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1985/86 Activity

During the 1985/86 contract period research has been concentrated on the

use of inhomogeneous Markov processes to treat time-dependent failure rates

and preventive maintenance, and on the effective Monte Carlo simulation of the

resulting models. This work is summarized in the enclosed paper which was

recently published in Reliability Engineering.

The principal investigator was assisted by Mr. Z. Tu (not supported by

AFOSR) in the work on inhomogeneous Markov processes. In addition, the

contract supported a Ph.D. student, Mr. F. Boehm. During the contract period

Mr. Boehm began to examine two related aspects of Monte Carlo simulation.

First, he examined the departures from the Markov condition that are needed to

study parts replacement policies. This work is in an active state of

development, with computer simulations being carried out presently. It will

be reported at the end of the 1986/87 contract year.

In addition, Mr. Boehm is examining more closely the sources of data for

wear phenomena that give rise to failure rates that increase with time; his - •

emphasis is on the incorporation of more realistic fatigue failure models into

the simulation of mechanical components.

We are interested in applying our simulation methods to problems of

active interest to the Air Force, To this end the principal investigator has

arranged a trip to Systems Reliability and Engineering Division at the Rome

Air Development Center, Griffin AFB, NY. to determine how our methods might

interface the ORACLE code system.

87 6 10 228



Reliabilit. Engineering 16 (1986) 277-296

Monte Carlo Reliability Modeling by Inhomogeneous
Markov Processes

E. E. Lewis and Tu Zhuguo*

Department of Mechanical and Nuclear Engineering, Northwestern University,
Evanston, Illinois 60201, USA

(Received: 9 April 1986)

ABSTRACT

Markov Monte Carlo methodsfor reliability calculations are generalized
to include inhomogeneous Markov processes. Two new sampling tech-

niques allow the treatment of time-dependent failure rates and of

preventive maintenance. Incorporation of periodic testing and repair
models allows classes of revealed and unrevealedfailures to be combined in
problems with wear. periodic maintena'nce and component dependencies.

Numerical illustrations of these phenomena are presented for one, two

and multiple component systems.

I INTRODUCTION

In previous papers" 2 the Lagrangian approach of Markov Monte Carlo
methods has been shown to be very effective for estimating the reliability
and availability of complex systems. The ability to treat general
component dependencies in multicomponent systems, coupled with the
use of variance reduction techniques to greatly increase sampling
efficiency, results in highly efficient algorithms, capable of treating
Markov models that would be intractable by deterministic computational
methods. There are, however, two major limitations on the ability of

*Permanent address: Beijing Nuclear Engineering Institute, PO Box 840. Beijing.
People's Republic of China.
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278 E. E. Lewis. Tu Zhuguo

the foregoing Monte Carlo methods in the faithful modeling of reliability
problems: they are limited to constant failure rates and to revealed
failures. In order to model component aging or wear, and the con-
comitant effects of preventive maintenance, the formulation must be
generalized to include time-dependent failure rates. If failures are
unrevealed, then periodic testing also must be included in the modeling.

A perfectly general treatment of wear, maintenance and repair
phenomena would require a number of departures from the conditions
that define Markov processes. However, a number of the more important
of these phenomena can be modeled by generalizing the existing Monte
Carlo methods, which are limited to homogeneous Markov processes,
to treat inhomogeneous Markov processes. For when the resulting time-
dependL.nt transition rates are combined with the ability to make
deterministic state transitions at specified time intervals, the resulting
simulation can treat wear, preventive maintenance at specified times,
and reasonable approximations to the repaii of several classes of revealed
and unrevealed failures.

In this paper we formulate the required equations and present two
methods for transition sampling in the presence of time-dupendent
transition rates: self-transitions and mode sampling. The procedures are
then generalized to allow for periodic testing and repair. Finally, we
examine a number of problems for one, two and multicomponent
systems in which component dependencies of the load sharing variety
are present. For such systems the ability of inhomogeneous Markov
Monte Carlo simulation to treat wear, preventive maintenances and
combinations of revealed and unrevealed failures is thus demonstrated.

2 THE INHOMOGENEOUS MARKOV EQUATIONS

In order to treat reliability for systems in which component wear and/or
early failures are present, we must represent the time dependence of
failure rates of real components. These typically are represented in the
form of 'bathtub' curves, such as that illustrated in Fig. I. As in earlier
work, however, we also must be able to represent dependencies between
component failures, such as occur, for example, with shared loads,
shared repair crews and standby configurations. To incorporate time-
dependent failure rates into a system with component failure depend-
encies we generalize our earlier homogeneous Markov formalism into
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I;
a

Time f
Fig. 1. Failure rate curve exhibiting 'bathtub' behavior.

inhomogeneous Markov formalism: one in which the transition rates
between states are explicit functions of time.

To begin, assume that we have a system with N components. each of
which may be in an operational or a failed state. There are then 2'
states corresponding to the unique combinations of operational and
failed components. We let pk(t) = probability that the system is in state
k at time t, and therefore

Sp (t)= 1

We designate k = 0 as the initial state in which all components are

operational, and then
NO) = bko

The equations for the continuous time Markov process governing the

probabilities pi(t) are

A A'"a i p ' ( 0 ) = - 7 k ( t p k ( t ) + I y k .( t ) p k , l )( 1

where the Y,'() are the transition rates between states. More precisely,
the system is defined as a semi-Markov process. - Each transition leads
to state change. Thus,

and the summations do not include the k' = k terms.

It is convenient to rewrite eqn (I) as

1p(tI = - Y,()pIt) + q(k I k', tyk.(t)ph,(t)
dt.
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where

n(t) = h t

and
q(k I k', t)= wt/v)

The quantity q(k I k', t) is readily seen to be the conditional probability
that given a transition out of state k' at time t, the new state will be k.

In general, v (t), the transition rate out of state k, can be represented
as

I.Ot IVFj

where A.L(t) and Pi&(t) are the failure and repair rate of component I,
and 0. and F, are the sets of operational and failed components,
respectively, in state k. In the case where component dependencies are
present, A,(t) and/or p1 and/or p,(t) will also depend on the system state
k. For example, in a standby configuration the failure rate of the backup
unit will depend strongly on whether the primary unit is operational.

The equation for p,(t) may be put in integral form. By using an
integrating factor

exp { -fv&)dt'}

we obtain

NO 6 -~k Jx P I o(I'di'I + I di' exp[ H y,(t")dt1]

I q(k I k',
k'

To express this equation in terms of the probability distributions sampled
in the Monte Carlo simulations, we introduce

XJ(t) a- "AMPO)p,
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which is the probability density of transitions out of state k and multiply

by y (t) to obtain

Xk(t) = F0dt'f(t I t',k')[6"0 6(t') + Iq(k I kV, t')Xk.(t')] (2)
k'

where

f(t I t', k') = Yk,(t) exp{- y(t") dt"} t > t' (3)

is the probability density that there will be a transition at I given that
the system is in state k' at t'.

We may also write this equation in the notation of an earlier paper,'
by noting that

lkk(t) = 61,06(t) + q(k Ik', t)Xh(t) t >O 0 4)

is the probability density for transitions into state k. The first term on
the right is due to the convention that the problem is initialized by a
transition into state k = 0 at t = 0. Combining eqns (2) and (4). we
obtain

O(t = 64o b(t) + Iq(k I k', t') { dt'f(t I t', k')#Pl(t')
k,

3 MONTE CARLO SAMPLING

If the transition rates are taken to be time-independent, the foregoing
equations reduce to the homogeneous Markov formulation. In that
case, eqn (3) becomes the exponential distribution and the resulting
Monte Carlo sampling for transition times is straightforward. When
time-dependent transition rates are present, however, the direct inversion
technique used for the exponential distribution' is no longer applicable.
To illustrate, we first find the cumulative distribution corresponding to
eqn (3) to be

F(t1t',k')= I - exp {-y(t")dt"} (5)

A
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To perform direct inversion sampling we set F(t It', k') to a random
number r uniformly distributed between zero and one. We obtain

f /k(t")d = -In(1 -

The difficulty, of course, is in inverting this expression for t. As an
alternative we present two methods for sampling the times between
transitions: mode sampling and self-transitions. Following the transition,
the sampling for the new state k is straightforward. As in the homogene-
ous Markov formulation, we simply choose a uniformly distributed
random number, say ', and then choose the state which satisfied the
condition

k k+I

q(k"Ik',t)< X' q(k"Ik',t) (6)
k" -0 k, =

where

q(k' k',t) = 0

and i is taken at the time of transition.

Mode sampling

Supnose that the transition rate can be written as the sum of a number
of t'ansition modes

' t) = , )(7)

Each mode is represented by a two-parameter Weibull distribution with
a different exponent. Thus we may write

f')'(t') t'= (t/O,)"(8)

If we allow several different vaiues of ni, to appear in such series, we
can reasonably represent most time-dependent failure rates of interest.
For example, the bathtub curve such as that shown in Fig. I may be
approximated as the superposition of three such terms with m, < I,
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r z  I and m 3 > I. These correspond to early failures, random failures
and aging failures, respectively.

For a multicomponent system all components are assumed to contain
the same values of mi. Then the transition rate given by eqn (7) is
written as

)( = -t I/( ,

where

= +  I

le Ok IeFA

Combining eqns (5) and (8), we may write the cumulative distributions
as

F(tIt', k)= I - lexp -(/Ok"* +(t'/0)",}

This may be shown to be a minimum extreme value distribution4 where
the parent distributions are

F(tt I ', k) = I - exp +-(i/Oh + (t'io(,, t (9)
Thus we sample each of the F for t,, the time of the next transition by
mode i, and take the minimum value. Hence, for mode i we choose a
uniformly distributed random number r,. and set it equal to F The
inversion of eqn (9) leads to

ti = 0 ,{ -In(l - r,) +l (t'/k 1)m ' M.

The transition is then taken at

t = min ti

Self-transitions

In this method we subtract and add the term Y',(i)pk(t) to the right of
eqn (1). This has no effect on the solution. However, the term '= k is
now included in the sums appearing in eqn (1) and in all succeeding
equations. We refer to these as self-transitions because they represent
transitions back into the same state from which the transition originated.
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In effect we have transformed the equations from a semi-Markov to
a Markov formulation

Now suppose we choose yk(t) such that

yjaft) = Yk0 - Z yk" (t)
A-*k

where y is a non-negative constant. We thus have

and the modified equations become

tpt) = ,(t ) + Iq(k Ik', t)y°.p,.(t)

This transformation enables us to write the succeeding equation in terms
of the exponential probability density

f(t I t', k) = -° e - 10-C)

which may be sampled using a single random number :

=F(tIt',k')= I -e -  t> t

to obtain the time of' the next transition as
I

t=t' ,- -ln( -

To determine the new state of the system, we again use eqn (6). Now,
however, with

q(k I kot) )-,A .(t)/ '

The diagonal term q(k'l k', /) now is greater than zero. If the transition
k' -. k' is sampled, then the system remains in the same state at t and
the calculation continues. Otherwise, a new state k is obtained.

4 COMPONENT MODELING

With either of the sampling methods discussed in the preceding section
we may treat wear, preventive maintenance and repair, provided we are
able to model them within the framework of inhomogeneous Markov
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processes. We first consider wear and then preventive maintenance for
situations where there is no repair. We then consider repair, first of
revealed and then of unrevealed failures. A revealed failure is one that
is known immediately; the modeling of repair is through an exponential
distributi6n of times to repair. An unrevealed failure is one that remains
in effect until the system is tested for failure and repaired at some
predetermined time intervals. We illustrate each of these models for a
one-component system. In most cases, the generalization to multi-
component systems, and to systems with component dependencies, is
treated analogous to that discussed previously" for homogeneous
Markov processes.

Wear and preventive maintenance

In the case of wear without preventive maintenance, the failure rate
curve is likely to appear as in the solid line on Fig. 2. To estimate
the reliability of the same component in the case where preventive
maintenance is performed at intervals T, we assume that the component
is restored to an as-good-as-new condition. The failure rate is thus given
by

;,*(t)= At t- NT) NT< <(N + I)T

The failure rate thus has a periodicity as indicated by the dashed line
in Fig. 2.

To treat the periodicity of preventive maintenance, mode sampling
must be applied one interval at a time in !he following manner. The
distribution is sampled to determine whether a failure takes place in the
interval 0 < t < T. If it does not. then time is set equal to T, and
preventive maintenance is assumed to take place. Then mode sampling

T- L

Time t
FiX. 2. Failure ratie curvc illustrating wear and periodic maintenance
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is used to determine if a failure takes place in the interval T< 1 27"
and so on. We hereafter refer to mode sampling as method a.

The self-transition method may be performed in a similar manner.
Sampling is first carried out to determine whether failure takes place in
the interval 0 < t < T. If it does not, time is set equal to T and the
interval T< t < 2T is considered. We refer to this as method b. Alter-
nately, we may simply apply self-transition to the entire problem domain.
The exponential is sampled to determine the next transition regardless
of the interval into which it falls. This is referred to as method c.

Revealed failures

If the component fails at time ifI and the failure is revealed immediately,
then a distribution of repair times will be sampled to determine the time
of repair t,. The question must then be decided as to what component
failure rate should be used following repair. There are three obvious
models, all of which reduce to the standard revealed failure model for
the time-independent failure rates of homogeneous Markov processes.

If the repair of a revealed failure to an as-good-as-new state, then,
following the failure, the failure rate is set back to the time zero value;
this model is indicated by line a in Fig. 3. Secondly, if the repair is made
to an as-good-as-old state, then the failure rate is set back to the time
at which the failure took place. This model, indicated by line b, assumes
that no additional wear occurred during the downtime for repair.
Finally, in the continuous wear model we assume that the original
failure rate curve, indicated by line c, is followed, thus assuming that
the wear process continues unabated through the repair interval.

Of the three models for revealed failures, only that for continuous

c'U

i, , t,,!

Time t -

Fil. 3. Failure rate curves showing three models for repair of revealed failures: (a) as-
good-as-new, (b) as-good-as-old (c) continuous wear.
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wear falls within the framework of inhomogeneous Markov processes,
for only it has a component failure rate that is independent of repair
history. However, since t, - if, the time interval during which the system
is in a failed state, is normally short, the difference between curves b
and r should be small; it amounts only to taking no credit for the fact
that the aging is slightly reduced due to the downtime for repair. In the
calculations that follow we model all revealed failure as continuous
wear, it being a good but pessimistic approximation to the as-good-as-
old case. Failures may occur such that scheduled maintenance takes
place before repair is completed, as indicated by I, and 1, in Fig. 3. In
such cases the solid curve is used following repair. The current model
neglects downtime for preventive maintenance.

Unrevealed failures

For unrevealed failures the component remains in a failed state until
repair or maintenance takes place at some predetermined time interval
T For these failures the repair/maintenance may also be represented
as-good-as-new, as-good-as-old or continuous aging models. These are
represented respectively by curves a, b and c in Fig. 4, where it is again
assumed that the failure occurs at t. In this case the continuous aging
model represents a poor approximation to as-good-as-old repair. With
preventive maintenance, however, restoration to an as-good-as-new state
often offers a reasonable model.

For unrevealed failures the as-good-as-new model, a, falls within the
inhomogeneous Markov criterion, provided we assume that preventive
maintenance is performed at each test interval to return the component
to an as-good-as-new condition. The as-good-as-old criterion, b, implies

d /

f T I T

Time t
Fig. 4. Failure rate curves showing three models for repair of unrevealed failures: (a)

as-good-as-new; (b) as-good-as-old; (c) continuous wear.

.i
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that the testing and repair do not effect wear mechanisms. Since it
violates the Markov criteria, it is not employed in the calculations that
follow. While the continuous aging model falls within the inhomogeneous
Markov framework. it is not considered further for unrevealed failures,
for with it one must presume that component age accumulates at the
same rate regardless of whether it is in a failed state, even for a long
period of time. Hence in what follows all tests for unrevealed failures
are assumed to include the maintenance required to return the component
to an as-good-as-new state.

5 NUMERICAL RESULTS

In this section we first examine the sampling methods developed above,
along with the methods for treating revealed and unrevealed failures.
in a one-compoent syslem. The effects of wear, preventive maintenance
and repair models are then applied to a two-component system. Finally,
a ten-component system is used to demonstrate the application of the
Monte Carlo models to more realistic configurations in which wear,
component dependencies and combinations of revealed and unrevealed
failures are present. In the calculations that follow, importance sampling
in the form of both forced transitions and failure biasing' is employed
to reduce variance and improve computational efficiency. The applica-
tion of these variance reduction techniques as well as the procedures
for making reliability and availability estimates are identical to those used
in homogeneous Markov Monte Carlo." Unless otherwise specified, all
results are based on runs of 10000 histories. In no case is more than a
few seconds required on a Control Data Cyber 205 in scalar mode.

Single Component

The sampling methods for the time to transition are applied to a
component with a failure rate given by

.(t) = AO + (mr/OXt/Or- - (yr ') (10)

where we use A. =0-013/yr- ' 0= 7.Syr and m= 2.5. In Table I the
unreliability A = I -- R is given for a 5-yr design life, where N is the
number of intervals into which the design life is divided for purposes
of performing as-good-as-new preventive maintenance. Thus for N = 5
preventive maintenance is performed annually. The reference results are

i ii i
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obtained by analytic evaluation of the appropriate formulae.' In the
case that oo wear is present, (-1) -, A0, and the unreliability is reduced
to 0.062 932.

To compare the sampling methods we have tabulated the computing
time, t, the estimated root sample variance and the widely used figure
of merit, l/(cr2l). The quantity ±al/'N, with N being the number of
trials, is the estimated 68% confidence interval that appears in all
subsequent tables, and the figure of merit is a standard method for
comparing the computational efficiencies of alternate Monte Carlo
procedures.

As indicated by these and other model problem results, the variant
of the self-transition method labeled model (b) is more efficient computa-
tionally than variant (c). Both self-transition methods are clearly superior
to mode sampling method, model (a). It should be observed that
for multiple-component systems mode sampling also becomes more
cumbersome, particularly for problems with repair models. Conversely,
self-transition becomes more efficient in the presence of preventive
maintenance since the resulting reduction in the maximum failure rate
over the life of the components reduces the fraction of self-transition.
Thus, models (a) and (b) are disregarded for subsequent problems.

In Table 2 are shown single-component unavailability results for both
revealed and unrevealed failures. The interval unavailability is tabulated
for a 5-yr design life. For the revealed failures a repair rate of / =
10yr' is used, and wear is assumed to accumulate through the repair
period as indicated in model c in Fig. 2. For the time-independent failure
rate ). = ; 0, the second term is deleted from eqn (10). In the latter case,
the results indicate that preventive maintenance has no effect on the

TABLE 2
Single-componcnt Interval Unavailabilitics*

No maintenance Annual maintenance

Revealed failures:+
Constant, ;o  0.1262 x 10 2 +0(X)13 X 0-  0"1262 x 10 2+0-0013 x 10
Increasing. .(i) 0.809 X 10 -2+00110 x 10 01886 x 10 2 +00026 x 10- 2

Unrevealed failures
Constant, At 0.4717 x 10 1 +0.O20 x 10 00187x10 1+0.0004x 10
Increasing, A(t)t 2'145 2 x 10' +00230 x 10' 0'02525 x 10- + 0.000 7 x 10 -

5-yr design life; t failure rates from eqn (10); 10 = lOyr
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unavailability. When wear is added, by using eqn (10) to represent the
time-dependent failure rate, the unavailability increases as would be
expected. When annual as-good-as-new preventive maintenance is
included on an annual basis, N = 5, then the unavailability is reduced
significantly, remaining, of course, above the value for which no wear
is present.

For unrevealed failures, the unavailability results are smallest for the
constant failure rate case, where no wear is present. For the case with
wear the annual test/repair is assumed to restore the component to an
as-good-as-new condition as in model a of Fig. 3. This modeling is
necessary to remain within the Markov framework as discussed in the
preceding section. As indicated by the table, the annual test and repair
causes a significant decrease in the unavailability whether or not wear
is present. For all unrevealed failure calculations here and in what
follows it is assumed that the repair time can be ignored compared to
the downtime in the unrevealed failed condition.

Two components

We consider next a simple active parallel system consisting of two
components in order to illustrate component interactions in the presence
of wear, preventive maintenance and of shared-load dependencies. Each
component is represented by a failure rate given by eqn (10), either with
the last term deleted (the A. = A. time-independent failure rate) or in the
wear model with both terms present. The failure and repair parameters
are those used for the single-component system. Preventive maintenance,
where included, is performed annually on a staggered basis for the
duration of the 5-yr design life (i.e. maintenance is performed at I, 3
and 5 yrs on component one, and at 2 and 4 yrs on component two).
The models for revealed and unrevealed failures are the same as above.

The unreliabilities and unavailabilities are given in Tables 3 and 4,
respectively. In these calculations the component failures are assumed
to be independent for the time-independent failure rate 7o For the time-
dependent failure rates A(t), both independent and shared loads are
given. In the shared load cases the dependency is modeled by assuming
an increased rate of wear when only one component is in operation.
This is accomplished by replacing 0 by 0' = 0 - AO in eqn (10) with AO
2.5 yr. In the unreliability calculations repair of the redundant compont ,
is allowed until system failure occurs. The increases in unreliability and
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TABLE 3
Two-component System Unreliability*

No maintenance Maintenance

Revealed failures
Constant, A. 0-1652 x 10-3 +00003 x l0 - 3  01652 x 10-3+0.0003 x 10

- 3

Increasing. i.() 0-9290 x 10-2+0.0180 X 10-2 0-0657 x 10- 2 ±0-0004 x 10 2
(independent)

Increasing, A(t) 0-2320 x t0-' + 0.0044 x )0-' 0.0123 x I0- ' +0.000 1 x 10 - '
(shared load)

Lnrevealed failures
Constant. .0  0-3940 x 10-2 +0-0022 x 10- 2  0.043 2 x 10- 2 +0.0017 x 10- 2

Increasing. (t) 0-1209 + 0-001 2 0073 6 x 10 - 2 + 0-004 6 x 10-2
(independent)

Increasing, i(t) 0.2543±0.0020 0.1262 x 10-2 +0.008 1 x 10 2
(shared load)

5-yr design life.

TABLE 4

Two-component System Interval Unavailability

No maintenance Maintenance

Rcrealed failures
Constant. ;, .1640 x 10- 5 + 0,001 7 x 10 -  0.1640 x 10- 1 +0.001 7 x 10'
Increasing. A(t) 0.9177 x 10 -'±0,0290 x 10- 4  0.064 8 x 10-4 ±00009 x 10-

(independent)
Increasing. ;() 0.2426 x 10 -±0-0110 x 10 0023xO±0.0002x 10

Oshared load)

Unreealed failures
Constant, A. 02010 x 10 2+ 0002 1 x 10 -  00376 x 10- 2 +0.001 5 x 10-
Increasing, .(t) 0.408 5 x 10 + 0007l x 10- ' 0.0069 x 10-'±0.0004 x 10 -

(independent)
Increasing ).(t) 0.7922x 10 +0.0120x 10 - 1 00109x10-'+0.0007x 10

(shared load)

unavailability due to load sharing and to wear, and the corresponding

decreases due to maintenance, are apparent from Tables 3 and 4.

Ten-component system

To illustrate the capabilities of the inhomogeneous Markov Monte
Carlo formalism we consider next the ten-component system described
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Fig. 5. Fault tree for tcn-component problem.

by the fault tree of Fig. 5. The system has been analysed previously' 2

using the constant failure and repair rate data given in Table 5. The
unreliability and unavailability results are given respectively in Tables
6 and 7. In the unreliability calculations, repair is allowed on redundant
components until system failure occurs.

Model (I) is a reference calculation with independent revealed failures
and using the time-independent failure and repair rate data of Table 5.
In this and the succeeding calculations the design life is 1000 hr. Since
no wear is present, maintenance has no effect on model (I).

In model (2) wear effects are added to components one through three
by representing them with eqn (10). In this A0 is determined from Table 5
and the wear is characterized by 0, = 10 X 15 h and ni = 2-S. Components
one through three constitute a 2/3 subsystem, and we assume load
sharing by reducing 0 , of the operating components by AO -- 3000 h for
each failed component. For the calculations with maintenance, as-good-
as-new preventive maintenance is performed at 100-h intervals on a
staggered basis (e.g. at 100,400. ... for component ( I) and at 200, 500...
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TABLE 5

Dala for Example Problem

I Group A(IO-/h0
- ) U(h -

1 l 0.26 0.042

2 1 026 0.042
3 I 0.26 0-042

4 2 3-5 0.17
5 2 3"5 0.17
6 2 3"5 0.17
7 3 0-5 0
8 3 05 0
9 4 0. 0

10 4 08 0

for component (2) and at 300.600. for component (3)). Components
four through ten are treated is in model (I). The results indicate both
the increase in unavailability due to the wear effects and the mitigation
of wear by preventive maintenance.

In model (3) components one through three and seven through ten
are treated as in model (I). Components four through six are taken to
be unrevealed failures by setting p, = 0. Components three through six
also constitute a 2,3 subsystem. For the calculations with maintenance
the same 100-h interval staggered schedule is used as described for
components one through three in model (2). Tables 6 and 7 indicate the
sharp loss in reliability when unrevealed failures are present, along with
the extent of the loss mitigation due to the staggered test and repair
schedule.

In model (4) the capability of combining revealed and unrevealed
failures as well as wear and preventive maintenance in a single calculation
is illustrated. In these simulations components one through three are
treated as in model (2), components four through six as in model (3)

TABLE 6
Unreliability for Ten-component System

M#mkl No muintenance Maintenance

(I) 0"4394x10 4+0"0046x10 - 0'4394xiO 4±0'0046x10'
(2) 0'5367xi0 t +0"0078x 10 ' 0.4387x 10'+0.0048x 10 ,
(3) 0"3494x 102 +0-0042 x 10 -2 0'0180 x 10- +00014 x 102

(4) 04083x 10 2 +0.0055 x 10 2 0.0373x t0 2±0I0015xO I
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TABLE 7
Unavailabihty for Ten-component System

Model No maintenance Maintenance

(I) 0.1436 x 10 + 0.005 3 x 10 -  0-143 6 x 10-' + 0.005 3 x 10 A

(2) 0"2383 10 6 +0.0120 x 10 01522 x 10 + 0"006 I x 10 6

(3) 02339x10-+00036x10 -2  0"0133x10 2 +0"0012x10 2

(4) Pr'279 3 x 10 2 + 0-0X4 6 x 10 0.0194 x 10- 2 +0001 3 x 10

and the remaining four components as in model (I). Tables 6 and 7
illustrate the synergetic effects of the combined failure and repair models
on the system behavior.

6 DISCUSSION

In the foregoing sections the capabilities of inhomogeneous Markov
Monte Carlo methods are demonstrated. They allow wear and preventive
maintenance to be modeled within the simulation of large systems.
Moreover, a limited class of repair models may also be included for
both revealed and unrevealed failures. In our illustrations we have not
included examples of standby or shared repair crew dependencies, but
these also are easily included within the inhomogeneous Marko%
framework. Likewise, the method is easily extended to account for fixed
component downtimes for testing and repair of unrevealed failures as
well as for imperfect repair.

A more challenging task is the generalization of the methods to
include non-Marko, processes. Two of the more important of these are
the as-good-as-new repair of revealed failures and the as-good-as-old
repair of unrevealed failures, both illustrated in Figs 2 and 3. Inclusion
of these phenomena as well as the use of more realistic cumulative
damage models for wear are the obvious next step in the development
of Monte Carlo simulation of system reliability.
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