
Z-A8l 26 USING PARALLEL FUNCTION EVALUATIONS TO IMPROVE HESSIAN /
OF COMPUTER SCIENCE R H BYRD ET AL 38 MAR 87

UNCLASSIFIED CS-CU-316-87 ARO-21453 9-MA F/G 12/6EIEEEEEEIIIEI
EEEEEEmhEmhhhE
EOEEhEE IIIEEEllll~

LII

ILI1 .0 '0 11I
j.6

11111 ~W 11112hi.0.

~.E~ .w,. ~ V U 'U ' i '. ~ U. ..H

1.84

UICFILE, Copy ~.Iee 24Sq'

N

0 0

* I UNIVERSITY OF COLORADO

SING PARALLEL FUNCMON EVALUATIONS
, TO IMPROVE HESSIAN APPROXI]MATIONS

FOR UNCONSTRAINED OPTIMfIZATION

* ~ Richard H. Byrd*
Robert B. Schnabel*W

*1 Gerald A. Shultz**

-Z

ARMET O. OPUER C'.-A

-
4

~ ~' -~,--t-CAMPUS BOX-43 ~ ~ V * ,J

UNIVERSITY- OF, COLORADO,'BOULDER . VV

BOULDER, COLORADO 80309-0430 -6
~a - Technical Report

LECTE
JUN 09 1987m

Cr4 4

STAT

Ap~mvedtatpublic TeO
Di4bto U~i'7

USING PARALLEL FUNCTION EVALUATIONS
TO IMPROVE HESSIAN APPROXIMATIONS

FOR UNCONSTRAINED OPTIMIZATION

Richard H. Byrd*
Robert B. Schnabel*
Gerald A. Shultz**

CS-CU-361-97 March 1987

DTIC
SUNO E 7D

*Department of Comnputer Science, University of Colorado, Boulder, CDoordo 80309

* 00Department of Mathematical Sciences, Metropolitan State College, Denver. Colorado 80204
and Department of Computer Science, University of Colorado, Boulder, Colorado 80309

Research supported by AFOSR grant AFOSR-85-0251, ARO contract DAAG 29-94-K-0140,
NSF grant DCR-8403483, and NSF cooperative agreement DCR-84200944

DI9TRIUTOllSTATEMEFIN A

Approve'd iox public teleasol
Disbilbutom Unihmited

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN TIS PUBLUCATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION.

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFI-
CIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY
OTHER AUTHORIZED DOCUMENTS.

Accesiori For

NT IS CRA&I
OTIC TAB E
U.iarincj::ced 5

By

N DiAt ib .tioii/
AvW~b~tyCodes

Avail ,;.lIlof

Abstract

This paper pnts a new class of methods for solving uconstrained optimization problems on

parallel computers. The methods ae intended to solve mall to moderate dimensional problems where

function and derivative evaluation is the dominant cost. Tey utilize multiple processors to evaluate the

function. (finite difference) gradient. ad a portion of the finite difference Hessian simultaneously at each

iterate. We introduce three types of new methods, which all utilize the new finite difference Hessian

information in forming the new Hessian approximation at each iteraion; they differ in whether and how

they utilize the standard secant information from the curent step as well. We present theoretical analyses

of the rate of convergence of several of these methods. We also present computational results which

illustrate their performance on parallel computers when function evaluation is expensive.

1

e

17

1. Introduction.

This paper presents a new class of methods for solving mconsuuined optimization problems on

parallel computers. The methods are intended to solve small to moderate dimensional problems where

function and derivative evaluation is the dominant cost. They utilize multiple processors to evaluate the

function, (finite difference) gradient, and a portion of the finite difference Hessian simultaneously at each

iterate. We present theonetical analyses of the rate of convergence of several of these methods. We also

present computational results which illustrate their performance on parallel computers when function

evaluation is expensive.

The unconstrained optimization problem is

rain f :R-R (1.1)ZlR"

where f (x) is assumed to be at least twice continuously differentiable. This problem occurs commonly

in many applications, including modeling, data fitting, and planning calculations in most areas of science

and engineering. This paper is solely concerned with finding a local minimizer of f (x), the lowest point

of f (x) in some open neighborhood of the variable space. This is the most common unconstrained

optimization calculation in practice. For a discussion of parallel methods for global optimization, the

problem of finding the lowest among multiple local minimizers of f(x), see Byn. Dert. Rinnooy Kan,

and Schmabel (1986).

Unconstrained optimization problems often are expensive to solve. One reason is that the objective

function, f (x), often is itself a complex computer code, for example the solution of a system of partial

differential equations. It is not unusual for each evaluation of f(x) to require many seconds, or minutes,

on a powerful computer. In addition, in many instances whenf (x) is expensive, the derivatives of f (x)

2

are not available analytically. In this case, optimization codes approximate the gradient off x) at a point

x, by using the finite difference approximation

Vf (x + hie)-f) (12)

hi

where h, is a small stepsize and e, denotes the Is unit vector. ibis means that each gradient evaluation

requires n function evaluations in addition to f (x). Since the solution to the optimization problem usu-

ally requires many evaluations of f(r) and Vf(x), it becomes an expensive process. Usually, no higher

derivatives are used by optimization algorithms when f (z) is expensive.

If the number of variables is not too large, say n Sl0O, then the time required by the remainder of

the optimization algorithm often is insignificant in comparison to the time required for the function and

gradient calculations. This is the class of problems we consider in this paper. We orient our discussions

to the common case when gradients are calculated by finite differences. We will point out, however, that

our techniques can also be applied to instances where f (x) is expensive but the analytic gradient is avail-

able.

Methods for solving unconstrained optimizations problems with a small or moderate number of

variables on sequential computers are quite well understood (see e.g. Fletcher (1980), Gill, Murray, and

Wright (1981), or Dennis and Schnabel (1983)). When second derivatives are available analytically or

affordable by finite differences, variants of Newton's method are used. When analytic second derivatives

are unavailable and function evaluation is expensive, variants of the BFGS method are most commonly

used, using either analytic or finite difference gradients. A very brief description of such methods is

included in Section 2. The Newton's method based algorithms, which are locally quadratically conver-

gent on most problems, generally require fewer iterations than the superlineauly convergent BFGS based

*. methods, but they generally require more function evaluations and hence more computer time on

3

problems wher function evaluation is expensive. It Will be seen that our new parallel methods try to

incorporate advantages of both approaches.

Due to the high cost of solving many optimization problems, there is ample incentive to devise

methods for solving them on parallel computers if they cm lead to significantly faster or mon cost effec-

tive solution of these problems. For problems with expensive function evaluations, then am two obvious

types of approaches. One can use standard sequential optimization methods but apply a parallel algo-

rithm to evaluate f (x), or one can devise methods that make effective use of evaluating f (x) at multiple

points concurrntly. In this paper we consider the latter approach. The former approach, applying a

parallel algorithm to evaluate f (x), is dependent upon the actual objective function f (x) and is not under

the control of the optimization algorithm designer. It should be noted, however, that the two approaches

often are quite compatible. For example, in cases when the evaluation of f(x) vectorizes well. a com-

puter which consists of multiple vector processors would allow multiple evaluations of f(x) to be per-

formed concurrently with each evaluation performed by a vector processor.

The concurrent evaluation of f(x) at multiple points is well suited to any computer that can exe-

cute multiple, diffennt instruction strams concurnently. Such machines are known as Multiple Instruc-

sion Multiple Data (MIMD) computers. This class includes both shared memory multiprocessors, and

local memory multiprocessor such as hypercubes; the algorithms we discuss am well suited to any such

computer. Our approach is not generally suited to Single Instruction Multiple Data (SIMD) computers,

such as processor arrays, whose processors can execute the same instruction on different data in lockstep.

This is because different evaluations of an expensive function f (x) usually entail diffennt sequences of

instructions, due to data dependent branches in the code for fx), and thus cannot easily be performed

concurently on an SIMD machine.

-p.

.. - -- ., ,. .:,.'....'. ./.. .,.... . ,;./ .'.'.'/ ".'/ ... ,; .'....'..., ,, , ,.-.,.

4

The most obvious way to parallelize unconstrained optimization algorithms when the evaluation of

f(x) is expensive and the gradient is calculated by finite differences is to perform the n function evalua-

tions required by the finite difference gradient in paralleL (If the number of processors, p. is less than n,

then r n ip groups ofp function evaluations each can be performed in paralleL) Simple approaches along

these lines am discussed in Schnabel (1986). He demonstrates that if one also incorporates the technique

of always evaluating the finite difference gradient when the function value at a new trial pobmt is being

evaluated (orp -1 components of the finite difference gradient if p <n +1), before it is known whether this

point will be accepted as an iterate and its gradient needed, then one can make very efficient use of up to

a +1 processors on most problems with expensive functions. We refer to this technique as speculative

gradient evaluation.

Such algorithms, which evaluate f(x) and the n function evaluations for the finite difference gra-

dient concurrently, can utilize at most n+1 processors (assuming that each evaluation off (x) uses only

one processor). In this paper we consider suategies that would be appropriate whenp >n+l. Since there

are many unconstrained optimization problems where the evaluation of f (x) is very expensive but the

number of variables is small, say n 525, and since many parallel computers already have scores or hun-

dreds of processors, this is a reasonably common scenario. It can be expected to become even more com-

mon as the number of processors in MIMD computers grows. It will be seen that our strategies can also

be applied to computers with fewer than n processors in the case when f (x) and Vf(x) are both

evaluated analytically by one processor.

Ifp2(n2 + 5n + 2)2, then it is possible to evaluate the function, the finite difference gradient, and a

finite different Hessian approximation simultanenusly, and the best stategy is probably just a standard

Newton's method based algorithm. A very likely situation, however, is that

p 4E (n +1), (n 2 + Sn + 2)/2), so that there are more than enough processors to evaluate the finite

- * : -* w .\ t .~"-*

S

difference gradient but not enough to calculate the full finite difference Hessian as well. For example, if

p =64, ny problem with n a [10, 63] fas in this class. This is the main situaion we consider in this

paper.

The remainder of this paper considers ways to use multiple processors to evaluate the function,

(finite difference) gradient, and a portion of the information comprising the finite difference Hessian at

each iteration. In Section 2 we propose a number of possible ways to do this. They are based upon using

the extra processors to calculate extra (finite difference) gradients which determine V2f (x,)ui in carefully

chosen directions u1, and incorporating this information either by overwriting pan of the Hessian approxi-

mation or by secant updates. Some of our algorithms also incorporate the standard secant equation into

the Hessian approximation. In Section 3 we analyze the local convergence of some of these methods.

Several are shown to be m-step quadratically convergent, for p large enough tht n extra gradients can be

calculated in the course of m steps. In Section 4 we discuss several considerations involved in the imple-

mentation of these algorithms. Section 5 contains computational results of ntmning many of these

methods on standard unconstrained optimization test problems. While the results are obtained on a

sequential computer, they ae easily used to show what speedup would be obtained on parallel computers

when function evaluation is the overriding cost. In Section 6 we summarize our conclusions and briefly

discuss our plans for continuing this rsearch.

We conclude this section by giving some notation that we will use in this paper.

Notation

Let g (x) -Vf (x) and H (x) -V 2f (z).

Define II II to be the Euclidean norm II 112. and let K(A)- IIA II IIA -l for any non-singular

nxn real matrix A.

For any nxn real symmetric matrix B. let XI(B),. .. (B) be the n real eigenvalues of B. in increasing

order.

2. Algorthms.

In this section we describe a number of alternative algorithms for unconstrained optimization in a

parallel processing environmenL They include straightforward parallelizations of the usual BFGS and

Newton's methods, as well as a number of new algorithms. All of these algorithms may be regarded as

interpolations between Newton's method and a quasi-Newton method. First we present a basic algo-

rithmic framework for all these methods (Algorithm 2.1), and then we motivate and describe several

specific algorithms as versions of this basic framework.

All our algorithms art intended for ihe case when function evaluation is expensive. We orient our

discussion in this section to the case when the evaluation ofg (x) is by the finite difference formula (1.2),

so that it requires n function evaluations, plus the evaluation of f(x). Our algorithms will perform these

function evaluations concurrently. For simplicity, we assume that the number of processors, p, is

(q+lXn+1), for some q 2 0, and that m - -S is an integer. Our algorithms can also be applied to the caseq

where the gradient is available analytically and each component gi (x) can be evaluated by a separate pro-

cessor, in this case, they require p = n (q + 1) + I processors. They could also be used in a case where

g(x) and f (x) are evaluated on the same processor and p =q + 1 processors are available.

Algorithm 2.1.

0) Let a e (0, 1h), 0 E (c., 1), xj e R4, q > 0, B 0 be a positive definite, symmetric matrix, and k 1.

.- ro

7

1) Evaluate f .f (x 1), I :- S (z 1), and possibly other values in parallel

2) Determine B 1.

3) Using Bk, compute search direction dk.

4) Determine the set U,+i of q finite difference directions.

5) Set steplengthL ;L.

6) xt+l := xk + gt dk.

7) Compute f (xt*+), g (xk , and Vt+l = finite difference approximation to H (xt+1)Utl in parallel.
(requires q additional gradient values)

8) if(xt, does not satisfy conditions (2.1) and (2.2)) then adjust pL and go to 6).

9) Determine Bt+1.

"10) k:=k+1.

11) Stop or go to 3).

Note that this algorithmic framework includes the standard methods, in that it allows Bk+I to be set

• .to the values chosen by Newton's method or standard secant methods in step 9). However, computing

additional information in step 7) and using this information in step 9) results in some new algorithms that

can take advantage of the ability to perform computations in parallel. Steps 1), 2), 3), 4), 7), and 9) are

left unspecified, and by making specific choices in these steps we will specify the new methods.

The key issue is that additional function evaluations can be done simultaneously with the evalua-

tion off(x) and g(x) at step 7), if sufficiently many processors are available. One of the main ideas of

the new algorithms is to utilize the extra processors to improve the Hessian approximation at the iterate

x, ,. In step 4), the option is available to pick directions Ut.+ from Xz , along which extra gradient infor-

mation will be computed in step 7). Note that these finite difference directions, Utk,. must be chosen

*. without knowledge of f (xhI) or g (xk+I). Then, in step 7), the gradients g (Xk,1 + h, U&,Ie,), for

8

i - 1... q, where hi is a small stepsize, may be approximated from function evaluations. These gra-

dient evaluations, which emquire q (n + 1) additional function evaluations, are used to determine a finite

difference approximation to VI+1 = H (x*+,)Ut as detailed in Section 4.

The question of how to utilize the extra gradient information obtained in step 7) to help form Btkt

is left unspecified in step 9). This step, combined with the choice of finite difference directions in step 4),

is the crucial part of the new algorithms. Note that steps 1) and 7) are the only locations in Algorithm 2.1

*' at which function evaluations are performed, except for Newton's method, which also performs some

function evaluations in step 9). Step 1) provides for the possibility of doing extra function evaluations, in

parallel with the computation off (x 1) and g (x1). to produce B I that is a better approximation to H (x)

than the a priori estimate B0o

For some of the algorithms, the search direction d is taken to be -Bj-Igk, but in leaving step 3)

unspecified we provide for two other cases that occur in some of the algorithms. Depending on how B& is

determined in step 9). the approximate Hessian may not be positive definite, and dt is then taken as

-(Bt + kt l)-'gk, for some at that makes Bk + okI positive definite. Also, several algorithms use a tem-

porarily updated version of Bt in computing d.

Algorithm 2.1 includes a linesearch that satisfies the standard conditions,

f(X,)-_f(t < g g(Xk)T(Xt+1 -X,), (2.1)

and

" , g C, Or(XT k1 - X,) ?- 09g(X,)r CX,+ 1 - X,) .(2.2)

We do not detail how the steplength parameter , k is to be adjusted so that at any iterate conditions (2.1)

and (2.2) will be satisfied upon reaching step 9); our implementation uses the procedure in Dennis and

Schnabel (1983). Accumulated computational experience indicates that, for reasonable values of a and j3,

pM

9

these conditions are satisfied by the initial value gk = I most of the time. When that condition occurs, we

are able to use immediately all the information gathered in step 7), so that all the algorithms described

below, except for Newton's method, require only the time for one concurrnt set of function evaluations

to carry out the step.

We now describe, in a natural order, the algorithms to be considered in this paper.

Quasi-Newton and Newton methods

We first discuss how two standard algorithms, Newton's method and the BFGS method, may be

advantageously implemented on parallel processors. The BFGS method algorithm, which we designate

by "S" for "step update", is obtained from Algorithm 2.1 as follows. The matrix B is taken to be some

scaled multiple of the identity matrix. No finite difference directions am chosen at step 4), and no extra

function evaluations am done in step 7). The approximate Hessian is determined in step 9) by the BFGS

step update, namely

BtssrB, + Y*Y* (2.3)Bk l =BA - $S 'Bk$k s*' Y*

where sk =ILd, and yt = g.I-gt. The step is computed simply by d, =-Bt-g, since Bt is

guaranteed to be positive definite. This algorithm, as discussed in Schnabel (1986), attains near-optimal

speedup on n+l or fewer processors by evaluating the gradient at each trial point in step 7) in parallel

with the evaluation of f(x, l). Tus, if the linesearch conditions are satisfied by 1 = 1, and p 2 n+l,

that iteration of the algorithm requires only the time of one function evaluation. However, this method

cannot use more than n +1 processors. We turn, therefore, to consideration of methods that can utilize

(q+lXn +1) processors available when q Z 1.

availblewhn >I

-- V --- ' r -

10

Since Newton's method is known to be an effective method in the sequential case, it is natural to

consider a parallel version of this algorithm. We will designate our version of Newton's method by "N".

In Newton's method B 1, as well as each Bt,, is taken to be the finite difference Hessian matrix at the

orres dg iterate. This requires n 2 + Un) additional evaluations off (x). Since the true Hessian

need not be positive defirite, t is taken to be -(Bt +GtI-'gk, where a& is chosen, as in Mort and

Sorensen (1983), so that B& + a&1 is positive definite and well-conditioned. For an efficient parallel ver-

sion of Newton's method, at step 7), in parallel with the evaluation off (xt+,) and g (xk+,), the extra

q(n+l) processors are used to compute some of the elements of H(x*,i). Then, if the trial point xk+l

satisfies conditions (2.1) and (2.2), at step 9) the remaining elements of the finite difference Hessian are

calculated, perhaps requiring many cycles of parallel function evaluations. If the number of processors is

at least 02 + Sn+ 2). then f.g. and H may be evaluated in one cycle, which would make Newton's

method quite competitive. However, Algorithm 2.1(N) may be quite inefficient when n is large relative

to q, since it requires several cycles of parallel function evaluations for each iteration.

Ifp is between n+I and (n 2 + 5 + 2., there is mom for a method which gathers more informa-

tion per iteration than a secant method but less than Newton's method. In the rest of this section we con-

sider several methods that, like the BFGS method, take only one cycle of parallel function evaluations for

v each trial point, but also utilize effectively the extra q(n+l) function evaluations per cycle to approxi-

mate the Hessian more accurately than does the BFGS method.

Finite difference update of part of the Hessian

Perhaps the most natural idea satisfying our goals is to simply evaluate as many elements of

H(x*,l) as possible using the extra processors, and to update B& to Bk~j by simply overwriting the

I .:.' .".-.-'- 5 -"'"

11

appropriate

* components of B& by the elements of H(xt+1). It is interesting to note that the PSB update

Bk 1 -Bk + (v-Bu)uT+u(v-Btu)T _ U(VBku)uuTUlu (u 7u) ,

s equivalent to overwriting row J and column j of Bt with v e RO, if u is thej J standard basis direc-

don. Similarly, if we take Uj,+ to be q columns of the identity matrix, and Vtl contains the correspond-

ing columns of H(x*+l), then we can determine Bt+l that overwrites the appropriate rows and columns of

Bt with Vk, 1 by the generalized PSB formula, as in Schnabel (1983).

B5t -B& + (V,+l - Bt Utl)(UtsTUs,1r) - I U,1 T (2.4)

+ Uk I(Ut4.,T U -,1)'(Vk 1 - B& Uk1 , T

- Uk+,(Uit5 TU, 1
- (V , -Bt U*+)T U,.i(U ,iT U+,)- U, 1

r .

Since this method of determining Bk+1 dearly need not result in Bt ! being positive definite, dk

must be calculated in the same way as in Algorithm 2.1(N). We designate this method as Algorithm

2.1(P), where "U" indicates that the finite difference directions ae chosen as "unit" vectors, and "P"

indicates that the finite difference information is incorporated into Bt through the "PSB" update.

Specifically, "U" means that we partition the identity matrix into m = A blocks of q adjacent columns,
q

and in step 4) chose U&+1 to be the next block of q columns.

Algorithm 2.1(UP) has several obvious theoretical properties. First, it is trivial to see that if f (x) is

a quadratic function, with Hessian H, then Algorithm 2.1(UP) will terminate after m steps, since after m

steps we will have B,, - H. It is also fairly easy to show that this method has a local m-step Q-quadratic

convergence rate, and also is 1-step Q-superlinearly convergent. One disadvantage of this method is that,

even when H(xt.1) is positive definite, it can produce an indefinite Bks,. Also, it is commonly accepted

12

that the BFGS method is superior to the PSB method among secant algorithms for unconsained optimi-

zation. so it is natural to consider incorporating the finite difference information into Bj by means of the

BFGS update.

Finite difference update of part of the Hessian using the BFGS formula

We now consider two methods that am similar to Algorithm 2.I(UP), but that use the BFGS update

to incorporate the new finite difference information, rather than the PSB. First, we consider the method

obtained by simply modifying Algorithm 2.1(UP) by updating through the generalized BFGS formula

(Schnabel (1983)), obtaining

B.+1 = Bk - BA U1 +I(Uk+,TBk Ut,)-IU+1iTBt + V1+,(Ut+,Vt+,)V,+,T. (2.5)

Since V,+ 1 is a finite difference approximation to H(t+,)Uk+, it may be necessary to symmetrize the

matrix UltATVt+. Sufficiently close to a strict local minimum, the q xq matrix U1 +tTV,+l will be posi-

tive definite, and thus Bt+1 will be positive definite if B1 is. In the case that Ut+lTVt+ is not positive

definite, we will use a maximal subset of the columns of Ut,1 that yields a positive definite matrix and

save the rest of the columns to use as finite difference directions at the next step. We designate this algo-

rithm as Algorithm 2.1(UB), where "U" indicates that in step 4), Uk.l is taken to be the next block of q

unit vectors, and "B" indicates that in step 10), Bkl is determined from Bt and the finite difference infor-

mation by using the generalized BFGS update. We include Algorithm 2.1(UB) only to show how much

its performance is improved by an idea to be discussed later. Although this method does maintain posi-

tive definiteness of the matrices (B&), it does not terminate in m steps on a quadratic function, and it per-

forms very poorly in practice.

However, by choosing the finite difference directions more intelligently we can preserve the qua-

dratic termination property and obtain a considerably better method. If we choose Utl to be orthogonal

U

13

to the m-1 previous matrices V,_j, for 0 : j S m -2, then the finite difference directions asymptotically

become block conjugate with respect to the Hessian of f. In particular. if f (z) is a quadratic function

with Hessian H, then the sets of directions UI- U2 ... , U. rt block Conjugate with respect to H, Le.,

for 1 i < j m, UTHUj -(0. lhus, it is easyto show that B. =H. and so this method terminates in m

steps on a quadratic ftmction. We designate this algorithm as Algorithm 2.1(CB), where "C" indicates

that the finite difference directions are chosen as above to be approximately conjugate, and "B" indicates

that Bk., is obtained from Bk and the finite difference information by (2-5). We will show in the next

section that Algorithm 2.1(CB) is m-step Q-quadratically and I-step Q-superlinearly convergent. Also,

the conjugate method for choosing the finite difference update directions is invariant under linear

transformations, and, of course, by updating through (2.5), the matrices Bk ae all positive definite.

Step update algorithms

Algorithm 2.1 (UP) and Algorithm 2.1l(CB) are still somewhat unsatisfactory, in that they do not

use the step information contained in gk l and St in forming BkI. In fact, the computational results in

Section 5 show that Algorithm 2.1(S), the parallel BFGS method, which uses just the gradient differences

at successive iterates to approximate the Hessian, performs better than Algorithms 2.1(UP), (UB), and

(CB), which do not make use of this information and instead approximate the Hessian by using just the

gradients along the finite difference directions. Thus, this information appears to be important, and we

would like to approximate Bk+1 in a way that utilizes all of the available gradient information.

One way to do this would be to simply update Bk twice at each iteration, along the step direction,

as in standard secant methods, and along the finite difference directions. To do this we modify Algo-

rithms 2. 1 (UP), (UB), and (CB) as follows. In step 9), the counterparts of Algorithms 2.1(UB) and (CB)

, first do the step update (2.3) using the direction sk =Xk+I-X&; the counterpart of Algorithm 2.1(UP) does

14

the step update

B&+I -Bt + (Yt-BkshJskT+s*(yk"8Bs$)T - SkT(y-BkS,),Sk(Ts, s * (s, s,) (2.6)

The resuling matrix in either case is then updated by the finite difference update as in methods (UP).

(UB), or (CB). We designate these algorithms by (UPS), (UBS), and (CBS). where 'S" indicates that a

step update (2.3) or (2.6) is done. Note that the extra update uses information already available, so that

still only one concummt function evaluation is required per step.

This approach has the drawback that there is little hope of choosing the finite difference directions

effectively as was done with (UP) and (CB). In particular. we have seen no way to choose U&, so as to

maintain finite termination on a quadratic function or m -step quadratic convergence on general f (x).

However, these methods perform well in the experiments of Section 5, and clearly merit further con-

sideration.

Temporary step update algorithms

A way to preserve the progress made on the Hessian approximation by the finite difference updates

while using the Hessian information along sk is to only temporarily update Bt along the step direction.

More specifically, we can modify each of the algorithms (UP). (UB). and (CB), to obtain corresponding

algorithms designated (UPT), (UBT). and (CBT). as folows. In step 9). B,+ is updated from B& along

the finite difference directions by (2.5) or (2.4). Then. in step 3), we either calculate

$TB' 7
Bk+1 BkI- BkSS*TB+I& ++ YkYk

-I'IBAIsk S*'tyA,

for (UBT) and (CBT), or

NM

1

i5

5 a+r =B,+, + (Yh":Bklsh)sAT+st(ykBk+I sk)r sT(yk-nB+,sk)skskT4+ *+1 sk (sa 'st

for (MJ . where y =,+l- &. We then use B+l to dt exactly as DB+i is used in the

omspUnding algorithm without the temporary step update. The "T in the designation for these algo-

.lthms indicates the fact that the matrices Iatl obtained through the step direction update am "temporary"

in that they are only used for the next step computation and then never mfereced again; i.e., Bt 2 is cal-

culated from Bt,. not from Jt.. This idea was suggested to us by a related method of Li (1986) for

nonlinear equations.

This approach has the advantage that the theoreical properties of the unmodified algorithms are

preserved, since the step update only affects the next step, and is not incorporated into B&. Thus, as we

will show, Algorithm 2.1(UPT) and Algorithm 2.1(CBT) maintain their m-step Q-quadratic and 1-step

Q-superlinear convergence rates. Also, the addition of the temporary step update provides significantly

improved performance over the pure finite difference algorithms in practice, as seen in Section 5. This is

perhaps due to the observation that. in practice, successive steps in optimization algorithms often tend to

lie along roughly the same direction, so that in only using the most recent step direction in updating the

matrix to be used to compute the next step, most of the relevant step information is retained.

'3. Convergence Analysis.

In this section we analyze the local convergence properties of two of the algorithms discussed in

the previous section, namely Algorithm 2.1(CB) and Algorithm 2.1(CBT). We also discuss some of the

theoretical properties of the other algorithms from Section 2. For simplicity we assume that the finite

difference values used are exact. i.e. that each gk+1 =g (xi,.). and that Vi, =H(xk.i)U&, at step 7) of

r

16

Algorithm 2.1.

The first two algorithms in Section 2, parallel versions of the BFGS method and Newton's method.

differ from the standard sequential methods only in that the new function value and (some of) the func-

tion evaluations for the new finite difference derivative values an evaluated ccncumndy. The sequence

of iterates produced, and hence the convergence poperties, am identical to those of the co onding

sequential methods.

The first new algorithm discussed in Section 2, Algorithm 2.1(UP), simply overwrites q rows and

columns of the Hessian with accurate information at each iteration. Thus it clearly is m-step Q-

quadratically and I-step Q-superineauly convergent, and terminates with the exact solution in at most m

steps iff is a quadratic function. It is not to be expec ed that any of these properties apply to Algorithm

2.1(UB), which as we mentioned is included only to make some computational points in Section 5.

The next algorithm, Algorithm 2.1(CB), is not as easy to analyze because the update directions are

block conjugate only asymptotically. It is straightorward to show that this again leads to m -step termi-

nation on quadratics, since the BFGS update is invariant under linear transformations. The following

analysis shows that this method, like Algorithm 2.1(UP), is m-step Q-quadratically and I-step Q.

supedinearly convergent.

We now state the standard assumptions under which we will prove the two theorems of this section.

Assumptions 3.1.

LetS be an open subset ofR and suppose that f (x), g (x), and H (x) am continuous on S. Letx. e S

be a strict local minimum off (x). Assume that H (x) is Lipschit continuous in some neighborhood of

* Xe.

It

17

To prove our rn-step Q-quadruzic convergence reus. it will be necessary to show that the error in

the approximate Hessian at an iterate is of the order of the errors in the previous m iterates. In showing

this, the following two definitions; will be usefl

Definition

Given sequences (xk) and (B*).let

6,,-max(I 1XA~j-X. I I : ISj Sm)

and

wk - max(Ic(B+j) : 1 5j m)

7be for o)wing lemma shows that if m steps ame taken, with approximate Hessians that are not too

ill-conditioned, and the iterates remain close enough to x. . then the error in the m th approximate Hessian

is of the order of the errors in the iterates.

Lemma 3.1.

Let (xi, and (Bt) be generated by Algorithm 2.1(CB), and suppose that f (z) and x. satisfy Assump-

d tons 3.1. 7ben for any M>0, them is anr >O0andc >O0such that forany k,if 8,t< randc4h5M.

then I I Bi+,.-H. 1 5 c Bk.

Proof. Let M > 0. Since H (z) is Lipschitz continuous on some neighborhood of X. and H. is positive

defnite, the is anr >and an M I> such that ifIx - x. <r and I i- x. I I<r hen

).l(H(X))2: I .).(H(r))rMj. and IlIH(x)-H(n)II 1:M, I x -il11.

Consider any k. and assume that 8,j < r and K& S M. In this proof for notational convenience and

clarity, we omit the "k+" expressions in all subscripts, e.g. we write "Bj,i" for "Bhj+Ij". Also, define

Hj =H(xi).

- -- - - - - - - -

Consider 1 S j S mn-1. By the BFGS update formula,

B,.1 -B, - B, U,,,(U,,TB, Ui~,1 IUj,B, +H1 .zUj(UjiH+,iU,,ir'Uj,iHj,.

Thus for1I SJ.

Bj,1 Ui -HL'i -BjL' -Hell 8 -

B, Ui(U,,ITB, U, 1)-'(UJ+4TB, Ui - U,, 1TH. Ui + U,,1 T H. Ui - UJ44T~f HU,)+

H,,1 U,,1 (U,,1TH,,,U,+)-,(U,,rH, U, + Uj,,T(H. _-H1)U,

since Uj.,. T H U =.Thus, since JI IU, II = Ifor al,1

I I B,, U4 - H. Uj I I S I I B, U -H. U I I + I I B, U8-H. U I Iic(,)

+ IlIH -Ho I I cB,) + I I H,,1-Ii, Ilic(Hj,)

where L =max (+ M,MM I+ 2nMf12). TIus, it iseasy to show by induction that for I S i S m-1,

I IB. U -H. Ui I I S w I I Bj U- H. U I I +()

Also, for I Si :5m ,8 Uj = Hi U so that

IIBjU, -H.Ui 1 1I - IIBiUi -HjU, +HiUi -HgU 11

Thus, with cl LO(Mj +m), IIBmUj -HU II Scj80for1~i m.

Since U5,, is chosenorthogonal toH, U1 . for 1l51L *, ifwe let U be the nxn matrix obtained by

concatenating the matrices Ui. for 1 :5 i S m, et V be the matrix obtained by concatenating the matrices

Hi U., for I S i Sm. and let D UTV, then D is block diagonal. with diagonal blocks U, TH, U,.

Further, for each i.

19

il(UTHiU)- IiM

sin=z I iU II-1,so lID-il SM 1 . bus,

IIU - 1 11 - IID- T I I SI lID-Ill llV T II SMIIIVTII.

Note that

IIVT II -Fl. I IVTX II <nM 1 ,

since for any x with lI x II = 1, if we let v =H(xt)u be a typical column of V. where Il u II 1, and

IS 1:m,thenvTx : llu II IIHa)I ll ll 1 M1. So, IIU-1 II SnM 1
2.

Now, each column of (B, -H.)U has norm less than c 14 so clearly there is a constant c2 such

that I I (B, - H.)U I I S c 2 . Hence,

I IB., -H. I I = I I(B. - H.)UU-1I II S I I(B. - H.)U I I I IU-1II 1<9C 2n /+M 1280

and the desired result follows with c = c 2n M 1
2 . 0-

In the proof of our main local convergence result below we make the strong assumption that x. is a

strict global minimum of f (x). We do this in order to rule out the possibility of taking an unreasonably

long step during the flist m iterations. Alternatively, we could prove m-step Q-quadraic convergence

under the assumption that B I is sufficiently close to H..

Theorem 3.1.

Suppose that f(x) and z, satisfy Assumptions 3.1. Suppose in addition that x. is a strict global

minimum of f(x). Then for any positive definite matrix B 1, there is an e > 0 such that if

IlIx-x. II <e, then the sequence (xk) generated by Algorithm 2.1(CB) converges m-step Q-

quadraticaly and I-step Q-supeflinearly to x.

'.' %,'% C %% " ,I." p - - . - - ". -. -, , '-.+'... -. -, ""," .1+ "... 'P

20

Proof.

Let B be a given positive definite matrix.

We firt obtain a neighborhood in which H (x) is well-behaved and show that in this neighborhood,

the condition numbers ,(B 1). .. , u(B,) am bounded.

Since H(x) is Lipschitz continuous an some neighborhood of s. and H. is positive definite, there

are constants r1 and y such that if Itz -x. II <ri. then).i(H(x))> 0. 1tH(x)I <2 11H. II. and

IIH(x)"1II 2 IIH.-I II.andifalso II'-x. II <rl,then IIH(x)-H(l)II 11Sylx-.l. Define

M% M min(y2 11 H. 11. 211H. -111. 11II 11. 11B 1-111.1} .

Letyl > Obe such that if 1iB -H. II <T1 foramatrixB. then IIB - 1II MI and 1iB II <MI. Let

N,= (x e R4 : IIx-x. II <r).

It is easy to show, in similar fashion to the argument in Fletcher (1970), that if H and B are posi-

tive definite matices, U has q independent columns, and

B,=B -BU(UTBU)-IUTB +HU(UTHU)-IUTH,

then

,

and

-H) A.. (B+):< max{().(H). XJTT(. B)

. Further, if H =H(for some e N, 1th&en clearly

MI

and

21

, (B.) S max (M 1. M 121. (B)1.

So. a trivial induction shows that if IIBt,+iII <M1 , IIB+l - l II <Mz and 8, <rI then for l<j:<m,

IIB+j II SM 1
3i and IIBt+j - II ;M 13j,Andso , M,'. LetM 2 -MIG6 .

We now conszuct a neighborhood N2 COnintd in N in which Lemma 3.1 applies, and show that

the iterates remain in this neighborhood. By Lemma 3.1, there are r and c such that for any k, if 8j < r

and Wk M 2,then IIB ., -H. II cS&. Letr2=min(r ,r,. -). Take
C

F,,n in~f (x):r2<5 I Ix -x I I,

and let N2 = {x e S :f(z) <F}. Then, since x. is the strict global minimum off(z) and condition

j (2.1) is satisfied, if x e N2 then for all k, x* e N2. Thus, 8 < r2:5 r for all k. Now, since

S1B III SMI and I11 1
1 II Mo, 0 M 2, and so I1B,-H. II C&o5cr 2 <TI'. SO, lIB, II SM 1

and I IB,-1I <M 1. Hence, by a simple induction, we have that I IBj II SM 2 and I IB I 1 SM 2 for

Sall j, and I IB6, - H. II Sc k0,,_)for allk.

Thus, (xj) is contained in N 2 and ic(Bj) S M 2 for all j, so Lemma 2.1 of Byrd and Nocedal (1986)

implies that (x,) converges to x., since

11gt II I IS& II IlS, II IIB - gt II

We have shown thaz for allk,6 8 r2 <r and c :M 2 , so forany k, IIBt.. -H. II c St <l1.

Also, by Theorem 6.4 of Dennis and Mort (1977) it follows that for all large k, 14 -1.

Consider any k with g& - 1. Then for some 1. between x.. and x&.,+,

IlZ.tm.-Z- I = X IlXk.. -Z. - It

I I BA. - I I I I At. (X . -- o)--H (kA.)(X. -)

i

* 22

SM 1 (IIBa,,-H. I I+ IIH(xt&.)+H. II) Ilxkt.-x. II

SMI (cS)+MIIIL,.-. II) I IX-. -X* II.

Since &t. - g (x.) +H(RITA.x&. - x.) for some L. between x. and zk..,

11 h. -z, If : IIxt+. -X. 11 + IlBh.-9k.t, II (+Ml 2)llxth.-X. II.

So, we have that

I IXI+,,+ 1 -X. II :Mca, I IXtA. -X. II +M, 2(l +M I) I Ixk,, -x. 112

, <(MIc +M1 2(l +MI 2)) 8t Ilxt. -x. II .

Thus, by definition, (xt) converges to x. at an m-step Q-quadratic rate, and since 5 k converges to 0,

clearly also (xt) converges to x. at a 1-step Q-superlinear rate. 0

Theorem 3.2 shows that Algorithm 2.l(CBT), which adds a temporary BFGS update of the stan-

dard secant information to the partial Hessian information update of Algorithm 2.1(CB), has the same

local convergence properties as Algorithm 2.1(CB). This is of interest because Algorithm 2.1(CBT) turns

out to be the better of the two methods in practice. The technique of proof is related to one used by Li

(1986) for a related temporary update method for solving systems of nonlinear equations.

Theorem 3.2.

Suppose that f(x) and x. satisfy Assumptions 3.1. Suppose in adaition that x. is a stuict global

minimum of f(x). Then for any positive definite matrix B1. there is in c>0 such that if

IIx -. li < , then the sequence {xt) generated by Algorithm 2.1(CBT) converges m-step Q.

quadratically and 1-step Q.superlinearly to x.

Proof.

We prove this result by indicating the necessary modifications to the proof of Theorem 3.1.

,

23

F'rst, note that the proof of Lemma 3.1 need not be changed at all in order to apply to Algorithm

2.1(CBT), since the steps (st] do not enter in to the proof, and the matrices (Bt) am unchanged.

Next, let i, be the approximate Hessian with which the step is computed, Le.

i ,F -~ lil Bj - Y -11Y -I

Clearly II, II -'IIB1 and <I~j-If'IM,31 BeII 1I,soif we take M2 =.M. 6(') and replace

B, by B throughout in the proof of Theorem 3.1, we still obtain the fact that (x,) converges to x,, and

IIBt4., -H. II 5cSk.

Thus, by Theorem 3.2 of Broyden, Dennis, and Mord (1973), it is easy to see that there is a constant

cI such that for all k, I IB.j.1 -H. II S c18k. Thus, since ([* 1 converges to 0, we have that for all large

- k, c 18t < h, and we can finish the proof with it,. in place of Bt,. and c I in place of c. 0

:- A similar analysis could be used to show that Algorithm 2.1(UPT) is also m-step Q-quadratically

and 1-step Q-superlinearly convergent.

4. Computer Implementation.

In this section we discuss our computer implementation of the algorithms descnibed in Section 2.

These algorithms an similar to well-known sequential algorithms in most respects, so we will concentrate

on the aspects that result from a parallel processing context.

We have considered algorithms that compute q extra gradients at each point, but at the present time

we have only implemented a version that uses I extra gradient at each point. Because this is the case that

is reported on in Section 5, and because this case is simpler to describe and understand, we will restrict

24

ourselves to this case in this section.

Since we assume that 9(x) and H() a not available analytically, but must instead be approxi-

mated using function values, we need to describe how we approximate he various derivative quantities

by finite differences. First, at a point x, we approximate g(r) by dhe usual finite difference formula (1.2).

, where

hi - (machine precision)" max(Ixi , 1).

Then, we approximate the extra Hessian information v&.1 = H (x& i)uk, by

vk+i = 9 (X , + TlU,+1) - 9 (X,.+

. when Tl = (machine precision)" 4, and the new gradient is again computed by (1.2) and requires n +1 new

function values. It can be shown that this choice of the stepsize 1 tends to optimize the trade-off between

truncation error and rounding error in V, ,.

We now consider the issue of computing the finite difference update direction u&,. Our algorithms

either use unit directions or approximately conjugate directions.

The choice of unit directions is straightforward. We simply cycle through the directions e,(,o),

for J = 1, 2 ... However, when we are doing the BFGS update, to preserve positive definiteness we

need uj, ,vt,|> 0. Therefore, if the test

UlT vv +I > (machine precision)" II u&, II I I v&, II

*is not satisfied then we do not perform the BFOS update at this step, and we continue to use the same

direction at successive iterates until the test is satisfied.

We now consider our method of computing the approximately conjugate finite difference update

directions. Let i, be the matrix with the n-I columns H(x,_.)u,_.. for j = 0..., n-2. We do a QR

. mk

25

factorization of Vtobtaining Vt mQ*R, were QA is anxn orthogonal matrix andR, isan nxt upper

triangular matrix. where t is the number of columns of Vt that were included in the facorizanon. In the

course of the facorizaicn, if a column of Vk makes too small of an angle with the subspace spanned by

the previously included columns of V,. then it is not included in the factorization. Then, we take u,.+ to

be column t + I of Qk. This, uk+l is orthogonal to all the columns of V that were included in the factori-

zaion. Note that if V has ra n-l then 1 is orthogonal to each H(j)u_j. forj =0 n-2.

Next, we let vk*, -H(x*,I)u*,i. If Bk+l is updated by the PSB, then we obtain Vt + by shifting the

columns of IV one to the right and taking column I to be v&,1 . IfBt., is updated by the BFGS, and the

update along u, l succeeded, then we determine V., as for the PSB update. If the update was not done,

because u7i lvk,1 0, then V 1 M Vt. Thus, we continue to use a finite difference direction until the

update along it is successful. Initially, we take V1 to be the first n - I columns of the identity matrix.

Note that the theory of Section 2 is local. and in that context the matrices V-I can be uniformly bounded

and H (xt1) is always positive definite, so the BFGS updates always succeed.

We now discuss the determination of B I in the various algorithms. All the algorithms, except of

course for Newton's method, take the initial Hessian to be the identity. Then, before the first step direc-

tion is calculated, those algorithms that perform updates along finite difference directions update the iden-

tity matrix to a matrix B1 , by equation (2.4) or (2.5), using the finite difference information R(x)u 1 .

This information is available at no cost since the algorithm has to evaluate f (x) and g (x 1), so the extra

-* gradient information H(xl)ul might as well be calculated concurrently and used to improve the initial

Hessian approximation. Then. I1 is used to compute $ 1. After obtaining x2 and g (x2), we finally obtain

B I by the scaling

B TISI E
Sfyj

26

where y - 2 - 1-. The effect of this scaling, first suggested by Oren (1974), is to ensure that

sIBisj =syi, which is desirable since we would like to have Bisl =yl. Note that our implementation

of the usual BFGS algorithm also does this initial scaling of B 1 . We experimented with other strategies

for determining B1 in our new algorithms, but found no uniform improvement over the strategy described

above.

The implementation of these algorithms uses code for the linesearch, perturbed Cholesky factoriza-

tion, and stopping conditions as described in Dennis and Schnabel (1983). We implemented the version

of their linesearch method that obtains a step satisfying conditions (2.1) and (2.2).

S. Computational Results.

'I..

We now present and discuss some computational results comparing the performance on a set of

standard test problems of the algorithms we have described. As mentioned in Section 4, so far we have

only tested the versions of our new algorithms that utilize 2(n+1) processors (i.e. one extra finite differ-

ence gradient).

Our test set is taken from the standard set of nall dimensional problems in MorE, Garbow, and

Hillstrom (1981). We omitted some of their functions because the problems were either badly scaled or

V were not solved by any of our methods due to floating point arithmetic overflows. The 15 functions in

our test set are listed in abbreviated form in Table A.I in the Appendix, in the column labeled *func."

Each function was tested with three choices ofx 1, namely the standard starting point given by More, Gar-

bow, and Hillstrom (1981), multiplied by 1, 10, and 100. The column in Table A.1 labeled "sp" contains

the multiple of the standard starting point that was used in the corresponding test problem. Thus, our test

set consists of 42 problems, since Watson's function was only tested with one starting point, the zero

..

27

vector, and the Chebyquad function from the fathest point was not solved by any of our methods.

The stopping conditions used in the code at as described in Dennis and Schnabel (1983). The

algorithms successfully ruminated when either the relative size of the gradient was less than I0 s or the

linesearmb failed to find a lower point than the current iterate while backtracking. The algorithms failed

to solve a problem when either the iteration limit of 500 iterations was reached or a floating point arith-

metic overflow occured. In Table Al, an overflow on a problem for a method is indicated by "***"

listed foi the number of iterations and for the number of failed trial points, while "- in these same loca-

ions indicates that the method reached the iteration limit on the problem. The tests were performed on a

sequential machine, a VAX 11/780, using double precision arithmetic.

For each problem that was solved, we recorded the number of steps required and the number of trial

points at which the linesearch conditions (2.1) and (2.2) were not satisfied. These numbers are recorded

in Table A.I. Note that the number of steps and the number of failed trial points is enough information to

simulate the performance of our algorithms on a parallel machine with 2(n+l) processors, if we assume

that only the time for function and derivative evaluations is relevant. Define a cycle of parallel function

evaluations, or "f-cycle," to be a step in Algorithm 2.1 at which up to 2(n+l) function evaluations anm per-

formed in parallel. Thus, on our simulated parallel machine, an f-cycle takes the same amount of time as

one function evaluation. For all of our algorithms except Newton's method, the mznber of f-cycles

required to solve a problem is simply the number of points x at which f (x) is calculated in steps 1) and

7) in Algorithm 2.1. This is dear, since all the function evaluations required for the derivative approxi-

mations are performed in parallel with the evaluation of the function at each trial point, or are done in

parallel with the evaluation off(zI). Note that each trial point in the linesearch is either an iterate, if it

satisfies conditions (2.1) and (2.2), or is a failed trial point, if it does not satisfy these conditions. Thus,

* for all our algorithms except Algorithm 2.1(N),

rak'a

28

number of f-cycles - I + number of iteratons + number of failed trial points

Newton's method is somewhat different, since more than one f-cycle is required to compute the

Hessian at successful trial points. In parallel with the computation off(x) and g(z) at trial points, the

extra n+l processors can clearly be ued to compute n+l function values for the finite difference approxi-

mation to H(x). Then if the trial point satisfies conditions (2.1) and (2.2), the remaining n2+n -2

function values for the finite difference Hessian approximation must be computed. This requires

4(n [)2 f-cycles. Hence, for Algorithm 2.1(N),

number of f -cycles (I + number of iteradons X I + n -)

+ number of failed trial points.

Thus, for all of our algorithms we can compute the simulated number of f-cycles needed to solve

each problem on a parallel machine with 2(n+l) processors, using the raw data given in Table A.I. If

function evaluation is expensive, this is a very close indication of the total cost of solving the problem.

We now describe our statistical comparisons of our algorithms. We present a statistical comparison

of all the algorithms, as well as a number of statistical summaries comparing the relative performance of

pairs of the leading methods. Each of these pairwise summaries is in the format of Table 5.1. The

column headings give the abbreviated designations of the two algorithms being compared, and the rows

are calculated as follows. The row labeled "V solved" contains the number of prblems out of the 42 in

the test set on which the method successfully terminated, while the rows labeled "# overflow" and "# hit

iurlim" contain the number of problems on which each method failed, respectively, from floating point

arithmetic overflow and by reaching iteration 500. The row labeled ".I compared" contains the number of

problems that were solved by both methods. The comparative statistics in the last two rows of the tables

are computed only over this set of comparison problems. The row labeled "Ave. score" is calculated as

29

follows. For each comparison problem, the method which required fewer f-cycles is assigned a score of

"I," while the other method is assigned a score equal to the number of f-cycles it required divided by the

number of f-cycles required by the beaer method. Then. the average of the scores for each method over

the aet of comparison problems is recorded in the row labeled "Ave. score." For each comparison prob-

lem, if the scort of a method s less than or equal to 1.I, then thaz medod is coumed as "S best" for the

problem, and the total of such problems for each method is recorded in the row labeled # best."

Table 5.1
p = 2(n +1)

Algorithm: (S) I(
, solved: 36 37

.-# overflow: 4 4
hit inilim: 2 1
compared: 34
best: 19 20
Ave. score: 1.42 1 2.09

We first consider the comparative performance of Newton's method and the BFGS method. It

seems clear from Table 5.1 that the BFGS method is somewhat superior to Newton's method when

2(n+l) processors are available. Table 5.2, on the other hand, compares these two methods under the

assumption that p is large enough that the entire finite difference Hessian approximation can be calcu-

lated concurrently with evaluation of the function and gradient values. It shows that the extra Hessian

information available in Newton's method substantially reduces the number of iterations required in this

case. Together, these two tables show that it certainly is reasonable to consider the type of algorithms

that we anm discussing in this paper, when the number of processors is large enough to allow an extr gra-

dient evaluation at each tial point but not large enough to allow evaluation of the finite difference Hes-

sian in one f-cycle, because Newton's method is not optimal, but the Hessian information does seem to

30

help.

Table 5.2
p k(n1 +5n +2Y2

Alg orithm: (S)L I (N)
solved: 36 37
overflow: 4 4

hit imlim: 2 1
compared: 34
0 best: 8 27

Ave. score: 3.07 1.36

We now compare the relative performance of all our algorithms by the following analysis tech-

nique. Define M, to be the number of f-cycles required for algorithm M to solve problem i. If the algo-

rithm fails, either due to overflow or by exceeding the iteration limit, then Mi - -. We then define the

average performance ai for problem i to be the median of the values Mi. over all methods M. except that

if the median is - then we instead take a, to be the largest M, that is not -. Next, define the perfor-

mane PM of method M

PM -- j M + (2 r),
aj Vi

*aj
where if Mi as a then O. Tis measure tends to compress the performance measure of all the

methods but is reasonably good at ordering them.

Table 5.3 shows the performance of each algorithm as measured by the above technique.

31

Table 5.3

Algorithm S N UP UB CB UpT UBT CBT UPS UBS CBS
Performance 1.08 1.15 1.16 1.69 1.26 1.14 1.21 1.07 0.95 0.98 0.90

We can make some interesting observations from this table. First, we note that Algorithms 2.1(UP), (UB),

and (CB), which omit the standard secant equation, perform worse than the BFGS method, Algorithm

2.1(S), even though they use some finite difference Hessian information. Also, note that Algorithm

2.1(UB) performs much worse than Algorithm 2.1(CB), which indicates the importance of choosing the

finite difference update directions to be approximately conjugate when using the BFGS update to insert

finite difference Hessian information. Next. we see that the addition of the temporary step update is

clearly worthwhile, since each of Algorithms 2.1(UPT), (UBT). and (CBT) performs better than the

corresponding algorithm without the temporary step update. However, two of these methods still perform

worse than the BFGS method, and Algorithm 2.1(CBT) performs about the same as the BFGS method.

Finally, we observe that the methods that use alternating step and finite difference updates, Algorithms

2.1(LJPS), (UBS), and (CBS), perform the best of our algorithms. They perform significantly better than

the BFGS method.

In Table 5.4 and Table 5.5 we give pairwise comparisons of the BFGS method, Algorithm 2.1(S),

with the three best of our new methods. Algorithms 2.1(UPS), (UPS), and (CBS). These statistics

confirm the conclusion that the alternating update methods perform better than the BFGS method. Also,

it is interesting to note that the choice of approximately conjugate finite difference update directions that

yielded such an improvement of Algorithm 2.1(CB) over Algorithm 2.1(UB) does not give a similar

improvement for these methods, since Algorithms 2.1(UBS) and (CBS) perform very similarly. This is

probably linked to the fact that the m-step quadratic convergence of methods (CB) and (CBT), which

-A4 AL

32

depended on using conjugate rather than orthogonal directions, is destroyed by making permanent step

updates. Finally, we see that the conventional wisdom that the BFGS update is in some sense sperior to

the PSB update is supported hem. since Algorithms 2.1(UBS) and (CBS) perform somewhat better than

Algorithm 2.1 (UPS).

Table 5.4

Algorithm: UPS S UBS S CBS S

solved: 38 36 33 36 36 36
, overflow: 3 4 7 4 6 4

hit imlim: 1 2 2 2 0 2

compared: 33 32 34
best: 21 14 27 12 24 12
Ave. score: 1.39 3.22 1.23 1.66 1.45 1.75

Table 5.5

Algorithm: UBS UPS CBS UPS UBS CBS
solved: 33 38 36 38 33 36
overflow: 7 3 6 3 7 6
hit itnlim: 2 1 0 1 2 0

compared: 30 33 33
best: 21 12 26 16 20 20
Ave. score: 1.23 1.66 1.46 1.73 1.14 1.15

Tables 5.4 and 5.5 indicate that our best new methods have achieved about a 30% improvement

over the BFGS method when them are twice the number of processors needed by the BFGS method. This

is not a perfect utilization of processors but may be about as well as one can do on these small problems,

especially considering the comparisons in Table 5.2 which show a fairly small improvement by Newton's

method over the BFGS method on these problems.

33

6. Conclusions.

We have introduced three types of new algorithms that utilize extra function evaluations to obtain

part of the finite difference Hessian at each iteration. The first type (Algorithms 2.1(1), (LB), and (CB))

uses the finite derence Hessian information to update the Hessian approximaion and omits the standard

secant update that is made by methods such as the BFOS method. The second type (Algorithms

2.1 (UPI), (LBT), and (CET)) uses the finite difference Hessian information and makes a temporary stan-

dard secant update as well. The third type (Algorithms 2.1(UPS), (UBS), and (CBS)) makes updates both

with the finite difference Hessian information and with the standard secant information at each iteration.

Each algorithm type has three variants: using standard basis finite difference directions with PSB updates

(first two letters UP) or BFGS updates (first two letters ULB), or using conjugate finite difference direc-

tions with BFGS updates (first two letters CB).

We have shown m-step Q-qadratic and 1-step Q-supertinear convergence rates for Algorithms

2.1(CB) and (CBT); the same results clearly hold for Algorithms 2.1(UP) and (UPT). Here m =n

where q is the number of extra gradient evaluations available per iteration. Our experimental results with

q - 1 show that of these algorithms, only Algorithm 2.1(CBT) performs roughly as well as the BFGS

method. These algorithms may perform better than the BFGS method when q > I or on large dimen-

sional problems; we plan to experiment with these cases.

Algorithms 2.1(UPS), (UBS), and (CBS) with q = I appear to perform better than the BFGS

method. We have not been able to show m-step Q-quadratic convergence for these methods and suspect

that they do not possess this property. However, they appear to be a promising approach to utilizing extra

processors in solving unconstrained optimization problems. Also, we believe that these methods are I-

34

step Q-superlinearly convergent We intend to continue wo exement with these methods with q > 1

and on lager-dimensional problems, and to analyze their convergence properties.

VI.

LMMab&

3S

References.

C. 0. Broyden, J. E. Dennis, and J. J. Mort. * On the local and superlinear convergence of quasi-Newton

methods", Journal of the Insdne of Mathematics and its Applications 12(1973) 223-245.

KR. Byrd, C. Den. AL H. G. Rizmooy Yam, and R. B. Schmabel, 'C~ncumi stochastic methods for glo-

bal optimization", Technical Report CU-CS-338-86. Department of Computer Science, University of

* Colorado at Boulder (Boulder, CO. 1986).

R. H. Byrd and J. Nocedal, "Global convergence of a class of quasi-Newton methods on uniformly con-

vex problems". Technical Report #86-Ol-NAM-Ol, Department of Electrical Engineering and Computer

Science, Northwestern University (Evanston. IL, 1986).

J. E. Dennis, Jr. and J. J. Mord , "Quasi-Newton methods, motivation. and theory", SIAM Review

19(1977)46-89.

J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equa-

tions (Prentice-Hall, Englewood Cliffs, NJ, 1983).

R. Fletcher, "A new approach to variable metric algorithms", Computer Journal 13(1970) 3 17-322.

* R. Fletcher, Practical methods of optimization, Vol. 1: Unconstrained optimization (John Wiley & Sons,

New York, 1980).

P. E. G ill, W. Murray, and M. H. Wright, Practical optimization (Academic Press, London, 198 1).

36

G. Li. "Successive column correction algorithms for solving sparse nonlinear systems of equations",

Technical Report 86-12, Depanment of Mathematics, Rice University (Houston, TX, 1986).

J. J. Mort . B. S. Garbow, and K. E. Hillstrom, "Testing unconstrained optimization software", ACM

Transactions on Mathematical Software 7(1981) 17-41.

J. J. Mort and D. C. Sorensen. "Computing a tust region step". SlAM Journal on Scientfic and Swi ical

Computing 4(1983) 553-572.

S. S. Oren, "On the selection of parameters in self-scaling variable metric algorithms", Mathematical Pro-

gramming 7(1974) 351-367.

R. B. Schnabel, "Quasi-Newton methods using multiple secant equations", Technical Report CU-CS-

247-83, Department of Computer Science, University of Colorado at Boulder (Boulder, CO. 1983).

R. B. Schnabel, "Concurrent function evaluations in local and global optimization", Technical Report

CU-CS-345-86, Department of Computer Science, University of Colorado at Boulder (Boulder, CO.

1986).

37

Appendix.

Tdtk A. I

Sovesflow. - M baim limit

N UP UB F UT MT UPS UBS CBS

tacm a s huimfaila

HELl 3 1 27 10 19 58 21 21 23 23 18 21 17
7 6 7 9 4 6 20 22 6 6 5

TU1G 10 1 27 9 20 35 33 24 22 22 19 17 17
1 0 17 12 11 10 1 8 12 0 2

ROSE 10 1 41 24 124 171 149 " 139 78 , 64 6S
11 8 124 115 206 O0 25 38 "0 11 30

ROSE 2 1 23 24 35 90 29 23 35 32 27 23 27
6 8 15 7 8 10 13 13 9 4 a

SING 4 1 47 15 32 97 33 21 24 26 27 22 24
20 0 2 34 4 1 3 6 0 3 4

SING 1 1 47 15 56 128 54 36 31 29 35 43 29
20 0 3 78 8 23 6 8 1 5 6

BEAL 2 1 16 7 11 12 3 11 9 8 14 7 3
2 1 2 1 I 1 2 2 2 1 1

WOOD 4 1 32 57 90 113 49 63 52 49 75 41 46
9 38 24 42 15 36 19 19 17 13 17

CHEB 9 1 24 13 55 49 48 42 49 29 32 25 34
6 8 9 5 20 24 6 8 4 3 8

GAUS 3 1 5 1 3 4 3 3 4 2 3 4 3
2 0 3 3 1 2 2 1 3 3 1

BOX 3 1 38 16 10 61 9 10 i 12 9 12 9
5 11 0 50 I 1 0 1 0 0 0

VAR 10 1 16 14 37 116 37 33 32 22 31 21 22
7 0 15 115 6 5 28 1 0 4 1

WATS 9 1 95 * 266 - 129 * 309 35 175 56 34
6 48 - 113 4 19 23 4 20

P. 1 P 10 1 151 30 - 251 135 see 112 69 122 101 73
63 6 - 111 66 see 30 21 46 i3 22

. PEN2 10 1 22 99 42. 423 I1 1 0 163 263 21 121 154
11 43 13 304 74 e 63 233 2 15 50

HEJ 3 10 29 15 20 54 16 13 19 17 19 9 13
7 4 5 12 4 4 11 9 4 2 4

TRIG 10 10 72 19 41 41 62 26 74 40 32 39 29
10 6 2 5 24 6 99 19 2 12 S

ROSE 10 10 54 73 327 410 - - 210 489 ee 154 166
19 36 510 451 - 0e0 59 30 00" 51 67

ROSE 2 10 49 72 78 266 75 40 92 90 108 57 71
17 34 47 134 24 20 39 43 47 10 19

SING 4 10 64 20 52 117 46 34 35 33 35 40 31
o.1 1 0 4 43 8 . 12 9 1 9 8

3SNG 1 10 77 20 87 151 74 50 105 37 47 55 48
30 0 1 74 11 47 23 11 0 8 14

DEAL 2 10 - 35 - - 39 39 27 44 45 - 46
-. - 22 - - 24 6 224 17 1 - 26

WOOD 4 10 58 53 106 279 58 64 62 56 98 52 53
7 28 40 655 15 26 13 20 19 13 15

-~~1. .'k~.~

* 38

CFEB 9 10 000 000 320 0 e e 176 000 000 1e 3 000 e
o"s ee 52 000 see 83 .** *o* Is cc e e0

GAUS 3 10 19 1 1 is 100 15 17 I ,00 13
S 0 0 Is --3 0 6 1 0 e I

BOX 3 10 "s e 40 - - 29 49 54 39 47 36
3es ee 31 - - 33 11 12 28 14 19

VAR 10 10 41 17 8 140 177 0 36 24 46 23 24
9 0 21 139 154 e 23 3 9 4 2

MI! 10 10 171 43 - 491 127 - 56 91 149 115 93
50 13 - 430 40 - 21 36 44 19 23

PE 10 10 370 105 455 ,me e 53 ee, me 122 em e
112 36 121 see e 19 meo 0e0 26 e e

HELX 3 100 28 16 10 54 14 7 20 13 13 9 9
7 4 3 12 6 3 4 IS 3 S S

MUG 10 100 101 27 112 eo, 110 me 3 93 114 53 175
. 46 0 W me 55 ee 36 79 8 26 53

ROSE 10 I00 165 - - - - me - - - 96 358
31 - - - - me - - - 105 25

ROSE 2 100 112 367 206 - 466 74 - 491 274 - 383
41 249 101 - 455 25 - 253 216 - 255

p SING 4 100 99 26 6 119 64 43 43 41 47 39 39
16 0 5 50 37 3 11 25 4 II 16

SING 3 100 141 26 164 203 106 79 113 50 71 75 51
18 0 79 172 20 94 41 14 7 16 20

DEAL 2 100 Ge 78 15 me0 me 96 000 000 120 me 000
eo 45 14 e eec 31 e, 0e0 41 em see

WOOD 4 1oo 116 44 121 137 45 30 so 41 115 43 41
16 6 44 14 16 21 7 13 17 12 9

GAUS 3100 56 136 1 - - I eo* me0 1 ee eec

AS 34 254 0 - - 0 Oee eeo 0 ee ee

BOX. 3 100 e me 4 me e 4 0e0 0e 3 000 0&0
see *me 0 me see 0 s sce e 0 em se

VAR 10 100 59 26 me 25 66 0 37 4 262 46 35
8 0 me 139 14 eo 23 65 132 7 0

PNIl 10 100 185 44 - - 169 - 107 91 170 111 91
199 7 - - 8 - 14 51 98 12 12

5'p 10 100 m 106 s ee 000 e we* ee ee 00 0m, eec
- 38 o3 e mee G s mee see s o oe e see ee

4.

- . & P2 '&~.&.-

4I.~.P .I.urrrrrrrrrr..'r. w---rr .w r -. '- rrw'Vrr-- a rT W -rzvvr Unclassified

Uc.in~.&S CO#4~6 S aOI REPORT DOCUMENTATION PAGE

-.- *oc- . sai:40i Y E.AsipscAriOM JIa nesTraicTivi M*NMIIOAS

Unclassified _______________________

2& _SSC.~V% C6.A&I0&CalIONt ^44uQ00T? 3. OassmsurItu~ivAi4.A6&61TV Of 09POR?

MEOW WcS .WwtG*O#4 Approved for public release;
3L *C6&oICT1Qt,#0V~t~m01fG S."4U6&Distribution unlimited

OREMeOONO 0 RGANIZArIOf ANSPORT 04UMNIS300 L. 00MO#I AG amaIaArio# RapanrT #4IdMM(s,

CS-CU-361-87 ARy al-531^
a&. .MC as PIN PORMIAIG Ol0AIOZAI@#4 o..mCK S'#ueo,. 7& ma" op ma4afls#4 ORam4sitTIOIE

University of Colorado U.S. Army Research Office

Eda. &0@09= (Z"a. San a ZIPip ow ft 3U tnmsIcky. Semas ZP comei
~* Computer Science Department Post Office Box '12211

Campus Box 430 Research Triangle Park,..NC 27709

ft. #46MG OP OUNuI#48d1P01650N1'4 8La 0001CE SV%&4OL SL POCJNIMIIENT iN51rmuMseaT Isoatyiiec&Ttou. #4u~e

I DAAG-29-84-K-0140

&L. &00095 $City. gfaid ip COMO C... SORC ofme OP UN0#4NO&
ll.-Title PROGRM 0100jec? ?ORK "omit 1
Using-Parallel Function Evaluations lo *IJAINGNmoAW 14CL "a0.

Improve Hessian Approximations F~or

Oxhiconstriined Optimization

pRichard H. Bvrd. Robert B. Schnabel. Gera1l1 A- Rhit
12~~~~ Tissa OPRPRT1S ?M vemiO Id. OATS op REPORT (... Di., IL. PGaC cout

is. aGSTRAC COCe. I&a SUJC MAN fcifte m m.i oeaym dmm rb oso

This paper presents a new class of methods for Solving unconstrained optimization
problems on parallel computers. The methods are intended to solve small to moderate
dimensional problems where function and derivative evaluation is the dominant cost.
They utilize multiple processors to evaluate the function, (finite difference)
gradient, and a portion of the finite difference Hessian simultaneously at each
iterate. We introduce three types of new methods, which all utilize the new finite

-. difference Hessian information in forming the new Hessian approximation at each
-. iteration; they differ in whether and how they utilize the standard secant informa-

tion from the current step as yell. We present theoretical analyses of the rate of
convergence of several of these methods. We also present computational results which
illustrate their performance on parallel computers when function evaluation is
expensive.

2a IS5TRIGUVIOw4iV*ILASILJTY 00 LSSTRACT Ma. RagTOIAC EUP11TV CLAWIPICATIO4

* U4CA51'S0UNIMIIO SAME &S 01M 0 TIC IAENES

U& #46MG@ OP 01ESDOPII51E8 IN01V1I. OTLIuN EUE 2. 91R WEI

LDr. Jagdish Chandra 675904

00FR 47.8 P an-flGo#4Oi ao#73IS OOLEIE.. Unclassified
-U DOFOR 143.3APR19 sic~imeTY c6Assapi"aflO Op Toots P&AC

N,%

10 1 O l , 16 1

