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SUMMARY

Report here are the research activities supported by AFOSR Grant NO. 83-0071 from Febru-

ary 15, 1986 to February 14, 1987.

On VISCOUS EFFECT INJECTION: a code has been assembled for either globle or local com-

putation of flow over an airfoil. Using this code, we were able to show that viscous effects

computed on a seperate, local grid can be injected into an inviscid solution of the Euler equa-

tions on a global grid. A paper on this work was presented at the AIAA 25th Aerospace Sci-

ences Meeting in Reno last January. On REFINED TRANSONIC FLOW COMPUTATIONS: our

computations of the flow over a circular cylinder with local refinement and an local analysis by

. Dr. Sobieczky, who visited and colaborated with us last summer, indicated the existence of

shock free flow over a range of Mach number slightly greater than the critical value. Also our

computations of the flow over an ellipse at an angle of attack showed that the circulation may

not be arbitrary and is very sensitive to the amount of artificial viscosity and the grid. On

THREE-DIMENSIONAL UNSTEADY TRANSONIC FLOW COMPUTATION WITH TEl: the modifica-

tion of computer codes for this study has been completed. Preliminary results showed that a

A " steady fine grid solution can be recovered on a coarse grid and the truncation error injected to

render the fine grid solution is indeed very small except near the leading edge, the trailing edge,

and the shock.

Three papers on our earlier works have been accepted for journal publication. Five mas-

ters/Ph.D. students have been supported fully or partially by this grant. The paper presented at

the AIAA meeting is appended, and a brief description of the progress on each topic follows.
-p
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VISCOUS AND INVISCID INTERACTIONS

The thin-layer Navier-Stokes/Euler code, due to Steger and Pulliam, has been modified to

implement the method of viscous effect and truncation error

injection for computations of compressible flow over an airfoil. Viscosity can be turned on and

off by a parameter in the code. Communications between solutions on different grids, i.e., the

extraction of the boundary conditions for the local solution and the computation of truncation

error for the refined global solution, are handled by an interpolation scheme designed for arbi-

trary curvillinear meshes.

This code and our viscous-inviscid interaction method were applied to compute viscous flow

over a NACA0012 airfoil at subcritical Mach numbers. The results showed that viscous effects,

as well as truncation error, can be injected into an inviscid solution of the Euler equations on a

grid which normally is too coarse to account for the viscous effects in the boundary layer.

However, we have not been able to move the boundaries of a local grid arbitrarily close to the

body, due to an instability of the local solution. It is found in our studies that it is better, and

more general, to prescribe pertubations of the Riemann invariants as boundary conditions than

the Riemann invariants. More work needs to be done to overcome the difficult of imposing

9proper boundary conditions for the local solution.

A summary of this work was presented at the AIAA 25th Aerospace Sciences Meeting, lanu-

ary, 1987 in Reno, Nevada. A copy of the paper is in Appendix I.

REFINED TRANSONIC FLOW COMPUTATIONS

Ol1 Our preliminary results of the flow over a cVJnder at Mach numbers slightly greater than the

critical value M = 0.4 showed that there seems to be a range of Mach number in which the flow

is free of shocks, as Van Dyke conjectured by s 1owina, the convergence of a Rayleigh-janzen

type expansion carried to very high order. By a study of the possible local, near sonic solutions

Ir



3 in the hodograph plane, Sobieczky has found a singular solution which may bridge the gap

between smooth shock-free flow and flow with embedded shocks. Though singular, this solution

does not have the post-shock logarithmic singularity described by Oswatitsch and Zierep.

Further refined computations of the local flow should reveal the existence of this singularity,

which could have significant effects on the stability of the boundary layer.

We have carried out a series of computations of flow over ellipses at an incident with the

free stream. Since the ellipse does not have a sharp trailing edge, the flow over it may assume

any circulation, according to inviscid theory. However, the circulation of such a flow computed

by a numerical scheme may depend sensitively on the truncation error due to discretization and

the numerical viscosity added in order to stabilized the scheme. We have found converged

numerical solutions with a negative lift for an ellipse at a positive angle of attack with the free

stream. We have found that the circulation depends on the grid and the amount of numerical

- viscosity but surprisingly, not so much on the discretization method. It is hope that further stu-

dies and more refined computations will lead to a better understanding of the numerical solution

of the Euler equations.
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A TRUNCATION ERROR INJECTION APPROACH TO VISCOUS-INVISCID INTERACTION

B.D. Goble* and K.-Y. Fung"
Aerospace and Mechanical Engineering

University of Arizona, Tucson, Arizona 85721

Abstract scheme. The boundary layer code calculates the viscous
A numerical procedure which uses truncation error flow near the body and passes boundary conditions to the

injection derived from a local fine grid solution or from a inviscid flow solver, usually a full potential code, which in
near body viscous solution is presented in the context of turn calculates the outer flow and pases boundary con-
solving flow over an airfoil. A global solution on a coarse ditions back to the boundary layer scheme. The bound-
grid interacts with a solution calculated on a local fine grid ary conditions which are typically passed are displacement
which is fully enclosed within the global grid. The global thickness or transpiration velocity from the boundary layer
solution passes boundary conditions and initial values to code to the potential code and wall pressure distribution
the local solution which, in turn, is used to form truncation from the potential code back to the boundary layer code.
error approximations. Truncation error is formed by op- This approach is much more efficient than the Navier.
erating with the global solution operator on the local grid Stokes solvers, both in CPU time and in memory require-
solution which has been interpolated onto the coarse grid. ments. Also, since two grids are used, it is easier to tai-
The resulting space varying function is used as a forcing lor the grids to capture the relevant length scales in each
function in the explicit part of the global solver. This space region. However, this approach is not as robust as the
varying function will be nonzero only in the region com- Navier-Stoke approach. The algorithm breaks down in
mon to the local grid and the global grid. Both the local cases with large separation regions since the boundary
and the global solutions can be viscous or inviscid. The layer code cannot calculate this flow situation. Also, the

" validity of this method is confirmed by comparison with potential flow code cannot convect vorticity away from
results from a thin-layer Navier-Stokes code on a NACA the body or wake region and tends to overpredict shock
0012 airfoil at a low angle of attack. strengths. To counteract these last two problems, Steger

and Van Dalsem' incorporated a vector potential code due
i '- I. Introduction to Chaderjian' in place of the usual full potential code,

Computation of 2-D transonic flows over aerodynamic thus including vorticity transport in the free field and giv-
bodies has reached a stage where solutions to most reason- ing more accurate shock fitting. New boundary conditions( able problems can be found with some degree of accuracy. were also used for the inviscid part of the interaction. The
Naturally, there are many available approaches to finding boundary layer equations generate vorticity, entropy, and
these solutions. One of the more popular methods is to changes of stagnation enthalpy effects which are used as
solve the Reynolds-averaged Navier-Stokes equations using inputs to the inviscid flow solver.
finite difference methods. An advantage of this approach This paper discusses an approach to viscous-inviscid

. is that it can compute separated flows which have vorticity interaction which is similar to that used by Steger and Van
convecting into the inviscid region. Also, the code tends Dalsem. This approach is based on truncation error injec-
to be very robust, able to calculate a wide variety of cases tion, which will be explained first. Then its application to

"- ~. without having to change more than a few parameters. viscous-inviscid interaction will be discussed followed by
However, due to the wide range of length scales present in a brief discussion of the 2-D interpolation scheme used to
the problem and the difficulty of producing an adequate restrict the fine grid solutions to the global coarse grid.

' grid to resolve them, thus codes are very expensive when Section IV contains some details on the current implemen-
it comes to computer resources and require a fast computer tation of the approach and Section V discusses the bound-
with extensive memory in order to be practical. ary conditions being used. Section VI presents the inviscid

Another approach to solving these types of transonic results from a NACA0012 airfoil test case and then the vis-
flow problems is often called viscous-inviscid interaction. cous results.
A compressible boundary layer code is coupled with some
type of inviscid flow solver through a complex interaction 11. Theory

Research Assistant, Student member AIAA Truncation error occurs when a differential equation
** Associate Professor, Member AIAA is discretised on a grid with finite mesh spacing. To illus-
This papor in deetaud a werk of the U.S. coverm.at and trate what is meant by truncation error injection, a simple
Is not subject o. ,.preIht protection la the United states, symbolic approach will be used. Suppose that the differen-
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tial equation to be solved can be written in operator form solver. The truncation error term formed in Eqn.(2.4) will
then contain viscous information as well as truncation er-

LO = 0 (2.1) ror information. The injection of this term as a forcing
function will cause the flow to feel the viscous effects as

where L is a continuous differential operator and4 is the calculated on the fine grid. The usage of two uncoupled

i exact continuous solution. Now finite difference L on some grids also enables the relevant length scales to be captured
grid with characteristic mesh spacing & to get more efficiently than if only one grid were used.

Lho - T.E., = 0 (2.2) The term T.E.4 also contains information about the
truncation error incurred in differencing the inviscid terms.

where Lh is a discrete operator and T.E.h is the truncation This information will improve the accuracy of the con-

error associated with the differencing. Typically, in solving vective terms on the coarse grid. Accuracy is lost in the

this equation numerically, T.E.h is assumed to be small boundary layer when the grid is coarsened in the normal di-

and is neglected. However, it can be significant. If T.E.h rection. The truncation error information helps to reduce

was known a priori, the exact solution could be found, the loss of accuracy due to the increased mesh spacing.

When truncation error injection is used, T.E.h is estimated
using information from a finer grid. m. Interolation Scheme

i First, difference L on a grid with characteristic mesh In the implementation of this scheme, the fine gridspacing k, where k<h, to get solution must be interpolated from the local grid in onespan kcurvilinear coordinate system to the global grid in another

% LO - T.E.k = 0. (2.3) curvilinear coordinate system and back again. This in-
terpolation is handled by a routine that will interpolate a

Now neglect T.E.&, which is smaller than T.E.h, and solve function of two variables from one general grid to another

to get a solution *A, that approximates * to O(kn ) where general grid. Some function QI is known as Q1(XI, YI)

n is the order of the scheme. Now restrict *k onto the and as QI(f, q), where (XI, Yi) are the physical coordi-

coarse grid to get th. Operate on the resulting solution nates of grid 1 and ( , i) are the coordinates in the corre-

vector with the coarse grid operator to define a new quan- sponding computational plane. First of all, each point in

tity T.E.h as grid 2 is located in grid 1 with a nearest neighbor search

T.E.h = Lh t (2.4) routine. The mappings QI(f, q), X1(f,,i), and Yi(f, q)are approximately found using a local bicubic surface to
Iwhere T.E. is a spatially varying function which in an represent the evenly spaced data. The point in grid I clos-

estimate of the local truncation error. Now inject the es- est to the current point in grid 2 is used as the origin of the
timated truncation error onto the right hand side of the bicubic surface and as an initial guess to a Newton type

* original equation as a forcing function and solve zero finding routine. Say (j, j) are the coordinates of the
S= T.E. . (2.5) nearest neighbor point. Then XI(I, 4) and YI( , 4) are

found as well as the partial derivatives with respect to

Obviously, if the fine grid and coarse grid are the same, and q at that point. This new data is used in the NewtonObioulyif te fne ridand oare gid ae te smeroutine to drive to zero the functions

Oh will converge to th and nothing is gained. However,
suppose the fine grid is strictly a local grid, say around f( , ) = XPT - X1( , ,)
a shock or encompassing a boundary layer or some other ( ) = YPT - YI( , I )
region of large gradients. The function T.E.h will then
be nonsero only at the coarse grid nodes lying within the where (XPT, YPT) are the coordinates of the current
boundaries of the local fine grid. In this case, th will point in grid 2. At convergence, we know the coordi-
converge to a solution influenced by 01% but not identical nates (*, q) of the current grid 2 point in the compu-

to it. The difference between pth and Oh in the patch is tational domain. Using the mapping found earlier, the
dependent upon such factors as the size of the patch and value Q2(f, i7) can now be found.
boundary conditions used. However, the overall solution
will be improved by the injected truncation error in the IV. Implementation
patch since th is a better solution than th in the patch. The thin-layer Navier-Stokes/Euler code ARC2D, due

Now, look at how this approach can apply to an in- to Steger and Pulliam, is being used to implement the
teraction scheme. Suppose that the fine grid solution is a method due to its familiarity, ease of use and the fact that
viscous solution, provided by either a boundary layer solver it performs both inviscid and viscous simulations. Details
or a Navier-Stokes solver, and the global solver is an in- of this code will not be presented here as it is discussed at

viscid solver such as an Euler solver or a vector-potential length elsewhere.3 - e The code was modified to iteratively

L
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solve the coupled systems. First, a converged solution is boundary for ARp. It is easy to see that for constant free
'IV found on the global grid. This solution is thmen interpolated stream conditions, AR = 0 and all that is needed is AR2 .
0onto the local grid and a solution is found to some degree For inflow, we have

1of convergence. This solution is then restricted back to the
$ global grid. The interpolated solution is then operated on VN = -

by the various operators that form the explicit side of the SN = SN-1
calculation, i.e. the boundary conditions, the convective
terms and the artificial dissipation terms. The viscous op- evaluated at the boundary and for outflow we have

, . erators can also be used if it is desired to use the thin-layer
Navier-Stokes equations instead of the Euler equations as VN -- VN - l + AV,
the global solver. The resulting residual is saved as an es- S N = sN-2 +As

timate of the truncation error due to the difference in the
two grids and/or the solvers. The global solution is then evaluated as previously described. These boundary con-
found as usual except that at each step, the stored forcing ditions give virtually identical results as the original ver-
function is subtracted from the explicit side of the opera- sions when used for far field conditions in a single grid
tor so that at convergence the combined residual is sero. calculation and give better results when used for the outer

. The implicit side is not changed in any way. This solution boundaries of the local grid.
is then interpolated back to the local grid and the process
is repeated until some appropriate measure of convergence VI. Results
is satisfied. The method was applied to a NACA0012 airfoil at

V. Boundary Conditions M. = 0.6, a = 1.0 deg on a coarse grid ( 193x33 points)
Tsand a fine grid ( 225x49 points ) which cover the same

very similar to those used in the original code.6 The wal physical domain. Viscous and inviscid case were run on
and akery si itoose ared the riin de The farwfi h a each grid for comparison with the results from the present
and wake onditons are the same. The far field character- were interpolated

Pe isticlike boundary conditions are slightly modified so that tt on he case n th e interpolat e d
they may also be used for the local grid. As used in Ref. to ere grid usng the terr The

solutions were then used to form the forcing terms for the
S8, the locally one dimensional Riemann invariants a coarse grid calculations. Three calculations were made,

= - 2a an inviscid run forced by the fine grid inviscid solution
Rj = V. - ( FUCGR3 ), an inviscid run forced by the fine grid viscous

2a solution ( FVICGR3 ), and a viscous run forced by the
R 2 = V. + 7 fine grid viscous solution (FVVCGR3). An inviscid run

was also made on the fine grid using the fine grid viscous
where V,, is the velocity normal to the far field boundary. solution to form the forcing function ( FVICGR 1)
For an inflow boundary, V., < 0 and R 1, the tangential ___________________

velocity, V, and an approximation to the entropy, S &0 Coefficients of Lift, Drag, and Moment
are all specified from free stream conditions. R2 is extrap-
olated from the interior. For outflow, V, > 0 and R2, V, CL CD CM

-. . and 5 wre extrapolated from the interior. R, is then speci- ICGRI 0.15827 0.00015 -0.00081

fled from freestream conditions. From these quantities, the FHCGR3 0.15816 0.00010 -0.00071
four conservative variables p, ps, pv, and e can be found. VCGR1 0.14555 0.00197 0.00095

This approach has been modified slightly. Define per- FVICGR3 0.14558 0.00194 0.00093

Sturbtion Riemann invariants as FVVCGRS 0.14558 0.00194 0.00093
2A,--__FVICGRI 0.14555 0.00197 0.00095

ARt = AV,,- 2 A
-R.=.V..- TABLE I

AR = A V, 2A M. = 0.6, a =1.0 deg, Invicid.
- 1 Global and Local grids have same domain.

where, for example, These four runs were made using the fine grid solutions

AV = V N - VN-1 as initial conditions to check the interpolation routine and
4V ' R the implementation of the method. Each calculation con-

and V4N is evaluated at the N's time step at freestream verged in one step as it should. These resulting solutions
i.. '  conditions for AR, and at the first grid line inside the were then compared with the fne grid viscous solution

'.md-% f.-A ie"*. _ AA
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VCGRI ) and the ine grid inviscid solution ( ICGRI ) solution. Comparing Fig. I with Fig. 2, which shows the
j in terms of CL, CD, and Cu. Table 1 shows the CL, CD Mach number contours as calculated on the 249x65 grid,

and CM values due to integrating Cp around the body for we can see that the agreement with the fine grid solution
all the cases. The agreement between the appropriate cases is quite good.
is good. Therefore, we can conclude that the interpolation
routine is working well and we can proceed. Coefficients of Lift, Drag, and Moment

The next step was to implement local to global inter- CL CD CM
action to solve inviscid fow about a NACA0012 airfoil at 249x65 0.27892 0.00050 -0.00175
M. = 0.5, a = 2.0deg. A 161x33 grid with a minimum 249x47 0.27857 0.00030 -0.00175
AY 0.002 was used for the global grid. Several different 249x45 0.27878 0.00031 -0.00177
local grids were used. They were all derived from either 249x43 0.27847 0.00035 -0.00177
a a 225x49 grid with a minimum AY = 0.0005 or a 249x65 249x41 0.27845 0.00034 -0.00177
grid with a minimum AY = 0.0001. The local grids were 249x39 0.27851 0.00038 -0.00179
formed by taking the first n lines from the body in the full

grid. Each of the cases was restarted using the inviscid TABLE 3
solution on the global grid as an initial condition. The M.. = 0.5, a = 2.0 deg, Inviscid. Local grid
following tables show values for CL, CD and CM as found based on 249x65 grid. Min AY = 0.0001
on the local grid.

Table 3 shows the lift and drag coefficients for the
Coefficients of Lift, Drag, and Moment case using local grids based on the 249x65 grid. The first

CL CD CM entry is the single grid result for the 249x65 grid. The re-

225x49 0.27847 0.00034 -0.00176 sults shown exhibit the same pattern as the previous case.

• 225x37 0.27824 0.00035 -0.00176 The best agreement in CL occured on the 249x45 grid.

225x35 0.27835 0.00034 -0.00176 All CL values are within 0.2% of the fine grid value. The

225x33 0.27847 0.00035 -0.00177 accuracy for the CD and CM values does increase as the
225x31 0.27845 0.00034 -0.00177 sise of the fine grid in increased. In this case, the small-

225x29 0.27851 0.00038 -0.00179 est grid that could be used without the solution diverging

225x27 0.27845 0.00040 -0.00180 was a 249x39 grid. Fig. 3 shows the Cp contours for the
225x45 case. Again, the solution appears to be continuous

TABLE 2 across the local grid boundary. The Cp contours for the

M. = 0.5, a = 2.0 deg, Inviscid. Local grid 249x65 case are shown in Fig. 4. Agreement between the

based on 225x49 grid. Min &Y = 0.0005 two cases is good. Fig. 5 shows the entropy contours for
the 249x45 case. All entropy generation is taking place at

Table 2 shows the Lift and drag coefficients for the the leading edge or elsewhere along the body. The local

canes using local grids based on the 225x49 grid. The first grid boundary is not generating any entropy. Fig. 6 shows

entry in the table is the single grid solution obtained on the the entropy contours for the 249x65 cae.
full 225x49 grid. The next two cases agree well with these
results. Beginning with the third case, the values start to Coefficients of Lift, Drag, and Moment
diverge from the single grid results. The values for CL do CL CD CM

not appear to follow any logical progression as the size of 225x49 0.25084 0.01098 0.00232
the fine grid is reduced, but all values shown awe within 225x39 0.25141 0.01095 0.00234
0.1% of the 225x49 case. Actually, the closest solution is 225x37 0.25133 0.01094 0.00234
the 225x33 case. No explanation for this behavior has been 225x35 0.25135 0.01092 0.00234
found. A 225x25 case was also attempted. The solution 225x33 0.25081 0.01094 0.00232
appeared to converge very well and then suddenly diverged 225x31 0.25118 0.01098 0.00228
very rapidly. It was determined that this behavior was 193x49 0.24974 0.01281 0.00256
due to the fine grid outer boundary being too close to the
airfoil. TABLE 4

" Fig. I shows the Mach numbercontours for the 225x1 M.. = 0.5, a = 2.0 deg, Re = 10e. Local grid
case a displayed on the global grid. The gridline shown based on 225x49 grid. Min AY = 0.0005
is the approximate outer limit of the local grid. The con-
tours are continuous across the grid boundary indicating The code was next applied to subcritical viscous flow
that the local solution is blending smoothly with the global about a NACA0012 airfoil at M, = 0.5, a = 2.0deg,

thttelcasluioislndngmot l g nba



and Re - 10 . A 193x49 global grid with a minimum putational Fluid Mechanics Laboratory of the Aerospace
AY = 0.00006 was used in conjunction with local grids de- and Mechanical Engineering Department at the Univer-
rived from a 225x49 grid with a minimum AY = 0.00002. sity of Arizona. The authors would like to thank NASA
The global solution was found using the Euler solver and for its help and support in conducting the work presented

..-.." .. ! viscous type boundary conditions while the local solution here. We are grateful to NASA for support under Inter-
was found assuming turbulent viscous flow. An algebraic change Number NCA2-107, and to the Air Force under
mixing length model due to Baldwin and Lomax" was used Contract Number AFOSR-83-0071. We are also grateful to
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