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Abstract

The purpose of this paper is to investigate the convergence rates of a sequence of

empirical Bayes decision rules for the two-action decision problems where the distributions

of the observations belong to a discrete exponential family. It is found that the sequence

of the empirical Bayes decision rules under study is asymptotically optimal, and the order

of associated convergence rates is O(exp(-cn)), for some positive constant c, where n is

the number of accumulated past experience (observations) at hand. Two examples are

provided to illustrate the performance of the proposed empirical Bayes decision rules. A

comparison is also made between the proposed empirical Bayes rules and some earlier

existing empirical Bayes rules. S
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1. Introduction

The empirical Bayes approach in statistical decision theory is appropriate when one

is confronted repeatedly and independently with the same decision problem. In such

instances, it is resonable to formulate the component problem in the sequence as a Bayes

decision problem with respect to an unknown prior distribution on the parameter space and

then use the accumulated observations to improve the decision rule at each stage. This

approach is due to Robbins (1956, 1964, 1983). Many such empirical Bayes rules have

been shown to be asymptotically optimal in the sense that the risk for the nth decision

problem converges to the optimal Bayes risk which would have been obtained if the prior

distribution was fully known and the Bayes rule with respect to this prior distribution was

used.

The usefulness of empirical Bayes rules in practical applications clearly depends on

the convergence rates with which the risks for the successive decision problems approach

the optimal Bayes risk. The purpose of this paper is to investigate the convergence rates of

a sequence of empirical Bayes rules for two-action decision problems when the distributions

of the observations belong to a discrete exponential family.

Let X be a random observation with probability function of the form

(1.1O)f ( )= h(x)0(),z = 0, 1,2,...;0 < 0 < Q,

where h(z) > 0 for all z = 0, 1,2,..., and where Q may be finite or infinite. The observation

X may be thought of as the value of a sufficient statistic based on several iid observations.

Consider the following testing: Ho: 0 > 00 against H, : 0 < 00, where 0o is a known
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positive constant. For each i = 0, 1, let i denote the action deciding in favor of Hi. For

the parameter 0 and action i, the loss function is defined as:

(1.2) L (0,i) = (1 - i)(Oo - 0)1(O,0.) (0) + i(O - 0o) 10oQ)(0)

where IA(') denotes the indicator function of the set A. In (1.2), the first item is the loss

due to taking action 0 when 9 < D0, and the second item is the loss of taking action 1

when 9 > 00. It is assumed that 0 is the value of a random variable 9 having an unknown

prior distribution G(O).

For a decision rule d, let d(z) = P{accepting HoIX = 4). That is, d(z) is the

probability of taking action 0 given X = z. Let D be the class of all decision rules. For

each decision rule d, let r(G, d) denote the associated Bayes risk. Then, r(G) = inf r(G, d)
deD

is the minimum Bayes risk among the class D.

Based on the statistical model described above, the Bayes risk associated with the

decision rule d is:

o0

(1.3) r(G,d) = F10o - p(x)]d(z)f(z) + C,
X=0

where

(1.4) =h(z)f(x + 1)
h(z + 1)f(x)'

(1.5) ,(z) = f(zle)dG(6),

(1.6) 8= -Oo)f(z19)dG(6).
Z=O8
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We consider only prior@ G such that fo, OdG(O) < oo to insure that the risk is always

finite.

Note that C is a constant which is independent of the decision rule d. Thus, from

(1.3), a Bayes decision rule, say d;, is clearly given by

(1.7) dc(z) I if lp(z) _ 0o,
0 otherwise.

Since the prior distribution G is unknown, it is not possible to apply the Bayes rule

for the decision problem at hand. In this situation, we use the empirical Bayes approach.

We note that Johns and Van Ryzin (1971) have studied the above decision problem via

empirical Bayes approach. In this paper, a sequence of empirical Bayes decision rules {dn)

is proposed for the above described decision problem. The associated asymptotic optimal-

ity property is investigated. It is found that the order of the rate of convergence of {d*}

is O(exp(-cn)) for some positive constant c, where n is the number of accumulated past

experience (observations) at hand. Two examples are given to illustrate the performance

of the proposed empirical Bayes decision rules. A comparison is also made between the

proposed empirical Bayes rules and some earlier existing empirical Bayes rules.

2. The Proposed Empirical Bayes Rules and Its Asymptotic Optimality

For each j = 1,..., let (Xi, Gj) be a pair of random variables, where X. is observable

but Oj is not observable. Conditional on Oj = 0, Xi has probability function f(z1O). It

is assumed that e,j = 1,..., are independently distributed with common unknown prior

distribution G. Therefore, (Xj, ej),j =1,2,..., are iid. Let X, = (Xi,...,Xn) denote

the n past observations and let X+ = X denote the current random observation.
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According to (1.4) and (1.7), an empirical Bayes decision rule, say d,, is proposed as

follows. First, for each x = 0,1,2,..., let

(2.1) f( W E - ( ) + i,
J=l

where 6, is a positive value such that 6. = o(1). Then, let

(2.2) fon(x) = h(x)fn(x + 1)
h(z + 1)fn(z)"

We then define

(2.3) Pn*(z) - [Pm n,(y)] A Q,

where a A b = min{a, b). Finally, the empirical Bayes decision rule d is defined as:

4 1 if 'Pn(x) > 0o,
(2.4) d ()-{0 otherwise.

Note that the past data Xn is implicitly contained in the subscript n.

Definition 2.1. A decision rule d is said to be monotone if for z, y 0 with z < y,

d(z) <_ d(y).

Note that from (2.3), pC(z) is nondecreasing in z. Then, by (2.4), we see that d (z)

is a monotone decision rule.

In the following, the asymptotic optimality of the sequence of the proposed empirical

Bayes decision rules {dn) will be investigated. The monotonicity of the decision rules {d})

will be used to obtain the related asymptotic optimality.

5
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Consider an empirical Bayes decision rule d.(z). Let r(G, d) be the Bayes risk

associated with the rule 4. Then,

(2.5) r(G,d.) = 0 - ()]E[4(x)]f(x) + C,
Z=O

where the expectation E is taken with respect to Xn. Since r(G) is the minimum Bayes

risk, r(G, d) - r(G) > 0 for all n. Thus, the nonnegative difference r(G, dn) - r(G) is used

as a measure of the optimality of the empirical Bayes decision rule dn.

Definition 2.2. A sequence of empirical Bayes decision rules {dn}0=1 is said to be

asymptotically optimal at least of order an relative to the (unknown) prior distribution G

if r(G, d) - r(G) < O(an) as n --, oo, where {c&n} is a sequence of positive numbers such

that lim an = 0.
n--oo

Now, straightforward computation leads to that o(x) is increasing in x. Thus, we let

A(Oo) = {zeo(z) > 0o} and B(Oo) = {zlo(z) < 0o}. Define

(2.6) M min A(6) if A(o) = ',

too ifBA( 0 )# 4,,

(2.7) m {maB(Oo) if B(e) 0,(2.7) rn = -1if B(Oo)"",

where 0 denotes the empty set.

By the increasing property of o(x) with respect to the variable z, m < M; also,

m < M if A(0o) 5 4. Furthermore,

(2.8) X < m iff P(z) < V0 and y 2 M iff p(y) > o.

6
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The following theorem is our main result.

Theorem 2.1. Let {d,*} be the sequence of empirical Bayes decision rules defined above.

Suppose that 00 < Q. Also, assume that

(a) fOQ OG(O) < oo and

(b) m <oo.

Then, r (G, d) r r(G) 5 0O(exp (-cn)) for some positive constant c.

Proof: Under Assumption (b) and by (2.8), direct computation leads to

(2.9)

r(G,dj-r(G) = m[oj~)Pp*x !O~~) [px-0o]P{p.(x) <a~~)
Z=O Z=M

where Ej =-if M=-1.
Z=O

The nondecreasing property of pn*(z) implies

(P{p*(x) ! Go) : P{pn*(m) ! Oo} for all x < m,

(2.10)I P{p*() < do) 5 P{pn4(M) < Oo) for all x > M.

Combining (2.9) and (2.10), we have

(2.11) r(G, d*) - r(G) :5bl P{Pn (M) 60}o + b2 P{Pn4 (M) <Go),

M 00

where 0 5 b, =E~[Go -P~(X)]f(X) < 00,0 b2 = , [p(x) - Golf(x) < oo, and the
___ z=M

finiteness of both b, and b2 is guaranteed since f GdG(O) < oo by Assumption (a).

Therefore, it sufffices to consider the asymptotic behaviors of both P{pn*(m) ! Go)

and P{pn*(M) < 0 ).

7
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By the definition of sp.*(z), when p.*(M) < Q, then jp.*M) ? p.(M), where v,(- is

the function defined in (2.2). In view of this fact and by (2.1) and (2.2),

P{(P.(M) < to) :5P{i~ft(M) < 00}

(2.12 =j ~{ (M) < -t(M, Oo) + A (M,6o, n)),

where

(2.13) Ai(z) = hz[zj)X - f(z+ 1)] - Ooh(zT+ 1)[I(,)(X,) -f(x,

(2.14) t(x, 8o) = h(z)f (x+ 1) - foh(x + 1)f (x),

Also, by the definition of *()and (2.1) and (2.2) again,

P{P.(m) ! 8o}

-P{Po (Y) eo0for some y=,1,...m)

FZ P{P(Y) ! do)
Y=o

(2.16) - -P{!Z A (y) t -(y,Oo) + A(y,Oo, n)}

Note that A,,(z),j = 1 .. .n, are iid; E [Ai (z)1 0, and a I(z, Oo) 5 A, (x) :5 a2 (X, 00)

where ai(x,Oo) = -h(z)f(z + 1) - h(z + 1)Oo + h(z + 1)Oof(z) and a2(X, Go) = h(x) -

h (x) f(x+ 1) + h(x + 1)Oo f (x). AlIso, since 6n, = o (1) and m <00o, there exists some p osit ive

integer n0, such that for all n > no, IA(y,Oo,n)i !5 It(y,6o)j hold for all 0 < y :5 m
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and for y = M. Hence, for n being sufficiently large, -t(M, Oo) + A(M, 8o,n) < 0 since

t(M,Oo) > 0; and -t(y,o)+A(y,6o,n) > 0 for 0 < y _< m since t(y,,Oo) < 0 for 0 < y< m.

In view of the above facts and by Theorem 2 of Hoeffding (1963),

Pjn

p{ A(M) < -t(M, Oo) + A (M, 0o,n)}
-" j=l

< exp{-2n[-t(M, Oo) + A(M, Oo,n)]2 a3 (M, 6o)}

(2.17) < exp{-2 [-t(M, Oo)]2 s1 (M, 00))}

and for 0 < y < m,

Pjn

{3- F Ai(y) t -(y, 8o) + A (y,8o, n)}

< exp{-2n[-t(y,0o) + A(y,0On)]2a3 (y, Oo)}

2

where a3(z, Oo) a2(z, 0o) -a1(z, o) = h(z) + h(z + 1) 0 .

Let

(2.19) c = min {t 2(y,Oo)a 1 (y, Oo)10 < y !5 m or y = M}.

It is clear that c > 0 since m < o from Assumption (b) and t2 (y, Oo)az3(y, Oo) > 0, for

all 0 < y 5 m and for y = M. Then from (2.11), (2.12) (2.16) to (2.19), we have

m
(2.20) r(G, d*) - r(G) < b1 Z exp(-cn) + b2exp(-cn) = O(exp(-cn)).

V=O

Hence, the proof of this theorem is completed.
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S. Examples and Remark

The following two examples have been considered by Johns and Van Ryzin (1971) and

used to illustrate the performance of their proposed empirical Bayes decision rules for the

two-action problem. We cite them and use the same to illustrate the performance of the

proposed empirical Bayes decision rules {d}.

Example I. (The Geometric Distribution). Suppose that

f (z[O) = 6'(l - ), X= 0,l1,2,...;O0 < 0 < 1;

and that the prior distribution has the probability density function g(O) where

g(O) = (a + 1)(1 - V),0 < 9 < 1,a > -1.

Then, h(z) = 1 and f(z) = ( Qr(z+1a+ 2) . Thus, o(z) = h-z)f(Z) which

tends to 1 as z --+ co. Taking 0 < 6o < 1, then, A( 0o) = {zIo(z) _ 0o} $ 0. Therefore,

m < M - min A(Oo) < co. Hence, by Theorem 2.1, r(G,d ) - r(G) < O(exp(-cn)) for

some positive constant c.

Example 2. (The Poisson Distribution). Let

f(zl) = e-6z/r(z+ 1),z = o,1,2,...;9 > 0.

Letting the prior density function be g(O) = e-0,9 > 0, we then have f() = 

fo o ze-2e8de = (')z+', and h(z) = U Thus, V(z) = h ~z)/(Z+ - z+1 which tends

to infinity as z tends to infinity. Therefore, for any finite 60 > 0, m < cc. Then by

Theorem 2.1, r(G, d,) - r(G) :_ O(exp(-cn)) for some positive constant c.

10



Johns and Van Ryzin (1971) considered several situations about the behavior of the

tail probability of the prior probability density function, under which, their proposed

empirical Bayes decision rules may achieve the best possible convergence rate a_ - n -

We also apply those conditions to the sequence of the empirical Bayes decision rules {dn).

We state the result as a corollary without citing the statement of those conditions. The

reader is referred to Johns and Van Ryzin (1971) for detail.

Corollary 3.1. Let (d.) be the sequence of the empirical Bayes decision rules defined

in Section 2. Suppose that f Q dG() < oo. Then, either under the assumptions in

Theorem 3 or under the assumptions in Theorem 4 of Johns and Van Ryzin (1971), we

have r(G,d*) - r(G) O(exp(-cn)) for some positive constant c.

Proof: We need only to verify that A(Oo) 3 0 under each assumption. This can be done

directly by noting the Lemmas 4, 5 and 6 of Johns and Van Ryzin (1971).
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