not inconsistent
with RISC architecture; relations between closely coupled parallelism and
RISC architecture remain to be explored.

Concurrency is often realized by parallelism in hardware. In cases where it
is not there may be hardware support for priority queues. Again, there is
need both for knowledge-based compilation of concurrent compositions to
hardware, and for synthesis of closely coupled processor structures that can
efficiently process concurrent compositions and alternative-selections in
software.

Recursion. General recursive commands imply stacking of control and data
structures; hardware support for stacks has long been available. Equally
important is the tail-recursive form, which cleanly represents a variety of
iterative constructs without use of "exit" commands (it's the tail recursion
that is explicit; exit occurs on the paths that don't recurse). Tail recursion
requires no control or data stacking.

More generally the g-operator defines rational data structures, a very useful
extension of finite data structures to those that can be represented as finite
rooted (possibly cyclic) ordered directed graphs. The most likely beneficial
form of hardware suppport for rational object processing would be vertex-
marking to detect or prevent cycles during recursive graph processing, and
reentrant paths during parallel graph processing. This would be one aspect
of a general structured-data access control mechanism. (Current LISP
machines do not provide this level of support at the software level; some do
at the firmware level.)

8.6. Conclusions and Research Directions



64

We have indicated how to model parallel computing system architectures in
KTL. Progress in several areas is needed to extend this work to a useful
synthesis basis for such systems. An effective parallel computing system
synthesis system will require further progress in several related areas that
are being explored under various contracts:

completion of a KTL-to-CommonLISP compiler and supporting
environment for rapid-prototyping of parallel computing-system
architectures. We need to extend concurrent composition with
communication primitives as described above, and we need to extend
the compiler for abstract-object type definitions.

inference-support for specification, system state and transformation
validation.
We need to develop a basic capability for reasoning about temporal-
logic specifications, both for consistency analysis/maintenance of
specifications and for validating transformations.

further work on architectures that support efficient execution of KTL
constructs. Most of these constructs are shared with other concurrency
and symbolic computation languages. Support for communication in
tightly coupled (e.g., multi-RISC) processing systems and parallel
evaluation of alternative-selection guards, concurrent compositions are
appropriate areas to investigate.

development of the software-hardware correspondence knowledge
base. Each synthesis task must be supplemented with a specification of
which software constructs are to be considered "primitive" in the sense
that they can be directly executed or compiled to VLSI hardware. Such
a knowledge base would specify that , e.g., certain existentially-
quantified communications correspond to retrievel from an associative
communication-relation store, or that clocked execution is modelled by
synchronous-broadcast signals.

* development of transformational synthesis knowledge packs for
specific problem areas. These areas may be somewhat general; e.g., a
synthesis-knowledge pack for processor trees would contain "divide
and conquer" transformations and axioms characterizing conditions
under which the resulting processor tree can execute with specified
performance constraints.

" exploratory work on targeting synthesis to the VHSIC Hardware
Description Language. This work would lead to the capability of
synthesizing architecture specifications in a form that can be given to
VLSI compilers being developed by other research groups.

p .. i
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