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Abstract

This paper presents a new class of methods for solving unconstrained optimization problems on
parallel computers. The methods are intended to solve small 10 moderate dimensional problems where
function and derivative evaluation is the dominant cost. They utilize multiple processors to evaluate the
function, (finite difference) gradient, and a portion of the ﬁmte difference Hessian simultaneously at each
iterate. We introduce three types of new methods, which all utilize the new finite difference Hessian
information in forming the new Hessian approximation at each iteration; they differ in whether and how
they utilize the standard secant information from the current step as well. We present theoretical analyses

of the rate of convergence of several of these methods. We also present computational results which

illustrate their performance on parallel computers when function evaluation is expensive.




»
R 1. Introduction.
& |
g : This paper presents a new class of methods for solving unconstrained optimization problems on
)
* parallel computers. The methods are intended to solve small to moderate dimensional problems where ‘
;‘ . function and derivative evaluation is the dominant cost. They utilize multiple processors to evaluate the
"' function, (finite difference) gradient, and a portion of the finite difference Hessian simultaneously at each
{'4
fterate. We present theoretical analyses of the rate of convergence of several of these methods. We also
5
;:: present computational results which illustrate their performance on paralle]l computers when function
e
»:: evaluation is expensive.
4:' The unconstrained optimization problem is
.
3}{ . zu:ig_f :R*>R (1.1
':; where f (x) is assumed to be at least twice continuously differentiable. This problem occurs commonly
‘.'
Yy
5%'; in many applications, including modeling, data fitting, and planning calculations in most areas of science
&
. and engineering. This paper is solely concemned with finding a local minimizer of f (x), the lowest point
W
::: of f(x) in some open neighborhood of the variable space. This is the most common unconstrained
K
._"n optimization calculation in practice. For a discussion of parallel methods for global optimization, the
N problem of finding the lowest among multiple local minimizers of f (x), see Byrd, Dert, Rinnooy Kan,
\
0 and Schnabel (1986).
"
- Unconstrained optimization problems often are expensive to solve. One reason is that the objective
‘.:E: function, f (x), often is itself a complex computer code, for example the solution of a system of pantial
e
"
'_" differential equations. It is not unusual for each evaluation of f (x) to require many seconds, or minutes,
;5: on a powerful computer. In addition, in many instances when f (x) is expensive, the derivatives of f (x)
'
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’ are not available analytically. In this case, optimization codes approximate the gradient of f (x) at a point
.-‘ x by using the finite difference approximation
;
'3,': vf(:‘)‘,.f(xﬁh.-;:)-f(xc) (12)
-8
- where A; is a small stepsize and ¢; denotes the i unit vector. This means that each gradient evaluation
' , requires # function evaluations in addition to f (x.). Since the solution to the optimization problem usu-
? ally requires many evaluations of f (x) and V£ (x), it becomes an expensive process. Usually, no higher
;; derivatives are used by optimization algorithms when f (x) is expensive.
g
:f' If the number of variables is not too large, say n<100, then the time required by the remainder of
;" the optimization algorithm often is insignificant in comparison to the time required for the function and
;o gradient calculations. This is the class of problems we consider in this paper. We orient our discussions
g to the common ¢ase when gradients are calculated by finite differences. We will point out, however, that
A' our techniques can also be applied to instances where f (x) is expensive but the analytic gradient is avail-
3
,é able.
o Methods for solving unconstrained optimizations problems with a small or moderate number of
j: variables on sequential computers are quite well understood (see e.g. Fletcher (1980), Gill, Murray, and
A Wright (1981), or Dennis and Schnabel (1983)). When second derivatives are available analytically or
. affordable by finite differences, variants of Newton's method are used. When analytic second derivatives
i are unavailable and function evaluation is expensive, variants of the BFGS method are most commonly
used, using either analytic or finite difference gradients. A very brief description of such methods is
:;: included in Section 2. The Newton'’s method based algorithms, which are locally quadratically conver-
:. gent on most problems, generally require fewer iterations than the superlinearly convergent BFGS based
,j methods, but they generally require more function evaluations and hence more computer time on
s
K
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problems where function evaluation is expensive. It will be seen that our new parallel methods try to

incorporate advantages of both approaches.

Due to the high cost of solving many optimization problems, there is ample incentive to devise
methods for solving them on parallel computers if they can lead to significantly faster or more cost effec-
tive solution of these problems. For problems with expensive function evaluations, there are two obvious
typesof@achcs. One can use standard sequential optimization methods but apply a parallel algo-
rithm to evaluate f (x), or one can devise methods that make effective use of evaluating f (x) at multiple
points concurrently. In this paper we consider the latter approach. The former approach, applying a
parallel algorithm to evaluate f (x), is dependent upon the actual objective function f (x) and is not under
the control of the optimization algorithm designer. It should be noted, however, that the two approaches
often are quite compatible. For example, in cases where the evaluation of f (x) vectorizes well, a com-
puter which consists of multiple vector processors would allow multiple evaluations of £ (x) to be per-

formed concurrently with each evaluation performed by a vector processor.

The concurrent evaluation of f (x) at multiple points is well suited 1o any computer that can exe-
cute multiple, different instruction streams concurrently. Such machines are known as Multiple Instruc-
tion Multiple Data (MIMD) computers. This class includes both shared memory multiprocessors, and
Jocal memory multiprocessors such as hypercubes; the algorithms we discuss are well suited to any such
computer. Our approach is not generally suited to Single Instruction Multiple Data (SIMD) computers,
such as processor arrays, whose processors can execute the same instruction on different data in lockstep.
This is because different evaluations of an expensive function f (x) usually entail different sequences of

instructions, due to data dependent branches in the code for f (x), and thus cannot easily be performed

concurrently on an SIMD machine.
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The most obvious way to parallelize unconstrained optimization algorithms when the evaluation of
J (x) is expensive and the gradient is calculated by finite differences is to perform the a function evalua-
tions required by the finite difference gradient in parallel. (If the number of processors, p , is less than n,
then [ a/p] groups of p function evaluations each can be performed in parallel.) Simple approaches along |
these lines are discussed in Schnabel (1986). He demonstrates that if one also incorporates the technique
of always evaluating the finite difference gradient when the function value at a new trial point is being |
evaluated (or p-1 components of the finite difference gradient if p <a+1), before it is known whether this (
point will be accepted as an iterate and its gradient needed, then one can make very efficient use of up to 1
n+1 processors on most problems with expensive functions. We refer to this technique as speculative

gradient evaluation.

Such algorithms, which evaluate f (x) and the n function evaluations for the finite difference gra-
dient concurrently, can utilize at most n+1 processors (assuming that each evaluation of f (x) uses only

one processor). In this paper we consider strategies that would be appropriate when p >n+1. Since there

are many unconstrained optimization problems where the evaluation of f (x) is very expensive but the
number of variables is small, say n<25, and since many parallel computers already have scores or hun-
dreds of processors, this is a reasonably common scenario. It can be expected to become even more com-
mon as the number of processors in MIMD computers grows. It will be seen that our strategies can also
be applied to computers with fewer than » processors in the case when f(x) and Vf(x) are both

evaluated analytically by one processor.

If p2(n2 + 5n +2)/2, then it is possible to evaluate the function, the finite difference gradient, and a
finite different Hessian approximation simultanenusly, and the best strategy is probably just a standard

Newton's method based algorithm. A very likely situaton, however, is that

p € (n+1),(n?+5n +2)/2), so that there are more than enough processors to evaluate the finite
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difference gradient but not enough to calculate the full finite difference Hessian as well. For example, if
P = 64, any problem with n € [10, 63] falls in this class. This is the main situation we consider in this

paper.

The remainder of this paper considers ways to use multiple processors to evaluate the function,
(finite difference) gradient, and a portion of the information comprising the finite difference Hessian at
each iteration. In Section 2 we propose a number of possible ways to do this. They are based upon using
the extra processors to calculate extra (finite difference) gradients which determine V2f (x, )u; in carefully
cl;osen directions u;, and incorporating this information either by overwriting part of the Hessian approxi-
mation or by secant updates. Some of our algorithms also incorporate the standard secant equation into
the Hessian approximation. In Section 3 we analyze the local convergence of some of these methods.
Several are shown to be m-step quadratically convergent, for p large enough that » extra gradients can be
calculated in the course of m steps. In Section 4 we discuss several considerations involved in the imple-
mentation of these algorithms. Section 5 contains computational results of running many of these
methods on standard unconstrained optimization test problems. While the results are obtained on a
sequential computer, they are easily used to show what speedup would be obtained on parallel computers
when function evaluation is the overriding cost. In Section 6 we summarize our conclusions and briefly

discuss our plans for continuing this research.

We conclude this section by giving some notation that we will use in this paper.

Notation
Let g(x)= Vf (x) and H (x) = V3f (x).
Define 11 Il to be the Euclidean norm |1 113, and let x(A)= 1A 1] 11A-1II for any non-singular

nxn real matrix A.

o

- T
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For any axn real symmetic matrix B, let A(B), . . , A, (B) be the » real eigenvalues of B, in increasing

¥, order.
)
0
2. Algorithms.
!
In this section we describe a number of alternative algorithms for unconstrained optimization in a
parallel processing environment. They include straightforward parallelizations of the usual BFGS and
¢
:, Newton's methods, as well as a number of new algorithms. All of these algorithms may be regarded as
W interpolations between Newton's method and a quasi-Newton method. First we present a basic algo-
. rithmic framework for all these methods (Algorithm 2.1), and then we motivate and describe several
9]
L
! " specific algorithms as versions of this basic framework.
N
All our algorithms are intended for the case when function evaluation is expensive. We orient our
L
~ J .
@ discussion in this section to the case when the evaluation of g (x) is by the finite difference formula (1.2),
)
)
;: so that it requires # function evaluations, plus the evaluation of f (x). Our algorithms will perform these
function evaluations concurrently. For simplicity, we assume that the number of processors, p, is
¢
) (g+1Xn+1), forsome g 20, and that m = % is an integer. Our algorithms can also be applied to the case
b
. where the gradient is available analytically and each component g; (x) can be evaluated by a separate pro-
LS
. cessor; in this case, they require p =n(qg + 1) + 1 processors. They could also be used in a case where
' L
'_ 8 (x) and f (x) are evaluated on the same processor and p =g + 1 processors are available.
f
f' Algorithm 2.1.
W
:
0) Letae (0, %), Be (&, 1), x, € R*, q 20, Bgbe a positive definite, symmetric matrix, and k :=1.
4
P
'y
I
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1) Evaluate ) = f (x)), g = g (x}), and possibly other values in parallel.
2) Determine B;.

3) Using B,, compute search direction d, .

4) Determine the set U, of ¢ finite difference directions.

5) Setsteplength pt, =1,

6) Xpey =Xy +)3d;.

7) Compute f (x441), g (Xr+1), and V4 = finite difference approximation to H (x341)U, 1 in parallel.
(requires ¢ additional gradient values)

8) If (xz. does not satisfy conditions (2.1) and (2.2) ) then adjust 1 and go to 6).
9) m‘e'minc Bl+l.
10) k =k +1.

11) Stop orgoto 3).

Note that this algorithmic framework includes the standard methods, in that it allows B, to be set
1o the values chosen by Newton's method or standard secant methods in step 9). However, computing
additional information in step 7) and using this information in step 9) results in some new algorithms that
can take advantage of the ability to perform computations in parallel. Steps 1), 2), 3), 4), 7), and 9) are

left unspecified, and by making specific choices in these steps we will specify the new methods.

The key issue is that additional function evaluations can be done simultaneously with the evalua-
tion of f (x) and g (x) at step 7), if sufficiently many processors are available. One of the main ideas of
the new algorithms is to utilize the extra processors to improve the Hessian approximation at the iterate
X,41. In step 4), the option is available to pick directions U, from x;,) along which extra gradient infor-

mation will be computed in step 7). Note that these finite difference directions, U,,;, must be chosen

without knowledge of f (x:41) Or g(xi41). Then, in step 7), the gradients g (xp4; + A, Ussie,). for
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i=1,...,q,where h; is a small stepsize, may be approximated from function evaluations. These gra-
dient evaluations, which require ¢ (n + 1) additional function evaluations, are used to determine a finite

difference approximation t0 Vi, = H (x;41)Us; as detailed in Section 4.

The question of how to utilize the extra gradient information obtained in step 7) to help form B,y
is left unspecified in step 9). This step, combined with the choice of finite difference directions in step 4),
is the crucial part of the new algorithms. Note that steps 1) and 7) are the only locations in Algorithm 2.1
at which function evaluations are performed, except for Newton's method, which also performs some
function evaluations in step 9). Step 1) provides for the possibility of doing extra function evaluations, in
parallel with the computation of f (x;) and g(x), to produce B that is a better approximation to H (x;)

than the a priori estimate B

For some of the algorithms, the search direction d; is taken to be -B;~1g,, but in leaving step 3)
unspecified we provide for two other cases that occur in some of the algorithms. Depending on how B, is
determined in step 9), the approximate Hessian may not be positive definite, and d; is then taken as
~(Bx + G, /)"'g: . for some o, that makes B, + G,/ positive definite. Also, several algorithms use a tem-

porarily updated version of B, in computing d;.
Algorithm 2.1 includes a linesearch that satisfies the standard conditions,

S ()= f (xee)) S 0 (x)T (xrar = x2) s @D
and

g xa) (rer=x2) 2 B8 ()T (Rear =32 . 2.2)

We do not detail how the steplength parameter y; is to be adjusted so that at any iterate conditions (2.1)

and (2.2) will be satisfied upon reaching step 9); our implementation uses the procedure in Dennis and

Schnabel (1983). Accumulated computational experience indicates that, for reasonable values of a and 3,

bl ol olix-aadh g
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8 these conditions are satisfied by the initial value y, = 1 most of the time. When that condition occurs, we
4 are able to use immediately all the information gathered in step 7), so that all the algorithms described

below, except for Newton’s method, require only the time for one concurrent set of function evaluations

to carry out the step.
3
W ‘We now describe, in a natural order, the algorithms to be considered in this paper.
¥
Quasi-Newton and Newton methods
A
]
8 We first discuss how two standard algorithms, Newton's method and the BFGS method, may be
B 2
K advantageously implemented on parallel processors. The BFGS method algorithm, which we designate
i : by "S" for "step update”, is obtained from Algorithm 2.1 as follows. The matrix B is taken to be some
! scaled multiple of the identity matrix. No finite difference directions are chosen at step 4), and no extra
function evaluations are done in step 7). The approximate Hessian is determined in step 9) by the BFGS
N A
) step update, namely
.
9 BisisiTBe | yun”
B .28 - + ’ .
| T TR a T @3
K
‘ where s, =pedy and y; =gis1 —8:. The step is computed simply by d; =-B,~lg,, since B, is
)
J
X guaranteed to be positive definite. This algorithm, as discussed in Schnabel (1986), attains near-optimal
3. speedup on n+1 or fewer processors by evaluating the gradient at each trial point in step 7) in parallel
}

with the evaluation of f (x;+1). Thus, if the linesearch conditions are satisfied by ps =1, and p 2 n+1,

that iteration of the algorithm requires only the time of one function evaluation. However, this method
cannot use more than n+1 processors. We tumn, therefore, to consideration of methods that can utilize

(g+1)(n+1) processors available wheng 2 1.
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Since Newton’s method is known to be an effective method in the sequential case, it is natural to
consider a parallel version of this algorithm. We will designate our version of Newton'’s method by "N”.

In Newton's method B, as well as each B,,), is taken to be the finite difference Hessian matrix at the
corresponding iterate. This requires {22+ 3%) aqditional evaluations of f (x). Since the true Hessian
need not be positive definite, s; is taken o be —(B, + 0,/ g,, where ©; is chosen, as in Moré and
Sorensen (1983), so that B, + 0,/ is positive definite and well-conditioned. For an efficient parallel ver-
sion of Newton's method, at step 7), in parallel with the evaluation of f (x;,;) and g (xx41), the extra
q(n+1) processors are used to compute some of the elements of H (x¢41). Then, if the trial point x;+1
satisfies conditions (2.1) and (2.2), at step 9) the remaining elements of the finite difference Hessian are

calculated, perhaps requiring many cycles of parallel function evaluations. If the number of processors is
at least {82457 42) then £, o and H may be evaluated in one cycle, which would make Newton's

method quite competitive. However, Algorithm 2.1(N) may be quite inefficient when a is large relative

to ¢, since it requires several cycles of parallel function evaluations for each jteration.

If p is between n+1 and i"z—"'sf-ﬁl. there is room for a method which gathers more informa-

tion per iteration than a secant method but less than Newton's method. In the rest of this section we con-
sider several methods that, like the BFGS method, take only one cycle of paralle! function evaluations for
each trial point, but also utilize effectively the extra ¢(n+1) function evaluations per cycle to approxi-

mate the Hessian more accurately than does the BFGS method.

Finite difference update of part of the Hessian

Perhaps the most natural idea satisfying our goals is o simply evaluate as many elements of

H (x:+1) as possible using the extra processors, and 1o update B; 0 B:.; by simply overwriting the

................. - - . n e
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p “

- components of B, by the elements of H (xx1). It is interesting to note that the PSB update

K-,

X T T T T

B + (v=Bru)u"+u(v-B,u) _ B (v-Byu)uu

| ko1 =B, =Ty Tl "

0

. is equivalent t0 overwriting row j and column j of B, with v € R*, if u is the j* standard basis direc-
Ly

¥ :

2 tion. Similarly, if we take U, to be ¢ columns of the identity matrix, and V4 contains the correspond-
,‘ ing columns of H (xx41), then we can determine B, that overwrites the appropriate rows and columns of
¢ B, with V,, by the generalized PSB formula, as in Schnabel (1983),

i

X Byy1 =By + (Vi1 = BrUnst) Ui stT Upt S Wit T 249)
‘ .

N + Ukt (Ue T Uk 1) (Va1 = Bo Ug )T

= Ukt(Ue1T Uss1) ' (Viat = By Urat) Urt(Ue T Ut Wit T .

2" Since this method of determining B, clearly need not result in B,,; being positive definite, d;
o

oy must be calculated in the same way as in Algorithm 2.1(N). We designate this method as Algorithm
+

2.1(UP), where "U" indicates that the finite difference directions are chosen as “unit” vectors, and "P"

c: §

- indicates that the finite difference information is incorporated into B, through the "PSB" update.
<

¥

f‘, Specifically, "U” means that we partition the identity matrix into m = % blocks of ¢ adjacent columns,
. and in step 4) chose U1 to be the next block of ¢ columns.

‘.

3' '~

Z Algorithm 2.1(UP) has several obvious theoretical properties. First, it is trivial to see that if f (x) is

! a quadratic function, with Hessian H , then Algorithm 2.1(UP) will terminate after m steps, since after m

o
:: steps we will have B,, = H. It is also fairly easy to show that this method has a local m -step Q-quadratic
48

b

convergence rate, and also is 1-step Q-superlinearly convergent. One disadvantage of this method is that,

LY
!

even when H (x,,1) is positive definite, it can produce an indefinite B,,). Also, it is commonly accepted
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ff;:: - that the BFGS method is superior to the PSB method among secant algorithms for unconstrained optimi-
& zation, so it is natural to consider incorporating the finite difference information into B, by means of the
?‘.(
)
R BFGS update.
o
o Finite difference update of part of the Hessian uslng the BFGS formula
N
:.‘ We now consider two methods that are similar to Algorithm 2.1(UP), but that use the BFGS update
ol
08
' to incorporate the new finite difference information, rather than the PSB. First, we consider the method
iy
.e. obtained by simply modifying Algorithm 2.1(UP) by updating through the generalized BFGS formula
-
o (Schnabel (1983)), obtaining
”ii
: Biy1 =By = BUses(UsatT BeUpr ) Ukt T By + Vit (Uit T VstV . 2.5)
1
{ § Since V,., is a finite difference approximation to H (xx+1)Us4+1, it may be necessary to symmetrize the
O
o matrix Uy Vi1 Sufficienty close to a strict local minimum, the g Xg matrix U, 437 V;,4 will be posi-
. ‘G *
T tive definite, and thus B,,; will be positive definite if B; is. In the case that U, 7 V., is not positive
iy
vy
2 ; definite, we will use a maximal subset of the columns of U,., that yields a positive definite matrix and
)
‘;g; save the rest of the columns to use as finite difference directions at the next step. We designate this algo-
l""
Y
::h rithm as Algorithm 2.1(UB), where "U" indicates that in step 4), U, is taken to be the next block of ¢
i‘;
L)
! unit vectors, and "B" indicates that in step 10), B, is determined from B, and the finite difference infor-
f':: mation by using the generalized BFGS update. We include Algorithm 2.1(UB) only to show how much
:‘:l R
vé} its performance is improved by an idea to be discussed later. Although this method does maintain posi-
- tive definiteness of the matrices {8, }, it does not terminate in m steps on a quadratic function, and it per-
-
.E forms very poorly in practice.
-
" However, by choosing the finite difference directions more intelligently we can preserve the qua-
o
»:E: dratic termination property and obtain a considerably better method. If we choose Uy, 0 be orthogonal

N 4 et G q ) v
Dot ‘t" ‘ -, “’ 't‘f Wy 5" i, .6‘ 'l' vty A" i’n“‘ “"1 “v B SEAAY “' "‘t"" ARDRIN n"'a"b‘ n‘ .0. N n‘.‘e‘-h‘.’.".’l .‘."‘o in A Np R l' ", A !‘ ]
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Ky to the m—1 previous marrices V;.;, for 0 < j S m-2, then the finite difference directions asymptotically
é ;S become block conjugate with respect to the Hessian of f. In particular, if f(x) is a quadratic function
% ¥ with Hessian H, then the sets of directions Uy, U3, . . . , U, are block conjugate with respect to H, i.e.,

.‘f'\

re for1Si <j<Sm,UTHU; = 0. Thus, it is easy to show that B,, = H, and o this method terminates in m
b
‘,E': steps on a quadratic function. We designate this algorithm as Algorithm 2.1(CB), where *C" indicates
O
::;fﬂe that the finite difference directions are chosen as above to be approximately conjugate, and "B" indicates
‘l:.“ that B,,, is obtained from B, and the finite difference information by (2.5). We will show in the next
[}

i.
et section that Algorithm 2.1(CB) is m -step Q-quadratically and 1-step Q-superlinearly convergent. Also,
o
‘”‘ the conjugate method for choosing the finite difference update directions is invariant under linear
oy
}’ : transformations, and, of course, by updating through (2.5), the matrices B, are all positive definite.

i
' .

R Step update algorithms
A
}:}: Algorithm 2.1(UP) and Algorithm 2.1(CB) are still somewhat unsatisfactory, in that they do not
)

e
Ry ! use the step information contained in gi+ and g, in forming B,.;. In fact, the computational results in

J
’.::;. Section 5 show that Algorithm 2.1(S), the parallel BFGS method, which uses just the gradient differences
!’( G ’

:E" j at successive iterates to approximate the Hessian, performs better than Algorithms 2.1(UP), (UB), and
I' '

[} .,
it (CB), which do not make use of this information and instead approximate the Hessian by using just the
— : gradients along the finite difference directions. Thus, this information appears to be important, and we

JA ~
. ?_ would like to approximate By, in a way that utilizes all of the available gradient information.

.h&
K . One way 10 do this would be to simply update B, twice at each iteration, along the step direction,
‘ l"'n
:’ ‘o as in standard secant methods, and along the finite difference directions. To do this we modify Algo-

) *’

l:(

a rithms 2.1(UP), (UB), and (CB) as follows. In step 9), the counterparts of Algorithms 2.1(UB) and (CB)
$ _ first do the step update (2.3) using the direction s; = x;,)=x;; the counterpart of Algorithm 2.1(UP) does
L3 )

l A
)




&
k)
-y
A 14
o
Cs
$
) the step update
Bry=B, + O=Bisi)nT+5:0u=Best)T _ 5T n=Busi)sas:” @.6)
, * nTs @'y :
o The resulting matrix in either case is then updated by the finite difference update as in methods (UP),
8 (UB), or (CB). We designate these algorithms by (UPS), (UBS), and (CBS), where "S" indicates that a
N
I: step update (2.3) or (2.6) is done. Note that the extra update uses information already available, so that
¥
' still only one concurrent function evaluation is required per step.
K)
This approach has the drawback that there is little hope of choosing the finite difference directions
i effectively as was done with (UP) and (CB). In particular, we have seen no way to choose Uy, $0 as to
K maintain finite termination on a quadratic function or m-step quadratic convergence on general f (x).
S However, these methods perform well in the experiments of Section S, and clearly merit further con-
sideration.
4
o
.' J Temporary step update algorithms - .
E;
A way to preserve the progress made on the Hessian approximation by the finite difference updates
& while using the Hessian information along s, is to only temporarily update B, along the step direction.
[\ »
< More specifically, we can modify each of the algorithms (UP), (UB), and (CB), to obtain corresponding
S algorithms designated (UPT), (UBT), and (CBT), as follows. In step 9), By, is updated from B, along
.: the finite difference directions by (2.5) or (2.4). Then, in step 3), we either calculate
‘ »
L)
. 5 .= _ BirasisiTBrs1 , a7
¥ Bri=Brn si" Bynise * Selye ”
I\
k- for (UBT) and (CBT), or
f
L
L)
Ky
e R G VSR S AL LS R C R R e
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Or=Bua1Se )i T +85: Ou~Bra1st)T _ 5.7 u=Baarsi)suss”
s’ s sy '

Ek#l =B+

for (UPT), where y; = g;41~g:. We then use B, 0 compute d; exactly as By, is used in the
corresponding algorithm without the temporary step update. The “T" in the designation for these algo-
rithms indicates the fact that the matrices 5, obtained through the step direction update are “emporary”
in that they are only used for the next step computation and then never referenced again; i.c., B, .3 is cal-
culated from B,.;. not from B,,;. This idea was suggested to us by a related method of Li (1986) for

nonlinear equations.

This approach has the advam#ge that the theoretical properties of the unmodified algorithms are
preserved, since the step update only affects the next step, and is not incorporated into B;. Thus, as we
will show, Algorithm 2.1(UPT) and Algorithm 2.1(CBT) maintain their m-step Q-quadratic and 1-step
Q-superlinear convergence rates. Also, the addition of the temporary step update provides significantly
improved performance over the pure finite difference algorithms in practice, as seen in Section §. This is
perhaps due to the observation that, in practice, successive steps in optimization algorithms often tend to
lie along roughly the same direction, so that in only using the most recent step direction in updating the

matrix to be used to compute the next step, most of the relevant step information is retained.

3. Convergence Analysis.

In this section we analyze the local convergence properties of two of the algorithms discussed in
the previous section, namely Algorithm 2.1(CB) and Algorithm 2.1(CBT). We also discuss some of the
theoretical properties of the other algorithms from Section 2. For simplicity we assume that the finite

difference values used are exact, i.e. that each g;.) = g (x;4)), and that V,,) = H (x441)Us+) at step 7) of

e T e . :: - ,' l"_"'.' "-.‘v \'.)-,' ‘)" LR RS “\- NN ,‘} Y - o g S ™ 0 Y
8 S0 ! w My ALY AL N
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Algorithm 2.1.

The first two algorithms in Section 2, parallel versions of the BFGS method and Newton's method,
differ from the standard sequential methods only in that the new function value and (some of) the func-
tion evaluations for the new finite difference derivative values are evaluated concurrently. The sequence

of iterates produced, and hence the convergence properties, are identical 10 those of the corresponding
sequential methods.

The first new algorithm discussed in Section 2, Algorithm 2.1(UP), simply overwrites ¢ rows and
columns of the Hessian with accurate information at each iteration. Thus it clearly is m-step Q-
quadratically and 1-step Q-superlinearly convergent, and terminates with the exact solution in at most m
steps if f is a quadratic function. It is not 10 be expected that any of these properties apply to Algorithm

2.1(UB), which as we mentioned is included only to make some computational points in Section .

.

The next algorithm, Algorithm 2.1(CB), is not as easy to analyze because the update directions are
block conjugate only asymptotically. It is smghrfo;ward to s;xc;w that this again leads to m-step termi-
nation on quadratics, since the BFGS update is invariant under linear transformations. The following
analysis shows that this method, like Algorithm 2.1(UP), is m-step Q-quadratically and 1-step Q-

superlinearly convergent.

We now state the standard assumptions under which we will prove the two theorems of this section.

Assumptions 3.1.
Let S be an open subset of R* and suppose that f (x), g (x), and H(x) are continuouson S. Letx. € S
be a strict local minimum of f (x). Assume that H (x) is Lipschitz continuous in some neighborhood of

Xe .

- o L L4 - [
T e
u-v,. S
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To prove our m-step Q-quadratic convergence results, it will be necessary to show that the error in
oy the approximate Hessian at an iterate is of the order of the errors in the previous m iterates. In showing

'. " this, the following two definitions will be useful.
KR Definition

" Given sequences (x; } and (B, ), let

S =max{llx,j~x11:1Sj<Sm)
and
X, =max{x(Bs.j):1S<m).
The fol'owing lemma shows that if m steps are taken, with approximate Hessians that are not too
ill-conditioned, and the iterates remain close enough to x», then the error in the m th approximate Hessian

is of the order of the errors in the iterates.

Lemma 3.1.

. r Let (x;]} and (B, } be generated by Algorithm 2.1(CB), and suppose that f(x) and x» satisfy Assump-
Y
s‘\f. tions 3.1. Then for any M > 0, there is an 7 > 0 and ¢ > 0 such that for any &, if §; <7 and x;, M,
\-t‘
'\‘.

X then 11Byum = He 11 Sc§;.

: Proof. Let M > 0. Since H (x) is Lipschitz continuous on some neighborhood of x. and H. is positive
"-

33 definite, there is an r >0 and an M; >0 such that if llx-x 1l <r and HE-x |l <r then
AT, ]

Y MHE)2 ﬁ-l-.A.(H(x))SM,. and lIH@)-HE@) 1 SM;lix-X Il
AN
‘.:.

J
s:‘:: Consider any &, and assume that §, <7 and x; SM. In this proof for notational convenience and
o8

. clarity, we omit the "k+" expressions in all subscripts, e.g. we write "B,," for "By, ;,1". Also, define
i

Byl H;=H(x,).

TN Ry Ty ARGy U T N Ty VS ¥ AN LRE LG CRER AR
B A I D e R A O R AR R LN £ 4



S L

> - -
- -

18

- g
I

Consider 1 € j S m-1. By the BFGS update formula,

Bju=B; = B;U;j(UjnT BjUjs))W;jnTB; + HjstUji(UjT HjaUjs1y ;T Hju .

G Thus, for1€i S/,

q

:: BjuU;-H.U; =B;U; ~H.U; -

N, B; Ujd(ujﬂraj Ujﬂ)"( Uj+lTBj U - UjﬂTH. U, + Ujﬂrﬂo U; - Ujﬂrﬂg Ui )+

HijnUjnUjnTHj Ui YN UjuTH,U; + Ui T(He = HDU; ),
gince quTH,'U,‘ =0. Thus,since |1U; 1l =1forall I,
NBjwUi=HU; 11 S LIB;U; =H-U; 1l + 1IB;U; =H.U; l1x(B;)
+ |1H; = H. |Ix(B;)+ lH;4 - H; lIx(Hj.1)

SHBUi =H Ui HA+M)+ Myl x; —xe | IM + My 1 1xj4 = x; | IM

SA+MYUBU; ~HU; {1 + MM 180+ 2nM 1250 S L (HB;U; =H.U; |l + &),

4
_ where L =max{1 +M, MM +2nM,2}. Thus, it is easy to show by induction that for 1 Si Sm-1,
_ BaU; =HoU; 1) SL™= | 1B,U; = HoU; 11 +('f;u)8o.
; )
D)
:‘ Also,for1Si Sm,B;U; =H,;U; so that
i
) HB,U;=H.U; Il = |I1B,U; =H,U; + H;U; = H.U; |
Z = WH,U;=H U; 11 SMy Hx; =20 11 S8M .
¥
] Thus, withcy=L*™"(My+m), 1B U;=H:U; 11 Sc 18 for1Si sm.
: Since U;,, is chosen orthogonal to H,U;. for 1S 1 <, if we let U be the nxa matrix obtained by
L]
, concatenating the matrices U;, for 1 Si Sm, let V be the matrix obtained by concatenating the matrices
“ H;U;, for 1Si<m, and let D =UTV, then D is block diagonal, with diagonal blocks U;TH,U,.
.‘ |
[
:‘ Further, foreach i,
i
1 |
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X since 11U; |1 =1,50 11D-111 S M. Thus,

HU- = UDWT L S 11D HIVT LESM VT |,

'
[
; Note that
A
i’ T T
HVT 1= max NVTx Il Sa%M,,
o since for any x with llx |l =1, if we let v =H (x;)u be a typical column of V, where llu |l =1, and
D
i)
4 1sli<sm,thenvTx < llu 1l IIHE)!I lix 11 SM,. So, 11U Il Sa%M 2
;,g Now, each column of (8, — H.)U has norm less than ¢ 8y, s0 clearly there is a constant ¢, such
Q'g ’ '
o that 11(B, — H+)U Il S ¢3¢ Hence,

1B, —He ll = H(By =He)UU-M 11 S 11(By =H)U 11 1HU-N 1] S can¥M 25

and the desired result follows with ¢ = cn%M,2. O

» In the proof of our main local convergence result below we make the strong assumption that x. is a
’ strict global minimum of f (x). We do this in order to rule out the possibility of taking an umeésonably

Lt
o»

M long step during the first m iterations. Alternatively, we could prove m-step Q-quadratic convergence
. under the assumption that B is sufficiently close to H..

» Theorem 3.1.

Suppose that f(x) and x. satisfy Assumptions 3.1. Suppose in addition that x. is a strict global
3 minimum of f(x). Then for any positive definite matrix B, there is an €> 0 such that if

llx;=x. || <€ then the sequence {x,]} generated by Algorithm 2.1(CB) converges m-step Q-

.l
:l; . quadratically and 1-step Q-superlinearly to x..
)
s
n
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" Proof.

< Let B, be a given positive definite matrix.
’ Al
: We first obtain a neighborhood in which H (x) is well-behaved and show that in this neighborhood,
" the condition numbers x(B), . . ., X(B,) are bounded.
%
oy Since H (x) is Lipschitz continuous on some neighborhood of x« and H. is positive definite, there
G..

e

are constants ry and y such that if llx —x. Il <ry, then A (H(x))>0, 1H(x)II1S211H. I}, and

K- HHGEY 11 S211H.~ 11, andif also 11X =xs |1 <7y, then IH(x)-=H@®) Il Sylix =X |I. Define
K-
K~ My=min(y,2 1He 11,211H.=111, 1B 1D, BV 1) .
~
Let 1, > 0 be such that if 1B = H. 1| <n, for amatrix B, then 11B-111 SM, and 11B || SM,. Let
\'.
'.‘;,- Ni={xeR": llx-x Il <ry}.
o

) It is easy to show, in similar fashion to the argument in Fletcher (1970), that if H and B are posi-
3:( tive definite matrices, U has ¢ independent columns, and
{4

, B,=B -BUWUTBUYWTB +HUWUTRHUYWTH ,
. then

./

N

W . A(H)
! Ay (B,) 2 min{Ay(H), \(B))
s 1B+ . ey M
5,.. ‘nd
i;#

A (H) B

e A-(B+)5mﬂxﬂn(”)-mln( ).

v,
k.
a; Further, if H = H (§) for some £ € N, then clearly

8
b o1 1

M(B,)me{m. -M—lr A(B))

i md .
S
L)
‘0
e
)

4

)
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A.(B,)Smax(M, M % (B)) .

So, a trivial induction shows that if 11B,,; 11 SMy, 1By~ 1l SMy, and §, Sry then for 1S/ Sm,

1Byt SM,¥ and llBgﬂ'" 11 SM%, and s0 x; SM\*™. LeaaMy=M,=,

We now construct a neighborhood N; contained in N, in which Lemma 3.1 applies, and show that

the iterates remain in this neighborhood. By Lemma 3.1, there are r and ¢ such that forany &,if 5, <r

and x; S My, then |1Byom —He 11 Sc8;. Letra=min{ry, r, %}. Take

F=min{f(x):r2S llx =x. 11},
and let N2={x € S : f(x) <F). Then, since x. is the strict global minimum of f (x) and condition

(2.1) is satsfied, if x; € N, then for all k, x; € N2. Thus, §, <rysSr; for all k. Now, since
HB,IISM and I1B;" 11 SM;, xg S M3, and so 1By ~He 11 Sc8Scra<n,. So, 118,11 <M,
and 11Bn~! 11 SM,. Hence, by a simple induction, we have that 118; 11 SMzand 11B;-1 11 S M, for

all j,and ||Bgy = He 1 s:&.(,.-,)t‘orallk.

Thus, {x; } is contained in N3 and x(B;) S M for all j, so Lemma 2.1 of Byrd and Nocedal (1986)

implies that {x; ] converges to0 x., since

=8 Tsi
8k i

1

&TB ' >
BT

Tige 11 1B, Tgs 11

We have shown that forall k, 8, Sra<r and x, SM, soforany k, 1By, =H. 11 S¢§; <.

Also, by Theorem 6.4 of Dennis and Moré (1977) it follows that for all large k, 4, =1.

Consider any k with i, = 1. Then for some &, . between x; o AN X oms1.

UXpomat =Xe 1 2 UHXyom =X =Biom ™' gram 1!

S HNBiom™ 1 HBiom Xhom = Xe) = H Gram ) Xiam = xo) ||

e
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i
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SM( HByom=He 1l + 1HHRXpom)+ Ho 11 ) Hxpom —xo U1

SMy(c8 +MNE m =20 11) 1xppm —xo 11 .
Since giom = g (%o ) + H Esom M Xiom ~x+) for some &, . between xo and x; m,
1 Ehm =Xe 11 S 1 Xpom =% 11 + HBiem  ghem 1 SU+M D) X4 =xo V] .
So, we have that

U Xpemar =% 10 SM O NXpom =X 11 +M 21 +M D) Hxpep = %0 112

SM;c +M|2(l +M12))Sg 1 Xy =X 11 .

Thus, by definition, (x,} converges to x» at an m-step Q-quadratic rate, and since §, converges to 0,

clearly also {x;} converges to x. at a 1-step Q-superlinear rate. O

Theorem 3.2 shows that Algorithm 2.1(CBT), which adds a temporary BFGS update of the stan-
dard secant information to the partial Hessian information update of Algorithm 2.1(CB), has the same
local convergence properties as Algorithm 2.1(CB). This is of interest because Algorithm 2.1(CBT) tums
out to be the better of the two methods in practice. The technique of proof is related to one used by Li

(1986) for a related temporary update method for solving systems of nonlinear equations.

Theorem 3.2.

Suppose that f(x) and x. satisfy Assumptions 3.1. Suppose in adaition that x. is a strict global
minimum of f(x). Then for any positive definite matrix B), there is an €> 0 such that if
llx;=x li <€, then the sequence (x;] generated by Algorithm 2.1(CBT) converges m-step Q-
quadratically and 1-step Q-superlinearly to xe . |

Proof.

We prove this result by indicating the necessary modifications to the proof of Theorem 3.1.

R P " .t
EA A L LR A

e . W T,
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e First, note that the proof of Lemma 3.1 need not be changed at all in order 1o apply to Algorithm

) 2.1(CBT), since the steps (s; } do not enter in to the proof, and the matrices (B, } are unchanged.

Next, let B; be the approximate Hessian with which the step is computed, i.e.
¢ 5 - 8 ;S ‘-ls .-lTB . y ._‘y .-,7
" Bj=Bj~ LIl 4 olg)—
"-r 47 Sj-1" Bjsj Sj-1" Yj-1
nn Clearly 11B; 11 SM211B; |1 and 118, 11 SM311B;-1 11, 50 if we take M3 = M ;5+) and replace
_\," B; by 8-, throughout in the proof of Theorem 3.1, we still obtain the fact that {x;) converges to x., and

o 11Byem = He 11 S 8.

. Thus, by Theorem 3.2 of Broyden, Dennis, and Moré (1973), it is easy to see that there is a constant
Loty cysuchthat forall k, 118y —He 11 € ¢18:. Thus, since {8, ) converges to 0, we have that for all large

ala k, cy8; <My, and we can finish the proof with By, in place of By . and ¢ in place of ¢. O

ggl A similar analysis could be used to show that Algorithm 2.1(UPT) is also m-step Q-quadratically

e and 1-step Q-superlinearly convergent.

.'3:" 4. Computer Implementation.

{§§ In this section we discuss our computer implementation of the algorithms described in Section 2.
X These algorithms are similar to well-known sequential algorithms in most respects, so we will concentrate

on the aspects that result from a parallel processing context.

We have considered algorithms that compute ¢ extra gradients at each point, but at the present time
we have only implemented a version that uses 1 extra gradient at each point. Because this is the case that

‘.;o‘." is reported on in Section 5, and because this case is simpler to describe and understand, we will restrict

AR ey DR C D RIS CTRRERYY - 2K 1 W0, et Teateg Tty o gl N A G S T N (Y
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o
o ourselves to this case in this section.

(R |
:‘\: Since we assume that g(x) and H (x) are not available analytically, but must instead be approxi- |
:,‘ mated using function values, we need to describe how we approximate the various derivative quantities |

- by finite differences. First, at a point x, we approximate g (x) by the usual finite difference formula (1.2),

Vs

o where

w
[}

h; = (machine precision) max{ix;1,1}.

!.;

W Then, we approximate the extra Hessian information viey = H (¥g41)is.+1 by _
3 {

: Ve = £ G nu:‘.l) —8 ()

;

’ where 1| = (machine precision)4, and the new gradient is again computed by (1.2) and requires n+1 new
"

- function values. It can be shown that this choice of the stepsize 1| tends to optimize the trade-off between

truncation error and rounding error in V..
" We now consider the issue of computing the finite difference update direction u;.;. Our algorithms
)

either use unit directions or approximately conjugate directions.

The choice of unit directions is straightforward. We simply cycle through the directions ¢, moda ).

A
¥
' for j=1,2,.... However, when we are doing the BFGS update, 10 preserve positive definiteness we
L »
\_: need uZ,1via1 > 0. Therefore, if the test
::
o u[.1ve41 > (machine precision)¥ Huge 11 Hvgyy )1
A' is not satisfied then we do not perform the BFGS update at this step, and we continue to use the same
< direction at successive iterates until the test is satisfied.
:'
We now consider our method of computing the approximately conjugate finite difference update
!
j directions. Let V, be the matrix with the n—1 columns H (xs_,)u;-,, for j =0, ..., n=2. We do a QR
3
. A
4
l. *
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%
o factorization of V;, obtaining V; = O, R;, where O is an nxa orthogonal matrix and R, is an s upper
I" i
Wt -
) triangular matrix, where ¢ is the number of columns of V; that were included in the factorization. In the
y ';o -
"' course of the factorization, if a column of V; makes 00 small of an angle with the subspace spanned by
YN -
o the previously included columns of V;, then it is not included in the factorization. ‘Then, we take u;.; 10
o be column ¢ + 1 of Qx. Thus, iy is orthogonal to all the columns of ¥ that were included in the factori-
oy -
:;i' ; zation. Note that if V; has rank -1, then uy, is onthogonal to each H (xy.;)s-j, for j =0, ...,n=2.
R -
ot Next, we let Viy) = H (xp41)iss1. If By is updated by the PSB, then we obtain V4 by shifting the
“:E';: columns of V; one to the right and taking column 1 to be v,,. If B,,, is updated by the BFGS, and the
':.~
] " -
P:::\'r update along u,.; succeeded, then we determine V;,; as for the PSB update. If the update was not done,
o‘p'.
:;. because uZ,1vi+1 SO, then V;.=V,. Thus, we continue to use a finite difference direction until the
\J
(V0% -
,3 update along it is successful. Initially, we take V; to be the first # — 1 columns of the identity matrix.
o ¥ -
3 Note that the theory of Section 2 is Iocal, and in that context the matrices V! can be uniformly bounded
:;;’;;; and H (x,.1) is always positive definite, so the BFGS updates always succeed.
l‘:':’y
::30{ We now discuss the determination of B, in the various algorithms. All the algorithms, except of
..:.. course for Newton'’s method, take the initial Hessian to be the identity. Then, before the first step direc-
(i)
e
% tion is calculated, those algorithms that perform updates along finite difference directions update the iden-
"
t ' tity matrix 10 a matrix B, by equation (2.4) or (2.5), using the finite difference information H (xy)u;.
2; This information is available at no cost since the algorithm has to evaluate f (x;) and g (x}), so the extra
453
oS
E gradient information H (x;)u; might as well be calculated concurrently and used to improve the initial
."E:
o Hessian approximation. Then, B is used to compute §). After obtaining x3 and g (x2), we finally obtain
o
U
o
E:- ) B by the scaling
B
L]
o.e'u B,= JTB 151 B .
o s
o
W W
,,.3-;
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3. where y, =g, —g;. The effect of this scaling, first suggested by Oren (1974), is to ensure that
3% s]B s, = sTy,, which is desirable since we would like to have B,s, =y,. Note that our implementation
7
\ of the usual BFGS algorithm also does this initial scaling of B;. We experimented with other strategies
Ve
Bl for determining B in our new algorithms, but found no uniform improvement over the strategy described
s‘ ™
o above.
\l
0~
%)
B p2 The implementation of these algorithms uses code for the linesearch, perturbed Cholesky factoriza-
: tion, and stopping conditions as described in Dennis and Schnabel (1983). We implemented the version
W
b i of their linesearch method that obtains a step satisfying conditions (2.1) and (2.2).
5
i‘ >.
!.
o~ §. Computational Results.
I
‘
i
! We now present and discuss some computational results comparing the performance on a set of
)’i"
[ standard test problems of the algorithms we have described. As mentioned in Section 4, so far we have
o
'«}. y only tested the versions of our new algorithms that utilize 2(n+1) processors (i.c. one extra finite differ-
[
_ ence gradient).
-
RS Our test set is taken from the standard set of small dimensional problems in Moré , Garbow, and
e
) Hillstrom (1981). We omitted some of their functions because the problems were either badly scaled or
‘ were not solved by any of our methods due to floating point arithmetic overflows. The 15 functions in
R y any
)
1 _'-;4 our test set are listed in abbreviated form in Table A.1 in the Appendix, in the column labeled “func.”
o Each function was tested with three choices of x;, namely the standard starting point given by Mor¢, Gar-
"N
i:: bow, and Hillstrom (1981), multiplied by 1, 10, and 100. The column in Table A.1 labeled "sp" contains
LY
{'-
b the multiple of the standard starting point that was used in the corresponding test problem. Thus, our test
' set consists of 42 problems, since Watson's function was only tested with one starting point, the zero
‘-,":
:;.,_
L)

X \ \."&. -
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vector, and the Chebyquad function from the farthest point was not solved by any of our methods.

The stopping conditions used in the code are as described in Dennis and Schnabel (1983). The
algorithms successfully terminated when either the relative size of the gradient was less than 105 or the
linesearch failed to find a lower point than the curmrent iterate while backtracking. The algorithms failed

to solve a problem when either the iteration limit of 500 iterations was reached or a floating point arith-

. metic overfiow occurred. In Table A.1, an overflow on a problem for a method is indicated by "***"

listed for the number of iterations and for the number of failed trial points, while "—* in these same loca-
tions indicates that the method reached the iteration limit on the problem. The tests were performed on a

sequential machine, a VAX 11/780, using double precision arithmetic.

For each problem that was solved, we recorded the number of steps required and the number of trial
points at which the linesearch conditions (2.1) and (2.2) were not satisfied. These numbers are recorded
in Table A.1. Note that the number of steps and the number of failed trial points is enough information to
simulate the performance of our algorithms ona parallel machine with 2(n+1) processors, if we assume
that only the time for function and derivative evaluations is relevant. Define a cycle of parallel function
evaluations, or "f-cycle,” to be a step in Algorithm 2.1 at which up to 2(n+1) function evaluations are per-
formed in parallel. Thus, on our simulated parallel machine, an f-cycle takes the same amount of time as
one function evaluation. For all of our algorithms except Newton’s method, the number of f-cycles
required to solve a problem is simply the number of points x at which f (x) is calculated in steps 1) and
7) in Algorithm 2.1. This is clear, since all the function evaluations required for the derivative approxi-
mations are performed in parallel with the evaluation of the function at each trial point, or are done in
parallel with the evaluation of f (x;). Note that each trial point in the linesearch is either an iterate, if it
satisfies condidons (2.1) and (2.2), or is a failed trial point, if it does not satisfy these conditions. Thus,

for all our algorithms except Algorithm 2.1(N),
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number of f—cycles =1 + number of iterations + number of failed trial points .
Newton’s method is somewhat different, since more than one f-cycle is required to compute the
Hessian at successful trial points. In parallel with the computation of f (x) and g (x) at trial points, the
extra n+1 processors can clearly be used to compute n+1 function values for the finite difference approxi-
mation to H (x). Then, if the trial point satisfies conditions (2.1) and (2.2), the remaining 22+ =2

function values for the finite difference Hessian approximation must be computed. This requires

[T—anzz-zl f-cycles. Hence, for Algorithm 2.1(N),

number of f—cycles = ( 1+ number of iterations X 1+ (%} )
+ number of failed trial points .
Thus, for all of our algorithms we can compute the simulated number of f-cycles needed to solve
each problem on a parallel machine with 2(n+1) processors, using the raw data given in Table A.1. If

function evaluation is expensive, this is a very close indication of the total cost of solving the problem.

We now describe our statistical comparisons of our algorithms. We present a statistical comparison
of all the algorithms, as well as a number of statistical summaries comparing the relative performance of
pairs of the leading methods. Each of these pairwise summaries is in the format of Table 5.1. The
column headings give the abbreviated designations of the two algorithms being compared, and the rows

are calculated as follows. The row labeled "# solved™ contains the number of problems out of the 42 in

.the test set on which the method successfully terminated, while the rows labeled "# overflow™ and "# hit

inlim" contain the number of problems on which each method failed, respectively, from floating point
arithmetic overflow and by reaching iteration S00. The row labeled "# compared™ contains the number of

problems that were solved by both methods. The comparative statistics in the last two rows of the tables

are computed only over this set of comparison problems. The row labeled "Ave. score™ is calculated as
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L
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e
o
. follows. For each comparison problem, the method which required fewer f-cycles is assigned a score of
o
:;3" “1," while the other method is assigned a score equal to the number of f-Cycles it required divided by the
VA
R number of f-Cycles required by the better method. Then, the average of the scores for each method over
N the set of comparison problems is recorded in the row labeled "Ave. score.” For each comparison prob-
o
B lem, if the score of a method is less than or equal 10 1.1, then that method is counted as *# best” for the
.n‘?.l':
: problem, and the total of such problems for each method is recorded in the row labeled "# best.”
3
2 Table 5.1
o p =2(n+l)
e
!‘: \ o
\-_:} # solved: 36 37
; "; # overflow: 4 4
e # hit imlim: 2| 1
e # compared: 34
st # best: 19| 20
‘.:f}; Ave.score: | 142 | 2.09
QLY
:)" We first consider the comparative performance of Newton's method and the BFGS method. It
l'“.l
E::::. seems clear from Table 5.1 that the BFGS method is somewhat superior to Newton's method when
3
,l’ \.'
',7'.:'.: 2(n+1) processors are available. Table 52, on the other hand, compares these two methods under the
".‘i'a
assumption that p is large enough that the entire finite difference Hessian approximation can be calcu-
< ' lated concurrently with evaluation of the function and gradient values. It shows that the extra Hessian
; ",-“ i information available in Newton's method substantially reduces the number of iterations required in this
: . case. Together, these two tables show that it certainly is reasonable 1o consider the type of algorithms
X
‘) that we are discussing in this paper, when the number of processors is large enough to allow an extra gra-
;. ’:
) dient evaluation at each trial point but not large enough to allow evaluation of the finite difference Hes-
sian in one f-cycle, because Newton's method is not optimal, but the Hessian information does seem to

A
< ""' “"" : ‘.' ‘l,-\'..q“lﬂ.‘;t ,*, A "1' 8 ‘.
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Table 5.2
p2(n+5a +2)2

# solved: 37
# overflow: 4
# hit itnlim: 1
# compared: K ol
# best: 27
Ave. score: 3.07 | 1.36

v|a|&

We now compare the relative performance of all our algorithms by the following analysis tech-
nique. Define M; to be the number of f-cycles required for algorithm M to solve problem i. If the algo-
rithm fails, either due to overflow or by exceeding the iteration limit, then M; = e, We then define the
average performance g; for problem i to be the median of the values M;, over all methods M , except that
if the median is e then we instead take a; to be the largest M; that is not ee. Next, define the perfor-

mance Py of method M

Pu= 3 T+ 3 Q-5

where if M; = « then ﬁ- =0. This measure tends 10 compress the performance measure of all the

methods but is reasonably good at ordering them.

Table 5.3 shows the performance of each algorithm as measured by the above technique.

=T
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g
gil‘
_-%
| Algorithm S N UP UB CB UPT UBT CBT UPS UBS CBS
f” N Performance 1.08 1.15 116 1.69 126 114 121 107 095 098 090
v Y We can make some interesting observations from this table. First, we note that Algorithms 2.1(UP), (UB),
\
and (CB), which omit the standard secant equation, perform worse than the BFGS method, Algorithm
) 2.1(S), even though they use some finite difference Hessian information. Also, note that Algorithm
oy
»:,3 2.1(UB) performs much worse than Algorithm 2.1(CB), which indicates the importance of choosing the
,::. finite difference update directions to be approximately conjugate when using the BFGS update 0 insent
o
a2
08! finite difference Hessian information. Next, we see that the addition of the temporary step update is
L.
7 clearly worthwhile, since each of Algorithms 2.1(UPT), (UBT), and (CBT) performs better than the
v
P op
e corresponding algorithm without the temporary step update. However, two of these methods still perform
g
N0 worse than the BFGS method, and Algorithm 2.1(CBT) performs about the same as the BFGS method.
&N
D "
.} Finally, we observe that the methods that use alternating step and finite difference updates, Algorithms
e
) 2.1(UPS), (UBS), and (CBS), perform the best of our algorithms. They perform significantly better than
e
"
\"': the BFGS method.
) »{':
s
. In Table 5.4 and Table 5.5 we give pairwise comparisons of the BFGS method, Algorithm 2.1(S),
o with the three best of our new methods, Algorithms 2.1(UPS), (UPS), and (CBS). These statistics
‘. : confirm the conclusion that the alternating update methods perform better than the BFGS method. Also,
b :
- it is interesting to note that the choice of approximately conjugate finite difference update directions that |
' AN
) ’A\ !
K ”: yielded such an improvement of Algorithm 2.1(CB) over Algorithm 2.1(UB) does not give a similar
"W
! improvement for these methods, since Algorithms 2.1(UBS) and (CBS) perform very similarly. This is
t probably linked to the fact that the m-step quadratic convergence of methods (CB) and (CBT), which
N
1L
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depended on using conjugate rather than orthogonal directions, is destroyed by making permanent step
updates. Finally, we see that the conventional wisdom that the BFGS update is in some sense superior to

the PSB update is supported here, since Algorithms 2.1(UBS) and (CBS) perform somewhat better than

Algorithm 2.1(UPS).
Table 5.4

Algorithm: UPS S UBS S CBS S
# solved: 38 36 33 36 36 36
# overflow: 3 4 7 4 6 4
# hit inlim: 1 2 2 2 0 2
# compared: 33 32 34

# best: 21 14 27 12 24 12
Ave. score: 139 322 | 123 166 ) 145 175

# solved:

# overflow: 7 3 6 3 7 6
# hit itnlim: 2 1 0 1 2 0
# compared: 30 33 33

# best: 21 12 26 16 20 20

Ave. score: 123 1661 146 173 1.14 1.15

Tables 5.4 and 5.5 indicate that our best new methods have achieved about a 30% improvement
over the BFGS method when there are twice the number of processors needed by the BFGS method. This
is not a perfect utilization of processors but may be about as well as one can do on these small problems,

especially considering the comparisons in Table 5.2 which show a fairly small improvement by Newton's

method over the BFGS method on these problems.
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6. Conclusions.

We have introduced three types of new algorithms that utilize extra function evaluations to obtain
part of the finite difference Hessian at each iteration. The first type (Algorithms 2.1(UP), (UB), and (CB))

uses the finite difference Hessian information to update the Hessian approximation and omits the standard

_secant update that is made by methods such as the BFGS method. The second type (Algorithms

2.1(UPT), (UBT), and (CBT)) uses the finite difference Hessian information and makes a temporary stan-
dard secant update as well. The third type (Algorithms 2.1(UPS), (UBS), and (CBS)) makes updates both
with the finite difference Hessian information and with the standard secant information at each iteration.
Each algorithm type has three variants: using standard basis finite difference directions with PSB updates
(first two letters UP) or BFGS updates (first two letters UB), or using conjugate finite difference direc-

tions with BFGS updates (first two letters CB).

We have shown m-step Q-quadratic and 1-step Q-superlinear convergence rates for Algorithms

2.1(CB) and (CBT); the same results clearly hold for Algorithms 2.1(UP) and (UPT). Here m = [ %] ,

where g is the number of extra gradient evaluations available per iteration. Our experimental results with
q =1 show that of these algorithms, only Algorithm 2.1(CBT) performs roughly as well as the BFGS
method. These algorithms may perform better than the BFGS method when ¢ > 1 or on large dimen-

sional problems; we plan to experiment with these cases.

Algorithms 2.1(UPS), (UBS), and (CBS) with ¢ =1 appear to perform better than the BFGS
method. We have not been able to show m -step Q-quadratic convergence for these methods and suspect
that they do not possess this property. However, they appear to be a promising approach to utilizing extra

processors in solving unconstrained optimization problems. Also, we believe that these methods are 1-

TR 0 \ T PSS YA ‘
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step Q-superlinearly convergent. We intend to continue to experiment with these methods with ¢ > 1

and on larger-dimensional problems, and to analyze their convergence properties.
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