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Processing Waveforms as Trees for

Pattern Recognition

Abstract

> Waveforms may be represented symbolically such that their

underlying, global structural composition Is emphasized. One such symbolic

representation Is the relational tree. The relational tree is a computer data

structure that describes the relative size and placement of peaks and valleys

In a waveform. Researchers have developed various distance measures

which serve as tree metrics. A tree metric defines a tree space. We are

able to cluster groups of trees by their proximity in tree space.

Linear discriminants are used to reduce vector space dimensionality

and to Improve cluster performance. A tree transformation operating on a

regular tree language accomplishes this same goal in a tree space. Under

certain restrictions, relational trees form a regular tree language.

Combining these concepts yields a waveform recognition system.

This system recognizes waveforms even when they have undergone a

monotonic transformation of the time axis. The system performs well with

high signal to noise ratios, but further refinements are necessary for a

working waveform Interpretation system
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Introduction

When classifying signals of one or two dimensions, It is sometimes only

necessary to take global structural Information Into account. By structural

information, we mean the relative height and placement of peaks and valleys in

the waveform. A new automatic waveform Interpretation system has been

developed which exploits waveform structure through syntactic

representation and cluster analysis. In addition to drawing on previously

developed concepts, we show how a symbolic space can be transformed to

improve the perfomance of a clustering system. Simulations prove that such

a recognition technique might be used to classify waveforms with few errors.

This paper describes the components of the waveform recognition system and

how they Interact.

In our symbolic recognition system, waveforms are represented

syntactically and then grouped into clusters which reflect some underlying

structural similarity. Erich and Foith [1], and Lu (2], have described

hierarchical computer data structures to represent structural information

for waveforms. Of these, the relational tree is particularly simple. We shall

use the relational tree, In concert with traditional cluster analysis and formal

tree automata theory, to construct the waveform recognition system. A tree

clustering objective function will be Introduced to assess clustering

performance, and a tree transformation Is Introduced to Improve this

performance. The tree clustering system, Illustrated by simulations,

compares favorably with numerical techniques when the circumstances are

appropriate.

b a f 
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The first two chapters of this report describe the building blocks of our

waveform recognition system, i.e. the relational tree representation and

traditional cluster analysis. Following that, Chapter 3 shows how previously

developed tree automata theory can be applied to the problem of tree cluster

optimization. We then introduce a tree clustering objective function to

quantify cluster improvement. Lastly, in Chapters 4 and 5, the components

are assembled into a total system and tested on noisy data.

We shall begin by thoroughly describing various tree topologies for

representing signal structure. There are three; the relationaltree, the

skeletal tree, and the complete tree. Due to its simplicity, the relational

tree is the most appropriate for this work. In order to provide a

comprehensive overview, we shall also discuss the skeletal and complete

trees.

',--
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Chapter I

Review of Tree Representations

1.1 The Relational Tree Representation

Ehrich and Foith first proposed representing a signal by a relational

tree (RT) [1). The relational tree provides a two-dimensional description of a

one-dimensional signal. It draws on the Intuitive notion of a waveform as a

sequence of peaks and valleys. Without attributes attatched to its nodes, the

RT contains only Information about the relative sizes and placement of peaks

and valleys In the signal. Attributes may be added to the nodes of the tree to

supply information such as the value of time (independent variable) and

amplitude. The RT Is insensitive to scaling on either axis. This Is beneficial in

identifying signals that undergo this type of scaling.

In order to discuss the concept of relational trees, we will adopt the

following definitions:

Definition 1:

A waveform segment Is a one-dimensional positive function of

finite length containing a finite number of maximum and minimum

points. In addition, Its endpoints must be lower than any other

point In the segment.

Erich and Folth [i define a peak and a valley as relations;

(xf,yf) is a peak P, Iff yfP I y, V (x,y)l x-P i x s xfP4
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(xiV, yiV) is a valley vi iff yV s y, V (x,y)j xiV-6 s x I xiV+6

Definition 3:

A waveform segment's left (right) peak is that portion of the

segment bounded on the left (right) by the left (right) boundary of

the segment, and on the right (left) by the lowest valley in the

segment.

Definition 4:

A tree is a rooted, directed, acyclic graph with no more than one

edge entering each node, and zero or more edges exiting each

node. Nodes which have zero edges exiting are called terminal

nodes. All other nodes are known as non-terminal. Each tree

has one node with no edges entering it known as the root. A tree is

binary If no more than two edges exit any node.

Defnltion 3:

A relational tree representing a single peak segment

consists of an isolated terminal node tS = p. A segment S

containing two or more peaks has an associated RT consisting of a

root node o with two descendants tI and t2, written

tS = o(t,t 2)

where tI and t2 are RT's describing the left and right peaks of S.

Symbolically,
~~t 5 ::- piloOtl0t), i-O09,....

Each non-terminal node In an RT represents a valley In the waveform.

Each terminal node represents a peak. The valleys are nested according to

relative depth. The root node of the RT Is chosen to represent the deepest
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valley in the waveform. This divides the waveform into two segments; one to

the right of this valley, and one to the left. The descendants of this node will

be RT's describing each segment. Each root node is labeled by its dominant

peak, i.e. the highest peak in either segment. The non-terminal descendants

of any node represent the deepest valleys in the right and left segments.

They are in turn labeled by their dominant peaks (see figure I a & b). If a

segment contains only a peak and no valleys, it is represented by a terminal

node and then labeled by that peak.

P2

P3

P4

Figure 1.1 a
Waveform Segments
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PZ (root)

P1 P2

P2 P4

P2 P3

Figure 1.1 b
The Relational Tree

Erich and Foith list 8 properties of these trees [1]:

1) The frontier of the tree is a left to right description of the

waveform,

2) If a peak label occurs at N nodes, then that segment has N-I

subpeaks,

3) Each parent node corresponds to a valley that separates two

descendant peaks,

4) Each parent node has the same label as the descendant having the

largest vertical height,

5) If a sequence of k valleys all have the same height, the

corresponding node has k,/descendants. If the left or right

LkI
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dominant peak of a valley is not unique, the label of its node

consists of all peaks with maximum height in that segment,

6) Although several nodes in the tree have the same name, their

occurrences are different. The attribute list attatched to the node

contains specific information,

7) RT's partition the set of one-dimensional functions into equivalence

classes,

8) As one moves from frontier to root through nodes of the same

label, relative peak heights will be strictly decreasing.

It is property 7 that is of most interest for this report. The partitions

may be viewed as clusters in a feature space. The nature of the relational

tree structure allows us to classify functions based on that structure.

Special cases occur when valleys or consecutive peaks within a

segment have equal height. The convention is to represent these as n-tuples

as described in property 5. If the resulting trees are to be recognizeable by

finite tree automata, the number of descendants from a node must be limited

to a finite number of choices. Erich and Foith describe a modified relational

tree implementation which imposes a binary topology on the resultant trees.

A similar implementation will be adopted for this work. Peak or valley

dominance in these cases will be decided on the basis of position.

Although the relational tree is the structure adopted for this work, two

more tree structures for representing waveforms should be of interest to

the reader.

,, ,,r ,[ ,', ','.y',' . ,,, , , .,- l - .. -.- ,.,....-,. .,,,.._,-. l
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1.2 Alternate Tree Structures

Researchers have defined alternate tree structures for describing

waveforms [21. These more complex tree structures borrow from the

relational tree concept. The results are trees whose topology represents

time and amplitude information in addition to the relative placement of peaks

and valleys.

Cheng and Lu [21 expanded the relational tree structure to take into

account amplitude and time information. These alternative tree

representations reduce the amount of semantic information which must be

stored at nodes. In the skeletal tree, the waveform amplitude is quantized.

An interval is delineated when the waveform crosses a quantization level

boundary. Each node represents a pair of these crossings (see figure 2).

," P2
P3

* €..

IT P4

0 P

(root)

Figure 1.2
The Skeletal Tree

.4



Cheng and Lu also describe the "complete tree" representation. For a

complete tree, the structure reflects both waveform amplitude and interval

widths. A complete tree is constructed by superimposing a two-dimensional

grid over the waveform. Interval boundaries are decided by time line

crossings (see figure 1.3).

P2A

Pi

(root)

Figure 1.3

The Complete Tree

Skeletal and complete trees possess the following properties [21:

1) The depth of a tree Is equal to the number of quantization levels,

2) The leaves of the tree are peaks In the waveform. Peaks smaller

than a quantization Interval are not visible,

3) The depth of a leaf is equal to the amplitude of its corresponding

peak,
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4) The nearest common predecessor of two nodes corresponds to a

valley on the weveform,

5) A node represents an interval on a quantization level,

In addition, complete trees have these properties:

1) The subtree containing all the non-terminal nodes, and only non-

terminal nodes, is the skeletal tree for that waveform,

2) The original waveform can be reconstructed by tracing the leaf

nodes from left to right.

Chang and Lu used the complete tree to correlate waveforms. Thiq was

done by matching nodes between the trees representing two signals.

In order to perform operations on relational trees, we need a way to

compare them. A number of techniques for calculating distances between

trees have appeared in the literature. In the next section we will examine

various author's approaches and assess their usefulness.

1.3 Review of Tree Distance Measures

The tree distance measures discussed here [2,4,5,61 all make use of he

minimum number of some elementary transformation necessary to make

one tree into another. The earlier tree distance measures (31, [41 rely on

syntactic error correction schemes, whereas recently developed distances

(51, (61 are independent of grammatical considerations.

Lu and Fu [31 propose a structure-preserved-error-correcting-tree-

automata (SPECTA). This type of distance measure parses a tree and
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compares it to a given grammar. Differences between two trees are viewed

as syntactic errors. The parser finds the error correcting transformation

involving the smallest number of node substitutions. The distance between

two trees is the smallest number of node substitutions required to

transform one tree into another while maintaining predecessor descendant

relationships. If such a transformation exists, it is symmetric and satisfies

the triangle inequality.

In another publication , Lu and Fu [4) developed a generalized error-

correcting tree automata (GECTA). This distance measure is similar to

SPECTA, except that node insertion and deletion errors are allowed in

addition to node substitutions.

SPECTA and GECTA both require that the trees be described by some

type of tree grammar. Neither distance measure is guaranteed to exist.

Another tree-to-tree distance algorithm is descibed by Lu [5]. This

distance measure requires no knowledge of a tree grammar and employs

insertion, deletion, and substitution errors. The distance dids(OC,O), where C

and j9 are trees, is defined as the minimum cost necessary to derive 4x from

J3 such that:

1) The predecessor-descendant relation does not change,

2) Nodes in p do not split or merge,

3) The sequence of postfix ordering does not change after

transformation.

Lu shows [6) that dide(mp) can sometimes lead to anomalous values.

For this reason, a new tree matching algorithm, dsm(ocP), was proposed to

NM
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make use of node splitting and merging. The basic node operations in

dsm(oc,1) are defined as father-son splitting, brother splitting, father-son

merging, and brother merging. The distance dsm(Oc,e) is the minimum

number of these four operations necessary to derive (x from 13. This

distance always exists and obeys the following properties [6]:

1) d(oc,oc) - 0,

2) d(o, ) =d(.,),

- 3) d(o,J) s; d(o,j) + d(lfjEp).

The next chapter provides a review of clustering as it has been used to

recognize patterns which can be described by a feature vector. We shall

focus on the specific techniques which are of use in clustering trees.
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Chapter 2

Review of Feature Space Clustering

2.1 Traditional Cluster Seeking Techniques

There are many techniques available for partitioning a set of samples into

clusters [8,91. The non-parametric algorithms rely on a distance measure

between samples. Instead of the Euclidian distance between vectors, we can

subsitute an appropriate tree distance. These techniques Include the k-means

algorithm and hierarchical clustering.

The k-means algorithm [91 clusters samples by minimizing the sum of

squared distances from cluster members to the cluster center. There is no

proof of convergence for this algorithm. Its success depends on the value

chosen for k, and the initial cluster configuration. If this'algorithm is to be

used for trees, the definition of a tree cluster center is required. Finding a

cluster center Is an awkward and time consuming problem.

Hierarchical clustering algorithms are best suited for clustering RT's.

They are best In the sense that no vector operations (such as those required

to define a cluster center) are required except distance between samples.

The result of an hierarchical clustering procedure Is a tree known as a

dendrogram [8]. The frontier of the tree Is made up of clusters containing a

single sample, and the root represents the entire sample set. A parent node

represents a cluster which Is the union of the clusters represented by Its

Immediate descendants. Clusters are grouped according to some distance

criterion such as nearest-neighbor. A typical two-dimensional sample set



14

end its corresponding dendrogram are shown in figure 1.4. The samples are

shown grouped according to nearest neighbor criteria.

~Figure 1.4 a
The Entire Sample Space

SLevel: 5 (1,2,3,4,5,6,7,8

44

3 (3,4,5,) (6,7,8

2

I

Sapl 1 2 3 4 5 6 7 8

Figure 1.4 b

The HTierarchcal Clustering Dendrogram

Lee:S(,,,,,,,
4i 34,,,,

3 34,. (,,
-'r~~~~~~~l (9 (6,7- I" W I 't iit l t rm ~ l- i,
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2.2 Syntactic/Semantic Clustering Techniques

Lu and Fu [71 proposed a cluster-seeking procedure for syntactic patterns.

A grammar is inferred for each cluster in a sample set. If the distance from

a sample to any cluster is above an arbitrary threshold, a new cluster is

started. Otherwise, the sample is assigned to the nearest cluster and a new

grammar is inferred for that cluster to account for the new sample. This is a

very time consuming process since several new grammars must be infered

each time a new sample is added to the set. Given a tree metric, any of the

established minimum-distance clustering and classification techniques could

be used. Lu (51 used a tree metric involving node substitutions, insertions,

and deletions to hierarchically cluster handwritten characters. No attempt

was made by Fu to evaluate or optimize clusters which were formed.

2.3 Sample Classification

Once the data are clustered, incoming samples may be classified according

to a minimum distance criterion. This usually means assigning a sample to

the cluster of its nearest neighbor. A variation on this is the k-nearest

neighbor technique which assigns a sample to the cluster where a plurality of

its k nearest neighbors lies. It may be that the resulting clusters are not

ideal for classifying incoming samples. Individual clusters might be too

scattered, or adjacent clusters too close together, or both. When this

happens, we would like some way of modifying the clustering scheme so that

each cluster contains the same samples, but with new clusters which are

compact and well-separated (CWS). To this end, a criterion is needed which

will indicate whether or not the clusters are CWS. The following sections

* * , . .p I >



16

describe a transform method for modifying tree clustering, and an objective

function for assessing the performance of such a transform.

mai
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Chapter 3

A New Tree Clustering System

3.1 Problem Statement

First consider the case where waveform segments are uncontaminated

by noise. The problem we wish to address here involves a given a set of

signals of known origin with similar peak and valley structures. These signals

may have undergone non-uniform stretching or squeezing along the domain

axis, but they can still be grouped together. Given another signal of unknown

type, how can we determine whether or not the unknown signal belongs to the

previously known set?

This paper proposes a solution to this problem which makes use of

relational tree structures and traditional pattern recognition. The following

sections show that the concepts of formal tree automata theory may be

combined with the data structures and algorithms introduced in the previous

chapters. This combination will produce a waveform recognition system which

is insensitive to monotonic transformations of the horizontal axis.

3.2 Clustering Relational Trees

The previous section stated that relational trees partition the set of

waveform segments Into equivalence classes. If this is so, relational trees

might provide a mechanism for classifying one-dimensional signals. Such

signals include Image scan lines, speech, or EC6 records. Furthermore, a

tree distance can be utilized to compare trees which are not identical. While

there are ways to classify waveforms without resorting to syntactic/semantic

_LIM
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techniques, the special properties of relational trees may be exploited when

certain types of signals are encountered.

When identifying patterns which can be described by some feature vector,

this problem is commonly solved by cluster analysis. There is a large body of

work pertaining to clustering patterns in an Euclidian vector space. Many of

the published algorithms make use of matrix operations in this vector space.

Since the samples considered here exist in a tree space, the only operation

available is some prespecified distance function. This makes most traditional

cluster analysis techniques less than useful. It is possible, however, to use

the same concepts while modifying the specific technique somewhat. The

methods discussed here are those that will have an application to clustering

relational trees.

A relational tree space in which clusters are formed may be thought of as

a directed graph. Each node represents a different tree. An edge exiting a

node represents an elementary operation on that tree. The distance between

two trees is the minimum path length on the directed graph from one tree to

another tree. The subspace consisting of trees TJ-T6 with metric did(X,Y) is

shown in figure 3.1. Path *a" has length four, whereas path "b" has length two.

The distance between trees TI and T3 is therefore two edge traversals.

Ip
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Path a Path b

Figure 3.1
A Tree Subspace

Since the path from one tree to another is dependent on the particular type

of elementary tree operation chosen, it is clear that the. tree distance

algorithm selected will determine the nature of clusters formed.

3.3 Theorems Concerning Relational Trees

In order to apply the concepts of tree automata theory to waveforms

represented as relational trees, we have to formally assert certain facts

about them. Among these facts are the existence of a relational tree, and if

it can be recognized by a tree automaton.

Existence theorem:

For all one-dimensional, unipolar, bounded functions with a finite

number of maxima and minima In a finite Interval, there exists a relational

tree description for that Interval.
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Proof:

Construct a tree by induction over M, the number of peaks in the

segment.

Base case: M-1. This is a segment consisting of only one peak. Its

relational tree desciption is a single node tl=p.

Inductive Hypothesis: M=m. A tree describing a segment with m

peaks can be written tm=O(tml,tm2), where tml contains ml peaks and tm2

contains m2 peaks, and ml+m2 =m.

Inductive Step: A new segment with m+l peaks is formed by adding

a peak Pm+l and a new valley on to the left of the segment with m peaks. The

relational tree description tm+l can be described recursively as follows:

If the new valley is lower than any of the valleys in tm, then

tm+ =o'(O(tmdtm2),Pm+).

else

tm+l =° (tmltm2+l).

Corollary:

A relational tree representing a waveform segment with M maxima will

have 2M+l nodes.

If a tree is recognizable by a finite tree automaton, it is possible to

perform certain operations on that tree via finite state machines. Later in

this paper, we will want to transform relational trees according to some

predefined node operations. The effects of such a transformation are well

known if the tree being operated upon is recognizable.

-
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Recognizability Theorem:

If relational tree descriptions are limited to binary trees as described

in Erich and Foith's paper (I, then the forest of relational trees is a subset

of those 1, X trees which are recognizeable by a finite tree automaton.

Proof:

Prove by constructing a regular tree grammar for describing the

relational trees. Since a TX-forest T(G) is formed by a regular tree

grammar G, and TeRec(j,X) for every 2X-forest, the resulting trees will be

recognizable. The grammar G is as follows:

G=(N,2,X,P,ao), where:

N = (a), a non-terminal alphabet

I = 72 = (), a ranked alphabet

X ( (p}, a terminal alphabet

P - (a->p, a->o(a,a)), a set of productions

a0 = a, a starting symbol

Example:

A leftmost derivation of the relational tree shown in figure I.Ib is:

a -> o(pl,a) -> o(p,o(a,a)) -> o(p,o(o(a,a),a)) -> o(p,o(o(a,a),a))

->* o(p,o(o(p,p),p)

If the nodes are labeled as shown in figure 1.1, the tree grammar

becomes context-sensitive and is no longer recognizable. We use the term

context sensitive because a the assignment of a sequential peak label requires

knowledge of the surrounding peak labels which have already been fixed. To

= .
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avoid such context sensitivity, we will adopt a node labeling scheme which is

based on peak height rather than sequence.

3.4 Tree Cluster Improvement:

We wish to find a transformation T(xl xEX) on the set of sample trees X

such that the probability of sample misclassification is minimized. In order to

do this, we will define an objective function which is to be maximized. A tree

transform mechanism and two methods for finding the objective function,

JI(X,T) and J2(X,T), are presented in the next section.

3.5 A Tree Transformation

In traditional feature space clustering, the objective function is often

optimized by finding an appropriate linear transformation on the feature

space. This can be reduced to a simple unconstrained minimization problem.

Since we lack such tools as matrix multiplication when dealing with trees,

finding the proper transformation to improve cluster seperation becomes a

search problem. A tree transformation is based on a tree tranducer. The

following formal definition of a tree transformation lays the foundation for

ameliorating clusters in a tree space. A frontier-to-root tree transducer U

is a seven-tuple [11]:

U=(2, X, A, fl, Y, P, A')

2, 0 are ranked alphabets
X, Y are frontier alphabets
A is a state set
A' Is a set of final states
P is a finite set of productions or rewriting

rules of the following type
i) (x=>a(q) (xEX, aEA, qEF(Y)))
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ii)a~i(l),...,am(Sm)) ~
a(q(Sl ... , Sm)).

a E Ems mZOI
al. . . ,am, a E A,
q(Sl, .. .. Sm) E F(Y U 'Em),

(m5-ib, ... . Sn) - a set of auxilliary
variables that indicate the occurance of a subtree in a tree.

TV, then, is the tree transformation induced by U:

TU=( (p,q) ' pcF (X), qEFg(Y), p=>*aq, aCA)

The rewriting rules are the variables of the transformation. A

transformation is tailored to a specific aplication by choosing th proper rules.

These rules represent mappings between subtrees in the input forest, F5(X),

and the output forest, Fj)(Y). States are placed In the tree during

transformation to guide the rewriting rule application.

Example of a Tree Transformation

U =(,(x), (a0 , al), 0, (y), P, (a0 ))

X 2=2-), )=()1={W)

P: x=>alyg o(a1(SI),a1(Sg))=>a~w(Sj)

al x l al 4

a 0 aiO

A more complex and Useful tree transform. example is shown in the next

chapter.
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3.6 A Tree Clustering Objective Function

Once the data undergo a transformation, the effect on cluster compactness

and separateness must be assesed. Both ob)ective functions presented here

will utilize the ratio of between-class scatter to within-class scatter.

Method I

For the two class problem, we define the within-class scatter for a

transformed cluster of size IYJi as:

I

si = - 2 - d(y,x)
IYI y(Yi xEYi

and the between-class scatter as.

SB = 2 2 d(xl,x 2 )
(IX1lIX2l) xlEXl x2EXZ

Xi and Yi are transformed clusters of trees. IxJi is the number of sample

trees in Xi. d(x,y) is some metric between trees. The objective function for

the two class case is:

SB
JI(X,T)

(sl + S2)
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In order to generalize to c clusters, we must define the total within-class

scatter as:

5W 2 XX d(x~y)
clxii XIEX VEjXI xi~

and the between-class scatter as:

so= -Z d(xi,x)
clIXiIl-IXI) XiEX xiEXl xEX,x(fXI

where X is the entire tree sample set after applying the transformation T. The

objective to be maximized for the case where there are more than two

clusters is:

SB
JI(X,T) -

SW

Method 2

As an alternative method,, consider the following definition of a cluster

center for syntactic patterns [10J.

First, define the p-metric for a tree xi in cluster Xi to be:

P - (i/lXI)21I.toixil d(xjj,xil)
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Let xij be the cluster center of X1, denoted by mi, if its p-metric is

minimum over the cluster, I.e.

pij-minl( PH I i<,<lXIl I

Using this definition of a cluster mean, let the within-cluster scatter be

the sum of p-metrics for each cluster center squared:

c
SW = . Pij 2  mi = xij, for all I

Define the total mean m to be the median sample tree over the entire

sample set:

m = (x I . d(x,y) is minimum V XEX)
yEX,y-x

The between-class scatter Is:

1 c
SB -- . d(ml,m)

c iWi

Now maximize the objective function J2 (X) - SB/Sw using these

expressions for SB and SW .
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3.7 Transform Application

Assuming the input and output alphabets of the transformation are fixed,

an optimal transformation may be found over different combinations of

rewriting rules. The transform designer searches for an optimal set of

rewriting rules. The search is performed over a candidate rule set. Candidate

rules are application specific and determined a priori. In the following

chapter we show how such rules are formulated. In a step by step fashion, the

waveform clssification algorithm is:

1) Obtain a training set of waveforms,

2) Convert to their relational tree representations,

3) Cluster these trees in a metric space (directed graph),

4) Find a transformation on these trees such that the objective

function described previously is minimized,

5) Convert candidate waveforms to their relational tree

representation,

6) Apply the transformation found above to the candidate trees,

7) Classify the candidate trees by a nearest neighbor technique.

The block diagram shown in figure 3.2 depicts such a waveform

classification scheme.
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scan lines, pre- 1
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Figure 3.2
Waveform Recognition System -
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Chapter 4

Tree Transform Implementation

The examples of structures and algorithms discussed in the preceding

sections represent simple and Ideal cases. When adapting these techniques to

actual problems, some additional constraints and modifications are

necessary. Specifically, we need to discuss relational tree labeling, and the

details of the transform and optimization algorithms.

4.1 RT Node Labels

The node labeling convention shown In figure 4.1 is to identify a peak by

Its relative sequential postitlon. This Is unsatisfactory when small errors in

segmentation occur. Two waveforms may be structurally similar, but adding a

single unwanted peak to the front of one waveform will cause Its entire

relational tree to be labeled differently from the other. This leads to a

falsely large distance between the two waveforms.

P2

Figure 4.1
Sequential peak labels
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The node labeling convention adopted for this research is to label peaks

by their relative size within the waveform segment (see figure 4.2). Peak

heights are scaled and quantized to L levels. When labeled in this manner, all

relational trees will have root label PL-1 . The smallest peak in a segment will

have label P0. This labeling scheme leads to non-unique labels for peaks.

p
4 1P

Figure 4.2
Modified labeling scheme.

This type of labeling requires a new and more complicated grammar.

Such a grammar G for L peak quantization levels Is as follows:

G-(N, ,XPao)

N - {Ocnj n - 0, 1, ... , L-1).

- {PnI n - i, 2, ... , L-1).

X - (Pni n-O, 1, ... , L-I).

P - ( cxn->Pn(Oln,'m), 0<m<n I

Pn(o(m,Ocn), 0<m<n I

Pn ).

ao - {O(L-i).

An example derivation Is shown In figure 4.3.

i
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u4 => =>P4 =

0 4

t4 2

P4  P4

AIp 
0 =)I 

p

4 3 P4 P3

Figure 4.3

A sample relational tree derivation.

4.2 Transform Implementation

The purely theoretical transform example given in the previous

chapter Is not sufficiently complex for a practical application involving

relational trees. Some correlation must exist between the transform

rewriting rules and the effects those rules have on the underlying waveform.

The user of a waveform classification system is not concerned with tree

manipulations as long as clusters are formed that reflect structural

similarities between waveforms. Rewriting rules cannot be considered as

individuals due to the Interaction amongst them. These rules may be grouped

according to their combined effects on a waveform. A subset of states and

rewriting rules which are Intended to affect one particular subtree, will
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henceforth be referred to as an operation. As an example, consider the

following transform:

Locate and replace all occurrences of segments consisting of the two

peaks P4, P5, with the single peak P5. The operation to perform this on a

relational tree is the set of states Q:

Q = (q4 ,q5)

and rewriting rules P:

P = (34 => q4P4, P5 => q5 P5, P5(q4 ,q5) => q5p5)

Figure 4.4 shows the results of applying this transform to the tree

P5(P4,P5(P4 ,P5 )).

p P5 5P4P = >  Pi

5 P-
p44 d P 4 5

4

J(pp p

p P4 P5
5 p

Z>

4 q 45 >

P4 P9p4 q4 5

p4 p5
figure 4.4

A transform involving one operation.
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4.3 Tree Transform Rule Selection

Rules must be chosen so that they are consistent and non-ambiguous.

For example, individual operations must not interfere with each other. It is

also necessary that no two rules in a transform share the same left-hand

side. This constraint prevents ambigous transforms. When transforming

relational trees, the proper peak dominance relations must remain intact. To

accomplish this, any relational tree transform must include rewriting rules

that maintain peak dominance conventions when a node's descendants have

been altered. These rules should relabel the node so that the proper peak is

dominant.

The tree transform algorithm as implemented here accepts input from

the user in the form of states and rewriting rules. Beginning with the leaves

of the tree, each node is compared to the left-hand sides of the rule list. If a

match is detected, the proper action is taken. If no match is detected, the

node is checked for peak dominance. This step frees the user from having to

specify rules to maintain proper peak dominance. In practice, the system

reserves two states: CHANGE and NOCHANGE. If no rule is matched at a node,

and either the node is a leaf or all the states descendant from the node are

NOCHANGE, then the subtree is propagated intact with state NOCHANGE. If one

of the descendant states is CHANGE, peak dominance is checked and the

subtree is propagated with state CHANGE. Care must still be taken that user

specified rules preserve peak dominance.
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4.4 Search Algorithm

The algorithm which searches for an optimum transform is a critical

aspect of the classification scheme. This is a very time consuming procedure,

and any modifications which reduce the algorithm's complexity will result in

great cost savings.

If there are n compatible operations, the result is a worst case search

time complexity of O(M), where

n-I n!
M 1= 2

i=0 i!(n-i)!

different combinations of operations.

Unless there is some way to predict the outcome of a tree-matching

(tree distance) algorithm, J(X,T) must be computed for each combination of

operations. If the algorithm can be implemented on parallel processors, the

search time could be reduced.

Tree distance computations are the most costly portion of the search

algorithm. In the case where particular trees are known a priori to be the

desired cluster centers, the number of distance computations nescessary at

each search node may be reduce considerably by using the objective function

J2 (X,T). If there are n samples, the objective function JI(X,T) requires TI tree

distance computations for each combination of operations, where

n(n-1)
T=

2
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With J2 (X,T), only T2 - n+c distance calculations are necessary, where c is

the number of clusters. It is simple to show that for all n greater than 5, T2 <

TI. Therefore, a search using the objective function J2 (X,T) is faster than one

utilizing JI(X,T), so long as no cluster center computations are required.

... . - , ; ' . . '.< .,' .. ., .; ,- . -..,.; . .
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4.5 An Alternate Implementation

A 3equential language such as Fortran, C or Pascal Is well suited for

implementing the numerical computations one encounters in signal

processing, Researchers are accustomed to thinking sequentially and the

field of waveform recognition has grown up around this sequential and

deterministic paradigm. So far, we have assumed the proposed relational

tree waveform recognition system is to be implemented in a traditional Von

Neumann computer language. Since this Is the "natural" way to program the

current generation of computers, such an approach is probably appropriate.

*However, the operations involved in our waveform classification system are

jradically different from typical signal processing tasks. Our techniques are

symbolic rather than numerical. They are reasoning rather than

computational. It is awkward to express reasoning with a Von Neumann

language. In addition, operations on trees need not be sequential. Instead of

transforming a waveform by operating on one digitized sample at a time, as

in conventional signal processing, tree transformations possess inherent

parallelism. While computers are currently available to execute the tree

transformation In parallel, resulting in considerable time savings, parallelism

Is difficult to express in a Von Neumann-type language. With these

considerations In mind, a more convenient way to Implement our waveform

classification system Is sought.

Since we are trying to Imitate the human capacity for detecting structural

similarities In waveforms, the relational tree classification system may be

characterized by the catch-all phrase "Artificial Intelligence". Workers in

this field have found two alternatives to Von Neumann languages that are well-
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suited to expressing this type of computation. There are functional languages

such as Lisp, and logic programming languages such as Prolog. Lisp operates

solely on lists. Prolog, however, has more flexible typing, making it easier to

represent trees with greater than binary branching factor. Prolog is also

attractive in that it operates in a similar fashion to our tree transformation.

In Prolog, knowledge is represented descriptively in a database which may be

easily modified, while a separate inference engine uses that knowledge in a

methodical manner. The inference engine is the same for all applications. In

our system, the tree transform rewriting rules are expressed as facts in a

user modifiable text file. These facts change according to the application.

The tree transform procedure, itself a type of inference engine, is never

altered. Finally, Prolog seems the best choice for an implementation language

since it is quite easy to express parallelism. Parallel implementations of

Prolog, such as Parlog, already exist [12].

Although this paper is not intended as an introduction to Prolog, a brief

description is given here. a more thorough treatment may be found in Clocksin

and Melish [13]. Prolog is a system for doing inference using clausal logic. A

Prolog program consists of rules and facts in the form of Horn clauses.

These clauses reside in the Prolog database. The user presents queries to

Prolog, also in the form of Horn clauses. These queries are known as goals.

Prolog decides whether or not a goal clause is consistent with the rules and

facts in the database, and instantiates whatever variables are required to

make the goal true. The inference method used by Prolog to make these

decisions is known as resolution.
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The waveform recognition system presented here has boon implemented in

the programming language C. The tree transform program as written is a

complex procedure with many address comparisons and multiple indirections.

The Prolog implementation of a tree transform is much simpler than its

counterpart in a sequential language. In addition, the Prolog version has the

flexiblity to work Obackwardso. For instance, one could instantiate the new

tree and ask Prolog to find the tree transform which led to it. The suggested

Prolog program is listed below. Tree nodes are represented by the function

symbol node(Label, desclist),, where desclist is the list of descendent nodes.
Transform rules are in the database in the form:

rule(lbl,statelist,new-label, news ta te,desc list),

where a node labeled lbI with descendent states given by statelist is

transformed to a node with label new-label state new-..state, and has

descendants given by desclist.

nodexform(old node. new state, new node)
This predicate transforms a node and assigns it a state

nodexform(node(Lbl,Ndllst) ,State,node(Newlbl,NewndIlst2))
xformchildrn(Ndlist,Newndlistl,States),
rule(Lbl,States,Newlbl, State,Childlist),
3electchildrn(State,Newndistl,Childist,Newndlist2).

xformchildrn(list of nodes, new lISt of nodes. list of states)
* This predicate transforms a list of nodes

xformchildrn([ ,..)

xformchildrn( (NodelNlistj, (NewnodelNewnlistl[StatelSlistl)
nodexform(Node,State,Newnode),
xformchildrn(Nlist,Newnlist,Slist).

selectchildrn(state lit node list, child list, new node list)
This predicate selects the new list of children for the transformed node
given Clist from the transform rule.
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selectchtldrn((SSIs3tI,(IINlistI, (CClist].(MNewnlistJ) :- S=D.
3electchildrn(Slst,N1lttjQClist,Newnist) :-

selectchldrn(Slist,Nlist,Clist,Newnlist).

The program listed above expresses the parallelism Inherent in the tree

transform algorithm. The descendants of any node may be processed

simultaneously, because they are not dependent on each other In any way.

If, In the predicate xformchildrno, the elements of Mlist could be processed

In parallel, the complexity of the algorithm would be reduced substantially.

M O 
.1 

1111 " I '
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Chapter 5

Applications

In order to demonstrate the usefulness of the concepts and algorithms

developed in the preceeding chapters, we will apply them to some real

problems encountered in waveform recognition. The areas examined will be

reflection seismic exploration for stratigraphic anomalies, identification and

classification of electrocardiogram abnormalities, and the interpretation of

stereo Images.

5.1 Review

Let us reiterate the concepts which have led to the waveform

recognition system. Just as patterns can be represented as strings over

some grammar, waveforms can be described by a relational tree. Valley

Information Is stored at non-terminal tree nodes, and peaK Information is

stored at the leaves. A left-to-right traversal of the leaves yields a left-to-

right description of the peaks in the waveform. An attractive feature of

relational trees Is that they are Insensitive to scaling along the horizontal

axis of the waveform . If certain restrictions are Imposed on relational

trees, they may be represented by a tree grammar. The set of all relational

trees Is the forest of trees described by such a grammar.

Just as the Levensteln distance is used as a metric between strings,

there Is a tree distances by which we can examine the similarity of two trees.

Such a distance allows the relative positioning of relational trees in a tree

space. A tree space is a directed graph where each relational tree occupies
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a unique node. The distance between two trees is the path along the graph

from one to another. Using this concept, we can "cluster" relational trees in

such a space. Hopefully, similar waveforms would generate relational trees

which lie close to each other in tree space. Using the well-known techniques

of cluster analysis, we can treat relational trees much as a vector in pattern

space. This immediately provides us with two very useful operations. The

first, cluster-seeking, may be used to segment a set of unknown waveforms

into classes. These classes should reflect some kind of underlying structural

similarity. The second, classification, allows us to recognize individual

unknown waveforms as belonging to one of a number of known classes.

Two criteria for assessing clustering performance have been

introduced. They are intended to convey the degree to which clusters are

compact and well-separated. Both rely on the ratio of between-class scatter

to within-class scatter. The first requires many costly tree comparisons, but

requires no knowledge of a cluster center. The second makes use of a

prototype tree which serves as a cluster center. This reduces the complexity

of the objective function computation substantially.

The tree transformation may be used to improve cluster performance.

A tree transformation maps the forest of relational trees to another forest

which is a subset of the relational trees. The desired subset has clusters

which are compact and well-separated. A tree transformation is sought which

improves a given clustering criterion. The tree transformation relies on a

set of node rewriting rules. It is by varying these rules that tree transforms

are tailored to a specific application.
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A waveform recognition system which exploits the properties of

relational trees might be constructed as follows: Training sets of waveforms

are converted to relational trees and then transformed such that the clusters

are compact and well-separated. Candidate waveforms are transformed using

the same set of rewriting rules, and then classified based on their proximity

to an existing cluster.

5.2 Seismic Example

Figure 5.1 shows a typical seismogram of a thin sand imbedded in a

shale.

, 1 I S 25 0 25 30 35 40 4 5

2.0 

_f

Figure 5.1
Seismogram over a sand channel (after Neidell (141)

This particular stratigraphic configuration forms an oil trap and therefore

has great economic significance. An expert seismic interpreter can easily

spot such an anomaly. A wavelet with a single peak and a trough becomes a

doublet over the sand lens. It is not so easy for a machine to make such a

qualitative judgement. Due to varying frequencies, noise contamination,

changing bed thickness, and segmentation errors, a purely numerical

algorithm technique, such as a matched filter, may not succeed in identifying

those traces that contain sand. However, this is an ideal two-class relational

tree clustering problem.
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A seismogram over a known sand lens will serve as a training set of

waveforms. From the corresponding relational trees, a tree transform can

be found which improves clustering performance based on the objective

functions described earlier. Seismic traces from unknown geology may then

be compared to the two clusters and classified as belonging to the cluster of

their nearest k neighbors. Figure 5.2 depicts schematically the two

waveforms in question and their relational trees.

No Sand Present Sand Present

root root

5 P5 P

p5 p0 p0 p 5 pO

Figure 5.2

Seismic Waveforms and Relational Trees

Variations of these trees will occur due to noise, varying geology, etc.. The

tree transformation will be designed to eliminate these inhomogeneities as

much as possible. The rates of successful classification will be compared

before and after transforming the tree clustering space by simulating the

waveforms, distorting them, and adding noise, then applying the above

procedure.
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The number of peak quantization levels used was six. This provided

reasonable identification of critical peaks, while keeping the tree grammar

small enough to work with. The candidate rule set chosen for this application

is shown in table 5.1.

operation:
p0 => aO(pO);
p1 a aO(pO);
p2 =>aO(pO);

p3 u>aO(pO);

p4 => a4(p4);
p5 =) a5(p5);

operation:
PO(aA,aA) => aO(pO);
PI(aA,aA) => aO(pO);
P2(aA,aA) => aO(pO);

operation:
P3(a3,aO) => a8(P3(sO,sl));
P3(aO,a3) =>a8(P3(sl,sO));

P3(a8,aA) =a8(P3(sO));

P3(aA,a8) => a8(P3(sl));
P3(aA,aA) => a3(p3);

operation:
P4(a4,aO) => a7(P4(sO,sl));
P4(aO,a4) => a7(P4(sl,sO));
P4(a7,aA) ->a7(P4(sO));

P4(aA,a7) =>a7(P4(sl));

P4(aA,aA) => a4(p4);

operation:
P5(a5,aO) =>a6(P5(sO,sl));

P5(aO,a5) a>a6(P5(sl,sO));

P5(aA,a6) => a6(P5(sl));
P5(a6,aA) -> a6(P5(sO));
P5(aA,aA) => a5(p5);

operation:
P6(aO,a6) =) aC(P6(sl,sO));

operation:
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P6(a7,a6) -> aC(P6(sl,sO));

operation:
P6(a8,a6) => aC(P6(sl,sO));

Table 5.1

Selected tree-transform operations

The effect of operations 2 through 6 was to propagate a desired subtree once

it is identified. The state labeled aA, which appears in the right hand side of

the rules, is the wild card state. Since the rule list is scanned from the top

down, rules containing this state can be viewed as a default situation.

5.3 Seismic Classification

Waveforms were classified via a k-nearest neighbor scheme [8].

Training sets consisted of five samples of each waveform. A value of k=3 was

found to be effective for classification. A single nearest neighbor scheme

was found to be ineffective because an outlier from an incorrect cluster may

be the closest to a given waveform.

5.4 Seismic Classification Results

Waveforms were simulated using cubic splines. The contaminating

noise was bandlimited. The resulting trees before and after transforming are

shown in appendix. Table 5.2 gives the results of transformation and

classification for various signal to noise ratios. Signal to noise ratio is

listed, followed by the objective function J1 before transformation, the

objective function Jl* after transformation, and the observed error rate

Pr[e]. The errors made were all misses, i.e. the classification of a sand

trace as a trace without sand.

-g 1 ! , ' ll

Mil
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S/N JI Jl* Pr[E]

30db 00 00 0

20db 0.097 1.11 0

10db 0.16 1.54 0.125

5db * 0.18 1.38 0.187

0db 0.16 0.94 0.500

-5db 0.12 0.88 0.500

Table 4.2

5.5 Seismic Segmentation

Another useful clustering operation is one that divides a group of

unknown patterns into clusters. A cluster-seeking system may be used to

segment a seismic section by forming clusters of similar wavelet structure.

A hierarchical clustering scheme such as the one discussed in previous

chapters was utilized to form clusters from the simulated seismic data. The

resulting dendrogram using nearest-neighbor clustering is shown in figure

5.3. The tree samples used were from the training set with lOdb SNR. Samples

0-4 were signals from traces without sand, while signals 5-9 were from

traces over sand lenses.



47

0

-- 0

0 0 0 0
-I I I I

0 1 2 -3 4 56 7

Figure 5.3
Dendrogram for Seismic Segmentation

5.6 EC6 Example

We shall now address the problem of interpreting electrocardiogram

(ECG) waveforms. An ECG may be divided into three parts: The P wave, the

QRS complex, and the T wave [15]. A normal ECG waveform is shown in figure

5.4.

R

p T

Q S
Figure 5.4

The Normal ECG

We wish to classify a subset of ECG abnormalities resulting from

supraventricular arrhythmias. These are characterized by changes in the P
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wave. Specifically, we wish to determine whether a given ECG exhibits an

inverted P wave associated with premature atrial contraction (PAC), an absent

P wave resulting from atrial tachycardia, or is normal.This is essentially a

three-class detection problem. The waveforms in question are shown in

figure 5.5.

Figure 5.5
Abnormal ECG patterns (after Ganong (15])

5.7 ECG Classification

As in the previous example, waveforms were simulated with additive

colored gaussian noise. In order to capture the inhomogeneities encountered

when interpreting ECG's in real situations, variations were allowed in PQ

interval, ORS duration, and ST interval. The training set was then transformed

to improve the objective function Jl*. The set of transform rewriting rules

which was found to accomplish this is given in table 5.3:

operation:
p0 => ao(pO);
pl => al(pl);
p2 => a2(p2);
p3 =) a3(p3);
p4 -> a4(p4);
p5 => a5(p5);
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operation:
PO(aA,aA) => aO(pO);

operation:
P1(aA,aA) -> al(pl);

operation:
P2(al,a2) -) a6(P2(sO,sl));
PZ(a6,aA) => a6(P2(sO));
P2(aA,a6) => a6(P2(si));
P2(aA,aA) => a2(p2);

operation:
P5(aO,a5) =a5(p5);

P5(a5,aO) =a5(p5);

P5(al,a5) ->a7(P5(sO,sl));

P5(a2,a5) => a7(P5(sO,sl));
P5(a7,aA) => a7(P5(3O));
PS(aA,a7) => a7(PS(si));

operation:
P5(aA,aA) =) a5(p5);

Table 5.3
ECG transform rules

The unknown incoming ECG signals were transformed in the same way and

classified by a k-nearest neighbor scheme with k--3. The resulting relational

trees for examples of all three clusters before and after transform are

shown in the appendix.

5.8 ECG Results

The results of implementing the ECG recognition system are shown in table

5.4. The system performs well only at high signal to noise ratios.
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S/N Jl Jl* Pr(E]

20db 0.198 1.271 0

15db 0.174 0.478 0.081

lOdb 0.159 0.499 0.33

5db 0.179 0.302 0.581

0db 0.169 0.326 0.581

Table 5.4
ECG Classification Results

5.9 EC6 Cluster Seeking

We may also use hierarchical cluster-seeking to segment a group of

ECG waveforms. Application of a nearest-neighbor cluster seeking algorithm

resulted in the dendrograms shown in figures 5.10 and 5.11. The 10db training

set was used. Figure 4.10 shows a two-class example where normal ecg's are

separated from those with PAC. Samples 0-3 were normal, samples 4-7

exhibited PAC.

0I

o n
* I
* I

0 0 0 0
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I I I I

0 ? 3 4 5 6 7

Figure 5.10
Hierachical clustering of normal and PAC ECG's
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The dendrogram for a three class problem is given in figure 5.11. In this

example, samples 0-3 were normal, samples 4-7 exhibited PAC, and 5-9 were

tachicardic.

0
1

0 0
1 I

0 0 0 0

0 0 0 0 0 0 0

a a l I a S 8

0 I 2 3 5 7 114 6 6 9 10

Figure 5.11

Three-class ECG hierarchical clustering dendrogram

5.10 Discussion of Results

The relational trees shown in the appendix demonstrate the filtering

capabilities of the tree transform. The fluctuations in basic wave shape are

removed by propagating the desired subtrees and eliminating those subtrees

judged as superfluous. By storing time and amplitude information as node

attributes, waveforms may be reconstructed from the transformed trees.

The results of this experiment can be compared to the existing numerical

techniques. Since within each signal class there are infinitely many variations

in the waveform, an infinite number of matched filters would be required to

accurately represent the problem. Assuming the signal set could be limited to

a finite number of possible forms, a bank of matched filters would perform

better than the technique presented here at low SNWs, but not as well for high

SNR's. When the amplitude of the noise becomes large enough to distort the

peak dominance relations In the tree representation, the method breaks down.

.. . .L O.. .- i r!i .. .
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A further consideration is the complexity of the system. Banks of matched

filters are difficult to implement, and require many fixed or floating point

operations. The relational tree clustering technique, once the transform

operations have been selected, requires only addressing operations and

integer comparisons.

If a prototype tree can be constructed, system complexity is reduced

linearly, keeping the number of tree comparisons to a minimum. In addition,

the tree transformation speeds up the tree distance calculations by the

square of the number of nodes removed since the distance computation runs

in 0(n2) time, where n is the number of nodes.

Comparing tables 4.2 and 4.4, it becomes apparent that the performance

in terms of classification error is much worse for the ECG case than for the

seismic case. The explanation for this lies in the increased complexity of the

ECG waveforms over the seismic waveforms. The need to distinguish complex

trees from one another, and to recognize and eliminate noise subtrees, calls

for a carefully constructed set of tree transform rewriting rules. The

effectiveness of the transformation is limited by the candidate rules supplied

by the human user. A methodical rule-selection algorithm is worth

investigating. Information for the automatic design of a transform rule set

could be gathered as a byproduct of the distance calculation. Since the

distance between two trees results from the best matching between individual

nodes, a large amount of detail concerning the correlation between subtrees

is simply being ignored. The precise method by which this additional

information is put to use needs to be the subject of further research. Linking

the transform design to the tree matching process would not only simplify the
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rule selection, but would reduce the complexity of the entire system

markedly.

In addition to improving the rule selection process, the rules

themselves might be enhanced by taking semantic information into account.

More information may be encoded in the rules annotatively. If the single

attribute "valley height' was to be included at each non-terminal node in the

relational tree, more intelligent filtering could take place. The decision to

propogate a subtree as relavent information, or to classify it as noise and

prune it, depends to some extent on the depth of the parent node's valley. It

was this inability to distinguish absolute valley depths that limited the success

of the ECG rule set. The inclusion of at least some semantic information is

evidently crucial for the recognition of complex waveforms. The theory for

handling semantic information in the tree transform needs to be thoroughly

developed before any improvements can be made to the implementation.
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Chapter 6

Conclusions

We have endeavored to construct a system which will identify and

classify waveforms based on their underlying structural similarities. An

elegant and convenient means to represent a signals structure, without

regard to absolute magnitudes or precise timing, is the relational tree. The

relational tree is a computer data structure that represents a waveform by

the relative placement of peaks and valleys.

We can treat the relational tree much as a vector in pattern space.

Several pseudo-metrics have been developed for measuring distance between

trees. Using a tree metric and many of the concepts from traditional cluster

analysis, we have designed a waveform recognition system. A key element of

the waveform recognition system Is the tree transform. The reason for

transforming the tree space Is to Improve the clustering configuration so

that unknown candidate trees lie close to their prototypes in a sample training

set. The actions of a tree transform are determined by the rewriting rules

which are mappings between subtrees. By varying the rewriting rule set, a

transform may be found which Improves tree clustering performance. We

have introduced two objective functions for measuring that performance.

They vary in action and complexity.

After implementing the waveform recognition system and testing it on

simulated reflection seismic and electrocardiogram data, the following

observations may be made.
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(1) The symbolic recognition system in its present form is only feasible

if the tree complexity is low, i.e. the signal contains a small number of peaks

and valleys.

(2) For these waveforms, the classification error is equal to or better

than numerical techniques at low signal to noise ratios, but abruptly becomes

worse as relative peak and valley heights are altered by noise.

(3) A system of practical complexity requires automated rule selection.

Information needed to select these rules is available as a byproduct of the

tree metric.

(4) The transform rule set could be greatly enhanced by adding

semantic information, but the theory governing such a transform has yet to be

developed.

The decision to use relational tree waveform recognition must be made

on the merits of each individual set of waveforms. Waveforms whose

relational tree structures are similar will be difficult to distinguish in tree

space. The strength of the RT method becomes apparent if the relational tree

structures of opposing clusters lie far apart in tree space, as in the seismic

example.

I ..
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Appendix

The following relational trees are taken from the seismic example with

5db signal-to-noise ratio. The trees are shown before and after undergoing

transformation with the rewriting rules in table 4.1.

No Sand Present

Before transform:

11

1 5-3I I

I I

I I

12

354..

After transform:

515 3 n

Jn
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Before transform:

6

II5?

43 -4(1I II
3 4 0-i

I 1

003 1

5 -

I

Afe trnfom

5

II
IA

Sand Present

Before transform:
6

3

4 A
I I, 1 4 _ _ _ _

4 -1 2 4- - 1

2 - 4 4._.2
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After transform:

55

Before transform:

6

52

01

After transform:

55
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