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SUMMARY

Report here are the research activities supported by AFOSR Grant NO. 83-0071 from Febru=-
ary 15, 1986 to February 14, 1987,

On VISCOUS EFFECT INJECTION: a code has been assembled for either globle or local com-
putation of flow over an airfoil. Using this code, we were able to show that viscous effects
computed on a seperate, local grid can be injected into an inviscid solution of the Euler equa-
tions on a global grid. A paper on this work was presented at the AIAA 25th Aerospace Sci-
ences Meeting in Reno last January. On REFINED TRANSONIC FLOW COMPUTATIONS: our
computations of the flow over a circular cylinder with local refinement and an local analysis by
Dr. Sobieczky, who visited and colaborated with us last summer, indicated the existence of
shock free flow over a range of Mach number slightly greater than the critical value. Also our
computations of the flow over an ellipse at an angle of attack showed that the circulation may
not be arbitrary and is very sensitive to the amount of artificial viscosity and the grid. On
THREE-DIMENSIONAL UNSTEADY TRANSONIC FLOW COMPUTATION WITH TEI: the modifica-
tion of computer codes for this study has been completed. Preliminary results showed that a
steady fine grid solution can be recovered on a coarse grid and the truncation error injected to
render the fine grid solution is indeed very small except near the leading edge, the trailing edge,
and the shock.

Three papers on our earlier works have been accepted for journal publication. Five mas-
ters/Ph.D. students have been supported fully or partially by this grant. The paper presented at

the AIAA meeting is appended, and a brief description of the progress on each topic follows.
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VISCOUS AND INVISCID INTERACTIONS

The thin-layer Navier-Stokes/Euler code, due to Steger and Pulliam, has been modified to
implement the method of viscous effect and truncation error
injection for computations of compressible flow over an airfoil. Viscosity can be turned on and
off by a parameter in the code. Communications between solutions on different grids, i.e., the
extraction of the boundary conditions for the local solution and the computation of truncation
error for the refined global solution, are handled by an interpolation scheme designed for arbi-
trary curvillinear meshes.

This code and our viscous-inviscid interaction method were applied to compute viscous flow
over a NACA0012 airfoil at subcritical Mach numbers. The results showed that viscous effects,
as well as truncation error, can be injected into an inviscid solution of the Euler equations on a
grid which normally is too coarse to account for the viscous effects in the boundary layer.
However, we have not been able to move the boundaries of a local grid arbitrarily close to the
body, due to an instability of the local solution. It is found in our studies that it is better, and
more general, to prescribe pertubations of the Riemann invariants as boundary conditions than
the Riemann invariants, More work needs to be done to overcome the difficuit of imposing
proper boundary conditions for the local solution.

A summary of this work was presented at the AIAA 25th Aerospace Sciences Meeting, janu-

ary, 1987 in Reno, Nevada. A copy of the paper is in Appendix |.

REFINED TRANSONIC FLOW COMPUTATIONS

Our preliminary results of the flow over a cy.inder at Mach numbers slightly greater than the
critical value M = 0.4 showed that there seems to be a range of Mach number in which the flow
is free of shocks, as Van Dyke conjectured by showing the convergence of a Rayleigh-)Janzen

type expansion carried to very high order. By a study of the possible local, near sonic solutions
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in the hodograph plane, Sobieczky has found a singular solution which may bridge the gap
between smooth shock-free flow and flow with embedded shocks. Though singular, this solution
does not have the post-shock logarithmic singularity described by Oswatitsch and Zierep.
Further refined computations of the local flow should reveal the existence of this singularity,
which could have significant effects on the stability of the boundary layer.

We have carried out a series of computations of flow over ellipses at an incident with the
free stream. Since the ellipse does not have a sharp trailing edge, the flow over it may assume
any circulation, according to inviscid theory., However, the circulation of such a flow computed
by a numerical scheme may depend sensitively on the truncation error due to discretization and
the numerical viscosity added in order to stabilized the scheme. We have found converged
numerical solutions with a negative lift for an ellipse at a positive angle of attack with the free
stream. We have found that the circulation depends on the grid and the amount of numerical
viscosity but surprisingly, not so much on the discretization method. It is hope that further stu-

dies and more refined computations will lead to a better understanding of the numerical solution

of the Euler equations.
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A TRUNCATION ERROR INJECTION APPROACH TO VISCOUS-INVISCID INTERACTION

B.D. Goble® and K.-Y. Fung**
Aerospace and Mechanical Engineering
University of Arisona, Tucson, Arisona 85721

Abstract

A numerical procedure which uses truncation error
injection derived from a local fine grid solution or from a
near body viscous solution is presented in the context of
solving flow over an airfoil. A global solution on a coarse
grid interacts with a solution calculated on a local fine grid
which is fully enclosed within the global grid. The global
solution passes boundary conditions and initial values to
the local solution which, in turn, is used to form truncation
error approximations. Truncation error is formed by op-
erating with the global solution operator on the local grid
solution which has been interpolated onto the coarse grid.
The resulting space varying function is used as a forcing
function in the explicit part of the global solver. This space
varying function will be nonsero only in the region com-
mon to the local grid and the global grid. Both the local
and the global solutions can be viscous or inviscid. The
validity of this method is confirmed by comparison with
results from a thin-layer Navier-Stokes code on a NACA
0012 airfoil at a low angle of attack.

L _Introduction

Computation of 2-D transonic flows over aerodynamic
bodies has reached a stage where solutions to most reason-
able problems can be found with some degree of accuracy.
Naturally, there are many available approaches to finding
these solutions. One of the more popular methods is to
solve the Reynolds-averaged Navier-Stokes equations using
finite difference methods. An advantage of this approach
is that it can compute separated flows which have vorticity
convecting into the inviscid region. Also, the code tends
to be very robust, able to calculate a wide variety of cases
without having to change more than a few parameters.
However, due to the wide range of length scales present in
the problem and the dificulty of producing an adequate
grid to resolve them, these codes are very expensive when
it comes to computer resources and require a fast computer
with extensive memory in order to be practical.

Another approach to solving these types of transonic
flow problems is often called viscous-inviscid interaction.
A compressible boundary layer code is coupled with some
type of inviscid flow solver through a complex interaction
* Rescarch Assistant, Student member AIAA
** Associate Professor, Member AIAA
This paper is declared a work of the U.8. Government and
is ot subject to copyright protection in the United States.
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scheme. The boundary layer code calculates the viscous
flow near the body and passes boundary conditions to the
inviscid flow solver, usually a full potential code, which in
turn calculates the outer flow and passes boundary con-
ditions back to the boundary layer scheme. The bound-
ary conditions which are typically passed are displacement
thickness or transpiration velocity from the boundary layer
code to the potential code and wall pressure distribution
from the potential code back to the boundary layer code.
This approach is much more efficient than the Navier-
Stokes solvers, both in CPU time and in memory require-
ments. Also, since two grids are used, it is easier to tai-
lor the grids to capture the relevant length scales in each
region. However, this approach is not as robust as the
Navier-Stokes approach. The algorithm breaks down in
cases with large separation regions since the boundary
layer code cannot calculate this flow situation. Also, the
potential flow code cannot convect vorticity away from
the body or wake region and tends to overpredict shock
strengths. To counteract these last two problems, Steger
and Van Dalsem! incorporated a vector potential code due
to Chaderjian? in place of the usual full potential code,
thus including vorticity transport in the free field and giv-
ing more accurate shock fitting. New boundary conditions
were also used for the inviscid part of the interaction. The
boundary layer equations generate vorticity, entropy, and
changes of stagnation enthalpy effects which are used as
inputs to the inviscid flow solver.

This paper discusses an approach to viscous-inviscid
interaction which is similar to that used by Steger and Van
Dalsem. This approach is based on truncation error injec-
tion, which will be explained first. Then its application to
viscous-inviscid interaction will be discussed followed by
a brief discussion of the 2-D interpolation scheme used to
restrict the fine grid solutions to the global coarse grid.
Section IV contains some details on the current implemen-
tation of the approach and Section V discusses the bound-
ary conditions being used. Section VI presents the inviscid
results from a NACAO0012 airfoil test case and then the vis-
cous results.

II. Theory
Truncation error occurs when a differential equation
is discretised on a grid with finite mesh spacing. To illus-
trate what is meant by truncation error injection, a simple
symbolic approach will be used. Suppose that the differen-
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tial equation to be solved can be written in operator form
as

Le=0 (2.1)

where L is a continuous differential operator and P is the
exact continuous solution. Now finite difference L on some
grid with characteristic mesh spacing A to get

Ly®-T.Exr=0 (2.2)
where L), is a discrete operator and T.E.;, is the truncation
error associated with the differencing. Typically, in solving
this equation numerically, T.E.), is assumed to be small
and is neglected. However, it can be significant. If T.E.,
was known a priori, the exact solution could be found.
When truncation error injection is used, T.E.), is estimated
using information from a finer grid.

First, difference L on a grid with characteristic mesh
spacing k, where k < A, to get
Ly®-T.Ex=0. (2.8)
Now neglect T.E.;, which is smaller than T.E.;, and solve
to get a solution &, that approximates & to O(k™) where
n is the order of the scheme. Now restrict ®; onto the
coarse grid to get ®2. Operate on the resulting solution
vector with the coarse grid operator to define a new quan-
tity T.E.} as
T.ED = [, 8

where T.E.} is a spatially varying function which is an
estimate of the local truncation error. Now inject the es-
timated truncation error onto the right hand side of the
original equation as a forcing function and solve

(2.4)

Lpdy =T.E}. (2.5)
Obviously, if the fine grid and coarse grid are the same,
@), will converge to ®? and nothing is gained. However,
suppose the fine grid is strictly a local grid, say around
a shock or encompassing a boundary layer or some other
region of large gradients. The function T.E.} will then
be nonsero only at the coarse grid nodes lying within the
boundaries of the local fine grid. In this case, &, will
converge to a solution influenced by @} but not identical
to it. The difference between &, and @} in the patch is
dependent upon such factors as the sise of the patch and
boundary conditions used. However, the overall solution
will be improved by the injected truncation error in the
patch since @) is a better solution than &, in the patch.

Now, look at how this approach can apply to an in-
teraction scheme. Suppose that the fine grid solution is a
viscous solution, provided by either a boundary layer solver
or a Navier-Stokes solver, and the global solver is an in-
viscid solver such as an Euler solver or a vector-potential

it

solver. The truncation error term formed in Eqn.(2.4) will
then contain viscous information as well as truncation er-
ror information. The injection of this term as a forcing
function will cause the flow to feel the viscous effects as
calculated on the fine grid. The usage of two uncoupled
grids also enables the relevant length scales to be captured
more efficiently than if only one grid were used.

The term T.E.} also contains information about the
truncation error incurred in differencing the inviscid terms.
This information will improve the accuracy of the con-
vective terms on the coarse grid. Accuracy is lost in the
boundary layer when the grid is coarsened in the normal di-
rection. The truncation error information helps to reduce
the loss of accuracy due to the increased mesh spacing.

II1. Interpolation Scheme

In the implementation of this scheme, the fine grid
solution must be interpolated from the local grid in one
curvilinear coordinate system to the global grid in another
curvilinear coordinate system and back again. This in-
terpolation is handled by a routine that will interpolate a
function of two variables from one general grid to another
general grid. Some function Q1 is known as Q1(X1,Y1)
and as Q1(¢, n), where (X1,Y1) are the physical coordi-
nates of grid 1 and (&, n) are the coordinates in the corre-
sponding computational plane. First of all, each point in
grid 2 is located in grid 1 with a nearest neighbor search
routine. The mappings Q1(£,n), X1(§,n), and Y1(£,n)
are approximately found using a local bicubic surface to
represent the evenly spaced data. The point in grid 1 clos-
est to the current point in grid 2 is used as the origin of the
bicubic surface and as an initial guess to a Newton type
sero finding routine. Say (é, 1) are the coordinates of the
nearest neighbor point. Then X1(£,4) and Y1(£, ) are
found as well as the partial derivatives with respect to £
and n at that point. This new data is used in the Newton
routine to drive to sero the functions

,(é: ﬁ) = XPT_Xl(évﬁ)
9(€,7) = YPT - Y1({, %)

where (XPT,YPT) are the coordinates of the current
point in grid 2. At convergence, we know the coordi-
nates (£°,7n°) of the current grid 2 point in the compu-
tational domain. Using the mapping found earlier, the
value Q2(£*,7") can now be found.

IV. Implementation
The thin-layer Navier-Stokes/Euler code ARC2D, due
to Steger and Pulliam, is being used to implement the
method due to its familiarity, ease of use and the fact that
it performs both inviscid and viscous simulations. Details
of this code will not be presented here as it is discussed at
length elsewhere.2~® The code was modified to iteratively
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solve the coupled systems. First, a converged solution is
found on the global grid. This solution is then interpolated
onto the local grid and a solution is found to some degree
of convergence. This solution is then restricted back to the
global grid. The interpolated solution is then operated on
by the various operators that form the explicit side of the
calculation, i.e. the boundary conditions, the convective
terms and the artificial dissipation terms. The viscous op-
erators can also be used if it is desired to use the thin-layer
Navier-Stokes equations instead of the Euler equations as
the global solver. The resulting residual is saved as an es-
timate of the truncation error due to the difference in the
two grids and/or the solvers. The global solution is then
found as usual except that at each step, the stored forcing
function is subtracted from the explicit side of the opera-
tor so that at convergence the combined residual is sero.
The implicit side is not changed in any way. This solution
is then interpolated back to the local grid and the process
is repeated until some appropriate measure of convergence
is satisfied.

V. Boundary Conditions
The boundary conditions being used in the code are
very similar to those used in the original code.® The wall
and wake conditons are the same. The far field character-
isticlike boundary conditions are slightly modified so that
they may also be used for the local grid. As used in Ref.
6, the locally one dimensional Riemann invariants are

2a
7-1

2a
¥v-—-1

Ry=Va-

R3=Vn+

where V,, is the velocity normal to the far field boundary.
For an inflow boundary, V, < 0 and R,, the tangential
velocity, V;, and an approximation to the entropy, S = %
are all specified from free stream conditions. Rj is extrap-
olated from the interior. For outflow, V, > 0 and Ry, V;
and S are extrapolated from the interior. R, is then speci-
fied from freestream conditions. From these quantities, the

four conservative variables p, pu, pv, and e can be found.

This approach has been modified slightly. Define per-
turbation Riemann invariants as

AR, = av, - 248
-1
2Aa

AR: = AV, + =1

where, for example,
AVo = VN —yN-1

and VN is evaluated at the N** time step at freestream
conditions for AR; and at the first grid line inside the

Aidoiodiokoipab it A B2 2 DA 358 SN YW L A0 AT AN A u Wy o ot TR Ty e St Y a;'ﬂui-;&,'-;’-lx'.i

boundary for AR;. It is easy to see that for constant free
stream conditions, AR, = O and all that is needed is AR;.
For inflow, we have

V‘N - V‘N-l
SN = SN—l

evaluated at the boundary and for outflow we have

V‘N =V‘N-l + AV,
SN =8sN-1+AS

evaluated as previously described. These boundary con-
ditions give virtually identical results as the original ver-
sions when used for far field conditions in a single grid
calculation and give better results when used for the outer
boundaries of the local grid.

VL. Results

The method was applied to a NACA0012 airfoil at
My = 0.8, a = 1,0deg on a coarse grid ( 193x33 points )
and a fine grid ( 225x49 points ) which cover the same
physical domain. Viscous and inviscid cases were run on
each grid for comparison with the results from the present
investigation. The cases on the fine grid were interpolated
to the coarse grid using the interpolation routine. These
solutions were then used to form the forcing terms for the
coarse grid calculations. Three calculations were made,
an inviscid run forced by the fine grid inviscid solution
( FIICGRS ), an inviscid run forced by the fine grid viscous
solution ( FVICGRS ), and a viscous run forced by the
fine grid viscous solution { FYYCGRS ). An inviscid run
was also made on the fine grid using the fine grid viscous
solution to form the forcing function ( FVICGR1 ).

Coeflicients of Lift, Drag, and Moment
?L Cp CM
ICGR1 0.15827 0.00015 -0.00081
FOCGRS 0.15816 0.00010 | -0.00071
VCGR1 0.14558 0.00197 0.00095
FVICGRS 0.14558 0.00194 0.00093
FVVCGRS 0.14558 0.00194 0.00093
FVICGR1 0.14555 0.00197 0.00095
TABLE 1

My = 0.6, a = 1.0deg, Inviscid.
Global and Local grids have same domain.

These four runs were made using the fine grid solutions
as initial conditions to check the interpolation routine and
the implementation of the method. Each calculation con-
verged in one step as it should. These resulting solutions
were then compared with the fine grid viscoua solution
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{ VCGR1 ) and the fine grid inviscid solution { ICGR1 )
in terms of Cr, Cp, and Cag. Table 1 shows the Cr, Cp
and Ca¢ values due to integrating Cp around the body for
all the cases. The agreement between the appropriate cases
is good. Therefore, we can conclude that the interpolation
routine is working well and we can proceed.

The next step was to implement local to global inter-
action to solve inviscid low about a NACA0012 airfoil at
My, =05, a = 2.0deg. A 161x33 grid with a minimum
AY = 0.002 was used for the global grid. Several different
local grids were used. They were all derived from either
a 225x49 grid with a minimum AY = 0.0005 or a 249x65
grid with a minimum AY = 0.0001. The local grids were
formed by taking the first n lines from the body in the full
grid. Each of the cases was restarted using the inviscid
solution on the global grid as an initial condition. The
following tables show values for C;, Cp and Cp¢ as found
on the local grid.

Coeflicients of Lift, Drag, and Moment

CL Cp Cn
225x49 0.27847 0.00034 -0.00176
225x37 0.27824 0.00085 -0.00176
225x35 0.27835 0.00034 -0.0017¢
225x33 0.27847 0.00085 -0.00177
225x31 0.27845 0.00034 -0.00177
225x29 0.27851 0.00038 -0.00179
225x27 0.27845 0.00040 -0.00180

TABLE 2

My, = 0.5, a = 2.0deg, Inviscid. Local grid
based on 225x49 grid. Min AY = 0.0005

Table 2 shows the lift and drag coeflicients for the
cases using local grids based on the 225x49 grid. The first
entry in the table is the single grid solution obtained on the
full 225x49 grid. The next two cases agree well with these
results. Beginning with the third case, the values start to
diverge from the single grid results. The values for Cy, do
not appear to follow any logical progression as the sise of
the fine grid is reduced, but all values shown are within
0.1% of the 225x49 case. Actually, the closest solution is
the 225x33 case. No explanation for this behavior has been
found. A 225x25 case was also attempted. The solution
appeared to converge very well and then suddenly diverged
very rapidly. It was determined that this behavior was
due to the fine grid outer boundary being too close to the
airfoil.

Fig. 1 shows the Mach number contours for the 225x31
case as displayed on the global grid. The gridline shown
is the approximate outer limit of the local grid. The con-
tours are continuous across the grid boundary indicating
that the local solution is blending smoothly with the global
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solution. Comparing Fig. 1 with Fig. 2, which shows the
Mach number contours as calculated on the 249x65 grid,
we can see that the agreement with the fine grid solution
is quite good.

Coefficients of Lift, Drag, and Moment

CL Cp C
249x065 0.27892 0.00030 -0.00175
249x47 0.27857 0.00030 -0.00175
249x45 0.27876 0.00081 -0.00177
249x43 0.27847 0.00035 -0.00177
249x41 0.27845 0.00034 -0.00177
249x39 0.27851 0.00038 -0.00179

TABLE 3

My, = 0.5, a = 2.0deg, Inviscid. Local grid
based on 249x65 grid. Min AY = 0.0001

Table 8 shows the lift and drag coefficients for the
cases using local grids based on the 249x65 grid. The first
entry is the single grid result for the 249x65 grid. The re-
sults shown exhibit the same pattern as the previous case.
The best agreement in C; occured on the 249x45 grid.
All C values are within 0.2% of the fine grid value. The
accuracy for the Cp and Cp¢ values does increase as the
sise of the fine grid is increased. In this case, the small-
est grid that could be used without the solution diverging
was a 249x39 grid. Fig. 8 shows the Cp contours for the
225x45 case. Again, the solution appears to be continuous
across the local grid boundary. The Cp contours for the
249x65 case are shown in Fig. 4. Agreement between the
two cases is good. Fig. 5 shows the entropy contours for
the 249x45 case. All entropy generation is taking place at
the leading edge or elsewhere along the body. The local
grid boundary is not generating any entropy. Fig. 8 shows
the entropy contours for the 249x85 case.

Coeflicients of Lift, Drag, and Moment

CL Cp Cm
225x49 0.25084 0.01098 0.00232
225x39 0.25141 0.01095 0.00234
225x37 0.25183 0.01094 |- 0.00234
225x35 0.25135 0.01092 0.00234
225x33 0.25081 0.01094 0.00232
225x381 0.25118 0.01098 0.00228
193x49 0.24974 0.01261 0.00256

TABLE 4

M, = 0.5, a = 2.0deg, Re = 10%, Local grid
based on 225x49 grid. Min AY = 0.0005

The code was next applied to subcritical viscous flow
about & NACAO0012 airfoil at My, = 0.5, a = 2.0deg,
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and Re = 10%. A 193x49 global grid with a minimum
AY = 0.00006 was used in conjunction with local grids de-
rived from a 225x49 grid with a minimum AY = 0.00002.
The global solution was found using the Euler solver and
viscous type boundary conditions while the local solution
was found assuming turbulent viscous flow. An algebraic
mixing length model due to Baldwin and Lomax” was used
to approximate the turbulent effects. Transition was as-
sumed to occur at 10% of chord on both the top and bot-
tom of the airfoil.

The values for Cr, Cp and Chs for the viscous cases
are shown in Table 4. Again the values of Cz, do not follow
any recognisable pattern as the local grid sise is changed.
The best agreement occurs in the 225x38 case; all others
are within 0.8% of the single grid solution. Unlike the
inviscid results, here the Cp and Cjs values also do not
follow any sort of pattern. The 225x38 case gives the best
overall agreement for the three coefficients. The values for
the 193x49 case shown are for the solution as found on the
global grid alone without a local grid and were included
for comparison. Fig. 7 shows the Mach contours from the
225x38 case. Note the smoothness of the contours across
the local grid boundary and the good agreement with the
single grid results shown in Fig. 8. The plots of Cp shown
in Fig. 9 and Fig. 10 also agree very well.

VII. Conclusions

These results show the validity of this approach to
solving inviscid or viscous flow over airfoils. More work
needs to be done to understand better where to place the
outer boundary of the local grid. The location of the outer
boundary of the local grid, beyond some threshold, does
not appear to have any predictable effect on the accuracy
of Cr. Except in the viscous case, increasing the sise of the
local grid did improve the results for Cp and Cps. Also,
with more understanding on how the two grids interact,
better grids can be generated to put more resolution where
it is needed.
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