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1. Introduction

The first reports of large, negative spacecraft surface potentials in geosyn-

chronous orbit were of eclipse charging (DeForeat 1972; Whipple 1981). The

charging was attz~buted to high fluxes of keV electrons In the absence of photoem-

ission, and explained by the requirement of flux balance between incoming elec-

trons, backscattered electrons, secondary electrons, photoelectrons, and incoming

ions. Early efforts to correlate spacecraft potentials with parameters describing

the incident electron population used either constants or fits to low energy (0-1000

eV) data to calculate the backscatter and secondary yield coefficients of the space-

craft surface materials. (Garrett and Rubin, 1978; Garrett and DeForest, 1979;

Garrett at at., 1980). These efforts could not consistently predict charging levels.

Subsequently, charging events in excess of one kilovolt negative were meas-

ured in sunlight. Sunlight charging is more complex than eclipse charging

because of the lack of spatial symmetry. It is clear that additional processes are

at work, since first order calculations of the ambient, secondary, and photo-

currents produce net postive currents to a magnetospheric satellite. Direct evi-

dence from measured particle spectra, and inferred evidence from modeling efforts,

suggest that the formation of potential barriers around the satellite suppress pho-

toemission when the electron environment is sufficiently intense (Whipple,

1976a,b; Oeaen et al., 1981; Mandell et al., 1978). Generally, a given environment

is expected to charge a satellite about an order of magnitude more in eclipse than

in sunlight. (Garrett (1980) states that "Potentials as high as -2000 V in sunlight

and -20,000 V in eclipse have been observed on ATS-G." See also Purvia (1983).)

This is because, although current balance to a shadowed insulator is the same as

that to an eclipsed spacecraft, the charging rate is typically three to four orders of

magnitude slower since the insulator must differentially charge relative to under-

lying grounded metal. It follows that the maximum potential achieved in a



daylight charging event is governed by the duration of the charging envixonment,

and is usually far below the "equilibrium" (steady state) value which might be

predicted. Olson and Purvn (1983) discuss the charging dynamics for daylight

and eclipse charging events obeerved on the ATS-5 and ATS-6 spacecraft.

A number of studies have attempted to correlate charging with specific

features of observed electron distributions. Reeagan st at. (1981) found, for the

SCATIA satellite, that "surface potentials ... were determined primarily by ...

electrons in the energy range < 30 keV and ... that surface charging occun-ed

when the spectrum hardened." Olsen (1983) found, in studies of ATS-6 and

SCATHA data, that when the electron spectrum hardened his "count rate" com-

monly xhibited a sharp drop just above its maximum, and that charging

occurred when this drop was at an energy exceeding about 15 keV.

Recently, a comprehensive study of high-level sunlight charging events on

the SCATHA satellite by Wullen et al. (1986) showed that the measured

spacecraft-to-plasna potential difference is directly proportional to the intensity

of the ambient electron flux greater than 30 keV, and, additionally, that the

spacecraft potential is not consistently related to the electron flux below this

energy, despite the fact that the low energy flux is commonly an order of magni-

tude higher than the high energy flux. (Note that the spectra exhibited by Olsen

(1983) also show significant counts at 30 keV and above, despite a sharp drop in

the 10-20 keV range.) A similar relationship between high energy electron flux

and spacecraft potential in excess of -100 volts was found for low altitude eclipse

charging of DMSP satellites in polar orbit (Gueaenhouen et al., 1985). These

results were explained in terms of the concept of a critical energy below which the

electrons do not contribute to charging becauae they are self-balanced by their

own secondary and backscattered production. The concept of critical energy was

quantitatively developed for incident Maxwellian electron distributions by Lai et
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Tnet
The net current density to a satellite, J.e , associated with incident elec-

trons, is found by subtracti.ng backscatter and secondary electrons from the
t a

spacecraft will achieve a negative potential such that Jnet is balanced by incident"al

ions and ion-produced secondary electrons.

Previous studies by several authors have shown that, for a Maxwellian

plasma, charging resulte only when the electron environment exceeds some thres-

hold temperature (Stannard st at., 1981; Laframboiee 4nd Xamitsumc, 1983).

This is because secondary yields typically awe greatest for electrons with energies

below about 1 keV and are less than unity for electrons with energies above a few

keV. Below the threshold, the integral secondary and backacatter yields exceed

the incident electron ftux, so net charging cannot occur.

Both the study by Laframboise and Kamitsumo (1983), and that by Lai et al.

(1983), indicated charging threshold temperatures of a few keV, and that charging

was caused by electrons with energies on the order of 10 keV. These energies are

about a factor of three lower than the threshold energy inferred from the SCA-

TEA data (Mugen et al., 1986). As shown below, this discrepancy occurs because

the formulation of secondary yields used by these authors was inaccurate and

predicted unphysically small secondary yields for electrons in the relevysc energy

range (5-50 keV).

Lai et al. (1983) and Laframboise and Kamitauma (1983) used an analytical

expression for the secondary production given by Sanders and Inouye (1979)

derived from the work of Sternglaaa (1954). The secondary production predicted

is accurate primarily for electrons of low energy (i.e., up to a few keV) but is

essentially zero for electron energies greater than 10 keV. Theory (Alig and

Bloom, 1978) and experiment (Kanter, 1961) confirm that secondary yield is

3



1i ipalonal to stopping power for high energy incident electrons. Using secon-

dory formulations which we moae correct at high energy, such as those from zNAS-

CAP (oats et eL, 1977; MendslIt qL, 1984), or that suggested by Burke (Burke,

1960), bette apgement with the SCATIA observation# is obtained.

In the fiolowing we formulat a moe accurate exprueson for secondary pro-

duction from the high energy electron population measured at geosynchronous

orbit. We propose a method for selecting MaXwellmIA parameteO from arbitrary

distriution functions which best calculate electron charging current densities.

The observed stonge orrelation of charging with the flux of electrons with energy

greater tha 30 keV and the nonm-extent (if not negative) correlation with elec-

trons below 30 keV is easily demonstrated when the electron environrment is

modeled with distributions having constant density and various temperatures.

2. Theory

The theory developed in this section is for a spherical object in an isotropic

Msxwellian plasma under eclipsed conditions. However, the conclusions drawn

sre reasonably general. All quantities are in SI units, with particle energies and

plasma temperatures in eV, unless otherwise stated.

The time-dependent charging of an object immersed in a plasma whose total

current density to the object is Jtot can be described by the equation

dV/dt - R Jtot / o0

where V is the object to plasma potential difference, R is the effective radius of

the object, and to is the permittivity of free space. When in eclipse, the current

density Jtot consists of

Jtot 4Jel + jion + sec + Jback + Jprosec

Here Jel and jion are the incident electron and ion current densities from the

4
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I

ambient envionment, Je and ate th, electron secondaey and backscattered

current densities produced by the Incident electron current density, &ad jprosec is

the electron secondary current density produced by the incident iWn current den-
sity. When the incident electi n population can be decribed by a MaxwelliLn
distribution with tempemturm I, the secondary UMI:) and backscatter (aback)

current densities can be written as integras ovea the incident spectrum:

jse/jeli " 2 foj E exp(-E/l) Y(E) dE

Jback'/Je r 2f 0* E exp(-El/) B(E) dE.

In these equatios Y(E) and B(E) ar yield functions for secondary and backscat-

tered prodnction, respectively, taking into account the angular distribution of the

incident electrons.

2.1. Secondary Emission Yields

Typical yield of secondary electrons as a function of energy is shown in

figure 1. The yield is proportional to the energy deposited by the incident elec-

tron in the top 20-100 angstroms of the material. For low energy electrons (with

range comparable to or less than this distance) the yield is proportional to the

particle energy. At high energy the yield 6 proportional to the stopping power.

This behavior has both a strong theoretical basis and has been verified experimen-

tally (Kantevr, 1961). The maximum yield occurs in the transition between these
two regimes, which is at a few hundred volts for most materials. For spacecraft

charging purposes it is important to have a reasonable estimate of secondary

yields for 5-50 keV primary electrons. For most materials the electror range is

well-represented in this energy regime by a power law:

Range - Constant x Energyp

5



with l.3<p<2.0. Since

Stopping Power -= d(Rang)/d(V"mergy)j 1

we acqmt seconda yield to fall off Iaversely (or slower) with respect to the

enWey of the pVIMAr7 electron:

Y(s) - ( 3/ 3 lp

where E., Is the energy at which the secondary yield extrapolate to unity.

(This is equiv*lent to the form suggested by Burke (1980), who used p=1.725.

Taking into account that Burke's data is for normal incidence whereas we are

Interested in isotropically incident electrons, the relation between Burke's con-

stant K mnd E I s

- (2K)-7 [keVJ.

The Appendix suggests value of p and Eat for several materials.) Proposed

simplified formula. (Sanders and Inou te, 1.979; Sternglaes, 1954) having exponen-

tial fallos, while easy to use analytically, will invariably underestimate the yield

of secondary electrons for environments capable of charging spacecraft. For most

spacecraft materials (which have low atomic number) backscatter yields increase

monotonically with energy fr•om zero to a few tenths.

Following Lai at al. (1983), Eupper is defined as the energy below which

electrons do no charging, i.e.,

f lapp.t E exp(-E/0) [1-Y(E)-B(E)j dE - 0

The parameter E uppr is a function of 0, being undefined for 9 below the charging

threshold, Ininite at threshold, and reaching a finite limit u I -> oo. Assuming

the high-energy formula given above for Y(E) and a constant backscatter

coefacient, B, this limiting value is

Eupper(O0) - Eext [(3-p)(1-B)/211/(1-p)

6



For Gold subject to isotropically incident electrons, we suggest (based on values

developed for NASCAP, KEae st at., 1977; Maedt lt et. , 1984),

the valuesE Ut - 4.6 keV, B = .63, and p = 1.73. We then find Eupper - 36

keV. Using the full secondary emission formulation found in NASCAP gives a

slightly lower value of 31.2 keV. This •ontrssts with the 11.1 key value reported

by Lai et at. (1983). The threshold Maxwelllan temperature for charging is

found by NASCAP to be 14.0 keV, compared with 4.9 keV from Lai et at.

(1983). The low values reported by Lai are due principally to the inadequacy of

the secondary formulatioa used. The backscatter coefficient used here is also

somewhat higher than used by Lai st at. (1983).

For the purpose of comparison with data from the SCATHA satellite, the

electron emission properties are taken to be those of solor cell rover slip model

developed for NASCAP (MandeU et at, (1984)) since most of the exterior surface

of the spacecraft is covered with solar cells. (The resulta would change little for

most typical spacecraft coverinsp such as teflon beta cloth.) Here the properties

E - 4.6 keV, B-.32, and p - 1.73, used in the formula above, give a value

Eupper(ou) - 14.5 keV. The dashed curve in igure 2 shows the dependence of

Eupper (calculated using the full NASCAP treatment for secondary and back-

scatter yields) with the temperature of the ambient environment. The limiting

value of Eupper by this method is 15.1 keV, and the threshold temperature is 6.8

keV. These are much lower than the corresponding values for Gold, which is a

high atomic number material. The average energy of the charging electrons, that

is those above E weighted by their charging effectivuness is given by
upper

f .:. E2 wp(-E/9) [1-Y(E)-B(E)I dE

Echar g -
f E " xp(-E/0) [1-Y(E)-B(E)I dE

The solid curve in figure 2 shows the dependence of this value on temperature.

7



Unlike Zuppsr, the average valu. 74a an minimum near the threshold tempera-

ture. For tCe SCATHA materials the minimum value is 35 keV at a temperature

of 9 keV. The Aux of electrons with energies greater than E and within 9 ofupper
t echrg4n contribute most of the net electron current to the surface a.d

should be a reliable indicator of charging. The ahoice of Echarging is not unique;

the median value above Eupper would suffice. The basic concept is just that

charging in driven by electrons above and within a few 0 of Eupper-

The quantities Eupper and Zcharging relate to the findings of Olsen (1983)

and MuWlen et at. (198M) ir the following manner. A given environment will not

charge a material if "he actual electron spectrum drops significantly below its

Maxwellian approximation at an energy much leas than the material's Eupper;

current balance would then be dominated by the second,.-y electrons produced by

the low energy part of the spectrum. Since Eupper was calculated above to be

15.1 keV, this explains the finding of Olson (1983) that the requirement for charg-

ing is that such a drop occur at 15 keV or higher. Given this, one then expects

the spacecraft potential to correlate with the net charging current. By definition,

the net charging current consists of that portion of the spectrum with energy

above Eupper, and is naturally correlated with the direrential flux at Echarging'

This explains the finding of Muilen et al. (1986) that spacecraft potential is corre-

lated with the flA=x at 30 keV.

2.2. Single Maxwellian Representation of Environment

The prece, ýng discussion of net current density has been for an assumed

Maxwellian distribution of electrons. Data indicates that charging environments

an not well fit by a single Maxwellian; frequently two or more Maxwellian

descriptions are far superior. The net electron charging current density is in gen-

eral the interal of the first moment of the velocity distribution function with a

8



weighting function equal to one, minus the secondary plus back.'catter yields.

That is,

el- fj0 *E f(E) W(E) dE,

where W(E) - [1-Y(E)-B(E)1. For a Mzxwellian distribution the function f(E) is

f(E) - N e r 2 Ee#/2zmj 1/ 2 ex(-E/0)

where N is the number density, mea and e are the mans and the charge of the elec-

tron, respectively. The ideal Maxwellian At (for charging purposes) would have

the property of exactly matching J iet. However, since calculating J e requires a

computer program even for a Maxwellian, a simpler recipe is highly desirable.

In the energy range of interet (a few to fity keV) the backscatter yield,

B(E), depends weakly on energy, while the secondary electron yield Y(E) is rea-

sonably At by a power law El-P Thus we choose a density and temperature

which match the incident electron flux and the flux-weighted mean ofE -

Matching the incident flux assures a reasonably close value for the weakly en~ergy

dependent (1-3(E)] portion of the integral for Je, while the othow condition gives a

good match for the mean secondary electron yield. For & Double Maxwellian with

densities N A' N B, and temperatures OA' OB respectively, we define

FA-A 1A/2 ; mN e/ 2

Then, it can be shown that the single Maxwelliam which fits our criteria ha~s temn-

perature and density given by

0 -P (F A/FA +F B))OA'-p + B/F, BOB-

N - [FA+F #-1/2.

We have applied this scheme to fifty-three Double Maxwellian environments

measured Lsý' 9~o SCATHA spacecraft, as quoted by Schnuelle at al. (1081). We

used the value p-1.73, appropriate to the NASCAP model for solar cell

9



coverlips, a* well as many other common spacecraft materials. The full NAS-

CAP formulations for secondary and backscatter yield were then used to calculate

Jnet for each Double Maxwellian environment and its single Maxwellisn :epresen-

t~tion. Defining ths armr &a the difference in et divided by the incident elec-

trou lux, we found the root-mean-quare error to be 3.7 percent, with the max-

imum error 9.2 percent. The large err aw were for environments below the thres-

hold for Charging. The Ave environmento capable of charging this material had a

root-mman-square error of 0.6 percent.

By this procedure the equivalent Maxwellian temperature for charging is

material dependent through the rnme exponent p. However, since the variation

in p is not •eat, this material dependence i fairly &light. Also, since secondazy

electrons produced by ions are proportional to the ion velocity, the value p-1/2

should be used to compute the equivalent Maxwellian temperature for an ion

spectrum.

2.3. Application to Spacecraft Charging

We will now show that the above considerations predict a positive correlation

between spacecraft potential and measured electron flux with energy in exces- cf

30 keV, and a null (or even negative) correlation with electron flux below 30 keV

(or, equivalently, total electron flux).

Consider the charging response of an idealized satellite in a neutral isother-
mal Maxwellian hydrogen plasma. The satellite is assumed to be a spherical

probe that collects ion and electron currents according to orbit limited theory.

That is, net current densities resulting from the incident electron and ion distribu-

tions I. ,.eI
inet - E fe(E-V) W(E) dE,

10



J" f.V E f1(E+V) WI(E) dE

where V is the spacecraft potential (assumed negative), WI(E) is unity plus the

secondary electron eminion coefficient for incident ions, and

fa(E) - Dr 6(0 2 [eO/2,rm .1/2 exp(E/0)

The equilibrium potential is found by integrating in time the basic charging equa-

tion until a steady value is obtained. (The time scale for approach to steady state

is milliseconds for typical magnetoepheric plasmas.) The equilibrium floating

potential is a monotonic function of the plasma temperature.

For a fixed plasma density of 1 cm" the equilibrium satellite poteneal was

calculated for plasma temperatures ranging fro•• to 20 keV in steps of one kilo-

volt. Also calculated was the incident electron lux in the two energy ranges of the

i:•strument on SCATHA reported in Mullen st al. (1986). The low energy chan-

nel was taken to be all electrons between 50 eV and 30 keV the high channel was

from 30 keV to 400 keV.

In Figure 3 the circles indicate spacecraft potential as a function of the high

energy flux, the plus signs the potential vs the low energy !lux. Each pair of cir-

cles and crosses at a single potential are revalts from a single temperature. The

obvious positive correlation of the potential with high energy flux and the small,

negative correlation with the low energy flix are in good agreement with the

SCATHA data from Mullen et al. (1986). (The scale of the potential here is an

order of magnitude greater, because thi•a analysis was performed for eclipse charg-

ing, while the published observations cre for sunlight charging.) The incident

electron current in all cases of charging is balanced by a combinatior of incident

ions and secondary and backscattered electrons.

11



3. Discussion

The'f obsereition Yhat charging correlato directly with the qux of e!ectrorns

with enerea greater than 30 keV is completely consistent with the description of

charging as the balancing of incident electron currenta by secoadary emission,

backscattder nd ion currents. Previous analysis by Lai et at. (1983) had assumed

the material propertim were that of gold, a higbhly emiMssve materiel, but stiU

came up with lower than the obeerved energies. The present work is in much

better agreement with experiment for two reasons. Fist, and certainly most

important, the formulation of the secondary yield as a function of energy used

here in much more accurate for incident electron energies greater than a few keV.

Second, the definition of the mean energy of the charging electrons is more

relevant than that of *he lowest energy electron to contribute to charging, since

the bulk of the charging current is near the mean. The fundamental mechanisms

leading to spacecraft charging are the same for both works, namely, the achieve-

ment of current balance. However, it points out just how critical is the accurate

knowledge of both material properties and the ambient environment for both high

and low energies if modeling efforts are to give good spacecraft potential predic-

tions. While this paper used a single Maxwellian representation of the charging

environment, the results are applicable to other energy distributions since charg-

ing involves integrals over the distribution and is not particularly sensitive to

details of the shape of the distribution function. Th'a prediction of the energy

channei which will indicate charging will vary little for well behaved monotonic

spectra. The good agreement with SCATHA results from having a good represen-

tation of the material properties and the high energy electron environment. Use

of a single Maxwelian to represent the highly variable magnetospheric environ-

ment is convenient, hut not essential.

12



Appendix

Suggested Constants for Several Materials

The table below gives, for several materials, suggested values for the range

exponent p, the energy, Eext, at which secondary yield extrapolates to unity,

approximate backscatter coefficient, B (evaluated at 10 keV), and resultant limit-

ing value of E from the formula

Eupper(co) - E (3.p)(1-B)/211/(1-P)

Values from Burke (1980) have been doubled to account for isotropic incidence.

Material p Eext[keV] B EupperikeV]

Aluminum 1.76 (B) 1.8 (B) .36(B) 6

Carbon (Aquadag) 1.55 (B) 1.2 (B) .27(B) 4

Gold 1.73 (B) 4.6 (B) .64(B) 35

Kapton 1.725(A) 1.53(A) .25(B) 4

Lucite 1.725(A) 3.02(A) .14(A) 7

Magnesium 1.75 (B) .7 (B) .35(B) 2

Mylar 1.725(A) 2.07(A) .14(A) 5
Nylon 1.725(A) 3.15(A) .14(A) 7

Polyethylene 1.725(A) 4.02(A) .14(A) 9

Polystyrene 1.725(A) 2.27(A) .14(A) 5

Polyvinylalcohol 1.725(A) 3.51(A) .14(A) 8

Silver 1.74 (B) 4.0 (B) .55(B) 22

SiO 2  1.86 (B) 4.8 (B) .33(B) 15

SOLA 1.73 (B) 4.63(B) .33(B) 15

[Teflon 1.725(A) 4.75(A) .29(B) 14

(A) Burke (1980)

(B) NASCAP (Katz at al., 1977; MandeUl et al., 1984)

13
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omnidirectional electron fluxes for a fixed pluma density. The Maxwellian

temperature ranged from 8 to 20 keV.
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