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INTRODUCTION

It is safe to say that every resonator in existence has

contaminated surfaces. It is only a question of how contaminat-

ed the surfaces are, not if the surfaces are contaminated.* That

adsorbed contamination is a significant contributor to aging is

well known. It is also well known that surface contamination

prior to plating has a significant influence on the properties of

the thin films that are used for the electrodes. The purpose of

this report is to explore the effects, if any, of surface

contamination on short-term instabilities (i.e., noise) and on the

drive-level sensitivity of piezoelectric resonators.

*Even at 10-9 torr, the number of molecules hitting a reso-

nator's surface is such that, if all the molecules that collide

with the surface stick, an atomic layer of contamination forms in

about 1000 seconds (- 17 minutes.) Moreover, even if it were

possible to keep a resonator's surfaces perfectly clean during

fabrication: since all metals, glasses, epoxies, etc. outgas,

the resonator's surface would start to be contaminated immediately

upon sealing.
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THE EFFECT OF SURFACE CONTAMINATION ON RESONATOR SHORT-TERM

STABILITY

Short-term stability (i.e., noise) is among the least well-

understood resonator phenomena. Factors that have been

recognized to contribute to short-term instability include:

Johnson noise, temperature fluctuations, vibration, acoustic

losses (i.e., Q), noise originating from interfaces between the

electrodes and the quartz plate and between the mounting structure

and the quartz plate, and noise due to the oscillator circuitry.

Another source of noise is resonator surface contamination,

i.e., the fluctuations in the number of adsorbed contaminant

modules. Consider, for example, a resonator that is a million

atomic layers thick (i.e., about 0.5 mm thick). An atomic layer

of (quartz-equivalent) contamination will then lower the frequency

by 1 x 10-6. If the resonator active area is 1 cm2 , then, for a 5

x 10- 8 cm contaminant molecule spacing, there will be 4 x 1014

contaminant molecules contributing to the frequency lowering.

Since contaminant molecules have a finite lifetime on a surface

(the average lifetime depends on the adsorption energy) the

number of adsorbed molecules will fluctuate. In order to account

for frequency fluctuations of 1 x 10- 1 3 to 1 x 10-12, the number

of contaminant molecules would have to fluctuate by 1 x 10
- 7 to 1

x 10-6 atomic layers (in the same averaging time). These numbers
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appear to be reasonable because, in statistical physics, the

normalized fluctuations in a large number N of objects are

typically on the order 1/ AF. For example,1 if the average gas

density in a 1 mm3 volume of a large volume of gas is N, then the

density fluctuation (rms deviation from the average) in the 1 mm3

volume is A. The same results hold for the "shot effect,"

i.e., the thermionic current noise in a vacuum tube. If no is the

average number of electrons emitted per unit time, then the rms

fluctuation in no is A O . (The excess spectral density of the

shot noise has 1/f dependence.2 )

Assume that we are dealing with only one type of contaminant

molecule, and only one type of adsorption site on the resonator,

and let

I4 Na = number of adsorption sites in the active area of

the resonator,

Nc = number of contaminant molecules in the resonator

enclosure,

Erc = resonator-to-contaminant-molecule binding energy

(i.e., the desorption energy),

3
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Ecc = contaminant molecule to contaminant molecule

binding energy when neither is adsorbed on the

resonator,

Ercc = binding energy of a second layer contaminant

molecule.

For simplicity, let us assume that Ecc Ercc = 0 and let

us consider the three cases: Nc << Na, Nc Na, and Nc >> Na.

It can be readily seen from the following qualitative arguments

that the three cases can contribute to short-term instabilities in

very different ways.

Case I: Nc << Na

When Nc << Na, the probability that an adsorption site is

occupied depends on Nc/Na, and the time of occupation at a given

*, site depends on Erc. There are many available sites for each

contaminant molecule; so, whenever a contaminant molecule collides

with the resonator surface, on the average, it will stick for a

finite time that is a function of Erc.

4
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Case II: Nc  Na

When Nc  Na, the lifetime of a molecule on an adsorption

site will be the same as in case I. However, since nearly all

adsorption sites are occupied nearly all of the time, once a

molecule desorbs, it will take many collisions with the surface

before it is readsorbed. Therefore, the fluctuations in the

number of occupied sites will, clearly, be different from those in

case I.

Ad

Case III: Nc >> Na

When Nc >> Na, for each desorbing molecule there are many

others available to take its place; therefore, all adsorption

sites will be occupied nearly all of the time. The frequency

fluctuations due to surface contamination fluctuations will be

smaller than those mentioned in cases I and II, i.e., a "dirty"

resonator is likely to be less noisy than a partially contaminated

2resonator (everything else being equal).

The relationship between contamination-induced noise and

contamination level, for constant Erc and measurement time, is

likely to be as shown in Fig. 1. Similarly, for a constant

Nc/Na, the relationship between contamination-induced noise and

Erc will be somewhat as shown in Fig. 2. The scales are to be

5
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Figure 1. Contamination-induced noise vs. contamination level.

NOISE

Erc

Figure 2. Contamination-induced noise vs. desorption energy.
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determined by performing the necessary experiments or statistical

calculations.

The curve in Fig. 1 crosses the origin because, of course, if

there is no contamination, there will be no contamination-induced

noise. For Nc >> Na (case III), the noise will be low, but

finite.

In Fig. 2, when Erc = 0, the lifetimes of contaminant mole-

cules on the resonator surface will be zero. Therefore, the noise

will be very small, but finite, due to the impacts of the

molecules. When Erc is very large, the lifetimes of adsorbed

molecules will be very long; therefore, the fluctuations in the

number of adsorbed molecules will be very low. Figure 3 shows the

relationship of lifetime to adsorption energy and temperature for

a simple adsorption process 3 (Ed = Erc for our problem). At 250 C,

for example, the lifetimes range from microseconds to about the

age of the universe as Erc ranges from 10 kcal/mol to 45 kcal/mol.

For many of the commonly occurring contaminant molecules, Erc is

in the 10 to 30 kcal/mol range (e.g., for H20, C02 , CH4 , 02, N2 ,

etc.)

There exist some experimental results that tend to indicate

that "dirty" resonators can be less noisy than "clean" resonators.

For example, several years ago the author's laboratory supplied a
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number of ceramic flatpack-enclosed, fundamental-mode, AT-cut

resonators to Bendix Corp. for use in the development of the

Tactical Miniature Crystal Oscillator (TMXO). These resonators

had been fabricated under superclean conditions (UHV, high-

temperature processing, etc.) The resonators had excellent aging,

*but were noisy, typically in the 10-11 range at 1 sec. One

memorable resonator (No. CR186) was superlow-noise, i.e., it was

more than 1oX better than most of the rest. Bendix used this

resonator as a standard, i.e., they measured the noise of other

resonators against No. CR186. Later, the performance of this

resonator degraded significantly; a radioactive tracer leak test

showed this resonator to have a small leak!

Similarly, Parker had reported a few years ago 4 ,5 that SAW

delay lines fabricated with (RTV) silicone adhesives (which

outgas) had significantly better noise performance, but

significantly poorer aging, than SAW delay lines fabricated under

superclean conditions.

Parker showed that "delay lines which have been thoroughly

cleaned and hermetically sealed are the noisiest, while devices

which have a very thin layer of silicone material are the quiet-

est." Furthermore, he showed that, for RTV mounted delay lines,

immediately after the RTV was cured, the noise level dropped; it

9
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decreased 6 dB during the first three days. It decreased an

additional 4 dB upon a 16-hr, 900 C bake, which, presumably, caused

further outgassing. When the same devices were subsequently

cleaned by UV/ozone, the noise levels increased to their original

value! Unexplained, though, is another of Parker's findinqs,

i.e., that surface treatments on SAW resonators had no observable

effect, even though the resonators had lower 1/f noise levels than

the delay lines.

From the foregoing findings, the following conclusions can be

drawn:

1. Rigorous calculations need to be performed on "real"

contamination models to verify the above qualitative

arguments and to ascertain that the magnitude of the effect

is not negligible compared to other noise sources. The model

should take into account that, in general, several types of

contaminant molecules and surfaces are present in the

resonator enclosure, and that Ercc # 0.

2. To minimize surface-contamination-caused noise, resona-

tors should be either very clean or very dirty, but not in

between.

10
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3. Since making and keeping resonators atomically clean is

very difficult, developing methods of minimizing the

fluctuations in surface contamination levels without causing

excessive aging or other adverse ettects is another approach

that one might explore. Such methods niqht include: the,

oditication ot the adsorption properties ot the res('nntor

surface (e.g., with silanes); the deposition ot an atomi,

layer, or a few atomic layers, ot tightly adherinq,

nonadsorptive (e.g., Teflon-like) material. An interesting

possiblility would be to deposit a single molecular layer of

a temperature-stable material, such as a polyimide. A recent

paper6 showed that it was possible to deposit a monolayer of

polyimide with the Langmuir-Blodgett technique. The

resulting film was stable to 4000 C.

4. If contamination is a significant noise source, the

short-term stability should, then, be temperature dependent,

e.g., the short-term stability of an SC-cut resonator at the

lower and upper turnover temperatures should not be equal.

5. One can investigate the effect experimentally by, for

example, measuring the short-term stability with a reflectom-

eter while an unsealed resonator is exposed to different

pressures of different gases in a vacuum system.
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DOES HIGH-DRIVING A RESONATOR HAVE A SIGNIFICANT EFFECT ON THE

ADSORPTION/DESORPTION OF SURFACE CONTAMINANTS?

The aging and short-term stability of oscillators can be

ittected by resonator drive level. The effects are not fully

understood. Increasing the drive level increases the displace-

ments and accelerations of particles at the resonator surfaces.

At high frequencies, especially, particle accelerations can be on

the order of 106 g. That high driving can remove particulate

contamination from resonator surfaces is well known. Is it pos-

sible that these high accelerations also affect adsorption

and desorption phenomena at the resonator surfaces? The follow-

ing simple, "back-of-the-envelope"-type calculation may answer

this question.

The displacement of a tightly adhering contaminant molecule

on a resonator's surface is given by

x = k sin (2N'ft),

.here k is the amplitude of vibration and f = frequency of vibra-

tion. The velocity and acceleration are then given by

x = 2wfk cos (2*ft)

X = -(2*f) 2  k sin (2nft).

According to Adachi et al., 7 for example, for a typical

resonator and for a reasonable driving current (e.g., 1 mA), the

12
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amplitudes of vibration are on the order of 100 A to 300 A.

Therefore, if

f = 10 MHz and k = 160 A,

then,

Xmax = 2wfk 102 cm/sec

and,

Kmax = (2wf)2 k = 6 x 108 cm/sec2  6 x 105 g.

The kinetic energy per unit mass of adsorbed molecule is

K.E. 1 V2 = 104 cm2  104

unit mass 2 sec 2  gm

A typical adsorption energy is 20 kcal/mol. Since 1 kcal =

4.2 x 1010 ergs, and 1 mol = 6.02 x 1023 molecules, 20 kcal/mol

10-12 erg/molecule. If a contaminant weighs 60 gm/mol, then

K.E. = 10 - 18 erg/molecule.

unit mass

Also, the average thermal energy of a molecule at room

temperature is 1/40 eV; since 1 eV = 1.6 x 10-12 ergs, the average

) room temperature energy = 4 x 10-14 ergs. Therefore,

K.E./adsorption energy = 10-6,

K.E./ave. thermal energy = 10- 3 .

13



Consequently, the kinetic energy due to drive is negligible.

Whether or not a resonator is vibrating, the level of drive will

not produce a significant effect on adsorption/desorption

phenomena. Of course, the energy deposited in the resonator by

high drive levels raises the resonator's temperature, and that

will affect the adsorption/desorption of surface contaminants.

SUMMARY AND CONCLUSIONS

The effects of surface contamination on the short-term

instabilities and drive-level sensitivities of piezoelectric

resonators have been explored. A plausibility argument has been

presented to show that the adsorption and desorption of surface

contamination may be a significant contributor to short-term

instabilities.

Although high drive levels produce high velocities and accel-

*erations at resonator surfaces, the extra kinetic energy imparted

directly to contaminant molecules by the high drive levels is

shown to be negligible compared to the adsorption/desorption

energies of the contaminant molecules of concern. Since adsorp-

tion/desorption rates depend exponentially on temperature, and

since the increased dissipation caused by high drive levels raises

the resonator's temperature, surface contamination can influence a

resonator's drive level sensitivity via thermal effects.

14
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