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ABSTRACT

Changes in the internal representation of a visual display during the first

second after presentation are among the earliest phases of human cognition where

memory mechanisms may be investigated. The effect of array siz (2-6 digits) on

the latency to name a visually marked element in a brief display increases rapidly

with marker delay, revealing such a change in representation. For early markers

the effect is negligible, indicating direct aess (and spatially-selective attention);

for late markers the effect Is a linear increase, indicating a failure of selective

attention and suggesting search. Two alternatives to direct access (marker makes

element visually distinctive; marker automatically attracts visual attention) are

rejected, as tactile spatial markers produce similar effects.
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Direct Access by Spatial Position In Visual Memory:
1. Synopsis of Principal gfdings

1. Introduction

In recent years the traditional account of the dynamics of short-term visual
memory -- or iconic memory - has come under attack. For example, Coltheart
(1980, 1984) suggested that there may be two different representations
concurrently present after a display, one that is phenomenally visible, and a
different one from which information is extracted. 2

What are the initial properties of the memory-representation of a display,
and how do they change over time? Given Coltheart's suggestion, the question
may even be raised whether the earliest representation from which information is
extracted is a visual (or spatial) one. Indeed, what properties ought a
representation have to be called visual (or spatial), given that it may not be
phenomenally visible?

Direct access by spatial position is one candidate. We would argue that this
property was implicitly assumed in the classic spatially-cued partial-report
experiments of Sperling (1960) and of Averbach and Coriell (1961). Suppose this
property obtains, and suppose further that we know how to specify, or address, a
location in the memory. Then information about the element in the specified
location should become available with approximately the same delay, regardless of
the number of other filled locations. In the terms of Kahneman, Treisman &
Burkell (1983), the "cost of visual filtering"3 should be negligible. On the other
hand, if (for example) the representation of the display took the form of covert
sequential verbalization, there seems less reason to expect direct access by spatial
position.

I. This memorandum approximates the verbatim text of a paper presented at the annual meeting
of the Psychonomic Society, Boston, November 1985. The first series of experiments reported
could not have been done without the expert hardware and software support of A. S. Coriell
and W. J. Kropfl. The remaining expe:iments depended on the Parasite-FS real-time operating
system developed by C. E. Wright and M. A. Derr in Bell Laboratories' Human Information.
Processing Research Department. The work reported was supported in part by Contract
N00014-85-K-0643 between the Office of Naval Research and the University of Pennsylvania.

2. Earlier, Turvey (1978, pp. 108-111) had reviewed several studies that indicated the existence of"nonvisible visual representations," and sugges.ed that whereas the visible representation was
referred to retinal coordinates, the longer-lasting nonvisible one was not.

3. The "cost of visual filtering" is the additional time required to select and respond to a specified
display element that results from the process of rejecting or ignoring other display elements.
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2. Experimental Method

We chose to address locations in memory in the same way that Averbach &
Coriel did, with a visual marker that designated a single element. Indeed, our
experiments were similar to theirs, but with several critical differences, mentioned
below. A sample display from our first series of experiments is shown in Figure 1.
It contains three constituents, which could appear and disappear at different times.
One is the array of digits, here of size four. Another is a pair of dots for each
digit ("registration dots"). And the third is the marker (or probe), two vertical
line segments, one above and one below the target digit. The subject's task was to
name the target digit as fast as possible; we measured vocal reaction time (RT).
Subjects were paid for speed and penalized for errors. We varied array. size from
trial to trial, and probe delay from block to block.'

Three of the possible time sequences of array, registration dots, and marker
are described in Figure 2. In all three examples, the correct response is to
pronounce the word "eight." In the first example, probe delay is zero. The 50
msec probe and the 150 msec array turn on simultaneously. In the second example
the probe immediately follows the array, so the probe delay is 150 msec. The final
example shows a long delay. Here the dots are especially useful in reducing
difficulties of registration of array and marker. The dots stayed on until the
response.

There are three important differences between our experiments and those of
Averbach and Coriell (1961). First, rather than overloading the memory we used
small arrays, so that subjects were almost always correct. The average error rate
was about 3%.5 Second, we applied time pressure, and the primary measure was
reaction time. Finally, we varied the number of elements in the array, since our
main interest is in the effect of array size on mean reaction time.

Some of the details of design and procedure are best considered in the
context of Figure 3. The display area contained six potential element locations
(absolute positions). At the start of a trial, subjects fixated in the center of this
area.6 To avoid confounding number of elements (array size) with their separation,
we placed elements in contiguous locations. To reduce the confounding of array
size with retinal eccentricity, we placed the arrays at all possible positions within

4. In the first series of experiments (Experiments 1.5, Section 3) array size was s-3,4,5, or 6,
and probe delay (in msec) was -50, 0, 150, 350, 650, 950, 1650, or 3450.

5. The effects of array size and probe delay on error rate were similar to their effects on RT;
details will be included in a subsequent report.

6. A change with delay in the effect of absolute position suggests that at long probe delays
subjects may have shifted their fixation from the center of the display area to the center of the
array.
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Synopsis of Principal Findings 3 - Sternberg, Knoll, & Turock

the display area. 7

There are of course several factors other than array size that might influence
reaction time: for example, absolute positions of array and of marker (and target
element) within the display area, and serial (relative) position of the target element
within the array. It is not possible to arrange for all these factors, together with
array size, to be mutually orthogonal. The obvious simple averaging we performed
is biased, and happens to favor the smaller arrays.' As shown below, however, a
more sophisticated multiple regression analysis, in which the position effects are
estimated and removed, suggests that the simple- analysis is not far off. At this
writing, however, only sone of the data have been treated this way. 9

3. Results with Visual Markers

Data from our first series of experiments, averaged over the four subjects,
are shown in Figures 4 (shorter delays) and 5 (longer d.lays). Before starting this
series, each subject had served for 28 hours in a related task.10 The new series
included about 26 hours of testing. Each plot shows mean reaction time as a
function of array size. In each of Experiments 1-5 we tested several probe de-lays
in a balanced order. The time lines at the top of both figures show that probe
delays start at -.05 sec (or -50 msec) on the left, and become positive on the right.
Each experiment is represented by the plots in one row, and each probe delay is
shown in a different column.

7. The leftmost element in an array of size s-4, for example, could occupy absolute positions 1,
2, or 3.

8. For an array of size s, each of the 7-s possible array positions occurred equally often, as did
each of the s possible serial positions of the target element. An equally-weighted mean over
the (7-s)s resulting combinations produces a distribution of absolute positions that varies with
array size. (The frequencies of markers over the six possible absolute positions are in
proportion to (1:2:3:3:2.1) for s - 3 and 4, to (1:2:2:2:2:1) for s - 5, and to (1:1:1:1:1:1) for s
- 6. The resulting mean distance from fixation point to marker (mean eccentricity), measured
in absolute-position units, was 1.17, 1.17. 1.30, and 1.50 for s - 3, 4, 5, and 6, respectively.
Because RT tends to be longer with greater eccentricity, smaller arrays are favored. Unless
these effects are removed, mean RT might then artifactually appear to increase with array size.

The smaller arrays are also favored by the distribution of serial positions, because end
positions tend to produce shorter RTs, and the proportion of end positions (2/s) decreases with
s. Whether this last effect should be removed, however, in estimating a "pure" effect of array
size, may depend on whether it is interpreted as an effect of lateral masking on acuity, or an
effect of the order of a self-terminating search, for example.

9. In the multiple linear regression analysis we separately fitted an a.!litive model to the data for
each probe delay and each subject. We incorporated effects of array :.ze, response digit, and
serial position, as well as two separate effects of absolute position, one for end elements (serial
positions I, s), and the other for interior elements.

10. See Sternberg, Knoll, & Leuin, 1'75.

NNW
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At all delays the lines fit well, justifying a description of the data in terms of
slope and intercept. Functions from the same probe delay in different experiments
show good agreement, especially in their slopes.11 Consider first the data in Figure
4. For the earliest probes the effect of array size is negligible. This is evidence for
the direct-access property. Even after a short delay an effect emerges, however.
That is, the direct-access property appears to be rapidly lost. Put another way, the
cost of visual filtering (Kahneman, et al., 1983) is highly sensitive to timing. 12

The plots for longer delays (Figure 5) show that by about 2/3 second the
effect of array size has reached an asymptote: There is little further change, even
out to 3.5 seconds. We shall argue that the dramatic change with delay in the
pattern of retrieval times reflects a qualitative transformation of the memory
representation of the array -- a change that is completed in less than one second.
One approach to testing its completeness is to see whether the pattern after 2/3
second shows any evidence of the display having been visual. This was the
purpose of Experiment 6. We displayed the registration dots on an otherwise
blank screen, while the subject heard the digits as a spoken sequence. The subject
had been told to use the natural correspondence between serial-order (of the
spoken digits) and left-to-right position (of the registration dots). After about two
seconds the visual marker appeared. Results are shown in the lower right corner
of Figure 5. The data are similar to those for a visual array after less than a
second.

Figure 6 shows the slopes of the fitted lines separately for the six
experiments, as a function of probe delay.' 3 The agreement across experiments is
good, with the effect of array size growing from close to zero to about 80 msec per
digit in less than a second.

In Figure 7, slope values have been combined across experiments, and are
shown along with the corresponding intercepts, as functions of probe delay. The
bars indicate estimates of two standard errors, based on differences among
subjects. While the slope rises, the intercept falls, and with a similar time course.
We mentioned (Section 2) that a more sophisticated analysis using multiple

11. The heights of the functions (reflected by the intercepts) decrease slightly with experiment
number, as the subjects become increasingly practiced.

12. Because the dependence of "cost" on timing is so great, it is not useful to make statements
about cost without also stating the effective time-point in the life of the display memory at
which the location of the tar.-et is specified. Furthermore, this time point is not necessarily zero
just because marker and array are displayed simultaneously, and is likely to be greater than
zero, given simultaneity, when some visual or categorical aspect of the display elements that
must be discriminated informs the subject about target location.

13. Note that for Experiment 6, where no array was displayed and the sequence of spoken digit
names was presented at a rate of 510 msec/digit, we cannot define an equivalent probe delay.
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regression produces a better measure of the array-size effect. The slope bias in
our simpler analysis seems to be only about 5 msec, however. For example, the
improved slope estimate for the -50 msec probe delay is 0.7 t 1.0 msec/digit,
whereas the value given by the simple analysis (and shown in Figure 7) is 4.7 t
1.6 msec/digit.

4. Interpretation: Rapid Transformation of Visual Memory

It is tempting to argue from these data that there is no persistence of the
direct-access property. But note that this argument depends on making the
unwarranted assumption that the effective probe delay is equal to the physical probe
delay. 14

The slope reflects operations that are influenced by array size, whereas the
intercept reflects operations that are not so influenced. Figure 7 shows that probe
delay affects both sets of operations, and with a similar time course. This
similarity suggests a common mechanism.

One interpretation is as follows: The initial representation of the array,
which has the direct-access property, is transformed into something else in less
than a second, with rapid loss of direct access. At any delay, once the
representation of the probed element is found, (either directly, or by search) it is
converted into its spoken name. The intercept drops because the duration of this
conversion operation is shortened with delay. The similarity in time course follows
from the fact that the same transformation that destroys the direct-access property
also brings the array elements closer to their spoken names.1

14. It seems likely that the effective probe delay is greater than the physical delay, because the
time to transmit information about the marker from the retina to the relevant place(s) in the
visual system plus the time to discriminate its location is greater than the time to transmit
information about the array from the retina to relevant place(s) in the visual system. If so.
then the delay of -S0 msec may effectively be greater than zeo. One potential compli'3tion is
that if a difference between effective and physical delays existed, it might vary with physical
delay, so that to provide a function relating slope to effective delay, the delay axis would have
to be more than merely translated.

15. For other evidence that indicates such a transformation, derived from three other experimental
approaches using reaction.time measurements with small arrays, see Sternberg. Knoll, &
Leuin, 1975; Sternberg & Knoll. 1985, and Turock, 1985.
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S. Alternative Explanations for the Absence of an Array-Size Effect at Short
Probe Delays

We have discussed two principal findings about the effect of array size.
First, the effect is absent for early probes. And second, the effect is present for
delayed probes. We have already mentioned one interpretation (direct access), but
there are others. Consider first the finding for early probes. Figure 8 lists the
three alternative explanations we have considered.

The first was suggested by Julian Hochberg.1'6 Given approximate synchrony
of probe and array, the marker is visually integrated with the target digit. This
produces a highly distinctive pattern, easily found by a search process. Thus we
find no array-size effect, not because search is unnecessary, but because the set of
elements searched (i.e. the set of distinctive patterns made up of digit plus marker)
is always of size one.

The second alternative is suggested by results of Yantis and Jonides (1984).
Instead of merely informing the subject of a location, the marker automatically
attracts visual attention to that location. A search for the marked location thus
starts at its goal point, and, if the target element appears in close temporal
proximity to the marker, finds it in the first location searched. Thus, we find no
array-size effect, not because search is unnecessary, but because the order of the
(self-terminating) search places the target element first.

6. Experimental Test of the Alternatives

Both of the explanations above depend on the marker being visual. To test
them we compared visual and tactile markers with a new set of six subjects in
Experiment 7. We used a 50 msec vibration of a fingertip as the tactile marker
(see Figure 9), and taught subjects a correspondence between six fingers and the
six display locations.17 To help, we incorporated schematic fingers in the displays.
(See Figure 10, which contains the sequence of displays on a sample trial.) In
some trial blocks the marker was visual, as shown, and in others, tactile. Because
of improved equipment, we were able to reduce array duration to 50 msec in this
experiment. Subjects had 14 hours of practice, mainly to learn the tactile-visual
correspondence, followed by 22 hours of testing.' 8

16. Personal communication.
17. We used the index, middle, and little finger on each hand; preliminary testing suggested that

discriminability was better with this combination than with three adjacent fingers on each hand.
18. We used array sizes of s- 2, 3, 4, 5, and 6, and probe delays (in rsec) of -350, -150, -50,

150, 350, and 650.
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Functions relating mean reaction time to array size at each of the six delays
and for each of the two probe modalities are shown L'i Figure 11. The tactile data
are somewhat less orderly than the visual, but slopes of the fitted lines agree well
across modalities.1 9 These plotted values are based on the more sophisticated
(regression) analysis.

Among other things, these data demonstrate how misleading it may be to
study arrays of only one size. Consider the effects of increasing positive probe
delays: Delaying the probe shortens RT for small arrays while lengthening RT for
large arrays.

Slopes of the twelve reaction-time functions from Experiment 7 are shown in
Figure 12. Agreement between modalities is good. For both modalities, probes
that just precede the array produce a negligible effect of array size. 2° For
comparison, Figure 13 shows slopes from the earlier experiments on a similar
plot. 21 Tactile markers convey information, but they are unlikely to add visual
distinctiveness to a numeral, nor automatically cause a shift of visual attention. To
explain performance with early markers we are left with the direct-access property.

7. Tests of Three Alternative Explanations for the Presence of an Array-Size
Effect at Long Probe Delays

The second finding to be explained is the rapid emergence of an array-size
effect as the probe is delayed. Does this necessarily mean a rapid loss of the
direct-access property? Figure 14 lists the four explanations we have considered.

19. We added the new early delays to insure that we would cover the range of rapid change for
both modalities. To our surprise it proved unnecessary to adjust the tactile probe delays
relative to the visual, even though greater intercept values for the tactile markers suggest
slower discrimination.

20. With a probe delay of -350 msec it seems likely that subjects had time between marker and
array to shift their fixation from the center of the display area to the marked location; that
subjects did this tends to be supported by data on the effect of absolute position. Given such a
shift in eye position, which guarantees foveation of the target element, the retrieval mechanism
may be fundamentally different. The slight increase in slope at -150 msec (relative to -350
msec and -50 msec) is reliable; it may indicate an array-preprocessing operation whose duration
increases with array size. Such an operation might be reflected in the RT only when the mz.rker
leads the array appropriately: Delaying the marker slightly could cause the preprocessing
operation to be "masked" by an overlapping process of discriminating the marker; With
additional delay of the marker the preprocessing operation could be completed before the RT
clock started.

21. These values were derived from the multiple-regression analysis applied to data from
Experiments 3. 4. and 5.
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7.1 S,'acial Uncertainty

For the first alternative we begin with the observation that it takes time fcr a
subject to discriminate the location of the marker. This discrimination time may be
shorter when the location of the marker is less uncertain. Suppose the array is
small Then ,vhilc the subject awaits a de!ayed probe she learns where the array
elemex:ts are, and hence where the marker might be. This reduction with delay in
spatial uncertainty would favor small arrays (especially if visual attention could be
concentrated in the region outlined by the registration dots). Thus we might
observe an array-size effect even whle the direct-access property persisted, because
of an indirect effect of array size on the time to discriminate the marker.

To test this possibility we used a -50 msec marker in Experiment 8, but
displayed the registration dots 2/3 second in advance, to reduce spatial uncertainty
(more for smaller arrays) by marking the set of locations to be occupied by the
forthcoming array. The effect of array size was still negligible.

7.2 Response uncertainty

For the second alternative explanation, we begin by noting that the time to
organize and execute a response from a small set of alternatives may be shorter
than from a larger set. 22 If the subject identifies the array elements while awaiting
a delayed probe, then smaller arrays are favored with smaller response sets. If
this altered the duration of response operations, we would obtain an array-size
effect. To test this possibility we used an early marker in Experiment 9, but
specified the response set in advance, by sequentially displaying the array digits in
a random order at one location and requiring subjects to name them aloud as they
were displayed. 23 The effect of array size was still negligible.

7.3 Memory load

According to the third alternative explanation, as the subject awaits a
SAedelayed marker she identifies the array elements and stores them in working

memory. The resulting memory load is greater for larger arrays. This load slows

22. For the naming of displayed numerals this effect has been found to be very smal, although
systematic. (See, e.g., Experiment 5 in Sternberg. 1969; note that the small effect reported of
number of stimulus-response alternatives ccmblnes effects on stimulus-processing and
response-organizing operations.) Under the conditions being considered here, however, the
numeral is not displayed at the time the response is required.

23. This procedure also mimicked any possible contribution to the array-size effect with delayed
probes of d.fferential priming across array sizes of the encoding of the numeral to be named -
priming that might result from the subject's encoding of the array numerals while she awaited
the probe. See Eichelman (1970), Proctor (198!), and Walker (1978), for example, on such
priming effects.



-8a -

Effect of Array Size (s) on RT for Delayed Probe

Some Alternative Explanations:

1. Reduction of spatial uncertainty of forthcoming
marker, as positions of array elements are
registered, favors small s.

2. Reduction of response uncertainty, as array
elements are identified, favors small s.

3. As array elements are identified a memory load
develops that slows other processes. (Load
increases with s.)

4. Loss of direct-access property as memory ages.

Figure 14
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the naming response and produces an effect of array size (because load size equals
array size), even though the direct-access property persists. One of the necessary
conditions for this alternative is that a memory load should slow the naming
response to a marker. 24 In an attempt to reject this possibility we imposed an
auxiliary memory load of varying size on the subject in Experiment 10 before
presenting an array with an early marker. 25 To our dismay, we obtained a load
effect. It was smaller than the normal array-size effect with a delayed probe, but
substantial, nonetheless. More experimental clarification is needed. 26 For the
present, we are forced to admit that our favored explanation of the emergence of
an array-size effect -- the last one in Figure 14 - may therefore be invalid. The
direct-access property may persist for a time, but be camouflaged by something
else.

27

24. The other necessary condition is that the array does indeed generate a load on working
memory.

25. We imposed the load by presenting a spoken sequence of digits. We attempted to induce the
subject to actively maintain the load by then presenting a spoken test digit from the list, instead
of the m3rker, on some trials. The correct response on those trials was to pronounce the name
of the digit in the list that had followed the test digit, under time pressure. (See Sternberg,
1967, for results from this procedure using visual presentation of sequence and test digit.)

26. It should be emphasized that the discovery of a load effect does not, by itself, validate the third
alternative explanation; it must also be shown that such a load is in fact generated during the
long probe delays in the normal task.

27. If the direct-access property is in fact rapidly lost, it is worth considering why. One possibility
is that the initial representation is referred to retinal coordinates, but that it changes rapidly
into a representation that is referred to more abstract non-retinal spatial coordinates, thereby
causing the marker-array mapping to change from "direct" to "indirect".(Turvey, 1978, p. I11.
suggested that an initial short-lived representation is probably tied to retinal coordinates.) The
similarity of our findings for tactile and visual markers seems to argue strongly against this
idea as an explanation of the direct-access property and its possible rapid elimination, because
the mapping from tactile marker to visual array would have to be "indirect" at all delays.

-
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